Finite Element Analysis of Two-
Dimensional Peristaltic Flows

Abdul Haleem Hamid
31-FBAS/PHDMA/S13

Department of Mathematics and Statistics
Faculty of Basic and Applied Sciences
International Islamic University, Islamabad
Pakistan
2019



Finite Element Analysis of Two-
Dimensional Peristaltic Flows

Abdul Haleem Hamid
31-FBAS/PHDMA/S13

Supervised by
Dr. Tariq Javed

Co-Supervised by
Dr. Nasir Ali

Department of Mathematics and Statistics
Faculty of Basic and Applied Sciences
International Islamic University, Islamabad
Pakistan
2019



Finite Element Analysis of Two-
Dimensional Peristaltic Flows

By

Abdul Haleem Hamid
31-FBAS/PHDMA/S13

A Dissertation
Submitted in the Partial Fulfilment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY
In
MATHEMATICS

Supervised by
Dr. Tariq Javed

Co-Supervised by
Dr. Nasir Ali

Department of Mathematics and Statistics
Faculty of Basic and Applied Sciences
International Islamic University, Islamabad
Pakistan
2019



Author’s Declaration

I, Abdul Haleem Hamid Reg. No. 31-FBAS/PHDMA/S13 hereby state
that my Ph.D. thesis titled: Finite Element Analysis of Two-dimensional
Peristaltic Flows is my own work and has not been submitted previously by
me for taking any degree from this university, International Islamic
University, Sector H-10, Islamabad, Pakistan or anywhere else in the
country/world.

At any time if my statement is found to be incorrect even after my

Graduation the university has the right to withdraw my Ph.D. degree.

Name of Student: (Abdul Haleem Hamid)
Reg. No. 31-FBAS/PHDMA/S13
Dated: 28/05/2019



Plagiarism Undertaking

| solemnly declare that research work presented in the thesis titled:
Finite Element Analysis of Two-dimensional Peristaltic Flows is solely my
research work with no significant contribution from any other person. Small
contribution/help wherever taken has been duly acknowledged and that
complete thesis has been written by me.

| understand the zero tolerance policy of the HEC and University,
International Islamic University, Sector H-10, Islamabad, Pakistan towards
plagiarism. Therefore, | as an Author of the above titled thesis declare that no
portion of my thesis has been plagiarized and any material used as reference is
properly referred/cited.

| undertake that if I am found guilty of any formal plagiarism in the
above titled thesis even after award of Ph.D. degree, the university reserves the
rights to withdraw/revoke my Ph.D. degree and that HEC and the University
has the right to publish my name on the HEC/University Website on which

names of students are placed who submitted plagiarized thesis.

Student/Author Signature:

Name: (Abdul Haleem Hamid)



Certificate of Approval

This is to certify that the research work presented in this thesis, entitled:
Finite Element Analysis of Two-dimensional Peristaltic Flows was
conducted by Mr. Abdul Haleem Hamid, Reg. No. 31-FBAS/PHDMA/S13
under the supervision of Dr. Tariq Javed no part of this thesis has been
submitted anywhere else for any other degree. This thesis is submitted to the
Department of Mathematics & Statistics, FBAS, 11U, Islamabad in partial
fulfillment of the requirements for the degree of Doctor of Philosophy in
Mathematics, Department of Mathematics & Statistics, Faculty of Basic &
Applied Science, International Islamic University, Sector H-10, Islamabad,

Pakistan.

Student Name: Abdul Haleem Hamid Signature:

Examination Committee:

a) External Examiner 1:
Name/Designation/Office Address Signature:

Prof. Dr. Tasawar Hayat
Professor of Mathematics,
Department of Mathematics,
QAU, Islamabad

b) External Examiner 2:
Name/Designation/Office Address) Signature:

Prof. Dr. Masood Khan
Department of Mathematics,
QAU, Islamabad

C) Internal Examiner:
Name/Designation/Office Address) Signature:

Prof. Dr. Muhammad Sajid T.I
Professor

Supervisor Name:
Dr. Tariq Javed Signature:

Co-Supervisor Name:
Dr. Nasir Ali Signature:

Name of Dean/HOD:
Prof. Dr. Muhammad Sajid, T.I Signature:




Oedioated t2

HYy loving parents



Preface

The finite element method is an advance numerical technique which is validly used to
solve complicated problem in structural engineering and physics. Finite element
technique can easily apply on complex problem and geometry, therefore it gains equal
attention to other field of engineering, especially in fluid mechanics and heat flow
problem. Many fluid models based on Navier-Stokes equation in which higher order
nonlinearity appears, therefore it is complicated to find an accurate numerical solution.
Finite element method helps us to solve these types of complex phenomena. Peristaltic
motion is one of the important phenomena in fluid mechanics, which gain significant
attention from many scientists and engineers in last four decades. Peristaltic flow has
numerous applications in industrial science, physiological flow and bioscience. Typical
examples of industrial systems and physiological, where peristaltic mechanism is
involved are, flow of urine from kidney to the bladder, flow of chyme in small intestine,
the small blood vessels as well as blood flow in arteries, spermatic fluid transport in
female reproductive tract, swallowing of nutriment through oesophagus, blood flow
through capillaries, etc. The transport in corrosive fluid in the nuclear industry, diabetes
pumps, roller pumps and pharmacological delivery systems involve peristaltic
mechanism. During the literature survey, it is noted that many authors find the analytical
solution of peristaltic motion for Newtonian and non-Newtonian fluid by neglecting the
inertial effects and using many assumptions like long wave length, small time mean flow
rate, small amplitude ratio etc. The main purpose of this study is that the find accurate
numerical results without neglecting the inertial effects and using any assumption. Finite
element method is applied to find the numerical results of peristaltic motion for
Newtonian and non-Newtonian fluid under different physical situations. The present
study is valid for moderate Reynolds number and any wavelength. Moreover, the present

study helps for further investigation in peristaltic motion.

This thesis consists of eight chapters. Chapter 1 contains a background of finite element
method and basic definition of fluid mechanics. To understand the basic produces of
finite element method, solve examples are also given in this chapter which can help the

beginner. The rest of the chapter contains two parts. Chapter 2 to 4 contains



computational study of peristaltic motion in two dimensional channel flow problem and
Chapter 5 to 7 contains computational study of peristaltic motion in axisymmetric tube

problem. Chapter 8 gives the concluding remarks and future work.

In chapter 2, finite element solution obtained for two dimensional MHD peristaltic flow
of Newtonian fluid in an inclined channel against moderate Reynolds number and wave
number at different wave shapes. The results are compared with the existing analytical
result of Jaffrin (1973), numerical results of Dennis-Chang (1969) and Takabatake et al.
(1989) and experimental results of Weinberg et al. (1971) in presence of Reynolds
number and wave number. It is found that the results obtained without imposing the
assumptions of long wavelength and low Reynolds number are significantly different
from their counterparts based on long wavelength and low Reynolds number
assumptions. It concludes that the present study obtained gives more accurate results as
compare to old FEM results of Takabatake et al. (1989). It is also noted that the present
results are well matched with experimental result of Weinberg et al. (1971) and
theoretical result of Jaffrin (1973) against high Reynolds number and wave number. It is
observed that the longitudinal velocity decreases near the channel centre with increasing
Reynolds number and wave number. However, it increases near the channel centre with
increasing Hartmann number. Moreover, the longitudinal velocity is less sensitive to the
values of Reynolds number and wave number in the range 1 < Re < 20 and 0 < § <1,
respectively. It is also noticed that, the flow behaviour is not significant effects at
different wave shapes. These results are published in Journal of the Korean Physical
Society,71(12) 950-962.

In chapter 3, heat transfer effect is observed on peristaltic flow problem against
moderate Reynolds number and wave number in channel numerically. The finite element
technique is used to find the numerical solution. Here again, It is found that the obtained
results are significantly different from previous results without imposing any
assumptions. The results of velocity, pressure rise, streamline and isothermal line are
presented graphically. The obtained solution upto Reynold number 100 by using time
mean flow rate Q = 1.4, wave number 0.1 and amplitude rate at 0.5. It is concluded that

thermal effects are more for water based fluid as compared to gases. It is also observed



that the bolus appear in the whole region at small time mean flow rate and move to carets
region when time flow increase. It is noted that more thermal effect observed against high
time mean flow rate. It is also noted that the positive pumping region appears at time
mean flow rate Q < 0.45, free pumping at Q = 0.45 and co-pumping region appear at Q >
0.45. It is observed that the longitudinal velocity reduces near the wall with increasing
Reynolds number, but enhance by increasing values of wavelength. It is noted that the
temperature profile increases sharply due to increase in all the parameters accept
wavelength. These results are submitted in Journal of Theoretical and Applied

Mechanics.

Chapter 4 described the numerical solution of peristaltic motion for Non-Newtonian
fluid against high Reynolds number and wave number in a channel. The micropolar fluid
is considered as a non-Newtonian fluid. The obtained governing partial differential
equations converted into stream-vorticity form and then use Galerkin’s finite element
technique to obtained numerical solution. The obtained solution is well convergent even
high Reynolds number and wave number. It is concluded that the velocity decreases near
the peristaltic wall and increases in the centre of the channel by increasing micropolar. It
is observed that the velocity decreases near the centre of channel by increasing the values
of Reynolds number whereas reversing near the boundaries. It is noted that the streamline
are not disturbed by taking the large value of Re. It is also seen that there is no restriction
by choosing the value of parameter in channel flow problem. These results are published
in Journal of the Brazilian Society of Mechanical Sciences and Engineering (39)
4421-4430.

Chapter 5 discussed MHD peristaltic motion through an inclined tube at high Reynolds
numbers and wave number. The governing equation obtained in axisymmetric form and
then converted in stream-vorticity form without imposing any assumption. The obtained
results against higher value of Reynolds number in tube are significant different of those
result obtain in channel flow problem. Most of studies available in literature are carried
out low Reynolds numbers assumption which makes the simple nonlinear problem. It is
noted that the velocity of the fluid is maximum at Re = 15 at inlet part of the wave for
large magnetic effect and Re = 18 against small magnetic effect at centre of the tube.

After increasing the value of Reynolds numbers, the velocity filed decreases and remains



stable at higher Reynolds numbers. For higher value of Hartman number, the trapping
bolus and the size of boluses increase due to increase in velocity of fluid. The pressure
rise against time mean flow for different value of Reynold numbers, magnetic field and
the amplitude ratio increases by increasing the values of these parameters. These results
are published in Biophysical Reviews 11,139-147,(2019).

In chapter 6, the effect of heat transfer of peristaltic motion in a tube against the high
Reynolds number and wave number is observed. The finite element technique is used to
solve the governing partial differential equation and obtained the numerical results
graphically. The present results are valid for arbitrary Reynolds number, wave number
and amplitude ratio. The streamline and isothermal line is plotted at different value of
parameters. It is noted that the heat effect increases by increasing Reynolds number and
wave. It is observed that more heat effects are more for water based fluid as compared to
gases. The pressure rise per wave length for time mean flow at different value of
Reynolds number, magnetic number and the amplitude ratio also presented through
graphs. These results are published in Journal of the Korean Physical Society, 73(9)
1290-1302.

Chapter 7 discussed peristaltic motion in a tube for non-Newtonian fluid at high
Reynolds number. The micropolar fluid is considered as a non-Newtonian fluid. The
obtained governing partial differential equations converted into stream-vorticity. The
domain is discretize into non-uniform mesh using quadratic triangular element and then
use Galerkin’s finite element technique to obtained numerical solution. The obtained
solution is well convergent even high Reynolds number and wave number. The obtained
numerical results of velocity, pressure rise, streamline, vorticity and microrotation are
presented graphically. It is noted that the number of bolus and the size of bolus increases
by increasing Reynolds number and decreases by increasing time mean flow rate. The
micropolar parameter and coupling number do not have much effect on trapping bolus. It
is also noticed the rotation of the fluid particle is faster for small coupling number,
micropolar parameter and time mean flow rate. These results are published in Journal of

the Brazilian Society of Mechanical Sciences and Engineering 41:104, (2019)
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Chapter 1

Preliminary

This chapter consists of some background about finite element method (Bang, H.,&
Kwon, Y. W. (2000)), basic law of fluid mechanics (Fox et al. (2003); White (2003)),
detailed and literature review about peristaltic flows. To understand the basic procedure
of Galerkin’s finite element method, two model examples are elaborated and solved using
METLAB which are helpful in subsequent chapters.

1.1 Finite Element Method (FEM)

Finite element method (FEM) is a computational technique which can be used to obtain
the approximated solution of the partial differential equation. The basic concept of finite
element method was introduced over 150 years ago, but after 1950s, several articles have
been published during the matrix analysis of the structure of continuum bodies. Clough
(1960) gave the name finite element method during the plane stress analysis. Finite
element technique is developed to study of complex air-firm mathematical foundation,
structure analysis and stimulated the development of multiple-purpose computer
programs. The application of finite element method is equally important for both solid
and fluid mechanics. The application areas in solid mechanics are to design of airplanes,
missiles, space capsules, cars, mechanical industry etc. (see Fig. 1). Finite element
method can be applied to uneven surfaces or complex shaped objects composed of
numerous different materials and having mixed boundary conditions. Although, many
engineers and scientists endeavor to find analytical solutions of these types of problem
but they rarely exist. The complex situations can be found in heat transfer problems like
electrical motors, the dispersion of pollutants during non-uniform atmospheric
conditions, various phase-change problems, cooling of electronic chips or equipment, etc.
It can also apply to steady state and time dependent problems involving nonlinear
material properties. That’s why; finite element method is way ahead of other

computational techniques like finite difference method, finite volume method, etc. Finite



element method is approximated solution of PDE’s like a finite difference method, but in
finite element method, the given domain discretized into a number of sub-domains either
uniform or non-uniform ways called finite element and then each sub-domain is
approximated by a simple polynomial function and obtained polynomials together over
the whole domain. After this, the variational integral is evaluated as a sum of contribution
from each finite element to obtain a finite size of algebraic system. Finite element method
discretized the PDE equation like finite difference method, but the approximated solution
is known to the whole domain not just at a set of point.

(@) (b)

Figure 1.1: Application of finite element mesh in structure engineering (a) Airplane (b)

Sport car

1.2 Method of Weighted Residual

To find an approximate numerical solution of any differential equation, the method of
weighted residual is useful. To understand the method of weighted residual, consider a

set of differential equation in the form

LU)=FinQ, (1.1)
where L is differential operator, U is dependent variable, F is known function and Q is

domain of the problem. A trial solution is approximated the above differential equation as

m
U= Z ax Gk, (12)
k=1

where g, are linearly independent functions and a, are unknown parameters to be
determined. Substituting Eqg. (1.1) into (1.2) and together the terms with the same

coefficient a;, yield the residual as



R= (Z ay gk> —f#o0. (L.3)

k=1

To find the unknown function a,, apply weighted integral over the domain

I= f WeRAQ, k=123..... m. (1.4)
Q

To approximate the integral, we need the weight function W,. There are many weight
functions available, but here we discuss few weight functions which are frequently used.
1.2.1. Collocation method

In collocation method Dirac Delta function §(x — x;),k =1,2,3,...... ,n is used as a
weight function W,,. Where x,, is a point within the domain and Dirac Delta function &

define as

1 if x=x,
_ = 1.
§0x = x1) {O otherwise. (1.5)

Using above weight function into equation (1.4), the weight residual integral takes the

following form

| = J §(x—x)RAQ, k=123....m. (1.6)
Q

1.2.2. Least Square method

Least square method determines the weight function from the derivative of the residual

with respect to unknown parameters, that is

9
—f R2dx =0, k=123..... m, (1.7)
aak
Q
OR
Or R—dx=0 k=123..... m, (1.8)
aak

where the weight function is defined as

Wi (x) = (1.9)

aak.



1.2.3. Method of moment
A weight function choosen form the family of polynomials is called method of moment
ie.

W, (x) = x¥71, k=123.... m. (1.10)

For one-dimensional problem, the weight functions can be selected from the following

1,x,x2,x3, x4, ... (1.11)
1.2.4. Galerkin method
Galerkin method is an important method that is used in finite element technique. In
Galerkin method, the weight functions are the same as the trial function.

au
Wk(X) = a—ak k= 1,2,3 ..... m, (112)

1.3  Finite element method in fluid mechanics

After introducing the finite element technique in 1960’s, it is exclusively used in solid
mechanics or structural engineering problem. By the time being, it also takes importance
for fluid mechanics. In most of the fluid problems base on Navier-stoke equation, so
some time, we do not have a numerical technique which could find the closed form
solution. Therefore, we need a solid technique to handle this type of problems, especially,
heat flow problem in fluid mechanics. Many techniques like finite difference scheme and
finite volume method also available for solution of fluid flow problem, but these
techniques have some restriction over complex geometry. On the other hand, finite
element technique can easily apply on all types of equations without restricting the
domain occupied by the fluid. There are many studies available in the literature for fluid
flow problem over different complex domain in which finite element method (FEM)
produces good results as compared to finite difference method (FDM) and finite volume
method (FVM). Moreover, finite element method (FEM) can easily handle Neumann
boundary conditions when compared with other computation techniques. Furthermore,
when finite element method applied to problem governed by parabolic or self-adjoint
elliptic PDE’s, it leads to symmetric stiffness matrix. In this case, the error between exact

solution and finite element solutions became minimum.



1.4 Fluid mechanics

A Fluid is a material that cannot sustain a shearing force when at rest and that undergoes
a continuous change in shape when subjected to such a stress. One can simply say that
fluid mechanics deals with the study of gases and liquid in rest or motion. The study of
fluid at rest called fluid statics and the study of fluid in motion called fluid dynamics.
Fluid dynamics has a wide range of applications, including calculating forces and
moments of aircrafts, determining the mass flow rate of petroleum through pipelines,
predicting weather patterns, understanding nebulae in interstellar space and reportedly
modeling fission weapon detonation etc.

1.5 Newtonian and non-Newtonian fluid

There are two types of fluid, one is Ideal fluid and second is real fluid. A fluid in which
deformation rate is zero called ideal fluid and if rate of deformation is non-zeros called
real fluid. Real fluids are further divided into Newtonian and non-Newtonian fluid. If
linear relationship occurs between the stress and the rate of deformation in a fluid, then
such type of fluids called Newtonian fluids. In Newtonian fluids, the viscosity of fluid is
constant and independent of shear stress. Gasoline, air and water are examples of
Newtonian fluid. Mathematically, it is defined as

du (1.13)
Txy = .u@'

where du/dy is the deformation rate.

If nonlinear behavior occurs between stress and rate of deformation in a fluid, then such

fluids are named as non-Newtonian fluids. Mathematically, it is defined as

(du n . (1.14)
M JR—

Txy dy) yn#+1,

or du\" (1.15)

Txy:k<5> ,N + 1,

Many industrial fluids like toothpaste, paint, shampoo, nylon, lubricants and drilling mud

exhibit non-Newtonian behavior. Daily used Kkitchen items like milk, eggwhite,

suspensions of corn, ketchup, starch suspensions and mayonnaise all are non-Newtonian
8
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in nature. Many polymer and molten polymers are non-Newtonian fluids. Some
materials, e.g. melts, soaps, printing ink, muds, custard, condensed milk, glues,
emulsions, sugar solution, salt solutions, molten polymers and blood exhibit the
properties of non-Newtonian fluids.

