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Preface 

The finite element method is an advance numerical technique which is validly used to 

solve complicated problem in structural engineering and physics. Finite element 

technique can easily apply on complex problem and geometry, therefore it gains equal 

attention to other field of engineering, especially in fluid mechanics and heat flow 

problem. Many fluid models based on Navier-Stokes equation in which higher order 

nonlinearity appears, therefore it is complicated to find an accurate numerical solution. 

Finite element method helps us to solve these types of complex phenomena. Peristaltic 

motion is one of the important phenomena in fluid mechanics, which gain significant 

attention from many scientists and engineers in last four decades. Peristaltic flow has 

numerous applications in industrial science, physiological flow and bioscience. Typical 

examples of industrial systems and physiological, where peristaltic mechanism is 

involved are, flow of urine from kidney to the bladder, flow of chyme in small intestine, 

the small blood vessels as well as blood flow in arteries, spermatic fluid transport in 

female reproductive tract, swallowing of nutriment through oesophagus, blood flow 

through capillaries, etc. The transport in corrosive fluid in the nuclear industry, diabetes 

pumps, roller pumps and pharmacological delivery systems involve peristaltic 

mechanism. During the literature survey, it is noted that many authors find the analytical 

solution of peristaltic motion for Newtonian and non-Newtonian fluid by neglecting the 

inertial effects and using many assumptions like long wave length, small time mean flow 

rate, small amplitude ratio etc. The main purpose of this study is that the find accurate 

numerical results without neglecting the inertial effects and using any assumption. Finite 

element method is applied to find the numerical results of peristaltic motion for 

Newtonian and non-Newtonian fluid under different physical situations. The present 

study is valid for moderate Reynolds number and any wavelength. Moreover, the present 

study helps for further investigation in peristaltic motion. 

This thesis consists of eight chapters. Chapter 1 contains a background of finite element 

method and basic definition of fluid mechanics. To understand the basic produces of 

finite element method, solve examples are also given in this chapter which can help the 

beginner. The rest of the chapter contains two parts. Chapter 2 to 4 contains 



computational study of peristaltic motion in two dimensional channel flow problem and 

Chapter 5 to 7 contains computational study of peristaltic motion in axisymmetric tube 

problem. Chapter 8 gives the concluding remarks and future work. 

In chapter 2, finite element solution obtained for two dimensional MHD peristaltic flow 

of Newtonian fluid in an inclined channel against moderate Reynolds number and wave 

number at different wave shapes. The results are compared with the existing analytical 

result of Jaffrin (1973), numerical results of Dennis-Chang (1969) and Takabatake et al. 

(1989) and experimental results of Weinberg et al. (1971) in presence of Reynolds 

number and wave number. It is found that the results obtained without imposing the 

assumptions of long wavelength and low Reynolds number are significantly different 

from their counterparts based on long wavelength and low Reynolds number 

assumptions. It concludes that the present study obtained gives more accurate results as 

compare to old FEM results of Takabatake et al. (1989). It is also noted that the present 

results are well matched with experimental result of Weinberg et al. (1971) and 

theoretical result of Jaffrin (1973) against high Reynolds number and wave number. It is 

observed that the longitudinal velocity decreases near the channel centre with increasing 

Reynolds number and wave number. However, it increases near the channel centre with 

increasing Hartmann number. Moreover, the longitudinal velocity is less sensitive to the 

values of Reynolds number and wave number in the range         and      1, 

respectively. It is also noticed that, the flow behaviour is not significant effects at 

different wave shapes. These results are published in Journal of the Korean Physical 

Society,71(12) 950-962. 

In chapter 3, heat transfer effect is observed on peristaltic flow problem against 

moderate Reynolds number and wave number in channel numerically. The finite element 

technique is used to find the numerical solution. Here again, It is found that the obtained 

results are significantly different from previous results without imposing any 

assumptions. The results of velocity, pressure rise, streamline and isothermal line are 

presented graphically. The obtained solution upto Reynold number 100 by using time 

mean flow rate Q = 1.4, wave number 0.1 and amplitude rate at 0.5. It is concluded that 

thermal effects are more for water based fluid as compared to gases. It is also observed 



that the bolus appear in the whole region at small time mean flow rate and move to carets 

region when time flow increase. It is noted that more thermal effect observed against high 

time mean flow rate. It is also noted that the positive pumping region appears at time 

mean flow rate Q < 0.45, free pumping at Q = 0.45 and co-pumping region appear at Q > 

0.45. It is observed that the longitudinal velocity reduces near the wall with increasing 

Reynolds number, but enhance by increasing values of wavelength. It is noted that the 

temperature profile increases sharply due to increase in all the parameters accept 

wavelength. These results are submitted in Journal of Theoretical and Applied 

Mechanics. 

Chapter 4 described the numerical solution of peristaltic motion for Non-Newtonian 

fluid against high Reynolds number and wave number in a channel. The micropolar fluid 

is considered as a non-Newtonian fluid. The obtained governing partial differential 

equations converted into stream-vorticity form and then use Galerkin’s finite element 

technique to obtained numerical solution. The obtained solution is well convergent even 

high Reynolds number and wave number. It is concluded that the velocity decreases near 

the peristaltic wall and increases in the centre of the channel by increasing micropolar. It 

is observed that the velocity decreases near the centre of channel by increasing the values 

of Reynolds number whereas reversing near the boundaries. It is noted that the streamline 

are not disturbed by taking the large value of Re. It is also seen that there is no restriction 

by choosing the value of parameter in channel flow problem. These results are published 

in Journal of the Brazilian Society of Mechanical Sciences and Engineering (39) 

4421-4430. 

Chapter 5 discussed MHD peristaltic motion through an inclined tube at high Reynolds 

numbers and wave number. The governing equation obtained in axisymmetric form and 

then converted in stream-vorticity form without imposing any assumption. The obtained 

results against higher value of Reynolds number in tube are significant different of those 

result obtain in channel flow problem. Most of studies available in literature are carried 

out low Reynolds numbers assumption which makes the simple nonlinear problem. It is 

noted that the velocity of the fluid is maximum at Re = 15 at inlet part of the wave for 

large magnetic effect and Re = 18 against small magnetic effect at centre of the tube. 

After increasing the value of Reynolds numbers, the velocity filed decreases and remains 



stable at higher Reynolds numbers. For higher value of Hartman number, the trapping 

bolus and the size of boluses increase due to increase in velocity of fluid. The pressure 

rise against time mean flow for different value of Reynold numbers, magnetic field and 

the amplitude ratio increases by increasing the values of these parameters. These results 

are published in Biophysical Reviews 11,139-147,(2019). 

In chapter 6, the effect of heat transfer of peristaltic motion in a tube against the high 

Reynolds number and wave number is observed. The finite element technique is used to 

solve the governing partial differential equation and obtained the numerical results 

graphically. The present results are valid for arbitrary Reynolds number, wave number 

and amplitude ratio. The streamline and isothermal line is plotted at different value of 

parameters. It is noted that the heat effect increases by increasing Reynolds number and 

wave. It is observed that more heat effects are more for water based fluid as compared to 

gases. The pressure rise per wave length for time mean flow at different value of 

Reynolds number, magnetic number and the amplitude ratio also presented through 

graphs. These results are published in Journal of the Korean Physical Society, 73(9) 

1290-1302. 

Chapter 7 discussed peristaltic motion in a tube for non-Newtonian fluid at high 

Reynolds number. The micropolar fluid is considered as a non-Newtonian fluid. The 

obtained governing partial differential equations converted into stream-vorticity. The 

domain is discretize into non-uniform mesh using quadratic triangular element and then 

use Galerkin’s finite element technique to obtained numerical solution. The obtained 

solution is well convergent even high Reynolds number and wave number. The obtained 

numerical results of velocity, pressure rise, streamline, vorticity and microrotation are 

presented graphically. It is noted that the number of bolus and the size of bolus increases 

by increasing Reynolds number and decreases by increasing time mean flow rate. The 

micropolar parameter and coupling number do not have much effect on trapping bolus. It 

is also noticed the rotation of the fluid particle is faster for small coupling number, 

micropolar parameter and time mean flow rate. These results are published in Journal of 

the Brazilian Society of Mechanical Sciences and Engineering 41:104, (2019) 
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Nomenclature 

  Half width of channel/tube in lab frame 

  Amplitude of wave in lab frame 

   Magnetic field 

  Velocity in fixed frame 

   Specific heat 

   Dimensional microrotation 

  Dimensional less microrotation 

   Nodal approximations of microrotation 

  Global forcing vector 

   Froud number 

  Gravity  

  Fixed frame wave  

   Dimensional form of microgyration parameter 

  Non-dimensional form of microgyration parameter  

  Global stiffness matrix 

  Hartmann Number 

  Micropolar parameter 

  Coupling number  

   Shape function 

   Pressure in fixed frame 

   Dimensional pressure in moving frame 

  Dimensional less pressure in moving frame 

   Prandtl number  

    Pressure rise per unit wavelength 

   Dimensional form of volume flow rate in moving frame 

  Non-dimensional volume flow rate in moving frame 
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   Dimensional form of volume flow rate in fixed frame 

  Non-dimensional form of volume flow rare in fixed frame 

   Dimensional form of internal generation/absorption parameter 

   Dimensional radial component in moving frame 

  Dimensional less radial component in moving frame 

   Reynolds number 

   Dimensional form of radial component in fixed frame 

  Non-dimensional form of Radial component in fixed frame 

   Time 

   Dimensional temperature of fluid 

  Dimensional less temperature of fluid 

   Temperature at center of the channel/tube 

   Temperature at wall of the channel/tube 

      Dimensional velocity components in moving frame   

    Dimensional less velocity components in moving frame   

  Unknown vector  

         Dimensional velocity components in fixed frame 

   Weight functions  

      Dimensional form of Cartesian Coordinate in moving frame 

    Dimensional less form of Cartesian Coordinate in moving frame 

      Cartesian Coordinate in fixed frame 

   Dimensional axial component in moving frame 

  Dimensional less axial component in moving frame 

   Dimensional axial component in fixed frame 

Greek Symbol 

  Wave number 

  Dimensional less internal generation/absorption parameter 

  Inclined angle of the channel/Tube 

  Line Integral  

         Spin gradient viscosity coefficient  
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   Dimensional wave  

  Non-Dimensional wave  

  Non-Dimensional Temperature  

   Nodal approximations of temperature 

  vortex viscosity coefficient of Micropolar fluid 

   Thermal conductivity 

  Length of wave in fixed frame 

  Viscosity 

  Sinusoidal wave angel   

  Density 

  Amplitude ratio 

  Non-Dimensional Stream function  

   Nodal approximations of stream function  

   Dimensional Stream function  

  Vorticity  

   Nodal approximations of viscosity 

  Domain of Integral  
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Chapter 1 

Preliminary 

This chapter consists of some background about finite element method (Bang, H.,& 

Kwon, Y. W. (2000)), basic law of fluid mechanics (Fox et al. (2003); White (2003)), 

detailed and literature review about peristaltic flows. To understand the basic procedure 

of Galerkin’s finite element method, two model examples are elaborated and solved using 

METLAB which are helpful in subsequent chapters.  

1.1 Finite Element Method (FEM) 

Finite element method (FEM) is a computational technique which can be used to obtain 

the approximated solution of the partial differential equation. The basic concept of finite 

element method was introduced over 150 years ago, but after 1950s, several articles have 

been published during the matrix analysis of the structure of continuum bodies. Clough 

(1960) gave the name finite element method during the plane stress analysis. Finite 

element technique is developed to study of complex air-firm mathematical foundation, 

structure analysis and stimulated the development of multiple-purpose computer 

programs. The application of finite element method is equally important for both solid 

and fluid mechanics. The application areas in solid mechanics are to design of airplanes, 

missiles, space capsules, cars, mechanical industry etc. (see Fig. 1). Finite element 

method can be applied to uneven surfaces or complex shaped objects composed of 

numerous different materials and having mixed boundary conditions. Although, many 

engineers and scientists endeavor to find analytical solutions of these types of problem 

but they rarely exist. The complex situations can be found in heat transfer problems like 

electrical motors, the dispersion of pollutants during non-uniform atmospheric 

conditions, various phase-change problems, cooling of electronic chips or equipment, etc. 

It can also apply to steady state and time dependent problems involving nonlinear 

material properties. That’s why; finite element method is way ahead of other 

computational techniques like finite difference method, finite volume method, etc. Finite 
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element method is approximated solution of PDE’s like a finite difference method, but in 

finite element method, the given domain discretized into a number of sub-domains either 

uniform or non-uniform ways called finite element and then each sub-domain is 

approximated by a simple polynomial function and obtained polynomials together over 

the whole domain. After this, the variational integral is evaluated as a sum of contribution 

from each finite element to obtain a finite size of algebraic system. Finite element method 

discretized the PDE equation like finite difference method, but the approximated solution 

is known to the whole domain not just at a set of point.  

 

(a) 

 

(b) 

Figure 1.1: Application of finite element mesh in structure engineering (a) Airplane (b) 

Sport car 

1.2 Method of Weighted Residual 

To find an approximate numerical solution of any differential equation, the method of 

weighted residual is useful.  To understand the method of weighted residual, consider a 

set of differential equation in the form 

  ( )          (1.1)  

where   is differential operator, U is dependent variable, F is known function and   is 

domain of the problem. A trial solution is approximated the above differential equation as 

    ∑   

 

   

    (1.2)  

where    are linearly independent functions and    are unknown parameters to be 

determined. Substituting Eq. (1.1) into (1.2) and together the terms with the same 

coefficient    yield the residual as  
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   (∑   

 

   

  )       (1.3)  

To find the unknown function   , apply weighted integral over the domain  

   ∫       

 

                         (1.4)  

To approximate the integral, we need the weight function   . There are many weight 

functions available, but here we discuss few weight functions which are frequently used.  

1.2.1. Collocation method 

In collocation method Dirac Delta function  (    )                  is used as a 

weight function   . Where    is a point within the domain and Dirac Delta function   

define as  

  (    )  ,
               
                

 (1.5)  

Using above weight function into equation (1.4), the weight residual integral takes the 

following form 

   ∫  (    )    

 

                         (1.6)  

1.2.2. Least Square method 

Least square method determines the weight function from the derivative of the residual 

with respect to unknown parameters, that is 

 
 

   
∫     

 

                            (1.7)  

Or ∫  
  

   
     

 

                         (1.8)  

where the weight function is defined as  

   ( )  
  

   
  (1.9)  
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1.2.3. Method of moment  

A weight function choosen form the family of polynomials is called method of moment 

i.e. 

   ( )                               (1.10)  

For one-dimensional problem, the weight functions can be selected from the following  

                             (1.11)  

1.2.4. Galerkin method 

Galerkin method is an important method that is used in finite element technique. In 

Galerkin method, the weight functions are the same as the trial function.  

   ( )  
  

   
                         (1.12)  

1.3  Finite element method in fluid mechanics  

After introducing the finite element technique in 1960’s, it is exclusively used in solid 

mechanics or structural engineering problem. By the time being, it also takes importance 

for fluid mechanics. In most of the fluid problems base on Navier-stoke equation, so 

some time, we do not have a numerical technique which could find the closed form 

solution. Therefore, we need a solid technique to handle this type of problems, especially, 

heat flow problem in fluid mechanics. Many techniques like finite difference scheme and 

finite volume method also available for solution of fluid flow problem, but these 

techniques have some restriction over complex geometry. On the other hand, finite 

element technique can easily apply on all types of equations without restricting  the 

domain occupied by the fluid. There are many studies available in the literature for fluid 

flow problem over different complex domain in which finite element method (FEM) 

produces good results as compared to finite difference method (FDM) and finite volume 

method (FVM). Moreover, finite element method (FEM) can easily handle Neumann 

boundary conditions when compared with other computation techniques. Furthermore, 

when finite element method applied to problem governed by parabolic or self-adjoint 

elliptic PDE’s, it leads to symmetric stiffness matrix. In this case, the error between exact 

solution and finite element solutions became minimum. 
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1.4 Fluid mechanics 

A Fluid is a material that cannot sustain a shearing force when at rest and that undergoes 

a continuous change in shape when subjected to such a stress. One can simply say that 

fluid mechanics deals with the study of gases and liquid in rest or motion. The study of 

fluid at rest called fluid statics and the study of fluid in motion called fluid dynamics. 

Fluid dynamics has a wide range of applications, including calculating forces and 

moments of aircrafts, determining the mass flow rate of petroleum through pipelines, 

predicting weather patterns, understanding nebulae in interstellar space and reportedly 

modeling fission weapon detonation etc. 

