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Preface

The internal flows such as heating and cooling fluids, chemical processes, petrol
in an engine of car, blood in an artery or vein environmental control and energy
conservation technologies are very significant because they have a vast range of
applications. The flows extended the concept of boundary layer to a fully
developed flow. These flows are usually induced by either movement of a wall
or change in pressure. The class of flows that occurs due to pressure gradient is
called Poiseuille flow. They incorporate laminar and incompressible internal
flows. Many heat-transfer devices employ Poiseuille internal flow to add
to/remove heat from the system. For the purpose, a good heat transmitting liquid
is filled in pipe and transmitted. Few more examples of such devices are heat

systems and automobile coolant, refrigerator and cooling rods in nuclear reactor.

One of the efficient heat convection fluids such as nanofluids gained importance.
The mixture of nanosized particles in low conductive and inert liquids enhances
the thermal conductivity unpredictably. The particles (1-100nm) having different
shapes such as spherical, cylindrical or platelet, etc., produce amazingly different
results from the large particles with huge surface region to volume proportions
properties due to inhabitance of an extensive of iotas on the limits which makes

it stable in suspension.

The two main models namely Buongiorno and Tiwari & Das models have an
extensive mathematical use to express the behaviour of such liquid. This thesis
discusses the internal Poiseuille flow through channel with flat and wavy plates
saturated by nanofluid under the influence of different body forces. It comprises

seven chapters. The details are:

Chapter one is based on literature review, some basic concepts, thermophysical

properties of nanofluids, fundamental equations and analytical schemes.
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Chapter two addresses convective radiative plane Poiseuille flow of nanofluid
through porous medium with slip. Novel features regarding thermophoresis and
Brownian motion are taken into consideration. The purpose of this chapter is to
explore the effect of second-order velocity slip on magnetohydrodynamics
(MHD) plane Poiseuille flow of nanofluid through two-fold parallel horizontal
plates with viscous and Ohmic dissipations. Stefan blowing factor at the lower
wall for injection along with the concentration of nanoparticles and thermal
radiation is considered. The analytical solution of formidable governing
equations is achieved by homotopy analysis method. The effectual reliability of
obtained solutions is first verified through #-curves and later warranted by
means of residual errors norms in each case. The effects of physical elements
along with convergence analysis have also been offered. The contents of this
chapter are published in “Journal of Molecular Liquids, 273 (2019) 292-
304”.

Chapter three discusses the structural impact of kerosene-Alumina (Al203) a
nanofluid on MHD Poiseuille flow having variable thermal conductivity with
application of cooling process. In this chapter, the Alumina has been
manufactured for application as a kerosene-based nanofluid to assess its potential
heat-transfer application in thrust chamber cooling of liquid rocket engine. The
proposed study with impact of inclined uniform magnetic field, variable thermal
conductivity, heat generation and heat flux on steady plane Poiseuille flow is
discussed. The systems of coupled nonlinear equations are solved analytically
by homotopy analysis method. This study is published in “Journal of
Molecular Liquids, 264 (2018) 607-615”.

Chapter four presents the analysis of activation energy in Couette-Poiseuille flow
of nanofluid in presence of chemical reaction and convective boundary
conditions. In this chapter a Couette — Poiseuille nanofluid flow through two
parallel straight walls with convective boundary heat and mass conditions are
studied. The main aim of this chapter is to scrutinize the mutual influence of

chemical reaction with activation energy and manufacturing extrusion thermal
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system in the presence of radiation effects. For this analysis, appropriate
transformations on the partial differential equations have been used. The
governing systems of nonlinear coupled ordinary, differential equations are
tackled analytically with the advantages of homotopy analysis method. The
findings of this chapter are published in “Results in Physics, 8 (2018) 502-
512”.

Chapter five deals with the convective Poiseuille flow of Al,Os-Ethylene glycol
a nanofluid in a porous-wavy channel with thermal radiation. The electro-
magnetohydrodynamics (EMHD) flow in a wavy channel with porous media has
been discussed. The emphases are given to investigate the simultaneous effects
of porosity and electro-magnetohydrodynamics flow of heat-transfer with the
existence of thermal radiations and uniform wall temperatures. The homotopy
analysis method is used to obtain the analytical solutions of coupled thermal
boundary layer equations. The investigations of this chapter are published in

“Neural Computing and Applications, 30 (2018) 3371-3382”.

Chapter six consists of a study of internal energy loss due to entropy generation
for non-Darcy Poiseuille flow of silver-water nanofluid. In this chapter, separate
non-Darcy porous media irreversibility is discussed in a wavy channel for the
first time. The purpose is to indicate the key factors that can be use to control
energy loss (entropy) in the said phenomenon. Also, this chapter offers a
significant attempt to present an adequate theoretical estimate for low-cost
purification of drinking water by silver nanoparticles with very low energy loss
in an industrial process. More specifically, this chapter concentrates on MHD
mixed convection Poiseuille with different pressure gradient flow of fluid with
silver (Ag) nanoparticles passing through the porous wavy channel. The
phenomena of coupled nonlinear differential equations are tackled by the
homotopy method. These observations have been published in “Entropy,
20(11) (2018) 851”.

Chapter seven illustrates the effects of radiative electro-magnetohydrodynamics
diminishing internal energy of pressure-driven flow of titanium dioxide-water

ix



nanofluid due to entropy generation. The effective influences of electro-
magnetohydrodynamics (EMHD) and entropy generation with nanoparticles
through a wavy channel on Poiseuille flow synthesis have been studied. In
addition, the simultaneous impact of electro-hydrodynamics (EHD) and thermal
radiation are examined. The average entropy generation with buoyancy force
yielded a nonlinear coupled relationship. To achieve a formidable and reliable
solution of such a nonlinear flow problem, the homotopy analysis method is

used. These observations have been published in “Entropy, 21(3) (2019) 236”.
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Nomenclature

<t =Y aN<

-ala

a~1

Dimensional nanofluid velocity
Dimensional nanofluid temperature

Dimensional nanoparticle concentration

Reference temperature

=

Dimensional components of velocity along

.v:l

Dimensional components of velocity along

Lower / upper walls of flat channel

Dimensional pressure
Magnetic field strength
Dimensionless components of velocity along X -

axis

Dimensionless components of velocity along y -
axis

Porous medium permeability coefficient

Stefan mass blowing/suction parameter
Width of channel

Thermal conductivity

Uniform transverse magnetic field

Thermophoretic diffusion coefficient
Brownian diffusion coefficient
Reaction rate

Heat transfer coefficient

Darcy parameter

Fluid suction/injection parameter

Temperature scale

Mean absorption coefficient
Constant pressure gradient
Rayleigh number

Magnetic field parameter
Inclined Magnetic field parameter
Radiation parameter

Brownian motion parameter

Heat transfer coefficient

Buoyancy ratio
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Gravitational acceleration
Temperature at lower wall

Upper wall temperature

Vector differential operator
Suction/injection velocity

Concentration at lower wall

Concentration at upper wall

Constant wall velocity

Mean velocity

Dimensional heat source/sink
coefficient

Non-dimensional heat
source/sink coefficient

Variable thermal conductivity

Lewis number

Joule current

Viscous dissipation
Reference concentration

Radiative heat flux
Dimensional Activation energy
Fitted rate constant

Mass transfer coefficient

Boltzmann constant
Concentration scale

Dimensionless pressure

Prandtl number

Eckert number

Thermophoresis parameter
Schmidt number

Biot number

Convection diffusion parameter
Reaction rate

Dimensionless Activation energy

Reynolds number



E, Electric field parameter
Cp Heat capacity
C ’ Skin friction coefficient

Greek Symbols
H Dynamic Viscosity
( pC ) Heat capacity of the base fluid
Pl

Momentum accommodation coefficient

a Thermal diffusivity
p Volumetric volume expansion coefficient

( oC ),, Heat capacity of the nanoparticle material

o Non-dimensional wave number
y) Wavelength

Subscripts
f Base fluids

Xii

v 0

i)

Brinkman number
Sherwood number

Nusselt number

Kinematic viscosity
Dimensionless temperature

Dimensionless nanoparticles
volume fraction

Stefan Boltzman constant
Electrical conductivity
Temperature difference
parameter

Density

Molecular mean free path

Nanoparticle material
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Chapter 1

1 Introduction

This chapter deliver two major themes, namely, motivation and preliminaries. The
motivation contains a detail literature survey and background of problems under
consideration. The preliminaries include the basics of fluid mechanics with its
fundamental laws, nanofluid with their thermophysical properties and few most

relevant definitions for a better understanding of present work.

1.1 Motivation

The flow which is bounded by walls is known as internal flow. These flows are very
important and represent a simple geometry for heating and cooling fluids, chemical
processes environmental control and energy conservation technologies. Also, flow of
petrol in engine of car, or flow of blood in artery or vein are example of internal flows.
Applications of internal flows are wide ranged almost all the fluid devices use internal
flows. The flows extended the concept of boundary layer to fully developed flow. The
flow usually induced by either movement of wall or change in pressure. The class of
flows which occurs due to pressure gradient is Poiseuille flow. Firstly, the jean
Poiseuille was experimentally studied Poiseuille flow in 1838. These incorporate
laminar and incompressible internal flows. Many heat transfer devices employ
Poiseuille internal flow to add/remove heat from the system. For the purpose, a good
heat transmitting liquid is filled in pipe and transmitted. Some good examples of such
devices are heat systems, pulse combustor for both civil and military uses, automobile

coolant, refrigerator and cooling rods in nuclear reactor. The characteristics of
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Poiseuille flow and related convection heat transfer remained the focus of attention for
several year as it had many manifestation in daily life. Internal Poiseuille flows
extensive application in engineering [ {-5] and medical sciences [6-10] is the motivation

behind this.

Convectional heat transfer liquids in many industrial sectors like acetone, ethylene
glycol, water and kerosene, etc., play an important role in various chemical productions,
air-conditioning, microelectronics and transportation. However, owing to transfer of
heat these liquids do not cause very high level of thermal conductivity. Various
processes have been implemented to speed up heat transfer. Process to control this
barrier and enhance heat properties in liquids via suspensions of nanoparticles in liquids
is new developments in this field that is very effective for heat transfer performance.
The subsequent combination of the base fluid and nanoparticles having exclusive
chemical a physical premises is known as a nanofluid and word “nanofluid” was carried
in 1995 by Choi [11]. Furthermore, a liquid blend involving nanometer (1nm—100nm)
estimate particles or strands is known as nanofluid. Contrasted with micrometer
particles, nanoparticles have a high surface region to volume proportion because of the
inhabitance of an extensive figure of iotas on limits, allows them to be in a stable
condition in suspensions. Therefore, nanoparticles suspension indicates greater amount
of conductivity conceivably because of upgraded convection between the strong
molecule and fluid surfaces. The base fluids are commonly used for nanofluids are
water, propylene glycol, bio-fluids, kerosene, polymeric solution, lubricants and
organic liquids (refrigerant, ethylene, etc.) [12-17]. Metals (Ag, Ay, Cu, TiO, ALOs),
carbides (Tic, Sic), nitrides (SiN, AIN) and non-metals (carbon nanotubes, graphite,
diamond) are the most common nanoparticles used in nanofluids. Thereafter, a

noteworthy work has been studied on nanofluids due to its vast applications.

Convection in saturated permeable is a popular field of study among researchers
nowadays due to its numerous applications in painting filtration, microelectronic heat

transfer, soil sciences, thermal insulation, petroleum industries, nuclear waste disposal,
7



geothermal systems, chemical catalytic beds, fuel cells, solid matrix heat exchangers,
grain storage, etc. Darcy’s law [18] is mathematically expressed by the following

relationship

~-Vp=nu. (1.1)
It is understood that equation (1.1) is insufficient to discuss high rate of flow in
permeable medium because, low Reynolds number Re depend on mean pore diameter
exceeds 1 to 10. As a matter of fact, when the Re increases to a critical value or when
inertial forces dominate, then validity of equation (1.1) is not more and it come to be
nonlinear. Whereas, the structure of nonlinear Darcy’s law illustrates a mechanism of
viscous flow under different geometric and physical conditions. To overcome this
deficiency, Forchheimer [19] proposed nonlinear correction of Darcy’s law by the

following universal decree

~Vp=ni+mni’, (1.2)
where Vp is a pressure gradient, 77, = 4, /K, , », is an empirical constant in second-

order shape related to resistance which represents porosity and pore size {20-23].
Eastman et al. | 24] have examined that thermal conductivity of fluid enhance 40% when
0.3% nanosized copper are mixed in ethylene glycol. According to Pak and Cho [25],
they have examined that convective energy transfer coefficient enhances by 75% when
2.78% of Al,O; particle concentration with a constant Reynolds number suspended in
fluid. Rocket engine thrust chamber experiences very high temperature due to the
combustion product. Various cooling methods are used to protect thrust chamber wall
from the high-temperature combustion gases. In one of the methods, propellant is
allowed to flow beside the outer surface of the nozzle wall through the cooling channels.
The cooling efficiency of such system depends upon the thermophysical property and
flow velocity of the liquid medium. Higher flow velocity in the coolant channel results
in an increased pressure drop in the system and in turn increases the requirement of
pumping power. In semi-cryogenic engine rocket system, kerosene, the fuel, is being
used as a coolant. Kerosene has very low thermal conductivity and is not a good
candidate for convective transfer of heat. Therefore, a step to raised thermal property
of kerosene by suspending rare amount of nano-size particles in it. In nanofluid

preparation, two methods are give, one of them: single-step and another one: two-step

8



method. Agarwal et al. [26] employed a two-step technique for manufacturing of
nanofluid with nano-size aluminum dioxide Al>O; particles in kerosene. Surfactants,
pH methods and ultra-sonication process are used to maintain the stability of the
kerosene-Al,O3 nanofluid at a certain temperature and Malvern-Zeta size procedure
was adopted to calculate size of particles. The authors discussed the significant results
of kerosene-Al O3 nanofluid when the nanofluid color of from white to gray in the ultra-

sonication process.

In particular, silver nanoparticle is a very effective agent, as seen by its applications in
agriculture (fruits, vegetables), medicine (devices, burn treatment, infections [27}), and
industry (solar energy absorption, cosmetics, clothing, chemical catalysis, water
purification). Silver particles in ionic form exhibit antibacterial action, they are able to
break down bacteria such as Escherichia coli and Staphylococcus aureus. Silver nano
colloid in a concentration of 0.8—1.2 ppm removes Escherichia coli bacteria from
groundwater. Ceramic water filter devices can eliminate waterborne pathogens.
Ceramic water filters are also reported to be very helpful to removing protozoa more
than 99% and bacteria 90-99.99% from drinking water [23, 29]. It is noted that
nanoparticle preparations are very effective in relation to Helicobacter pylori. Silver
jons also act synergistically with benzyl penicillin, erythromycin, amoxicillin, and
clindamycin [30]. Godson et al. {31] calculated the effects for different factors for
example temperature (between 323 K and 363 K) and concentration (0.3, 0.6, and 0.9%
volume concentration) on thermal conductivity of Ag-deionized water nanofluid by using
uniform nanosized silver particles. The outcomes described that thermal characteristics
increased by 27% to 80% with increase in temperature and concentration of particles
from 0.3% to 0.9%. Silver water used in investigations contained antibacterial “silver
water” from Nanoco. It was found that exposure of the investigated food material on the
activity of the sprayed nanosilver particles could almost double their microbiological and

sensorial stability.