1.6 Heat Transfer

Energy transfer from one system to another system called heat transfer. Heat transfer is
important phenomena in many branches of engineering or mechanics. There are three

modes of heat transfer i) Conduction ii) Convection and iii) Radiation.
1.6.1. Conduction

If internal energy transfers from higher temperature to lower temperature by the

interaction of molecules, it is called conduction.
1.6.2. Convection

If heat transfers from one score to another by movement of fluid like air or water, it is

called convection
1.6.3. Radiation

Radiation is the mode of heat transfer in which medium is not required. The best example

to understand this mode is the energy transfer from the sun to earth through radiation.

1.7 Basic laws of fluid mechanics

The analysis of fluid behavior based upon some basic laws of fluid mechanics. These
laws are defined as follow.

1.7.1. Continuity equation
The mathematical relation of conservation of mass for fluid is known as equation of
continuity. It has the following form

dp _
TV =0,

(1.16)



where p is the density, V = (&, 7, w) is the velocity vector in Cartesian coordinate and t
is time. For unsteady incompressible flow problem, the continuity equation (1.16)
becomes

V.V =0. (1.17)
In Cartesian coordinate (x,y, z), equation (1.17) takes the form
ou 0v oJow (1.18)
a + @ + a = 0.
In cylindrical coordinated (r, 8, z), equation (1.17) is written as
dv, v, 10vy O0v, (1.19)
or VTt T T
Where v,, vy and v, are the velocity components in cylindrical coordinated.

1.7.2. Momentum Equation or Equation of motion

The momentum equation governed by the conservation of mass. The conservation of
mass controls the volume of the flow field. Mathematically, it is defined as
(1.20)

v
pE: —Vp +divT + pb,

where b is the body force, T is Cauchy stress tensor and % is the total derivatives defines

as

dv. oV _  _
av _9av 1.21
=50t V(V.V). (1.21)

In Cartesian coordinate (x,y,z), equation (1.21) takes the form

dl7_67+_617+_617+_617 (1.22)
ac ot Yax T Vay T War
In cylindrical coordinated (7, 8, z) equation (1.21) takes the form
av B ov N ov N vy OV ov (1.23)
dat ot Tor " roae Zaz
1.7.3. Heat equation

General form of heat equation is defined as

dT , 1.24
pCp T V.(k'VT) + Q,, (1.24)

10



Left hand side of Eq. (1.24) represent change in thermal energy storage, first term of right
hand side is represent net energy transfer in control volume and Q, is thermal energy

generation parameter. In Cartesian coordinate (x, y, z), Eq. (1.24) represented as follow

aT _ d ( (’)T) d ( OT) d ( ,0T (1.25)
Pr = ax\" ax) Tay\" ay) T 9z\" 57
and in cylindrical coordinated Eq. (1.24) represented as

)"‘Qo,

oT 16<,6T) 16<6T) 6<,6T
K_

P =7 ar) T7230\" 38) T3\ 3

e 259\ 99 )+Q°
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Figure 1.2: Application area of peristlatic Motion

1.9 Literature Review

The comprehensive investigation on peristaltic motion was provided by Latham (1966) in
his master thesis. After this, Yung and Yih (1968) investigated peristaltic motion in fixed
frame of reference without employing lubrication approach. Shaprio et al. (1969) studied
the peristaltic motion in mathematical point of view. They used lubrication theory to
investigate the peristaltic motion for two-dimensional channel and axisymmetric flow in
wave frame of reference. They model the problem by taking Reynolds number small
enough that the inertial effect to be negligible and long wavelength assumption. They
obtained theoretical results in both two-dimensional channel and axisymmetric flow by
taking range of amplitude ratios from zero to one. They concluded that by increasing time
mean flow rate, pressure rise per wave length linearly decreases. The approach of Shapiro
et al. (1969) was much simpler than the approach of Yung and Yih (1968). This is
because the nonlinear terms in the Navier-Stokes equations vanish under the lubrication
approach and provided a linear equation. The lubrication approach does not make
possible to study the inertial effects and wave number on various flow characteristics.
That’s why, Shapiro et al. (1969) investigated peristaltic pumping under the condition in
which Reynolds number takes small enough to neglect the inertia effects and diameter
ratio of wavelength large enough in which the pressure to be considered uniform over the
cross section. The applicability of such assumption is narrow in physiological and
industrial peristaltic flow because the characterizing of Reynolds number in such flow is
very small. Moreover, in such flows, the wavelength is quite large in comparison with the

radius of the organ. A typical example of such a flow is found in small intestine. Lew et

12



al. (1971) reported that the Reynolds number of such flow is much less than unity. In
addition to that the wavelength of wave is nearly 0.125cm/sec and the radius of the
intestine is 0.008 cm. This also allows the applicability of long wavelength assumption to
model peristaltic flow of chyme in small intestine. Jaffrin and Shaprio (1971) discussed
the reflux and trapping limits of peristaltic pumping using perturbation technique. They
concluded that Reynolds number rapidly increases the domain of reflux region and
decreases the domain of trapping. They also discuss the domain of reflux and trapping for
the case of long wave length and low Reynolds number assumption in two-dimensional
plane and axisymmetric tube. They concluded that domain of reflux or trapping occur is
larger than in plane case as compare with axisymmetric tube. Jaffrin (1973) studied the
peristaltic pumping in two dimension tube using perturbation method. He concluded that
increasing wall curvature also increases the pumping performance and decrease inertial
effects except at high squeeze.

The first experimental study of peristaltic problem was investigated by Weinberg et al.
(1971). They visualized the trapping and reflux phenomena for two-dimensional plane
channel and compared the obtained result with analytical result. Yih and Fung (1971)
showed the comparison between the theoretical and experimental results for two
dimensional peristaltic pumping. They observed twenty percent differences between
theory and experiment result when amplitude ratio equal to 0.41. They also observed that
time mean flow rate is independent of Reynolds number when Re < 2.5. Brown and Hung
(1977) studied two dimensional peristaltic motions experimentally and compared it with
the numerical simulations. They concluded that pressure reduce in pumping region
against time mean flow rate. They also concluded that by increasing Reynolds number
from 2.3 to 251 yields uncertain increase in the ratio of flow rate to Reynolds numbers
but considerable increase in the shear stress. After these studies, many scientist and
mathematician discussed the peristaltic motion for both Newtonian and Non-Newtonian
fluid in channel and tube.

In last two decades, many authors have shown deep interest to find solution of
hydromagnetic peristaltic flow. Mekheimer (2004) studied the MHD peristaltic motion in
inclined symmetric channel using regular perturbation method. His study based on

without long wavelength and low Reynolds number assumption. He concluded that
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increasing MHD, the bolus exists and fluid particle are moving along the wave wall. El
Naby et al. (2006) investigated the hydromagnetic peristaltic flow of Newtonian fluid
through a uniform tube. They concluded that pressure rise per wave length increases in
pumping region by increasing Hartmann number and amplitude ratio. Hayat and Ali
(2006) studied MHD peristaltic flow for third grade fluid confined in a deformable tube
under long wavelength and low Reynolds number assumption. They accomplished that
axial velocity decrease, while pressures increase in pumping region by increasing
Hartmann number. Hayat and Ali (2007) also studied peristaltic motion for Non-
Newtonian fluid in a tube. They used perturbation technique to find the analytic solution
after using long wavelength and low Reynolds number assumption. They concluded that
by increase Hartmann numbers, the pressure rise per wave length increases nonlinear in
Non-Newtonian fluid. The nonlinear peristaltic motion in asymmetric inclined channel is
investigated by Srinivas and Pushparaj (2008). They found the analytical solution by
considering Reynolds number small enough in which inertial effect to be negligible and
long wavelength assumption. They concluded that increasing wave amplitude ratio at
lower wall, the stress on the lower wall enhance in presence of MHD and reduce in
absence of MHD. Yidirim and Sezer (2010) studied the partial slip effects of MHD
peristaltic flow for Newtonian fluid in an asymmetric channel. They found analytic
solution using homotopy perturbation method (HPM) under long wave length
assumption. They determined that pressure rise per wave length increases by increasing
Hartman number when time mean flow rate is less than unity and decreases when time
mean flow rate is greater than unity. Ali et al. (2008) studied the slip effects of MHD
peristaltic flow in presence of variable viscosity in channel. They found series solution
for magnetohydrodynamic fluid under long wavelength and low Reynolds assumption.
They concluded that pressure rise per wave length decreases in positive pumping region
by increasing the slip parameter. Mekheimer and Al-Arabi (2003) investigated the MHD
peristaltic flow through a porous medium in a channel using perturbation method. In their
investigation, remarkable increase is observed in pressure rise per wave length by
increasing Hartmann number. Ebaid (2008) found numerical solution for MHD peristaltic
flow of a bio-fluid in a circular cylindrical tube with variable viscosity under long

wavelength and low Reynolds number assumption. He used Adomian decomposition
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method (ADM) to solve the governing partial differential equation. He concluded that by
increasing viscosity parameter, the pressure rise slightly decreases. Moreover, Hartmann
number helps to enhance pressure rise per wave length against time mean flow rate in
pumping region. In last lustrum, many authors studied MHD peristaltic motion for
Newtonian and Non-Newtonian fluid using different fluid models (Tripathi & O. Anwar
Bég (2013), Baoku et al.(2013), Hayat et al. (2016), Reddy et al.(2016)a, Reddy et
al.(2016)b, Abbasi et al. (2016), Ranjit (2017), Abbasi and Shehzad(2017), Sara & Vafai
(2017) and Sucharitha (2017)).

There are numerous applications of peristaltic flow with heat transfer exist, especially in
biomedical science and bio fluid. In human body, heat transfer due to perfusion of the
arterial venous blood through the pores of the tissue, heat conduction in tissue and
radiation between surface and its environment. The human thermoregulation system and
thermotherapy are also heat transfer ways in human body. Heat transfer of peristaltic flow
is also visualized on oxygenation and hemodialysis processes. Therefore, many
biomedical researcher and scientist take special interest in peristaltic flow with heat
transfer. Srinivas and Gayathri (2008) consider Newtonian fluid for peristaltic flow in
presence of heat transfer in a vertical asymmetric channel. They used the condition in
which Reynolds number takes small enough to neglect the inertia effects and long
wavelength assumption. They concluded that velocity enhance by increasing porosity
parameter, amplitude ratio, Grashof number and heat generation parameter. Mekheimer
and Elmabond (2008) studied the MHD heat transfer of peristaltic flow in vertical
annulus for Newtonian fluid under the same assumption of Srinivas and Gayathri (2008).
They accomplished that by increasing heat generation parameter, the trapping bolus are
also increases. Effects of heat transfer on peristaltic transport in presence of heat transfer
with MHD effect and variable viscosity were studied by Nadeem and Akbar (2009). They
used Adomian decomposition method after applying the same assumption used by
Srinivas and Gayathri (2008). They determined that pressure rise per wave length and
velocity increases with increasing the internal heat generation parameter. The study of
MHD peristaltic flow with slip effects under the influence of heat transfer in inclined
asymmetric channel by Das (2012). He neglects the inertial effects and take diameter

large enough in which the pressure to be considered uniform over the cross section. He
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analyzed that the number and size of bolus decreases by increasing the slip velocity
parameter and the rate of heat transfer due to the presence of the thermal slip condition.
Muthuraj and Srinives (2010) investigated the mixed convective heat and mass transfer
with porous medium and traveling thermal wave in vertical channel. They observed, the
velocity enhances with increase of Darcy number and reduces with increasing of
Hartmann number. MHD heat transfer of Newtonian fluid for peristaltic flow under the
influence of slip conditions and wall properties in channel was investigated by Srinivas et
al. (2009). They obtained analytical solution under the assumption of low Reynolds
number and wave numbers. They concluded that the velocity enhances at center part and
boundaries of the channel by increasing slip effects. Moreover, the trapping bolus
decreases in size by increasing Hartmann number. Srinivas and Kothandapani (2009)
investigated heat and mass transfer of peristaltic flow with compliant walls through a
porous medium. They also use low Reynolds number and long wavelength assumptions
to find the analytical solution. They concluded that heat transfer coefficient increases by
increasing permeability parameter and Brickman number while it decreases with
increasing Hartmann number. Ali et al. (2010) discussed the analytical solution of
peristaltic motion through heat transfer for Newtonian fluid in curved channel. They
noted that the temperature enhance by increasing Brickman number and time mean flow
rate. Slip and heat effects of peristaltic flow in asymmetric channel on different wave
shape are discussed by Hayat et al. (2009). They noted that pressure rise per wave length
against time mean flow rate increases throughout the pumping region by increasing heat
generation parameter and Grashof number. They also concluded that, effects of bolus
against Grashof numbers and amplitude ratio are similar in all wave shapes. Srinivas et
al. (2011) investigated the peristaltic motion in asymmetric channel in presence of heat
transfer. Sinha et al. (2015) studied the heat transfer for peristaltic motion in presence of
MHD with variable viscosity and slip effect on asymmetric channel. They established
that by increasing heat generation parameter, the thermal boundary layers are also
increasing. In last triennium, many authors (Ramesh et al. (2015), Abbasi et al. (2015),
Reddy & Reddy (2015), Reddy and Makinde (2016), Remesh (2016), Bhatti et al. (2016),
Eldabe et al. (2016), Abbasi and Shehzed (2017), Iftikhar and Rehman (2017), Ramesh
and Devakar (2017) and Hayat et al. (2017)) studied heat transfer analysis for two
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dimensional plane channel and axisymmetric tube by neglecting the inertia effect and
long wavelength assumption.

In Non-Newtonian fluids, the shear stress and the shear rate are different and can even be
time dependent, thus a constant coefficient of viscosity cannot be defined, therefore, it is
challenging to express all those properties of several non-Newtonian in a single
constitutive equation because the nonlinearity appears between the stress and rate of
strain. In recent past years, the Non-Newtonian fluid gives much attention by many
scientists and researchers due to validly used in industrial and technological application.
Some physiological or biofluids like suspensions of deformable or rigid particles are
Non-Newtonian fluid. For example, blood is a suspension of several cells in plasma,
cervical mucus is a suspension of macromolecules in water, chyme (semi digested food)
etc. Due to important in physiological flow, many researchers study the peristaltic
pumping for Non-Newtonian fluid in last two decades (Misra and Pandey (1999), Misra
and Pandey (2001), Peev et al. (2002), Hayat et al. (2007), Haroun (2007), Vajravelu et
al. (2005), Hayat and Ali (2006), Reddy et al. (2007), Ali et al. (2009), Ikbal et al. (2008),
Ali et al. (2010), Tripathi (2011), Mekheimer (2011), Maiti and Misra (2013), Akram et
al. (2013) and Lachiheb (2014)). In recent pass years, Saleem and Haider (2014)
discussed the peristaltic motion for non-Newtonian fluid with heat and mass transfer in
asymmetric channel. They find a perturbation solution against small wave number by
neglecting the inertia effect. They concluded that pressure rise per wave length increase
by increasing Weissenberg number in pumping region and decrease in co-pumping
region. Abd-Alla et al. (2014) studied the rotation and initial stress effects on MHD
peristaltic motion of fourth grade fluid with heat transfer. They concluded that velocity
enhances by increasing rotation and initial stress, whereas decreases in case of amplitude
ratio. They also concluded that pressure gradient decreases with increasing the rotation,
initial stress and amplitude ratio in wave frame of reference. The study of peristaltic
motion in diverging tube with heat and mass transfer for Eyring Prandtl fluid was carried
out by Iftikhar and Rehman (2017). They used Homotopy perturbation method (HPM) to
find the analytical solution by neglecting the inertia effects and long wavelength. They
concluded that rate of heat and mass transfer decreases with increasing Grashof number.

Hayat et al. (2017) studied the peristaltic flow Ree-Eyring in a rotating frame with heat
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transfer under the same assumption that is used by Iftikhar and Rehman (2017). They
find the analytical solution and conclude that rate of heat transfer enhance by increasing
Brinkman number.

The micropolar fluid, which exhibit certain microscopic effects arising from the structure
and micro-motion of the fluid elements. Eringen (1964)-(1966) gives the novel approach
of consisting micropolar and micromorphic theories. After this, many mathematicians
and scientist showed deep interests in micropolar fluid (Ariman et al. (1973), Sava
(1973), Turk et al. (1973), Ariman et al. (1974), and Sava (1976)). The detailed
mathematical theory about micropolar fluid was given by Lukaszewicz (1999) in his
book. Most of the biological fluids, including blood with suspensions can be studied as a
micropolar fluid. Therefore, the authors like (Devi and Devanathan (1975), Hogan (1989)
and Philp (1995)) focused on the micropolar fluid flow for peristaltic pumping in both
channel and tube under the assumption of long wavelength and low Reynolds number,
because it is contributed in polymer process and blood flow in human beings by applying.
Srinivasacharya et al. (2003) studied the peristaltic motion of micropolar fluid in a tube
without viscous effects and long wavelength assumption. They concluded that the
micropolar fluids produce the greater pressure rise compared with Newtonian fluid in
peristaltic motion. Muthu et al. (2008) studied the peristaltic motion of micropolar fluid
under the effects of wall properties in a circular tube. They used perturbation method to
linearize the governing equation against small amplitude ratio and then apply finite
different scheme. Hayat et al. (2007) found the exact solution of peristaltic motion for
micropolar fluid with different wave in a channel under the assumption of long
wavelength and low Reynolds number. They concluded that by increasing coupling
number the peristaltic pumping enhances minimum in triangular wave and maximum in
square wave. Ali and Hayat (2008) studied the peristaltic motion for micropolar fluid in
asymmetric channel. They found closed form of analytical solution under long
wavelength and low Reynolds number assumption. They determined that the shear stress
increases in asymmetric channel and decreases in symmetric channel with the increasing
micropolar parameter. They also determined that direction of shear stress on upper wave
opposite to velocity and at lower wave along the velocity. Endoscope effects of

micropolar fluid in peristaltic motion are observed by Hayat and Ali (2008). They found
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the exact solution of governing partial differential equation under long wavelength and
low Reynolds number assumption. They also found the correct expression of friction
force and conclude that pressure rise per wave length decreases by increasing micropolar
parameter and increases by increasing coupling number. The mathematical model of
peristaltic flow in tube is presented by Pandey and Tripathi (2011). They concluded that
coupling number helps to increases the efficiency and reflux region while micropolar
parameter decreases the efficiency and reflux region. The numerical study of peristaltic
motion in a tube with MHD effect was presented by Wang et al. (2011). They used finite
difference scheme to solve the problem and conclude that no significance difference is
observed in free pumping flux for both Newtonian and Non-Newtonian fluid. In last
lustrum, many authors (Abd-Alla et al. (2011), Abd-Alla et al. (2013), Abouzeid (2016),
Hayat et al. (2016) and Abdelsalam and Vafai (2017)) discussed the peristaltic motion for
micropolar fluid in channel and tube under long wavelength and low Reynolds number
assumption.

Computational studies against high Reynolds number and short wavelength of peristaltic
motion in channel/tube is always challenging for researchers and mathematicians
because, governing partial differential equations contain higher order non-linearity, mesh
adoption are difficult against irregular shape and high computational cost. Although, few
studied found in literatures for Newtonian case under certain assumptions. First of all,
Dennis and Chang (1969) solve Naiver stokes equation for two dimensional flow
numerically using successive approximations against zero time mean flow. Then the
comprehensive computational study of peristaltic flow in channel was carried out by
Takabatake and Ayukawa (1982) with influence of wave amplitude, wavelength and
Reynolds number. They solved Navier-Stokes equations in stream vorticity (y — w) form
using an upwind finite difference technique with SOR method. They explained the
features of peristaltic motion at moderate Reynolds number and discussed the restrictions
of perturbation results given by Zien and Ostrach (1970) and Jaffrin (1973). They
discussed velocity and streamline phenomena upto Re = 210 against zero time mean flow.
Takabatake et al. (1988) studied the peristaltic motion in an axisymmetric tube under
finite wavelengths, Reynolds number and amplitude ratio using FDM with SOR method.