1.5 Newtonian and non-Newtonian fluid 

There are two types of fluid, one is Ideal fluid and second is real fluid. A fluid in which 

deformation rate is zero called ideal fluid and if rate of deformation is non-zeros called 

real fluid. Real fluids are further divided into Newtonian and non-Newtonian fluid. If 

linear relationship occurs between the stress and the rate of deformation in a fluid, then 

such type of fluids called Newtonian fluids. In Newtonian fluids, the viscosity of fluid is 

constant and independent of shear stress. Gasoline, air and water are examples of 

Newtonian fluid. Mathematically, it is defined as  

 
     

  

  
  

(1.13)  

where   
  ⁄  is the deformation rate. 

If nonlinear behavior occurs between stress and rate of deformation in a fluid, then such 

fluids are named as non-Newtonian fluids. Mathematically, it is defined as  

 
    (

  

  
)
 

      
(1.14)  

or 
     (

  

  
)
 

      
(1.15)  

Many industrial fluids like toothpaste, paint, shampoo, nylon, lubricants and drilling mud 

exhibit non-Newtonian behavior. Daily used kitchen items like milk, eggwhite, 

suspensions of corn, ketchup, starch suspensions and mayonnaise all are non-Newtonian 

http://en.wikipedia.org/wiki/Force
http://en.wikipedia.org/wiki/Moment_%28physics%29
http://en.wikipedia.org/wiki/Aircraft
http://en.wikipedia.org/wiki/Mass_flow_rate
http://en.wikipedia.org/wiki/Petroleum
http://en.wikipedia.org/wiki/Weather
http://en.wikipedia.org/wiki/Nebula
http://en.wikipedia.org/wiki/Interstellar
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in nature. Many polymer and molten polymers are non-Newtonian fluids. Some 

materials, e.g. melts, soaps, printing ink, muds, custard, condensed milk, glues, 

emulsions, sugar solution, salt solutions, molten polymers and blood exhibit the 

properties of non-Newtonian fluids. 

1.6 Heat Transfer  

Energy transfer from one system to another system called heat transfer. Heat transfer is 

important phenomena in many branches of engineering or mechanics. There are three 

modes of heat transfer i) Conduction ii) Convection and iii) Radiation.  

1.6.1. Conduction   

If internal energy transfers from higher temperature to lower temperature by the 

interaction of molecules, it is called conduction. 

1.6.2. Convection  

If heat transfers from one score to another by movement of fluid like air or water, it is 

called convection 

1.6.3. Radiation   

Radiation is the mode of heat transfer in which medium is not required. The best example 

to understand this mode is the energy transfer from the sun to earth through radiation.   

1.7 Basic laws of fluid mechanics 

The analysis of fluid behavior based upon some basic laws of fluid mechanics. These 

laws are defined as follow. 

1.7.1. Continuity equation 

The mathematical relation of conservation of mass for fluid is known as equation of 

continuity. It has the following form 

   

  
   (  ̅)     

(1.16)  



10 

 

where   is the density,  ̅  ( ̅  ̅  ̅) is the velocity vector in Cartesian coordinate and t 

is time. For unsteady incompressible flow problem, the continuity equation (1.16) 

becomes  

    ̅     (1.17)  

In Cartesian coordinate (     )   equation (1.17) takes the form 

   ̅

  
 

  ̅

  
 

  ̅

  
    

(1.18)  

In cylindrical coordinated (     )  equation (1.17) is written as  

    

  
 

  

 
 

 

 

   

  
 

   

  
    

(1.19)  

Where              are the velocity components in cylindrical coordinated. 

1.7.2. Momentum Equation or Equation of motion  

The momentum equation governed by the conservation of mass. The conservation of 

mass controls the volume of the flow field. Mathematically, it is defined as 

 
 

  ̅

  
               

(1.20)  

where b is the body force, T is Cauchy stress tensor and 
  ̅

  
 is the total derivatives defines 

as  

 
  ̅

  
 

  ̅

  
  ̅(   ̅)  (1.21)  

In Cartesian coordinate (     )   equation (1.21) takes the form 

   ̅

  
 

  ̅

  
  ̅

  ̅

  
  ̅

  ̅

  
  ̅

  ̅

  
  

(1.22)  

In cylindrical coordinated (     ) equation (1.21) takes the form 

   ̅

  
 

  ̅

  
   

  ̅

  
 

  

 

  ̅

  
   

  ̅

  
  

(1.23)  

1.7.3. Heat equation 

General form of heat equation is defined as  

 
   

  

  
   (    )      

(1.24)  
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Left hand side of Eq. (1.24) represent change in thermal energy storage, first term of right 

hand side is represent net energy transfer in control volume and    is thermal energy 

generation parameter. In Cartesian coordinate (     )  Eq. (1.24) represented as follow 
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and in cylindrical coordinated Eq. (1.24) represented as  
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b)  Phloem 

Vessel 
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Figure 1.2: Application area of peristlatic Motion  

1.9  Literature Review  

The comprehensive investigation on peristaltic motion was provided by Latham (1966) in 

his master thesis. After this, Yung and Yih (1968) investigated peristaltic motion in fixed 

frame of reference without employing lubrication approach. Shaprio et al. (1969) studied 

the peristaltic motion in mathematical point of view. They used lubrication theory to 

investigate the peristaltic motion for two-dimensional channel and axisymmetric flow in 

wave frame of reference. They model the problem by taking Reynolds number small 

enough that the inertial effect to be negligible and long wavelength assumption. They 

obtained theoretical results in both two-dimensional channel and axisymmetric flow by 

taking range of amplitude ratios from zero to one. They concluded that by increasing time 

mean flow rate, pressure rise per wave length linearly decreases. The approach of Shapiro 

et al. (1969) was much simpler than the approach of Yung and Yih (1968). This is 

because the nonlinear terms in the Navier-Stokes equations vanish under the lubrication 

approach and provided a linear equation. The lubrication approach does not make 

possible to study the inertial effects and wave number on various flow characteristics. 

That’s why, Shapiro et al. (1969) investigated peristaltic pumping under the condition in 

which Reynolds number takes small enough to neglect the inertia effects and diameter 

ratio of wavelength large enough in which the pressure to be considered uniform over the 

cross section. The applicability of such assumption is narrow in physiological and 

industrial peristaltic flow because the characterizing of Reynolds number in such flow is 

very small. Moreover, in such flows, the wavelength is quite large in comparison with the 

radius of the organ. A typical example of such a flow is found in small intestine. Lew et 
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al. (1971) reported that the Reynolds number of such flow is much less than unity. In 

addition to that the wavelength of wave is nearly 0.125cm/sec and the radius of the 

intestine is 0.008 cm. This also allows the applicability of long wavelength assumption to 

model peristaltic flow of chyme in small intestine. Jaffrin and Shaprio (1971) discussed 

the reflux and trapping limits of peristaltic pumping using perturbation technique. They 

concluded that Reynolds number rapidly increases the domain of reflux region and 

decreases the domain of trapping. They also discuss the domain of reflux and trapping for 

the case of long wave length and low Reynolds number assumption in two-dimensional 

plane and axisymmetric tube. They concluded that domain of reflux or trapping occur is 

larger than in plane case as compare with axisymmetric tube. Jaffrin (1973) studied the 

peristaltic pumping in two dimension tube using perturbation method. He concluded that 

increasing wall curvature also increases the pumping performance and decrease inertial 

effects except at high squeeze. 

The first experimental study of peristaltic problem was investigated by Weinberg et al. 

(1971). They visualized the trapping and reflux phenomena for two-dimensional plane 

channel and compared the obtained result with analytical result. Yih and Fung (1971) 

showed the comparison between the theoretical and experimental results for two 

dimensional peristaltic pumping. They observed twenty percent differences between 

theory and experiment result when amplitude ratio equal to 0.41. They also observed that 

time mean flow rate is independent of Reynolds number when Re < 2.5. Brown and Hung 

(1977) studied two dimensional peristaltic motions experimentally and compared it with 

the numerical simulations. They concluded that pressure reduce in pumping region 

against time mean flow rate. They also concluded that by increasing Reynolds number 

from 2.3 to 251 yields uncertain increase in the ratio of flow rate to Reynolds numbers 

but considerable increase in the shear stress. After these studies, many scientist and 

mathematician discussed the peristaltic motion for both Newtonian and Non-Newtonian 

fluid in channel and tube.  

In last two decades, many authors have shown deep interest to find solution of 

hydromagnetic peristaltic flow. Mekheimer (2004) studied the MHD peristaltic motion in 

inclined symmetric channel using regular perturbation method. His study based on 

without long wavelength and low Reynolds number assumption. He concluded that 
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increasing MHD, the bolus exists and fluid particle are moving along the wave wall. El 

Naby et al. (2006) investigated the hydromagnetic peristaltic flow of Newtonian fluid 

through a uniform tube. They concluded that pressure rise per wave length increases in 

pumping region by increasing Hartmann number and amplitude ratio. Hayat and Ali 

(2006) studied MHD peristaltic flow for third grade fluid confined in a deformable tube 

under long wavelength and low Reynolds number assumption. They accomplished that 

axial velocity decrease, while pressures increase in pumping region by increasing 

Hartmann number. Hayat and Ali (2007) also studied peristaltic motion for Non-

Newtonian fluid in a tube. They used perturbation technique to find the analytic solution 

after using long wavelength and low Reynolds number assumption. They concluded that 

by increase Hartmann numbers, the pressure rise per wave length increases nonlinear in 

Non-Newtonian fluid. The nonlinear peristaltic motion in asymmetric inclined channel is 

investigated by Srinivas and Pushparaj (2008). They found the analytical solution by 

considering Reynolds number small enough in which inertial effect to be negligible and 

long wavelength assumption. They concluded that increasing wave amplitude ratio at 

lower wall, the stress on the lower wall enhance in presence of MHD and reduce in 

absence of MHD. Yidirim and Sezer (2010) studied the partial slip effects of MHD 

peristaltic flow for Newtonian fluid in an asymmetric channel. They found analytic 

solution using homotopy perturbation method (HPM) under long wave length 

assumption. They determined that pressure rise per wave length increases by increasing 

Hartman number when time mean flow rate is less than unity and decreases when time 

mean flow rate is greater than unity. Ali et al. (2008) studied the slip effects of MHD 

peristaltic flow in presence of variable viscosity in channel. They found series solution 

for magnetohydrodynamic fluid under long wavelength and low Reynolds assumption. 

They concluded that pressure rise per wave length decreases in positive pumping region 

by increasing the slip parameter. Mekheimer and Al-Arabi (2003) investigated the MHD 

peristaltic flow through a porous medium in a channel using perturbation method. In their 

investigation, remarkable increase is observed in pressure rise per wave length by 

increasing Hartmann number. Ebaid (2008) found numerical solution for MHD peristaltic 

flow of a bio-fluid in a circular cylindrical tube with variable viscosity under long 

wavelength and low Reynolds number assumption. He used Adomian decomposition 
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method (ADM) to solve the governing partial differential equation. He concluded that by 

increasing viscosity parameter, the pressure rise slightly decreases. Moreover, Hartmann 

number helps to enhance pressure rise per wave length against time mean flow rate in 

pumping region. In last lustrum, many authors studied MHD peristaltic motion for 

Newtonian and Non-Newtonian fluid using different fluid models (Tripathi & O. Anwar 

Bég (2013), Baoku et al.(2013), Hayat et al. (2016), Reddy et al.(2016)a, Reddy et 

al.(2016)b, Abbasi et al. (2016), Ranjit (2017), Abbasi and Shehzad(2017), Sara & Vafai 

(2017) and Sucharitha (2017)).  

There are numerous applications of peristaltic flow with heat transfer exist, especially in 

biomedical science and bio fluid. In human body, heat transfer due to perfusion of the 

arterial venous blood through the pores of the tissue, heat conduction in tissue and 

radiation between surface and its environment. The human thermoregulation system and 

thermotherapy are also heat transfer ways in human body. Heat transfer of peristaltic flow 

is also visualized on oxygenation and hemodialysis processes. Therefore, many 

biomedical researcher and scientist take special interest in peristaltic flow with heat 

transfer. Srinivas and Gayathri (2008) consider Newtonian fluid for peristaltic flow in 

presence of heat transfer in a vertical asymmetric channel. They used the condition in 

which Reynolds number takes small enough to neglect the inertia effects and long 

wavelength assumption. They concluded that velocity enhance by increasing porosity 

parameter, amplitude ratio, Grashof number and heat generation parameter. Mekheimer 

and Elmabond (2008) studied the MHD heat transfer of peristaltic flow in vertical 

annulus for Newtonian fluid under the same assumption of Srinivas and Gayathri (2008). 

They accomplished that by increasing heat generation parameter, the trapping bolus are 

also increases. Effects of heat transfer on peristaltic transport in presence of heat transfer 

with MHD effect and variable viscosity were studied by Nadeem and Akbar (2009). They 

used Adomian decomposition method after applying the same assumption used by 

Srinivas and Gayathri (2008). They determined that pressure rise per wave length and 

velocity increases with increasing the internal heat generation parameter. The study of 

MHD peristaltic flow with slip effects under the influence of heat transfer in inclined 

asymmetric channel by Das (2012). He neglects the inertial effects and take diameter 

large enough in which the pressure to be considered uniform over the cross section. He 
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analyzed that the number and size of bolus decreases by increasing the slip velocity 

parameter and the rate of heat transfer due to the presence of the thermal slip condition. 

Muthuraj and Srinives (2010) investigated the mixed convective heat and mass transfer 

with porous medium and traveling thermal wave in vertical channel. They observed, the 

velocity enhances with increase of Darcy number and reduces with increasing of 

Hartmann number. MHD heat transfer of Newtonian fluid for peristaltic flow under the 

influence of slip conditions and wall properties in channel was investigated by Srinivas et 

al. (2009). They obtained analytical solution under the assumption of low Reynolds 

number and wave numbers. They concluded that the velocity enhances at center part and 

boundaries of the channel by increasing slip effects. Moreover, the trapping bolus 

decreases in size by increasing Hartmann number. Srinivas and Kothandapani (2009) 

investigated heat and mass transfer of peristaltic flow with compliant walls through a 

porous medium. They also use low Reynolds number and long wavelength assumptions 

to find the analytical solution. They concluded that heat transfer coefficient increases by 

increasing permeability parameter and Brickman number while it decreases with 

increasing Hartmann number. Ali et al. (2010) discussed the analytical solution of 

peristaltic motion through heat transfer for Newtonian fluid in curved channel. They 

noted that the temperature enhance by increasing Brickman number and time mean flow 

rate. Slip and heat effects of peristaltic flow in asymmetric channel on different wave 

shape are discussed by Hayat et al. (2009). They noted that pressure rise per wave length 

against time mean flow rate increases throughout the pumping region by increasing heat 

generation parameter and Grashof number. They also concluded that, effects of bolus 

against Grashof numbers and amplitude ratio are similar in all wave shapes. Srinivas et 

al. (2011) investigated the peristaltic motion in asymmetric channel in presence of heat 

transfer. Sinha et al. (2015) studied the heat transfer for peristaltic motion in presence of 

MHD with variable viscosity and slip effect on asymmetric channel. They established 

that by increasing heat generation parameter, the thermal boundary layers are also 

increasing. In last triennium, many authors (Ramesh et al. (2015), Abbasi et al. (2015), 

Reddy & Reddy (2015), Reddy and Makinde (2016), Remesh (2016), Bhatti et al. (2016), 

Eldabe et al. (2016), Abbasi and Shehzed (2017), Iftikhar and Rehman (2017), Ramesh 

and Devakar (2017) and Hayat et al. (2017)) studied heat transfer analysis for two 
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dimensional plane channel and axisymmetric tube by neglecting the inertia effect and 

long wavelength assumption. 

In Non-Newtonian fluids, the shear stress and the shear rate are different and can even be 

time dependent, thus a constant coefficient of viscosity cannot be defined, therefore, it is 

challenging to express all those properties of several non-Newtonian in a single 

constitutive equation because the nonlinearity appears between the stress and rate of 

strain. In recent past years, the Non-Newtonian fluid gives much attention by many 

scientists and researchers due to validly used in industrial and technological application. 