The collision of particles “Brownian motion™ and energy transfer “thermophoresis”
contribute vital part in flow of nanofluid. Radiation as well as diffusion of particles
effects in nanofluid flow at on permeable wall have successfully investigated in [32].
Autors determined that behavior of ¢, Nt and A~ don’t go hand in hand while the

magnitude of fluid highly varies for Williamson fluid parameter and porosity parameter.
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Xu et al. [33] used Buongiorno mathematical model in vertical channel to discuss the
analysis of natural convection nanofluid flow. Authors investigated that characteristic
of heat transfer can be enhanced if the suitable nanofluid used. The Arrhenius activation
energy with the inclusion of chemical reaction has a significant application in chemical
industries, such as to maintain the temperature of nuclear reactors up to certain degree,
extraction of oil and geothermal reservoirs in mass transfer. In vertical porous pipe the
combine influence of Arrhenius activation energy along the addition of chemical
reaction are considered first time by Bestman [34)].The author bring in to use

perturbation method as an analytical technique to estimate a solution.

Study of magnetohydrodynamics (MHD) is an important application in industrial
equipment, physics, chemistry and engineering fields. In industrial fields, like MHD
pimps, MHD generators and ball bearing, etc. The impact of MHD nanofluid in porous
cavity under the action of forced convection is discussed by Sheikholeslami [35]. The
author gives important results about platelet shaped nanosized particles, which
contribute major role to enhance heat transfer activity in fluid flow. Bhatti et al. [36]
investigated the entropy generation with combined under act of chemical reaction along
thermal radiation on MHD boundary layer flow above on a moving surface. Rashidi et
al. [37] estimated entropy of flow in three different types of nanoparticles, like Cu, CuO
and Al,O3 with influences of MHD over porous disk. The authors obtained the major
results about minimization of entropy for flow over a disk. Sheikholeslami and Bhatti
{38] also discussed the minimization of entropy in magnetic environment in a porous
semi-annulus.

The energy losses due to entropy generation analysis have diverse utilizations in the
physical sciences. For example, the characteristics of energy loss for radiative mixed
convection flow passing through the vertical channel was reported by Mahmud and
Fraser [39]. The effects of MHD and the group parameter illustrated subdue behavior
on entropy generation, as compared to the mixed convection and radiation parameter.

Another study Rashidi et al. [40] have designed the entropy generation of magnetically

developing a nanofluid flow for a spinning porous disk. It is noted that a continuous
10
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reduction was noted in the average entropy generation for larger value of the
nanoparticle volume fraction, while increasing values of MHDI parameter produced an
escalation in the average entropy generation number. Approximate survey on entropy
generation on nanofluid containing nanoparticles, like Cu, Al,O3 and TiO; in pure water
between wavy walls, was implemented by Cho et al. [41]. They testified that for a given
nanofluid, total energy loss could be diminished and the mean heat transfer number
exploited through a suitable adjustment of the wavy surface geometry parameters.
Ranjit and Shit [42] carried out the results of entropy generation on electro-osmotic
flow with magnetic and Joule heating. They perceived that entropy generation near the
channel wall rapidly improved with rise of the joule heating parameter. A few
remarkable contributions on entropy generation with diverse studies can be explored in

references [43-45].

Motivated from the above literature major aim of present thesis is to study the internal
Poiseuille nanofluid in different flow configurations under different effects. Significant
modeling is presented with the help of dimensionless parameters and using long
wavelength approximations. The governing systems of highly nonlinear coupled
ordinary, differential equations are tackled analytically with the advantages of
homotopy analysis method (HAM) [46-49]. The HAM has following superiority for
results estimations: (i) It is useful in providing flexibility in the developing equation
of linear functions of solutions. (ii) It gives us a way to verify the convergence of the
developed series solutions. (iii) HAM is independent of small or large numerical value
of parameters involved in problem. On the other hand it may take unnecessary long
computational time and some time for complex problems solution could not achieved
desired convergences as computers may not have sufficient internal memory. Physical
clarification of results is interpreted by means of graphs and tables. This thesis contains

seven chapters that are authors own work which is published in international reputed

journals.
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1.2 Preliminaries

In this section, some fundamental concept used in subsequent chapters, has been given
briefly. It includes basic definitions, terminologies, the dimensionless numbers of

physical importance and the governing equations, etc.

1.2.1 Fluid

There are three states of matter namely, liquid, solid and gas, among which the gas and
liquid both are fluids. A fluid is a substance (gas or liquid) which modifies its shape
continuously under the action of external forces or any material that deforms
continuously. The fluid flow is a universal phenomenon which occurs frequently in our
everyday life. On the other hand, a solid always gives the opposing effects on deforming

force and can’t move easily [50, 51}.

Fluids have been further sub-categorized into ideal and viscous fluids. In ideal or
inviscid fluids the most effective internal force is the pressure, which acts in such a way
that the fluid flows from high stress to low. In viscous fluids, shear rate and viscosity
are independent to each other. Moreover, these are the fluids which satisfies Newton's

law about viscosity “the shear stress is directly and linearly related to the shear rate”.

1.2.2 Fluid mechanics

It concerns with prediction, and controlling nature of fluids. Fluid mechanics is one of
the engineering sciences that forms the basis for all forms of engineering {52]. This
subject branches out into various specialties such as aerodynamics, hydraulic
engineering, marine engineering, gas dynamics, and manufacturing processes. It
includes the statics, kinematics and dynamics of fluids. Fluid mechanics studies the

dynamic properties (e.g. motion) of fluid.
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1.2.3 Heat transfer phenomenon

Heat transfer processes assume a key part in many natural, industrial and biological
systems. Transition of heat is actually the transport of energy owing to temperature
differences. Conduction, radiation and convection are the three types of heat transfer as

presented in figure 1.1.

Coaduction

i Enesgy is transferred by direct contact.
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Energy is transferred by mass motion of molecules.

I
I
I

-GOHEIPRS D45 UBR OGS

Figure 1.1: Classifications of energy transfer.
Conductive heat transfer takes place in solids via molecular energetic movement due to
the temperature gradient within a medium. In Radiation, thermal energy is transferred
between two or more bodies without any defined medium by electromagnetic waves.
Convection is an energy transfer through liquids and gases or fluids in general moving
near the surface. Natural convection flow is caused by density variance in different
sections of the fluid. This density change, along with the influence of the gravity,
generates a buoyancy force, due to which the heavier fluid travels downwards and the
lighter fluid moves upwards, generating buoyancy-driven flow. The density variance in
natural convection flows may result from a temperature variance or from the changes
in the concentration of chemical species. The most common buoyant flows may be seen
as air flows around our rooms and other engineering applications [33. 54]. When these
two phenomena of heat transfer (forced and natural convection) are occurring at the

same time the situation is commonly known as mixed convection.

13



1.2.4 Nanofluid

=z In 1881, Maxwell [35] succeeded in exploring that energy transfer can be augmented
by mixing micro-sized particles in base fluid. After Maxwell, it was observed that
although addition of micro-sized material particles in the base fluid do result in some
enhancement in rate of heat transfer but the major issues are clogging, erosion, and

pressure drop, produced due to these particles, retained the technology away from the

practical usage of this strategy for a long time.

Table 1.1: Potential usage of the nanomaterials [ 56].

Nanomaterial General applications

Ag Microelectronic industry, antibacterial and disinfecting agent, anti-

corrosive coating, catalysis.

TiO2 Solar cells, photo-catalysis, antibacterial and disinfecting agent,
cosmetics, air purification, semiconductors, UV resistors,

astronautics.

Al, ALOs; Heat transfer fluid, catalyst support, water-proof material, wear-

resistant additive, cosmetic filler.

Si02 Construction industry, production of glass, sensitive optical fiber,

ceramics, food and pharmaceutical applications.

Cu, CuO Superconductors, antibacterial and disinfecting agent, catalysis, gas

sensors, thermo-electronics, microelectronic industry.

Fe, Fe;0s, Biomedical applications, environment remediation, magnetic data

Fes0s storage, semiconductor, microwave devices.

Masuda et al. [57] firstly conveyed that influence of nanoparticles improves thermal
conductivity of base fluid. Particles are of different types such as metals, non-metals,
metallic oxides and non- metallic oxides, etc. Water, oils and ethylene glycol are
frequently use base fluids. In industries, normally used nanoparticles are TiO2, Fe3Os,
Si02, AL;Os3, CuO in compound form and Au, Cu, Fe, Ag in elemental form. Some

important applications of nanomaterial are given in Table 1.1.
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1.2.5 Thermophysical characteristic of nanofluid

Thermophysical features of nanofluid strongly affect solution of the considered flow
problems. There are different models for the description of thermophysical properties
of nanofluid which are derived by various scientist. Thermophysical properties for
example viscosity, density, thermal conductivity, electrical conductivity and specific
heat are calculated by employing the formulas [53], which are adopted as empirical

relationships among the base fluid and nanoparticles.

1.2.5.1 Viscosity

Engineers and scientists utilize different models for dynamic viscosity of nanofluid.
Einstein [39] defined viscosity of solid spherical particles suspended very low amount
(less than 2%) volume fraction. Later-on, Brinkman [6(1] presented a new relation by
modifying Einstein’s equation of viscosity correlation with particle volume fraction less
than 4%. Viscosity of the nanofluid can be computed by the simple mixture theory [61]

and is expressed as

(1 ~ ¢)2_5 . (1.3)

A new relation between effective viscosity and ¢ at very low (0.3, 0.6, and 0.9% volume

concentration) along temperature between 323 K and 363 K was proposed by Godson

et al. [62] in the following form

Hy =(1.005+0.4970-0.1149¢° ) 1, . (14)

An experiment is performed to collect data from correlation between TiO>—water
nanofluid viscosity and volume fractions ¢ from 0.2% to 2% by Duangthongsuk and
Wongwises {63]. The objective of the following correlations are to estimate effective

nanofluid viscosity at three different temperature scenario



ty =(1.0226+0.04779-0.01120% ) 1 ; T=15°C
1y =(1.013+0.0920-0.015¢* ) pr,;  T=25C. (1.5)
1y =(1.018+0.1129-0.01779% ) ;. T=35C

1.2.5.2 Thermal conductivity

The suspension of solid particles are the reason to rise in thermal conductivity of liquid.
A classical formula defined for thermal conductivity [64] as

ky 2k, +k,-2p(k, —k,)

k, 2k, +k, +o(k,—k,)

(1.6)

Godson et al. [65] proposed relation for thermal conductivity at low volume fraction as

k, =(0.9692¢+0.9508) k. (17

The expressions of nanofluid thermal conductivity for three different temperature

conditions are also discussed by Duangthongsuk and Wongwises [66] as

(1.0225+0.0272p)k,; T =15°C
(1.0204+0.0249p)k,; T =25"C}. (1.8)
(1.0139+0.0250¢)k,; T =35C

k'l
k,
k,
1.2.5.3 Density

Using the physical principle of the mixture law, density of nanofluid may be calculated
analytically. Using this law measuring weight and volume of amalgamation density of

nanofluid can be determined. The ¢ can be assessed by knowing the densities of both

components and nanofluid density [67] can be described as
Py = (1-0)p,+0op,. (1.9)
1.2.5.4 Electrical conductivity

The electrical conductivity of nanofluid rises with rise in concentration and temperature

of particle. Electrical conductivity is detected to be higher for smaller sized particles in
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1.3 Governing equations

The fundamental dynamic equations for nanofluid flow are the same as they are for the
pure fluid which are well known as (i) Continuity equation (conservation of mass), (ii)
Momentum equation (conservation of momentum) and (iii) Energy equation
(conservation of energy). However, the consideration of nanofluid does modify these
equations to some extent. Since we intend to use the two famous nanofluid models,
namely, Buongiomo model [73] and Tiwari and Das model [74]. Therefore, the

modification in the governing laws shall be mentioned with regard to these two models.

1.3.1 Equation of continuity

Principle of mass conservation for fluid flow also known as the continuity equation, in

vector notation it is written as follows

1 D
———p—f+V.V=0. (1.13)

p, Dt

Equation (1.13) is valid for pure fluid and nanofluid'. In which, material derivative

D/ Dx is defined as

m=w+v.v( ), (1.14)
D o

where §/5r represents local time derivative, in steady case local time derivative term is
neglected and V.V denotes convective derivative. Equation (1.14) for fluid density 0,

described as follow

D 0
—p’-zﬁ+(lti+v§‘_j—+wijp,. (1.15)

' For Tiwari and Das model, O, has been replaced by 0,
18



Constant density of fluid represents incompressible fluids. Mathematically it is

expressed as

Do o (1.16)
Dt
Hence, the equation (1.13) takes the form
vv=0, (1.17)
or
ou v ow
—+—+—==0, (1.18)
ox oy 0oz

1.3.2 Momentum equation

The principle of momentum conservation for an incompressible viscous fluid reads as

oV 2
py [§+(V_V)V}=—Vl')+y,V‘V+F, (1.19)

In equation (1.19), F denotes the body forces and in view of the problems considered

in this dissertation the expected body forces are define as
F=F +F,+F;. (1.20)
1.3.2.1 Magnetic force

The Lorentz force caused because of the application of wall-normal magnetic field and

is defined as
F, =JxB, (1.21)
In equation (1.21), current density J defined via Ohm’s law

J=0c,[E+(VxB)]. (1.22)
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Equation (1.22) is valid for both pure fluid and nanofluid®. The flow area is depended

under the action of magnetic fields B = [0, BO,O] and uniformly applied electric field
E= [0, 0, —EO] ,thus IxB = o, [EOBO - Blu ,0,0:I . The boundary layer flow is always

stabilized [75] with the influence of magnetic & electric fields. For moderate strength

of magnetic & electric fields fulfill Ohm’s law as well as Maxwell’s equations
VxE=0 and VB=0. (1.23)

1.3.2.2 Darcy and non-Darcy porous media

The Poiseuille flow developed in between two parallel walls which are away from each
other with defined distance occurred by an average pressure gradient Vp . The
parabolic shape of velocity profile generated when inertial forces are lesser as compared
to viscous forces. It reflects the famous Darcy law, i.e., a linear relationship between

average velocity [76] and pressure gradient.

:uf
. .