They concluded that peristaltic mixing and transport is higher in circular cylindrical tube
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than in a plane channel. Takabatake et al. (1989) also studied the peristaltic motion in two
dimensional peristaltic channel using finite element method. They concluded that the
inertia effects of the fluid and the effects of large wall slops increases the backward flow
from the narrowest region of the channel. Takabatake (1990) also extended it and find the
peristaltic pumping against large wave amplitude and wave-wall slope. They concluded
that against large wall slope, the pressure rise per wave length increases remarkably for
zero time mean flow and fluid inertia effects decreases for small amplitude and increases
for large amplitude ratio. After this, Kumar and Naidu (1994) also solve Navier-Stokes
equations for two-dimensional peristaltic flow using stream function vorticity (¥ — w)
formulation. The main difference from earlier studies is that they obtained convergent
solution at high Reynolds number upto 100 against small time value of time mean flow
i.e. Q = 0.05. They concluded that progressive sinusoidal waves with low wave number
and high amplitude generate peristaltic flow with high shear stress variations. Their
analyses also included the effects of constant applied magnetic field on the peristaltic
flow for non-zero Reynolds numbers and wave numbers and concluded that wall shear
stresses decreases under influence of external magnetic field.

Table 1.1: Computational investigations of Newtonian peristaltic flow for high Reynolds

number since 2017

Re/Amplitude

Fluid Wave )
Author(s) Method Geometry ratio/Wavenumber/
Type Shape )
other assumption
Takabatake & 210/Arb./Arb./Zero
Newtonian  Sinusoidal FD-SOR  2D-Plane )
Ayukawa time mean flow

Takabatake Newtonian  Sinusoidal FD-SOR  Axisymmetric  10/Arb./Arb.
Takabatake &

Newtonian  Sinusoidal FEM 2D-Plane 10/Arb./Arb.
Ayukawa
Rathish-
] ) ] 10-100/Arb./Arb./upto
Kumar & Newtonian  Sinusoidal FEM 2D-Plane 0.06
Naidu '
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Krzeminski et al. (2000) study the MHD peristaltic flow using finite element method in
symmetric channel. They only discussed streamline behavior and MHD effects. They
concluded that MHD decreases the number and size of boluses. They also determine that
field’s distribution caused by varying influence of magnetic field. Recently, Ahmed et al.
(2018) and Javed et al. (2018) studied the peristaltic motion in channel and tube using

finite element method at moderate Reynolds number and wave number.

1.10 Methodology

In the present work, the computational study of peristaltic motion of Newtonian and Non-
Newtonian fluid in two-dimensional channel and axisymmetric tube are discussed at high
Reynolds number and wave number using finite element method. Moreover, The
obtained models are highly nonlinear PDE’s with presence of inertia effect and short
wavelength. The Galerkin finite element technique is used to obtain computational
results. The basic procedure of Galerkin finite element method can be understood by the
following flow chart and examples.

1.11 Solution of Laplace equation using FEM

To understand solution procedure of Galerkin finite element method, here two model
examples are solved in MATLAB.

Example 1: Consider two dimension Laplace equation in Cartesian coordinate of unit

square
2w I*w (1.29)
+>— =0,
dx?  0dy?
With boundary condition
w(,y) = —y3, W(1,y) = —-1—1y3+3y2 + 3y, (1.30)
W(x,0) = x3, W(x,1) = -1 —x3 + 3x? + 3x. (1.31)
The exact solution is given by
W(x,y) = —x3 —y3 + 3xy? + 3x2y. (1.32)

Firstly, discretize the domain into non-uniform mashing as shows in Figure 1.4. Appling

weighted residual on Eqg. (1.29), the integral becomes
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Discretize domain into finite element mash

Initial guess

v

Start lteration

Construction of local stiffness matrix

'

Assembly to Global stiffness matrix

v

Apply boundary conditions

!

Solve system of equations

v

Check convergence using Newton Raphson

v

Final result

Figure 1.3: Flow chart of Finite Element procedure
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Figure 1.4: Finite element mesh (a) 3 nodes per element (b) 6 nodes per element

0°w  9*w
= 1.33
fw<ax2 + ay2>dﬂ 0, (1.33)

Q
after simplify the weak formulation of Eq. (1.33) becomes

ow oW Q 6W6WdQ+J awdr_o (1.34)
ox 0x oy dy Yo & T '
Q Q
In line integral, the normal derivative defined as
ow ow ow
= n, + ny. (1.35)

on dx
In which, n, and n,, are unit outward normal vector along x — axis and y — axis. The
Galerkin finite element is approximate solution using linear triangular (n = 3 nodes per
elements) or quadratic triangular element (n = 6 nodes per element). Approximate

unknown function using quadratic triangular element is

Z PW;(x,y), (1.36)

using interpolation function describe in above equation into Eq. (1.34), the following

expression is obtained
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OP dP;

f G)i) 2
0x 0x
Q

aya

Jran= [ n3fan

(1.37)

The left side of above equation called diffusion matrix and right side is boundary integral.

The interpolation function in quadratic triangular element is expressed as

L1(2L1 — 1)

L,(2L, — 1)
Ls(2L; — 1)
AL,L,
4L,L,
ALsL,

(1.38)

where L;,L, and Ls are shape functions defined as L; = 2Alea (a; + bjx + ¢jy) for

j =1,2,3.where aj, b; and c; are dependent on the coordinate of the point and are defined

as
aq X2Y3 — X3Y2 by V2= Y3 €1 X3 — X2
az| = [X3Y1 = X1Y3| ; |bz| =|Y3 —Y1| and [Cz2| = |x1 — X3], (1.39)
as X1Y2 — X2)1 bs Yi—Y2 C3 X2 — X1

The diffusion matrix over an element can be computed as

K¢ = Kf + K¢. (1.40)
Where Kf = AB G B*'A*and K§ = AC G C'A'. A, B and C are constant matrices and G

is integral matrix defined as

10 0 -1 0 -1

010 -1 -1 01

q4=10 01 0 -1 -1

0 0 0 4 0 O0f

0 00 O 4 0‘

0 0 0 O 0 0

26, 0 0 2¢, 0 07 (1.41)

0 2b, O 0 2 O
gl 0 0 2b3,C:i 0 0 2c;
20l b, by O 20l ¢ ¢4 O
0 bz by 0 ¢ ¢
b; 0 by cz 0 ¢

and
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Li  Lil, LqLg Al2 11
e ) 12
LiLs L,Ls I3 11 2
The global system in matrix form is defined as
KW =F. (1.43)

Where K is global stiffness matrix and F is force vector which are obtain from boundary
integral. The system of equations (1.43) is solved using linear and quadratic triangular
element in finite element method by considering 48,148 and 312 elements. The code is
developed in MATLAB with the help of built in pdetool function. Table 1.2 shows the
maximum error between the exact solution and the obtained result using 3 node per
element and 6 node per element. It is observed that quadratic triangular element is more

accurate as compare to linear triangular element.

Table 1.2: Maximum absolute error between linear and quadratic triangular elements.

Linear triangular element Quadratic triangular element

Element Nodes Max(abs(Exact - present)) Nodes Max(abs(Exact - present))

48 33 0.0102 113 2.9717e-4
148 89 0.0063 325 9.3818e-5
312 177 0.0036 625 3.0010e-5

Example 2: consider axisymmetric Laplace equation in a circular cylindrical tube

19, owy 02w
1o oW _ 1.44
r@r(r 6r)+ 97z = O (144)

The inside and outside radius are 4 and 6 whose heights is 1. Both top and bottom surface
of the cylinder insulated with constant flux outside the surface. So, boundary condition

are define as

W(4,z) =100, W.(6,2) =0, (1.45)
W,(r,0) = W,(r,1) = 0. (1.46)

The exact solution is

25



W(r,z) = 100 + 120log(r/4), (1.47)
Apply weighted residual method on Eq. (1.44) as follows

10 oW a*w

I PV = 1.48
,fW(rar(rar)-i_azZ)dQ 0. (148)
Q

The weak formulation of Eq. (1.48) using the integration by part becomes

) j‘j‘ (6W6W+6W6W>d p _f aWdI‘ (1.49)
T " \orar "9z 0z) Y T ) W ¢ '
r

We approximate the solution by using quadratic triangular element in expression form

6
> Pfr), (1.50)
i=1

Using interpolation function described in above into equation (1.49) we have the

following finite element expression

aP; aP;* apiapf ow
— hidd 1.51
anf <6r ar az aZ>Wdrdz fPa dQ, (1.51)
r

Which result in following global system

KW =F. (1.52)
Where K is global stiffness matrix and F is force vector obtain from boundary integral.
Equation (1.47) is solved using linear and quadratic triangular element in finite element
method (FEM) by considering 48,192 and 768 elements respectively in MATLAB. The
maximum absolute error between exact and obtain results are shown in Table 1.3. It is
observed that quadratic triangular element is also well convergent as compared with
linear triangular element for axisymmetric problem even small number of element is

used.

26



Table 1.3: Maximum absolute error between linear and quadratic triangular element.

Linear triangular element Quadratic triangular element

Element Nodes Max(abs(Exact-present)) Nodes Max(abs(Exact - present))

48 33 0.0117 113 2.8422e-14
192 113 0.0038 417 2.8422e-14
768 417 0.0012 1601 8.5265e-14
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Chapter 2

Hydromagnetic Peristaltic Flow in an
Inclined Channel for Different Wave
Shapes

This chapter deals with the peristaltic flow in an inclined channel for different wave
forms is carried out in this paper. The established mathematical model is represented as a
set of partial differential equations. The finite element method is implemented to solve
the governing equations after reducing them into stream-vorticity form. This study
reveals the characteristics of peristaltic motion at high Reynolds number. Important
features of peristaltic motion are analyzed and discussed against the variation of
Reynolds number, wave numbers, and magnetic field. The obtained results in limiting

case are in well agreement when they compared with the existing results in literature.

2.1 Governing Model

Consider the unsteady two-dimensional, hydromagnetic, incompressible peristaltic flow
of Newtonian fluid in an inclined channel taking width 2a inclined at angle y with the

horizontal direction. and x—axisis chosen along the channel and y—axis is assumed
normal to channel. A constant magnetic field B, is applied normal to the flow. The flow

is caused by a wave train travelling with velocity c (see Figure. 2.1). The wall of the
channel obeys

X" — ct*}
2‘ )
where a is the distance from center axis to the wall, b is the wave amplitude, t* is time, c

HX*t") =a— bcos{ (2.2)

is the velocity of the wave and A is the wave length. The Governing equation and

boundary condition in lab frame are defined as (Kumar and Naidu (1994))
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Figure 2.1: Geometry of two-dimensional peristaltic channel.

ou* ov-
= 2.2
oX* * ay* 0, 22)
(6U*+U*6U*+V* 6V*) 0P N
P\Vace 77 ax= 7" ar+) T T ax- s
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The appropriate boundary conditions of the present flow are defined as
U~
Vi=0, —5=0 at Y =0 (2.5)
0H
ur=0, V* at Y*=H. (2.6)

at*

The Neumann boundary condition of U* at Y* = 0 arises due to symmetric flow and
condition of U* at Y* = H is due to no-slip condition at the wall. The condition V* =0
atY* = 0 means that the transvers velocity is zero at the center of the channel and
condition V* = dH/dt at Y* = H represents that the normal velocity of the fluid is equal
to the normal velocity at the wall. Now, transform the governing equations from lab
frame to wave frame using the relation

u' =U"—c, x'=X"—ct", v'=V" and y' =Y~ (2.7)
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where (u',v") and (U*,V*) are components of velocity in moving and fixed frames

respectively. After introducing Eq. (2.7) in Egs. (2.1) - (2.6), we get

ou’ av _o, 9

ax’' 6y

o' .ow ap’ o*u’ 9% .
g <u ox' " " ay’ ) T o K <ax'2 * a?) —oBou' + pgsin(y), (29
2,1 2.7
P (“ ZL v g; ) = ZZ " <le,72 + Zyl,]z> ~ pgeos(y), (2.10)
n(x") = a — bcos <27;x’>, (2.11)
Moo v=0 a y' =0, (2.12)
ay’
2nb . (2mx’

u'=c v = 75”1( 1 ) at y' =nx"), (2.13)

Since both planes y' = 0and y’ = n(x") constitute the streamline in the moving frame
reference, therefore the volume flow rate g’ in the moving frame well remain constant at
all cross section of the channel. Thus the following boundary conditions are obtained
YP'=0 on y' =0 Y'=q" on y =n'), (2.14)
where v’ is the stream function and the relation g’ = Q' — ca holds between flow rate

q’ and Q" in wave and lab frame respectively. The dimensionless variables are defined as

e=t =l w2t Y (2.15)
2 l ! 1
P w=n q=L gw=132 (2.16)
The dimensionless form of the governing equations and boundary conditions are obtained
as follows
du OJv
=+ Y 0, (2.17)
Re (aua—u + va—u) - a_p (a: i i) M?(u+1) + &sin(y), (2.18)
0 dy 0x 0x? 6 Fr
ov v op 0%u  0%u Re
aRe (aua—+v£) =—@+a<a a—+a—yz>—aﬁcos(y), (2.19)



a_u =0, v=0, at y=0, (2.20)
dy
u=-1, v=2n¢sin(2nx) at y=n(x)=1-— ¢cos(2mx), (2.21)
where Re = caa/v is the Reynolds number which represents the ratio of inertial force to

the viscous force, @ = a/A is the wave number, ¢ = b/a is amplitude ratio, M =

(J/é/uBoa) a/2 is the Hartmann number which represents the rate of electromagnetic
force to the viscous force and Fr = ¢?/ga is the Froud number which is the ratio of
inertial forces to the gravitational force. The stream and vorticity function ¥ and w

respectively are defined in terms of velocity components u and v are as follows

P P Jdv du
u—@, U—aa, w = a—@ (222)

After eliminating the pressure terms from Egs. (2.18) and (2.19) and using the above

expression, we get

2 2
l/J Y _
— 2.23
a® Frel ay w, (2.23)
2
Re <a_¢a_w_a_¢aw) Vo -m22 Y (2.24)
dy 0x 0dx 0y dy?

The corresponding boundary conditions defined in Eq. (2.14) after using Egs. (2.20) —
(2.21) become

02 0
W=0, a_;fzo' %zo, at y=0, (2.25)
0y P :
Y =q, E -1, Pl 2ngsin(2mx) at  y =n(x). (2.26)
where
0% 02
V2= CZ ﬁ + W (227)

It’s important to mention here that under long wavelength and low Reynolds number
limit assumption i.e. @ = 0, Re — 0, Eq. (2.24) reduce to the following partial differential
equation

0 2 Y
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In this chapter, we will consider three types of wave forms namely multisinusoidal,

triangular and trapezoidal. The mathematical expression for the multisinusoidal wave

form is
n(x) =1 — ¢ cos(2mnx). (2.29)
The expression for the triangular wave form is
8 v (D™
nx)=1+¢ (FZI(Zm—_l)Zsm(Z(Zm - 1)7tx)>. (2.30)

The expression for the trapezoidal wave form is

2, sing (2m — 1
32 z sing (2m )sin(2(2m— D) | (2.31)

nx)=1+¢ Fm=1 (2m — 1)2

In the next section, we explain how we obtained the solution of governing Eq. (2.23) —
(2.24) subject to boundary conditions (2.25) and (2.26)

2.2 Finite element solution

A numerical algorithm based on the finite element method developed in MATLAB is
implemented to solve Eqgs. (2.23) and (2.24) together with boundary conditions given in
Egs. (2.25) and (2.26). The pictorial view of considered mesh of triangular elements is
shown in Figure 2.2. The mesh was created using built in pdetool function of MATLAB.
In the literature, a lot of work is carried out for the peristaltic flow but under long
wavelength and low Reynolds number limit. Our objective here is to solve the complete
set of equations to discuss the influence of Reynolds and wave numbers on the quantities

Figure 2.2: Non-Uniform discretization domain
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of interest. In all cases, highly convergent results have been obtained in about 2-4 number

of iterations using quadratic triangle elements. The stream function and vorticity is

n n
b= Ph,  ©=) P (232)
k=1 k=1

where 1, and ware element nodal approximations of i and w respectively. P, is shape

approximated by

function of element node. Upon using Galerkin’s formulation, we can write

fwl <a 5 lf+$+w>dlpdw—0 (2.33)
Q
(W30 pow 00 az 21/)

where w, and w, are weight functions and Q is domain of the problem. After simplifying
the Egs. (2.33) and (2.34), we obtain

ow, 61/) odw, oY P

T = - 2.35
j((x 3% x + 3y 3y Wlw) dydw fwl ndI‘, (2.35)
Q T

jR (61/)6(» azpaw)d p +J( 26W26w+6W26w)d p
ez dy 0x 0x dy Yo ¢ dx dx Jdy dy Ydaw
Q Q

(2.36)

M2 jawZalpd d J 9% ir J Woar
dy oy Wdw = | wagy "2 on
Q r r

where I" is boundary of the domain. Introducing Eq. (2.32) into Egs. (2.35) and (2.36) and

considering the discretized domain, we have
= Bwi+ Y Ag =K, (237)
i i

Z Ay + Re Y Gl — M? ) Digpy = —M?SE", (239)
Lj i

where Ag; and Cg;; are convective matrix, By; is mass matrix, Dy; diffusion matrix and

Sk® force vector defined as
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0P 0P, 0P, P
R = f(a ALk )dne (2.39)

dx dx  0dy dy
Qe
BE, = f P P.dOc, (2.40)
Qe
0P; 0P; O0P; 0P;
e _ 0P 0B 9B 0B . 241
iy = [ A (Gpoe - ) aa (2.41)
Qe
9P, OP,
e — ————d0e 2.42
= | G (242)
Qe
and Ske = f P.S,dr. (2.43)

The system of Egs. (2.37) and (2.38) combined as global system of matrix form defined
as

KU =F, (2.44)

where

By ki Ske
K, = ;U= ||, Fo= 2.45
Y ki ReCgjw; — M?Dy; g Fie = (2.45)

The global systems of matrix defined in Eq. (2.44) are solved iteratively using Newton-

Raphson method until required convergence is achieved.

2.3 Pressure evaluation

Pressure rise per wave length play an important role in peristaltic motion which can be
obtained through numerical integration of pressure gradient. Since peristaltic motion is
based on infinite train sinusoidal wave, so it is sufficient to calculate the pressure only at
middle part (y = 0) of the unit wave domain. Pressure gradient can be obtained directly
from the Navier-stoke equation in the form of ¥ — w as follows
L s AL R Ly

dx dy2 9x oxdydy) dy dy

+ F_e sin(y), (2.46)
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op 2oy 0% Y aw Re
— = ) g — . 2.47
dy Rea <6x2 dy 0xdy dx c’)y * Fr cos(y) (247)

The mathematical expression of pressure-rlse in wave frame is defined as

AP, = f a—p (2.48)
0

2.4 Numerical results and discussions

This section provides the detail of the present computational results of peristaltic motion
in different wave frames. The numerical result of velocity at x = 0 cross section in terms
of streamline and vorticity in wave frame, pressure rise per wave length are discussed and
shown graphically for related parameter including values of the wave number (a),

Reynold number (Re), the Hartmann number (M), amplitude ratio (¢) and time flow

rate(Q).

