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Preface

To think about a flow diverse types of flows start striking one’s mind, and most of such
flow are “Muitiphase flows”'. Natural flows are of great importance and special kinds
of flows that evolve the planet, for these all are comprising of more than one phase.
Most commonly encountered such flows, is a granular flow which takes place in the
form of floods, streams, avalanches, rain and dust storm etc. In practical point of view
chemical and pharmaceutical processes along with the treatment of industrial waste
involve the application of muitiphase through different compositions of structures, such
as by Farooq et al. [1]. They have analyzed a non-Newtonian fluid through a horizontal
plates, placed at some distance. In order to examine the shear thinning effects, Reynolds
model is brought under consideration. Mahabaleshwar et al. [2] use power series
solution for the analysis of Couples stress fluid. The flow dynamics are studied over a
plane sheet. Additional contributions of radiation and magnetic fields are also applied.
A numerical solution for an unsteady flow is reported by Saad and Ashmway [3]. The
Couette flow between the horizontal plates go through under the application of slip.
The modeled differential equations are obtained by introducing suitable transformation.
Akhtar and Shah [4] provide a routine solution for three different types of flows by
taking Couple stress liquid. An MHD and Couette flow of Couple stress fluid are
presented in [5,6] by employing uniform and non-uniform magnetic effects. An upper
moving wall generating the flow of Maxwell fluid in [7-8] by different authors applying
separate mathematical techniques. Some relevant individual and joint investigations of
researchers provide analytical and numertcal solutions given in the listed [9-15].

Shearing thinning effects due to temperature are reported by Poply et al. [16] on a

magnetized flow. The work by Ellahi et al. [17] is regarding a closed form solution of



nanoflow of third-grade fluid. They designed two different flow problems by taking
different viscosity models. A non-symmetric porous channel is considered of two-
dimensional flow in [18]. Heating effects at the boundary varies the physical property
of the liquid, besides the radiation. A comparative examination of fourth-grade fluid is
performed by Nadeem and Ali [19]. A cylinder of uniform in structure contains steady
flow. Ellahi et al. {20] give a numerical solution solid-liquid flow in a channel. The role
of a constant pressure gradient and slippage at the boundary change the dynamics of
magnetized flow. The help of numerical method such as Runge-Kutta with shooting is
used for temperature depended viscosity. Chemical reactions also effectively bring
change in the dynamics of viscoelastic fluid as shown in [21]. Makinde [22] presents
the contribution of gravity on a steady flow. Viscosity gets affected by external source
of heat placed adjacent to the surface of geometry. Similar kinds of investigation
pertaining to the attenuation of fluid viscosity can also been seen in [23,24].

It is a recognized that nano size particles of metals are promising agent of heat
enhancement. Normally, such particles are of size ranging from 1-100 nano-meter for
various practical reasons. Such of these particles are considered by Karimipour et al.
[25] in their survey. In which authors made analysis of heat and mass transfer
incorporated with MHD.

Zeeshan et al. [26] form a multiphase flow with nanoparticles to transport bio-liquid.
Jeffrey fluid being a main carrier transport the particles by following the peristaltic
phenomena. Nasiri et al. [27] successfully analyzed two-phase flow model. The
hydrodynamics of tiny particles and liquid are studied with a great skill. In [28]
researcher examined a turbulent flow of silver-water nanofluid. Since, silver has the
highest thermal conductivity. Some relevant references which highlight the significance

of nanoparticles in thermal enhancement are [29-34].



In view of fore going above literature a multiphase flow of Hafnium-Couple stress fluid
is investigated. Viscosity of base liquid is attenuated due to heating effects at the upper
wall which reduces exponentially. A symmetric horizontal channel with confines the
bi-phase flow with effects of uniform and constant externally applied magnetic fields.
The source of motion of solid-liquid suspension is the uniform movement of upper sheet
of the channel. A suitable numerical scheme yields an approximated solution which is
vetted through parametric survey as well. The presented innovation provides in depth
look of mechanical flows that follow multiphase phenomenon. The contents of this
chapter have been published in the journal of “Symmetry”, 11 (2019) 647-659.

Fluid flows go through rapid morpho-hydrodynamics changes subject to gravitational
effects. Authors in [35,36] successfully study the thermal radiation effects over an
inclined planes and isothermal permeable surface. The concerned boundary layer flow
with the free convection thermophoretic is numerically investigated under the
application of external magnetic fields. Ramesh et al. [37] studied a two-phase
boundary layer flow over a stretching sheet. Dusty particles comprising the particulate
flow is solved analytically under the influence of non-uniform heat sink/source.
Different types of flows such as nanofluids in presence of chemical reactions etc.,
mainly generated by the inclination of steep channels have been examined by various

researchers as enlisted in [38-40].

Magnetohydrodynamics flows are of great interest in fluid dynamics. There is much
literature available in which researchers utilize magnetic fields to see the changing
behavior of the fluid pattern. Peristaltic transport of fourth-grade fluid through a curved
channel is focused by Khan et. al. [41]. Flow is disturbed by the externally applied
magnetic fields. The presence of chemical reactions on the flow makes the investigation

much more ditferent and reveals some distinct findings. However, MHD flows of
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nanofluid and ferrofluid, respectively, are discussed in [42-45]. Hakeem et al. [46] gives
a comparative analysis of two types of fluids. He considers a Newtonian and non-
Newtonian fluid over a horizontal plate with heat flux. Further, the reported involves,
respectively magnetic and non-magnetic particles of nano-size.

Similarly, a nanofluid in a vertically resting annulus is addressed by Malvandi et al.
[47]. Water serves as a base fluid suspended with aluminum oxide is studied under the
influence of MHD and mixed convection. Ellahi et al. [48] give an analytic solution of
nano Ferro-fluid over a rotating disk. The boundary layer flow is caused by the
oscillation of and stretching of the disk. Prakash and Tripathi [49] focused on
electroosmotic flow of nanofluid. They examined their findings in a tapered channel.
In the same way in [50] authors came with the solution of non-Newtonian fluid through
a wavy channel. However, An approximated solution of an unsteady Couple stress fluid
is offered by Reddy et al. [51]. They chose a vertical plate for their analysis.

With the passage of time new flow problems are emerging containing tiny size of
particles. The major application of nano particles gain high level of heat conductivity
[52-57]. Esfe and Rostamian [58] considered engine oils and nanoparticles bearing the
size 30nm for their empirical investigation. Their findings state that that the composed
nano-lubricants display the non-Newtonian fluid behavior much similar to that of
Power-law fluid model. Goshayeshi et al. [59] an experimentaily study ferrofluid in a
closed loop inside the pipe. Unlike, nano reports Hussain et al. [60] is relevant to a
two-phase flow working with Newtonian fluid. Exact solutions are obtained and
compared with each other by considering the particulate flow through three different
physical geometries.

Very less attention has been to a special kind of non-Newtonian fluid such as Magma.

Since, these flows are involving very high temperature therefore, the viscosity of such
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fluid highly depend upon the temperature. Nichols [61] formally comes up with some
calculations by determining the viscosity of Alika flow of Hawaii. His findings state
that the viscosity of lave flow was fifteen times that of water. Melnik and Sparks [62]
conclude that the crystallization causes strong mechanism to intensify the effects on
extrusion of lava. Basaltic flow of Mauna Loa Hawaii is studied in literature [63].
Moore et al. have empirically gathered and reported the physical properties of then
highly thick magmatic flow. In recent past, Diniega et al. {64] reveals a great variation
in viscosity corresponds to a little variation in the temperature. And this results in a
dynamic instability and this instability causes the formation of low-viscosity pathways.
Above-mentioned literature reveals that a two-phase supercritical flow down a steep
channel is still missing. Couple stress fluid serves as base fluid which drifts down with
crystal and Hafnium through the channel. The simultaneous effects of magnetic and
gravitations fields are taken into account. This investigation has been published in the
“Journal of Molecular Liquids™, 286 (2019): Article No. 110898.

The existence of multiphase fluid flows encountered in daily routine such as natural
flows, mechanical or industrial flows. These flows comprise of Newtonian or non-
Newtonian fluid as the main flow carrier. Consequently, there is a freedom of choice to
investigate and analyze multiphase flows with respect to any kind of fluid even
suspended with different types of particles. A reasonable amount of research related to,
semi-infinite plans by considering such types of fluid flows under various conditions
can be found in available literature, for example, the transversely applied magnetic field
on the flow of Newtonian fluid is investigated by Palani and Srikanth [65]. The
magnetized mass transfer is carried out on a vertical semi-infinite plate. Kumnar [66] has
given an analytic expression for the velocities in different directions, pressure gradient

and skin friction. He has considered peristaltic flow of the Couple stress fluid through
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an inclined channel in which long wavelength and low Reynold’ number assumption
restricts the nonlinear hydromagnetic fluid flow. A steady viscous flow through a
porous medium is examined by Kumar et al. [67]. The flow over the inclined plate is
influenced by chemical reaction involving mass transfer is tackled analytically. Murti
et al. [68] have reported the flow along a semi-infinite plate which is positioned
vertically while a heat mass transfer flow experiences the effects of chemical and
double dispersion by means of Range-Kutta method. Ghosh and Usha [69] came up
with quite different idea by considering two different fluids. Fluids are assumed to be
miscible ones having different viscosities and indifferent densities whereas the flow is
purely due the effects of gravity on the slippery tilted plane. The Chebyshev spectral
collocation approach is applied to get the desired results for nonlinear model. Bognar
et al. [70] have examined the velocity profile solely for non-Newtonian fluid at plane
which is not up-right in position. The modeled flow of Power-law fluid is solved
analytically under boundary layer assumptions. Variations caused by the rheological
properties and positioning of the plane are investigated for sand-water and bentonite
mixtures. Ganguly et al. [71] have presented two-dimensional power law fluid drifting
down the slope. Boundary thickness of the flow is assumed to be very thin besides
taking lubrication approximation to cope with governing equations. The MHD flow of
micropolar fluid moving in two dimensions along with the heat flux is investigated by
Uddin [72]. Flow is considered to be laminar and free from the influence of time.
Resulting equations are numerically solved with the help of Range-Kutta method of
order six. Among the various few most noteworthy efforts on nanoparticles, inclined

plane and numerical techniques related to this problem are listed in [73-91].

A particulate flow over semi-infinite inclined plate has not been studied. Therefore, a

fruatful effort flourished some useful findings of a particulate flow over a semi-infinite



inclined plane. Bi-phase flow comprises of Couple stress fluid and metallic particles of
Hafnium. Findings of this chapter have been accepted for the publication in
“International Journal of Numerical Metheds of Heat and Fluid Flow”, DOI

10.1108/HFF-11-2018-0677 (2019).

Among many scientific blessings nano-technology is one of them. It depends upon the
special particles having size within range of between 1 nanometer to 100 nanometer,
such particles are called “Nanoparticles”. Similarly, a liquid which drifts any quantity
of nanoparticles, is called “Nanofluid”. The concept of nanofluid does not date back
very long. Formally, the last witnessed the application of nanotechnology in various
fields. Basic, utility of nano particle is to enhance thermal conductivity Choi and
Eastman [92]. However, later engineers and scientists work out some other application
of these tiny particles to benefit and make life easy [93,94]. Most prominently, [95,96]
contains highly regarded proposed models of Buongiorno that relates mutual movement
of nanoparticles and base fluid. Xu et al. [97] performed a nanofluid study in a vertical
channel by considering the Buongiornio under the influence of mixed convection. They

performed their investigation by taking a vertical channel.

One has to admit that peristaltic movement in living things is one of the most significant
process and source of life. Different types of Newtonian and non-Newtonian fluid
through esophagus to kidney or bladder obey peristatic motion. Because, grinded
particles of food and quantity of liquid (such as water and blood) are pushed forward
due to the flexible composition of veins and arteries [98-100]. Nabil et al. [101] have
explained the significant contribution of nanofluids in peristalsis. They produced their
results for flexible wall properties, lubrication, MHD, and porosity. Similarly, transport
through two coaxial tubes affirms the application of endoscope or catheterized artery

in medical sciences.