Vp=

It is understood that Darcy’s law is inadequate to describe the high rate of flow in porous
media because low Re depended on the average diameter of pore extends 1 to 10. As
a matter of fact, when the Re increases to a critical value or when inertial forces
dominate, then equation (1.24) is not valid anymore and it becomes nonlinear, whereas
the structure of nonlinear Darcy’s law illustrates the mechanism of viscous flow under
different geometric and physical conditions. To overcome this deficiency, Forchheimer

proposed a nonlinear correction of Darcy’s law by the following universal decree

(1.25)

* For Tiwari and Das model, 0, has been replaced by O,/ .
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where, Fc is the dimensionless inertial resistance (coefficient) or Forchheimer

correction. Equation (1.25) is also known as non-Darcy Forchheimer correction. Hence

EL

Fo,=——V-p F
P K pfc

V|v. (126)
1.3.2.3 Buoyancy force

In natural convection flow addition of 0,8 in equation (1.19) represents the

gravitational force, this force applied as per volume unit of liquid. In thermal
convection, density should be the function of temperature. The simplest equation of

state is written as
Py =Py (1-B(T-T%)), (1.27)

*
where p,, is nanofluid density at reference temperature 7' * . Hence the buoyancy

force is given by

Fy=p,8. (128)
The nanofluid density 0, at very low concentration of nanoparticles is taken to be

approximated with base-fluid density £, , then Boussinesq's approximation applied and

buoyancy term converted to given expansion

py8=]Cop+(1-C){p, (1-A(T-T*))} |

29)
-[0-co Ty p)slc-ca)

1.3.3 Concentration equation

The convective processes ‘usually’ and ‘often’ go along with the mass transfer.
Therefore, transport of materials that act as components (constituents, species) in the
fluid mixture. Mathematically, this phenomena about conservation equation for
nanoparticles along presence of chemical reaction with activation energy can be
inscribed as
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oC 1. ,(TY -E
—+(V. =——V.j - K|— c-C* < 1. 1.30
ot +( V)C Pp b % (T*] ( )exp(KBT) (159

In the above equation, C is concentration of nanoparticle, K (T/T *)" exp(~E, /x,T)
is the modified Arrhenius function [77]. The diffusion mass flux i p €xpress as

Brownian j, , and thermophoresis j, , diffusion

.. . vT
jp:Jp,B+-lp,Tz—ppDBVC—ppDTF' (1'31)
Here D, defined by the Einstein-Stokes equation as
kT
(] S d, (1.32)
and thermophoretic velocity V; is defined as
=M, VT
V., =—f——, .
=B (1.33)
the proportionality factor ,B is given by
£=026 i
T 2k, vk, (1.34)
The thermophoretic diffusion defined as
. VT
ipr =P, CVr=-p,D; T+’ (1.35)
where D, is amount of thermophoretic diffusion, which is
» M
D, =p-LcC. (1.36)
Pr
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1.3.3.1 Brownian motion

The random movement of suspended particles in gas and liquid is due to the collisions
of surrounding molecules in base fluid, called Brownian motion. The rise in
temperature are due to diffusion of small particles in fluid and also cause to enhance
thermal conductivity as governed by Fick’s law as revealed in figure 1.2. Therefore,

Brownian motion is an important feature in the thermal augmentation of nanofluid.

AT
TR
A F A

$3- 1
N

Figure 1.2: Particles Brownian motion.

1.3.3.2 Thermophoresis

Thermophoresis is a force which arises due to the temperature gradient. This
phenomenon is termed as thermophoresis. Heat transfer is basically can be explained
as shift of thermal energy form the higher temperature zone (region) to a lower
temperature zone, as elaborate in figure 1.3. The transfer of heat is always from high to

low temperature region until both regions reach the same temperature.

Hot Region Cold Region

Figure 1.3: Schematic of the thermophoresis phenomenon.

Now, using equation (1.32) in equation (1.31) then the conservation equation take the

form

%C- +VVC=DNVC+ _?—7; V*T + Chemical reaction with activation energy. (1.37)
t
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1.3.4 Energy equation

The thermal energy equation (principle of energy conservation) for a viscous
incompressible nanofluid with the existence of heat source/sink and dissipation in

energy can be written by Buongiorno’s as

or .
(pc‘p )f {5 * (VV) T} = —Vq + hPV"lP + q * +DDusrpanun . (1.38)

In equation (1.38), 4, is enthalpy, energy flux § can be calculated as the sum of heat
flux conduction (k,VT), heat flux by nanoparticle diffusion (h,i,) and heat flux by
radiation ({, ). Therefore, we get energy flux as

q=-k VT +h)j, +q, (1.39)

and

v.q=-V.(k,VT)+V.(h,j,)+Vq,. (1.40)

If neglecting radiative heat flux, volumetric heat source/sink, dissipations and also
consider diffusion mass flux for the nanoparticles j , 1s equal to zero, then equation

(1.45) becomes the familiar energy equation of pure fluid.

v.(h,i,)=hVi,+i,Vh,. (1.41)

By using assumptions that base fluid and nanoparticles are in thermal equilibrium, so

Vh,=¢,VT, (1.42)

and in view of the problems considered in this dissertation the expected dissipations are

the viscous dissipation and Ohmic dissipation or Joule’s heating?.

3 For Tiwari and Das model [, 0 have been replaced by £, O, respectively.
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D

Dissipanon =D, Viscous dissipation +D Ohmuc dissipation * (1 -43)

where viscous dissipation for Newtonian fluid is

2
ou
D, Viscous dissipation Ky Eg) (144)
and Ohmic dissipation define as
1 _ — 2
DOhmtc dissipation — O'_ JJ= o, (B()u - EO) . (1.45)
!

1.3.4.1 Heat source/sink

Volumetric heat source/sink q* (W/m?) can be written as

T-T*) T2T*
q* ={Q°( ) (1.46)

0 T<T*

while the constant @, > 0 or O, < 0 represents the heat source/sink.

Substituting equations (1.31), (1.40), (1.41) and (1.42) in equation (1.38), the energy

equation is found as

oT VTNT
(pc, )f [—67+(V.V)T] =k, VT +( pcp)P [DBVC.VT +Dp— }—V.q, + 4
q *+D, Dussipation*®

Equation (1.47) is valid for both pure fluid and nanofluid*.

4 For Tiwari and Das model K/, (e, )f have been replaced by £, (pc,) ;

respectively.
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1.4 Surfaces

1.4.1 Flat surface

In this thesis, the chapters (2) to (4) are consist of viscous laminar incompressible
nanofluid passing through a channel, contains two parallel flat walls. Concerned
problems are considered in a Cartesian coordinate system, such that X — axis is taken

along the channel wall, while ¥ — axis is perpendicular to the channel which also
indicates the contribution of g (i.e., gravity). The middle of channel taken at origin and
the configuration of the walls (left and right) are at ¥ =-a and y =a respectively as

displayed in figure 1.4.

r—-d=2a'—-—1

:

Figure 1.4: Schematic of the flat walls considered in this dissertation.

1.4.2 Wavy surface

In majority of the chapters of this dissertation, we shall be considering the viscous
laminar incompressible nanofluid between two symmetric wavy walls. Concerned
chapters consider in a Cartesian coordinate system, such that X — axis is taken along

the channel wall, while ¥ — axis is in transverse direction. The middle of channel taken
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at origin as indicate in figure 1.5 and the configuration of the walls (left and right) with

amplitude @,, width d and length L of the walls are defined as respectively

Hl=—d—alcos(2—ﬂf), H2=d+alcos(2—”f). (1.48)
L L
s d ]
| — g —
4 a
£ h
i a8
S’ |
Al 8§ _ 8
g — X Ay g
! a, 4 g
3 +
I \ / " 1L
T 0 ¥y >m
N yd A4

Figure 1.5: Schematic of the wavy walls considered in this dissertation.

1.5 Non-dimensional parameters

1.5.1 Prandtl number

Prandtl number (Pr), named after a German scientist, Ludwig Prandtl, who has a

dominant role in the research on viscous flow in the first half of the 20th century. Pr is



the ratio of the coefficient of diffusion of momentum to the coefficient of diffusion of

heat, i1.e.,

Pr= XL = qu /pf = ﬂfcp (1 49)
% kf/(pcp)f ky ’ ‘

here @, is thermal diffusivity of fluid.

1.5.2 Reynolds number

The Reynolds number (Re) named after the famous British fluid dynamicist of the late

nineteenth century Osborne Reynolds, is ratio between inertial and viscous forces in

flow, i.e.,
Ul pUl
Re=—m1 = Pr7n0 (1.50)
Vy Hy

where U, represents the reference velocity 11 represents the characteristic length and

V, is dynamic viscosity. The Reynolds number is used to characterize flow as turbulent

or laminar.

1.5.3 Lewis number

For the combined studies of heat and mass transfer, Lewis number is an important
physical quantity. It is a ratio between the characteristic lengths of diffusion of heat and
diffusion of mass. Lewis number is also regarded as the ratio of thermal diffusivity to

the mass diffusivity and is defined as

k
Le=ﬂ=_f/(I;’L)f. (1.51)
B

D,
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1.5.4 Schmidt number

For characterizing fluid flows in which there are simultaneous momentum and mass
diffusion-convection processes occur. It is a ratio between the momentum

diffusivity (kinematic viscosity) and diffusion of mass

sC=PrLe=lv)—f=L. (1.52)

s PrDp

1.5.5 Grashof number

The dimensionless number which arises from the ratio of the buoyancy to the viscous
forces is known as Grashof number. It is frequently used in study of natural or mixed

convection flows. Mathematically,

AT,
Gr = 'Bg_z_l_ . (1.53)
Vy

where £ is the coefficient of the volumetric change, AT is the temperature difference.

/}] ‘1 .«))Z/ (](/.

1.6 Physical quantities

1.6.1 Skin friction coefficient

The coefficient of skin friction at wavy surface in two-dimensional flow is defined as

w

C. = Shear stress on a surface T
f Dynamic pressure 1 12 ’ (1.54)
27m

where 1, is wall shear stress, i.e.,

T, =H, (VﬁOfl) at surface, (1.55)

where #2 is the unit vector normal to surface.
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1.6.2 Nusselt number

Dimensionless heat transfer coefficient is known as Nusselt number which is an
important physical parameter in the process of convective heat transfer. In convective

heat transfer phenomena, the heat transfer rate is described as

Convective heat transfer q.,
Nu = ; = T (1.56)
Conductive heat transfer &, (Tl -T ) / I,
where {§,, is the wall heat flux which is given by
q,=—k; (VT <) at surface. (1.57)

1.6.3 Sherwood number

This dimensionless number defines the rate transfer of convective mass. It is denoted

as
Convective mass transfer rate q.
Sh = o = s (1.58)
Diffusion rate D,(C,-C¥) /L
where ¢, is the wall mass flux which is given by
q, =—D, (VC-ﬁ) at surface. (1.59)

1.7 Methodology

The nonlinear differential equations, nonlinear boundary conditions, variable
coefficient differential equations and coupled differential equations have little chance
of getting exact solutions or even semi-analytical solutions that is why some numerical
techniques have been developed, however analytical and semi-analytical solutions are
still very important as they provide a stander for checking the accuracy of approximate

solutions. Analytical solutions can also be used as a test to verify numerical schemes
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developed for the study of more complex problems. To find the analytical solutions of
nonlinear governing equation, there are various methods available in the existing

literature. Few of them are as follows

1. Homotopy analysis method

2. Bwvph2.0 package
1.7.1 Homotopy analysis method

Most physical problems are inherited nonlinear in nature and cannot be solved by
several traditional methods such as perturbation techniques [ 78] which are mostly based
on small parameters either in governing equations or in boundary conditions, called
perturbation quantities. The small parameter plays a very important role because it
determines not only the accuracy of the perturbation approximations but also the
validity of the perturbation method itself. In general, it is not guaranteed that a
perturbation result is valid in the whole region for all physical parameters. Therefore,
itis necessary to develop some new methods which are independent of small parameters
because in physical situation there are many nonlinear problems which do not contain
any small parameter, especially those having nonlinearity. To overcome the restrictions
of perturbation techniques, some powerful mathematical methods have been recently
introduced to eliminate the small parameter, such as artificial parameter method
introduced by He [79], Tanh method [80], Jacobi elliptic function method [S1] and
Adomian decomposition method [82], etc. In principle, all of these methods are based
on a so-called artificial parameter in which approximate solutions are expanded into a
series of such kind of artificial parameter. This artificial parameter is often used in such
a way that one can easily get approximation solutions efficiently for a given nonlinear
equation. All these traditional methods cannot provide any guarantee for the

convergence of approximation series. In 1992, Liao [83] is thought to be the first who

calculated an analytical solution for nonlinear equations N I: f (r)] =0 with help of

zeroth-order deformation equation).
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(1-&)£[1(r:€)- £y (r)]=aN[1(r;£)], (1.60)

in which, N is nonlinear differential operator and f (r) is the unknown function of
the independent variable(s) r = {rl,rz,rg,...,r,,} , £ is an auxiliary linear operator, f; (r)
an initial approximation of f(r), &€ [0, 1] is the embedding parameter. The Taylor

series of [ (r; ¢ ) w.r.t embedding parameter ¢ can be written as

I(r:€)=£,(r)+ 2 4(r)¢', (L61)
where
1 &' I(r;
f,(f)=ﬂ—a(—;,§) : (1.62)
=0

In above approach, a liability appears that Taylor series could be diverged at & =1,

Liao [84] came with an idea to add nonzero auxiliary parameter /2 , which sort out this

disadvantage in method. He named this parameter as “Convergence-control” parameter
(1-&)£[1(r;8) - £y (r)]=&rN[1(r;¢) ]. (1.63)

Note that the solution / (r;§ ) of the above equation is not only dependent upon the
embedding parameter ¢ but also the convergence-control parameter i . So, the term

f, (r) given by equation (1.62) is also dependent upon 7% and therefore the

convergence region of the Taylor series equation (1.61) is influenced by % . Thus, the
auxiliary parameter i provides us a convenient way to ensure the convergence of the

Taylor series equation (1.61) at £ =1.For £ =0 and £ =1, we have
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1(r;0)= £, (r), I(r;1)=f (r), (1.64)

f (r) is a solution of given differential equation. Thus we can write it as

f(r)=ﬁ(r)+iﬁ(r). (1.65)
1.7.2 Bvph2.0 package

In 2003, Liao [85] developed a homotopy analysis method based package “Bhvh2” that
can tackle many systems of ordinary differential equations (ODEs). It can solve various
sort of systems of ODEs, including a system of coupled ODEs infinite interval, a system
of coupled ODEs in semi-infinite interval, a system of coupled ODEs with algebraic
property at infinity, a system of ODEs with an unknown parameter to be determined
and a system of ODEs in different intervals. For simplicity, the BVPh2.0 package will
properly work, if best initial guess of governing equations which correspond to
boundary conditions are satisfied with the help of linear operators. To run the package,
need to define all the inputs of problem properly, except the convergence-control
parameters. Usually, the optimal values of the convergence-control parameters are
obtained by minimizing the squared residual error. To the accuracies of this package,
compare the results of some problem of this thesis with results obtained by another

analytical and numerical method and find good accuracy.
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Chapter 2

2 Convective radiative plane Poiseuille flow of
nanofluid through porous medium with slip:

An application of Stefan blowing

Slip effects of 2™ order slip on nanofluid through a space bounded by opposite two
planes is studied in this chapter. Poiseuille nanofluid flow, further experiences the
impact of Stefan blowing. The starring role of heat transfer, magnetic field and porosity
are altogether taken into account. The mathematical modeling is performed via
Buongiomo's model. The effectual reliability of analytical solutions derived by homotopy
analysis method is verified through #—curves as well as by means of residual errors
norms in each case. Impact of physical factors is inspected by graphs along numerical
tables. The slowing down effects of Stefan blowing are significantly seen for velocity
as well as temperature profiles whereas opposite characteristic for the nanoparticle
concentrations is noticed. Finally, the effects of high order slip on various field

parameters are highlighted.