2.4.1 Validation

The current computational study for higher Reynolds number is presented for the first in
literature. To observe the validation of current study, it is compared with the previous
experimental results of Weinberg (1971), theoretical results of Shapiro (1969) and Jaffrin
(1973) and numerical results of Takabatake et al. (1987), Takabatake (1990) and Dennis
and Chang (1969). It is noted that since Shapiro (1969) and Jaffrin (1973) used
perturbation technique to find the analytical solution, it is therefore these solutions is
valid against small values of parameters. However, the corresponding solution of
Takabatake et al. (1987), Takabatake (1990) and Dennis and Chang (1969) are valid for
short wave length and high Reynolds number. Figure 2.3 shows the comparison of
pressure rise with experimental and theoretical results of Weinberg (1971) and Shapiro
(1969) respectively. It is observed that our computed results are in good agreement with
theoretical result of Shapiro et al. (1969) for Re =0 and a « 0. Moreover, the
experimental results of Weinberg et al. (1971) shows that Reynolds number produces no
effect in the range of Re = 0.24 to Re = 0.34 and it is infect that flow is free of inertia
in the said range. Thus our results are in closed agreement to that of experimental result
for a limiting case of Re = 0. Figure 2.4 shows the graph of the pressure rise per unit

wavelength AP,against time mean flow rate Q. The pressure-flow rate curves based on
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Jaffrin approximate solution (1973) and Takabatake finite element solution (1990) are
also included in Figure 2.4 for better evaluation of the results. It is observed that the
present computational results well matched with the Jaffrin (1973) results. Further, the
pressure rise observed through by finite element solution of Takabatake (1990) shows
substantial deviation from those given by Jaffrin (1973) solution. Figure 2.5 shows the
streamlines in laboratory frame based on present computations and compared with the
available result of Dennis and Chang (1969) and Takabatake (1987). It is observed that
the present results also well matched with corresponding results of Dennis and Chang
(1969) and Takabatake (1987). The vorticity contours obtained through present finite
element simulations are also compared with the corresponding vorticity contours
obtained by Dennis and Chang (1969) and Takabatake et al. (1987) in Figure 2.6. Again
our results agree well with the available results. From Figures 2.4 to 2.6, It is inferred
that in comparison with Takabatake (1990) solution, the present solution compliance well
with both the solutions of Dennis and Chang (1969). The present solution is also
compared with the corresponding streamlines obtained by Mekheimer (2004) using
perturbation solution in Figures 2.6 and 2.7. The obtained computational results are
shown for Hartmann number M and Reynolds number Re. Both the figures show very
good agreement between the perturbation and the computed numerical results. In both
figures a is chosen sufficiently small to achieve the good correlation between our
solution and the one obtained by Mekheimer (2004). A strong disagreement is anticipated
between both solutions for larger values of a. This is naturally expected because
perturbation solution is valid only for small values of a. Therefore, confidence on present

FEM solution is quite higher.

2.4.2 Velocity profiles

The velocity profile u at cross section x = 0 for different time-mean flow rate Q,
Hartmann number M, wave number «, and Reynolds number Re is shown in Figures 2.9
to 2.12. It is noted that the longitudinal velocity increases near the center of the channel
by increasing time-mean flow Q and Hartmann number M, whereas it shows the reverse
trend near the wall. In contrast, the longitudinal velocity decreases near the center of the
channel due to increase in both wave and Reynolds number. In fact, for moderate high
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Reynolds number the viscous effect diminishes near the boundary resulting in higher
values of velocity there. To maintain the prescribed flow rate, the large velocity near the
center of the channel center decreases. A combination of both effects is highlighted in
Figure 2.12. An interesting point is noticed here that in the range of Reynolds
number 1 < Re < 20, the longitudinal velocity is less sensitive. Moreover, velocity u
differs gradually against wave number in the range 0 < a < 1. The previous available
study on peristalsis under long wavelength and low Reynolds number assumption report a
decrease in longitudinal velocity against increasing Hartmann number. However, our
results indicate that in presence of inertial force, the magnetic field excite the bulk motion
of fluid and therefore assists the flow due to peristalsis.

2.4.3 Trapping and vorticity

The basic phenomenon of peristaltic motion which can be observed in wave form of
reference is called trapping. In this phenomenon, some of the streamlines split and
enclose a circulating bolus of fluid which moves as a whole with the peristaltic wave. The
streamlines patterns for different peristaltic wave shapes and for two different values of
flow rate are shown in Figures 2.13 to 2.24. Figure 2.13 illustrates the effect of Q on
streamlines pattern against sinusoidal wave form. This figure highlights that for Q = 0.5,
there is no trapped bolus appear in sinusoidal wave form of fluid for any of the
considered wave shapes. However, for Q = 1.2, a circulating bolus of fluid is found in
the wider part of the channel. In Figures 2.14 to 2.16, same effects are observed for
multisinusoidal, triangular and trapezoidal wave shapes respectively. Moreover, it is
observed that the shape of bolus changes with the wave shape. The effects of Reynolds
number on streamlines patterns of different peristaltic wave shapes are shown in Figures
2.17 to 2.20. It is interesting to note that with increase in Reynolds number from 1 to 5,
there is no appreciable change in the size and circulating bolus is observed. This
observation is in accordance with the observation shown in Figure 2.12, where it was
found that longitudinal velocity do not show significant change with increasing Reynolds
number in the range 1 < Re < 20. The effects of Hartmann number on trapping
phenomenon with different peristaltic wave shapes are shown in Figures 2.21 to 2.24.

For the sinusoidal peristaltic wave, an increase in the Hartmann number increases the size
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and circulation of the bolus. In contrast, an increase in magnetic field suppresses the size
of the bolus for triangular peristaltic wave. Interestingly, for multi-sinusoidal and
trapezoidal peristaltic wave shapes, the bolus size slightly varies with an increase in the

Hartmann number.

2.4.4 Pressure flow rate

The graphs of pressure rise per unit wavelength AP, against time-mean flow rate Q in the
fixed frame for various values of Re,a, M and Fr are plotted in Figures 2.25 to 2.28.
These figures reveal that the pressure rise per unit wavelength AP, increases by
increasing Reynolds number in both pumping and co-pumping region. Thus peristalsis
has to work against greater pressure rise in pumping a fluid with dominant inertial effect.
The similar effects are observed for Hartmann number (M) and inclination angle (y), that
i, the pressure rise per unit wavelength AP, in pumping region increases by increasing
both Hartmann number (M) and inclination angle (y). In contrast, when Froud number

decreases, the pressure rise AP, increases in the pumping region.
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Figure 2.3 Comparison of computed pressure rise (Solid lines) with theoretical
results (Dashed line) given by Shaprio et al.(1969) and experimental results )(Doted
& Dashed line) given by Weinberg et al.(1971) against M = 0,Re = 0.34,a =
0.014and ¢ = 0.7

38



Re=1.0,0=0.5,M=0,0 =0.7

25

= Present

''''' Jaffrin et. al.(1971)
Wr . - = = Takabatake(1990) ||

(@
0.7
o Re=1.0,0.=0.4,M=0, =0.8
. = Present
so-S~, = Jaffrin (1973)
MO = = = Takabatake(1990)
(b)
0 | | | | | | )
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Q

Figure 2.4 (a,b) Comparison of computed pressure profile based on sinusoidal wave
form with that of Jaffrin (1973) and Takabatake (1990)
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Figure 2.5 (a b) Comparison of computed streamlines in fixed frame (solid lines)
with (a) Dennis-Chang (1969) (dashed line) and (b) Takabatake et al. (1987)
(dashed line) for « = 0.4,0 =0, =0.6,Re=10and M =0
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Figure 2.6 (a,b) Comparison of computed vorticity contours present result(solid
lines) with (a) Dennis-Chang (1969) (dashed line) and (b) Takabatake et al. (1987)
(dashed line) for Re = 10, = 0.4, ¢ = 0.6,M = 0 and Q = 0 in sinusoidal wave
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Figure 2.11: Longitudinal velocity profile for different @ with M =1,¢ =
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Figure 2.13: Streamlines in sinusoidal wave frame for (a) Q = 0.5 (b) Q=1.2
with fixed Re = 5.0,M = 0,a = 0.4, ¢ = 0.2
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Figure 2.14: Streamlines in multi-sinusoidal wave frame for (a) Q = 0.5 (b)
Q = 1.2 with fixed Re = 5.0,M =0, = 0.4, ¢ = 0.2
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Figure 2.15: Streamlines in triangular wave frame for (a) Q = 0.5 (b) Q = 1.2 with
fixed Re =5.0M =0,a =04, ¢ =0.2
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Figure 2.16: Streamlines in trapezoidal wave frame for (a) Q = 0.5 (b) Q= 1.2
with fixed Re = 5.0,M = 0,a = 0.4, ¢ = 0.2
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Figure 2.17: Streamlines in sinusoidal wave frame for (a) Re = 1 (b) Re = 5 with
fixedQ=12,M =0,a =04, ¢ =0.2
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Figure 2.18: Streamlines in multiple sinusoidal wave frame for (a) Re = 1 (b)

Re =5 withfixedQ=12,M =0,a =04, ¢ =0.2
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Figure 2.19: Streamlines in triangular wave frame for (a) Re = 1 (b) Re = 5 with
fixedQ=12,M =0,a =04, ¢ =0.2
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Figure 2.20: Streamlines in trapezoidal wave frame for (a) Re = 1 (b) Re = 5 with
fixedQ=12,M =0,a =04, ¢ =0.2
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Figure 2.21: Variation of stream lines in wave frame for sinusoidal wave shape for
@ M=0()M = 2againstQ=1.2,Re =5.0,a = 0.4, ¢ =0.2
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Figure 2.22: Variation of stream lines in wave frame for multiple sinusoidal wave
shapefor (@) M =0 (b) M = 2 againstQ = 1.2,Re =5.0,a = 0.4, ¢ = 0.2
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Figure 2.23: Variation of stream lines in wave frame for triangular wave shape for
@ M=0()M = 2againstQ=1.2,Re =5.0,a = 0.4, ¢ =0.2
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Figure 2.24: Variation of stream lines in wave frame for trapezoidal wave shape for
@ M=0(b)M = 2againstQ=1.2,Re =5.0,a = 0.4, ¢ = 0.2.
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2.5

Conclusions

Finite element simulations for peristaltic flow in an inclined channel are carried out

against higher inertial effects and short wavelength. The numerical results of longitudinal

velocity, streamline and pressure rise per unit wavelength are graphically displayed for

several values of wave number, Reynolds number, Hartmann number and inclination

angle without using any assumption. It is found that the results obtained for higher values

of Reynolds number and wave number are significantly different from their counterparts

based on long wavelength and low Reynolds number assumptions. The main observations

of the present study are summarized as follows:

The longitudinal velocity decreases near the center of the channel due to increase
in Reynolds number and wave number. However, it increases near the center of
the channel with increasing Hartmann number. In fact, it is due to the reasons that
for larger values of Reynolds number, the inertial effects become dominant over
the viscous effects. In such circumstances due to decrease in viscous effects
increase in the neighborhood of the wall. To maintain the prescribed flux, the
velocity near the center will increase. Moreover, when wave number increases the
inertial effect are also increases and therefore velocity decreases near the center of
the channel with respect to wave number.

The velocity at x = 0 cross section is less sensitive in the range0 < a <
1land 1 < Re < 20, respectively.

The magnitude of trapped bolus increases in every wave frame by increasing
Reynolds number (Re) and Hartmann number (M).

Pressure rise AP, increases in the pumping region with increasing Reynolds
number, Hartmann number and inclination angle. However, it decreases with
increasing Froud number.

The vorticity diffuses from the peristaltic wall to the center of the channel center
with increasing Reynolds number. In fact, the flow acceleration near the
boundaries with increasing Reynolds number is responsible for this purpose of

diffusion of vorticity.

59



Chapter 3

Heat Transfer Analysis of Peristaltic

Motion in a Channel

In this chapter, computational study of heat transfer through peristaltic motion with heat
transfer effect in two dimensional channel at high Reynolds number are presented.
Galerkin Finite element method has been applied to the governing equations. First,
governing Navier-stoke’s equations with heat equation are reduced into stream-vorticity
form (¥ — w) and then Galerkin Finite element method is applied to obtain equation
without using any assumption to acquire the streamline and Isothermal line. The obtained
results are compared with the published results for the validation of the computed results.
The longitudinal velocity at x = 0 cross section, temperature profile and pressure rise per
wave length are presented graphically against different value of emerging parameter. It
concludes that the obtained computational results are effective beyond the long

wavelength and low Reynolds number limits.

3.1 Governing Model

Consider the unsteady two-dimensional, incompressible flow of Newtonian fluid in an
infinite channel with width 2a. The upper wall is maintained at temperature maintained
at T, and center of the channel maintained at temperature T,. The flow is caused by a
wave train travelling with velocity c. X — axis is chosen along the channel and Y — axis
is normal to it. (See Figure 3.1). The moment of wall of the channel H(X", t*) defined by
Eq. (2.1) and using the velocity relations from lab frame to wave frame is defined in Eq.

(2.7), the governing equations in wave frame of reference is given by

g (31)
ax'  dy' '

ou’ oy ou\  adp' N 0%/’ N 0%/’ (32)
P\"ox ™Y ay')  ox’' # ax'?  ay'?) '
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,617’+ AN 6p’+ 6217’+62v’ (3.3)
P\ ax TV 9y ) T oy T\ G2 ay'?) '
T AT (0T 9P -
PCp| U dx' v ayl =K axIZ ayIZ QO :

and the boundary condition are as follows
ou' _ 0 =0 aT’ _ 0
oy’ oay’ '
, 2mb _ (2mx’
u =g, v = —Slﬂ( 1

A
where n(x") is defined in Eq. (2.11). As both planes y' = 0and y’ = n(x") constitute

at y' =0, (3.5)

), T'"=T, at y' =nx), (3.6)

the streamline in the moving frame of reference, the volume flow rate g’ in the moving
frame is constant at all cross section of the channel. Thus, the following boundary
conditions are obtained

Y' =0 at y' =0, Y' =q at y' =n). (3.7)
Where 1’ is the stream function and the relation ¢’ = Q' — ca holds between flow rate

q’ and Q' in wave and lab frames respectively. The dimensionless variables are defined

as
x' y' u’ v’
X ==, y==, u=—, v=— (3.8)
a’ Y’ q' n(x")
= — (' = — = — = 3.9
14 /Wp ), ¢ o 1= n(x) PR (3.9)
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_T'-T, 5= Qoa?
T, =T, K'(Ty —To)

Using the velocity stream function relation u = % andv = a% in Eqg. (3.1) to (3.4) and

0 (3.10)

eliminate the pressure gradient terms yield the following system of equations

2 2
ll} Y _
— 3.11
a® Fre) ay , (3.11)
JYow 0JYow 5
—_—— 12
ke (ay ox 0x 6y> Ve, (3.12)
61/) a6 oY 69 5

where Re = caa /v, Pr =puc,/x', a =a/A and B are Reynolds number, Prandtl
number, wave number and heat generation parameter respectively. The boundary

conditions defined in Egs. (3.5) to (3.7) are reduced in the following form

0%y Y 08

= — T — - — = = 3.14
Y =0, 372 0, 3 0, 3 0 at y=0, (3.14)

Y Y .
Y =gq, 3y - -1, I 2ngsin(2nx), 6 =1 at y=n(x). (3.15)

In which
v du 02 02

=la=——— 2=q?—+— 3.16
w (a: i ay) and V?= a? 32 >+ FVEA ( )

3.2 Finite Element solution

For the numerical analysis of current model, the governing Eq. (3.11) to (3.13) subject to
boundary conditions defined in Eq. (3.14) and (3.15) are solved using finite element
method. The code is developed in MATLAB with the help of built in pdetool function. In
the literature, a lot of work is carried out for the peristaltic flow under long wavelength
and low Reynolds number limits. Our objective is to solve the complete set of equations
to discuss the influence of Reynolds and wave numbers on the quantities of interest. In all
cases, highly convergent results have been obtained in about 2-4 number of iterations
using quadratic triangular elements. The first step of finite element method to

approximate stream function, temperature and vorticity is to assume
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n n
lp:zpkl/)k’ 9=2Pk9k, a)=ZPkwk, (317)

where Py, Yy, 0, and w; are shape function, element nodal approximation of stream

function, temperature and vorticity respectively. Then Galerkin finite element is applied

on Egs. (3.11) to (3.13) and can be written as

fwl <a 5 lf+#+a)>dlpda) =0, (3.18)
Q
Yo oY o 0?2 0%w
f W, (Re (a—lp%— %a—w) _ <a % + a_>) dpdw = 0, (3.19)
) y y %
oYao oy oo %0 020
j w3 <RePr (%a - %@) - <a 2 + 6y2> ﬁ) dydw =0, (3.20)

where w;,w, and wy are weight function. After simplifying Egs. (3.18) — (3.20), we

obtain
6w1 Y ow, oY P
oW, 0¥ 3.21
f(“ ox ox T 9y oy 1“’)d9 fwla dr, (3:21)
Q r
Yow JYow ow, 0w dw, 60)) _
f Rew, <6y ax  ox ay) da+ f (“ ax ox T oy ay) 0=
“ “ (3.22)
f Jw ar
W on &
r
Yo oy ae ,0ha6 3o
] RePTW3 (Ea—a@> dQ — j W3 (Cl @a—a@) dQ —
¢ (3.23)

Q
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Upon using Eq. (3.17) into Egs. (3.21) to (3.23), the following algebraic system is

obtained
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= Biwi+ Y Agp =K, (324
i i

D g+ Re Y Copthueo; = 0, (3.25)
i i
Z A2,0, + RePrz CEi6; = SK° + pS*, (3.26)
i i

where A%; and Cy;; are convective matrix, By; is mass matrix, Dy; diffusion matrix and

e -
Sk and $*" are force vector defined as

dP,dP; 0P, 0P
e. = 2__l __l e 3.27
ki f(a dx 6x+6y 6y>dﬂ' (3.27)
Qe
BE, = f P P.dOC, (3.28)
Qe
dP,dP; OP; 9P,
e = [p (Z0Z0_ZH0%) jge 3.29
Ckl] f k(ay Ox Ox ay d ) ( )
Qe
Sk = j P,dT, (3.30)
r
Ske = f P,S,dr. (3.31)

r
The system of Egs. (3.27) to (3.29) are combined to global system defined as

KU =F, (3.32)

where element of matrix K, U and F are defined as

—Bi ki 0 Wy SK°
Kij = il' ReC,?l'j(l)l' 0 , Uk = lpk , Fk = 0 (333)
0 RePrCgjp; —Ay 0y Sk® 4+ psk*

The global systems of matrix defined in Eq. (3.33) are solved iteratively using Newton-
Raphson method until required convergence is achieved.
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3.3 Pressure Evaluation

Pressure rise per wave length is obtained through numerical integration of pressure
gradient. Since peristaltic motion is based on infinite train sinusoidal wave so, it is
sufficient to calculate the pressure only at middle part (y = 0) of the unit wave domain.