Some physiological or biofluids like suspensions of deformable or rigid particles are 

Non-Newtonian fluid. For example, blood is a suspension of several cells in plasma, 

cervical mucus is a suspension of macromolecules in water, chyme (semi digested food) 

etc. Due to important in physiological flow, many researchers study the peristaltic 

pumping for Non-Newtonian fluid in last two decades (Misra and Pandey (1999), Misra 

and Pandey (2001), Peev et al. (2002), Hayat et al. (2007), Haroun (2007), Vajravelu et 

al. (2005), Hayat and Ali (2006), Reddy et al. (2007), Ali et al. (2009), Ikbal et al. (2008), 

Ali et al. (2010), Tripathi (2011), Mekheimer (2011), Maiti and Misra (2013), Akram et 

al. (2013) and Lachiheb (2014)). In recent pass years, Saleem and Haider (2014) 

discussed the peristaltic motion for non-Newtonian fluid with heat and mass transfer in 

asymmetric channel. They find a perturbation solution against small wave number by 

neglecting the inertia effect. They concluded that pressure rise per wave length increase 

by increasing Weissenberg number in pumping region and decrease in co-pumping 

region. Abd-Alla et al. (2014) studied the rotation and initial stress effects on MHD 

peristaltic motion of fourth grade fluid with heat transfer. They concluded that velocity 

enhances by increasing rotation and initial stress, whereas decreases in case of amplitude 

ratio. They also concluded that pressure gradient decreases with increasing the rotation, 

initial stress and amplitude ratio in wave frame of reference. The study of peristaltic 

motion in diverging tube with heat and mass transfer for Eyring Prandtl fluid was carried 

out by Iftikhar and Rehman (2017). They used Homotopy perturbation method (HPM) to 

find the analytical solution by neglecting the inertia effects and long wavelength. They 

concluded that rate of heat and mass transfer decreases with increasing Grashof number. 

Hayat et al. (2017) studied the peristaltic flow Ree-Eyring in a rotating frame with heat 



18 

 

transfer under the same assumption that is used by Iftikhar and Rehman (2017). They 

find the analytical solution and conclude that rate of heat transfer enhance by increasing 

Brinkman number. 

The micropolar fluid, which exhibit certain microscopic effects arising from the structure 

and micro-motion of the fluid elements. Eringen (1964)-(1966) gives the novel approach 

of consisting micropolar and micromorphic theories. After this, many mathematicians 

and scientist showed deep interests in micropolar fluid (Ariman et al. (1973), Sava 

(1973), Turk et al. (1973), Ariman et al. (1974), and Sava (1976)). The detailed 

mathematical theory about micropolar fluid was given by Lukaszewicz (1999) in his 

book. Most of the biological fluids, including blood with suspensions can be studied as a 

micropolar fluid. Therefore, the authors like (Devi and Devanathan (1975), Hogan (1989) 

and Philp (1995)) focused on the micropolar fluid flow for peristaltic pumping in both 

channel and tube under the assumption of long wavelength and low Reynolds number, 

because it is contributed in polymer process and blood flow in human beings by applying. 

Srinivasacharya et al. (2003) studied the peristaltic motion of micropolar fluid in a tube 

without viscous effects and long wavelength assumption. They concluded that the 

micropolar fluids produce the greater pressure rise compared with Newtonian fluid in 

peristaltic motion. Muthu et al. (2008) studied the peristaltic motion of micropolar fluid 

under the effects of wall properties in a circular tube. They used perturbation method to 

linearize the governing equation against small amplitude ratio and then apply finite 

different scheme. Hayat et al. (2007) found the exact solution of peristaltic motion for 

micropolar fluid with different wave in a channel under the assumption of long 

wavelength and low Reynolds number. They concluded that by increasing coupling 

number the peristaltic pumping enhances minimum in triangular wave and maximum in 

square wave. Ali and Hayat (2008) studied the peristaltic motion for micropolar fluid in 

asymmetric channel. They found closed form of analytical solution under long 

wavelength and low Reynolds number assumption. They determined that the shear stress 

increases in asymmetric channel and decreases in symmetric channel with the increasing 

micropolar parameter. They also determined that direction of shear stress on upper wave 

opposite to velocity and at lower wave along the velocity. Endoscope effects of 

micropolar fluid in peristaltic motion are observed by Hayat and Ali (2008). They found 
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the exact solution of governing partial differential equation under long wavelength and 

low Reynolds number assumption. They also found the correct expression of friction 

force and conclude that pressure rise per wave length decreases by increasing micropolar 

parameter and increases by increasing coupling number. The mathematical model of 

peristaltic flow in tube is presented by Pandey and Tripathi (2011). They concluded that 

coupling number helps to increases the efficiency and reflux region while micropolar 

parameter decreases the efficiency and reflux region. The numerical study of peristaltic 

motion in a tube with MHD effect was presented by Wang et al. (2011). They used finite 

difference scheme to solve the problem and conclude that no significance difference is 

observed in free pumping flux for both Newtonian and Non-Newtonian fluid. In last 

lustrum, many authors (Abd-Alla et al. (2011), Abd-Alla et al. (2013), Abouzeid (2016), 

Hayat et al. (2016) and Abdelsalam and Vafai (2017)) discussed the peristaltic motion for 

micropolar fluid in channel and tube under long wavelength and low Reynolds number 

assumption.  

Computational studies against high Reynolds number and short wavelength of peristaltic 

motion in channel/tube is always challenging for researchers and mathematicians 

because, governing partial differential equations contain higher order non-linearity, mesh 

adoption are difficult against irregular shape and high computational cost. Although, few 

studied found in literatures for Newtonian case under certain assumptions. First of all, 

Dennis and Chang (1969) solve Naiver stokes equation for two dimensional flow 

numerically using successive approximations against zero time mean flow. Then the 

comprehensive computational study of peristaltic flow in channel was carried out by 

Takabatake and Ayukawa (1982) with influence of wave amplitude, wavelength and 

Reynolds number. They solved Navier-Stokes equations in stream vorticity (   ) form 

using an upwind finite difference technique with SOR method. They explained the 

features of peristaltic motion at moderate Reynolds number and discussed the restrictions 

of perturbation results given by Zien and Ostrach (1970) and Jaffrin (1973). They 

discussed velocity and streamline phenomena upto Re = 210 against zero time mean flow. 

Takabatake et al. (1988) studied the peristaltic motion in an axisymmetric tube under 

finite wavelengths, Reynolds number and amplitude ratio using FDM with SOR method. 

They concluded that peristaltic mixing and transport is higher in circular cylindrical tube 
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than in a plane channel. Takabatake et al. (1989) also studied the peristaltic motion in two 

dimensional peristaltic channel using finite element method. They concluded that the 

inertia effects of the fluid and the effects of large wall slops increases the backward flow 

from the narrowest region of the channel. Takabatake (1990) also extended it and find the 

peristaltic pumping against large wave amplitude and wave-wall slope. They concluded 

that against large wall slope, the pressure rise per wave length increases remarkably for 

zero time mean flow and fluid inertia effects decreases for small amplitude and increases 

for large amplitude ratio. After this, Kumar and Naidu (1994) also solve Navier-Stokes 

equations for two-dimensional peristaltic flow using stream function vorticity (   ) 

formulation. The main difference from earlier studies is that they obtained convergent 

solution at high Reynolds number upto 100 against small time value of time mean flow 

i.e. Q = 0.05. They concluded that progressive sinusoidal waves with low wave number 

and high amplitude generate peristaltic flow with high shear stress variations. Their 

analyses also included the effects of constant applied magnetic field on the peristaltic 

flow for non-zero Reynolds numbers and wave numbers and concluded that wall shear 

stresses decreases under influence of external magnetic field.  

Table 1.1: Computational investigations of Newtonian peristaltic flow for high Reynolds 

number since 2017 

Author(s) 
Fluid 

Type 

Wave 

Shape 
Method Geometry 

Re/Amplitude 

ratio/Wavenumber/

other assumption 

Takabatake & 

Ayukawa 
Newtonian Sinusoidal FD-SOR 2D-Plane 

210/Arb./Arb./Zero 

time mean flow 

Takabatake Newtonian Sinusoidal FD-SOR Axisymmetric 10/Arb./Arb. 

Takabatake & 

Ayukawa 
Newtonian Sinusoidal FEM 2D-Plane 10/Arb./Arb. 

Rathish-

Kumar & 

Naidu 

Newtonian Sinusoidal FEM 2D-Plane 
10-100/Arb./Arb./upto 

0.06 
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Krzeminski et al. (2000) study the MHD peristaltic flow using finite element method in 

symmetric channel. They only discussed streamline behavior and MHD effects. They 

concluded that MHD decreases the number and size of boluses. They also determine that 

field’s distribution caused by varying influence of magnetic field. Recently, Ahmed et al. 

(2018) and Javed et al. (2018) studied the peristaltic motion in channel and tube using 

finite element method at moderate Reynolds number and wave number.  

1.10 Methodology  

In the present work, the computational study of peristaltic motion of Newtonian and Non-

Newtonian fluid in two-dimensional channel and axisymmetric tube are discussed at high 

Reynolds number and wave number using finite element method. Moreover, The 

obtained models are highly nonlinear PDE’s with presence of inertia effect and short 

wavelength. The Galerkin finite element technique is used to obtain computational 

results. The basic procedure of Galerkin finite element method can be understood by the 

following flow chart and examples.  

1.11 Solution of Laplace equation using FEM 

To understand solution procedure of Galerkin finite element method, here two model 

examples are solved in MATLAB.  

Example 1: Consider two dimension Laplace equation in Cartesian coordinate of unit 

square  

    

   
 

   

   
    

(1.29)  

With boundary condition  

  (   )       (   )                (1.30)  

  (   )      (   )                (1.31)  

The exact solution is given by 

  (   )                    (1.32)  

Firstly, discretize the domain into non-uniform mashing as shows in Figure 1.4. Appling 

weighted residual on Eq. (1.29), the integral becomes 
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Figure 1.3: Flow chart of Finite Element procedure 
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(a) 

 

(b) 

 Figure 1.4: Finite element mesh (a) 3 nodes per element (b) 6 nodes per element 
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    (1.33)  

after simplify the weak formulation of  Eq. (1.33) becomes 
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    (1.34)  

In line integral, the normal derivative defined as  

 
  

  
 

  

  
   

  

  
    (1.35)  

In which,    and    are unit outward normal vector along        and       . The 

Galerkin finite element is approximate solution using linear triangular (    nodes per 

elements) or quadratic triangular element (    nodes per element). Approximate 

unknown function using quadratic triangular element is   

 ∑    (   ) 

 

   

 (1.36)  

using interpolation function describe in above equation into Eq. (1.34), the following 

expression is obtained 
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  (1.37)  

The left side of above equation called diffusion matrix and right side is boundary integral. 

The interpolation function in quadratic triangular element is expressed as  
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where       and    are shape functions defined as    
 

     
(          ) for 

       .where        and    are dependent on the coordinate of the point and are defined 
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The diffusion matrix over an element can be computed as 

      
    

   (1.40)  

Where   
             and   

            . A, B and C are constant matrices and G 

is integral matrix defined as  
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(1.41)  

and 
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   ∫ 0
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]  (1.42)  

The global system in matrix form is defined as 

       (1.43)  

Where K is global stiffness matrix and F is force vector which are obtain from boundary 

integral. The system of equations (1.43) is solved using linear and quadratic triangular 

element in finite element method by considering 48,148 and 312 elements. The code is 

developed in MATLAB with the help of built in pdetool function. Table 1.2 shows the 

maximum error between the exact solution and the obtained result using 3 node per 

element and 6 node per element. It is observed that quadratic triangular element is more 

accurate as compare to linear triangular element. 

Table 1.2:  Maximum absolute error between linear and quadratic triangular elements. 

 Linear triangular element Quadratic triangular element 

Element Nodes Max(abs(Exact - present)) Nodes Max(abs(Exact - present)) 

48 33 0.0102 113 2.9717e-4 

148 89 0.0063 325 9.3818e-5 

312 177 0.0036 625 3.0010e-5 

Example 2: consider axisymmetric Laplace equation in a circular cylindrical tube 
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)  

   

   
    (1.44)  

The inside and outside radius are 4 and 6 whose heights is 1. Both top and bottom surface 

of the cylinder insulated with constant flux outside the surface. So, boundary condition 

are define as 

  (   )        (   )     (1.45)  

   (   )    (   )     (1.46)  

The exact solution is  
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  (   )             (   )  (1.47)  

Apply weighted residual method on Eq. (1.44) as follows  

 ∫  (
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    (1.48)  

The weak formulation of Eq. (1.48) using the integration by part becomes 

   ∫ ∫  (
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  (1.49)  

We approximate the solution by using quadratic triangular element in expression form 

 ∑   (   )

 

   

  (1.50)  

Using interpolation function described in above into equation (1.49) we have the 

following finite element expression  

   ∫ ∫  (
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  (1.51)  

Which result in following global system 

       (1.52)  

Where K is global stiffness matrix and F is force vector obtain from boundary integral. 

Equation (1.47) is solved using linear and quadratic triangular element in finite element 

method (FEM) by considering 48,192 and 768 elements respectively in MATLAB. The 

maximum absolute error between exact and obtain results are shown in Table 1.3. It is 

observed that quadratic triangular element is also well convergent as compared with 

linear triangular element for axisymmetric problem even small number of element is 

used.  
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Table 1.3: Maximum absolute error between linear and quadratic triangular element. 

 Linear triangular element Quadratic triangular element 

Element Nodes Max(abs(Exact-present)) Nodes Max(abs(Exact - present)) 

48 33 0.0117 113 2.8422e-14 

192 113 0.0038 417 2.8422e-14 

768 417 0.0012 1601 8.5265e-14 
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Chapter 2 

Hydromagnetic Peristaltic Flow in an 

Inclined Channel for Different Wave 

Shapes  

This chapter deals with the peristaltic flow in an inclined channel for different wave 

forms is carried out in this paper. The established mathematical model is represented as a 

set of partial differential equations. The finite element method is implemented to solve 

the governing equations after reducing them into stream-vorticity form. This study 

reveals the characteristics of peristaltic motion at high Reynolds number. Important 

features of peristaltic motion are analyzed and discussed against the variation of 

Reynolds number, wave numbers, and magnetic field. The obtained results in limiting 

case are in well agreement when they compared with the existing results in literature. 

2.1 Governing Model 

Consider the unsteady two-dimensional, hydromagnetic, incompressible peristaltic flow 

of Newtonian fluid in an inclined channel taking width    inclined at angle   with the 

horizontal direction. and x axis is chosen along the channel and y axis  is assumed 

normal to channel. A constant magnetic field 0B  is applied normal to the flow. The flow 

is caused by a wave train travelling with velocity c  (see Figure. 2.1). The wall of the 

channel obeys 

  (     )        {
      

 
}  (2.1)  

where   is the distance from center axis to the wall,   is the wave amplitude,    is time, c 

is the velocity of the wave and    is the wave length.  The Governing equation and 

boundary condition in lab frame are defined as (Kumar and Naidu (1994)) 
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Figure 2.1: Geometry of two-dimensional peristaltic channel. 
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The appropriate boundary conditions of the present flow are defined as   

      
   

   
                   

 
(2.5)  

         
  

   
                  (2.6)  

The Neumann boundary condition of     at      arises due to symmetric flow and 

condition of    at      is due to no-slip condition at the wall. The condition      

at      means that the transvers velocity is zero at the center of the channel and 

condition        ⁄  at       represents that the normal velocity of the fluid is equal 

to the normal velocity at the wall. Now, transform the governing equations from lab 

frame to wave frame using the relation   

                                           (2.7)  
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where (     )     (     ) are components of velocity in moving and fixed frames 

respectively. After introducing Eq. (2.7) in  Eqs. (2.1) - (2.6), we get 

 
   

   
 

   

   
    (2.8)  

  (  
   

   
   

   

   
)   

   

   
  (

    

    
 

    

    
)      

       ( )  (2.9)  

  (  
   

   
   

   

   
)   

   

   
  (

    

    
 

    

    
)       ( )  (2.10)  

  (  )        (
    

 
) 

 

(2.11)  

 
   

   
                              

 
(2.12)  

               
   

 
   (

    

 
)                     (  ) 

 
(2.13)  

Since both planes      and      (  ) constitute the streamline in the moving frame 

reference, therefore the volume flow rate    in the moving frame well remain constant at 

all cross section of the channel. Thus the following boundary conditions are obtained 

                                                  (  ) 
 

(2.14)  

where    is the stream function and the relation            holds between flow rate 

    and  
 
 in wave and lab frame respectively. The dimensionless variables are defined as   
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The dimensionless form of the governing equations and boundary conditions are obtained 

as follows  
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where        ⁄  is the Reynolds number which represents the ratio of inertial force to 

the viscous force,     ⁄  is the wave number,     ⁄  is amplitude ratio,   

(√  ⁄    )  ⁄  is the Hartmann number which represents the rate of electromagnetic 

force to the viscous force and        ⁄  is the Froud number which is the ratio of 

inertial forces to the gravitational force. The stream and vorticity function   and   

respectively are defined in terms of velocity components u and v are as follows  

   
  

  
         

  

  
           

  

  
 

  

  
 
 

(2.22)  

After eliminating the pressure terms from Eqs. (2.18) and (2.19) and using the above 

expression, we get   

   
   

   
 

   

   
    

 
(2.23)  

   (
  

  

  

  
 

  

  

  

  
)        

   

   
  (2.24)  

The corresponding boundary conditions defined in Eq. (2.14) after using Eqs. (2.20) – 

(2.21) become 
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where 

      
  

   
 

  

   
 

(2.27)  

It’s important to mention here that under long wavelength and low Reynolds number 

limit assumption i.e.           Eq. (2.24) reduce to the following partial differential  

equation 
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In this chapter, we will consider three types of wave forms namely multisinusoidal, 

triangular and trapezoidal. The mathematical expression for the multisinusoidal wave 

form is  

  ( )        (    ) 
 

(2.29)  

The expression for the triangular wave form is  
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The expression for the trapezoidal wave form is  
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(2.31)  

In the next section, we explain how we obtained the solution of governing Eq. (2.23) –

(2.24) subject to boundary conditions (2.25) and (2.26) 

2.2 Finite element solution 

A numerical algorithm based on the finite element method developed in MATLAB is 

implemented to solve Eqs. (2.23) and (2.24) together with boundary conditions given in 

Eqs. (2.25) and (2.26). The pictorial view of considered mesh of triangular elements is 

shown in Figure 2.2. The mesh was created using built in pdetool function of MATLAB. 