In the connection to the above-mentioned useful information it was perceived to focus
on the physical application of gold nanoparticle (GNPs). Therefore, a physiological
phenomenon such as peristalsis transport of blood through annulus is examined. The
nanofluid made-up of blood (Couple stress fluid) suspended with gold particles
provides a remedy for a fatal disease. The homotopy analysis method (HAM) base
solution confirms the credibility of the solution which further verified by parametric
study and found to be in great agreement. This endeavor has been published in the

*Journal of Molecular Liquids”, 268 (2018) 149-155.

In any living organism peristaltic motion is mainly caused by the contraction and
expansion of some flexible organs. This applies a pressure force to drive fluids, for
example, blood in veins, urine to bladder, and transport of medicines to desired
locations are a few common biological examples. The rapid developments in nano-
science have noticeably revolutionized almost every field of life, particularly in medical
sciences. The advent of nano-technology in medicines has brought miraculous changes
by reshaping the primitive methods of treatment. Nowadays, in developed countries
operations are preferably performed without involving any prunes and cuts, which was
once thought to be very complex and menacing for cancer treatment, brain tumors,
lithotripsy, etc. Regardless of many other uses of nanofluids in industrial and practical
settings, the primary objective of nanoparticles is the enhancement of heat transfer. It
is mainly due to their high conductivity. In addition to the size and type of nanoparticles,
other factors, such as temperature, volume fraction, and thermal conductivity are also
very important to maximize the thermal conductivity. In pursuit of attaining such
enhancement in the system, with the passage of time many useful models based on the
physical properties of the matter have been developed. On the said topic, scholars have

made full use of these models in their analyses, experiments, and conditions, which
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have been discussed here very briefly. For instance, the investigation of Tripathi and
Beg [102] explains the application of peristaltic micropumps and novel drug delivery
systems in pharmacological engineering. They formulated their study with the help of
the Buongiomio nanofluid model and treated blood as Newtonian fluid. The effects of
channel inclination are studied by Shit and Roy [103]. The Couple stress fluid
influenced by constant application of magnetic fields is used as the base fluid.
Jamalabadi et al. [104] reported the effects of biomagnetic blood flow through a
stenosis artery by means of non-Newtonian flow of a Carreau-Yasuda fluid model.
They carried out a numerical simulation of an unsteady blood flow problem. Hosseini
et al. [105] have presented the thermal conductivity of a nanofluid model. To perform
this investigation, the nanofluid model is considered as the function of thermal
conductivity of nanoparticles, base fluid, and interfacial shell properties by considering
temperature as the most effective of parameters involved in the study. The most
noteworthy contributions on the matter can be seen in the list of references [106-117].
Furthermore, activation energy has a key role in industries, in particular, effectively
aggravating slow chemical reactions in chemistry laboratories to improve the efficiency
of various mechanisms by adding activation energy to respective physical and
mechanical processes. A few of the latest works related to this present work have been
listed in [118,119].

In view of the existing literature, one can feel the application of nanotechnology in
medical science opens a new dimension for researchers to turn their attention towards
the effective role of chemical reaction and activation energy. Since, nanoparticles help
in treating different diseases by means of the peristaltic movement of blood. Such
biological transport of blood helps to deliver drugs or medicine effectively to the

damaged tissue or organ. As a matter of fact, this effort is devoted to inspecting the
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simultaneous effects of chemical reaction and activation energy for the peristaltic flow
of Couple stress nanofluids in a single model, which is yet not available in literature,
and could have dual applications in expediting the treatment process. The contents of

this study have been published in the journal of “Symmetry”, 11 (2019) 276-292.
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Nomenclatures

Reaction rate constant
Dimensionless radius of

the outer tube (m)

Brownian diffusion constant
Brinkman number

Constant speed of the wave frame
(ms™1)

Body force (N)

Drag force coefficient

Similarity velocity of

the particle (ms™1)
Diimensionless gravitational force

Width of the channel (m)

A constant ratio

Constant ratio

Boltzmann constant

(8.61 x 10~%eV/K)

Hartman number
Thermophoresis parameter
Constant pressure dimensionless

Dimensional radial coordinate (1)

Xiv

Fr

Re

Dimensional radius of the inner tube (m)

Amplitude ratio

Magnetic strength (Tesla)
Concentration of the particles

Activation energy (J)

Similarity velocity of the fluid (ms~1)
Froude number

Dimensional gravitational force (ms™2)

Grashof number

Thermal conductivity of the
fluid (Wm™1K~1)
Viscosity variation index

Constant ratio

Brownian motion parameter
Fitted rate constant
Pressure (Pa.s) or (kgm~1s~%)

Reynolds number



r  Dimensionless radial coordinate
r,  Dimensionless radius of the inner
tube
S Stokes drag force (kgm™3s571)
t Time (s)
U, Constant/reference velocity (ms™1)
u  Dimensionless radial velocity
component (ms™1)
u, Axial velocity of the particle
(ms™1)
vy  Lateral velocity of the fluid (ms -H
W  Dimensicnal vertical velocity
component {ms™1)
x  Similarity variable
z  Dimensionless vertical coordinate
(m)
Greek symbols
@  Inclination of the plane (radian)
B Temperature ratio
€ Embedding parameter
€;  Ratio of heat capacity of particle to

heat capacity of fluid

Ur

€1

€3

Radius of the particle (m)

Dimensionless radius of the
outer tube

Temperature in fixed frame (K)
Dimensional radial velocity
component (ms~1)

Free stream velocity (ms™1)

Axial velocity of the fluid (ms™1)

Velocity in vector form (ms™1)

Lateral velocity of the particle (ms™!)
Dimensionless vertical velocity
component (ms~1)

Dimensional vertical coordinate {m)

Viscosity parameter
Lateral coordinate (m)

A constant ratio

*

A ratio defined as ——
(pc)y



y  Dimensionless Couple stress
parameter

y.  Local Couple stress parameter
{Dimensionless)

A" Particulate fraction/number density
of the particles

s viscosity of solid-liquid suspension
(kgm™1s™1)

¢  Concentration of nanoparticles
(kgm™3)

¢,  Concentration at outer tube
(kgm™)

pp  Density of the particle (kgm™3)

¢,  Heat capacity of fluid (m?s~2k™1)

iy  Stream function

©  Dimensionless temperature

8,  Upper wall temperature (K)

tr  Thermal equilibrium time (s)

Subscript
f Fluid

nf  Nanofluid

Xvi

Y1

Ho

$1

Prei

Pr

Material constant associated with
Couple stress fluid (kgms™1)

Wave length (m)

viscosity of the base liquid
(kgm™'s™)

Kinematic viscosity (m?s~")

Concentration at lower inner tube
(kgm™)

Relative density (kgm™>)

Density of the fluid (kgm™%)
Heat capacity of particle
(m%s~%k™Y)

Electric conductivity of

the fluid (Sm™1)

Lower wall temperature (K)

Axial coordinate (m)

Particle
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Chapter 1

Introduction

1.1 Preliminaries

This chapter defines and explains the phenomenon of “Multiphase flows”. In doing so,
basic and very useful informations are given with suitable examples for the readers.
This effort will enable readers to comprehend the fundamental concept of dissertation,
as elaborated in the title. In the same way some basic definitions serve as the

prerequisite for the facts given in the subsequent chapters.
1.2 Matter

Anything which has a mass and occuptes space is called matter. For instance, water,

iron and oxygen etc.
1.3 Phase

It is defined as a distinctive state of matter such as solid, liquid and gas. Phase can be
the combination of same or different form of matters. For instance, combination of ice-

cubes in the glass of water, dust particles in air, globs of oil in liquid etc.
1.4 Phase transition

One of the main attributes of matter is to change from one phase to another. It can be
comprehended by the transition of dry-ice from solid phase to liquid or gas phase.
similarly, the water from liquid phase to ice or vapors. The following are the two

general topologies of phase which are identified as:



1.4.1 Continuous phase
A main carrier such as liquid and gas, is known as continuous phase. Water and air are

the simplest and most commonly encountered continuous phases.

1.4.2 Disperse phase
Transport of finite number of particles; droplets; or gas bubbles in continuous phase is
called the disperse phase. Some general examples of disperse phase includes:

* Globs of oil or grease in water.

¢ Droplets of liquid in gas.

¢ Dust particles in the air.

* Sand particles liquid.
1.5 Fiow

A material which deforms subject to various forces acting upon. If this process of
deformation continues to increase boundlessly, then the phenomenon is known as flow.
For brevity, mostly a flow is the transport of continuous phase. However, the existence
of flows suggests that there are major two types of phase-flows which are generally

encountered in daily life.

1.5.1 Single phase flow

A flow which is solely of continuous phase is termed as single phase. Such phase flows
are usually either of liquid-phase or gas phase. Examples include flow of water, honey

and oxygen etc.

1.5.2 Multiphase flow
A flow which consists of two or more phases but of different kinds, is called multiphase
flow. The existence of multiphase flows that are a significant feature of our

environment. In this type of flow main carries is always of continuous phase. Few of



such ubiquitous multiphase flows are:
¢ Shurry flow
s Bubbly flow

e  Water globs in 01l
1.6 Spin
This is an intrinsic property of the charge particles. From fluid mechanics point of view,
this may appreciably be termed as orientation or positioning of fluid particle. Einstein

suggested two major orientations known as “Spin-up” and “Spin-down " of electrons

going through the vicinity of magnetism.
1.7 Spin density

The difference between the total density of spin-up electrons and total density of spin-
down electrons, is called spin density. Moreover, different electron belonging to

different families have different spins, such as Fermion having half spin.
1.8 Angular momentum

The motion of an object having some mass in a circular or curved path is called angular
momentum. Mathematically, it is the cross product of linear momentum and the radius

of a curved path.
1.9 Dipole

A charge (i.e., positive or negative) on molecules is called Pole. Molecules with unlike
charges attract each other. A molecule of liquid with such charge difference is called

dipole. A dipole helps to identify fluids as to be of polar or nonpolar nature.
1.10 Fluid

Most generally fluid is defined as a substance which is capable of flowing. It has no



defined shape, but it takes the shape of its container. however, form technical point of
view a substance that offers on or very little, resistance to extemally applied stress or
force. A fluid can be liquid, vapor or gas.

Among all physical properties of fluid, viscosity is the most significant which

mechanically partitions fluid in to major two kinds.