Pressure gradient obtained directly from the Navier-stoke equation in the form of ¥ — w

as follows
0 0% o 0%y o ad
P _ pe (I WOV _0¥ W) 00 (3.34)
0x dy? d0x 0xdy dy dy
ov _ . ,(0%oy 8% oy dw
@ = Rea <6x2 3y axay % aE, (3.35)
The mathematical expression of pressure-rlse in wave frame is defined as
AP, = f a—p (3.36)
0

where dp/dx is pressure gradient along x - axis which is obtained from the two

dimensional steady Navier-Stokes equations.
3.4 Results and discussion

This section provides the detail of computation results made in terms velocity and
temperature profile at x = 0 cross section, streamlines and Isothermal line in wave frame,
pressure rise per wave length against different related parameters including Reynolds
number (Re), volume flow rate (Q), Prandtl number (Pr), heat generation parameter (),

the wave number (a) and amplitude ratio (¢).

3.4.1. Validation
For validation is important for every developed code therefore, we compared the present

results with the existing result of Jaffrin (1973) at different amplitude ratio and wave
number. Figure 3.2 shows the computed pressure rise (AP;) per wavelength for different
values of ¢ at Reynolds number Re = 1.0 and wave number a = 0.05 against time mean
flow rate (Q) and compared with the results of Jaffrin (1973). It demonstrates that the
obtained computed results are very closed to with perturbation solution of Jaffrin (1973).
Figure 3.3 shows pressure rise (AP;) at different values of wave number a against time

mean flow rate (Q) with fixed Re = 1 and ¢ = 0.5. It is observed that the method used
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as finite element method is accurate and valid against perturbation solution Jaffrin (1973)
against small wave number.

3.4.2. Velocity and Temperature Profile

The velocity profile u and the temperature profile 6 at x = 0 cross section against time
mean flow rate (Q), Reynolds number (Re), the wave number (a), amplitude ratio (¢),
heat generation parameter (8) and Prandtl number (Pr) are shown in Figures 3.4 to 3.9
respectively. Figure 3.4(a) show that when flow rate (Q) increases, the longitudinal
velocity u(0, y) increases at inlet/outlet section of wave, while rapid increase is observed
in temperature profile against time mean flow Q (see Figure 3.4(b)). The behavior of
velocity and temperature profile against Re is observed in Figures 3.5. Figure 3.5(a)
shows that the longitudinal velocity u(0, y) increases near the center of the channel and
decreases near the peristaltic wall with increasing Reynolds number. On the other hand,
Figures 3.5(b) shows that the temperature profile increases at whole section by
increasing Reynolds number. The longitudinal velocity u(0,y) increases near the
peristaltic wall when wave number increases and after it, the reverse behavior are
observed near the center of the tube as shown in Figure 3.6(a). It accomplishes that the
velocity behavior against Reynolds number and wave number are inversely proportion at
inlet/outlet part of the wave. On the other hand, temperature sharply increases at center of
the channel for large wave number (see Figure 3.6(b)). The velocity and temperature
profile at different amplitude ratio ¢ are shown in Figure 3.7. It is noted that the velocity
raises sharply at the center of the channel against small amplitude ratio while temperature
profile minimizing by reducing amplitude ratio. Moreover, Figures 3.8 and 3.9
respectively shows that when g and Prandtl number (Pr) increases the temperature
enhances near the middle of the channel.

3.4.3. Streamline and Isothermal line

Figures 3.10 to 3.15 show the behavior of the streamlines and the Isotherms lines at
different time mean flow rate (Q), Reynolds number (Re), Prandtl number (Pr) and heat
generation parameter () respectively. In Figure 3.10, it is observed that the trapping
bolus increases with increasing time-mean flow rate Q and moves towards the wall. Also,
boluses are remove at the center of the wave by increasing time mean rate Q. Figure 3.11
shows that trapping is not much significantly effected against higher inertia effects, that
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IS, minor increase in bolus observed when Reynolds number is taken 100. The isothermal
lines against time mean flow rate Q are shown in Figure 3.12. It exhibits that at small
time mean flow rate Q, the temperature effects are minimum in the fluid flow. When time
mean flow rate increases upto 2.2, the heat effects are seen to be prominent in the flow
field. Moreover, the heat effects are dominant in the middle section (y = 0) of the
channel. These consequences are also observed in temperature profile. The same effects
are exhibits in Figure 3.13 for the case of Reynolds number. It is observed that the
temperature is not significantly effected when Re < 10, but when Reynolds number is
taken upto 50 the heat effects are more prominent at center and converging part of the
wave. Moreover, more isothermal lines appear at inlet part of the wave. The temperature
effects against heat generation parameter are exhibit in Figure 3.14. It is observed that by
increasing heat generation parameter, heat effects are dominant in the flow field. It is also
noted that at small value of heat generation parameter, the temperature effects are
observed at entire region of the flow field. On the other hand, when value of heat
generation parameter increases the temperature effects are observed near the peristaltic
wall. In Figure 3.15, opposite effects is observed in case of Prandtl number Pr as
compare with that of heat generation parameter 8. That is, by increasing Prandtl number,
temperature effect reduces near the peristaltic wall. It is also noted that the temperature
effects are dominant at centered part of the channel. Moreover, the number of isothermal
lines increases by increasing the value of Prandtl number. The vorticity effects are shown
in Figure 3.16 at different Reynolds number. It is observed that vorticity lines cover
maximum part of the wave against small Reynolds number but when Reynolds number
increases vorticity lines are shifted either near the center or near the wall. It concludes

that local rotation of the fluid is maximum near the wall at high Reynolds number.

3.4.4. Pressure
The graphically representation of pressures rise as a function of time mean flow rate Q at

different value of Reynolds number and wave number are shown in Figure 3.17 and
Figure 3.18 respectively. It is observed that pressure rise per wave length is linear for
small value of Reynolds number but when Reynolds number is large, the variation in
pressure rise per wave length against time mean flow rate become changed is not linearly.

It is also noted that when time mean flow rate is less or equal to 4.5, pressure increases
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against high Reynolds number and further increase in time mean flow rate helps to
reduces pressure. This observation is also perceived for the case of wave number but

increasing region of pressure against Q reduces i.e. pressure increase at large value of
wave number when Q < 3.75.

Figure 3.2: Computed pressure rise (solid line) is compared with Jaffrin (1973)
(dashed line) at Re = 1.0 and a = 0.05

0 0.02 0.04 0.06 0.08 0.1
0

Figure 3.3: Pressure rise against different values of wave number and comparing

with Jaffrin (1973) (dot) at small wave number with fixed Re = 1.0 and ¢ = 0.5
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Figure 3.10: Streamlines for different time mean flow rate at Re = 10,¢ = 0.5, Pr =
0.7, = 0.5
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Figure 3.11: Streamlines for different Reynolds numberat O = 1.0,¢p = 0.5,Pr = 0.7, a =
0.5
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Figure 3.12: Isothermal lines for different time mean flow rate at Re = 10,¢p = 0.5, Pr =
0.7, =0.7and a = 0.5.
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Figure 3.13: Isothermal lines for different Reynolds number at O = 1.0, ¢ = 0.5, Pr =
0.7, =0.7and a = 0.5.
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Figure 3.15: Isothermal lines for different value of Prat Q0 = 1.4,¢ = 0.5, = 0.7, Re =
10 and a = 0.5.
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Figure 3.16: Vorticity line for different values of Reynolds number at 9 = 1.0,¢ =
0.5 Pr=0.7,=0.7anda = 0.5
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Figure 3.17: Pressure rise against time mean flow rate for different value
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Figure 3.18: Pressure rise
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3.5 Conclusion

This chapter represents the numerical study of heat transfer analysis for two-dimensional
peristaltic motion in channel at high Reynolds number and wave number. Finite element
method is used to obtain the numerical solution graphically. The velocity, streamlines,
isothermal lines and pressure rise per wave length are plotted against different parameter
involved in governing equations. The present study is compared with famous analytical
solution of Jaffrin (1973) against different amplitude ration and wave number. It is found
that the present result agree well with the result of Jaffrin (1973) at low Reynolds number
and wave number. It is noted that Jaffrin (1973) used perturbation technique to find the
solution of peristaltic motion which is valid only small value of parameter. On the basic
of this validation the present study extended for large value of Reynolds number and

wave number. The following points are summarized from the current study.

e The thermal effects are more for water based fluid as compare to gases.

e Large thermal effects are observed at higher time mean flow rate.

e It is observed that the bolus appear at entire reign for small time mean flow rate
and move to carets region when time flow increase.

e The temperature effects enhance sharply by increase Reynolds number, time
mean flow, heat generation parameter and Prandtl number

e By increasing Reynolds number, the velocity reduces near the wall, but increases
by increasing wavelength.

e The obtained computed results are agreed well with the perturbation results of
Jaffrin (1973) so the results also valid for high Reynolds number and wave
number.

e By increasing wavelength and Reynolds number the pressure are also rises in the

pumping region.
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Chapter 4

Peristaltic Motion of Non-Newtonian

Fluid in a Channel

The aim of the present chapter is to analyze the computational results for non-Newtonian
peristaltic flow against moderate Reynolds number. Micropolar fluid considered as a non-
Newtonian and the Galerkin finite element method has been applied to solve the
governing equations. First, the governing equations representing the micropolar fluid
flow are reduces into stream-vorticity form (¥ — w) and then Galerkin finite element
method is applied to obtain the solution without using any assumption to acquire the
streamline, vorticity, pressure and velocity profile. The influences of parameters involved
with numerous feature of peristaltic motion are exhibited graphically and discussed in
detail. The study reveals that the pressure rise increases in pumping region for micropolar
fluid and the trapping bolus rises by increasing the value of Reynolds number due to

velocity increase near the center of the channel.

4.1 Governing Model

Consider the peristaltic motion in a channel of width 2a which is filled with the
incompressible micropolar fluid. The motion of the wall is considered sinusoidal wave
with constant speed ¢ along the wall. Movement of the boundary in the fixed frame
(X*,Y*) is defined in Eq. (2.1). The schematic diagram of the considered flow situation is
shown in Figure 4.1. To make the analysis, we are interested in the solution of the
problem under consideration in the wave frame of reference (x', y") which is related to
fixed frame (X*,Y™) through the transformations defined in Eq. (2.7). The governing

problem in wave frame takes the following form
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Figure 4.1: Geometry of the peristaltic channel flow.
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af  of 92! azf'> <6u’ v’
"NuW —+v —|==2kf"+7y' +—|—-k|lm—+— |+
ol ( ox' 0y’> ey <0x’2 dy' ox' 0y’ (4.4)

(@' + B +y)V(V.f),

where u' and v' are the components of the velocity in x’ and y'directions, f'is the micro
rotation parameter, J' is the microgyretion parameter, u is classical viscosity coefficient,
a’, ' and y'are spin gradient viscosity coefficients and « represents the vortex viscosity
coefficient. According to Eringen (1964) a', B',v', u and k must satisfy the following
inequalities

3a'+8'+y' 20, Y 2Ip', k=0, 2u+ x>0 (4.5)
It is important to mention here that if 3a’ = g’ =y’ = k = 0, then micro-rotation
becomes zero and Eqs. (4.2) and (4.3) reduces to classical Navier-Stoke’s equation. It
also noted that ifx =0, the velocity and micro-rotation are uncoupled and hence the
global motion remains unaffected by the micro-rotation. Movement of the boundary wall
in the wave frame is given in Eq. (2.11) and the boundary conditions of the problem are
defined as

au,_ [ [ [
a—y,—O, v"=0, f'=0 at y =0, (4.6)
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2nh <2nx’

u' =g, v’=Tsm i > ff=0 at y' =nk"). 4.7)

Introduce the following dimensionless variables

X y u v
x=7! yzz; uz?l vz?l (48)
e I _n(x")
f_cr p—lcﬂp(x); .]_azl T](X)— /1 . (49)
Defining the stream function y through the relations
_ oy _ oY
u = ay, v—aax. (410)

After eliminating pressure terms, Eq. (4.2) to Eq. (4.4) takes the following form in terms

of vorticity (w), stream function (y) and micropolar rotation (f)

L)
T oy T Y (4.1)
Wow Wiy 1 ,
Re(ay dx dx 6y> S N-1 (Vo = NVf), (4.12)
1= N\ /Y of dpaf 2-N
Rej <—N )(@a—aa)=w—2f‘|‘ 3 Vi f, (4.13)

where Re = caa/vis Reynolds number, N =«k/(u+ k) is the coupling number

(O<N<1), a=a/2 is the wave number, ¢ =bh/a is amplitude ratio and

m? = a’k(2u + )/ (¥'(u + k)) is the micropolar parameter. The boundary conditions

defined in Egs. (4.6) and (4.7) in terms of stream function become

0%y oY

(')_yz_o' @—O; f=0 at y=0, (4.14)
fh/)_ 1 alp—z in(2mx) =0 at =n(x)
T i npsin(2nx) f=0 at y=n(x). (4.15)

The additional conditions on stream function y are

Y=0aty=0andy =qaty=0. (4.16)
These conditions are consequently of the prescription of constant flow rate g at each

cross section. The dimensionless flow rate q(= q*/ac) in wave form is related to the
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dimensionless time-mean flow rate in fixed frame Q (= Q"/ac) through the expression
Q =g+ 1. It is pertinent to mention that for slow flow under the lubrication

approximation these equations are reduced to those given Kumar and Naidu (1994).

4.2 Numerical Analysis
In order to simulate the modeled problem numerically, the governing Egs. (4.11) to

(4.13) subject to the boundary conditions defined in Eqgs. (4.14) - (4.16) are solved using
finite element method in the finite region. In all the cases, highly convergent results have
been obtained in about 2-4 number of iterations. It is very important to choose suitable
software for numerical simulations and MATLAB is known to be the best performance
software for numerical simulations due to its user friendly environment and availability
of familiar mathematical notations. MATLAB program manipulates matrices and vectors
easily and has built-in graphics features to help readers visualize the numerical results in
two dimensional plots. Graphical presentation of numerical data is important to interpret
the finite element results (Young (1991) & Ferreira (2009)). Because of these benefits,
we solve our problem by using in MATLAB software after converting the governing
equations into a system of algebraic equation through Galerkin finite element approach.
The domain is discretized in terms of non-uniform meshing and quadratic triangular
elements by using pdetool in MATLAB. The dependent variables, stream function,

vorticity and microrotation parameter are approximated as follows

1/)=Zn:Pk¢k: w=§nzpkwk: f=zn:Pkfkr (4.17)
k=1 k=1 k=1

where ¥, w and f;, are element nodal approximation of 1, w and f. The value n = 6 is
taken in our case for quadratic triangular elements. The Galerkin finite element method is
applied to the governing Eqgs. (4.11) to (4.13) as

0%y 0%y
J Wy <azﬁ+6_yz+w> dQ =0, (4.18)
Q
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0Yow 0YPow 1 0w 0*w
RRe (222 - 2222 i B
dy 0x 0dxdy/ 1-N d0x? = 0y?

wa N 0’w 0*w da =0, (4.19)
_ 2
“ 1—N<a 6x2+6y2> /
1— N\ o0pof oya 2—N ik ik
Rd(___)(;ﬂ_f__f_f)_ > <a2 €+- €>+ _
w3 N dy 0x 0x dy m dx?  dy dQ =0 (4.20)
Q 2f —w

where wy, w,and w4 are weight function. After simplifying Eqgs. (4.18) to (4.20), we

obtain

ow, 0y dw, 0y P
et S Rt i = —

j (a d0x 0x * dy dy Wlw) e} ,[ ™ dr, (4.21)
o) r

oYow 0Pd 1 dw, 0w 0w, d
fRewz(—lp—w——lp—w)dﬂ+—fw2(a2£—w+ 2 w)dQ—

dy 0x 0x dy 1—-N dx Ox 6y@
Q
(4.22)
1 ow, df 6w20f> 1 ow N oY
—_— Ity —== dﬂz—f —dl“——f —dI,
1-N (a 6x6x+6y6y 1-N Wzan 1-N Wzan
Q r r
1-N oY af alpaf) 2—Nf( ows df dwsdf
Re] | —— ——————=—]dQ 2~ — ——)dQ
ej( N ),fw3<6y6x axay) T )\ P o T oy ay) T
Q Q
(4.23)

2—N GV,
2ngfdﬂ —jw3wdﬂ =m—JW3—ndF,

2
Q Q r

where Q represents the area integral of the element and I"represents the line integral of
the element. Introducing Eqg. (4.17) into Egs. (4.21) to (4.23) and considering the

discretized domain, we can write
- Z Biiw; + Z Afpy = S, (4.24)
i i

1 N e e
T 2 Ao+ Re ) Gl — 7=y ) Afi = SE +SE, a2
i i) i
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klfl + Re] z Ckl]l/) fl + 2 z Bklfl Z Bklwl - Srlf;' (4 26)

In which

P, 0P, 0P, dP;
M= f(a —x +—k—l>dQe,

ki dx 9x | dy dy (4.27)
Qe
By = f P P,dQ°, (4.28)
Qe
e — f p o0P; 0P, 0P; 0P 10
kij = “\3y ox _ 9x ay ) (4.29)
Qe
gke _ j p.dr, (4.30)
r
S,’f; = f P.S,dl’  where m = 1,2. (4.31)
r
The global system of algebraic equation in matrix form is defined as
KU = F. (4.32)
in which
—By; Al 0
;Ae- ReCy;:w; N -
Kij =1 NHK kij&i 1— N K I (4.33)
—Bg; Re]mcfijlﬂi oz ki t 2B
ke
o, [ 5 ]
U= |y |, Fie = |om 1 5m2 | (4.34)
2—N e
Hk m?2 nz

The global systems of matrix defined in Eq. (4.32) are solved iteratively using Newton-

Raphson method the required convergence is achieved.
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4.3 Pressure Evaluation

Pressure rise per wave length play an important role in peristaltic motion. It can be
obtained through numerical of pressure gradient. Since peristaltic motion based is on
infinite train sinusoidal wave so it is sufficient to calculate the pressure only at middle
part (y = 0) i.e at center of the unit wave domain. Pressure gradient obtained directly

from the Navier-stoke equation in the form of Y — w that is

®\9y2ax ~ axay ay 1—N6y+1—N@' (4.35)

dap oXpoy 0%y oY 1 \odw 1 \of
@=Rea2<——— —)+a(—)a—a2(—)a- (4.36)

d0x? 0y 0xdy Ox 1-N 1-N
The mathematics pressure-rise per wavelength at center of the channel y = 0 in the wave

- = Y __ T 7\ __- -

w_ <aZ¢a¢ aZ¢a¢> 1 dw 1 of

frame is defined as

AP;L =
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in Figure 4.3. It is visually perceived that the velocity profile is unimodal between the
range 1 < Re < 10 and become bimodal at Re = 20. It is observed that the velocity is
inversely proportional near the middle of the channel against moderate Reynolds number
and directly proportional near the wall. Tables 4.1 and 4.2 show the numerical value of
velocity profile at x = 0 by taking the amplitude ratio ¢ = 0.4. In both tables, the small
change is observed against micropolar parameter (m) and couple stress parameter (N). It
is seen that the velocity increase near the middle part of the channel against micropolar
parameter while decreases in case of couple stress parameter. On the other hand, the
velocity values reduce when m increased and exceed when N increased near the wall. In
other words, one can say that the behavior is inversely proportional against micropolar

and couple stress parameter in the flow field.