In the literature, a lot of work is carried out for the peristaltic flow but under long 

wavelength and low Reynolds number limit. Our objective here is to solve the complete 

set of equations to discuss the influence of Reynolds and wave numbers on the quantities  

 

Figure 2.2: Non-Uniform discretization domain  
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of interest. In all cases, highly convergent results have been obtained in about 2-4 number 

of iterations using quadratic triangle elements. The stream function and vorticity is 

approximated by 

   ∑     
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(2.32)  

where    and   are element nodal approximations of   and   respectively.    is shape 

function of element node. Upon using Galerkin’s formulation, we can write 
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where    and    are weight functions and  is domain of the problem. After simplifying 

the Eqs. (2.33) and (2.34), we obtain 
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where   is boundary of the domain. Introducing Eq. (2.32) into Eqs. (2.35) and (2.36) and 

considering the discretized domain, we have 
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where    
  and     

  are convective matrix,     
  is mass matrix,    

  diffusion matrix and 

  
  

 force vector defined as 
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and   
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The system of Eqs. (2.37) and (2.38) combined as global system of matrix form defined 

as  

      
 

(2.44)  

where 

     *
   

    
 

   
       

         
 +           *

  

  

+          *
  

  

  
  + 

 
(2.45)  

The global systems of matrix defined in Eq. (2.44) are solved iteratively using Newton-

Raphson method until required convergence is achieved. 

2.3 Pressure evaluation  

Pressure rise per wave length play an important role in peristaltic motion which can be 

obtained through numerical integration of pressure gradient. Since peristaltic motion is 

based on infinite train sinusoidal wave, so it is sufficient to calculate the pressure only at 

middle part (   ) of the unit wave domain. Pressure gradient can be obtained directly 

from the Navier-stoke equation in the form of     as follows   
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The mathematical expression of pressure-rise in wave frame is defined as  

     ∫
  

  
   

 

 
 

(2.48)  

2.4 Numerical results and discussions 

This section provides the detail of the present computational results of peristaltic motion 

in different wave frames. The numerical result of velocity at     cross section in terms 

of streamline and vorticity in wave frame, pressure rise per wave length are discussed and 

shown graphically for related parameter including values of the wave number ( ), 

Reynold number (  ), the Hartmann number ( )  amplitude ratio ( ) and time flow 

rate( ).    

2.4.1 Validation 

The current computational study for higher Reynolds number is presented for the first in 

literature.  To observe the validation of current study, it is compared with the previous 

experimental results of Weinberg (1971), theoretical results of Shapiro (1969) and Jaffrin 

(1973) and numerical results of Takabatake et al. (1987), Takabatake (1990) and Dennis 

and Chang (1969). It is noted that since Shapiro (1969) and Jaffrin (1973) used 

perturbation technique to find the analytical solution, it is therefore these solutions is 

valid against small values of parameters. However, the corresponding solution of 

Takabatake et al. (1987), Takabatake (1990) and Dennis and Chang (1969) are valid for 

short wave length and high Reynolds number. Figure 2.3 shows the comparison of 

pressure rise with experimental and theoretical results of Weinberg (1971) and Shapiro 

(1969) respectively. It is observed that our computed results are in good agreement with 

theoretical result of Shapiro et al. (1969) for      and    . Moreover, the 

experimental results of Weinberg et al. (1971) shows that Reynolds number produces no 

effect in the range of         to         and it is infect that  flow is free of inertia 

in the said range. Thus our results are in closed agreement  to that of experimental result 

for a limiting case of     . Figure 2.4 shows the graph of the pressure rise  per unit 

wavelength    against time mean flow rate Q. The pressure-flow rate curves based on 
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Jaffrin approximate solution (1973)  and Takabatake finite element solution (1990)  are 

also included in Figure 2.4 for better evaluation of the results. It is observed that the 

present computational results well matched with the Jaffrin (1973) results. Further, the 

pressure rise observed through by finite element solution of Takabatake (1990) shows 

substantial deviation from those given by Jaffrin (1973) solution. Figure 2.5 shows the 

streamlines in laboratory frame based on present computations and compared with the 

available result of Dennis and Chang (1969) and Takabatake (1987). It is observed that 

the present results also well matched with corresponding results of Dennis and Chang 

(1969) and Takabatake (1987). The vorticity contours obtained through present finite 

element simulations are also compared with the corresponding vorticity contours 

obtained by Dennis and Chang (1969) and Takabatake et al. (1987) in Figure 2.6. Again 

our results agree well with the available results. From Figures 2.4 to 2.6, It is inferred 

that in comparison with Takabatake (1990) solution, the present solution compliance well 

with both the solutions of Dennis and Chang (1969). The present solution is also 

compared with the corresponding streamlines obtained by Mekheimer (2004) using 

perturbation solution in Figures 2.6 and 2.7. The obtained computational results are 

shown for Hartmann number   and Reynolds number   . Both the figures show very 

good agreement between the perturbation and the computed numerical results. In both 

figures   is chosen sufficiently small to achieve the good correlation between our 

solution and the one obtained by Mekheimer (2004). A strong disagreement is anticipated 

between both solutions for larger values of  . This is naturally expected because 

perturbation solution is valid only for small values of  . Therefore, confidence on present 

FEM solution is quite higher. 

2.4.2 Velocity profiles 

The velocity profile u at cross section     for different time-mean flow rate  , 

Hartmann number  , wave number  ,  and Reynolds number    is shown in Figures 2.9 

to 2.12. It is noted that the longitudinal velocity increases near the center of the channel 

by increasing time-mean flow Q and Hartmann number M, whereas it shows the reverse 

trend near the wall. In contrast, the longitudinal velocity decreases near the center of the 

channel due to increase in both wave and Reynolds number. In fact, for moderate high 
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Reynolds number the viscous effect diminishes near the boundary resulting in higher 

values of velocity there. To maintain the prescribed flow rate, the large velocity near the 

center of the channel center decreases. A combination of both effects is highlighted in 

Figure 2.12. An interesting point is noticed here that in the range of Reynolds 

number        , the longitudinal velocity is less sensitive. Moreover, velocity u 

differs gradually against wave number in the range      . The previous available 

study on peristalsis under long wavelength and low Reynolds number assumption report a 

decrease in longitudinal velocity against increasing Hartmann number. However, our 

results indicate that in presence of inertial force, the magnetic field excite the bulk motion 

of fluid and therefore assists the flow due to peristalsis. 

2.4.3  Trapping and vorticity 

The basic phenomenon of peristaltic motion which can be observed in wave form of 

reference is called trapping. In this phenomenon, some of the streamlines split and 

enclose a circulating bolus of fluid which moves as a whole with the peristaltic wave. The 

streamlines patterns for different peristaltic wave shapes and for two different values of 

flow rate are shown in Figures 2.13 to 2.24. Figure 2.13 illustrates the effect of Q on 

streamlines pattern against sinusoidal wave form. This figure highlights that for Q     , 

there is no trapped bolus appear in sinusoidal wave form of fluid for any of the 

considered wave shapes. However, for Q     , a circulating bolus of fluid is found in 

the wider part of the channel. In Figures 2.14 to 2.16, same effects are observed for 

multisinusoidal, triangular and trapezoidal wave shapes respectively. Moreover, it is 

observed that the shape of bolus changes with the wave shape. The effects of Reynolds 

number on streamlines patterns of different peristaltic wave shapes are shown in Figures 

2.17 to 2.20. It is interesting to note that with increase in Reynolds number from 1 to 5,  

there is  no  appreciable  change  in  the  size and  circulating bolus is observed. This 

observation is in accordance with the observation shown in Figure 2.12, where it was 

found that longitudinal velocity do not show significant change with increasing Reynolds 

number in the range        . The effects of Hartmann number on trapping 

phenomenon with different peristaltic wave shapes are shown in Figures 2.21 to 2.24. 

For the sinusoidal peristaltic wave, an increase in the Hartmann number increases the size 
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and circulation of the bolus. In contrast, an increase in magnetic field suppresses the size 

of the bolus for triangular peristaltic wave. Interestingly, for multi-sinusoidal and 

trapezoidal peristaltic wave shapes, the bolus size slightly varies with an increase in the 

Hartmann number.  

2.4.4 Pressure flow rate 

The graphs of pressure rise  per unit wavelength     against time-mean flow rate Q in the 

fixed frame for various values of        and    are plotted in Figures 2.25 to 2.28. 

These figures reveal that the pressure rise per unit wavelength     increases by 

increasing Reynolds number in both pumping and co-pumping region. Thus peristalsis 

has to work against greater pressure rise in pumping a fluid with dominant inertial effect. 

The similar effects are observed for Hartmann number (M) and inclination angle ( ), that 

is,  the  pressure rise per unit wavelength     in pumping region increases by increasing 

both Hartmann number (M) and inclination angle ( ). In contrast, when Froud number 

decreases, the pressure rise     increases in the pumping region. 

 

 

 

Figure 2.3 Comparison of computed pressure rise (Solid lines) with theoretical 

results (Dashed line) given by Shaprio et al.(1969) and experimental results )(Doted 

& Dashed line) given by Weinberg et al.(1971) against               
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(a) 

 

 

   

(b) 

 

 

Figure 2.4 (a,b) Comparison of computed pressure profile based on sinusoidal wave 

form with that of  Jaffrin (1973) and Takabatake (1990) 
aw 
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(a) 

 

 

   

(b) 

 

 

Figure 2.5 (a b) Comparison of computed streamlines in fixed frame (solid lines) 

with (a) Dennis-Chang (1969) (dashed line)  and (b) Takabatake et al. (1987) 

(dashed line) for                                    
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(a) 

 

 

   

(b) 

 

 

Figure 2.6 (a,b)  Comparison of computed vorticity contours present result(solid 

lines) with (a) Dennis-Chang (1969) (dashed line) and (b) Takabatake et al. (1987) 

(dashed line) for                       and Q    in  sinusoidal wave 
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Figure 2.7:Comparison of computed streamlin (Solid lines) with Mekheimer (2004) 

(dashed line) against                                    

 

 

 

Figure 2.8:Comparison of computed streamline (solid lines) with Mekheimer 

(2004) (dashed line) against                                       
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Figure 2.9:Longitudinal velocity profile for different Q with         

                   

 

 

 

Figure 2.10:Longitudinal velocity profile for different M with         
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Figure 2.11: Longitudinal velocity profile for different   with       

                      

 

 

 

Figure 2.12: Longitudinal velocity profile for different    with       
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(a) 

 

 

   

(b) 

 

 

Figure 2.13: Streamlines in sinusoidal wave frame for (a) Q      (b) Q       

with fixed                        
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(a) 

 

 

   

(b) 

 

 

Figure 2.14: Streamlines in multi-sinusoidal wave frame for (a) Q      (b) 

Q       with fixed                        
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(a) 

 

 

   

(b) 

 

 

Figure 2.15: Streamlines in triangular wave frame for (a) Q      (b) Q       with 

fixed                         
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(a) 

 

 

   

(b) 

 

 

Figure 2.16: Streamlines in trapezoidal wave frame for (a) Q      (b) Q       

with fixed                         
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(a) 

 

 

   

(b) 

 

 

Figure 2.17: Streamlines in sinusoidal wave frame for (a)      (b)       with 

fixed Q                      
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(a) 

 

 

   

(b) 

 

 

Figure 2.18: Streamlines in multiple sinusoidal wave frame for (a)      (b) 

      with fixed Q                       
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(a) 

 

 

   

(b) 

 

 

Figure 2.19: Streamlines in triangular wave frame for (a)      (b)       with 

fixed Q                         
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(a) 

 

 

   

(b) 

 

 

Figure 2.20: Streamlines in trapezoidal wave frame for (a)      (b)       with 

fixed Q                         
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(a) 

 

 

   

(b) 

 

 

Figure 2.21: Variation of stream lines in wave frame for sinusoidal wave shape for 

(a)     (b)     against Q                         
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(a) 

 

 

   

(b) 

 

 

Figure 2.22: Variation of stream lines in wave frame for multiple sinusoidal wave 

shape for (a)     (b)     against Q                         
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(a) 

 

 

   

(b) 

 

 

Figure 2.23: Variation of stream lines in wave frame for triangular wave shape for 

(a)     (b)     against Q                         
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(a) 

 

 

   

(b) 

 

 

Figure 2.24: Variation of stream lines in wave frame for trapezoidal wave shape for 

(a)     (b)     against Q                        . 
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Figure 2.25: Pressure distribution for different value of Re against            

                    . 

 

 

 

Figure 2.26: Pressure distribution for different value of       against          
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Figure 2.27: Pressure distribution for different value of   against           

                      

 

 

 

Figure 2.28: Pressure distribution for different value of  r against          
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2.5 Conclusions 

Finite element simulations for peristaltic flow in an inclined channel are carried out 

against higher inertial effects and short wavelength. The numerical results of longitudinal 

velocity, streamline and pressure rise per unit wavelength are graphically displayed for 

several values of wave number, Reynolds number, Hartmann number and inclination 

angle without using any assumption. It is found that the results obtained for higher values 

of Reynolds number and wave number are significantly different from their counterparts 

based on long wavelength and low Reynolds number assumptions. The main observations 

of the present study are summarized as follows: 

 The longitudinal velocity decreases near the center of the channel due to increase 

in Reynolds number and wave number. However, it increases near the center of 

the channel with increasing Hartmann number. In fact, it is due to the reasons that 

for larger values of Reynolds number, the inertial effects become dominant over 

the viscous effects. In such circumstances due to decrease in viscous effects 

increase in the neighborhood of the wall. To maintain the prescribed flux, the 

velocity near the center will increase. Moreover, when wave number increases the 

inertial effect are also increases and therefore velocity decreases near the center of 

the channel with respect to wave number.   

 The velocity at     cross section is less sensitive in the range     

             , respectively. 

 The magnitude of trapped bolus increases in every wave frame by increasing 

Reynolds number (  ) and Hartmann number ( ). 

 Pressure rise     increases in the pumping region with increasing Reynolds 

number, Hartmann number and inclination angle. However, it decreases with 

increasing Froud number. 

 The vorticity diffuses from the peristaltic wall to the center of the channel center 

with increasing Reynolds number. In fact, the flow acceleration near the 

boundaries with increasing Reynolds number is responsible for this purpose of 

diffusion of vorticity.   
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Chapter 3 

Heat Transfer Analysis of Peristaltic 

Motion in a Channel 

In this chapter, computational study of heat transfer through peristaltic motion with heat 

transfer effect in two dimensional channel at high Reynolds number are presented. 

Galerkin Finite element method has been applied to the governing equations. First, 

governing Navier-stoke’s equations with heat equation are reduced into stream-vorticity 

form (   ) and then Galerkin Finite element method is applied to obtain equation 

without using any assumption to acquire the streamline and Isothermal line. The obtained 

results are compared with the published results for the validation of the computed results. 

The longitudinal velocity at     cross section, temperature profile and pressure rise per 

wave length are presented graphically against different value of emerging parameter. It 

concludes that the obtained computational results are effective beyond the long 

wavelength and low Reynolds number limits.  

3.1 Governing Model 
Consider the unsteady two-dimensional, incompressible flow of Newtonian fluid in an 

infinite channel with width   . The upper wall is maintained at temperature maintained 

at    and center of the channel maintained at temperature   . The flow is caused by a 

wave train travelling with velocity  .        is chosen along the channel and        

is normal to it. (See Figure 3.1). The moment of wall of the channel  (     ) defined by 

Eq. (2.1) and using the velocity relations from lab frame to wave frame is defined in Eq. 