1.10.1 Polar fluid

Polar nature is an important feature of any fluid molecules. Polar molecules are not
aligned in a straight line, but enjoy the freedom to rotate and swing around before they
start pointing in the direction of applied field. In this case net forces on a dipole don’t
cancel out each other. This property makes such fluids to be a great solvent such as
water. Because it is a “Y-shaped’ molecule. Other examples include ethanol, methanol

and sulphuric acid etc.
1.10.2 Non-polar fluid

This feature of fluid molecules chains them in a straight line due to the application of
uniform field and yields the resultant net force to be zero. Such non-polar liquids are

benzene, ethylene, and carbon dioxide etc.
1.11 Fluid microstructure

As a region wherein, the compositions or densities of a fluid change over the distance
of order of magnitude of the range of molecular forces is called fluid microstructure.
Fluid-solid interfaces, liquid-liquid interfaces, multiphase contact regions, gels,

bubbles, drops and thin films etc. are some common example of fluid microstructure.
1.12 Couple-stress fluid

The rheology of non-Newtonian fluids explains that an inherent force in fluids, resists

the additive force (i.e., force due to the inclusion of some additives) which results in a



Couple force. This newly emerged interaction of forces induces a supplementary
Couple stress in the fluid. The fluid which display such intrinsic properties/features is
termed as “Couple-stress ” fluid. The most significant contribution of Couple stresses

is to emerge a length-dependent effects that were not described in non-polar theories.
1.13 Stress tensor for the Couples-stress fluid

In 1984 Stokes [120] presented the basic theory and constitutive equations of Couple
stress fluid. In the proposed theory he considered the couple stress besides classical
Cauchy stresses. One of the two fundamental equations which have a great significance
in fluid dynamics, for balancing the net flow through an open or closed conduit; is

known as “Conservation of mass”. Mathematically, it is denoted as:

dp
—a?+ pvk_kzo. (11)

The other most commonly used is the well-known Navier-Stokes equation. This
equation in a tensor form for a viscous, incompressible and with externally applied body
force is expressed as:
pa; = Tyix +pfi- (1.2)
Constitutive equations for the polar fluid in tensor notation form are given as:
T = 1y = —p 8y + Adyi Sy + 2pdy, (1.3)
mi; = 4y k" + 4y'K (1.4)
Where A, g, y; and y' are material constants. (This theory is co special case of general
theories. And results predicted by this theory are of grater interests). It is noticeable that
Couple stress (i.e., M = m) depends on the vorticity gradient K = k*, from Egq. (1.3),
it is clear that the skew symmetric part of T which is T4 cannot be determined. Which
can be determined with the help of equation of motion provided m is known. The

quantity trace (M) = m,, = m can be determined by boundary condition in many



" remains

cases, due to symmetry in the geometry, m = 0. However, if "m
undetermined through boundary condition, then it is assumed to be zero without any

loss of generality. rfi,k can also be expressed by using constitutive equation for a polar

fluid in tensor is given below

Tiix = —Pk Oni + Adsei Oxi + 201 dici k- (1.5)
In term of velocity the above equation can be expressed as:
Toex = =Pl + (A + 1) Vigki + 1 Vijo- (1.6)

Consider Cauchy’s second law of motion

Myik + pll + 8ipe + Tis = 0. (17)
Taking curl on both side gives
CrisMest + 2 eris li + ekisequ + qu =0. (18)
This can be expressed as:
Tei — Tik
eeismis + pewssh +2{~—5—) = 0. (1.9)

This can be deduced that T/ = f%r"‘- is an anti-symmetric, then Eq. (1.7) becomes

exisMes, + Perisly + 21 = 0. (1.10)

This implies that

€ki
th = _Tls(mts.t + ply). (1.11)

This is mandatory for this polar theory of fluid that the stress tensor to be non-zero.
However, if the (body moments per unit mass) [; # 0, then the Couple stress m; are

assumed to zero. Because Cauchy law of motion can only be satisfied by assuming



m—‘:’:=(}and

£ 0.As Egq. (1.11) involves Couple stress m which depend on vorticity
iy i

L
Ti;

gradient R as given below:

Mys = Mys + 4y1K s + 4Y 'K s, (1.12)
Kis = W, (1.13)
e . N
W, = 75l (1.14)
2
1 (1.15)
dys = E(Vs,k + Vies)-
It is important to note that
Ky, = 0. (1.16)

Because the average twist rate per unit lengths. If three mutually perpendicular lines

elements is zero. In view of Egs. (1.12) — (1.13) then Eq. (1.11) takes the following

form
1
T = - 'z'{ekism,s + 4y, €4isWs et} T Perisls. (1.17)
As
wee =10, (1.18)
Therefore
CrisWs = Wr;- (1.19)

Using Eq. (1.19)in Eq. (1.17), it is obtained as:

a 1
Thi = —2Y1Wgiee + 2 Ciks (m,s + Pfs)- (1.20)
We know that
exsMm g, = 0. (1.21)

Thus Eq. (1.20) can be transformed into the following
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1
T = —2V1Wkiee Eeiks(pls),k- (1.22)

Since w is anti-symmetric part and which is defined as:

Wy = (vi,k - vk,i). (1.23)

2
A 1 1.24
Teik = —V1Vikktt T ViVkkiee T Eeiks(pls)k- (1.24)

Now, both 7§, and %, have been determined. Therefore, adding Eq. (1.6) and Eq.
(1.24) yields

[~ + (A + Wvg + 1o | +

Thik = [ (1.25)

1 .
=Y1Vigkee + V1 Vickice + 3 eiks(Pls)k]

Substituting Eq. (1.25) in Eq. {1.2), then the governing equation takes the following

form

—p; + (A + W Vrki + 1Vikk — YiVikker ¥ Y1Vikite

1 (1.26)
3 eis(plsdk + ofi

pa; =

Using Gibbs’s notation, then Eq. (1.1)and Eq. (1.26), finally in vector form give the

following look
d
L ipwv=o, (1.27)
at
—Vp+ A+ VUV +y, VEUVV + uVV -y, YV +
a= 1 : 1.28
p SV x (D) + of (1.28)

In the absence of body moments (i.e., I = 0) the above equation transforms as:

pa=—-Vp+ A+ VUV +y,VEUVV + uVV — y, V'V + pof. (1.29)

Where a is defined as:



av
— 1.30
a=— +(V.V)V. (1.30)

Since, the fluid is instinctively incompressible in nature, then

v.v=0. (1.31)
This yields to viscous, incompressible Couple stress fluid momentum equation under

the influence of applied extemnal body force

v
p (E + (V. V)V) = —Vp + uV2V — . V*V + pf. (1.32)

1.13.1 Boundary conditions for Couple stress fluid
Six boundary condition are needed, three of six can be obtained by assuming no-slip at
boundary. The remaining three can be obtained by the given below two sets of

assumptions.

1.13.1.1 Couple stresses are zero at the boundary
This assumption declares that the Couple stress at the wall vanish. This show that
mechanical interactions at the wall are equivalent to the force distribution only. This

condition essentially restricts the gradient of w at the wall or boundary.

1.13.1.2 Vorticity at boundary is equal to the rate of rotation of boundary

According to this assumption the effects of boundary walls do not allow fluid elements
/particles to rotate relative to the boundary. This can be turned as the vorticity at the
boundary is equal to rate of rotation of boundary. Moreover @ = wp at the boundary is
same as Couple stress (y — 0) tend to zero, and the solution approaches to that of
Navier-Stoked equations. Whereas, earlier it was thought differently if vorticity were

equal angular velocity of the boundary at the wall.



1.13.2 Couple stress parameter

This dimensionless constant or number which is denoted as y, distinguishes Couple
stress fluid. The Couple stress fluid parameter is identified by containing a new
material constant i.e., which is denoted as y, responsible for Couple stress and lubricant
viscosity.

1.13.3 Engineering and practical applications of Couple stress fluid
Among all non-Newtonian fluids, Couple stress fluid model enjoys a special status due
to the spin field which produces anti-symmetric stresses. And, these stress are called
couple stress. Common examples of such fluid includes liquid crystals, colloidal fluids,
liquids containing long chain molecules such as polymer suspensions, blood and
lubrications etc. These fluids have great significance natural, mechanical as well as

many physical phenomenon such as peristalsis etc.

1.14 Governing equations (For solid-liquid flows)

The main governing equations which deal with the two-phase flow suspension having

Couple stress fluid as the base fluid are given as:

1.14.1 Continuity equation

1.14.1.1 For fluid phase

d
SL+9.(or¥,) =0, (1.33)

1.14.1.2 For particle phase

%,

FTaRAA (ppVp) = 0. (1.34)
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1.14.2 Momentum equation

1.14.2.1 For fluid phase

3 (1-C)Vp + (1~ Ou VvV —
pr(1— C)( +Vy. v) V=11 = OV, +CS(V, - V) + (1.35)
J X B+ gpfsina
1.14.2.2 For particle phase
a
poC (34 V,.¥) ¥, = —C¥p +CS(V; ~ V). (1.36)
1.14.3 Energy equation
1.14.3.1 For fluid phase
R (1= Ok,V26, + (1 - OX(T: L) +
pree(1- O (2 +V,.V)6, = lsts) (g (1.37)
ir
1.14.3.2 For particle phase
d c
pucyC (5=+V,.7) 6, = CUesn) (5 _g ), (1.38)
T

1.15 Governing equations (For Nano fluid flows)

The main governing equations which deal with the nanofluid flow suspension having

Couple stress fluid as the base fluid are given as:

1.15.1 Continuity equation

Bt v (pnsV) = 0. (1.39)

1.15.2 Momentum equation

1.40

pnf(% +V.v)v [@pnp + (1 = @){pns (1 — Br(T - 6,))}19 }

Vo + pnf VPV — 1 VIV
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1.15.3 Energy equation
9 2 Or grvr 1.41
@y (52 +V.9)T = VT + (00 DVeVT + 5ZVT. VT, .

1.15.4 Concentration of nanoparticles

d Dy
—+ V. =D, V? -— V4T, 1.42

1.16 Conduit

Conduit is a physical structure in which liquid flows (or contains). The different
conduits separate shape and configuration plausible to demand and scenario. But, the

transport of fluids is mainly, in two types of conduits:

1.16.1 Open conduit

A conduit with one free surface, is called an open conduit. Most common examples of
open channels include rivers, canals, streams etc. Fluid flows in such conduit is known
as “open channel or conduit flow”. Flow transport in such conduits is caused by the

influence of gravity in addition to free surface open to atmospheric pressure.

1.16.2 Closed conduit

A conduit which does not a free surface is called closed conduit. Pipes, circular
cylinders and converging-diverging nozzles are few daily encountered specimens of
closed conduits. A closed conduit is also known as “Pressurized conduit”. For, the
longitudinal pressure difference {(or Hvdraulic pressure) causes the fluid motion along

the channel. Therefore, such fluid flows are called “closed conduit ™.

12



Chapter 2

Two-phase Couette flow of Couple stress fluid

with temperature dependent viscosity

This chapter provides a numerical survey of two-phase flow between two horizontal
flat plates. The constant motion of the upper sheet generates the flow. However, the
contribution of axial pressure gradient is also brought under consideration. The
suspension of base fluid with particles is further influenced by heating at the wall. The
temperature dependent viscosity model, namely Reynolds’ model is utilized. The
Runge-Kutta scheme with shooting method is used to tackle nonlinear systemn of
equations. It is observed that the velocity decreases by increasing the values of Hartman
number. However, due to the influence of heating wall weakens viscous forces and
causes shear thinning effects. This leads to increase the velocity of the fluid for greater

values of viscosity parameter and as a result temperature profile also declines.

2.1 Mathematical formulation

A particulate flow of Couple stress fluid is considered between two plates which are
separated by the distance 2 h, such that upper wall moves with the uniform velocity U/,

which is only source of concerned bi-phase flow, as shown in Figure (2.1).

13



Fixed wall

Figure 2.1: Configuration of the flow.

If V =[u, 0, 0] be the velocity components [121] of a uni-directional flow describing
only axial disturbance while there is no disturbance in the lateral direction. However,
the heating effects on the upper moving wall attenuates the viscosity of the base fluid.
under these assumptions the governing Eqs. (1.31) — (1.33) in components form

[122] are given as:

2.1.1 For fluid phase

—L =y, (2.1)

d( du a4u, :5'2 _%
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2.1.2 For particle phase

du, dvy

Py —Ff—0p 2.3

3t + o (2.3)
10

g3

2.1.3 Energy equation

2 2 3
96 s (Qur\" _ya (Our) (0 ur) 2.5)
aﬂz k]_ aﬂ kl 31] aﬂg

In above equations §, represents the classical Stokes which can be obtained by finite

particulate fractional volume as proposed by Tam [123] which are defined below:

§=45 (!122) 1), 2.6)
LEY
4+3VBC—3C2+3C
G @

The corresponding momentum and thermal boundary conditions at opposite wall are

listed below:

(i). At lower wall

.. Bzuf
(ii). = 0, p; Whenn = —h. (2.8)

(iii).8(n) = 6,.
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(ii). At upper wall

(iv).uys(m)=U

®). a_ﬁ =0, }; Whenp=h. 2.9)
an?