2.1 Problem formulation

2.1.1 Flow analysis

Consider steady two dimensional incompressible laminar flow of nanofluid passed
through porous channel with the impact of second-order flow slip with Stefan blowing.
The geometry of the problem consists two parallel straight walls as displayed in figure
2.1. The origin of coordinates is considered at midway of the channel such that the

position of the channel at left and right walls are taken ¥ =—a and y = a, respectively.
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Figure 2.1: Configuration of the problem.

2.1.2 Governing equations (Buongiorno’s model)

There are two famous homogenous nanofluid models, namely, Buongiorno and Tiwari
and Das models. In this chapter, with existence of temperature gradient, the
thermophoresis force produces a concentration gradient of nanoparticles in base fluid.
In view of Buongiorno, thermophoresis and Brownian diffusion were found to be
important for nanoparticle transport mechanism. Therefore, in view of equations (1.18),
(1.19), (1.37) and (1.38) given in the previous chapter, for a steady state, incompressible
nanofluid with influence of Lorentz magnetic force, buoyancy, radiative heat flux,
viscous and Ohmic dissipations transporting through a porous medium is
mathematically modeled with the application of Boussinesq's approximation as
Pr (V@_—] = —@+/l(—aZ—LZJ—O'Bng—ﬁ-lT
& ox ¥y K, (2.1
+[(1—C*)pfﬂg(T—T*)—(pp —pf)g(C—C*)],
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_oT &T ocor) D, (oT\ | &g,
(75 )45 o 55 25 [

\ 2.2)
yf(—j +0'fB(fL72
and
_oC 8°C\ D,(o°T
ng—zDB(E‘_)TJ+#(a)_}ZJ. (2.3)
Concemned boundary conditions [86-88] are
g=—i,  v=-2t | €| 121, C=C atj=—a
i (I_Cl) v 2.4)
D ’ ’
g=ii,, T=T, D,|%C|+ZL TN0 aty=a
P &) T*\
and
_ 2(3-@é 31-&).aw 1, 2(1-¢)) 0%
Sp — 5 TN 7 51—__ e+ = é‘l pary
3 @ 2 k, oy 4 k, &
) (2.5

here @ and e are defined as 0<@w <] and 0<e<l respectively. Gas flow in the

channels for Knudsen number &, can be categorized into four cases: (i) for continuum

flow, Knudsen number < 0.001, (ii) for slip flow, this implies that 0.001 < Knudsen
number < 0.1, (iii) for transition flow, Knudsen number lies between 0.1 to 10 and (iv)
for free molecular flow, Knudsen number > 10. Equation (2.5) is reported by many

researchers [89-91] due to its vital and remarkable contribution.

Let us acquaint the following nondimensional quantities
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5 ¥ , T-T* j _C-C* &
p:ap,x:-i, 8= T ’y=X,¢: ,uzi,
yrom a I,-T* a C* U, 2.6)
L, L-T* ¥ . C-C* AC ' '
mT = ,v:—-, nt= = ——
T-T* U cr c*

Subsequently when fluid is flowing due to fixed (constant) pressure gradient then

reference velocity U » Will occur between two walls and as a matter of fact, it will be

2
maximum velocity and defined as (U, = —21— Z—p ). In this phenomenon consider the
My OX

low Reynolds, therefore the induced magnetic field is ignored.

However, ¢, [92] denoting the flux is denoted as

4c* oT*
=— = 2.7
" 2.7

Expending T* for reference temperature T * by the Taylor series can be expressed
[93.94] as
T* =T* 44T (T -T*)+6T* (T-T*) +... . (2.8)

In this case (T ~T*) is considered to be very small, so the square and higher-order

terms of (T -T*) can be neglected. Thus T* converted to

T*=T* (4T -3T%). (2.9)

Therefore, the equation (2.7) becomes
B 16T* o* 6_7:

oS (2.10)

qr =

After incorporating the appropriate transform defined in equation (2.6), convert the

equations (2.1) to (2.3) in dimensionless expressions which take the following form

2
gu, eia_“@é_(Ma_l_)w Ra (o Neg)-P=0, @.11)
oy Sc oy oy Da RePr
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C

(Rd+l)a-0 (Nb RPr—]—@é+EP N(aa +MPrEa’ =0, (2.12)
' oy o ] oy

2 2
s Nt[a 9) " Re S[a¢) _o.
o*  Nb\ &y oy
Dimensionless second-order slip is

2
uSlipzA%+B%L;—,

where

3 @ 2 k, Ja

e’ e 2(1-¢ 2
4ed(imd A)a B;[uy_

The corresponding dimensionless boundary conditions are

gy, =4 4% g% Sc(aﬂe Lé=n*aty=-1

o af’ oy
us]ip=Aa—u+Ba-l;l,0 *Nb[a¢J+Nt( ej Qaty=1
@ ay oy
here
1-C*)(T,-T*) pgd’ Pp=Ps)C* *
Ra=( )(1 )ﬁga Nr= ( ? f) N :rDBC ’
va BT T e
D (T -T* 2
:T__T_(;l—).’Lezﬁ‘L’EC: Um " ,RezaUm,PI':ﬁ-,
T*a, Dy C,(T,-T*) v, a,
Bzdz * T %3
Sc=Prle= ’uf ,Mzzo-f 0 ’S: AC ,Da:EZI’Rdzﬁo_-*T_
pDg M, (1-¢) a 3k*k,

I8

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

Expression of coefficient of skin friction defined in equation (1.54), Nusselt number

defined in equation (1.56) and Sherwood number defined in equation (1.58) are

transformed in view of equation (2.6) as
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ReC, =2u'(y) ‘y=_1’1

Nu=-0'(y)| (2.18)

Sh=—¢'(»)

y=_151

y=—1L1

2.2 Solution of the problem
Equations (2.11) to (2.13) are tackled by HAM procedure to seek analytical solution.

Zeroth-order solution
Consider, the following initial approximations (#,, 6,, @) which satisfy the linear

operators (£u, £6’ £ ¢) and associated boundaries

uy(y)= —1+3A—21;2(;i?;1+y2 - 4*)
QO(y)=(l_y)+(21+y)m* > (2.19)
and
2t} os() 452 ew

The convergence control parameters hu , h g h é and nonlinear operators N,,

N 9> Vg of velocity, temperature, nanoparticle volume fraction with embedding

parameter & € [0, 1] yields the following zero™-order deformations respectively are

(1-&)£,[u(3.€) -1y (¥)] = Eny N, [u(2,€).0(3:£) #(1:£) ]
(1-8)£,[0(3.€) -6, (y) | =Eh N, [u(3.€),0(3.€).8(»€)] ;. @21)
(1-6)£,[4(0:6)~ 4 (1)] =5h N, [(2.£).0(3:¢) .4 (1.8)

with associated boundary conditions
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u(y’g,)Shpz_Aau(}’»?)_Ba u(}’f) —gc-[%ayy’é—)]ﬂ(y,é)=l,¢(y,§)=n* aty=-

o . Q2)
u(pélg, A2, ua(yy’b)ﬁ(y §)=m Nb(w(ayv 6)] [ae(;,g)):o aty=1

), S MO0 (,, _
U)o S EDABREfig s D)o i002)-140.8)

No=(l+Rd)ale(y ,§)+(RePr£+Nb)a¢g’§) aeg,g)m{aa(a,:,g)] +EcPr[@%J +

Z (22

M* PrEc(u(y,¢)) (2.23)

Ny = M+ Res[aai(y’g)jZ +M620(y,§)
4 o No &

=0 uy(y) 6,(») % (»)

=1 u(y) o(y) 40

For  u(y,£) 8(».&) #(».¢)
(2.24)

When embedding parameter ¢ diverges from 0 to 1, then u ( ¥, ¢ ) ) 0(}’, ¢ ) and

¢(y, 4) transform from initial uo(y), 90()/‘) and ¢o(y)to final solution u(y),

6(y) and 4(y).
Let expand u(y, ¢), 0(y, ¢) and ¢(y, ) in Taylor’s series as
)+§u:(y)§’

H(y,¢)=eo(y)+ie,(y)¢'

n'g
-

(2.25)

$(».)=h(y Z

I

where
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u, )=-1-6[_u(ﬁ§—) ,gl(y)=lM 4 )zlal¢()”4)

N~ e N ac N8l (2:26)

¢=0 ¢=0

| th-order solution

The / th-order deformation expression for % (), 6, () and ¢, () as follow

£, |:u1 (}") =Xt (Y)] = huRIu (.V)
£y [9, (y)— X0 (y)] = thle (.V) - 2.27)
£,14/(7)- 18 (»)]=1,R8 ()

| ’f 621 § 6, )
U (7:6) gy =~ g s u(f)ﬂ,(yﬁ)=1,v=-% %ﬂj,¢,(y,§)=n*aty=-l
u(y.g) du(y, o4 (3, 06,(y,¢ ' (2.28)
1 (7,6),=4 gé)w uaifg),Q(y,c_f):m*,Nb(¢g§)J+Nt[ g)]=0aty=1
where
0, [ <1,
z,={1, I's L (2:29)

. s, 1 Ra
“(yy=-P+u, +Re— | M +— — (0 ~-N
R (J’) L eSC Eoum/-h ( Da)u’+RePr( j r¢l)

" o [ [ ]
R (y)=(1+Ra), +(Re Pr§—+ Nb) Y00, +NY 06, +EP Y uu  +M PrEcY uu,, .
C k=0 k=0 k=0 k=0 (2_30)

. ., Nt .
Rr¢(Y):¢r +Resl§0¢k¢l-k+m0/
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The solution can be described as of / th-order

l

u(y)= u, (J’)+Z”k (y)

k=t

0()=0,(1)+3,)
$()=h()+ T4 ()

g

(2.31)

The analytical expressions for velocity, thermal and particles flux considering HAM-

based Mathematica package BVPh2.0 are obtained as below
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2.3 Discussion of results

2.3.1 Inspection of convergence

The solution obtained from equation (2.31) consists of hu , h 9 and A y Moreover, the

convergence is accelerated by the auxiliary parameters by, h@ and A 6 The optimal

values of these parameters are chosen with the help of fi—urves, which is showing in

figures 2.2 at 20th—order approximations. The best range of hu , R g and h ¢ ae

-08<h, <02, 09<hy<-0.1and-0.9<7,<-03.

1.0 -
: Velacity i—curve
A S— Temperature fi—curve
@ 0.5 vens v oor Concentration R—cCurve
-
s
= 0.0
g
=3
-0.5 ]
10 o5 0.0 0.5 1.0

o ho, By

Figure 2.2: 72 —curves.

23.2 Residual error of norm 2

The optimized values of 7y, ki g and h  3Te very essential for solution. Therefore, the

residual errors were computed up to 20th —order approximation over an embedding

parameter ¢ € [0, 1] of velocity Eu , temperature EH and nanoparticles concentration

E » by the succeeding formulas
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120

E, = %i(u(i/zo))z, E, =\ETZ

7=

0

(6(i/20)), E,= \/-21—1

20

=0

Y (#(i/20)).  (235)

The above residual formulas give the minimum error for velocity at %, =-0.6, for

temperature 9= -0.4 and for nanoparticle concentration h 6= -0.7 which are shown

clearly in figures 2.3, 2.4 and 2.5 respectively. Table 2.1 shows the error for the

convergence series solution up to the 20th-order approximation.

Table 2.1: Residual error of analytic solutions when m*=r*=0, 4=0.1, B=-0.1,

Sc=1, Rd=1, Nr=0.5, Nt=0.5, Nb=0.5, Da=0.5, $=05 and M =0.5.

Order of approximation Time E, E, E,
02 1.07793  3.2399x102  5.2315x10%  7.2473x10°?
06 3.4508 3.0496x102  5.2259x102  7.2272x10°
10 8.3315 2.9912x102  5.1242x102  7.0287x1073
14 15.3252 2.9899x102  5.0754x102% 6.9178x10°
20 30.8517  2.9879x102  5.0739x102  6.8912x10°
0.060F ','
i I
0.055F '.’ 3
1]
0.050F .
< ll
] o.045} A
: II ]
0.040 ¥ ]
F / ]
0.035} P ]
0.030f,  TTmmeempem—m-e- S ]
-1.0 -0.8 -0.6 -04 -0.2 0.0

Figure 2.3: Residual error Eu —curve for velocity profile.
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Figure 2.5: Residual error £ g —curve for temperature profile.
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2.3.3 Illustration of graphical results

To see the impact of key factors for numerous range of slip parameters the graphical
representations are demonstrated from figures 2.6 to 2.14. The influences of zero, first,
and second order velocity slip are shown throughout the figures. Figures 2.6(a), 2.6(b),
and 2.6(c) demonstrate the combined impact of zero, first, and second-order velocity
slips along with Stefan mass blowing/suction parameter .S on velocity, temperature,

and nanoparticle concentration distributions. In figure 2.6(a) it is found that in case of

zero or no-slip (A=0,B=0) velocity distribution for plentiful values of Stefan

blowing/suction parameter (S=-1S=0andS=1) closer to the mid of channel
decreases, while its boosts up in the neighborhood of walls. The velocity in case of

strong blowing (S = —1) is improved and it overshoots near the right wall for first-order
slip (4=0.2,B =0) and second-order slip(4=0.2,B=—0.1). Also for the right wall
case (S =0and § =1) condition of overshoot still exists but it extinct at the left wall

for blowing/suction cases(S=-1,5=0andS = 1). Figure 2.6(b) offerings the
performance of temperature profile versus numerous values of Stefan blowing/suction
parameter, i.e., (S=-1,5=0and S = 1) It is perceived that the temperature variations

are very small in case of zero, first and second-order slips i.e., system is cooled so that
the thickness of thermal boundary layer decreases with an enhancement in the first-
order slip. Blowing is discussed to inspect the rise in temperature, while suction depicts
the reverse trends to cools the system. Figure 2.6(c) reflects the nanoparticle
concentration distribution for numerous values of S with zero, first and second-order
flow slip. It is observed that the nanoparticle concentration function is slightly increased
with increase of blowing/suction parameter in zero, first, and second-order flow slips
cases. The velocity behavior via porosity parameter/Darcy number Da is exposed in
figure 2.7 along with impacts of zero, first, and second-order velocity slips. It is found

that in case of porosity parameter, velocity at the middle of channel falls down by
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increasing Da, while it accelerates in the neighborhood of walls. The flow is

accelerated with a corresponding overshoot near the right wall in first-order slip
(4=0.2,B=0) and for the case of a second-order slip(4=0.2,B=-0.1).

The effects of magnetic parameter M are depicted in figures 2.8(a) for velocity, 2.8(b)
for temperature, and 2.8(c) for nanoparticle distribution along with the consideration of
zero, first, and second-order velocity slips. Retardation occurs on velocity profile as
shown in figure 2.8(a), because of the fact that MHD is acted normally to flow direction
in the occurrence and absence of slip parameters. On the other hand, the velocity is
accelerated with a very low exceed near the right wall in first and second-order velocity
slips. Figure 2.8(b) depict the M on temperature profile is illustrated with zero, first,
and second-order velocity slips. Here transverse magnetic field also effects the thermal
boundary layer thickness, which resist the motion in correspondence increasing

temperature. Figure 2.8(c) depicts the effects of zero, first, and second-order velocity
slips with magnetic field parameter M on $nanoparticle concentration distribution.