4.4.2 Trapping and Vorticity

The phenomenon of construction of circulation bolus inside flow the fluid to form like
closed streamline is known as trapping. These trapped boluses are pushed ahead with
peristaltic wave. To observe the consequence of the coupling parameter and Reynolds
number on the trapping phenomena, the streamlines and contours of vorticity are shown
in Figures 4.4 to 4.7 respectively. In these figures, it is observed that the size of trapped
bolus decrease when the coupling number increases. It means that by the increasing the
coupling numbers the velocity of the fluid in channel decrease. It is also seen that by
increasing the value of coupling number the vorticity remain same as that of wave shape
near the peristaltic wall. The opposite behavior is observed in case of Reynolds numbers,
that is, the velocity increase near the wall due to increase in Reynolds number. In Figure
4.4, it is observed that the size and the number of trapped boluses also increase. In Figure
4.5, for smaller values of Reynolds number, the vorticity lines becomes smooth and dense
near to the center part of the channel instead of crest region, and vorticity are
concentrated near the dilating part of the channel. However, the lines of maximum

vorticity penetrate to the center of the channel with increasing the Reynolds number.
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4.4.3 Pressure Field

To see the effect of different parameters on pressure field, draw the graphs of pressure
rise per wavelength AP, are drawn which involves the complex integration of dp/dx.
The numerical integration is carried out to solve such integrals and displayed graphically
the result of different parameters of interest in Figures 4.8 to 4.12. The comparison of
results of pressure rise per wave length against time mean flow rate Q is made with that
of Kumar and Naidu (1994) as a limiting case. Figure 4.8 shows that the present
numerical results are good argument with the numerical result of Kumar and Naidu
(1994). It builds the confidence that the present numerical results is valid for Non-
Newtonian fluid and give noble results. Figures 4.9 and 4.10 show the variation of
pressure gradient AP, for different value of micropolar parameter m and coupling number
N respectively. It is noted that the peristaltic pumping rate increases by increasing the
coupling parameter where m = 0 corresponds Newtonian fluid case. The greater values
of coupling parameter N in the free pumping shows definite increase in pressure gradient
against time mean flow. The same behavior is observed for coupling number N. The
result for Newtonian fluid case is also shown in the same figure. Figure 4.11 illustrates
the pressure rise per wavelength and flow rate relationship for different values of a. Here,
it is found that for a fixed value of prescribed flow rate Q, AP, in pumping region
(Q > 0,AP, > 0) increases with increasing a. The effects of Reynolds number Re on
AP; in pumping region for a fixed value of flow rate is observed similar to the effects of
a (Figure 4.12). Figures 4.13 and 4.14 show the friction force against Reynolds number
(Re) and coupling number (N). It is observed that for greater Reynolds number, the
friction force decreases against large values of time mean flow rate. It is also noted that
the friction force increases rapidly at zero time mean flow rate. However for coupling
number, the friction force region increases by increasing coupling numbers in positive
pumping. Here, it concludes that by increasing coupling number, fluid resistance inside

the flow region enhances.
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Table 4.1: Longitude velocity distribution u(x, y) for different values of m at fixed set of
parameters Q = 1.2,Re = 10,N = 0.2,a =0.1,¢p =0.4and ] = 0.1

-y uky

m=2 m=4 m=~6

0 0.9563 0.9534 0.9516

0.1 0.9067 0.9037 0.9019

0.2 0.7639 0.7615 0.7604

0.3 0.5037 0.5037 0.5038

0.4 0.1179 0.1210 0.1228

0.5 -0.3669 -0.3635 -0.3615

0.6 -1.0000 -1.0000 -1.0000

Table 4.2: Longitude velocity distribution u(x, y) for different values of N at fixed set of
parametersQ = 1.2,Re =100m =2,a =0.1,¢ = 0.4andJ = 0.1

y u(x,y)

N=0.2 N=0.4 N=0.6
0 0.9563 0.9711 0.9825
0.1 0.9067 0.9165 0.9233
0.2 0.7639 0.7652 0.7654
0.3 0.5037 0.4983 0.4945
0.4 0.1179 0.1118 0.1085
0.5 -0.3669 -0.3698 -0.3699
0.6 -1.0000 -1.0000 -1.0000
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Re=0,¢=050a=0,N=02,J=0,m=0.2

Figure 4.2:Comparison of present results (solid lines) for longitudinal velocity
distribution for different values of Q Hayat et al. (2007) (dotted)
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Figure 4.3: Longitudinal velocity distribution for different values of Re at fixed
0=12,a=01,N=0.2,j=01m=2and ¢ = 0.5
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N=0.2 N=04

Figure 4.4: Variation of streamlines in wave frame for different values of N with fixed
valuesof Q=1.4,Re=10,m =3,a =0.5,¢p =0.4andj = 0.1
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N=0.2 N=04

Figure 4.5: Variation of vorticity for different values of N at fixed values of Q = 1.4,Re =
100m =3,a =0.5,¢ =04andj = 0.1
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Figure 4.6: Variation of streamlines in wave frame for different values of Re at fixed values
ofQ=14,N=0.2,m=3,a =0.5¢ =04andj = 0.1
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Figure 4.7: Variation of vorticity for different values of Re at fixed values of Q = 1.4, N =
02,m=3,a=05¢=04andj =0.1
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Figure 4.8:Comparison of computed Pressure distribution (solid line) for different
values of Re with that of Kumar et al. (1994) (dashed line) against m = 0,a =
0.25,¢p =04andj =0
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Figure 4.9: Pressure rise per wave length for different values of m with fixed
Re=5a=0.01,¢ =06,N=0.2andj = 0.1
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Figure 4.10: Pressure rise per wave length for different values of N with fixed
Re=5a=0.01,¢ =06,m=2andj =0.1
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Figure 4.11: Pressure rise per wave length for different value of @ with fixed
Re=5m=2,¢=06,N=02andj=0.1
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Figure 4.12 Pressure rise per wave length for different value for Re with fixed
m=2,a=001,¢=06N=0.2andj =0.1
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Figure 4.13: Friction force against time mean flow for different values of Re with
fixedm = 2,a = 0.01,¢ = 0.6,N = 0.2andj = 0.1
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Figure 4.14: Friction force against time mean flow for different values of a with fixed
Re =5a=0.01,¢ =06,m=2andj =0.1

4.5 Conclusions
The flow of micropolar fluid in a channel induced by peristaltic waves is formulated and

analyzed numerically by using finite element method. The results of obtained stream
function, vorticity and micropolar rotation against different involved physical parameters
are shown through graphs. The longitudinal velocity and pressure rise per wavelength is
also calculated as post computation. It concludes that the pressure rise increases for
micropolar fluid and greater than that of Newtonian fluid in the pumping region. The
velocity decrease by increase in the value of coupling parameter in the whole region
while the velocity decrease near the center of channel by increasing the value of
parameter however reverse behavior is noted near the boundaries. The streamlines does
not disturbed by taking large value of Re. It is also noted that there is no retraction by

choosing the value of any parameters.
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Chapter 5

Hydromagnetic Peristaltic Flow in an

Inclined Tube

This chapter contains the computational study of MHD peristaltic motion for
axisymmetric flow problem. The developed model is presented in the form of partial
differential equations. Then obtained partial differential equations are transfer into
stream-vorticity (¥ — w) form. The Galerkin Finite element method is used to obtain the
computational results of governing problem. The computed results are validated against
the existing well known results at low Reynolds number and wave number in the limiting
case. It is ensured that the present results are highly accurate and in close agreement with
the existing results in literature. Therefore, it is effective for higher values of Reynolds
number and wave number. The variation of streamline is predicated are present

graphically against high Reynolds numbers.

5.1 Governing Model

Consider the axisymmetric incompressible peristaltic flow through in an inclined tube of
length 2a with inclination angle y filled with the Newtonian fluid. The motion is wall
considered sinusoidal wave with constant speed c along the wall. The uniform magnetic
field B, is applied in the transverse direction of the flow. The geometry of the flow is

presented in Figure 5.1. The moment of the boundary in fixed frame is defined as

(5.1)

2n(Z* —ct
H(Z*,t) = a — bcos I#l,
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Figure 5.1: Axisymmetric peristaltic flow in a tube.

where a is the mean distance of the wall from the central axis, b is the wave amplitude
and A is the wave length, c is the velocity and t* is the time. The governing model in

fixed frame is presented in terms of partial differential equations is given by

1 a(R*UY N ow* 0
R* OR* oz*
ou* ouU* aP* 4 (1 0(R'UY\ 0d2U*
o(V 3k W 577) (&3

(5.2)

- _ - 5.3
ar " Az or TR\ ar ) oz racosy. B3
(U* ow* W aW*> 0P N
P\” R 0z°) = "9z
(5.4)
1 0 (R* c’)W*) N o*w* B2W* + _
R or\" BR*) " gz2 770 pgstny.
The boundary conditions of the governing problem are
ou”
57- =0 W'=0, at R"=0, (5.5)
0H
Ur=0, W"=— at R*=H, (5.6)

ot
The Neumann boundary condition on U* at R* = 0 arises for symmetric flow and the

boundary condition U* =0 at R* = H is due to no-slip condition at the wall. The
condition W* = 0 at R* = 0 means that transvers velocity is zero at the center of the
channel and condition W* = dH/dt at R* = H represents that the normal velocity at the
wall is equal to the normal velocity of fluid. To transform the governing equation from

lab frame to wave frame, the following relation is introduced
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r'"=R*, z'=Z"—ct, w =W*"-¢, u =U (5.7)
where (Z*,R*) are axial and radial component of velocity in fixed frame and (z’,r")in
moving frames of reference. As both planes ' =0and r' =n(z") constitute the
streamline in the moving frame of reference, the volume flow rate g’ in the moving frame
is constant at all cross section of the channel. Thus the following boundary conditions are
obtained

Y'=0onr" =0 Y =q on r=nz). (5.8)
The relation between time mean flow rate in wave and laboratory frame is defined as

2
q' =0 — ca? (1 + %) in which ¢’ and Q' are time mean flow rate in moving frame

and fixed frame respectively and ' is stream function. The dimensionless variables are

defined as fallows

w u z r
w=—, u=—, zZ=—, r=—
c c A a
a2 ql lpl T]I (
P /1,ucp' 1=’ v ca T
e = 2 _a
e=—-a, a=-

Eliminate the pressure gradient and introducing stream function relation u = %alp/az

and w = —}alp/ar, the final form of governing equations and boundary conditions in

terms of stream-vorticity form are as follows

T ) = e 610

() -5 @) -prew an

P =0, %(%z—f)=0, ‘;—f:o on r=0, (5.12)

Y =gq, %g—lf = -1, Z—f = 2n¢sin2nz on r =n(z). (5.13)
202 | 92

where D? = « — %% is modified Laplacian.

0z2 or?
5.2 Finite Element solution
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In present study, the governing Egs. (5.10) and (5.11) subject to the boundary conditions
(5.12) and (5.13) are solved numerically. The present study is based on full form of
equations without applying any assumption which leads the governing model into higher
orders nonlinear PDE. The exact or analytical solution are fail to produce good result.
Therefore a rapid convergent, more accurate and efficient numerical method is used to
solve higher order nonlinear PDE. The Galerkin finite element method is used to solve
governing Egs. (5.10) and (5.11). For this purpose, the domain is discretized in terms of
non-uniform meshing with the help of built in pdetool function in MATLAB. In all the
cases, highly convergent results have been obtained in about 2-4 number of iterations.
Upon using quadratic triangle elements, the dependent variables, stream function and

vorticity are approximated as follows

n n
Y= P, @=) Py (5.14)
k=1 k=1

where Py, Yy, and w, are shape function, element nodal approximation of stream
function and vorticity respectively . The weak formulation is applied to governing Egs.
(5.12) and (5.13) as follow

a2y 9 19y
f w, Re <Z—f%($) - Z—f%(%) - %Dz(rw)) dQ =0, (5.16)

where dQ = 2nrdrdzis domain of the problem, w; and w, are weight functions.
Simplifying Eq. (5.17) and Eq. (5.18), we get

a’ow, 0y Ow, /10y oY
— — S [ = — 5.17
f(r 0z az+ or (r 01") W1w>dﬂ fW1 andr' (.17)
Q r
oY 0 jw O0Y 0 sw 5 ow, 10y
(Y- (Z =T 5.18
jWZRe<6r az(r) 0z ar(r)>dQ+M f(ar rar)dﬂ-l_ ( )
Q Q

105



or r or r 0z 0z

dw, 10 2 9w, d 9 9
f wp10(rw) | @ 0w, (rw) dﬂszz—l/}dF+M2fW2—¢dI‘,
on on
r

where dI' = nrdrdz is line integral on the boundary. The following system of equation is
obtained after introducing Eq. (5.16) into Egs. (5.19) and (5.20)

- z Byiw; + z AL = SK°, (5.19)
i i

Rez CrijPiw; +2Aii“)i +M? z DE; = M2SK, (5.20)
i i i
where
a?dP, 0P; 0P, (10P;
e i k i
= . el Tl Pl Q 5.21
ki j(r 0z 0z+6r(r6r)>d' (621)
Qe
B, = kaPid-Qr (5.22)
Qe
o0P; 0 (P; 0P; 0 (P;
e _ 0k 0 (Y _9%5 9 (K 5.23
Chij fpk<6r 62(1‘) 0z 6r(r>>dﬂ' (6:23)
Q
1 /0P, 9P,
e — | (XX 5.24
Die fr(@r 6r>dﬂ (5.24)
Q
And Sk = f P, S dT. (5.25)

r
The system of Egs. (5.21) and (5.22) are combine to global system defined as

KU=F, (5.26)

where

_Blil Ail Wy S‘rlfe

Kij - Ail ReC]fij(J)i + MzDsi ! Uk - [lpk] ’Fk - MZS‘,Ife ' (527)
The global systems of matrix defined in Eq. (5.28) is solved iteratively using Newton-
Raphson method.
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5.3 Pressure Evaluation
Pressure rise per wave length is obtained through numerical integration of pressure

gradient. Since peristaltic motion is based on infinite train of sinusoidal wave, so it is
sufficient to calculate the pressure only at middle part (y = 0) of the unit wave domain.
Pressure gradient can also obtained directly from the Navier-stoke equation in the form of

1 — w. The mathematical expression of pressure-rise in wave frame is defined as

A

dP
= | —dz. 5.28
AP)L f dz dz ( )

0

5.4 Result and discussion
This section provides the details of computation results made in terms of velocity profile

at z = 0 cross section, streamlines in wave frame, pressure rise per wave length against
related parameters including Reynolds number (Re), amplitude ratio (¢), volume flow
rate (Q), and Hartmann number (M). All obtained results are prepared graphically and
discussed in detail in following subsection.

5.4.1 Validation and Pressure
To ensure the validity of the computed results for axisymmetric flow, it is compared with

the famous result of Shaprio et al. (1969) as the limiting case and found in good
agreement. Shaprio et al. (1969) results are based on long wavelength and low Reynold
numbers assumptions so it is not valid for moderate Reynolds number. The comparison
of present pressure rise per wave length with Shaprio et al. (1969) results against time
mean flow Q is shown in Figure 5.2. It is observed that the present computational results
at low Reynolds number and long wavelength assumption for different amplitude ratio
are matched well with the results of Shaprio et al. (1969). Therefore, the confidence is
high that the present study is valid for moderate values of Reynold number Re and wave
number a. Figure 5.3 shows the pressure rise per unit wave length against volume flow
rate Q for different value of Reynold numbers. It is noted that, pressure increases in
positive pumping region by increasing Reynolds number (Re), while it decrease in co-
pumping region. It is also observe that the pressure become linear by neglecting inertia
effects and the curvature effects are dominant in positive pumping region against large

inertia effect. Figure 5.4 shows the pressure rise per unit wave length against time mean
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flow rate for different Hartman numbers. It is noted that pressure increases in the interval
0 < Q <£0.75 and decrease in the interval 0.75 < 0 < 1.

5.4.2 Velocity filed
Figures 5.5 to 5.8 show the longitudinal velocity u for different values of volume flow

rate Q, Reynolds number Re and magnetic parameter at z = 0 cross section. Figure 5.5
shows the variation of velocity at z = 0 cross section at center of the tube for different
magnetic parameters when time mean flow rate is fixed at O = 1.4. It is observed that the
velocity is maximum at Reynolds number Re = 18 for small Hartmann number. When
Re > 18, the velocity at center of the tube (r = 0) decrease and stable for larger Re. It is
also observed that by increasing Magnetic field, the velocity increases at the center of the
tube in the range of 0 < Re < 18. The velocity profile at different Reynolds number at
z = 0 cross section is shown in Figure 5.6. It determines that for large Reynolds number,
the velocity increase sharply at the center of the tube (r = 0) and reduces near the wall.
It concludes that the inertia forces is helpful to enhance the velocity of the fluid in the
tube. The velocity against different volume flow rate is shown in Figure 5.7. It
determines that velocity increases in the entire region of peristaltic wave and less
curvature effects are observed against small volume flow rate. In Figure 5.8, the minor
change is observed in velocity profile due to Hartman number, that is, by increasing
magnetic field, the velocity enhances near the center of the tube and reduces its strength
near the wall.

5.4.3 Trapping and streamlines
A part of fluid motion enclosed by a streamline separated from the axis in the wave frame

is called trapping. Figures 5.9 to 5.10 show the trapping phenomenon against inertial and
magnetic effects. It is observed that large number of bolus appear against small inertial
effects and number of bolus reduces at high inertial effects when amplitude ratio is fixed
at ¢ = 0.7 and time mean flow rate at O = 1.4. It is also noted that the streamline near
the center of the tube are tends parallel to z-axis for large value of Reynolds number. It
concludes that for high Reynolds number, the flow become laminar at center of the tube.
The magnetic effects on streamline at amplitude ratio ¢ = 0.7 and time mean flow rate
QO = 1.4 are observed in Figure 5.10. From figure, it is observed that the trapping bolus

appear near the middle section of the peristaltic wave. It is noted that more bolus appear
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near the convergent part of peristaltic wave. Moreover, when Hartman parameter
increases, the behavior of streamlines remain same but small change is observed in
boluses. It predicts that the magnetic field is helpful to enhance the velocity of the fluid

inside the peristaltic tube.
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50¢ = = =Shapiro et al. (1969)

401

30+

APL

207

10}

0,

_10 ! ! ! !
0 0.2 04 0.6 0.8 1

0

Figure 5.2: Comparison of computed pressure rise against Q with that of Shaprio et
al. (1969) when @« = 0 and Re = 0
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Figure 5.3: Pressure rise for different value of Re against Q with fixed ¢ = 0.3,¢ =
5 M =2,Fr =1andsin(y) = 0.3
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Figure 5.4: Pressure rise for different value of M against Q with fixed a =
0.3, =.5Re =1,Fr =1andsin(y) = 0.3
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Figure 5.5: Variation of Velocity field against Reynolds number for different value

of magnetic parameter witha« = 0.3,¢p = .5and Q = 1.2
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Figure 5.6: Variation of velocity against r for different values of Reynolds number
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Figure 5.8: Variation of velocity against r for different values of Hartmann number
M with fixed @« = 0.3,¢p =.5,Re=5and Q0 = 1.2
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Figure 5.9: Streamline effects at different value of Reynolds number with fixed a =
01,0 =07,M=2and Q=14
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Figure 5.10: Streamline effects at different value of Hartmann number M with fixed
a=01¢=07Re=5and Q=14
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5.5 Conclusion
The computational study of MHD peristaltic motion for Newtonian fluid in an

axisymmetric tube is discussed out in this chapter. The finite element technique is used to
find the numerical solution without using any assumption and discusses velocity profile,
pressure rise and streamlines behavior at moderate Reynolds number and wave number
which is not available in any of earlier studies. The present results are also compared
with that of Shaprio et al. (1969) at Re = 0 and a = 0 for validation and found in good
agreement. The main findings of the present study are

e Maximum longitude velocity at z = 0 and r = 0 achieved at Re = 18 for small
magnetic effect. After increasing Reynolds number, velocity decreases and
become stable at high Reynolds number.

e Longitude velocity increases by increasing magnetic effects at center of the tube
and decreases near the wall.

e Longitude velocity increases at z = 0 by increasing time mean flow rate Q.

e Pressure rise per unit wave length sharply increases in positive pumping region by
increasing either Reynolds number or Hartmann number and decreases in co-
pumping region.

e More trapping boluses appeared near the diverging part of the wave by increasing

Hartmann number
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Chapter 6

Hydromagnetic Heat Transfer Analysis of

Peristaltic Flow in Tube

The aim of present chapter is to present MHD heat transfer analysis for axisymmetric
peristaltic flow through a tube y. The developed model is presented in the form of partial
differential equations. The obtained partial differential equations are transformed into
stream-vorticity (¥ — w) form. The Galerkin Finite element method is used to find the
computational results of governing problem. The obtained numerical results of velocity
and temperature profile, pressure, streamline and Isothermal lines are shown graphically
and discussed in detail. The obtained results are ensured valid at moderate Reynolds
number on the bases of preceding study. It is concluded that higher values of the
Reynolds number are not independent of the time mean flow rate.