(vi).8(n) = 6,.
Considering the Eq. (10) which contains the pertinent parameters and variables which

help to nondimensionalize the concerned governing equations and boundary equations.

= '£=r’|‘-£=f"£=y"' W
u’p'h 'h ,ﬂo ’

= g ha,—0); M= [ ZhBy;
Tk, =0y P TR T g (2.10)

hp 9_81
=p% h; k ; 07 = ;
Rl PPV T f = e |

Egs. (2.1) — (2.5) are converted by ignoring asterisk into dimensionless form as:

4 2
fiﬁ:‘i(pdﬁ) yz(duf)+c(u" i) __M u,  (211)

d¢ ~ dg\’ dn k, 1-C) (Q-0)

d
u, = up — ks d? (2.12)

dZB duf z de d uf
halind —) ==L 213
dn2+”8r(dn) (dn)(dn ) @1

2.1.4 Variable viscosity

As the viscosity of the fluid depends upon the variation in temperature which is

analyzed with the help of Reynolds’ model [124] as expressed below:

15(8) = proe ™57, (2.14)
In view of expression given in Eq. (2.10), final form of Eq. (2.14) provides the

following look:
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#(9) — e‘k3(9z"91)9 = e'Be_ (215)

For the convergence of above expression requires if viscosity parameter is chosen such
that § € [0 1]. Expanding Maclaurin’ series and employing Walter’s lemma one can

obtain the linearized form of Eq. (2.15) as:

u(8) =1-pf6. (2.16)
Using Egs. (2.12) and (2.16) in Eq. (2.11) and Eq. (2.13) provide dimensionless form

of momentum and thermal differential equations having the contribution of constant

pressure gradient such that (i.e.,z—z_’: P). Then one can obtain the following

expressions:

d4Uf do duf dzuf

an +y?B (?iﬁ) (E) +y3(po—-1) ( an? ) +
MZYZ },ZP _ ’
(c ))“f‘(c—l)‘

e dus\* B, [duy) (dPup
Ctra-go{=—L) =={=ZL 2.18
ar T Be)(dn ) v? ( din )(drP ) 19

On the same contrast, Egs. (2.8) — (2.9), in view of Eq. (2.10), are transformed as:

(2.17)

(D.ur(m =0,
. aZUf
(). 5 =013 Whenn = -1, (2.19)

(iii).8(n) = 0.

(iv)u () =1,

62
). a;f =0,); Whenpg=1. (2.20)
(vi).8(m) = 1.

2.2 Solution of the problem

For an approximate solution of Eqs. (2.17) and {2.18) using Eq. (2.19) and Eq. (2.20)

Runge-Kutta method incorporated with shooting scheme [125] is preferred because

17



this iterative method is very efficient and converts BVP into first order initial value
problem which is solved applying o -order method. Some mandatory substitutions to
reduce higher order derivatives are explained below.
ur = f1, (2.21)
If above equation describes the substitution of fluid’s velocity, then following set of

equations are used to convert higher derivatives of uy.

dur _
f2 = ?i-n— =TI (222)
dur _
f3 = dnz = 2 (2.23)
dur _ .,
fi= d_ng- = fa, (2.24)
8=fs, (2.25)
dg ,
fe =E=fs- (2.26)

One can identify that prime () denotes differentiation w.r.t “n". In view of Egs.

(2.22) = (2.26) reduce to:

- BN — B - () - (2
4+ =Y UsNfs—v B fe) — mfl—(l—C)P' (2.27)
B,
fe =z DU + B (BUH) — DR (2.28)

Set of new obtained conditions that help to seek the solution, at both plates

respectively, are listed as:

18



D.1=0,

(”)-fz = m].l
Gid).fs =0, | _ 220
(@) fy = my, [ WPERN =L (229)
(v).fs=0
(vi).fe = m3
D. 1=1,
(ii). L=my,
Gid). =0, | _
). fi=ms |’ Whenn = 1. {2.30)
. =1
(vi). fe =m4

Where m,, m,, M3, My, Mg and m, are unknowns to be calculated.

2.3 Analysis

2.3.1 Graphical illustration

As the graphical study provides a visual proof of the contribution of the pertinent
variable and helps to infer what factors really bring such variations in the flow. To serve
the purpose, a parametric study is performed in this section in order to examine the
impact of involved physical factors such as Hartmann number M, concentration of the
particles €, Couple stress parameter ¥, viscous parameter f and the Brinkman number

B, as shown in Figures (2.2) — (2.6).

Figure (2.2) explains the role of Hartmann number on particulate flow. For higher
values of M, further the velocity is affected due Lorentz force. this which emerges when
electric field and magnetic field interact and results to impede the moving flow.
Therefore, fluid velocity declines in the given graph. Whereas increase in the number
of particle alters the previous flow pattern as shown in Figure. (2.3). This can be referred
as moving wall attenuates the particle drag force [126] causes the velocity of base fluid

to rise. In Figure (2.4) offers the contribution of Couple stress parameter [127] on base
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liquid which keeps on increasing. This is due to weak the rotational field of base fluid
reducing the friction force to impart its influence on the flow. Figure (2.5) shows how
viscous parameter 8 support the flow. Form Eq. (2.14), it is understandable that due
change in temperature reduces shear thickening effects which promotes the velocity of
the fluid. Role of Brinkman number B, on the temperature is sighted in Figure (2.6).
By increasing B, [128] more energy is added to the system allowing viscous dissipation
to be dominate over molecular conduction. Thus, temperature rises. On the contrary,
temperature declines for the case of viscosity parameter as shown in Figure (2.7)
because higher values of B, expedites the velocity which reduces the friction force

between two adjacent layers of fluid.

2.3.2 Validation

The obtained numerical results for the motion of fluid and particles are presented in
Tables 2.1 to 2.3. Table 2.1 describes the difference between particulate flows for the
case of Newtonian fluid and Couple stress fluid such that M = 1.0, = 0.4, and the
B, = 2.0. Whereas the single and bi-phase flow of Couple stress fluid at various
points between the plate is computed in Table 2.2 for the values of M = 1.0,y = 2.0
and B, = 2.0. Similarly, thermal variation for B,, ¥ and C is listed in Table 2.3 and
the computed numerical findings show an excellent adherence with graphical

illustrations. This validate the correctness of the obtained solution.
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Figure 2.2: Variation of Hartmann number on the flow.
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Figure 2.4: Variation of Couples stress parameter on the flow.
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Temperature distribution
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Figure 2.6: Variation of Brinkman number on the temperature.
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Table 2.1: Variation in the velocities of both phases for Newtonian case and Couple

stress fluid.
Up Up ur Yr
Newtonian Couple stress Newtonian Couple stress
! fluid fluid fluid fluid
For (y = 0.0) For(y = 2.09 For (y = 0.0) | For(y =2.0)
-1.0 1.0000 1.0000 0.0000 0.0000
-0.6 1.2000 1.3221 0.2000 0.3221
0.2 1.4000 1.5826 0.4000 0.5826
0.2 1.6000 1.7698 0.6000 0.7698
0.6 1.8000 1.8998 0.8000 0.8998
1.0 2.0000 2.0000 1.0000 1.0000
Table 2.2: Variation in the velocities for single- and two-phase flows.
ur Ur Up
n Single phase Solid-liquid phase Solid-liguid phase
For (€ = 0.0) For (C = 0.4) For (C = 04)
-1.0 0.0000 0.0000 1.0000
-0.6 0.2741 0.3221 1.3221
-0.2 0.5117 0.5826 1.5826
0.2 0.7047 0.7698 1.7698
0.6 0.8618 0.8998 1.8998
1.0 1.0000 1.0000 2.0000
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Table 2.3: Thermal variation at the different points.

@ 7 ] 0
n
For (B, = 0.0) | For(B, = 2.0) For(y = 0.0) | For (€ =0.0)
-1.0 0.0000 0.0000 0.0000 0.0000
-0.6 0.2000 0.3916 0.3512 0.3578
-0.2 0.4000 0.6066 0.5629 0.5870
0.2 0.6000 0.7528 0.7095 0.7504
0.6 0.8000 0.8785 0.8446 0.8830
1.0 1.0000 1.0000 1.0000 1.0000

2.4 Conclusion

Couple stress fluid a conveying solid particles through horizontal plates is investi gated.
The viscos dissipation effects have also been reported. Exponentially decreasing
viscosity of base fluid is presented by Reynolds model. Transversely acting magnetic

fields contributes by hindering the bi-phase flow. The key finding are described as:

¢ Base fluid is resisted for increasing values of Hartmann number.

s The temperature effectively variate the viscosity of the fluid to cause the shear
thinning effects.

e The temperature of the flow mounts in response of higher values of Brinkman
number.

e Attenuation of the viscosity results to expedite the flows.

+ Higher temperature difference caused by viscosity parameter rises the

momentum of the fluid.
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Chapter 3

A study of gravitational and magnetic effects on
Coupled stress bi-phase liquid suspended with
Crystal and Hafnium particles down through an

inclined channel

This chapter is related to a bi-phase fluid through an inclined channel. Main carrier is
Couple stress fluid which is suspended with two different types of particles i.c.,
Hafnium particles and crystal particles, respectively. The concerned supercritical flow
is affected by externally applied magnetic fields. Two-phase flow is caused by the
contribution of gravity due to slanting channel. Routine calculation are followed to seek
the solution of modeled flow problem. Physical properties of basaltic flow are also
considered as special case for bi-phase flow which display full agreement with the

existing literature. The mathematical results have been vetted by parametric study.

3.1 Mathematical formulation

Consider a bi-phase flow through an inclined channel as shown in Figure (3.1). flow is
composed of a base liquid and particles. Couple stress fluid serves as the base fluid

while two types of particles namely, Hafnium and crystal particles give rise to the
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concerned bi-phase fluid. However, it is confirmed that the quantity of particles

remains constant.

Figure 3.1: Configration of the inclined channel.

If [uf(:f, m ve(€.n) 0] and [up(f.n) v, (€, 1) 0] denote velocity of base fluid and
particles, respectively. Then the governing Egs. (1.31) — (1.32) of this particulate flow

with applied magnetic fields and gravity in components form are given as:

3.1.1 For fluid phase

The fundamental differential equations for conservation of mass and momentum [129]

for fluid phase are given as:

6uf avf _

3¢ + n 0, 3.1
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—(1- C)—{, + SC(up — uf) +]
6 'U.f 62Hf
auf an nus(l - C) 8 FYZR
pr(l— C) + y—+vr5-)= ¢ Y, (3.2)
af aT,' 62 62 2
Y1(1 C) (afg ) uf_
O'Bguf + gpssina J
d
-(1-0) % +5C(vy —vf) +]
3 (1 C) (azvf + azvf)
ov v Hsli— -
pr(1— C)( +up— v f) = g2 o2 ] 4 (33
23 9 92 52 2
Y1 (1-0) (sz ‘“‘5) Vr—
aBjvs — gpg cosa J

3.1.2 Particle phase

Conservation of mass and conservation of linear momentum [130] for particle phase

are given as:
Bup av,,
6E =0. 3.4
du, du, ﬂup dp
ppc( 5 Tirar Ty ——c:,j?+sc(up —us), (3.5)

av, dv, d
v _) = —C3h+50(u, ~vy). (3.6)

Considering the flow to be steady and uni-directional case, Egs. (3.1) — (3.6) take the

following form:

4

d*u
ps(1— C) +sc(u,, uf)—yl(l—C) > L oB2u, +
, (3.7)
gpysinag = (1 - C) 6{
ap
—S(up ur). (3.83)
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T3/

3.1.3 Boundary conditions

The relevant boundary conditions at each wall which confines this particulate flow are:

(®.u;()) = 0; When 7 = h, 3.9
. Ofup . _
(ii). Fer 0; Whenn = h, (3.10)
(iii). ue(n) = 0; Whenn = —h, (3.11)
. azuf _ . _
(iv). e 0; Whennp = —h. (3.12)

3.2 Solution of the problem

Since Eq. (3.7) is 4™-order linear ordinary differential equation coupled with Eq. (3.8)
represents the flow dynamics in dimensional form. Therefore, to make it dimensionless,

we consider the following.

ge=d gy = e = =t (3.13)
g Pre Pp' \/E' 4 pfhull > Pphul ‘

In view of dimensionless quantities as described in Eq. (2.10) and Eq. (3.13), the Egs.