Figure 2.9 signifies effect of buoyancy ratio Nr on velocity profile for the cases of
zero, first, and second-order velocity slips. For the case of Nr> 0, it is perceived that
velocity decreases near the channel centerline by increasing Vr , while the opposite
behavior can be seen near the walls. It is also observed that an exponential rise near the
right wall occurs between first and second-order slip. The effects of Reynolds number
Re is reflected in figures 2.10(a), 2.10(b), and 2.10(c) on velocity, temperature, and
concentration profile respectively. In figure 2.10(a), velocity is increasing with the
increase of Re in zero, first, and second-order flow slip cases. Here it is also be noted
that velocity overshoot with the greater value of the second-order velocity slip
parameter on the right wall and velocity is decreasing near the left wall in first-order
linear flow slip. Temperature is gradually decreasing with the rise of Re in figure
2.10(b) and nanoparticle concentration also decrease with an enhancement of Re in

figure 2.10(c) in all slip cases.
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Figures 2.11(a), 2.11(b) and 2.11(c) reflects the influence of Pr on velocity,
temperature and nanoparticles concentration profiles in the presence of zero, first, and
second-order velocity slips. In figure 2.11(a), it is observed that how Pr contribute its
effect on the flow. It is analyzed that velocity profiles increase rapidly by increasing
Pr. The decreasing effect of temperature distribution happens with the increase of Pr
is exposed in figure 2.11(b). It is because of an increase in Pr means very slow rate of
thermal diffusion thickness. The influence of Pr on nanofluid is decelerated in
concentration distribution in the presence/absence of slip parameters as shown in figure
2.11(c). Thermal conductivity distributions and migration of nanoparticles are
determined by the mutual effects of Nt and Nb . According to figures 2.12(a) and
2.12(b) both temperature and nanoparticles concentration profiles directly depend on
thermophoresis parameter, thus rise in Nt is directly proportional to an improvement
in both @ and ¢. While, in figures 2.13(a) and 2.13(b) show the impact of Nb on
temperature and nanoparticles concentration function. The small change is occurred in
temperature distribution due to Brownian parameter in the presence of suction (S > 0)
is showed in figure 2.13(a) and figure 2.13(b) exposes the fluctuation in the trend of
concentration corresponding to varying Nb . As a result, a variation of Brownian
motion reduces thickness of boundary layer when compared with the concentration.
Figure 2.14 displays result of Rd on 8. It is inspected that enhancement occur in &
profile is due to increase in Rd . Obviously, an improvement in the radiation delivers

more heat to fluid which leads to enhance temperature and thermal properties.

The shear stress function #'(~1) and u'(1), heat transfer rate ¢'(-1) and (1),

nanoparticle mass transfer rate ¢'(~1) and ¢'(1) at left and right wall are provided for

no-slip, first-order, second-order slips in Tables 2.2-2.4. In Table 2.2, effects of S,
M , Reand Pr are calculated. The value of shear stress function decreases for Stefan
blowing/suction parameter and magnetic parameter with increase of first-order flow

slip parameter 4 at left wall whereas, at right wall, it increases with decrease of
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second-order slip parameter B . Results of emerging parameters like S, Pr,Re, Rd
and Nb for heat transfer rate are seen in Table 2.3. Heat transfer rate decreases for
Brownian motion and radiation in first-order velocity slip parameter A4 that rises at left
wall and gives growing effects with decrease of second-order flow slip parameter B .
Table 2.4 represents the mass transfer for evolving different parameters. It is found that
the mass transfer rate decelerates with an increase of first-order velocity slip parameter
A for Stefan blowing/suction parameter, Prandtl number and Reynolds number at the

left wall, however, accelerate with the decrease of second-order slip parameter B at

right wall.
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Figure 2.6(a): Impact of suction/injection at velocity.
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Figure 2.6(b): Impact of suction/injection at temperature.
=
1.of ——5=! = P
I ——CY /) ?" »
0.8;
s 0.6f
0.4}
0.2}
A=038=0, ,A=0.2,B=-0.1
0.0t . . . ]
~-1.0 -0.5 0.0 0.5 1.0

Figure 2.6(c): Impact of suction/injection at nanoparticle concentration.
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Figure 2.7: Impact of porosity parameter at velocity.

-0.5¢

M=05

-1.0

“1.0 05 0.0 0.5 1.0

y

Figure 2.8(a): Impact of magnetic parameter at velocity.
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Figure 2.8(b): Impact of magnetic parameter at temperature.
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Figure 2.9: Impact of buoyancy ratio at velocity.
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Figure 2.10(a): Impact of Reynolds number at velocity.
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Figure 2.10(b): Impact of Reynolds number at temperature.
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Figure 2.10(c): Impact of Reynolds number at nanoparticle concentration.
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Figure 2.11(a): Impact of Pr at velocity.
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Figure 2.11(b): Impact of Pr at temperature.
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Figure 2.12(a): Impact of thermophoresis parameter at temperature.
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Figure 2.13(a): Impact of Brownian motion at temperature.
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Figure 2.14: Impact of thermal radiation parameter at temperature.
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Table 2.2: Skin friction coefficient at left and right walls.

4=0, B=0 4=2, B=0 A4=5,B=1

S Pt Re M S w(-) -u() () ) (- -u'(1)
-1 68 03 05 05 -1.0345  0.7038 0.5932  -0.4149 0.1744  -0.4201
0 -0.9761  0.5456 0.5425  -0.3552 0.1863  -0.3313
1 -0.9240  0.4265 0.4540  -0.2868 0.1968  -0.2539
0.5 4 -1.1983  0.4168 0.6255  -0.3087 0.2730  -0.3990
6 -0.9946  0.4678 0.5256  -0.3180 0.2081  -0.3113

8 -0.8933  0.4940 04761  -0.3232 0.1755  -0.2682

0.2 -1.1311  0.4548 0.6078  -0.3264 0.2482  -0.3802
0.4 -0.8602  0.4933 0.4505  -0.3197 0.1641 -0.24 83
0.6 -0.7865  0.5074 0.3964  -0.3105 0.1336  -0.2069

0.5 -0.7672  0.3493 0.5023  -0.3204 0.1928  -0.2910

1.0 -0.8662  0.4198 0.3622  -0.2083 0.1513  -0.2475
1.5 -0.9469  0.4800 0.2470  -0.1259 0.1136  -0.2072
0.5 -1.1820  0.6655 0.5023  -0.3204 0.1928  -0.2910
1.0 -1.1076  0.6055 1.3071  -1.0554 0.3149  -0.4936

1.5 -0.9469  0.4800 7.0663  -6.7302 0.4306  -0.7307
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Table 2.3: Nusselt number at left and right walls.

A=0, B=0 A=2,B=0 A=5,B=-1
M ONo No ki RePr S () () o) o0 o) o)
05 05 05 10 03 68 05 0.6064 0.4176 0.5730 0.4261 0.6172 0.4167
1.0 0.6090 0.4158 0.5414 0.4382 0.5670  0.4408
1.5 0.6147 0.4126 0.5315 0.4450 0.5612  0.4412
0.2 0.5909 04317 0.5604  0.4400 0.6122 0.4242
0.4 0.6015 04219 0.5692 0.4302 0.6158 0.4190
0.6 0.6112 0.4135 0.5765 0.4224 0.6184 0.4146
0.2 1.1739  0.2702 1.1175  0.2799 1.1345  0.2775
0.4 0.6740 0.3863 0.6384 0.3943 0.6783  0.3879
0.6 0.5659 0.4399 0.5337 0.4489 0.5807 0.4373
2 0.5645 0.4420 0.5443  0.4483 0.5732 0.4415
4 0.5358 0.4636 0.5246 0.4678 0.5417 0.4634
6 0.5247 0.4735 0.5170  0.4766 0.5291 0.4734
0.2 0.5140 0.4592 0.4556 0.4786 0.5206  0.4667
04 0.6977 0.3832 0.6734 0.3884 0.7099  0.3793
0.6 09189 0.3266 0.9010 0.3297 0.9325 0.3204
4 0.5408 0.4495 0.5029 0.4630 0.5426 0.4563
6 0.5873  0.4260 0.5536 0.4353 0.5959 0.4270
8 0.6362  0.4059 0.6023 0.4136 0.6499  0.4025
-1 0.2594 0.9129 0.2356 0.9410 0.2889  0.9087
0 0.4272 0.5451 0.3962  0.5588 0.4450 0.5437
1 0.9076  0.3240 0.8720 0.3288 09111 0.3231
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Table 2.4: Sherwood number at left and right walls.

A=0, B=0 A=2,B=0 A=5,B=-1
s Re Mo WM NG00 ) 4 90 4C) 40
-1 03 05 68 05 05 -0.1370  -0.9129 -0.1101  -0.9410 -0.1659 -0.9087
0 -0.4272  -0.5451 -0.3962  -0.5588 -0.4450 -0.5437
| -1.1275  -0.3240 -1.0894  -0.3288 -1.1299 -0.3231
05 02 -0.5696  -0.4592 -0.5112  -0.4786 -0.5761 -0.4667
0.4 -0.8240  -0.3832 -0.7989  -0.3884 -0.8359 -0.3793
0.6 -1.1390  -0.3266 -1.1194  -0.3297 -1.1522  -0.3204
0.2 -3.7227  -0.6755 -3.5677 -0.6996 -3.6139  -0.6937
04 -0.9880  -0.4829 -0.9425  -0.4928 -0.9928 -0.4849
0.6 -0.5312  -0.3666 -0.5042 -0.3741 -0.5434 -0.3644
4 -0.6289  -0.4495 -0.5910 -0.4630 -0.6307 -0.4563
6 -0.6756  -0.4260 -0.6417 -0.4353 -0.6842 -0.4270
8 -0.7252  -0.4059 -0.6907 -0.4136 -0.7387  -0.4025
0.5 -0.6950 -0.4176 -0.6612  -0.4261 -0.7056 -0.4167
1.0 -0.6975 -0.4158 -0.6295  -0.4382 -0.6551 -0.4408
1.5 -0.7031 -0.4126 -0.6196  0.4450 -0.6492  -0.4412
0.2 -0.2022  -0.2018 -0.1905  -0.2062 -0.2118 -0.1986
0.4 -0.5001  -0.3559 -0.4745 -0.3633 -0.5126  -0.3535
0.6 -0.9270 -0.4703 -0.8840 -0.4799 -0.9333 -0.4716
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2.4 Conclusions

A nanofluid through plane driven by sole contribution of pressure is investigated.

Nanofluid flows through the gap of a symmetric channel with the application of

different order slip. Temperature difference is also observed due to external source of

heat at the boundary. The effects of various parameters are analyzed in tabular and

graphical forms. The main findings are summarized as follows:

The Stefan blowing/suction induces significant deceleration effects for velocity
and temperature profiles whereas enhancement in nanoparticle concentrations
is observed.

Variation in porosity parameter declines the velocity.

Momentum decreases subject to magnetic parameter, but reverse trend occurs
in temperature distribution and nanoparticle concentrations.

The buoyancy ratio corresponding to magnetism plays a dominant role on
velocity, therefor buoyancy ratio has the same effect on velocity as observed for
magnetic field.

Thermophoresis, Brownian motion and radiation have same increasing effects
on thickness of thermal boundary layer, but thickness of concentration boundary
layer decreases with increase of Brownian motion.

Nusselt number at left side of geometry channel has increasing phenomena but
opposite trend at right side of geometry for Nb and Rd are noted.

An increase in parameters V¢, .S, Pr and Re decrease the Nusselt number
at left wall but opposite behavior attain at right wall.

Sherwood number increases with increase of .S, Re and Pr at left wall, while

decreases at right wall.
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Chapter 3

3 Structural impact of Kerosene-ALO3
nanoliquid on MHD Poiseuille flow with
variable thermal conductivity: Application of

cooling process

The fuel of rocket engine can improve the cooling of nozzle wall and chamber by means
of Kerosene—A1203 nanofluid. In particular, this investigation is devoted to exploring
the credible potential use of kerosene-Al:O3 nano-liquid for thrust chamber
regenerative cooling in semi-cryogenic rocket engine due to its enhanced thermal
properties. Poiseuille flow is analyzed by means of convective types of boundary condition.
The contribution of inclined MHD and variable thermal conductivity are incorporated. The
spherical shaped Alumina (Al203) nano-size particles with volume fraction (0.01, 0.02,
0.03 and 0.04) are suspended in kerosene oil carrier liquid. A set of nonlinear but
mutually dependent differential equations describe the flow dynamic which are tackled
by analytical technique. Effects of various important variables are examined
graphically. The role of physical parameters of contemporary interest like Eckert
number, Grashof number, thermal radiation, heat source/sink, rate of heat transfer and
rate of shear stress are numerically investigated and provided in tabular form.
Convergence of obtained series solutions has been deliberated by “/” and the square

error norm 2 curves are also presented in each case.
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3.1 Problem formulation

3.1.1 Flow analysis

Let steady, laminar viscous liquid in plane Poiseuille boundary layer flow of nanofluid
among two parallel walls at ¥ =+a as shown in figure 3.1. Model considered into a

rectangular coordinate system in which X-axis along flow direction while -axis

perpendicular to channel walls. Both walls of channel are kept fixed and sustained

temperatures 1, (heated left wall) and T, (cold right wall).

| 2a :l
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—_— |
—_— | & i
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Figure 3.1: Geometry of flow model.

Suction wall
Injectlon wall

i
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Liquid in enclosure is a Kerosene-based nanofluid with suspension of Alumina
nanoparticles. It is supposed that there is no slip between base liquid (i.e., Kerosene oil)
and the nanoparticles Alumina (Al203). Electric field and Hall current are assumed to

be negligible in electrically conducting nanofluid for small Reynolds number.
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3.1.2 Governing equations (Tiwari and Das’s model)

According to the Tiwari and Das model, equations (1.18), (1.19) and (1.38) given in
the chapter 1, for a steady state, incompressible nanofluid under the influence of
inclined magnetic, buoyancy, radiative heat flux, heat source/sink, variation in thermal
conductivity and viscous dissipation transporting through a channel consist of
suction/injection walls are mathematically modeled with the application of boundary

layer and Boussinesq's approximation as

ou p o’ —
oo (0 E |- T G5 T (op), (1T )

o {2 rron (. oo

here, ¥}, is the suction/injection velocity, Qo is volumetric heat source/sink and k,;’:

represent the thermal conductivity with the variation of temperature of nanofluid.