(2.7), the governing equations in wave frame of reference is given by 
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Figure 3.1: Geometry of flow problem 
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 and the boundary condition are  as follows 
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where  (  ) is defined in Eq. (2.11). As both planes      and       (  ) constitute 

the streamline in the moving frame of reference, the volume flow rate    in the moving 

frame is constant at all cross section of the channel. Thus, the following boundary 

conditions are obtained 

                                                 (  )  (3.7)  

Where    is the stream function and the relation            holds between flow rate 

   and  
 
 in wave and lab frames respectively. The dimensionless variables are defined 

as 
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Using the velocity stream function relation   
  

  
        

  

  
 in Eq. (3.1) to (3.4) and 

eliminate the pressure gradient terms yield the following system of equations  
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where        ⁄ ,          ⁄ ,     ⁄  and   are Reynolds number, Prandtl 

number, wave number and heat generation parameter respectively. The boundary 

conditions defined in Eqs. (3.5) to (3.7) are reduced in the following form 
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3.2 Finite Element solution 

For the numerical analysis of current model, the governing Eq. (3.11) to (3.13) subject to 

boundary conditions defined in Eq. (3.14) and (3.15) are solved using finite element 

method. The code is developed in MATLAB with the help of built in pdetool function. In 

the literature, a lot of work is carried out for the peristaltic flow under long wavelength 

and low Reynolds number limits. Our objective is to solve the complete set of equations 

to discuss the influence of Reynolds and wave numbers on the quantities of interest. In all 

cases, highly convergent results have been obtained in about 2-4 number of iterations 

using quadratic triangular elements. The first step of finite element method to 

approximate stream function, temperature and vorticity is to assume 
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  (3.17)  

where          and    are shape function,  element nodal approximation of stream 

function, temperature and vorticity respectively. Then Galerkin finite element is applied 

on Eqs. (3.11) to (3.13) and can be written as 
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where       and    
are weight function. After simplifying Eqs. (3.18) – (3.20), we 

obtain 
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Upon using Eq. (3.17) into Eqs. (3.21) to (3.23), the following algebraic system is 

obtained 
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where    
  and     

  are convective matrix,     
  is mass matrix,    

  diffusion matrix and 

  
  

 and    
 are force vector defined as 

    
  ∫ (  

   

  

   

  
 

   

  

   

  
)    

  

 
 

(3.27)  

    
  ∫        

  

 
 

(3.28)  

     
  ∫   (

   

  

   

  
 

   

  

   

  
)   

  

 
 

(3.29)  

    
 ∫     

 

 
 

(3.30)  

   
  

 ∫     ̅  

 

 
 

(3.31)  

The system of Eqs. (3.27) to (3.29) are combined to global system defined as  

       (3.32)  

where element of matrix  ,   and   are defined as  

     0
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]          [

  
  

 

  
  

     

] (3.33)  

The global systems of matrix defined in Eq. (3.33) are solved iteratively using Newton-

Raphson method until required convergence is achieved. 
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3.3 Pressure Evaluation   

Pressure rise per wave length is obtained through numerical integration of pressure 

gradient. Since peristaltic motion is based on infinite train sinusoidal wave so, it is 

sufficient to calculate the pressure only at middle part (   ) of the unit wave domain. 

Pressure gradient obtained directly from the Navier-stoke equation in the form of     

as follows  
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The mathematical expression of pressure-rise in wave frame is defined as  

     ∫
  

  
   

 

 

 (3.36)  

where      ⁄  is pressure gradient along x - axis which is obtained from the two 

dimensional steady Navier-Stokes equations.  

3.4 Results and discussion 

This section provides the detail of computation results made in terms velocity and 

temperature profile at     cross section, streamlines and Isothermal line in wave frame, 

pressure rise per wave length against different related parameters including Reynolds 

number (  ), volume flow rate (Q), Prandtl number (Pr), heat generation parameter ( ), 

the wave number ( ) and amplitude ratio ( ). 

3.4.1. Validation  

For validation is important for every developed code therefore, we compared the present 

results with the existing result of Jaffrin (1973) at different amplitude ratio and wave 

number. Figure 3.2 shows the computed pressure rise (   ) per wavelength for different 

values of   at Reynolds number        and wave number        against time mean 

flow rate ( ) and compared with the results of Jaffrin (1973). It demonstrates that the 

obtained computed results are very closed to with perturbation solution of  Jaffrin (1973). 

Figure 3.3 shows pressure rise (   ) at different values of wave number   against time 

mean flow rate ( )  with fixed      and       . It is observed that the method used 
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as finite element method is accurate and valid against perturbation solution Jaffrin (1973) 

against small wave number.  

3.4.2. Velocity and Temperature Profile 

The velocity profile u and the temperature profile   at     cross section against time 

mean flow rate (Q), Reynolds number (  ), the wave number ( ), amplitude ratio ( ), 

heat generation parameter ( ) and Prandtl number (Pr) are shown in Figures 3.4 to 3.9 

respectively. Figure 3.4(a) show that when flow rate (Q) increases, the longitudinal 

velocity  (   ) increases at inlet/outlet section of wave, while rapid increase is observed 

in temperature profile against time mean flow Q (see Figure 3.4(b)). The behavior of 

velocity and temperature profile against Re is observed in Figures 3.5. Figure 3.5(a) 

shows that the longitudinal velocity  (   ) increases near the center of the channel and 

decreases near the peristaltic wall with increasing Reynolds number. On the other hand, 

Figures 3.5(b) shows that the temperature profile increases at whole section by 

increasing Reynolds number. The longitudinal velocity  (   ) increases near the 

peristaltic wall when wave number increases and after it, the reverse behavior are 

observed near the center of the tube as shown in Figure 3.6(a). It accomplishes that the 

velocity behavior against Reynolds number and wave number are inversely proportion at 

inlet/outlet part of the wave. On the other hand, temperature sharply increases at center of 

the channel for large wave number (see Figure 3.6(b)).  The velocity and temperature 

profile at different amplitude ratio   are shown in Figure 3.7. It is noted that the velocity 

raises sharply at the center of the channel against small amplitude ratio while temperature 

profile minimizing by reducing amplitude ratio. Moreover, Figures 3.8 and 3.9 

respectively shows that when   and Prandtl number (  ) increases the temperature 

enhances near the middle of the channel.  

3.4.3. Streamline and Isothermal line 

Figures 3.10 to 3.15 show the behavior of the streamlines and the Isotherms lines at 

different time mean flow rate (Q), Reynolds number (  ), Prandtl number (Pr) and heat 

generation parameter ( ) respectively. In Figure 3.10, it is observed that the trapping 

bolus increases with increasing time-mean flow rate Q and moves towards the wall. Also, 

boluses are remove at the center of the wave by increasing time mean rate Q. Figure 3.11 

shows that trapping is not much significantly effected against higher inertia effects, that 
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is, minor increase in bolus observed when Reynolds number is taken    . The isothermal 

lines against time mean flow rate Q are shown in Figure 3.12. It exhibits that at small 

time mean flow rate Q, the temperature effects are minimum in the fluid flow. When time 

mean flow rate increases upto    , the heat effects are seen to be prominent in the flow 

field. Moreover, the heat effects are dominant in the middle section (   ) of the 

channel. These consequences are also observed in temperature profile. The same effects 

are exhibits in Figure 3.13 for the case of Reynolds number. It is observed that the 

temperature is not significantly effected when      , but when Reynolds number is 

taken upto     the heat effects are more prominent at center and converging part of the 

wave. Moreover, more isothermal lines appear at inlet part of the wave. The temperature 

effects against heat generation parameter are exhibit in Figure 3.14. It is observed that by 

increasing heat generation parameter, heat effects are dominant in the flow field. It is also 

noted that at small value of heat generation parameter, the temperature effects are 

observed at entire region of the flow field. On the other hand, when value of heat 

generation parameter increases the temperature effects are observed near the peristaltic 

wall. In Figure 3.15, opposite effects is observed in case of Prandtl number    as 

compare with that of heat generation parameter  . That is, by increasing Prandtl number, 

temperature effect reduces near the peristaltic wall. It is also noted that the temperature 

effects are dominant at centered part of the channel. Moreover, the number of isothermal 

lines increases by increasing the value of Prandtl number. The vorticity effects are shown 

in Figure 3.16 at different Reynolds number. It is observed that vorticity lines cover 

maximum part of the wave against small Reynolds number but when Reynolds number 

increases vorticity lines are shifted either near the center or near the wall. It concludes 

that local rotation of the fluid is maximum near the wall at high Reynolds number.  

3.4.4. Pressure  

The graphically representation of pressures rise as a function of time mean flow rate Q at 

different value of Reynolds number and wave number are shown in Figure 3.17 and 

Figure 3.18  respectively. It is observed that pressure rise per wave length is linear for 

small value of Reynolds number but when Reynolds number is large, the variation in 

pressure rise per wave length against time mean flow rate become changed is not linearly. 

It is also noted that when time mean flow rate is less or equal to    , pressure increases 
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against high Reynolds number and further increase in time mean flow rate helps to 

reduces pressure. This observation is also perceived for the case of wave number but 

increasing region of pressure against Q reduces i.e. pressure increase at large value of 

wave number when Q      .  

 

 

 

Figure 3.2: Computed pressure rise (solid line) is compared with Jaffrin (1973) 

(dashed line) at                     

 

 

 

Figure 3.3: Pressure rise against different values of wave number and comparing  

with Jaffrin (1973) (dot) at small wave number with fixed                  
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(a) 

 

 

  
 

(b) 

 

 

Figure 3.4: a) Velocity Profile and (b) Temperature Profile  for different value of   

  with fixed                                     
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(a) 

 

 

 

   

(b) 

 

 

 
Figure 3.5 Velocity Profile (a) and Temperature Profile (b)  for different 

value of   e with fixed                                    
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(a) 

 

 

   

(b) 

 

 

 
Figure 3.6:Velocity Profile (a) and Temperature Profile (b) for different 

values of    with fixed                                    
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(a) 

 

 

 

   

(b) 

 

 

 
Figure 3.7:Velocity Profile (a) and Temperature Profile (b)  for different 

values of   with fixed                                    
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 Figure 3.8: Temperature Profile at different value of    with fixed   

                                 

 

 

 

 

 Figure 3.9: Temperature Profile at different values of    with fixed 
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Figure 3.10: Streamlines for different time mean flow rate at                
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Figure 3.11: Streamlines for different Reynolds number at                      
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Figure 3.12: Isothermal lines for different time mean flow rate at  e              
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Figure 3.13: Isothermal lines for different Reynolds number at                
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Figure 3.14: Isothermal lines for different value of   at                       
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Figure 3.15: Isothermal lines for different value of    at                      
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Figure 3.16: Vorticity  line for different values of Reynolds number at         
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 Figure 3.17: Pressure rise against time mean flow rate for different value 

of Reynolds number with fixed                                 

 

 

 

 

 Figure 3.18: Pressure rise against time mean flow rate for different value 

of wave number with fixed                               
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3.5 Conclusion 

This chapter represents the numerical study of heat transfer analysis for two-dimensional 

peristaltic motion in channel at high Reynolds number and wave number. Finite element 

method is used to obtain the numerical solution graphically. The velocity, streamlines, 

isothermal lines and pressure rise per wave length are plotted against different parameter 

involved in governing equations. The present study is compared with famous analytical 

solution of Jaffrin (1973) against different amplitude ration and wave number. It is found 

that the present result agree well with the result of Jaffrin (1973) at low Reynolds number 

and wave number. It is noted that Jaffrin (1973) used perturbation technique to find the 

solution of peristaltic motion which is valid only small value of parameter. On the basic 

of this validation the present study extended for large value of Reynolds number and 

wave number. The following points are summarized from the current study.  

 The thermal effects are more for water based fluid as compare to gases. 

 Large thermal effects are observed at higher time mean flow rate. 

 It is observed that the bolus appear at entire reign for small time mean flow rate 

and move to carets region when time flow increase.  

 The temperature effects enhance sharply by increase Reynolds number, time 

mean flow, heat generation parameter and Prandtl number  

 By increasing Reynolds number, the velocity reduces near the wall, but increases 

by increasing wavelength.  

 The obtained computed results are agreed well with the perturbation results of 

Jaffrin (1973) so the results also valid for high Reynolds number and wave 

number. 

 By increasing wavelength and Reynolds number the pressure are also rises in the 

pumping region.  
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Chapter 4  

Peristaltic Motion of Non-Newtonian 

Fluid in a Channel  

The aim of the present chapter is to analyze the computational results for non-Newtonian 

peristaltic flow against moderate Reynolds number. Micropolar fluid considered as a non-

Newtonian and the Galerkin finite element method has been applied to solve the 

governing equations. First, the governing equations representing the micropolar fluid 

flow are reduces into stream-vorticity form (   ) and then Galerkin finite element 

method is applied to obtain the solution without using any assumption to acquire the 

streamline, vorticity, pressure and velocity profile. The influences of parameters involved 

with numerous feature of peristaltic motion are exhibited graphically and discussed in 

detail. The study reveals that the pressure rise increases in pumping region for micropolar 

fluid and the trapping bolus rises by increasing the value of Reynolds number due to 

velocity increase near the center of the channel. 

4.1 Governing Model  
Consider the peristaltic motion in a channel of width 2a which is filled with the 

incompressible micropolar fluid. The motion of the wall is considered sinusoidal wave 

with constant speed c along the wall. Movement of the boundary in the fixed frame 

(     ) is defined in Eq. (2.1). The schematic diagram of the considered flow situation is 

shown in Figure 4.1. To make the analysis, we are interested in the solution of the 

problem under consideration in the wave frame of reference (     ) which is related to 

fixed frame (     ) through the transformations defined in Eq. (2.7). The governing 

problem in wave frame takes the following form 
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Figure 4.1: Geometry of the peristaltic channel flow. 
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(4.4)  

where    and    are the components of the velocity in    and   directions,   is the micro 

rotation parameter,    is the microgyretion parameter,   is classical viscosity coefficient, 

            are spin gradient viscosity coefficients and   represents the vortex viscosity 

coefficient. According to Eringen (1964)                  must satisfy the following 

inequalities 

                   |  |                  (4.5)  

It is important to mention here that if              , then micro-rotation 

becomes zero and Eqs. (4.2) and (4.3) reduces to classical Navier-Stoke’s equation. It 

also noted that if 0  , the velocity and micro-rotation are uncoupled and hence the 

global motion remains unaffected by the micro-rotation. Movement of the boundary wall 

in the wave frame is given in Eq. (2.11) and the boundary conditions of the problem are 

defined as  

 
   

   
                                     

 
(4.6)  
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Introduce the following dimensionless variables 
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Defining the stream function   through the relations 
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After eliminating pressure terms, Eq. (4.2) to Eq. (4.4) takes the following form in terms 

of vorticity ( )  stream function ( ) and micropolar rotation ( ) 
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where        ⁄  is Reynolds number,    (   )⁄  is the coupling number

 0 1 N ,     ⁄  is the wave number,     ⁄  is amplitude ratio and 

      (    ) (  (   ))⁄  is the micropolar parameter. The boundary conditions 

defined in Eqs. (4.6) and (4.7) in terms of stream function become     
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(4.15)  

The additional conditions on stream function   are  

            and           .
 

(4.16)  

These conditions are consequently of the prescription of constant flow rate   at each 

cross section. The dimensionless flow rate  (      ) in wave form is related to the 
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dimensionless time-mean flow rate in fixed frame Q (  Q*   ) through the expression 

Q      . It is pertinent to mention that for slow flow under the lubrication 

approximation these equations are reduced to those given Kumar and Naidu (1994). 

4.2 Numerical Analysis 
In order to simulate the modeled problem numerically, the governing Eqs. (4.11) to 

(4.13) subject to the boundary conditions defined in Eqs. (4.14) - (4.16) are solved using 

finite element method in the finite region. In all the cases, highly convergent results have 

been obtained in about 2-4 number of iterations. It is very important to choose suitable 

software for numerical simulations and MATLAB is known to be the best performance 

software for numerical simulations due to its user friendly environment and availability 

of familiar mathematical notations. MATLAB program manipulates matrices and vectors 

easily and has built-in graphics features to help readers visualize the numerical results in 

two dimensional plots. Graphical presentation of numerical data is important to interpret 

the finite element results (Young (1991) & Ferreira (2009)). Because of these benefits, 

we solve our problem by using in MATLAB software after converting the governing 

equations into a system of algebraic equation through Galerkin finite element approach. 