(3.7) — (3.12) after neglecting the asterisk, finally give the following look.

d*us _ d%ug; N yim? " — (C ky + ks) ygsina
dn* dnz "\1-¢}7 kyks /\(1-C)(Fr)?

(3.14)
2
¥® \dp _
+ (1 - C) di 0
ky ks(Fr)? dp _ gk, sina
o — < (3.15)
o =Y ks(Fr)? '
(D.ur(m) =0; Whenn =1, (3.16)
2
(D). aa:zf = 0; When7 = 1, 3.17)
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(iii). u; () = 0; Whenn = -1, (3.18)
2
(iv). %% = 0; Whenn = —1. (3.19)

Since, the gravitational force is the main contributor to cause the flow through the
channel. Nevertheless, significant contribution of pressure gradient is assumed to be

uniform at each point of the channel which can be represented as:

—=p. (3.20)

Substituting Eq. (3.20) in the Egs. (3.14) — (3.15), then one gets the following

expression for liquid and particle phase, respectively.

d*u, 2 d?u, N yiM2u, _Chyt ks y2gsina yiP o a.21)
dn* VA TT1-¢C ks \QA-OGF2 ) 1=Cc ‘
k; ks(Fr)?P — gk, sina (3.22)

e T H T ks (Fr)?
The solutions of Egs. {3.21) — (3.22) subject to the conditions given in Egs. (3.16) —

{3.19), can be obtained as:

Urlyide =

The particular integral or solution is obtained as:
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_ g(Cky + ks) Sin{a) — P ky ks(Fr)?

= 3.24
Urinidp k4 kS (FT’)2 M2 ( )

Adding Eq. (3.23) and Eq. (3.24) and using the given boundary conditions then main

constants of integration are given as:

y2(4 M? —y? - Jy* —4 A5)(A; — Agsina)
2 - / 4 A
sech JY y_— 44, (3.25)

2

4y2(4 M2 — y?)A;

(% +Jy* — 4 A5)(4, — Agsina)
. 4 __
sech J" vy - 44 (3.26)

2

Az—_-

4A5-‘fy4 -4A5

. 24 fy" =44
(Agsina — A7) (yz—,/y4—4A5|sech J)’ }'2 2

(3.27)
A3 ==

4445\’)’4 - 4'A5

24 73
(A7 — Agsina) { (Jy* — 4 As — y?) sech JY tyy 44

2 (3.28)
Ay =

4 Ay -4 A,

Thus, one can easily get the velocity of base liquid and Hafnium metal as:
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2
kk P(Fr) -g(Ck -k )si
T 45 ( r) g( 4 25)sma yzcosh(A ’7)'
Suid S k k (1-C)(Fr) E
45
k k P(FrY -g(Ck «k \sina
4 5 ( r) g( 4 25) y su]_h(A ]])-
© k k (1-C)(Fr) 0
45

2 N
| KK P(Fr) -g(Ck, +k )sina
kK (1-C)(Fr)

(4,+4_(1-C){1-C)cosh(4 7}}
4 +A4 [1-C)r*4, J
(3.29)

(kk P(Fr).g(CE, k)sma
’ ki (1-C)(Fr)

[I(A + 4, (1-C))(1-C)sinh( 4 r])]

A T4 (1-C)y'4,

<
[¥]

Am(l-C)cosh(A“q) kkP(Fr) g(Ck k)sma
24, kJ (1-C)(Fry
g(Ck, -k )sina-k k p(Fr)

kk A (Fr)

+ 55

ha

k k P(Fr) -g(Ck -k )sina

= (k4k)5(1‘-g6(')(;‘r’25) JyZCOSh(A“ﬂ)_Am

'k k P(Fr)-g(Ck -k )sina
kk (1-C)(Fr)

kkP(Fr) -g(Ck - k)smaJ[(A +4_(1-C)|(1-C)cosh{4 7)
kK (1-C)(Fr) A A (1-C)r 4,

particle B

J},z sinh(Amq)-}r‘z

kkP(Fr) - (Ck k sma
2 4 5
k4k5(1 C](Fr)

(4,4 (1-C))(1-C)sinh( 4 ) (3.30)
A A O

4 (1- C)cosh(Al lr])

24
12

s

"k k P(Fr)'-g(Ck,-k )sina
kk (1-C)(Fr)’

(g(Ck,-k )sina-Pk k (Fr)  ghsina-Pk, k (Fr)
+y .
k k k A(Fr) k(Fr)
475 g

Where, A5 to A77 appear in Egs. (3.29) and (3.30) can be obtained in routine

calculation as given in the appendix.
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3.3 Analysis

3.3.1 Graphical illustration

This sections contains facts have been elaborated about the impacts of important
parameters such as Froude number Fr, Couple stress parameter ¥, inclination of the
plane a, concentration of the particles € and Hartmann number M.

In Figures (3.2) — (3.11) offer the flow behavior of two types of multiphase flows
suspended with crystals and Hafnium particles, respectively. Figures (3.2) — (3.3) give
the variation of Hartmann number on base liquid. It is vivid that both different

multiphase flows reduce their rapid motion when Lorentz force becomes dominant.

Opposite trend in the is observed for the case of rise in the number of particle phase in
Figures (3.4) — (3.5) as the drag force is effectively strong enough to resist the flow.
However, flow of bi-phase fluid suspended with Hafnium is much better than crystal
one. Increase in Couple stress parameter also rise the intensity of base fluid velocity
due the vanishing couple stresses at the boundary as shown in Figures (3.6) — (3.7).
Variation in the position of slanting channel has been spotted in Figures (3.%) and (3.9).
It is undeniable fact that higher the inclination of channel, faster is the movement of the

flow due to great impact of the gravity.

The Froude number [131] is a dimensionless quantity which used to resistance faced
by an object inside the liquid. This is defined as the ratio of inertial forces to

gravitational forces and mathematically denoted as:

Fr == 3.31
Jor (3D
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Significance of Froude number is to identify flow to be a critical, supercritical and
subcritical flow. A “Supercritical flow " suspended with two different types of particles

through steep channel as Froude number Fr increases infinitely for these type of flows.

The effects of Froude’s number which has an effective part in this gravity driven flow
are portrayed in Figures (3.10) and (3.11). As a matter of facts, the smooth hunching
down curves, consequently, addition rise in the inclination of the flat plate galvanizes

the motion of the flow and turning the subcritical flow into supercritical flow down the

slope.

Movement of crystal and Hafnium particles are shown in Figures (3.12) — (3.21). One
can see that contribution of the pertinent parameters on the movement of particles,
remains same as for the case of Couple stress fluid. Moreover, by comparison of fluid

phase velocity and particle phase velocity, it is inferred that fluid supports the particles.

3.3.2 Validation

This chapter investigates two different kinds of multiphase flows namely, crystal-
Couple stress fluid and Hafnium-Couple stress fluid a symmetric channel. Flow is
generated by the gravity while application of uniform magnetic fields is also taken into
account. Flow is modeled by using Navier-Stokes equations which are solved exactly
subject to the given boundary conditions. The motion of both phases are displayed
through graphs clearly indicating the role of each involved parameters. Physical
properties of basaltic magma are used a special case of multiphase flow given in Table
3.1. Table 3.2 suggests that owing to higher density of Hafnium particles flow is much
faster than flow suspend with crystal particles. Moreover, the results extracted offer

great deal of agreement with the present data and adhere to the physical expectation.
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Table 3.1: Physical properties about the composites of the flow.

Density Density Viscosity Viscosity
B (Particle) (Fluid) (Flud) (Suspension)
Magma - 1200 kgm™3 125 Pas 660 Pa s
Crystals | 2700 kgm™3 - -
Hafnium | 13310 kgm™3 —- -

Table 3.2: Velocity of the base fluid suspended with different particles

(up to 5-SF) when M = 1.0,c = 0.4, ==, y = 1.0 and Fr = 4.0.

us up
n

Crystal particles Hafnium particles
-1.0 0.00000 0.00000
-0.8 0.10531 0.17963
-0.6 0.19859 0.33875
-0.4 0.27103 0.46230
-0.2 0.31672 0.54024
0.0 0.33231 0.56684
0.2 0.31672 0.54024
0.4 0.27103 0.46230
0.6 0.19859 0.33875
0.8 0.10531 0.17963
1.0 0.00000 0.00000
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3.4 Conclusion

A comparative analysis is carried out for two different types of multiphase flows
through an inclined channel. Crystal-liquid and Hafnium-liquid flows are influenced by
the application of transverse magnetic field. Some of key findings are highlighted

below:

o Hartmann number and Froude number resist the motion of fluid and particle
respectively.

e Both crystal and Hafnium particle are supported by the base fluid.

e Hafnium particles suspends well to form a multiphase flow, as such flow moves
faster than crystal-liquid flow.

e Hafnium liquid flow through steep channel is in excellent agreement with the

one, as reported for crystal-liquid flow in the existing literature.
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Chapter 4

Numerical study on bi-phase Couple stress fluid
in the presence of Hafnium and metallic

nanoparticles over an inclined plane

This chapter provides a numerical investigation of a particulate flow over an inclined
plane. Couple stress fluid serves a base liquid suspended with partiaily submerged
Hafnium particles. Flow is generated due to gravitational effects and free stream flow
stretches far from the surface of the slanted plane. Nonlinear flow dynamic is converted
in to set of Ordinary Differential Equations (ODEs) employing suitable variables.
Runge-Kutta—Fehlberg method is considered to achieve the solution of the flow
problem. The contribution of alt significant parameters are visualized through graphical

results and all findings have been elaborated in complete detail.

4,1 Mathematical formulation

Consider uniform and spherical Hafnium particles submerged in the Couple stress fluid
drifting down the slope of an inclined plane as shown in the Figure (4.1). The flow is

assumed to be steady and free stream at far away from the flat plane.
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Free stream velocity g

Inclination of the plane «

Figure 4.1: Configuration of the semi-infinite plane.

If [ur (&, ), v (E, 1), 0] and [, (£, ), v (€, ), 0], is the velocity components of base
fluid and metallic particles, respectively. Then the governing Eq. (1.31) and Eq. (1.32)

in the component form are given as:

4.1.1 For fluid phase

3uf vi _
? + E)_ =0, (4.1)
621{[ 6411)« CS(UP - uf)
Ju du Hs 2] Y1 4 + _ +
5 u—£+v——f _ an on (1-0) (4.2)
A\ 8 " o 9y 8 '
a-0 sina 3E
4,1.2 For particle phase
du, du,
E + ?n- =0, 4.3)
a d
Pp (u,, %ﬂ + v, %) = CS(uy —up). (4.4)

48



As the given flow phenomenon involves the contribution of the free stream velocity of

the fluid i.e., "uy". Therefore, it is very sensible to consider the following stream

functions for both liquid and particles by the following relations:

By _ _ Ay _
ik g (4)
ap Py _
_Bnp = Uy, an -—a; = v, (4.6)

Now, by introducing the following similarity transformations as described by

Srinivasacharya and Kaladhar [132] which is an effective tool to convert the above

Partial differential equations into ordinary differential equations.