6.1 Governing Model

Consider an incompressible axisymmetric Newtonian fluid flow thought a tube of length
2a. The wall temperature is consider at T;and temperatue at center of the tube is T,,. The
constant magnetic B, field is applied in the transvers direction of the tube and the wall
speed c. Figure 6.1 shows the geometrical representation of the peristaltic motion. The

motion of the fluid along the wall can be expressed as

2n(Z* —ct
H(Z*,t) = a — bcos I%l

(6.1)

where a is the mean distance of the wall from the central axis, A is the wavelength and b
is the wave’s amplitude. The transformations relating the laboratory frame and to the

wave frame are
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bttt

Fig. 1. Geometry of a two-dimensional peristaltic tube.
r'"=R* z'=72"—ct, w=W"-¢, u =U" (6.2)
where z' and r' are the axial and radial components velocity in the moving frame and
Z*and R* are those in the laboratory frame. As both planes r'=0and r' =
n(z") constitute the streamline in the moving frame of reference, volume flow rate g’ in

the moving frame is constant at all cross section of the tube. Thus the following boundary

conditions are obtained
Y'=0 ar' =0 Y =q at r=n(z). (6.3)
The relation between time mean flow rate in wave and laboratory frame is defined as

2
q' =0 — ca? (1 + %) where ¢’ and Q' are time mean flow rate in moving frame and

fixed frame respectively and ¢’ is stream function. The dimensionless variables are

defined as fallows

z r w u
zZ =—-—, r=—, w=—, u=—,
A c c c
a’ P’ q' n(z")
= —7p' = — = — = 64
14 MCP(Z), Y o 9=4 P (6.4)
B o' b R _ca _a
Q_caz' ¢_a' ey “=72
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After eliminating the pressure gradient terms and introducing w=%61/)/az and

u= —§a¢/ar, the governing momentum and temperature equations in term of the

stream-vorticity function are as follows:

a?dty 4 10y
a2 (2ZE) = = 6.5
r dz%  Or (r ar) @ (6.5)
P o oy 9P ) 1, , 0 10y
Re (aa(ﬂ aa(ﬂ) 0 -wE(5) 69
10900 0poey
______ = ) 6.7
Reprr(araz 0207’) vio+p 6.7)
where V2= azaa—;+ %%(r aa—r) and the modified Laplacian is defined as D? = asz—;
92 10 . . ..
7 T oo The following boundary conditions are applied:
_aayy oy 98 - (6.8)
=0 5(ar)=0 5=0 oA =0
10 0 :
Y =q, ——lpz—l, —lp=2nq,’>sin2nz, 0 =1 at r = h(z). (6.9

0z

r or

The governing partial differential equation (6.5) to (6.7) governs the flow presented in the
stream-vorticity formulation in which M is the Hartmann number, Re is the Reynolds
number, B is the heat generation parameter and Pr is the Prandtl number. The Reynolds
number corresponds to the ratio of the inertial force to the viscous force. The non-zero
moderate value of the Reynolds number ensure the dominance of the inertial forces that
ware neglected in earlier investigations. The Hartmann number corresponds to the ratio
of the electromagnetic force to the viscous force, and high value of Hartmann number

represent strong magnetic fields.

6.2 Finite Element solution

The governing Egs. (6.5) to (6.7) subject to the boundary conditions given in Egs. (6.8)
and (6.9) are solved numerically without imposing any assumptions. For Galerkin’s

formulation based finite element method, the problem domain is to discretize into mesh
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of quadratic triangular elements. First, we approximate the stream, vorticity and

temperature functions as follows:

n n n
Y =2Pk1/)k» w =Zpkwk' 0 =zpk9k (6.10)
k=1 k=1 k=1

where y,, w; and 8, are the element nodal approximations for ¥, w and 6 respectively
and Py, is shape function. Galerkin’s finite element approach is applied to the governing
equations, (Eq. (6.7) to Eq. (6.9)), as follows

! i (ar Zf* 5= ?aw) w) da =0, (6.11)
9 9 9y 9 1 9 /10y
f w2 Re (E&é) - &a(% ‘FDZ(Tw)+M25(;§)> da=0 (612

0y 0y oo 029 106 a?d%6

wio _dwoe v @0 —0, (6.13

fW3Re (arar 6zaz)dﬂ+fw3<6r ot T th)=0 (6139
Q

where wy, w, and ws are weight functions, Q is the domain of the element, and dQ =
2nrdrdz. Simplifying Egs. (6.13) to (6.15), we get

a‘dwy 0y ow; 10y P
T — = — 6.14
j(r 0z 0z o or (r (')r) wyw |dQ fW1 on dr, (6.14)
Q r
oY 0 Y 0 5 ow, 10y
fWZRe(Oraz( ) azar( )>dQ_M f(@r ;E>dﬂ+
Q
ow,190(rw) a?dw,d(rw)
Z 27 7 = 6.15
f < Jor r Or + r 0z 0z do ( )

o , oy
[w2ar— v [ w2,
r r
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1/0yY068 0y o6 6w3 00 169
RePr | wy—|——=————]dQ — aq +

T ar ar rar
Q Q Q

(6.16)
<aw3 ae> dQ — a0 dr =0,
a J. 57 97 fw3[3 +fw3—
Q Q

where T is the length of the side of the element and dI" = mrdrdz. Upon using Eg. (6.10)
into Egs. (6.14) to Eqg. (6.16) and considering the discretized domain, we have

ZBklwﬁZAilwl = s (6.17)
Rez Cieijhiw; +2A wi—MZEDiiwss,’:e—M%’f, (6.18)
i
= D A15,0;+RePr ) Ciyi0; = S+ S, (6.19)
i i
where
a?dP, 0P; 0P, (10P;
pe = [ (L4 IN ( ) Q 6.20
ki j(r 6zaz+6r r or dq, (6:20)
Qe
oP, 0P, 0P, dP,
it = | (@5 5+ 5 )@ 620
Qe
op; 0 P, 8 (P,
iy = | M (ar =)~ a—za(ﬂ)dﬂ' (622
Q
By = f Py P;dQ, (6.23)
Qe
P, 10P
i | (G ) an (6:24)
Q
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Sk = f P Sidl’ and S¥° = f PydT. (6.25)
r r

The partial differential equations (6.7) to (6.9) are solved iteratively until highly

convergent result with tolerance of 10~1* has been obtained. The global system in matrix

form is defined as

KU=F, (6.26)
where
—Bj; ki 0 (6.27)
Kij=| Ak ReCgjo;—M?Dg; 0 |
0 ReCyi; —Afyi
Wi Ske (6.28)
Ay = wkl, F, = | sk = m2sx|
0 SK + ps*

are element matrices.

6.3 Pressure Evaluation

One of the important part of peristaltic motion is pressure rise per unit wave length (AP;)
which is obtained from numerical integration of pressure gradient. Since peristaltic
motion is based on infinite train of sinusoidal wave so, it is sufficient to calculate the
pressure only at middle part (y = 0) that is central of the unit wave domain. The pressure

rise per unit wave length (AP,) can be computed by using the following expression

A
d
APy = J d—Zdz, (6.29)
0

d : . . . .
where d—z can easily be obtained directly from Naiver-Stokes equation in the form of

stream-vorticity (y — w)directly.
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6.4 Numerical results and discussion

This section provides the detail of numerical results obtained using finite element
method. The obtained results made in terms velocity and temperature profile at z = 0
cross section, streamlines and isothermal lines in wave frame, pressure rise per unit wave

length (AP;) against volume flow rate (Q) are prepared and discussed graphically.

6.3.1 Velocity and Temperature profile

The variations in the velocity against various values of the time mean flow rate Q for
Re =1 and Re =5 at z = 0 cross section are shown in Figure 6.2. It observed that
when inertial force is dominant, the velocity at the center of the tube increases for small
time mean flow rate, but decreases for large time mean flow rate. Figure 6.3 presents the
variation in the velocity profile for fixed large time flow rate, small amplitude ratio and
small Hartmann number. It is observed that when the inertial forces are dominant, the
velocity raises sharply near the center of the tube (r = 0). The effect of the MHD
parameter (M) on the longitudinal velocity profile at the z = 0 cross section is shown in
Figure 6.4. It is noted that the magnetic field is applied on the wall of the tube in the
directions of the fluid, the pattern of the longitudinal velocity changes from the center of
the tube to the wall of tube at r = 0.35. It is further noted that reversed flow occurs near
the wall of the tube when M = 3. Further, the magnetic field decreases the longitudinal
velocity at any r near the wall of the tube until its effects are diminished. Figure 6.5 is
drawn to show the effect of the wave number « on the longitudinal velocity profile w at
the z = 0 cross section. It is noted that the velocity profile near the wall and around the
center of the tube are opposite to each other for 0.3 < a < 0.6. Figure 6.6 show that the
temperature increases at any r due to increase in the time mean flow rate parameter Q.
The increasing time mean flow rate Q from 1.4 to 1.7 is responsible for the increase in
the temperature profile near the center of the tube is pertinent. Similarly, the Prandtl
number Pr also helps to increase the temperature at z = 0 cross section, as shown in
Figure 6.7. Moreover, heat effect enhances for water base fluid as compare to gases. The
effect of internal heat generation parameter £ on the temperature profile as a function of r
is shown in Figure 6.8. It is observed that the heat generation parameter also helps to

increase the temperature at z = 0 cross section for any r. The effect of MHD parameter
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M on velocity profile is shown in Figure 6.9. The significant effect of the MHD
parameter M on the velocity profile, as shown in Figure 6.4, is responsible for the
temperature profile, as shown in Figure 6.9, and this fact is widely used in magnetic

resonance imaging (MRI) and other biomedical treatments.

6.3.2 Pressure

The pressure rise per unit wavelength as a function of the time flow rate Q for different
values of the magnetic parameter and the Reynolds number are shown in Figures 6.10
and 6.11, respectively. It is observed that the pressure rise per unit wavelength as a
function of the time mean flow rate O becomes linear for small values of the magnetic
parameter and Reynolds number. For large the magnetic parameters, small effects are
observed in the pressure rise per unit wavelength. On the other hand, when the Reynolds
number becomes larger, prominent effects are observed for the range of the time mean
flow rate 0 < Q <0.6. It is also observed that the pressure in the positive pumping region

increases and that in the co-pumping region decreases.

6.3.3 Streamline and Isothermal line

Figure 6.12 shows the behavior of the streamline for Reynolds numbers 1 and 5. It is
observed that when inertial forces are small, the number of trapping boluses increases
rapidly because of a small change in the velocity field, but when inertial forces dominate
i.e. Re = 5 the size of trapping bolus are reduce. The effects of the magnetic parameter
on the streamlines are shown in Figure 6.13. The size of bolus increases with increasing
the magnetic parameter for the streamlines. The effects of isothermal line are shown
Figures 6.14 to 6.16. Figure 6.14 shows that the isothermal lines are not much effected
due to small inertial forces, but due to increase in inertial forces, more isothermal lines
are observed near the wall opposite to the direction of the flow. Figure 6.15 shows less
temperature effect against small Hartmann Number, but the effects of temperature are
larger near the inner section of the flow field at M = 3. It is concluded that by increasing
the value of the parameter M, the temperature effect in the flow field increases. The
effects of the Prandtl numbers are shown in Figure 6.16. It is observed that in case of
water, i.e., Pr = 7, the temperature effects are enhanced at the end section of the

peristaltic region.
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Figure 6.2: Longitudinal velocity as a function of radial position r for different
values of the time mean flow rate Q.
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Figure 6.3: Longitudinal velocity as a function of radial position r for different

values of the Reynolds number Re.
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Figure 6.4: Longitudinal velocity as a function of radial position r for different

values of the magnetic parameter M.
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Figure 6.5: Longitudinal velocity as a function of radial position r for against

different values of the wave number a.
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Figure 6.6: Temperature profile as a function of the radial position r for different

values of the time mean flow rate Q
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Figure 6.7: Temperature profile as a function of the radial position r for different

values of the Prandtl number Pr
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Figure 6.9: Temperature profile as a function of the radial position r for different

value of magnetic parameter M.
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Figure 6.10: Pressure rise as a function of time mean flow rate Q for different

values of the magnetic parameter M.
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Figure 6.11: Pressure rise as a function of the time mean flow rate Q for different

values of the Reynold numbers Re.
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Figure. 6.12. Streamlines against Reynold numbers Re of 1 and 5 with fixed
parameter ¢ = 05,M =3, =0.2,0=12,Pr =0.7,5 =0.7.
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Figure. 6.13: Streamlines for different value of the magnetic parameter M at 1 and 3
with fixed parameters ¢ = 0.5,Re =1, =0.2,0 =1.2,Pr = 0.7, = 0.7
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Figure 6.14: Isothermal lines for different Reynold numbers Re of 1 and 5 with
fixed parameter = 0.5,M =3, =0.2,0=1.2,Pr=0.7, = 0.7
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Figure 6.15: Isothermal lines for various value of the magnetic parameter M at 1
and 3 with fixed parameters ¢ = 0.5,Re =1, =0.2,0 =1.2,Pr =0.7, = 0.7
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Figure 6.16: Isothermal line for different Prandtl numbers Pr = 0.7 and Pr = 7.0
with fixed parameters ¢ = 0.5, Re=1, a =0.2,0=1.2,=0.7
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6.5 Conclusion

Computational study of MHD heat transfer axisymmetric peristaltic flow in a tube is
presented in this chapter. The finite element technique is applied to obtain the numerical
results. The obtained computed results of velocity and temperature profile, streamline and
isothermal lines, pressure rise are presented graphically at high Reynolds number
assumption. It is observed that the longitudinal velocity at z = 0 cross section increases
sharply near the center of the tube. The same behavior is observed in case of time mean
flow rate Q and Hartmann number, but this fact reversed in case of wave number that is
velocity decreases by increasing wave number. It is also concluded that the velocity is
observed maximum at Re = 15 for small magnetic field. The temperature profile
increases near the center of the tube by increasing Prandtl number Pr and heat generation
parameter 8 and decreases by increasing Hartmann number. It concludes that magnetic
field is helpful to reduce the temperature profile. It is also concluded that for higher value
of M, the trapping bolus increases due to the increase in velocity of the fluid. Moreover,
temperature effect reduces by increasing Reynolds number, Prandtl number and
Hartmann number. Non-uniform increasing observed in pressure rise by increasing

inertial effects and magnetic effects.

134



Chapter 7

Peristaltic Motion of Micropolar Fluid
through a Tube

The purpose of this study is to analyze the numerical solution of peristaltic motion for
micropolar fluid through a circular tube at high Reynolds number. The numerical solution
of this type of model are challenging because its governing equation are of higher order
nonlinear partial differential equation. Therefore an efficient numerical technique is used
to find the numerical solution. The Galerkin finite element method is most power full
technique to solve the obtained higher order nonlinear PDE’s. The governing model first
covert in to stream-vorticity form (i} — w) and then Galerkin finite element approach is
used. The current study obtained the microrotation and streamline line directly from
governing equations. Velocity and pressure rise are also plotted for different parameter. It
is observed that for small value of coupling number and microrotation parameter, the
rotation of fluid particles is much faster than that for large value of coupling number and

microrotation parameter.

7.1 Governing Model

Consider an axisymmetric peristaltic motion of non-Newtonian incompressible fluid
through a tube of length 2a. The motion is considered due to sinusoidal wave with

constant speed c along the wall. The motion of the fluid along the wall can be express as

(7.1)

H(Z*,t) = a — bcos {M},

A

where a is the mean distance of the wall from the central axis, A is the wavelength and b
is the wave amplitude. The transformation relating between laboratory frames and wave

frames are
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,rl — R*, ZI — Z* _ Ct, WI — W* _ C, ul — U*, (7.2)

where z’ and r' are the axial and radial components velocity in the moving frame and
Z* and R are those in the fixed frame. The transformed problem takes the form
V.V =0, (7.3)
p(V.WVW) =V.p" + (u+ k)V?V' + kV X F/, (7.4)
p]'(V.VF') = =2kF' —y'(VXVXF) +kV X V' +

(7.5)
(@' +B"+y)Vx (V.F),

Where V' and F’ are the dimensional form of velocity and microrotation vectors define
by V' = @'(z',r'),0,w'(z',r")) and F' =(0,f'(z',r"),0), pis density, p’ is fluid
pressure, /' is the microgyretion parameter, u is classical viscosity coefficient,
a', B' and y'are spin gradient viscosity coefficients and x represents the vortex viscosity

coefficient. According to Eringen (1964) u,k,a’, ' and y' must satisfy the following

inequalities
3¢’ +B'+y' =0, y = |B'], k=0, 2u+ k= 0. (7.6)
Movement of the boundary wall in the wave frame is given by the relation
2nz'
niz')=a-— bcos[ p l, (7.7)

As both planes v’ = 0and r’ = n(z") constitute the streamline in the moving frame of
reference, volume flow rate ¢’ in the moving frame remain constant at all cross section of

the channel. Thus the following boundary conditions are obtained

Y'=0onr' =0 ' =q" on r=n(z), (7.8)
The relation between time mean flow rate in wave and laboratory frames is defined as
q' =0 — ca? (1 + %2) where ¢’ and Q' are time mean flow rate in moving frame and
fixed frame respectively and ¢’ is stream function. The dimensionless variables are

defined as fallows

r=—, w=—, u=—, f:a' (79)
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a? ' q’ n(z")
P= e 2, ¥ w 9= =g (7.10)
o' b ca a
= —-— = - R —_— — = . 7.11
ppcy ) pr e a, a 7 ( )

After eliminating the pressure gradient terms and introducing w=§a¢/az and

u= —§a¢/ar, the governing momentum and microrotation equations with vorticity

equation in term of stream-vorticity formulation are as follows

a?d*p 9 (1o
T2z " a(;a—) =~ (7.12)
oY d wy 0Y 0 w 1 /1 N
Re (Ea_z(?) B ZE(;)) =1-N <; D?(rw) — 7Dz(rf)>, (7.13)
1-Noypof odypof 2-N1
keI N7 (EW‘E&)“‘"ZFF — ;- D*f) (7.14)

2 2
294 2 19 s modified Laplacian, coupling number define as

2
where D =« it 5

N=x/(u+k) where (0 < N < 1), and m? = a’ku+x)/(y(u+x)) is the

micropolar parameter. The boundary conditions become

9 1oy 10y ~ _ (7.15)
=0 5(5) =0 T30 f=0m r=o

19 10 7.1

Y =gq, __1/)=_1’ ——¢=27T¢sin27rz, f=0 on r=n(2). (7.16)

7.2 Finite Element solution

The nonlinear governing Egs. (7.12) to (7.13) subject to the boundary conditions defined
in Egs. (7.15) and (7.16) are solved numerically for moderate Reynolds number and long
wave length. The Galerkin’s formulation based finite element method is required to
discretizing the computation domain into a mesh of quadratic triangular elements. In all
the cases, a highly convergent result with tolerance of 10e-15 has been obtained into
maximum of 2-4 numbers of iterations. For first stapes, approximate stream function,

vorticity and temperature are expressed as follows
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:zn:Pkwk» IP:Zn:Pkl/Jk' f:ipkfkf (7.17)
k=1 k=1 k=1

where Yy, w, and f;, are element nodal approximation of ¥, w and f respectively. The

Galerkin’s finite element method is applied to governing Egs. (7.12) to (7.14) as follows

f " <ar gzw Tor C Z¢> “’) =0, (7.18)

/(Re (?Tf%(%) N Z_f%(w)> - ﬁ(l D?(rw) +\

f W2 l\ lada=0,  (7.19)
Q

¥D2<rf>) )

2 f) =0, (7.20)

O —
N
/N
=
Q
-
—_
=
=

where w,, w, and wsare weight functions and dQ = 2nrdrdz. After simplifying the Eq.