The domain is discretized in terms of non-uniform meshing and quadratic triangular 

elements by using pdetool in MATLAB. The dependent variables, stream function, 

vorticity and microrotation parameter are approximated as follows 
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(4.17)  

where       and    are element nodal approximation of      and  . The value     is 

taken in our case for quadratic triangular elements. The Galerkin finite element method is 

applied to the governing Eqs. (4.11) to (4.13) as 
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where      and    are weight function. After simplifying Eqs. (4.18) to (4.20), we 

obtain 
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where   represents the area integral of the element and  represents the line integral of 

the element. Introducing Eq. (4.17) into Eqs. (4.21) to (4.23) and considering the 

discretized domain, we can write 
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The global system of algebraic equation in matrix form is defined as  
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The global systems of matrix defined in Eq. (4.32) are solved iteratively using Newton-

Raphson method the required convergence is achieved. 
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4.3 Pressure Evaluation  

Pressure rise per wave length play an important role in peristaltic motion. It can be 

obtained through numerical of pressure gradient. Since peristaltic motion based is on 

infinite train sinusoidal wave so it is sufficient to calculate the pressure only at middle 

part (   ) i.e at center of the unit wave domain. Pressure gradient obtained directly 

from the Navier-stoke equation in the form of     that is   
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The mathematics pressure-rise per wavelength at center of the channel     in the wave 

frame is defined as  
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in Figure 4.3. It is visually perceived that the velocity profile is unimodal between the 

range         and become bimodal at      . It is observed that the velocity is 

inversely proportional near the middle of the channel against moderate Reynolds number 

and directly proportional near the wall.  Tables 4.1 and 4.2 show the numerical value of 

velocity profile at     by taking the amplitude ratio      . In both tables, the small 

change is observed against micropolar parameter ( ) and couple stress parameter ( ). It 

is seen that the velocity increase near the middle part of the channel against micropolar 

parameter while decreases in case of couple stress parameter. On the other hand, the 

velocity values reduce when m increased and exceed when   increased near the wall. In 

other words, one can say that the behavior is inversely proportional against micropolar 

and couple stress parameter in the flow field. 

4.4.2 Trapping and Vorticity 

The phenomenon of construction of circulation bolus inside flow the fluid to form like 

closed streamline is known as trapping. These trapped boluses are pushed ahead with 

peristaltic wave. To observe the consequence of the coupling parameter and Reynolds 

number on the trapping phenomena, the streamlines and contours of vorticity are shown 

in Figures 4.4 to 4.7 respectively. In these figures, it is observed that the size of trapped 

bolus decrease when the coupling number increases. It means that by the increasing the 

coupling numbers the velocity of the fluid in channel decrease. It is also seen that by 

increasing the value of coupling number the vorticity remain same as that of wave shape 

near the peristaltic wall. The opposite behavior is observed in case of Reynolds numbers, 

that is, the velocity increase near the wall due to increase in Reynolds number. In Figure 

4.4, it is observed that the size and the number of trapped boluses also increase. In Figure 

4.5, for smaller values of Reynolds number, the vorticity lines becomes smooth and dense 

near to the center part of the channel instead of crest region, and vorticity are 

concentrated near the dilating part of the channel. However, the lines of maximum 

vorticity penetrate to the center of the channel with increasing the Reynolds number. 
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4.4.3 Pressure Field 

To see the effect of different parameters on pressure field, draw the graphs of pressure 

rise per wavelength     are drawn which involves the complex integration of     ⁄ . 

The numerical integration is carried out to solve such integrals and displayed graphically 

the result of different parameters of interest in Figures 4.8 to 4.12. The comparison of 

results of pressure rise per wave length against time mean flow rate Q is made with that 

of Kumar and Naidu (1994) as a limiting case. Figure 4.8 shows that the present 

numerical results are good argument with the numerical result of Kumar and Naidu 

(1994). It builds the confidence that the present numerical results is valid for Non-

Newtonian fluid and give noble results.  Figures 4.9 and 4.10 show the variation of 

pressure gradient     for different value of micropolar parameter   and coupling number 

  respectively. It is noted that the peristaltic pumping rate increases by increasing the 

coupling parameter where     corresponds Newtonian fluid case. The greater values 

of coupling parameter   in the free pumping shows definite increase in pressure gradient 

against time mean flow. The same behavior is observed for coupling number  . The 

result for Newtonian fluid case is also shown in the same figure. Figure 4.11 illustrates 

the pressure rise per wavelength and flow rate relationship for different values of  . Here, 

it is found that for a fixed value of prescribed flow rate Q,     in pumping region 

(Q         ) increases with increasing  . The effects of Reynolds number    on 

    in pumping region for a fixed value of flow rate is observed similar to the effects of 

  (Figure 4.12). Figures 4.13 and 4.14 show the friction force against Reynolds number 

(Re) and coupling number (N). It is observed that for greater Reynolds number, the 

friction force decreases against large values of time mean flow rate. It is also noted that 

the friction force increases rapidly at zero time mean flow rate. However for coupling 

number, the friction force region increases by increasing coupling numbers in positive 

pumping. Here, it concludes that by increasing coupling number, fluid resistance inside 

the flow region enhances. 
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Table 4.1: Longitude velocity distribution u(x, y) for different values of   at fixed set of 

parameters Q                                        

   (   ) 

            

0 0.9563 0.9534 0.9516 

0.1 0.9067 0.9037 0.9019 

0.2 0.7639 0.7615 0.7604 

0.3 0.5037 0.5037 0.5038 

0.4 0.1179 0.1210 0.1228 

0.5 -0.3669 -0.3635 -0.3615 

0.6 -1.0000 -1.0000 -1.0000 

 

Table 4.2: Longitude velocity distribution u(x, y) for different values of   at fixed set of 

parameters Q                                      

   (   ) 

                  

0 0.9563 0.9711 0.9825 

0.1 0.9067 0.9165 0.9233 

0.2 0.7639 0.7652 0.7654 

0.3 0.5037 0.4983 0.4945 

0.4 0.1179 0.1118 0.1085 

0.5 -0.3669 -0.3698 -0.3699 

0.6 -1.0000 -1.0000 -1.0000 
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Figure 4.2:Comparison of present results (solid lines) for longitudinal velocity 

distribution for different values of   Hayat et al. (2007) (dotted) 

 

 

 

Figure 4.3: Longitudinal  velocity distribution for different values of Re at fixed  
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Figure 4.4: Variation of streamlines in wave frame for different values of    with fixed 

values of  Q                                        
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Figure 4.5: Variation of vorticity for different values of    at fixed values of  Q         
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Figure 4.6: Variation of streamlines in wave frame for different values of     at fixed values 

of Q                                            
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Figure 4.7: Variation of vorticity for different values of     at fixed values of Q        
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Figure 4.8:Comparison of computed Pressure distribution (solid line) for different 

values of Re with that of Kumar et al. (1994) (dashed line) against        

                      

 

 

 

Figure 4.9: Pressure rise per wave length for different values of   with fixed  
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Figure 4.10: Pressure rise per wave length for different values of   with fixed  

                                

 

 

 

Figure 4.11: Pressure rise per wave length for different value of   with fixed  
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Figure 4.12 Pressure rise per wave length for different value for    with fixed  

                                 

 

 

 

Figure 4.13: Friction force against time mean flow for different values of    with 

fixed                                  
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Figure 4.14: Friction force against time mean flow for different values of   with fixed  

                                

4.5 Conclusions 
The flow of micropolar fluid in a channel induced by peristaltic waves is formulated and 

analyzed numerically by using finite element method. The results of obtained stream 

function, vorticity and micropolar rotation against different involved physical parameters 

are shown through graphs. The longitudinal velocity and pressure rise per wavelength is 

also calculated as post computation. It concludes that the pressure rise increases for 

micropolar fluid and greater than that of Newtonian fluid in the pumping region. The 

velocity decrease by increase in the value of coupling parameter in the whole region 

while the velocity decrease near the center of channel by increasing the value of 

parameter however reverse behavior is noted near the boundaries. The streamlines does 

not disturbed by taking large value of Re. It is also noted that there is no retraction by 

choosing the value of any parameters.  
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Chapter 5 

Hydromagnetic Peristaltic Flow in an 

Inclined Tube 

This chapter contains the computational study of MHD peristaltic motion for 

axisymmetric flow problem. The developed model is presented in the form of partial 

differential equations. Then obtained partial differential equations are transfer into 

stream-vorticity (   ) form. The Galerkin Finite element method is used to obtain the 

computational results of governing problem. The computed results are validated against 

the existing well known results at low Reynolds number and wave number in the limiting 

case. It is ensured that the present results are highly accurate and in close agreement with 

the existing results in literature. Therefore, it is effective for higher values of Reynolds 

number and wave number. The variation of streamline is predicated are present 

graphically against high Reynolds numbers.  

 

5.1 Governing Model 
 

Consider the axisymmetric incompressible peristaltic flow through in an inclined tube of 

length    with inclination angle   filled with the Newtonian fluid. The motion is wall 

considered sinusoidal wave with constant speed c along the wall. The uniform magnetic 

field    is applied in the transverse direction of the flow. The geometry of the flow is 

presented in Figure 5.1. The moment of the boundary in fixed frame is defined as  

 

  (    )        *
   (     )

 
+  (5.1)  
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Figure 5.1: Axisymmetric peristaltic flow in a tube. 

where   is the mean distance of the wall from the central axis, b is the wave amplitude 

and   is the wave length,   is the velocity and    is the time. The governing model in 

fixed frame is presented in terms of partial differential equations is given by 
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(5.4)  

The boundary conditions of the governing problem are 

 
   

   
                           (5.5)  

             
  

  
                (5.6)  

The Neumann boundary condition on     at      arises for symmetric flow and the 

boundary condition      at      is due to no-slip condition at the wall. The 

condition      at      means that transvers velocity is zero at the center of the 

channel and condition        ⁄  at        represents that the normal velocity at the 

wall is equal to the normal velocity of fluid. To transform the governing equation from 

lab frame to wave frame, the following relation is introduced  
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                                            (5.7)  

where (     ) are axial and radial component of velocity in fixed frame and (     )in 

moving frames of reference. As both planes      and       (  ) constitute the 

streamline in the moving frame of reference, the volume flow rate    in the moving frame 

is constant at all cross section of the channel. Thus the following boundary conditions are 

obtained 

         on       ,          
     on       (  )  (5.8)  

The relation between time mean flow rate in wave and laboratory frame is defined as 

    
     (  

  

 
), in which    and    

 are time mean flow rate in moving frame 

and fixed frame respectively and    is stream function.  The dimensionless variables are 

defined as fallows  
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Eliminate the pressure gradient and introducing stream function relation    
 

 
    ⁄  

and    
 

 
      ⁄  the final form of governing equations and boundary conditions  in 

terms of stream-vorticity form are as follows 
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where        

   
 

  

   
 

 

 

 

  
 is modified Laplacian. 

5.2 Finite Element solution 
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In present study, the governing Eqs. (5.10) and (5.11) subject to the boundary conditions 

(5.12) and (5.13) are solved numerically.  The present study is based on full form of 

equations without applying any assumption which leads the governing model into higher 

orders nonlinear PDE. The exact or analytical solution are fail to produce good result. 

Therefore a rapid convergent, more accurate and efficient numerical method is used to 

solve higher order nonlinear PDE. The Galerkin finite element method is used to solve 

governing Eqs. (5.10) and (5.11). For this purpose, the domain is discretized in terms of 

non-uniform meshing with the help of built in pdetool function in MATLAB. In all the 

cases, highly convergent results have been obtained in about 2-4 number of iterations. 

Upon using quadratic triangle elements, the dependent variables, stream function and 

vorticity are approximated as follows 

   ∑     

 

   

       ∑     

 

   

  (5.14)  

where         and    are shape function,  element nodal approximation of stream 

function and vorticity respectively . The weak formulation is applied to governing Eqs. 

(5.12) and (5.13) as follow 
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where            is domain of the problem,            
are weight functions. 

Simplifying Eq. (5.17) and Eq. (5.18), we get  
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where           is line integral on the boundary. The following system of equation is 

obtained after introducing Eq. (5.16) into Eqs. (5.19) and (5.20)  
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And   
  

 ∫       

 

  (5.25)  

The system of Eqs. (5.21) and (5.22) are combine to global system defined as 

 KU=F, (5.26)  

where 

     *
    

    
 

   
       

         
 +     *

  

  
+     *

  
  

    
  +  (5.27)  

The global systems of matrix defined in Eq. (5.28) is solved iteratively using Newton-

Raphson method.  
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5.3 Pressure Evaluation  
Pressure rise per wave length is obtained through numerical integration of pressure 

gradient. Since peristaltic motion is based on infinite train of sinusoidal wave, so it is 

sufficient to calculate the pressure only at middle part (   ) of the unit wave domain. 

Pressure gradient can also obtained directly from the Navier-stoke equation in the form of 

   . The mathematical expression of pressure-rise in wave frame is defined as 

     ∫
  

  
   

 

 

 (5.28)  

5.4 Result and discussion  
This section provides the details of computation results made in terms of velocity profile 

at     cross section,  streamlines in wave frame, pressure rise per wave length against  

related parameters including Reynolds number (  ), amplitude ratio ( ), volume flow 

rate (Q), and Hartmann number ( ). All obtained results are prepared graphically and 

discussed in detail in following subsection. 

5.4.1 Validation and Pressure 

To ensure the validity of the computed results for axisymmetric flow, it is compared with 

the famous result of Shaprio et al. (1969) as the limiting case and found in good 

agreement. Shaprio et al. (1969) results are based on long wavelength and low Reynold 

numbers assumptions so it is not valid for moderate Reynolds number.  The comparison 

of present pressure rise per wave length with Shaprio et al. (1969) results against time 

mean flow Q is shown in Figure 5.2. It is observed that the present computational results 

at low Reynolds number and long wavelength assumption for different amplitude ratio 

are matched well with the results of Shaprio et al. (1969). Therefore, the confidence is 

high that the present study is valid for moderate values of Reynold number    and wave 

number  . Figure 5.3 shows the pressure rise per unit wave length against volume flow 

rate Q for different value of Reynold numbers. It is noted that, pressure increases in 

positive pumping region by increasing Reynolds number (  ), while it decrease in co-

pumping region. It is also observe that the pressure become linear by neglecting inertia 

effects and the curvature effects are dominant in positive pumping region against large 

inertia effect. Figure 5.4 shows the pressure rise per unit wave length against time mean 
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flow rate for different Hartman numbers. It is noted that pressure increases in the interval 

         and decrease in the interval         .  

5.4.2 Velocity filed 

Figures 5.5 to 5.8 show the longitudinal velocity   for different values of volume flow 

rate Q, Reynolds number Re and magnetic parameter at     cross section. Figure 5.5 

shows the variation of velocity at     cross section at center of the tube for different 

magnetic parameters when time mean flow rate is fixed at      . It is observed that the 

velocity is maximum at Reynolds number        for small Hartmann number. When 

     , the velocity at center of the tube (   ) decrease and stable for larger Re. It is 

also observed that by increasing Magnetic field, the velocity increases at the center of the 

tube in the range of        . The velocity profile at different Reynolds number at 

    cross section is shown in Figure 5.6. It determines that for large Reynolds number, 

the velocity increase sharply at the center of the tube (   ) and reduces near the wall. 

It concludes that the inertia forces is helpful to enhance the velocity of the fluid in the 

tube. The velocity against different volume flow rate is shown in Figure 5.7.  It 

determines that velocity increases in the entire region of peristaltic wave and less 

curvature effects are observed against small volume flow rate. In Figure 5.8, the minor 

change is observed in velocity profile due to Hartman number, that is, by increasing 

magnetic field, the velocity enhances near the center of the tube and reduces its strength 

near the wall. 

5.4.3 Trapping and streamlines 

A part of fluid motion enclosed by a streamline separated from the axis in the wave frame 

is called trapping. Figures 5.9 to 5.10 show the trapping phenomenon against inertial and 

magnetic effects. It is observed that large number of bolus appear against small inertial 

effects and number of bolus reduces at high inertial effects when amplitude ratio is fixed 

at       and time mean flow rate at      .  It is also noted that the streamline near 

the center of the tube are tends parallel to  -     for large value of Reynolds number. It 

concludes that for high Reynolds number, the flow become laminar at center of the tube. 

The magnetic effects on streamline at amplitude ratio       and time mean flow rate 

      are observed in Figure 5.10. From figure, it is observed that the trapping bolus 

appear near the middle section of the peristaltic wave. It is noted that more bolus appear 
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near the convergent part of peristaltic wave. Moreover, when Hartman parameter 

increases, the behavior of streamlines remain same but small change is observed in 

boluses. It predicts that the magnetic field is helpful to enhance the velocity of the fluid 

inside the peristaltic tube.  