-1 ,
x=g»’Re; up =um f'(x); vp = u—?t(f“xf')
. : (4.7)

' UmV ,
Up = Uy F'(x); v =5 —-§—(F—xF)

In view of Eq. (4.7), after performing mathematical manipulation, Eq. (4.2) takes the

following form:
3
2\/R— tpen ( )i\/T f d
o _numfz eff _ (um Ev e(ff"—xf’f’) ____§£+
§Z (4.8)
unRe , €S v Re® :
I a ef +(1_lfrz-)(F _f)_)f1u?4 e fv+(1gff6) sin

Using some significant dimensionless constants and parameter that effectively

contribute in this particulate flow.

H St S odp v,Re u
V:—;Re: . F = —=F; == Fr= ‘
Pr T T P Gy 2 e
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In view of Eq. (4.9), one can easily reduce Eq. (4.8) one can easily obtain the Couple

stress fluid flow drifting Hafnium particles can be written as follows

it gt 1 CFp r__ g! __Siﬂ___

In the same way particle phase reduces to the following non-dimensional expression:

(F'=f1

F''= ZFD _“—(fo —F)

(4.11)

The boundary conditions which are controlling this particulate the Couple stress fluid

flow over and far from the considered flat plane for both phases are respectively

defined by:

Case-1: At the inclined flat plane

®. w(Em =0,
@. v Em=0 " L.an=0 (4.12)
@n.SLEm = ZLEm.

Case-II: Far from the plane

(). SLEm =5LEm,
(). w (& n) =upm, ; atnp - oo, (4.13)
(wi).up(§,m) = upy,
(wii).u, (§,m) = (. n)

Using Eq. (4.7) in Egs. (4.12) - (4.13), boundary conditions for both fluid and particle

phase in dimensionless form are transformed as:

(). fx) =0,
(ii). f1(x)=0,3; atx =0. (4.14)
(iid). f"(x) = 0.

Similarly, far from the plane
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(iv). fx)=1,
). f"(x)=0,
(wi). F'{x)=1,
(wii).F(x) = f(x)

; atx — oo, (4.15)

4.2 Solution of the problem

Having a look at the transformed form of mathematical model for fluid and particle
phases, it is for sure that neither a closed form nor an analytic solution is possible for
such a complex flow problem. There are Couple of reasons that one turns to numerical
methods, to seek a formidable solution. First, the transformed ordinary differential
equations are nonlinear and coupled with each other. Secondly, the boundary conditions
are incomplete for both phases. Therefore, the reduced Eq. (4.10) and Eq. (4.11) are
tackled numerically. For this purpose, best suited numerical scheme i.e., Runge-Kutta—
Fehlberg method (RKF) is adopted. The requisite of the method is to deal only, with
those differential equations which are of first order in nature. The error and mesh size
adjustment depend upon the residual of continuation solution. For the solution of any
two-point Boundary Value Problem (BVP) method can simply be defined as:

y' = g(t,y), ast=h, (4.16)
Corresponding to the boundary conditions:

y(a) =0, and y(b)=0. (4.17)
An approximated solution s(t) of Eq. (4.17), yields a smooth unflinching curve defined
on each subinterval of the mesh which is given below

(tpe tn=¢1), Wheren® = 0,1,2, .. N. (4.18)

The required subintervals which impart this iterative scheme can be chosen from the
following

A=ty <ty <ty <tyu.<tp_;<tpy=bh (4.19)
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The obtained numerical solution can’t be reliable unless s(t) satisfies the boundary
conditions besides, the given below differential equations at middle point of each

interval and extreme points of each interval, as well.

S’(tn.') = g(t‘n'rs(tﬂ')) =0, (420)

,fEnt T lnre1) _ tne + Lprq tpr + nm41)) _
s (‘2—)_5’(( 2 )S( 2 ))‘0' (4.21)
5" (tprs1) = g(tn'+1: S(tn'+1)) =0 (4.22)

After the introduction of such conditions, one will obtain a nonlinear system of
algebraic equations. To tackle nonlinearity these will be linearized before proceeding
to the iterative scheme.
For this given problem this numerical technique worked efficiently well and the
contribution of different emerging parameters; such as the Couple stress parameter,
Froud number, drag force, and density parameters, on f'(x) and F'(x) have been
studied through graphs. The effects of the emerging parameters on the f'(x) and F'(x)
are studied. The asymptotic boundary conditions are approximated by using a value of
9 for x maximum as follows:

Xmax = 9. (4.23)
Therefore, the given conditions defined far from the plane take the form

f'®=1 ['®=0 F@O=1 FO=/0). (4.24)

4.3 Analysis

The most significant and instructive parametric study of two-phase flow phenomena is
carried out in this portion. The main emphasis is given to study the motion of both
phases. Consequently, a thorough analysis of each phase velocity is examined for

different pertinent parameters, which contribute in various perspectives, namely, local
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Couple stress parameter ¥, drag force coefficient Fp, Froude number Fr, concentration

of particles C and inclination of the plane a.

Figures (4.2) — (4.3) describe the role of drag force coefficient on Couple stress fluid
and Newtonian fluid case. It is a well-recognized fact that drag force acts like a force
of resistance. Therefore, application of drag force on any natural or mechanical flow
results to retard the celerity of Couple stress fluid. This can be perceived that due to the
instinctive stresses of the Couple stress fluid which further enhance drag force as can
be witnessed in Figure (4.2), for the case of Couple stress fluid. Similar type of flow

behavior is depicted for Newtonian fluid in Figure (4.3).

The number density of Hafnium particles has been spotted in Figures (4.4) — (4.5),
respectively for both types of fluids. Over all behavior of the Couple stress fluid remains
the same with an exception that the fluid velocity is further supported by the
introduction of additional metailic particles to the flow. With the perception that
increase of additional particles will hamper the flow by further strengthening the drag.
But, one must not ignore the role of an inclined plane due to gravity which contributes
a lot by increasing the momentum of the particles. This galvanizes the velocity of both

types of fluids.

The Froude number has a significance usage. It arises in such flow phenomenon where
a free surface of the fluid is involved. For a common approach this dimensionless
number describes as how gravity affects a moving liquid. This number has many
applications in naval and aerospace engineering. In such dynamics, Froude number
helps engineers to analyze the resistance of a moving body which is partially submerged
in the fluid. This claim is approved in the Figures {(4.6) — (4.7). Here, velocity of the

fluid is drastically reducing due to Froude number. By increasing inertial forces or
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minimizing the effects of external fields, metallic particles exerts some extra force of
repulsion on the fluid and hampered both flows. One must not have any confusion to
infer the results by looking at Figures (4.8) — (4.9), corresponding to the variation in
the inclination of the flat plane. It is convincing reality about any flow over a flat plane
that higher the inclination of the plane, faster the movement of the objects lying on its

surface.

Figures (4.10) — (4.14) are dedicated to study that how the movement of Hafnium
particles is influenced by the concerned key parameters. It is seen that the particles find
hard to move freely in both types of base fluid, subject to increase in drag force

coefficient which is evident in the relevant figures.

It is obvious that drag force increases the resistance between any two adjacent metallic
particles. Henceforth, the free movement of the particles gradually declines. Figure
(4.12) identifies the role of Froude number on the metallic particles. One can see that
as motion of the particles is resisted by the higher values of Froude number. On the
other hand, in Figure (4.13) elevation of the slanted plane. It is observed that higher
slope of the plane allows the particles to drift down quickly. Finally, in Figure (4.14)
the concentration of the particles is varied. As quantity of particles is increased then
their movement is also increased. Finally, the comparison between Newtonian fluid and
Couple stress fluid is made in Figure (4.15). Here, one can clearly see that Newtontan
fluid moves faster as compared to Couple stress fluid. This can be termed as the effects
of viscous forces in Couple stress fluid are greater than Newtonian fluid. However, the

fluid velocity for both cases increase against the increase in particle concentration.
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Couple Stress Fluid
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Figure 4.2: Vanation of drag force coefficient on the fluid velocity.

Newtonian Fluid
14 T T T T T T T T T
;.5-':;-':-;-
9 f".'h.u.. ﬂﬂu’ . o
1 2 s ‘r‘l.-ﬂ?lhﬂnnm .
"‘"""ﬂ‘!ﬁ!’m

D -
-1
--F =20 |

L I 1 L ] 1 1 1

46 8 10 12 W 16 B 20
X

Figure 4.3: Variation of drag force coefficient on the fluid velocity.
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Couple Stress Fluid
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Figure 4.4: Variation of particle concentration on the fluid velocity.
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Figure 4.5: Variation of particle concentration on the fluid velocity.
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Couple Stress Fluid
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Figure 4.6: Variation of Froude number on the fluid velocity.
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Couple Stress Fluid
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Figure 4.8: Variation of inclination of the plane on the fluid velocity.
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Figure 4.9: Variation of inclination of the plane on the fluid velocity.
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Couple Stress Fluid
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Figure 4.10: Variation of drag force coefficient on velocity of particle.
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Figure 4.11: Variation of drag force coefficient on velocity of particle.
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Couple Stress Flud
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Couple Stress Fluid
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4.4 Conclusion

A granular flow of Hafnium particles is studied moving down the surface of a plane in
this study. The Couple stress fluid serves to represent a slanting non-Newtonian flow
that stretches boundless from the flat surface of the plan. The flow is modeled with a
great skill by taking Navier-Stokes’ equations into account. Having applied a suitable
transformation, Runge—Kutta—Fehlberg technique is preferred to seek a compatible
numerical solution for such nonlinear flow problem. Flow pattern of both phases are
examined through graphs to make sure that flow has complete agreement with the
mathematical formulation. In addition to this, some new findings have also been

inferred which are enlisted below:

o The drag force resists the Couple stress fluid while the Newtonian flow is
supported by increasing the velocity.

o For both types of flows, movement of the particle is retarded gradually against
the drag force coefficient.

® Anincrease in the plane rapidly increases the velocity of both phases.

s The addition of new metallic particles act differently on the velocity of each
phase.

s The movement of each particle and fluid (both the Couple siress and
Newtonian) is retarded due the variation in Froud number.

» The coefficient of drag force and the inclination of the plane cause different on
skin friction coefficient.

s The fluid model reduces back to Newtonian one by removing or eliminating the
parameter of Couple stress parameter as shown in each figures that provides

clear evidence for the validation of reported results.
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Chapter 5

Modelling study on heated Couple stress fluid
peristaltically conveying gold nanoparticles

through coaxial tubes

This chapter i relevant to the peristaltic transport of Couple stress fluid through the
space between coaxial cylinders. The inner tube is rigid in composition while outer
cylinder has elastic walls. The investigation suggests a remedy for swollen or disorder
in the human tissues and organs by means of nano size particles. The higher thermal
conductivity and large atomic number of gold can effectively easily malign tissues, as
the rapid Brownian diffusion of the particle, rapidly convey medicine to the effected
organs. The nano fluid flow is modeled with the momentum and energy equation are
taken into account along with the mass transfer equation for the diffusion of the

concentration of particle.

5.1 Mathematical formulation

IfV = [U(R,Z,t) 0 W(R,Z,t)] represents the flow of nanofluid through concentric
tubes as shown in the Figure below. Blood is considered as the flow of Couple stress

fluid which suspends with the nano-size gold particles to form a nanofluid. For
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Brownian and thermophoresis diffusion of golden particles from higher region of

concentration to the lower region Buongiorno model is considered.

ZA
—f——

¥ < A 4
Figure 5.1: Configuration of coaxial tubes.