(7.18) to Eq. (7.20), we get

a’?ow, 0y Ow, 10y oY
= — 7.21
f(r 0z az+6 (ra) Wi | dQ) fwlandr' ( )
Q r

oy 0 o d 1 ow, 10(rw)
we [ (G5 () -3 (D)oo 2 [ (562

Q

a? ow, 0(rw) N ow, 10(rf) a?dw,d(rf)

_— — = = 7.22

r 0z (’)Z)dﬂ-'_l—Nj(arr ar +r dz 0z )dﬂ ( )
Q

1 f 00 r v N o ar
1-nNJ V2o 1-nNJ "2
r r

1-N dpow Y a
Rej fﬂ(—w—w——w—w)dﬂ—fw3wdn+2fw3fd9+ (7.23)

N 0z Or Or 0z
Q Q Q
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m2
Q

r 0z 0z ar

r or

2—N ow, 0 0 10 2—N d
J.af W3 f+ W3< f)dQ:—sz3_de’
m on
r

where dI' = nrdrdz. Introducing Eq. (7.17) into Eq. (7.21) to Eq. (7.23) and considering

the discretized domain, we have

—Z Bj;w; +2Aii¢i = Sk°,

Rez Cifijlpiwi
i

_z Biiw; +R€jmz Ceijhifi + zAl ifi + Zszlﬁ =
i i

where

Crij

2—N

nq

LT r 9z 0z = oOr rar ’

B, = J P P;dQ,

Qe
=Jp

oP; 0 ( > oP; 0 (Pl-> 40
or 9z 0z or \r ’
Q

dP, 1P,

e —_— — — —

D = J ((')r r (')r)dﬂ' and
Q

Sk = f P.S,dl' where t =1, 2.
r

The global system in matrix form is defined as

where

KU=F,
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(7.25)

(7.26)

(7.27)

(7.28)

(7.29)

(7.30)

(7.31)

(7.32)



[ —Bki ki 0 1

Kij=[N-1"" Y N-—1"%
] —N
—Bi;  Rej mcﬁufi 7 ki T 2Bg;
e (7.33)
a)k 1 ke " N ke
Ak: lpk],Fk: N_15n1+_N_1Sn2_
fr 2—N e
mZ Sn1 J

7.3 Pressure Evaluation

Pressure rise per wave length are obtained through numerical integration of pressure
gradient. Since peristaltic motion is based on infinite train of sinusoidal wave, so it is
sufficient to calculate the pressure only middle part (y = 0) central of the unit wave
domain. Pressure gradient can also be obtained directly from the Navier-stoke equation in
the form of ¥ — w. The mathematical expression of pressure-rise in wave frame is

defined as

A

d
AP, = f d—’;dz. (7.34)
0

7.4 Results and Discussion

This section present the graphical results of pressure rise AP,per wave length, velocity,
streamline, vorticity and microrotation against different value of Reynolds number (Re),
coupling number (N), time mean flow rate (Q) and micropolar parameter (m).

7.3.1 Pressure

For validation of present numerical results, comparison of computed results for the case
of low Reynolds number and long wave length assumption is made with the existing
results of Srinivasacharya (2003) and are shown in Figure 7.2. It is observed through
figure that present result of pressure rise per wave length AP; is in good agreement with
the result of Srinivasacharya (2003) against the coupling number N = 0.2 and N = 0.4,
and hence our analysis is valid. It makes the confidence and insure the validity of the
present study. Figures 7.3 to 7.5 show the pressure rise AP, against time mean flow rate

Q for different value of coupling number N, micropolar parameter m and Reynolds
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number Re respectively. In Figure 7.3, it is observed that by increasing the coupling
number N, the pressure rise AP, increases in the positive pumping region and decreases in
co-pumping region. It is also noted that the value of pressure rise AP, is larger for Non-
Newtonian fluid as compare to that of Newtonian fluid. The reverse behavior is observed
in case of micro-rotation parameter m in Figure 7.4 i.e. by increasing microrotation
parameter, the pressure rise AP, decreases. It is because, by increasing micro-rotation, the
motion of the molecules becomes slow and in consequence of the pressure rise
AP; decreases. The effects of Reynolds number (Re) on pressure rise AP, are shown in
Figure 7.5. It is observed that pressure rise AP; suddenly increases in pumping region

against higher values of Reynolds number.
7.3.2 Velocity Profile

The variations of velocity at z = 0 cross section are shown in Figure 7.6 to Figure 7.9.
In Figure 7.6 shows the velocity field at center of the tube against Re for Newtonian and
Non-Newtonian fluid cases. It is observed that maximum in velocity achieved for
Newtonian fluid at Re = 9 and for Non- Newtonian fluid at Re = 16 against coupling
number N = 0.4. Moreover, when Reynolds number further increases, velocity at the
center of the tube decreases. It concludes that, flow in peristaltic tube is stable at higher
value of Reynolds number Re and by increasing coupling number N, maximum velocity
value can be obtain for Re = 16. This behavior can also be observed from Figure 7.7 at
z = 0 cross section against fixed value of « = 0.4, ¢ =04, N=0.2, j =01, m=1
and Q = 1.5. Figure 7.7 shows that when Reynolds number increases the velocity
decreases near the wall. In Figure 7.8, small deviation is observed in case of coupling
number N near the wall and the center of the tube against « = 0.4, ¢ = 0.4, Re =5,j =
0.1,m =1 and Q = 1.5. It shows that coupling number N does not significantly effects
the velocity field inside the tube at Re = 5. On the other hand, velocity increases at
z = 0 cross section by increasing the time mean flow rate Q throughout the tube against
a=04 ¢ =04 Re=5,j=0.1 m=1and N = 0.2 as shown in Figure 7.9.

7.3.3 Streamline and Microrotation

The streamline and rotation of the molecule are shown in Figures 7.10 to 7.17 against

Reynolds number Re, coupling number N and micropolar parameter m. In Figure 7.10, It
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is observed that the size and number of bolus increases by increasing Reynolds number
Re. It is also observed that bolus appears only at crust region of the tube. The
microrotations for different Reynolds number are shown in Figure 7.11. It is observed
that by increasing the Reynolds number Re, the effects of microrotation of the particle is
significant at the end section of the wave. The effects of coupling number N on
streamline are shown in Figure 7.12. It is noticed that by increasing the coupling
parameter N, the size of bolus decreases due to the reason that the velocity of the fluid
decreases, but effects of microrotation of the particle decreases near the end section of the
wave as shown in Figure 7.13. Figure 7.14 reveals that micropolar parameter m does not
significantly effects the streamlines. It is also observed that the rotations of the particle
remain rapid at the center of the wave for small value of m and by increases m, the
rotation of particle decreases (see Figure 7.15). It concludes that, rotation of the particle
in more effected in case of small values of microrotation parameter. In Figure 7.16, it is
noted that large number of trapping boluses formed at the center of the crest region of the
peristaltic wave for small time mean flow rate. Furthermore, the reduction in the number
of bolus with magnified size is noted by increasing value of time mean flow rate Q. The
strength of microrotations is noted to be high for large values of time mean flow rate Q as
shown in Figure 7.17. The effects of microrotation of the particle are observed less for

small time mean flow rate and enhance when time mean flow rate increase.

7.3.4 Vorticity

The variation of vorticity against Reynolds number, coupling number, micropolar
parameter and time mean flow rate are shown in Figures 7.18 to 7.21. In Figure 7.18, it
is noted that for small value of Reynolds number, the vorticity appear at the trough region
of the peristaltic wave, but when Reynolds number increases upto 20, vorticity are
appeared near the center of the tube and the crest region of the peristaltic wave. In Figure
7.19, it is observed that maximum vorticity are concentrated near the dilating part of the
tube. Moreover, vorticity exist almost at crest region when coupling number increases. In
Figure 7.20, it is observed that the micropolar parameter does not significantly effect on
the vorticity. Figure 7.21, shows that maximum vorticity appear at the crest region of the
peristaltic wave for small time mean flow rate, but when time mean flow rate is

increased, the vorticity exist from the crest region of the peristaltic wave.
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Figure 7.2: Comparison of computed pressure rise against Q (solid line) with that
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Figure 7.10: Streamline at different values of Reynolds number against Q = 1.5,a =
04,0 =04,j=01,N=02andm=1

147



1 .5 T T T T
1 L
[ 0.37
—0.32 S028— 5
————
0 0.2 0.4 0.6 0.8 1

Figure 7.11: Microrotation effects at different values of Reynolds number against Q
=15a=04,¢=04,j=01,N=02andm=1

148



0.57

\ 0.30 024 0300 .

| 0.24 0.18 |
0.18

} 0.12 0.12 }

\ 0.06 0.06 |

0 ’ 1 1 1 1 ‘

0 0.2 0.4 0.6 0.8 1
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Figure 7.14: Streamline effects at different values of m against Q = 1.5, = 0.4,¢ =
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Figure 7.15: Microrotation effects at different values of m against Q = 1.5,a = 0.4, ¢ =
0.4,j =0.1,N =0.2and Re =5
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Figure 7.16: Streamline effects at different values of time mean flow rate Q against Re
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Figure 7.17: Microrotation effects at different values of time mean flow rate Q against
Re=5a=04,¢=04=01,N=02andm=1

154



-2.62

Re=20

149 885
0 0.2 04 0.6 0.8 1

Figure 7.18: Variation of vorticity at different values of Reynolds number against Q
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Figure 7.19: Variation of vorticity at different values of coupling number N against
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7.5 Conclusion

The finite element analysis of axisymmetric flow of micropolar fluid inside a tube
induced by peristaltic wave is carried out at high Reynolds numbers. The key point in the
current investigation is to discuss the effect of micropolar fluid in peristaltic motion
against higher value of Reynolds number. The pressure rise AP, per unit wave length for
time mean flow rate, velocity, streamline, microrotation and vorticity also discussed
through graphs. It is concluded that the velocity of the micropolar fluid is unaltered by
increasing the microrotation of the micro particle. Furthermore, for large value of
Reynolds number by keeping coupling number fixed at 0.4, velocity attains its maximum
value and increase in Reynolds number produces more resistance to the flow and attains
stable state. It concludes that the rotation of the fluid particle is slower against large value
of coupling number and faster against small coupling number N. Moreover, the number
of boluses and the size increases by increasing the Reynolds number and decreases by
increasing time mean flow rate. The micropolar parameter and coupling number do not
have much effect on trapping bolus. It is also noticed the rotation of the fluid particle is
faster for small coupling number, micropolar parameter and time mean flow rate. Further,
the pressure rise increases for micropolar fluids and remains greater in magnitude then
that of Newtonian fluids in the pumping region. It is also examined that vorticity lines are
maximum is the trough region of the peristaltic wave when coupling number, Reynolds

number and micropolar parameter are small.
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Chapter 8

Concluding Remarks and Future Work

8.1 Concluding Remarks

An analysis is carried out for peristaltic motion for MHD, heat transfer and micropolar
fluid against high Reynolds number and wave number in two-dimensional channel and
axisymmetric tube. Galerkin finite element method is used to obtained computation
results for the governing partial differential equations (PDE’s). Although, other
computation and numerical technique are also available like, finite difference method,
finite volume method, Adomian decomposition method etc., but these techniques have
some limitation on peristaltic models at high Reynolds number and wave number. The
main purpose of this study is to validate a numerical technique which is easily used to all
peristaltic models without using any assumption for both two-dimensional channel flow
and axisymmetric tube. It is very important to choose suitable software for numerical
simulations. MATLAB is known to be one of the best performance software for
numerical simulations due to its user friendly environment and availability of familiar
mathematical notations. MATLAB program manipulates matrices and vectors easily and
has built-in graphics features to help researchers visualize the numerical results in two
dimensional plots. The reason using Galerkin Finite element method is that it can be used
easily on irregular geometry or shape. Moreover, the mesh adoption in finite element
method is simpler as compare to that of finite difference technique and finite volume
method. Although, Takabatake et al. (1989) and Kumar and Naidu (1994) use finite
element method for peristaltic flow in channel, but these results valid only for small time
mean flow Q rate. In this thesis, the obtained computational results are valid at large time
mean flow rate Q, high Reynolds number and wave number in both two-dimensional
channel and axisymmetric tube. An interesting observation is noted in case of two

dimensional channel flow problem, that is, the longitudinal velocity reduces at high
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Reynolds number at center of the channel, when amplitude ratio is lesser than 0.5, but
when amplitude ratio become greater than 0.5, the longitudinal velocity enhances against
high Reynolds number at center of the channel. However, for axisymmetric flow
problem, the longitudinal velocity increases at the center of the tube by increasing
Reynolds number at any amplitude ratio from zero to full oscillation. It concludes that the
speed of flow is highly depending on the choice of amplitude ratio in channel flow
problem. The obtained computation results are compared with the existing theoretical
results of Jaffrin (1973) and Mekheimer (2008), numerical study of Dennis-Chang (1969)
and Takabatake et al. (1989) and experimental study of Weinberg et al. (1971) for
validation of present study in channel for different fluid model and find well agreement

and validity of the analyses.

The MHD effect of two-dimensional peristaltic flow in a channel and axisymmetric tube
at high Reynolds numbers are observed in chapters 1 and 5 respectively. It is noted that
by increasing time mean flow rate, the longitudinal velocity increases at whole region in
both channel and tube. Moreover, it is observed that the velocity decreases by increasing
Hartmann number near the wall at inlet/outlet region of the peristaltic wave in both
channel and axisymmetric tube while reversed behavior is observed at the center part of
the wave. It is also noted that pressures rise per wave length against time mean flow rate
increases linearly for two dimensional channel in the positive pumping region for
Reynolds numbers and Hartmann number. On the other hand, in case of axisymmetric
tube, pressure rise per wavelength against time flow rate increase nonlinearly in positive
pumping region. It is also observed that inclination angle enhance the pressure rise per

wave length in the positive pumping region.

Effect of heat transfer in two dimensional channel and axisymmetric tube of peristaltic
flow against high Reynolds number and wave number flow are discussed in chapter 3 and
chapter 6. It is noted that by increaseing Reynolds number, the velocity decreases near
the wall at inlet/outlet region of the peristaltic wave in both two-dimensional channel and
axisymmetric tube while increases at the center part of the wave in both cases when
amplitude ratio ¢ < 0.5. It is also noted that maximum velocity achieves at Re = 100 in

channel and at Re = 15 in axisymmetric tube. It concludes that velocity is comparatively
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faster in tube as compared with channel at small Reynolds number. On the other hand, by
increasing wave number, the velocity increases near the wall at inlet/outlet region of the
peristaltic wave in both channel and tube while decreases at the center part of the wave in
both cases. It is also observed that, the temperature profile increases by increasing
Reynolds number and decreases by increase wave number in both channel and
axisymmetric tube. Moreover, the temperature profile decreases by increase Prandtl
number and internal heat generation parameter in both two-dimensional and
axisymmetric flow problem. Furthermore, the heat effects are same against Reynolds
number, Prandtl number and internal heat generation parameter in channel and tube i.e.
heat enhances by increasing Reynolds number, Prandtl number and internal heat
generation parameter. It is also observed that the pressure rise per wave length
remarkably increase in positive pumping region in case of axisymmetric flow at moderate
Reynolds number while, in two- dimensional channel, it increases significantly. It
concludes that heat effect on peristaltic flow much faster in axisymmetric flow problem

in tube as compare to that in channel.

Effect of micropolar fluid in two dimensional peristaltic flow and axisymmetric
peristaltic flow against high Reynolds number and wave number are discussed in chapter
4 and chapter 7. It is noted that, the pressure rise per wave length against time mean flow
rate increases in pumping region for micropolar fluids for both two-dimensional channel
and axisymmetric tube. It is also noted that pressure rise per wave length in the pumping
region is greater for non- Newtonian fluid. Similarly, pressure increases at zero time flow
rate for high Reynolds numbers and decreases for higher time mean flow rate in both
channel and tube. It is also observed that the pressure rise per wavelength against high
Reynolds number increases remarkably in pumping region for axisymmetric flow
problem. It is noted that longitude velocity at the inlet/outlet region of peristaltic wave
decreases for non-Newtonian fluid at center of the channel and tube. It concludes that
speed of the flow is slower in non-Newtonian fluid as compare to that for Newtonian
fluid. Furthermore, the microrotation of the fluid particle increases for axisymmetric flow
problem while, in two-dimensional channel, microrotation of the fluid particle is not
much influenced. It concludes that rotation of the particles for peristaltic motion in tube is

much faster than channel flow.
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It is concludes that in peristaltic motion, the range of moderate Reynolds number against
different circumstance are highly dependent on values of volume flow rate. On the other
hand, the values of wave number are not depending on volume flow rate. Moreover,
velocity of the fluid flow is not significant effect against small or high wave number in

both channel and tube.

8.2 Future Motivations

Finite element analysis for two dimensional channel and tube is made in this dissertation.
There are many physiological and bio-mechanic problems in which the numerical
simulations still need to investigate at high Reynolds number and wave number in
channel and tube like blood flow through arterial stenosis, biomagnetic fluid, Non-
Newtonian fluids, flow through curved channel, asymmetric channel, steady flow, Nano
fluid etc. The present study can helpful to find the numerical solution of these problems.
The present study can also extend for three dimensional peristaltic flow in channel and
tube. The present analysis are also helpful in many industrial and engraining problem like
pumping characteristics in a plant for cooling process, flow passes through irregular
channel, flow through porous medium, two phases fluid, Nano fluid and many other fluid
flow problem. Some numerical software’s are available to find the solution of industrial
and engraining problem but these software’s are not helpful to solve complex problem
because many industrial problem based on simple linear phenomena. Moreover, these
software are too much costly. On the other hand, MATLAB can help us to simulate any
type of higher order nonlinear problem easily and therefore this thesis is helpful to find
the numerical solution any phenomena in many braches of physics.
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