Boundary conditions for plane-Poiseuille flow are

iU=0,T=T aty=-a (Leftwall)
_ ) . 33
ii=0,T=T,aty=a (Rightwall) G-3)
Consider following nondimensional terms
¥ m v v 25 T % _T*
x:i’uzi,yzx,v:L’p—_— ap ,0=T T ,m*zT; r . (34)
a U, a U, 2,U I,-T* I,-T*

Incorporating the equation (3.4) with radiative heat flux defined in equation (2.10), the

governing equations (3.1) and (3.2) become

2
Al(—P+%)+A251%_A3M2u+‘44g’;‘9=0, G-5)
€
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50 56 50y ou\
Ri+ A (1+e0)) 52+ AS Pr v de|l & | + AEcPr| == 9=0. (3.6)
( +A4,(1+¢ ))Qv2+A5 1 ray+ 65(@)) + 4 Ec r[ay) +0 (

The corresponding dimensionless boundary conditions

u=0,6=1 aty=-1
; (3.7
u=0,0=m*aty=1
where
B,ga* (T-T*) _ v/ (pC,), U, Hy
Gr: 3 , T = y EC ' f =
2 kf (C)(T-1")""
o P k
Aizﬂ:Az:&, A3= ”faA4=(pﬂ)”f: =( p)"f’ = ”f’ (3.8)
! f Iy (pﬂ)/ (pCP)f k,
0- 0,a* g Pl o o,B’a’ _léo*T, Re = PrUnt
k. 0! ’ ’ k*k, '
f Hy H f 'uf

In this chapter, the physical thermal properties are used define in equations (1.3), (1.9),
(1.10) and (1.11). The relation of thermal conductivity under variation with heat {93},

defined as
ky =k, (1+¢6), (3.9)

here € is parameter of variation in thermal conductivity, fluid flow is dependent on

a 53_;_))
2u, Ox

constant pressure gradient (i.e., P=%) and maximum velocity (U, =—
;

occurred between two walls. When the temperature of right and left walls extremely

increase then the heat flux occurs and M is the inclined magnetic field with inclination

7, le., M =M Sin}/. The dynamic viscosity of nanofluid from Brinkman model

expressed in equation (1.3) and thermal conductivity of nanofluid from Maxwell model
defined in equation (1.6) is used in current chapter. Expression of coefficient of skin
friction defined in equation (1.54) and Nusselt number defined in equation (1.56) are

transformed in view of equation (3.4) as
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ReC, =24u'(y) |

y=—11

, (3.10)
Nu=-40 (y)|y=_L1

3.2 Solution of the problem

To seek an approximated solution for equations (3.5) and (3.6) is found with the help

of HAM procedure.

Zeroth—order solution
Consider, the following initial approximations (uo, 90) which satisfy the linear

operators (£u ) £9) and associated boundaries

I-m*)y-m*-1
uo(y)=y2—1,00(y)=( z )_yz e (3.11)

and
d (du d(dé
£,=— 22| £y =22 ,
“ dy[dy) 0 dy(dy] G.12)

The convergence control parameters hu , R @ With nonlinear operators N,, N g of

velocity and temperature along embedding parameter & € [0, 1] , yields the following

zeroth—order deformations respectively

(l_f)fu [u(y,f)_uo(y):I:fhuNu [u(y,f),ﬁ(y,f)]

, 3.13)
(-84, [60-0)-00]=h N [u(r)0ne)] [
with boundary conditions
u(y.£)=0, 6(y.£)=m* aty=1} oo
u(y,£)=0, 8(y,&)=1 aty=-1 '

and
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B _, G
N [u(3,€).0(.£).6(3.¢)]=4 {—P+§Z}+A2515—A3M u+A4§£9

Ne[u(y,f),ﬁ(y,‘f),qﬁ(yj)]=[Rd+A6(1+£0)]%§+A5S,Pr%+A63(?—£j o (3.15)

+4Ec Pr(%)_ +Q0

[ th—order solution

The [ th-order deformation for ¥, ( y) and 6, ( y) are as follows

£,[6.(»)- 26 (»)]=hgRE (¥) '
u,(y,§)=0, 6’,(y,§)=l aty=—1} a7
u,(y,£)=0, 6,(y,&)=m* aty=1 ’ '
u ; o0 Gr
R (y)=4[-P+u |+ 4Su - AM A0,
(3.18)

. i Y , ! . { .
RO (y)=(Ra+4)6 +4¢ 30,6, + AS,Pr6] + As 6,6, + AEcPr T, +06)

The solution can be described as of [ th-order

!

u(v)=u, () + 24 (¥)

= (3.19)

1

0(»)=6,0)+36()|

k=1

Analytical solution expressions for velocity and temperature distributions at second
order iterations are calculated with help of Mathematica package BVPh2.0 based on the

HAM.
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3.3 Discussion of results

3.3.1 Inspection of convergence

The equation (3.19) contain convergence control parameters hu and hé" The
optimal values of these parameters are chosen with the help of h—curves, which are
showing in figures 3.2 and 3.3 at 20th—order approximations. The best range of hu

and hB are -13<h, <-04 and -13< hﬂ <-0.3 respectively.

1.0
0.5 Gr=0.5Re=3,Ec=0.2,Rd=1,0=1,
$=0.25,5=0.5,M=0.5,Pr=21.
P
S oo}
=
-0.5
-1.0
=20 -1.5 -10 -0.5 0.0 0.5

Figure 3.2: 1,— curve for velocity.
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1.0
0.3 Gr=05Re=3,Ec=03,Ri=1,0=1,
$=0.25,5=05M =9.5, Pr=21.

A
< 00
D

-05

-L055 -1.5 -1.0 -05 0.0 0.5

he

Figure 3.3: h g— curve for temperature.

3.3.2 Residual error of norm 2

The best optimum values of hu and h g Withhelp of residual errors were computed up
to 20th —order approximation over an embedding parameter ¢ € [0, l] of velocity Eu

and temperature Eg by the succeeding formulas

20

E, = \/%l-g(u(i/ZO))z, E,= \/EIT S (6(i/20)). (3.22)

=0

The above residual formulas give the minimum error for velocity at hu =-0.2 and
for temperature A 9= -0.3, that are presented in figures 3.4 and 3.5. Table 3.1 gives an

error for convergence of series solution up to the 20th—order approximation.
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Figure 3.4: Residual error Eu —curve for velocity profile.

0.25F

T T T Tt

0.20 RN

0.15 RN

T
4

0.10} .

T
7

0.05 - g
3 ‘\-_—”

0.00'1L...1....|....|....1....|..1.|l...
-0.7 -06 -05 -04 -03 -02 -0.1

iy

Figure 3.5: Residual error Eg —curve for temperature profile.
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Table 3.1. Residual error of analytic solutions when Rd =1, 9=1, Gr=3
,Ec=0.1,6=025,8=05 A =2,Pr=21 and p=1%.

Order of approximation = Time E, E,
02 1.07793 9.2399x10° 1.1628x102
06 3.4508 1.0496x10* 3.2529x10*
10 8.3315 1.8962x10° 1.8837x10°
14 15.3252 7.3379x10® 1..37785x10°®
20 30.8517 8.3321x1010 1.1296x10®

3.3.3 Qlustration of graphical results

The study of thermal conductivity with temperature variation and magnetic field with
inclination angle on steady plane Poiseuille flow with different flat walls temperature
and suction/injection have been studied analytically and demonstrated for flow and heat

distribution. The significances are elaborated through graphically in figures 3.6 to 3.13
for controlling parameters like suction parameter (S,), variable thermal conductivity
parameter ( £ ), Grashof number ( Gr ), Eckert number ( £c), thermal radiation ( Rd ),

heat source/sink parameter (Q ) and inclination angle (7) in magnetic parameter (M ).

Suction/injection (S[ ) effects for different values on flow field is discussed in figure

3.6. The influence of magnetic parameter M under various inclination angle on the
velocity w.r.t 3 shown in figure 3.7. Decreases results obtained for large inclination
angle ), velocity attains its maximum retardation when inclination is perpendicular

between magnetic field and flow. In figure 3.8 effect of nanoparticles ¢ displayed. It

is investigated that an increase in the fraction of particles velocity decreases.

Manifestation of S, on temperature is exposed in figure 3.9. Effect of magnetic

77



parameter M for different inclination angle on temperature against y portray in figure

- 3.10. It speculated that temperature rapidly increased when the inclination angle
increased. Figure 3.11 respond to Rd at temperature, it investigated that for large Rd
temperature is realized to be increased. Manifestation of O at temperature is presented
in figure 3.12. Here conclude from figure, when (Q < 0) then heat reduces and when (
0 >0) then heat enhance in the system. It is due generation in energy for system.
Variation in thermal conductivity £ is given in figure 3.13.

025F g T
P et el T 1
E= 0.25 ’,,:::,f' \\::ss ]
I ’ NS ]
0.20 iy ’/,5:', \\:\\ .
M=2 . [ \:\
[ 4 Sy ]
0.15f /4 \:\ ]
[/ T
L ) \ J
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. L » v
) s
) v
0.00p, . . L - ; 4
-1.0 -05 0.0 0.5 1.0
Figure 3.6: Influence of S, onU .
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The physical characteristics of Kerosene oil and Alumina (A1;O3) are mention in Table
1.2, whereas influence numerous parameters on Cf (Skin-friction) and Nu (Nusselt

number) of Alumina Al;O3 nanoparticles suspended in Kerosene-based nanofluid are

offered in Tables 3.1 and 3.2. The influence of variable thermal conductivity with
particle volume fraction on Cf and Nu are given in Table 3.3. Nusselt number

increases but Skin-friction coefficients decreases for increasing amount of particles.
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Table 3.1: Effect of Ec and Gr on C; and Nu when Rd =1, 0=1,6=0.25, §=05,
M=2,Pr=21 and p=1%.

Ee o M) M) G () c, ()
0.2 1 -1.6350 0.9293 -0.1790 0.2217
2 -2.1978 1.3125 —1.0060 1.1490
3 -2.7384 1.6577 —2.4830 2.7520
0.4 1 -3.5022 2.3119 -0.2792 0.3971
2 —4.8700 3.3341 -1.2810 1.5240
3 —6.1973 42851 -2.9590 3.3030
0.6 1 -5.7051 4.0740 -0.3469 0.5481
2 -8.1213 5.9920 -1.5130 1.7540
3 -10.4822 7.8105 -3.2642 3.6990
0.8 1 -8.2516 6.2257 —0.4631 0.6259
2 —11.9605 9.2978 —1.6691 2.0260
3 —15.6034 12.2467 -3.6520 4.1650
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Table 3.2: Effect of thermal radiation, heat source/sink on Nusselt number and Skin-
friction when Gr =3, Ec=0.1,6=025, §,=05, M =2, Pr=21 and p=1%.

R o M) W) ) G0
0.2 -1 —0.6641 0.1268 -1.1660 1.2992
0 -2.0170 2.4370 -2.5361 2.9153
1 —3.2450 5.1840 —4.2582 48231
04 -1 —1.0802 0.4182 -0.8476 1.0340
0 -2.4120 2.7702 -2.1720 2.5171
1 -3.6420 5.6010 —3.7363 4.3722
0.6 -1 —-1.4340 0.7721 —0.5562 0.6627
0 —2.7661 3.1240 -1.7750 2.1243
1 -3.9110 5.9750 -3.2852 3.8420
0.8 -1 -1.7670 1.0631 —0.2117 1.2990
0 -3.0991 3.5402 -1.4041 1.7231
1 -4.2650 6.3710 —2.8082 3.3920

Table 3.3: Variation of Nusselt number, Skin- friction for nanoparticle volume fraction

and variable thermal conductivity when Gr=3, Ec=0.1, Ri=1, g=1, §=05,
M =2 and Pr=21.

@ g Nu(-1) Nu(1) c.(-) C.(1)
1% 0.25 -0.3632 1.1638 —0.5498  0.2614
0.50 -0.3027 1.2903 ~0.5467  0.2558
0.75 -0.2398 1.3482 ~0.5424  0.2498
2% 0.25 -0.3421 1.2414 —0.5829  0.2557
0.50 -0.2788 1.3409 ~0.5792  0.2498
0.75 ~0.2128 1.4307 -0.5750  0.2434
3% 0.25 ~0.3204 1.3183 -0.6162  0.2502
0.50 -0.2545 1.4207 —0.6122  0.2439
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3.4 Conclusions

In the current study, kerosene is chosen as base fluid to form a nanofluid in a channel.
Poiseuille flow is affected with inclined MHD, besides the thermal conductivity with
the changing behavior. Analytic solution is vetted through graphs and some of the key

results have been enlisted below:

e Close to heated wall velocity mounts up due to rapid process of suction/injection.
o Increasing suction/injection, increases velocity near to heated wall, while reverse

effect near to the cold wall.

e Itis detected that velocity of fluid decelerate by larger values of @ and velocity

attain its minimum retardation when inclination is perpendicular between
magnetic field and flow. Moreover, temperature profile is increased by increasing
particle volume fraction, magnetic parameter with inclination and radiation.

e Suction/injection parameter increases temperature profiles near to the heated wall
for (Sl >0, but the decreases near the cold wall for (Sl <0y.

e The result of variable thermal conductivity enhance in temperature at cold wall,

whereas reduction occurs at heated wall.
o Tabular results are determined, effects of particles on C ; and Nu . Itis concluded

that Skin-friction coefficient as compared with Nusselt number decreases for

volume fraction of particles increases.

e Temperature of nanofluid inclines close to heated wall for heat source (Q > 0) but
declines close to the cold wall for heat sink (Q >0).

. C, and Nu rise when Grashof number, Source/sink, suction/injection, Eckert
number, thermal radiation and magnetic parameter with inclination are enlarged
at right wall ( y =1), while they have opposite effect on the ¢ r and Nu at left

wall (y=—1).
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Chapter 4

4 Analysis of activation energy in Couette-
Poiseuille flow of nanofluid in the presence of
chemical reaction and convective boundary

conditions

In the given chapter an MHD nanofluid is examined analytically. The role of constant
pressure and radiation on the flow through a channel are also considered. Activation
energy further increases thermal profile of nanofluid. For the mass flus density
Buongiorno model is used. The governing flow problem is solved subject to convective
boundary conditions by HAM which involved higher derivatives of mutually related
nonlinear ODEs. The tabulated results are found in full agreement by performing
parametric study in which the contribution of very significant dimensionless variables
are demonstrated through graphs. And, it is established that concentration of particle
rises with chemical reaction rate while Brownian and thermophoresis parameters

reduce concentration.

4.1 Problem formulation

4.1.1 Flow analysis

In this chapter, consider steady fully developed laminar, Couette-Poiseuille flow of
incompressible nanofluid is flowing in horizontal channel. The geometry of the channel
consists of two parallel infinite walls as demonstrate in figure 4.1. Right wall is moving
with constant velocity U *, whereas left wall is stationary. In the geometry of the

problem, the middle of the channel is taken at origin with position of left and right walls

at y =—a and y = a, respectively.
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Figure 4.1: Sketch of flow model.