The component form of Egs. (1.31) — (1.34) that describe the momentum convection, thermal
convection and mass/particle convection after employing Oberbeck-Boussinesq approximation

are given as:

U au  aw _

-+ =— 5.1
RYartaz =" 3.1)

“aR T \ar TRaR T a72)
64U+263U+ azu + 7
dR* " RIR® ' R?0R? L (52)
a4U+aU+a3U+' )

OR28Z% R3QR ROROZZ
a*tu + a3u +8“U

L 9Z29R? ROZ*OR 0Z* 1/

ap a2u 14du azu) )

(6U+U6U WaU)
Paul\gr T VRt Wz
Y

—
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ap (azw 19w 62W) 1

~az P \arE YRR T oz
W 28PW | 9W ]
ow oW ow ar* " RoRT T REORE
hildd —_— —_) = 4 azcw > (5.3
J""f(at“”a.re*’waz) y| LY, oW I PR RS

9R?3Z%2  R3GR | RARIZ

Irw  Pw
| 3z79R? ' Raz?or T az® |
[0p, + (1 — @)p, (1 = Br(T — 6,)}]9/

P d:T 10T + a7 +1
\arz Y RaR T 3R?
aT aT aT dpdT 0OeadT
el - — = —_— ——— , 5.4
(PCdny (at tURt Waz) b (aR 3R Tz az) (54)
el ()
B, (\dR az
dlp 13¢ d%¢
%, 20 Wa<p)_Db(8R2+R6R+622 + 59
(E“L a&""3z)" b, 62T+16T+62T ' ‘
9,\dR?  RAR ' ORZ
The corresponding boundary at the extreme walls:
Case 1. At the rigid wall:
(ii). T(R) =04, ;; When R =a,. (5.6)
(ii).@(R) = 4.
Case 2. At the flexible wall:
(iv).W(R) =0, 2
(v).T(R)=06,, ;; WhenR=#H=a,+b cos-A—(Z — ¢E). (5.7)
(). @(R) = ¢,.

Egs. (5.1) — (5.7) is the peristaltic transport of nanofluid in a laboratory frame which
requires to be shifted into a wave frame. This can be achieved by the introduction of

the given below transformation in the above equations.
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F=R;, =2 -¢F; (2 =URZ,1); wF2) =W(QR,ZD —e;} 5:9)
d(F2) = @R, Z2,D); 8(F, ) =T(RZD : ‘

Having use the above wave transformation in Egs. (5.1) — (5.7), the obtained equation

can be non-dimensionalised with following variables and parameter.

2 z A W aqp _ 6-86, 0 )
—_—=r —=Z:—=U; =W ; = =p; =@,
a, nATE éa, U7 EAptny p 8, — 6,
b ,U.nf kl
—=c;1+¢ cosZn’z)=r;’—a= ; ———— = €3]
a; 1 1 ( 3 71 2=Y (pc)nf 3
(pc)np a; a22(¢1 - ¢2)(pnp - pnf)g _
= €2 5 =& > = Bg;
(PC)ns A Cling 3 (5.9)
D.(68, - 8;) az*(6; —6;) (1 — qbz)ﬂnfﬁrg
=Ng - = Gy;
82 CHnr
'Fg s EE (5 - ¢2
= =1y =1y Dy(py —&2) = Ny = = ¢;
. 3 % 2 Dp(gy — ¢ b b — b, ¢
_émjal | -mzay; _ -mia3
T As.“nf T ']-zlunf P EAB.unf . J

The assumption of long wave length gives the final form of nanofluid flow:

9y + =0 (5.10)

ar("“) gz ~ :

dp

e = 5.11
o 0, (5.11)

d2w+1dw 1 {d*w 2d°w 1d*w 1dw B Ga_dﬁ 512
drz ' rdr yI\or* rdr® r2dr? ridr +Bed + G- T dz’ (5.12)
d29+1de vedn (dB)(d¢)+N do\? —o 5.13)

“\arz Trar) T2\ "\ \ar t(rflr) - -

N d2¢+1d¢ N d?e 1de o 51
b\drz " rdr t F-F;E - (5.14)
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The boundary conditions at different walls are listed as:

1adw

——+Bd¢+G g= (E1+E3)

(. W(r) = -

(o). F(r) %Y. When r =r.
(iii).8(r) = 1,

(iv).¢p(r}=1.

(v} w(r) =— 3
(wi). —(r) 0,
(vu).B(r) =0,

(viii). p(ry =0, : When r = rj.

1 fd*w 243w 1 d%w 1 dw
(xi). 25 - (—+- ~ldw, Cdn)y

art ' rdr®  ridr? @ 13 dr

dr3 d?rg

2+ B, 52

5.2 Solution of problem

(5.15)

(5.16)

If wo(r), 8p(r) , po(r) denote the initial guess and L,,, Lg, Ly represent the linear

operator for momentum, thermal and mass flux density, respectively as defined of

higher order differential mapping [133] as:

Wo(r) = _1r
r—r
60(7') = zr
n=r

-1

po(r) = ——

(5.17)

(5.18)

(5.19)

In view of main governing equations, the linear operators may easily be selected as:

Ly, =w"(r),

‘59 = 6"(7')’
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Ly ="(r).

Deformation problems at zeroth-order can be expressed as:

(1 — )Ly, {w(r,€) —wo(r)} = ehy, Ny{w(r,€), 8(r.€), ¢(r.€)}

(1-€)Lp{B8(r.€) = Oy(r)} = ehgNg{w(r,€), 6(r,€).

(1 - E)L¢{¢(T, E) - ¢0(r)} = Eh¢N¢{W(r, E), B(rl E), ¢(T, 6)}'

¢(r,e)},

(5.22)

(5.23)

(5.24)

(5.25)

The analytic solution can be obtained by defining the following sets of boundary

conditions:

{(D).w(r,e) =-1
i) ey =0
(iii). 8(r,e) =1
(iv). p(r,e) =1

; Whenr =r,.

(v).wir.e)=-1
D). 22 (r.e) =0
(vii). 8(r,e}) =0
(viii). ¢p(r,e) =0

; Whenr =713,

(5.26)

(5.27)

Since, the convergence of analytic solutions [134] heavily depends upon the best

optimum value of some non-zero auxiliary parameters. One can easily identify those

given in Egs. (5.23) — (5.25), such as hy,, hg and h,. However, the presence of

nonlinear operators N,,, Ng and N, along with the embedding parameter "e" lies in the

interval 0 < € < 1 defines the given criteria:

For e=90 €=

w(r, €} wo(7) w(r)
8(r.€) 8o (r) 8(r)
¢(r,e) do(r) ¢(r)
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d’w ldw
Nyiw(r.€), 8(r,e), ¢(r.e)l = ey + i P+ Bap + G0 —

dr

1 (d*w 2dw 1d?w 1dw (5.29)
F(ar4 P rTE T +ﬁ§)
d?6 1d6
G(F+;EF)+
Nglw(z,€), 8(r,€), ¢(r.e)] = a0y d N (5.30)
T(”b @) (@) + v (E))

d? 1d d?6 1d8
Nylw(r,e), 8(r.e), ¢(r.e)] =N (E%-l- Fd—f) + N, (Er_z + ;E) (5.31)

Variation of the embedding parameter € in the suggested domain causes w(r, €), 6(r, €)
and ¢(r,e) to vary form initial guess wo(r), @y(v) and ¢o(r) to desired

w(r,e€), 8(r, e} and ¢(r,€) solution.

Let us expand w(r, €), 8(r, €) and ¢(r, €) in Taylor’s series as:

w(r, e} = wo(r) + qu (r)eq, (5.32)
8(r,€) = Bo(r) + Z 8,(r)e?, (5.33)
P(r.e) = go(r) + quq (ref. (5.34)
Here, w, (1), 8, (r) and ¢, (r) are respectively defined as:
we(r) = %aq-.;_g,e) » (5.35)
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1896(r,¢€)

90(1") = ;—aga—‘ E=0, (536)
13%(r,¢)

Pa(r) = P e _ (5.37)

The expression of g*"- order deformation for Egs. (5.23) — (5.25) are laid down in

the following equations.

r’w[wq(r) _quq—l(r)] = hwﬁqw(r) ’ (5.38)
Lo[0,(r) = xqB8q-1(P)] = heR2 (1), (5.39)
Lo[tg(r) = xqPaq-1(1)] = heR P (). (5.40)

The relevant boundary conditions at rigid and elastic wall can be represented as:

(D.wy(r,e) =-1
O.2% ) =0
(ii). 84(r,ex=1
(iii). gg(r.€) =1

; Whenr = ;. (5.41)

(¥).wy(r,e) = —1

., d'wg _
W7 O =04 ypenr =1, (5.42)
(vii). 84(r,e) =0

(viii). dg(r.€) =0

_ (0, Whenever q <0,
x“'_{l, when ever g > 1. (5.43)
qeery =" ¢ T FWaTE\W @ TEW e TEY e T . (5.44)
Bad, + .6,
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q
1 I ! r 2
RO =a (9’3, + ;e’q) +T|N, Z 8k i—q + Ne(8g) |, (5.45)

k=0
¢ I 1 [ ] 1 1]
RE(r) = N, (cp q+;¢q)+1vt (.9 q+;9q). (5.46)

The q*"-order approximation for solution can be stated as:

!
w(r) = wo(r) + Z::l wp(1), (5.47)
q
0(r) = fo(r) + ,Zl B (7, (5.48)
q
) = do + Y P, (549)
n*=1

Solution of the problem is obtained with the help of Mathematica package BVPh 2.0
method [135] correct up-to second iteration. And, the separate analytical expressions,

respectively for momentum, thermal and mass convection are given as
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In the same way, one can determing an explicit expression for temperature profile as

given below.
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+h2< Yo
olsrt A, 39 Nz[ 1337 63892 319]

11 +N2[ P 133 _ 6389, 319J+
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!

40 71200 24000112500 | 1200 *3000
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4 2
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) (5.52)
A {N[ﬁ 1332 +1463”

8 1200 20" 2400

P32 8 1l 42
6+10 600 1000 2 *
2 11
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[2& 2 s 11],+f¢+u

5 3 6 500 Nb 10°

The analytical expressions given in Eqs. (5.47) — (5.49) contain auxiliary parameters

hy, hg and hgwhich help to converge the solution with their best selection. Figure (5.2)
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shows the h —curves of velocity, temperature and concentration, respectively. The
estimated values of such parameters range in the interval —0.8 < h,, < —0.2, —0.7 <

hg < 0.3 and —0.6 < hy < 0.2. It is observed that HAM solution converges for h,, =

~0.5, hg = —0.2 and hy = —0.3.

2
1
S
:-%\ ] }
S
EY
S X .
P h., -curve for velocity
i h, _curve for temperature
- hs —curve for concentration
_3 " . . .
-1.5 -10 -0.5 0.0 0.5 1.0
h Wy hia h$

Figure 5.2: A curves.

5.3 Analysis

This section is relevant to the graphical survey about the changing behaviors of axial
velocity, thermal convection and diffusion of the particles. The displayed graphs have
also been elaborated in detail which describe the altering trend caused by change in
different parameters and variable. The most important of such variables are Brownian
motion parameter N, Grashof number ., Brownian diffusion constant By,
thermophoresis parameter N, and Couple stress parameter y as shown in Figures

(5.3) — (5.11).
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Velocity of nanofluid is plotted in Figures (5.3) — (5.7). One sees that the nanofluid
moves faster subject to rise in the value of G, by looking at Figure (5.3). Heating effects
attenuates fluid thickness and allowing the buoyance force to become strong. This
results to bring rise in fluid and fluid velocity imcreases by increasing G,.. Same trend
in the motion of nanofluid is observed in Figure (5.4). In which B rises the velocity
due to temperature difference in the fluid. For density of fluid depends on temperature.
By varying N}, the random motion of gold particles gets intense and due to inter-particle
collision momentum of the rises as shown in Figure (5.5). The contribution of y shows
that velocity rises by changing its numerical value. This can be inferred that due to
vanishing couple stresses as given Figure (5.6). On contrary, fluid declines its speed for
the case of N;, when thermophoretic forces become strong and start resisting the flow

in Figure (5.7).