 

 

 

 

 

Figure 5.2: Comparison of computed pressure rise against Q  with that of  Shaprio et 

al. (1969) when              
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Figure 5.3: Pressure rise for different value of Re against Q with fixed         

                    ( )      

 

 

 

 

Figure 5.4:  Pressure rise for different value of M against Q with fixed   

                           ( )      
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Figure 5.5: Variation of Velocity field against Reynolds number for different value 

of magnetic parameter with                      

 

 

 

 

Figure 5.6: Variation of velocity against r for different values of Reynolds number 

Re with fixed                             
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Figure 5.7: Variation of velocity against r for different values of Volume flow rate 

Q with fixed                       e    

 

 

 

 

Figure 5.8: Variation of velocity against r for different values of Hartmann number 

M with fixed                           
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Figure 5.9: Streamline effects at different value of Reynolds number with fixed   
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Figure 5.10: Streamline effects at different value of Hartmann number M with fixed 
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5.5 Conclusion 
The computational study of MHD peristaltic motion for Newtonian fluid in an 

axisymmetric tube is discussed out in this chapter. The finite element technique is used to 

find the numerical solution without using any assumption and discusses velocity profile, 

pressure rise and streamlines behavior at moderate Reynolds number and wave number 

which is not available in any of earlier studies.  The present results are also compared 

with that of Shaprio et al. (1969) at Re = 0 and     for validation and found in good 

agreement. The main findings of the present study are 

 Maximum longitude velocity at     and     achieved at       for small 

magnetic effect. After increasing Reynolds number, velocity decreases and 

become stable at high Reynolds number. 

 Longitude velocity increases by increasing magnetic effects at center of the tube 

and decreases near the wall. 

 Longitude velocity increases at     by increasing time mean flow rate Q. 

 Pressure rise per unit wave length sharply increases in positive pumping region by 

increasing either Reynolds number or Hartmann number and decreases in co-

pumping region. 

 More trapping boluses appeared near the diverging part of the wave by increasing 

Hartmann number  
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Chapter 6 

Hydromagnetic Heat Transfer Analysis of 

Peristaltic Flow in Tube  

The aim of present chapter is to present MHD heat transfer analysis for axisymmetric 

peristaltic flow through a tube y. The developed model is presented in the form of partial 

differential equations. The obtained partial differential equations are transformed into 

stream-vorticity (   ) form. The Galerkin Finite element method is used to find the 

computational results of governing problem. The obtained numerical results of velocity 

and temperature profile, pressure, streamline and Isothermal lines are shown graphically 

and discussed in detail. The obtained results are ensured valid at moderate Reynolds 

number on the bases of preceding study. It is concluded that higher values of the 

Reynolds number are not independent of the time mean flow rate. 

6.1 Governing Model 

Consider an incompressible axisymmetric Newtonian fluid flow thought a tube of length 

  . The wall temperature is consider at   and temperatue at center of the tube is   . The 

constant magnetic     field is applied in the transvers direction of the tube and the wall 

speed  .  Figure 6.1 shows the geometrical representation of the peristaltic motion. The 

motion of the fluid along the wall can be expressed as  

  (    )        *
   (     )

 
+  (6.1)  

where a is the mean distance of the wall from the central axis,   is the wavelength and b 

is the wave’s amplitude. The transformations relating the laboratory frame and to the 

wave frame are 
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 Fig. 1. Geometry of a two-dimensional peristaltic tube. 

                                             (6.2)  

where    and    are the axial and radial components velocity in the moving frame and 

          are those in the laboratory frame. As both planes      and      

 (  ) constitute the streamline in the moving frame of reference, volume flow rate    in 

the moving frame is constant at all cross section of the tube. Thus the following boundary 

conditions are obtained 

         at       ,          
     at       (  )  (6.3)  

The relation between time mean flow rate in wave and laboratory frame is defined as 

    
     (  

  

 
), where    and    

 are time mean flow rate in moving frame and 

fixed frame respectively and    is stream function.  The dimensionless variables are 

defined as fallows  
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After eliminating the pressure gradient terms and introducing   
 

 
    ⁄  and 

   
 

 
     ⁄  the governing momentum and temperature equations in term of the 

stream-vorticity function are as follows: 
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where        
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) and the modified Laplacian is defined as        

    

  

    
 

 

 

  
. The following boundary conditions are applied: 
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                          ( )    

(6.9)  

The governing partial differential equation (6.5) to (6.7) governs the flow presented in the 

stream-vorticity formulation in which   is the Hartmann number,    is the Reynolds 

number,   is the heat generation parameter and    is the Prandtl number. The Reynolds 

number corresponds to the ratio of the inertial force to the viscous force. The non-zero 

moderate value of the Reynolds number ensure the dominance of the inertial forces that 

ware neglected in earlier investigations. The Hartmann number corresponds to the ratio 

of the electromagnetic force to the viscous force, and high value of Hartmann number 

represent strong magnetic fields.  

6.2 Finite Element solution 

The governing Eqs. (6.5) to (6.7) subject to the boundary conditions given in Eqs. (6.8) 

and (6.9) are solved numerically without imposing any assumptions. For Galerkin’s 

formulation based finite element method, the problem domain is to discretize into mesh 
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of quadratic triangular elements. First, we approximate the stream, vorticity and 

temperature functions as follows:  

   ∑     

 

   

         ∑     

 

   

   ∑     

 

   

 (6.10)  

where       and    are the element nodal approximations for      and   respectively 

and    is shape function.  Galerkin’s finite element approach is applied to the governing 

equations, (Eq. (6.7) to Eq. (6.9)), as follows 
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where   ,    and    are weight functions,   is the domain of the element, and    

       . Simplifying Eqs. (6.13) to (6.15), we get 
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(6.16)  

where   is the length of the side of the element and          . Upon using Eq. (6.10) 

into Eqs. (6.14) to Eq. (6.16) and considering the discretized domain, we have 
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 (6.25)  

The partial differential equations (6.7) to (6.9) are solved iteratively until highly 

convergent result with tolerance of       has been obtained. The global system in matrix 

form is defined as 

 KU= F, (6.26)  

where 
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(6.28)  

are element matrices. 

6.3 Pressure Evaluation  

One of the important part of peristaltic motion is pressure rise per unit wave length (   ) 

which is obtained from numerical integration of pressure gradient. Since peristaltic 

motion is based on infinite train of sinusoidal wave so, it is sufficient to calculate the 

pressure only at middle part (   ) that is central of the unit wave domain. The pressure 

rise per unit wave length (   ) can be computed by using the following expression   

     ∫
  

  
   

 

 

 (6.29)  

 where 
  

  
  can easily be obtained directly from Naiver-Stokes equation in the form of 

stream-vorticity (   )directly.  
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6.4 Numerical results and discussion  

This section provides the detail of numerical results obtained using finite element 

method. The obtained results made in terms velocity and temperature profile at     

cross section, streamlines and isothermal lines in wave frame, pressure rise per unit wave 

length (   ) against volume flow rate (Q) are prepared and discussed graphically.  

6.3.1 Velocity and Temperature profile 

The variations in the velocity against various values of the time mean flow rate   for 

     and      at     cross section are shown in Figure 6.2. It observed that 

when inertial force is dominant, the velocity at the center of the tube increases for small 

time mean flow rate, but decreases for large time mean flow rate. Figure 6.3 presents the 

variation in the velocity profile for fixed large time flow rate, small amplitude ratio and 

small Hartmann number. It is observed that when the inertial forces are dominant, the 

velocity raises sharply near the center of the tube (   ). The effect of the MHD 

parameter ( ) on the longitudinal velocity profile at the     cross section is shown in 

Figure 6.4. It is noted that the magnetic field is applied on the wall of the tube in the 

directions of the fluid, the pattern of the longitudinal velocity changes from the center of 

the tube to the wall of tube at       . It is further noted that reversed flow occurs near 

the wall of the tube when    . Further, the magnetic field decreases the longitudinal 

velocity at any   near the wall of the tube until its effects are diminished. Figure 6.5 is 

drawn to show the effect of the wave number α on the longitudinal velocity profile   at 

the     cross section. It is noted that the velocity profile near the wall and around the 

center of the tube are opposite to each other for           . Figure 6.6 show that the 

temperature increases at any   due to increase in the time mean flow rate parameter  . 

The increasing time mean flow rate Q from     to      is responsible for the increase in 

the temperature profile near the center of the tube is pertinent. Similarly, the Prandtl 

number    also helps to increase the temperature at     cross section, as shown in 

Figure 6.7. Moreover, heat effect enhances for water base fluid as compare to gases. The 

effect of internal heat generation parameter β on the temperature profile as a function of r 

is shown in Figure 6.8. It is observed that the heat generation parameter also helps to 

increase the temperature at      cross section for any  . The effect of MHD parameter 
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  on velocity profile is shown in Figure 6.9. The significant effect of the MHD 

parameter M on the velocity profile, as shown in Figure 6.4, is responsible for the 

temperature profile, as shown in Figure 6.9, and this fact is widely used in magnetic 

resonance imaging (MRI) and other biomedical treatments.  

6.3.2 Pressure 

The pressure rise per unit wavelength as a function of the time flow rate   for different 

values of the magnetic parameter and the Reynolds number are shown in Figures 6.10 

and 6.11, respectively. It is observed that the pressure rise per unit wavelength as a 

function of the time mean flow rate   becomes linear for small values of the magnetic 

parameter and Reynolds number. For large the magnetic parameters, small effects are 

observed in the pressure rise per unit wavelength. On the other hand, when the Reynolds 

number becomes larger, prominent effects are observed for the range of the time mean 

flow rate 0 ≤   ≤ 0.6. It is also observed that the pressure in the positive pumping region 

increases and that in the co-pumping region decreases. 

6.3.3 Streamline and Isothermal line 

Figure 6.12 shows the behavior of the streamline for Reynolds numbers   and  . It is 

observed that when inertial forces are small, the number of trapping boluses increases 

rapidly because of a small change in the velocity field, but when inertial forces dominate 

i.e.      the size of trapping bolus are reduce. The effects of the magnetic parameter 

on the streamlines are shown in Figure 6.13. The size of bolus increases with increasing 

the magnetic parameter for the streamlines. The effects of isothermal line are shown 

Figures 6.14 to 6.16. Figure 6.14 shows that the isothermal lines are not much effected 

due to small inertial forces, but due to increase in inertial forces, more isothermal lines 

are observed near the wall opposite to the direction of the flow. Figure 6.15 shows less 

temperature effect against small Hartmann Number, but the effects of temperature are 

larger near the inner section of the flow field at M = 3. It is concluded that by increasing 

the value of the parameter M, the temperature effect in the flow field increases. The 

effects of the Prandtl numbers are shown in Figure 6.16. It is observed that in case of 

water, i.e., Pr = 7, the temperature effects are enhanced at the end section of the 

peristaltic region. 



124 

 

 

 

 

 

Figure 6.2: Longitudinal velocity as a function of radial position r for different 

values of the time mean flow rate Q. 

 

 

 

Figure 6.3: Longitudinal velocity as a function of radial position r for different 

values of the Reynolds number Re. 
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Figure 6.4: Longitudinal velocity as a function of radial position r for different 

values of the magnetic parameter M. 

 

 

 

Figure 6.5: Longitudinal velocity as a function of radial position r for against 

different values of the wave number α. 
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Figure 6.6: Temperature profile as a function of the radial position r for different 

values of the time mean flow rate Q 

 

 

 

Figure 6.7: Temperature profile as a function of the radial position r for different 

values of the Prandtl number Pr 
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Figure 6.8: Temperature profile as a function of the radial position r for different 

value of β. 

 

 

 

Figure 6.9: Temperature profile as a function of the radial position r for different 

value of magnetic parameter M. 
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Figure 6.10: Pressure rise as a function of time mean flow rate Q for different 

values of the magnetic parameter M. 

 

 

 

Figure 6.11: Pressure rise as a function of the time mean flow rate Q for different 

values of the Reynold numbers Re. 
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Figure. 6.12. Streamlines against Reynold numbers Re of 1 and 5 with fixed 

parameter                                      
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Figure. 6.13: Streamlines for different value of the magnetic parameter M at 1 and 3 

with fixed parameters                                      
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Figure 6.14: Isothermal lines for different Reynold numbers Re of 1 and 5 with 

fixed parameter                                     
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Figure 6.15: Isothermal lines for various value of the magnetic parameter M at 1 

and 3 with fixed parameters                                      
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Figure 6.16: Isothermal line for different Prandtl numbers Pr = 0.7 and Pr = 7.0 

with fixed parameters                               
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6.5 Conclusion 

Computational study of MHD heat transfer axisymmetric peristaltic flow in a tube is 

presented in this chapter. The finite element technique is applied to obtain the numerical 

results. The obtained computed results of velocity and temperature profile, streamline and 

isothermal lines, pressure rise are presented graphically at high Reynolds number 

assumption. It is observed that the longitudinal velocity at     cross section increases 

sharply near the center of the tube. The same behavior is observed in case of time mean 

flow rate Q and Hartmann number, but this fact reversed in case of wave number that is 

velocity decreases by increasing wave number. It is also concluded that the velocity is 

observed maximum at       for small magnetic field. The temperature profile 

increases near the center of the tube by increasing Prandtl number    and heat generation 

parameter   and decreases by increasing Hartmann number. It concludes that magnetic 

field is helpful to reduce the temperature profile. It is also concluded that for higher value 

of  , the trapping bolus increases due to the increase in velocity of the fluid. Moreover, 

temperature effect reduces by increasing Reynolds number, Prandtl number and 

Hartmann number. Non-uniform increasing observed in pressure rise by increasing 

inertial effects and magnetic effects.  
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Chapter 7 

Peristaltic Motion of Micropolar Fluid 

through a Tube  

The purpose of this study is to analyze the numerical solution of peristaltic motion for 

micropolar fluid through a circular tube at high Reynolds number. The numerical solution 

of this type of model are challenging because its governing equation are of higher order 

nonlinear partial differential equation. Therefore an efficient numerical technique is used 

to find the numerical solution. The Galerkin finite element method is most power full 

technique to solve the obtained higher order nonlinear PDE’s. The governing model first 

covert in to stream-vorticity form (   ) and then Galerkin finite element approach is 

used. The current study obtained the microrotation and streamline line directly from 

governing equations. Velocity and pressure rise are also plotted for different parameter. It 

is observed that for small value of coupling number and microrotation parameter, the 

rotation of fluid particles is much faster than that for large value of coupling number and 

microrotation parameter.    

7.1 Governing Model 

Consider an axisymmetric peristaltic motion of non-Newtonian incompressible fluid 

through a tube of length   . The motion is considered due to sinusoidal wave with 

constant speed c along the wall. The motion of the fluid along the wall can be express as  

  (    )        ,
   (     )

 
-  (7.1)  

where a is the mean distance of the wall from the central axis,   is the wavelength and b 

is the wave amplitude. The transformation relating between laboratory frames and wave 

frames are 
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                                             (7.2)  

where    and    are the axial and radial components velocity in the moving frame and 

          are those in the fixed frame. The transformed problem takes the form 

          (7.3)  

  (      )       (   )           
 

(7.4)  

 
   (      )          (      )         

(        )  (    ) 
 

(7.5)  

Where    and    
are the dimensional form of velocity and microrotation vectors define 

by    (  (     )     (     )) and     (    (     )  )   is density,    is fluid 

pressure,    is the microgyretion parameter,   is classical viscosity coefficient, 

            are spin gradient viscosity coefficients and   represents the vortex viscosity 

coefficient. According to Eringen (1964)                  must satisfy the following 

inequalities 

                  |  |                  (7.6)  

Movement of the boundary wall in the wave frame is given by the relation 

  (  )        *
     

 
+ 

 

(7.7)  

As both planes      and       (  ) constitute the streamline in the moving frame of 

reference, volume flow rate    in the moving frame remain constant at all cross section of 

the channel. Thus the following boundary conditions are obtained 

         on       ,          
     on       (  ), (7.8)  

The relation between time mean flow rate in wave and laboratory frames is defined as 

    
     (  

  

 
), where    and    

 are time mean flow rate in moving frame and 

fixed frame respectively and    is stream function.  The dimensionless variables are 

defined as fallows  

   
  

 
   

  

 
   

  

 
   

  

 
   

  

 
    (7.9)  
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  (7.11)  

After eliminating the pressure gradient terms and introducing   
 

 
    ⁄  and 

   
 

 
     ⁄ , the governing momentum and microrotation equations with vorticity 

equation in term of stream-vorticity formulation are as follows 
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where         

    
  

    
 

 

 

  
 is modified Laplacian, coupling number define as 

    (   )
 

 where (0 < N < 1), and       (    ) ( (   )) is the 

micropolar parameter. The boundary conditions become 
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(7.15)  
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(7.16)  

7.2 Finite Element solution 

The nonlinear governing Eqs. (7.12) to (7.13) subject to the boundary conditions defined 

in Eqs. (7.15) and (7.16) are solved numerically for moderate Reynolds number and long 

wave length. The Galerkin’s formulation based finite element method is required to 

discretizing the computation domain into a mesh of quadratic triangular elements. In all 

the cases, a highly convergent result with tolerance of 10e-15 has been obtained into 

maximum of 2-4 numbers of iterations. For first stapes, approximate stream function, 

vorticity and temperature are expressed as follows   
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  (7.17)  

where       and    are element nodal approximation of      and   respectively. The 

Galerkin’s finite element method is applied to governing Eqs. (7.12) to (7.14) as follows 
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where   ,    and   are weight functions and           . After simplifying the Eq. 