Convective boundary conditions are subject to left as well as right walls of model. Fluid
is taken electrically conducted with applied magnetic field B, in the ¥ -direction. The

physical properties of nanofluid in this problem are supposed constant.
4.1.2 Governing equations (Buongiorno’s model)

According to the Buongiorno’s model, the equations (1.18), (1.19), (1.37) and (1.38)
given in the chapter 1, for a steady state, incompressible nanofluid under the influence
of magnetic, buoyancy, radiative heat flux, chemical reaction with activation energy,
viscous and Ohmic dissipation transporting through a channel are mathematically

modeled with the application of boundary layer and Boussinesq's approximation as
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&

_0T\ _ ﬂ EB_T D,{or ai
(Pcp)f(ug)—kf[@lJ*‘(PCP)‘,{DB(@I_6}_)] T*[aij:l 5)—,+ w2

-

Hy (%) +0'fBgLT2

=#,(‘32‘7) o-BZzT+[(1 C*)p,Be(T-T*)- (pp—pf)g(C—C*)], (4.1)

and

o°C &rY (T Y o (-E,
-0,(55)- T*[avzj k(f) c-een( ) @

The appropriate Couette-Poiseuille and convective boundary conditions

i=U, =0, —k%:hf(Tz—T), —D,,%:hS(CZ—C) ay=a

u_
4.4)
- — T
=0,7=0, L p (1-1), -0, %L =h(C,~C) ety =-a
¥y 'y
Let us acquaint the following nondimensional quantities
—_ _ — — 2— *
goX o Y,V @b o, Ut
a U, a U, uU, U, 45)
g-T=T* *_TZ—T*,¢=C—C*, . C-C* '
T,-T* I,-T* C-C* C,-C*

Incorporating the equation (4.5) with radiative heat flux defined in equation (2.10), the

governing equations (4.1) to (4.3) become

o‘u Ra
> Y RePr ——(6-Nrg)-P (4.6)

(1+ Rd)

a2
i w2228 [ 20 gy o) +M?Brd —yu=0, (47)
oy oy ay EX

az¢ Nt ( 26 E B
Py Nb(ayj S.ReCr(1+Q86)" ¢exp( —_—(1+Q¢9)]_0’ (4.8)
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The corresponding dimensionless boundary conditions

u =U,v=0,0'(y)=—Bi(n*—9(y)),¢'(y) =—Nj(m*—¢(y)) aty=1

, ] ) (4.9)
u=0,v=0, ¢(y)=-8i(1-6(»)), ¢(»)=-Ni(1-4(y)) aty=-1
where
_ _ 3 22 i _ 2
Rd=(l C*)(I; T*)ﬂga gMzL_O_Boa ,RezaUmyvf=&,Pr=v—r,Cr=ﬂs
va H v, Py a, U,
grotUn _ n  T05(G-CY) (pp-pr)(C-CY) O Clad
k,(T,-T*) a, p,ﬂ(Tl—T*)(l—C*) 3k*k, .10
- _T* 2 :
SE=—V—C—,Q=—7;—T*,E=£"—,Nt=TDT(Tl r ),yl= U, é—zzconstant,
D, T* KkT* T*a, a, (I -T*) &
gt g _ha __leG),
ky D, (pc,,)f

The formulations of coefficient of skin friction defined in equation (1.54), Nusselt

number defined in equation (1.56) and Sherwood number defined in equation (1.58) are

transformed in view of equation (4.5) as
ReC, =2u'(y) |
Nu=-6& (y)|y=-1,1
Sh=~¢'(»)|,—_1,

y=-1,1
@.11)

4.2 Solution of the problem

For series solution, here we employed HAM technique for solving equations (4.6) to

(4.3).

Zeroth—order solution
In the procedure of analytic solution, first we define initial guesses (uo, 6,, ¢0) which
satisfy the linear operators (fu, £y, £ ¢) and associated boundaries

B —1+Bi(l—y)
B 2Bi

(=22 4.1) e

) > ’¢o(.V)=
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and

_d(d) , _d(d0) , _d(ds
f“'dy[d.v)’ o dy(d.v]’ g dy(d.vj' 1)

The convergence control parameters and nonlinear operators with embedding
parameter 56[0, l] are hu, he, h¢ and N, Ny, ]V¢ for velocity,

temperature, nanoparticle volume fraction respectively. Therefore, the zeroth-order

deformations are

(1-8) £,[u(5,€) -4, (¥) ] = 1y N, [4(5.£),6(.6).8(5.£)]
(1-€)£,[6(3,6)-6,(¥) | =hgNg[u(1.£),0(7.€).8(1:¢
(1-6)£,[4(2.)~4, ()] = éngN 4 [u(5,6).0(».£).8(»:)]

e
—

(4.14)

with corresponding boundary conditions
u=U,v=0(y)=-Bi(n*-8(y)).¢# ()= -Ni(m*-4(y)) aty= l}

u=0,v=0, #(y)=-Bi(1-60), #()=-N(1-g() ay=—]

N =—J—M2u(y £)+ 8 (0(y,&) - Neg (3,£)) - P |
: o) Reprt ’ '

Ng =(1+Rd)629(y’§) +Nb 00(»:¢) 98(2.) +Nt(a€(y’§)]2

& oy oy oy
+Br(%§;—;‘-§—)] +MzBr(u(y,§))2_ylu(y,g), r- (4.16)

= ___62¢8(y);,§) -S_ReCr (1 + QH(y,‘f))n‘ exp[—

))]¢(y,§)

__E
(1+Q6(».¢
+&620(y,§)
No &°

| th—order solution

The ! th-order deformation expression for ¥ (y) , 6, (y) and ¢, (y) are
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£u [ul (y)_llul—l (y)] = huRlu (y)
£, [01 ()’)—1191-1()’)] zthzg (J’) (4.17)
£,(0,(7)- 28, (»)] =R ()

with
u,(v,£)=U,8/(»,E)=-Bi(n*~0,(5.£)).8(5.£)=-Ni(m*~4,(.¢)) aty=1

(4.18)
w(3.£)=0, 8(.&)=-Bi(1-6,(5.)). #(».€)=-Ni(1-4,(.¢)) aty=-1
and
R (y)=u ~M’u + 22 (g-Ng)-P W
i 1 (4 RePr ! rvi
1 , ! . ! .,
RO (y)=(1+Rd)6 +Nb T A6+ NCZ O Br Tt
/ b (4.19)
M’Br ¥ wau_, — 7
k=0
" ! E Nt .
R?(y)=¢ -S. ReCr ¥ (1+Q6,) " exp| -———— =g
F(y)=¢ ~S.ReCr Z (1+00,) CXP( (1+5D9k)]¢1_k+Nb ‘|

The solution can be described as of / th—order

/

u(y) =1, (¥)+ 2w (»)
0(»)=6,(»)+2 6. (»)¢- (4.20)

¢(y)=¢o(y)+z¢k(J’))

k=1

The analytical solution for velocity, temperature and concentration at second order

approximations are attained as below
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1y (254 2519y 127)% 1145y’ 127y' 229¥°
u(y)=c+=+hy| ==+=—=- - + + +
22 153 4590 68 1836 612 3060

127, 229y 127y 209
N 636(;2 151502 27530? 25 25y 5y 5 B
( 18y 215 29, y+L+L)+

3672 612 153 102 1224 612 1836

_13445_12865y+4405y’+1765y’+25y‘+25y5+ 5 5V
#| 719584 137088 6528 19584 2176 6528 19584 45696

2 3 4 5
_X+h29 _lﬁ+_23_y_y_+l3_y+l3_y__y_ +
2 480 40 16 48 9% 80

_2— 3 —6_ 4.22)
(127231 34681y_|_991yZ +305y’ _533y* 91y’ _229y6J+
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4.3 Discussion of results

4.3.1 Inspection of convergence
HAM is a powerful and reliable method to solve highly non-linear problems. Here the
equation (4.20) involves the auxiliary parameters hu , h g and h¢ is a series solution.

To choose the appropriate value of hu , h g and h ¢ Figure 4.2 depicts A—curves for
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20th order approximations. The reliable values of the resulting solutions are lies in the

range 0.75< 11, <02, 08<71,<-0.1 and ~0.55<h; <0.15. The valid value of f

in flat portion of these curves. Moreover, the series solutions are significant in the entire
zone of y , when 1, =H, =h¢ =-04.
432 Residual error of norm 2

The optimum values of hy, h g and h é with help of residual errors were computed up

to 20th —order approximation over an embedding parameter ¢ € [0, 1] of velocity Eu ,

temperature g and concentration E by the succeeding formulas

= %i(a(i/ZO))z, \f 1/20) %i(fp(z‘/zo))z. (4.24)

The above residual formulas give the minimum error for velocity at h,=-04, for
temperature /1 g =07, and for nanoparticle concentration £ 5= —0.18 which presented

in figures 4.3, 4.4 and 4.5 respectively. Table 4.1 shows the error for the convergence

series solution up to the 20th-order approximation.

Table 4.1: Residual error of analytic solutions when m*=n*=0, E=1, Q=1, Rd =],
Cr=1, M=20, Ra=2, Re=03, Br=1, Nt=05 N= 0.5, Nr=0.5, Nb=0.5,
n,=0.5, Bi=0.5 and Pr=7.

Order of approximation  Time E, E, E,
02 1.07793  9.2399x10°  1.1628x10%  4.8973x107
06 34508  1.0496x10*  3.2529x10%  2.2272x10%
10 83315  1.8962x10°  1.8837x10°  1.4287x107
14 15.3252  7.3379x10% 1.37785x10° 1.0896x108
20 30.8517  8.3321x10'°  1.1296x10%  1.1902x10°®
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In Table 4.2—4.4 represents the numerical results of magnetic field parameter, buoyancy
ratio, Rayleigh number, radiation, Prandtl number, Brownian motion, Brinkman
number, reaction rate, fitted rate constant, activation energy, thermophoresis parameter,
Schmidt number, Biot number and convection-diffusion parameter on skin friction,
Nusselt number and Sherwood number respectively. The increasing behavior of Skin
friction and Nusselt number are detected for magnetic field parameter, whereas,

activation energy is reversely influenced for the contribution of Sherwood number.

Table 4.2: Skin friction coefficient for several of M, Nr, Ra and Pr with Re=0.3,5¢=10
Rd=Cr=E=Q=Br=1, n,=Nt=Nb=Bi=Nj=0.5 for both walls.

M Nr Ra Pr -u'(-1) ~u'(1)
0.0 0.5 2 7 -0.004573 0.004745
2.0 -0.004044 0.004606
4.0 -0.003453 0.004187
6.0 -0.002801 0.003489
0.5 -0.004044 0.004606
1.0 -0.004251 0.005911
1.5 -0.004457 0.007216
2.0 -0.004664 0.008522
1 -0.005388 0.006848
2 -0.004044 0.004606
3 -0.002700 0.002364
4 -0.001356 0.000122
7 -0.004044 0.004606
8 -0.004380 0.005166
9 -0.004642 0.005602
10 -0.004851 0.005951
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Table 4.3: Nusselt number for several of M, Nt, Rd, Nb and Br with Re=0.3,5¢=10,
Pr=7, Ra=2, Cr=E=Q=1, n, = Nr = Bi = Nj = 0.5 for both walls.

M Nt Rd Nb Br -4'(-1) -6'(1)
0.0 0.5 1 0.5 1 0.492929 0.504004
2.0 0.493246 0.504333
4.0 0.493493 0.504745
6.0 0.493810 0.505321
0.5 0.493246 0.504333
1.0 0.494116 0.506943
1.5 0.494990 0.509565
2.0 0.495869 0.512199
1 0.493246 0.504333
2 0.493262 0.504369
3 0.493278 0.504406
4 0.493293 0.504442
0.5 0.493246 0.504333
1.0 0.493848 0.506208
1.5 0.494451 0.508085
2.0 0.495055 0.509964
0 0.492212 0.501538
1 0.493246 0.504333
5 0.494280 0.507129
7 0.495314 0.509924
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Table 4.4: Sherwood number for several of A, E,n,€,5¢and R4 with Re=03,
Sc=10, Pr=7, Ra=2, Nr=Bi= Nj=0.5 forboth walls.

o E n . S R #(-1)  -#Q)

0.0 2.0 0.5 1.0 10.0 1.0 -0.744148  2.330771
1.0 -0.870893  2.552822
2.0 -1.007160  2.795660
5.0 -1.153320  3.060250
0.0 -0.124560  1.082631

1.0 -0.241022  1.606220

20 -0.870893  2.552820

3.0 -1.842190  4.057940

-1.0 -3.411570  6.359712

0.0 -1.512590  3.509851

0.5 -0.870893  2.552823

1.0 -0.397690  1.851932

1.0 0.0 0.5 0.052703 0.356023

1.0 1.0 0.409739 0.715164

1.0 2.0 2.652001 2.867631

1.0 3.0 9.993070 9.019430

1.0 1.0 5.312660 2.974801

1.0 3.0 6.700660  4.696381

1.0 5.0 8.257800 6.704832

1.0 10.0 9.993070 9.019430

4.3.3 Illustration of graphical results

In this portion, the transmuted non-linear differential equations which are ODEs from
equations (4.6) to (4.8) associated with convective boundary conditions equation (4.9)

were analytically tackled using the best tool to obtain such solutions i.e., HAM. The
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role of significant flow parameters on flow field, temperature distribution and
concentration profile are deliberated from figures 4.6 to 4.13. The following discussion

and results are gained by using proper values of parameters, m*=n*=0, U=1,
n=05 E=1,Q=1,8=10, M=20,Ra=2,Cr=1,Rd=1,¥%, =2, Nb=05
, Nt=0.5, Pr=7, Re=03, Br=1, Nr=05, Bi=0.5 and Nj=0.5. Figures

4.6(a)~(b)-(c) illustrate the collective influence of M on velocity, temperature and
concentration fields. As M =0 leads hydrodynamic flow and M # O corresponds to
hydromagnetic flow phenomena. It observed in figure 4.6(a) that velocity slow down
M due to resistance in flow generated by Lorentz forces. It is also noted that
temperature distribution is greater for hydromagnetic flow while compared to
hydrodynamic flow case. Also Lorentz force caused an enhancement in the temperature
distribution as shown in figure 4.6(b). A plot of concentration for M presented in figure
4.6(c). The increasing result occurs for concentration profile by M . The motion of fluid
is reduce for N7 , shown in figure 4.7. Figure 4.8 is drawn to depict influence of Rd

on temperature distribution. Increasing effect noted on the temperature distribution for
Rd . Physically, this enhancement occurs when the radiative heat flux of the nanofluid
increase in the channel. Figures 4.9(a)-(b)-(c) correspondingly show velocity,
temperature and concentration profiles for diverse values of chemical reaction
parameter Cr . The amount of velocity reduces due to the chemical reaction but near the
surface it gain the maximum amplitude as compared to surface boundary. Moreover, it
can also be seen that nanofluid temperature and concentration field are decelerated on
increase of Cr . This behavior represents the weak effect of buoyancy force because of
concentration gradient, which causes the reduction effect on concentration profile. The
concentration field is a good agreement with outcomes found in case of Rout et al. | 96].
Figure 4.10(a)-(c) shows with or without Biot number involvement in velocity figure
(a), temperature figure (b) and concentration in figure (c). The velocity profile for with
and without convection-diffusion parameter is revealed in figure 4.11(a). From said

figure, concludes that when the convection-diffusion parameter is zero then the flow is
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smooth in the entire geometry, but when the values of convection-diffusion parameter

increase then the velocity of nanofluid enhanced. The plots of temperature profile for

different values convection-diffusion parameter Nj is exposed in figure 4.11(b). Result

shows in said figure give the increasing effects in temperature with the increase of

convection-diffusion parameter »j. The influence of Nj on concentration is given in

figure 4.11(c), a strong increase for concentration is accomplished with large values of
Nj values. Figure 4.12 elucidates the increasing behavior in concentration profile due
to greater values of £ which gives large concentration of boundary layer thickness.
Physically, higher activation energy and lower temperature lead to a lesser reaction rate,
which slows down the chemical reaction. In figure 4.13(a)-(b) expose the results on
concentration profile in reply to a variation in Nb and thermophoresis parameter Nt

respectively. As for large Brownian motion, thickness of concentration boundary layer
decrease, but performance of thermophoresis parameter on nanoparticle concentration

gives a reverse pattern to that of Brownian motion parameter.