Figure {5.8) — (5.9) show the significance of nano-particles. As such particles are
famous for enhancing heat therefore, temperature of nanofluid rises. For higher values
of Nj, the random motion of golden particle intense and more energy is added to the
system by their collision in Figure (5.8). However, in Figure (5.9) thermophoretic
forces expedite the heat convection by transporting heat form higher region to lower,
and hence the temperature rises due to N;. A similar trend in the concentration of golden
particles is witnessed in Figures (5.10)-(5.11) respectively. An increase in N, results to
shift golden particles for higher region of concentration to lower region with in the
space of coaxial tubes. Therefore, the concentration declines in Figure (5.10). However,

for the case of N, rapid flow of causes the reduction of concentration in Figure (5.11).
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Figure 5.11: Variation of thermophoresis parameter on nanoparticle concentration.

5.4 Conclusion

Tiny size of golden particles are used as a remedy for arthritis and cancer. Couple stress
fluid is treated as blood with transport the heated particles by means of peristalsis. Inner
tube which is injected through veins carries the required drug to cure damaged tissues.
The nanoflow is modeled with the help of means of momentum, thermal and mass
transfer equations. The nonlinear flow problem is solved analytically by considering
HAM. The analytical results are confirmed by making parametric study and found them

in complete agreement. Some of the key findings are highlighted as:

s Higher thermal conductivity of gold particles enhances the temperature which
are suitable for therapy .

e Due to Grashof number buoyancy force becomes strong and increases the
motion of the fluid.
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Thermophoretic force resists the flow thorough coaxial tubes.
Couple stress increases the peristaltic motion of nanofluid.

The study reduces to merely Newtonian case by eliminating the Couple stress

parameter.
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Chapter 6

Peristaltic flow of Couple stress fluid suspended
with nanoparticles under the influence of

chemical reaction and activation energy

The current chapter basically, is an extension of previous chapter. The additional
contribution of chemical reaction and activation energy are incorporated to expedite the
performance of golden particles. Modified Arrhenius law activates golden particles to
convey medicine effectively. Similarly, for Brownian and thermophoresis diffusion,

Buongiorno model is used.

6.1 Mathematical formulation

The sinusoidal waves travel with a constant speed through its walls, due to the stress
caused by an unsteady movement of heated nanofluid between the gap of coaxial tubes,
as shown in Figure 5,1. Again, the Couple stress fluid transports the gold nanoparticles
(GNPs) affected by chemical reaction, as well as activation energy through vacant space
of coaxial tubes. Then the flow dynamics as governed by the Egs. (1.31} — (1.34) in

components form are expressed as:

U U ow

e e — 6.1
rtart3z =% ©.1)
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(6.2)

(6.3)

(6.4)

(6.5)

Transformations which are used in previous chapter again play vital role to shift the

flow dynamics from laboratory frame to wave frame as described by the Eq. (5.6) and

further applying dimensionless quantities as given in Eq. (5.7), respectively. Then the

above governing Eqgs. (6.2) — (6.5), in view of Oberbeck-Boussinesq approximation

and long wave length assumption can be presented in dimensionless form as:
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In concentration equation chemical reaction and activation energy are responsible for
the emergence of some new nondimensional quantities, which are defined as:

E k2 O — 6
E* =2 . A= _r; . (Om w). (6.9)
k8, D, 8.

6.2 Solution of the problem

The governing Egs. (6.6) — (6.8) involve nonlinearity and are coupled with each
others. Therefore, an exact solution of this peristaltic nanofluid flow problem is not
easy. This constraint of choice restricts, to seek a numerical solution with the help of
some suitable numerical technique, such as Keller-box method [136]. The reason for
choosing Keller-box numerical scheme is that this method is much faster and more
flexible to use as compared to other methods, In addition, this has been extensively used
and tested on boundary layer flows. By means of said method, the solution can be
attained by using four steps: (i) First reduce the system of equations to a first order
system; (ii) then write the difference equations by means of central differences; (iii)
now linearize the resulting nonlinear equation by Newton’s method, if needed; and (iv)

finally the block-tridiagonal-elimination technique is used to solve the linear system.
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6.3 Analysis

This graphical section is relevant to the effectively contributing parameters, which
influence axial velocity of Couple stress fluid, temperature of nanofluid, and
concentration of nano sized Hafnium particles, respectively. The involved parameters
have a greater impression on the flow, namely, Couple stress parameter ¥, Brownian
motion N, and thermophoresis parameters N, Grashof number G,, and Brownian
diffusion constant B; emerging due to the presence of heat and metallic particies.
Moreover, a modified Arrhenius mathematical term yields some additional parameters,
such as reaction rate A", activation energy E”, temperature difference parameter §~, and
the fitted rate constant n, assuming the contribution of peristaltic pressure to be
constant. To make this more systematic, the main portion is further divided into four
subsections.

6.3.1 Axial velocity

Axial velocity is spotted in Figures (6.1) — (6.3) for Couple stress parameter,
Brownian diffusion constant, and Grashof number. Axial velocity, as shown in Figure
(6.1}, accelerates in response to an increases in Couple stress parameter. This is mainly
due to the decrease in friction, which arises from the particle (i.e., base-fluid particles)
additives, which constitute a size-dependent effect in Couple stress fluids. In addition
to the preceding remark, the rotational field of fluid particles is minimal as well. The
peristaltic motion of outer walls of the tube also contributes by rapidly pushing the fluid
in the axial direction, as By gets numerically variated in Figure (6.2). Figure (6.3)
displays a different picture of the velocity of the fluid for the case of thermophoresis
diffusion constant. The diagram basically describes the influence of buoyancy in terms
of Grashof number G, . As one can see from Eq. (6.17), the buoyancy effects are mainly

due to gravity and temperature difference. Therefore, increase in G, attenuates the
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fluid’s momentum by aggravating buoyant force. This brings a vivid decline in the
velocity of the fluid. Furthermore, the relation defining Gr suggests that if Gr > 0, then
this physically describes the heating of the nanofluid, while a reverse case can be
expected for Gr < 0.

6.3.2 Thermal distribution

The temperature distribution of the nanofluid in the presence of additional chemical
reaction and activation energy are portrayed in Figure (6.4) and Figure (6.5). The
variation of the Brownian motion parameter has noticeable effects on the nanofluid
temperature, as the Brownian motion is generated due the collision of nanoparticles,
driving the particles to a random motion. The collision of the particles, whether mutual
or with the fluid molecules, is enhanced by the inward contraction of the flexible walls.
Due to this factor Brownian motion parameter, N, accumulates some additional thermal
energy in the fluid, as shown in Figure (6.4). The nanoparticles were further thermally
charged by the increase in N,. It is important to keep in mind that the thermophoresis
forces become stronger in the response of larger values of N, which finally result in
higher temperature, as seen in Figure (6.5). Sometimes, such variations are credited to
the thermal boundary layer thickness as well. Obviously, this increase in fluid
temperature is due to increase in the random motion of nanoparticles when the above-

mentioned parameters are increased.

6.3.3 Nanoparticle concentration profile

The concentration of golden particles is observed in Figures (6.6) — (6.7), when the
N, and N, respectively, are given higher numeric values. The random motion of the
nanoparticles is seen to be faster in response to increase in the values of said parameters,

which makes diffusion of nanoparticles rapid and fast. Therefore, rising curves show

an increase in the concentration of nanoparticles. Moreover, this contribution of
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Brownian motion identifies the quick movement of hotter gold particie, from the region
of higher temperature to lower temperature. The thermophoresis forces also bring
positive effects on the golden particles by making the concentration strong against the
higher numerical variation in M, as is noticeable in Figure (6.7). With the same trend
of influence, an onward surge of activation energy again gives a rise to the golden
solution. One can see in Figure (6.8) that the boundary layer thickness of the particles
gets depreciated when E,, is further motivated to transport the required drug or medicine
to the desired target. The Arrhenius equation, which gives the mathematical description
of the introduction of activation energy into any system, clearly reveals that the
reduction in heat and acceleration of E, returns a low reaction rate constant. In the
process, this slows down the chemical reaction and results in higher concentration of
the particles, which confirms the accumulation of gold nanoparticles at the location of
the malign tissue or organ to cured. Finally, the surge in concentration of gold particles
is evidenced by the decline in Figures (6.9) — (6.11). The temperature difference ratio
brings a remarkable decline in concentration of the heated nanoparticles. As the
difference between the ambient fluid temperature and wall temperature widens, the
concentration boundary layer thickness expands. This thickness resists the increase in
particle concentration displayed in Figure (6.9). Similarly, retardation can be witnessed
for reaction rate and fitted rate constant. It can be conceived that the rise in these
parameters and constants sharpens the chemical reaction, which motivates the
concentration gradient at the wall of the inner tube. Hence, a vivid reduction in the

concentration of the particles occurs, as is seen in Figures (6.10) — (6.11).
6.3.4 Trapping phenomenon / streamline configuration

Finaliy, the most significant phenomena relevant to any peristaltic motion in a living

organism is known as “Trapping™. Essentially, this is the appearance of a round closed
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bolus, which is identified as the hallow cavity, transporting the required medication to
the desired tissues or organs, as shown in Figures (6.12) — (6.18). In Figures
(6.12) and (6.13}, one can easily notice that the fluids face less resistance when
traveling through the coaxial space, as the contours reduce in size and configuration. In
contrast, the Couple stress fluid results in shrinking the streamlines and generates the
circulating boluses, as depicted in Figure (6.14). Isotherms of the Brownian motion
parameter keep binding closer together, which allows the bolus to expand, as
established in Figures (6.15) and (6.16), whereas the thermophoresis parameter
provides extra potential for isotherms to compress the bolus inwards. Hence, the bolus
keeps getting smaller. In the last two graphs, contours are sketched in order to see how
concentration is influenced by the reaction rate constant and thermophoresis parameter.
One can see in Figure (6.17) that the bolus bulges out as the reaction rate constant gets

stronger, whereas a reverse trend is observed for the thermophoresis parameter in

Figure (6.18).
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Figure 6.1: Variation of Couple stress parameter on velocity.
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6.4 Conclusion

A numerical investigation is carried out for the peristaltic flow of nanofluids between
the gap of two coaxial tubes with different configurations and structures. The nanofluid
is composed of gold particles, while the Couple stress fluid serves as the solvent. To
enhance the mutual interaction of gold particles, or the interaction of molecules with
the base fluid, additional effects of chemical reaction and activation energy have also
been taken into consideration. The performed study reveals very informative results.
Such results include that axial velocity is fully supported by the Couple stress parameter
and Brownian diffusion constant, in contrast to the Grashof number. The temperature
of the nanofluid remains high for both involved parameters, which are thermophoresis
and Brownian motion parameter. Looking at the graphs of concentrations of the
metallic particles, it is inferred that activation energy, thermophoresis, and Brownian
motion parameters cause an increase in the concentration of particles, whereas
temperature ratio, reaction rate, and fitted rate constants do not support the increase. In
the final portion of the graphical study, the number and size of the circulating boluses
are depicted. One can easily notice that boluses get enlarged in response to the
Brownian motion parameter, Couples stress parameter, and reaction rate constant.
However, a reverse trend is observed for the Grashof number, thermophoresis

parameter, and Brownian diffusion constant. The key finding can be summarized as:

* Strong buoyant force results in retarded axial velocity for the thermophoresis

parameter.
e Peristaltic movement of the outer tube enhances the Brownian motion and raises
the temperature of the nanofluid.

*  Activation energy entering the process enlarges the thickness of concentration.
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The reaction rate constant increases concentration at the catheter, which decreases
the concentration of nanoparticles.

N, shrinks the bolus in size by strengthening isotherms and closed paths of
concentration lines.

The Couple stress parameter and reaction rate constant give freedom to the bolus

to swell by binding the stream lines closer to each another.
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