(7.18) to Eq. (7.20), we get   
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where          . Introducing Eq. (7.17) into Eq. (7.21) to Eq. (7.23) and considering 

the discretized domain, we have 
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where  
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The global system in matrix form is defined as 

 KU=F, (7.32)  

where 
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(7.33)  

7.3 Pressure Evaluation  

Pressure rise per wave length are obtained through numerical integration of pressure 

gradient. Since peristaltic motion is based on infinite train of sinusoidal wave, so it is 

sufficient to calculate the pressure only middle part (   ) central of the unit wave 

domain. Pressure gradient can also be obtained directly from the Navier-stoke equation in 

the form of    . The mathematical expression of pressure-rise in wave frame is 

defined as 

     ∫
  

  
  

 

 

  (7.34)  

7.4 Results and Discussion 

This section present the graphical results of pressure rise    per wave length, velocity, 

streamline, vorticity and microrotation against different value of Reynolds number (Re), 

coupling number (N), time mean flow rate (Q) and micropolar parameter (m). 

7.3.1 Pressure  

For validation of present numerical results, comparison of computed results for the case 

of low Reynolds number and long wave length assumption is made with the existing 

results of Srinivasacharya (2003) and are shown in Figure 7.2. It is observed through 

figure that present result of pressure rise per wave length     is in good agreement with 

the result of Srinivasacharya (2003) against the coupling number N = 0.2 and N = 0.4, 

and hence our analysis is valid. It makes the confidence and insure the validity of the 

present study. Figures 7.3 to 7.5 show the pressure rise     against time mean flow rate 

Q for different value of coupling number N, micropolar parameter m and Reynolds 
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number Re respectively. In Figure 7.3, it is observed that by increasing the coupling 

number N, the pressure rise     increases in the positive pumping region and decreases in 

co-pumping region. It is also noted that the value of pressure rise      is larger for Non-

Newtonian fluid as compare to that of Newtonian fluid. The reverse behavior is observed 

in case of micro-rotation parameter m in Figure 7.4 i.e. by increasing microrotation 

parameter, the pressure rise     decreases. It is because, by increasing micro-rotation, the 

motion of the molecules becomes slow and in consequence of the pressure rise 

    decreases. The effects of Reynolds number (Re) on pressure rise      are shown in 

Figure 7.5. It is observed that pressure rise     suddenly increases in pumping region 

against higher values of Reynolds number.  

7.3.2 Velocity Profile 

The variations of velocity at     cross section are shown in Figure 7.6 to Figure 7.9. 

In Figure 7.6 shows the velocity field at center of the tube against Re for Newtonian and 

Non-Newtonian fluid cases. It is observed that maximum in velocity achieved for 

Newtonian fluid at      and for Non- Newtonian fluid at       against coupling 

number      . Moreover, when Reynolds number further increases, velocity at the 

center of the tube decreases. It concludes that, flow in peristaltic tube is stable at higher 

value of Reynolds number    and by increasing coupling number  , maximum velocity 

value can be obtain for      . This behavior can also be observed from Figure 7.7 at 

    cross section against fixed value of                             

and Q     . Figure 7.7 shows that when Reynolds number increases the velocity 

decreases near the wall. In Figure 7.8, small deviation is observed in case of coupling 

number N near the wall and the center of the tube against                    

        and Q     . It shows that coupling number N does not significantly effects 

the velocity field inside the tube at     . On the other hand, velocity increases at 

    cross section by increasing the time mean flow rate Q throughout the tube against 

                                     as shown in Figure 7.9. 

7.3.3 Streamline and Microrotation 

The streamline and rotation of the molecule are shown in Figures 7.10 to 7.17 against 

Reynolds number Re, coupling number N and micropolar parameter m. In Figure 7.10, It 
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is observed that the size and number of bolus increases by increasing Reynolds number 

Re. It is also observed that bolus appears only at crust region of the tube. The 

microrotations for different Reynolds number are shown in Figure 7.11. It is observed 

that by increasing the Reynolds number Re, the effects of microrotation of the particle is 

significant at the end section of the wave. The effects of coupling number N on 

streamline are shown in Figure 7.12. It is noticed that by increasing the coupling 

parameter N, the size of bolus decreases due to the reason that  the velocity of the fluid 

decreases, but effects of microrotation of the particle decreases near the end section of the 

wave as shown in Figure 7.13. Figure 7.14 reveals that micropolar parameter m does not 

significantly effects the streamlines. It is also observed that the rotations of the particle 

remain rapid at the center of the wave for small value of m and by increases m, the 

rotation of particle decreases (see Figure 7.15). It concludes that, rotation of the particle 

in more effected in case of small values of microrotation parameter. In Figure 7.16, it is 

noted that large number of trapping boluses formed at the center of the crest region of the 

peristaltic wave for small time mean flow rate. Furthermore, the reduction in the number 

of bolus with magnified size is noted by increasing value of time mean flow rate Q. The 

strength of microrotations is noted to be high for large values of time mean flow rate Q as 

shown in Figure 7.17. The effects of microrotation of the particle are observed less for 

small time mean flow rate and enhance when time mean flow rate increase.  

7.3.4 Vorticity 

The variation of vorticity against Reynolds number, coupling number, micropolar 

parameter and time mean flow rate are shown in Figures 7.18 to 7.21. In Figure 7.18, it 

is noted that for small value of Reynolds number, the vorticity appear at the trough region 

of the peristaltic wave, but when Reynolds number increases upto 20, vorticity are 

appeared near the center of the tube and the crest region of the peristaltic wave. In Figure 

7.19, it is observed that maximum vorticity are concentrated near the dilating part of the 

tube. Moreover, vorticity exist almost at crest region when coupling number increases. In 

Figure 7.20, it is observed that the micropolar parameter does not significantly effect on 

the vorticity. Figure 7.21, shows that maximum vorticity appear at the crest region of the 

peristaltic wave for small time mean flow rate, but when time mean flow rate is 

increased, the vorticity exist from the crest region of the peristaltic wave. 
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Figure 7.2: Comparison of computed pressure rise against Q  (solid line) with that 

of  Srinivasacharya(2003) (dash lines)  

 

 

 

Figure 7.3: Pressure rise per wave length for different value of coupling Number N 

and Newtonian fluid (N = 0) 
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Figure 7.4: Pressure rise per wavelength against Q for different value of micro-

rotation parameter m and Newtonian fluid 

 

 

 

Figure 7.5: Pressure rise per wave length against Q for different value of Reynold 

numbers Re 
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Figure 7.6: Variation of Velocity field against Reynolds number for different value 

of coupling number 

 

 

 

Figure 7.7: Variation of Velocity field against r for different values of Reynolds 

number 
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Figure 7.8: Variation of Velocity field against r for different values of coupling 

number N 

 

 

 

Figure 7.9:: Variation of Velocity field against r for different value of time mean 

flow rate Q 
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Figure 7.10: Streamline at different values of Reynolds number against Q        
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Figure 7.11: Microrotation effects at different values of Reynolds number against Q 
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Figure 7.12: Streamline effects at different values of Reynolds number against Q 
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Figure 7.13: Microrotation effects at different values of N against Q              
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Figure 7.14: Streamline effects at different values of m against Q              
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Figure 7.15: Microrotation effects at different values of m against Q              
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Figure 7.16: Streamline effects at different values of time mean flow rate Q against Re 
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Figure 7.17: Microrotation effects at different values of time mean flow rate Q against 

Re                                    
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Figure 7.18: Variation of vorticity at different values of Reynolds number against Q 
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Figure 7.19: Variation of vorticity at different values of coupling number N against 

Q                                     
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Figure 7.20: Variation of vorticity at different values of m against Q        
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Figure 7.21: Variation of vorticity at different values of time mean flow rate against 

Re                                    
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7.5 Conclusion  

The finite element analysis of axisymmetric flow of micropolar fluid inside a tube 

induced by peristaltic wave is carried out at high Reynolds numbers. The key point in the 

current investigation is to discuss the effect of micropolar fluid in peristaltic motion 

against higher value of Reynolds number. The pressure rise     per unit wave length for 

time mean flow rate, velocity, streamline, microrotation and vorticity also discussed 

through graphs. It is concluded that the velocity of the micropolar fluid is unaltered by 

increasing the microrotation of the micro particle. Furthermore, for large value of 

Reynolds number by keeping coupling number fixed at    , velocity attains its maximum 

value and increase in Reynolds number produces more resistance to the flow and attains 

stable state. It concludes that the rotation of the fluid particle is slower against large value 

of coupling number and faster against small coupling number  .  Moreover, the number 

of boluses and the size increases by increasing the Reynolds number and decreases by 

increasing time mean flow rate. The micropolar parameter and coupling number do not 

have much effect on trapping bolus. It is also noticed the rotation of the fluid particle is 

faster for small coupling number, micropolar parameter and time mean flow rate. Further, 

the pressure rise increases for micropolar fluids and remains greater in magnitude then 

that of Newtonian fluids in the pumping region. It is also examined that vorticity lines are 

maximum is the trough region of the peristaltic wave when coupling number, Reynolds 

number and micropolar parameter are small. 
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Chapter 8 

Concluding Remarks and Future Work 

8.1 Concluding Remarks 

An analysis is carried out for peristaltic motion for MHD, heat transfer and micropolar 

fluid against high Reynolds number and wave number in two-dimensional channel and 

axisymmetric tube. Galerkin finite element method is used to obtained computation 

results for the governing partial differential equations (PDE’s). Although, other 

computation and numerical technique are also available like, finite difference method, 

finite volume method, Adomian decomposition method etc., but these techniques have 

some limitation on peristaltic models at high Reynolds number and wave number. The 

main purpose of this study is to validate a numerical technique which is easily used to all 

peristaltic models without using any assumption for both two-dimensional channel flow 

and axisymmetric tube. It is very important to choose suitable software for numerical 

simulations. MATLAB is known to be one of the best performance software for 

numerical simulations due to its user friendly environment and availability of familiar 

mathematical notations. MATLAB program manipulates matrices and vectors easily and 

has built-in graphics features to help researchers visualize the numerical results in two 

dimensional plots. The reason using Galerkin Finite element method is that it can be used 

easily on irregular geometry or shape. Moreover, the mesh adoption in finite element 

method is simpler as compare to that of finite difference technique and finite volume 

method. Although, Takabatake et al. (1989) and Kumar and Naidu (1994) use finite 

element method for peristaltic flow  in channel, but these results valid only for small time 

mean flow Q rate. In this thesis, the obtained computational results are valid at large time 

mean flow rate Q, high Reynolds number and wave number in both two-dimensional 

channel and axisymmetric tube. An interesting observation is noted in case of two 

dimensional channel flow problem, that is, the longitudinal velocity reduces at high 
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Reynolds number at center of the channel, when amplitude ratio is lesser than 0.5, but 

when amplitude ratio become greater than 0.5, the longitudinal velocity enhances against 

high Reynolds number at center of the channel. However, for axisymmetric flow 

problem, the longitudinal velocity increases at the center of the tube by increasing 

Reynolds number at any amplitude ratio from zero to full oscillation. It concludes that the 

speed of flow is highly depending on the choice of amplitude ratio in channel flow 

problem. The obtained computation results are compared with the existing theoretical 

results of Jaffrin (1973) and Mekheimer (2008), numerical study of Dennis-Chang (1969) 

and Takabatake et al. (1989) and experimental study of Weinberg et al. (1971) for 

validation of present study in channel for different fluid model and find well agreement 

and validity of the analyses. 

The MHD effect of two-dimensional peristaltic flow in a channel and axisymmetric tube 

at high Reynolds numbers are observed in chapters 1 and 5 respectively. It is noted that 

by increasing time mean flow rate, the longitudinal velocity increases at whole region in 

both channel and tube. Moreover, it is observed that the velocity decreases by increasing 

Hartmann number near the wall at inlet/outlet region of the peristaltic wave in both 

channel and axisymmetric tube while reversed behavior is observed at the center part of 

the wave. It is also noted that pressures rise per wave length against time mean flow rate 

increases linearly for two dimensional channel in the positive pumping region for 

Reynolds numbers and Hartmann number. On the other hand, in case of axisymmetric 

tube, pressure rise per wavelength against time flow rate increase nonlinearly in positive 

pumping region. It is also observed that inclination angle enhance the pressure rise per 

wave length in the positive pumping region. 

Effect of heat transfer in two dimensional channel and axisymmetric tube of peristaltic 

flow against high Reynolds number and wave number flow are discussed in chapter 3 and 

chapter 6. It is noted that by increaseing Reynolds number, the velocity decreases near 

the wall at inlet/outlet region of the peristaltic wave in both two-dimensional channel and 

axisymmetric tube while increases at the center part of the wave in both cases when 

amplitude ratio      . It is also noted that maximum velocity achieves at        in 

channel and at       in axisymmetric tube. It concludes that velocity is comparatively 
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faster in tube as compared with channel at small Reynolds number. On the other hand, by 

increasing wave number, the velocity increases near the wall at inlet/outlet region of the 

peristaltic wave in both channel and tube while decreases at the center part of the wave in 

both cases. It is also observed that, the temperature profile increases by increasing 

Reynolds number and decreases by increase wave number in both channel and 

axisymmetric tube. Moreover, the temperature profile decreases by increase Prandtl 

number and internal heat generation parameter in both two-dimensional and 

axisymmetric flow problem. Furthermore, the heat effects are same against Reynolds 

number, Prandtl number and internal heat generation parameter in channel and tube i.e. 

heat enhances by increasing Reynolds number, Prandtl number and internal heat 

generation parameter. It is also observed that the pressure rise per wave length 

remarkably increase in positive pumping region in case of axisymmetric flow at moderate 

Reynolds number while, in two- dimensional channel, it increases significantly. It 

concludes that heat effect on peristaltic flow much faster in axisymmetric flow problem 

in tube as compare to that in channel.  

Effect of micropolar fluid in two dimensional peristaltic flow and axisymmetric 

peristaltic flow against high Reynolds number and wave number are discussed in chapter 

4 and chapter 7. It is noted that, the pressure rise per wave length against time mean flow 

rate increases in pumping region for micropolar fluids for both two-dimensional channel 

and axisymmetric tube. It is also noted that pressure rise per wave length in the pumping 

region is greater for non- Newtonian fluid. Similarly, pressure increases at zero time flow 

rate for high Reynolds numbers and decreases for higher time mean flow rate in both 

channel and tube. It is also observed that the pressure rise per wavelength against high 

Reynolds number increases remarkably in pumping region for axisymmetric flow 

problem. It is noted that longitude velocity at the inlet/outlet region of peristaltic wave 

decreases for non-Newtonian fluid at center of the channel and tube. It concludes that 

speed of the flow is slower in non-Newtonian fluid as compare to that for Newtonian 

fluid. Furthermore, the microrotation of the fluid particle increases for axisymmetric flow 

problem while, in two-dimensional channel, microrotation of the fluid particle is not 

much influenced. It concludes that rotation of the particles for peristaltic motion in tube is 

much faster than channel flow. 
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It is concludes that in peristaltic motion, the range of moderate Reynolds number against 

different circumstance are highly dependent on values of volume flow rate. On the other 

hand, the values of wave number are not depending on volume flow rate. Moreover, 

velocity of the fluid flow is not significant effect against small or high wave number in 

both channel and tube.    

8.2 Future Motivations 

Finite element analysis for two dimensional channel and tube is made in this dissertation. 

There are many physiological and bio-mechanic problems in which the numerical 

simulations still need to investigate at high Reynolds number and wave number in 

channel and tube like blood flow through arterial stenosis, biomagnetic fluid, Non-

Newtonian fluids, flow through curved channel, asymmetric channel, steady flow, Nano 

fluid etc. The present study can helpful to find the numerical solution of these problems. 

The present study can also extend for three dimensional peristaltic flow in channel and 

tube. The present analysis are also helpful in many industrial and engraining problem like 

pumping characteristics in a plant for cooling process, flow passes through irregular 

channel, flow through porous medium, two phases fluid, Nano fluid and many other fluid 

flow problem. Some numerical software’s are available to find the solution of industrial 

and engraining problem but these software’s are not helpful to solve complex problem 

because many industrial problem based on simple linear phenomena. Moreover, these 

software are too much costly. On the other hand, MATLAB can help us to simulate any 

type of higher order nonlinear problem easily and therefore this thesis is helpful to find 

the numerical solution any phenomena in many braches of physics.  
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