Figure 4.6(a): Appearance of M on velocity.
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4.4 Conclusions

Couette-Poiseuille flow is the focus of this chapter. Buongiorno’s model describes the

flux density of the particles to form nanofluid through horizontal channel. The source

of flow is smooth motion of the plate while stress is also generated by the constant

pressure on the suspension. To further increase thermal process contribution of

activation energy is added. Flow also experiences the Joule heating, radiation and

viscous dissipation. Homotopy is used for the nonlinear problem and dimensionless

variables are plotted to see their contribution. Some of most effective findings are listed

as:

Heat and mass distribution gives the proportionally effects with magnetic
parameter as compare to flow field.

Velocity decline of large magnetic parameter but concentration and
temperature enhanced.

Inverse behavior captured in heat and mass distribution with impact of
chemical reaction.

Activation energy gives the same agreement with the concentration field.
Shear effects on both walls give the opposite effects due to rise in buoyancy
ratio and magnetic parameter.

The increasing effects of Heat transfer on both walls have detected with
respect to thermophoresis and magnetic field parameter.

Activation energy and chemical reaction give the opposite trend on channel

walls for Sherwood number.
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Chapter 5
5 Convective Poiseuille flow of ALO:-EG
nanofluid in a porous wavy channel with

thermal radiation

In current chapter, convective boundary layer Poiseuille flow is presented. Ethylene
glycol (C2HgO2) serves as base liquid while aluminum oxide (Al,O3) are mixed to make
a nanofluid to the investigation. Symmetric channel is of wavy type at the extreme
containing porosity. External sources that influence the flow are Ohmic dissipation, two
types of fields and radiation. Similarity variables are used before seeking an analytical
solution via HAM. To make sure that the obtained solution is in full agreement with the
physical expectations additional fi—curves and errors norm are plotted as well. The
influence of numerous including parameters on flow, heat transfer, skin friction and

Nusselt number are illustrated via graphs for better understanding.

5.1 Problem formulation
5.1.1 Flow analysis

Consider fully developed laminar, Poiseuilie flow of incompressible nanofluid passing
through a channel bounded by two wavy walls, as displayed in figure 5.1. The fluid is
driven by a constant pressure gradient and Buoyancy force. Concerned problem is in
Cartesian coordinate system, such that X -axis is taken along the channel wall, while
3 -axis is perpendicular to the channel and in a similar direction in which g affects.

The middle of channel taken at origin and the configuration of the walls (left and right)

with amplitude @, width d, length L of the walls and wavelength A which is
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proportional to 2z/L . The configuration of the left and right walls are defined as,

respectively

H1=—d—a1cos(zgf), H2=d+alcos(27”f). .1

I d

|
|

ol___¢ o

{/Z'( __

Figure 5.1: Flow model.

[enNalill
|

B,

The uniform trend of B, is adopted in the 3 -direction and uniform electric field Eo

are applied normal to ¥ -direction on the fluid.
5.1.2 Governing equations (Tiwari and Das’s model)

According to the Tiwari and Das model, the governing equations (1.18), (1.19) and
(1.38) given in the chapter 1, for a steady state, incompressible nanofluid with influence
of electric, magnetic, buoyancy, radiative heat flux, viscous and Ohmic dissipation

transporting through a porous medium are mathematically modeled. Boundary layer
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and Boussinesq's approximation are applied on the governing equations (1.18), (1.19)

and (1.38), we get

—+==0, (5-2)

_ou _ou) p o' 0u N M =
pnf[l‘§+v—J=__+”"f[ﬁ+ﬁ +0,, (E,B,~ B )~ K:u+(pﬂ)nfg(T_T*)’ (53)

_of _of *T oT an\ (oa) _ g,
e[St Z oo (] o5 rotsi-a o0
The appropriate boundary conditions are
u=0,v=0,T=T,aty=H
_ _ 2 By = (5.5)
u=0,v=0,T=T aty=H,
Let us acquaint the following nondimensional quantities
vty oy oY A, H
A d U, U,s d d
. (5.6)
2 _Tx* _T*
p= d’p ’5=g,9=T T,m*sz T
U, A 2 T,-T* T,-T*

Using dimensionless quantities given in equation (5.6), then equations (5.2) to (5.4) are

ou ov
0—+—=0
, (5.7

2 2
AzReS(u%xu—+v%) -4 [(az e Zy‘;]—%p} AM? (6, -u)=2Lu+ 4,510, (52)
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AsRePré[u%H%%] = Af,(é'Z S:;g+%}f)+ AEcPrM’ (u-El)2 +A1EcPr£%uy-J +Rd[g;—?]. (5.9)

Using the long wavelength approximation, equations (5.7) to (5.9) take the form

2
4P+ AL M (E, u) -4 4,Gro=0 (5.10)
oy Da ’

2 2
(4, +Rd)%?—+A3EcPrM2 (u-EY +A1EcPr[%;—) =0. (5.11)

boundary conditions
u=0, 0=m*at y=h, =l+£Cos(%x)
d L
- ) (5.12)
u=0, 6=1 at _v=hl=—1—£Cos[Lx)
d L
where
(pB), gd* (T, -T*) p U d o,Bd’ E,
— f ,Re= f ,M2= S0 9El= 0
lufUm /uf #/ BOUm
u A pC 2 L
Pr f( P)f’Ec___ U ,Rd=l6T*a ,Da=—1—(7' > (5.13)
lunf pnf O-nf (pﬂ)nf (pCp)nf kn[
Al= ’Azz_’A3=—5A4= ,A5= ’A(’:k'
Hy Py oy (/’ﬂ)f (PC,,)f 7

In this chapter, physical thermal properties are used defined in equations (1.3), (1.6),
(1.9), (1.10) and (1.11). Expression of skin friction defined in equation (1.54) and

Nusselt number defined in equation (1.56) are transformed in view of equation (5.6) as
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ReC, =24u'(y) |y=

Nu==A40" (7)1,

Ak
v (5.14)

5.2 Solution of the problem

One of best suited analytical method is brought under consideration for equations (5.10)

and (5.11) and that is “HAM”.

Zeroth-order solution
we have picked out the following initial approximations (uo, 90) which satisfy the

linear operators (£u , £ 9) and associated boundaries

uy (¥) =y ~(l+ ) y+(h +h,)
6,(»)~ i:_;:z (5.15)
and
-

The convergence control parameters hu , h g and nonlinear operators N,, N g of

velocity, temperature with embedding parameter & G[O, l] yields the following

zeroth-order homotopy respectively are

(1-8) £, [u(3.€)- 1, (¥) ] = ERuN, [u(2:€).6(3.€)]

5.17
(-85 [0(28)-0 ) ]=Er Mo u(r)00:8)]]
boundary conditions
u(y,£)=0, 8(y,5)=m* aty=hz} 6519
u(y,£)=0, 6(»,&)=1 aty=h '

and
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o*uly, A Gr
N, =4 |:—P+—a(y-2-—)}+A3MZ(E1 —u(y,cf))——D‘—au(y,f)+A4Eﬂ(y,f)
] 5 , (5.19)
Ny =(Rd+Af,)a—ea(y—yz’é—)+AgEcPrM2 (u(y,f)‘En)z +A,EcPr( u(&";’é)J
| th—order solution
The I th-order deformation for #{y) and 6, () as follows
£, [“1()’)_11“1‘1()’)]:"1141{;‘ (y) (5.20)
£y [HI(J’)_ZIGM(}’)] =h9R10 (») .
4, (7:€)=0, 8(7.)=m?* "‘”zl} s21)
,(».£)=0, 6,(»,£)=1 aty=~1]" '
; A Gr
R,"(y)zAl[—P+u,1+A3M2(El—u,)—D—;u,+A4EH, o
, .
RO (y)=(Rd+ 4,)6, + AEcPrM* (u,—E,)’ + AEcPr Y uu, ,
k=0
The solution can be described as of / th-order
!
u(y)=uy (y)+ 2w (¥)
= (5.23)

o0)=0,0)+ 36|

The solutions at second-order iterations by utilizing the Mathematica package BVPh2.0

based on the HAM can be expressed for velocity and temperature as
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63 . 9TEM® , 4753GrM® , 343Gr
u=-1-h, 2 h, _h, _hy, +
40 200 24000 1600Da
327GEM® . 2401Gr
* 600000 " *40000Da’
97E M> 4753GrM> 1029Gr
h Ly ok, ————— ) + o
“ 500 7 T 20000 7 *2000Da”

5 4753GrM* 343Gr 4753GrM*

+y2+hu2—3y2+

(5.24)

“ 60000 > ®2000Da’  * 120000 °
343Gr ., 4753GrM* s, 5 A029Gr
ugooona’ % 200000 2 *20000Da”

TEc , 1067EcM® , 91EEcM® ., 9TE’EcM’
7 ‘he ‘he ‘he -
2 300 12 20
Rd* 1-y . Rd’ 97EcM* , . 9TEEcM’
+ +h +h thy — "y +
672 770 20 10 °

9 4 2 [
97E12EcM2 Rd* Rd* , TEc , (5.25)

20 y2+h9—‘1—y2—h e +h0—-—y -

97EcM?® 97E EcM 2, 97EcM*
y - hg EEe—
60 60

0=—h

h

hy

hy

5.3 Discussion of results
5.3.1 Inspection of Convergence
The hybrid genetic algorithm and Nelder-Mead approach (GANM) is used for

approximation and the convergence region of hu and hﬁ' The hybrid scheme

demonstrates its reliability, validity and ability to solve highly nonlinear problems in

engineering and applied sciences by minimizing the residual error. To decide

appropriate value of hu and he, figures 5.2 and 5.3 portray the hu and A1 g—curves.

The estimated ranges for hu and h0 are =13 Shu <-0.1 and —1-4She <0.
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Figure 5.2: h, —curve for velocity.
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Figure 5.3: /i g—curve for temperature.

117



«

53.2 Residual error of norm 2
Furthermore, the residual errors were computed up to 30th —order approximation over
an embedding parameter & E[O, 1] of velocity Eu and temperature Eg by the

succeeding formulas

= %i(u(i/:m))z, J— (6(i130))". (5.26)

The minimum error for velocity at hy = —0.5 and temperature at 0= —0.5 are
detected mention in Table 5.1. It is also very essential that h lie in convergent sort. A
hybrid Genetic Algorithm (GA) and Nelder-Mead (NM) methodology [97] is employed
to enhance the efficiency of HAM to find value appropriate value of 4. In Tables 5.1

to 5.2, given correlation between GANM and HAM.

Table 5.2: Correlation between homotopic solutions by h,, —curve and optimal series solution

using GANM for velocity U .

Series Solution Optimal Solution with GA & NM

(HAM)
E. Gr EfE N M Da lteration Emor Iteration #; —curves  Error
0.1 2 1 1 025 05 10  3.6x10* 10 -0.5732  3.7x10°
0.50 20 2.8x10° 20 -0.6932  4.5x<107
0.75 30 7.3x107 30 -0.7833  6.3x107
02 5 2 2 100 10 10  54x10* 10 -0.5847  7.5x107
1.25 20 3.4x10° 20 -0.6638  3.2x107
1.50 30 9.1x10°8 30 -0.7384  4.7x10°
03 10 3 3 200 20 10 4.4x10° 10 -0.5278  8.5x10°
2.25 20 6.6x10° 20 -0.6837  8.3x107
2.50 30 2.3x107 30 -0.7973  1.3x10°
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Table 5.2: Correlation between HAM solutions by 7 g —curve and GANM solution @ .

Series Solution Optimal Solution with GA & NM
(HAM)
E. Gr E N M  Da Tteration  Error Iteration Ay —curves  Error
0.1 2 1 1 025 05 10 24x107 10 -0.6973  8.7x10*
0.50 20 3.3x10° 20 -0.7376  4.1x10°
0.75 30 5.3x107 30 -0.8638  3.4x107
02 5 2 2 100 10 10 4.8x103 10 -0.6385  3.2x10*
1.25 20 7.5x10° 20 -0.7352  5.4x10°®
1.50 30 2.8x107 30 -0.8851  2.2x10°®
03 10 3 3 200 20 10 5.5x10° 10 -0.6249  1.3x10*
2.25 20 6.3x10° 20 0.7911  7.6x10°
2.50 30 1.2x10° 30 -0.8122  5.1x10°®

5.3.3 Illustration of graphical results

The governing equations are solved using HAM with GANM approach. The influence
of numerous involving parameters on velocity, temperature, Nusselt number and Skin-
friction is illustrated from figures 5.4 to 5.10. These figures are prepared for ¢ =2%
particle volume friction along with the constraint that heat is dominant in fluid. The
nondimensional velocity profile ¥ for several values of M is designed in figure 5.4(a).
It observed that for magnetic parameter, velocity near center of geometry decreases
with increase of M . It is due to, when magnetic field apply on walls then there produce
a Lorentz force. By increasing the magnetic field parameter in response Lorentz force
resist the fluid velocity. Velocity for Da is exposed in figure 5.4(b). It is perceived
that for porosity parameter, velocity near center of channel increase with increase of
Da . 1t is because, when Darcy number increase then permeability of medium increase.
Therefore, fluid easily passes through channel. Velocity profile for El1 is displayed in

figure 5.4(c). It was perceived that as parameter rises then velocity increases. Due to
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Lorentz force arising because of electric field in the system cause for large velocity.
Dimensionless temperature profile & for innumerable values of M is shown in figure
5.5(a). It observed that for magnetic parameter, temperature of liquid increase with rise
of M . It is due to Lorentz force which resists flow speed and in response temperature
of liquid rise. Temperature profile for Da is exposed in figure 5.5(b). It is perceived
that for porosity parameter, temperature near middle of geometry decreases with
increase of Da . It observed that as parameter increases in results velocity of fluid
significant so heat transfer in the core region enhance and then overall temperature of
fluid decrease. Thermal radiation Rd effects on temperature profile is connived in
figure 5.5(c). It observed that as parameter increases temperature of fluid increases. The
boundary layer thickness increased with increasing values of radiation factor.
Temperature of nanofluid could also be controlled with radiation factor, because fluid
temperature was very sensitive to Rd, which meant that the heat flux of channel walls
would be as large as perceived. Effects of Ec and G on skin friction are shown in
figures 5.6(left) and 5.6(right) for right and left walls respectively. The skin fiction
increases with greater values of Ec and Gr at right wall of channel whereas skin
fiction decreases for increase of Ec and Gr at left wall of channel. Influences of £
and M on skin friction are shown in figures 5.7(left) and 5.7(right) for right and left
walls respectively. The skin fiction diminutions by increasing values of Ei and M at
right wall of channel whereas skin fiction rises with the increase of E1 and M at left
wall of channel. Impressions of Ec and Gr on Nusselt number are given in figures
5.8(left) and 5.8(right) for right and left walls respectively. Nusselt number increases
by increasing values of Ec and Gr at right wall of channel whereas skin fiction
decreases with increase of Ec and Gr atleft wall of channel. Impacts of E1 and M

on Nusselt number are demonstrated in figures 5.9(left) and 5.9(right) for right and left
walls respectively. Nusselt number increases by increasing values of E1 and A at
right wall of channel whereas Nusselt number decreases with increase of £1 and M at

left wall of channel. Figures 5.10(left) and 5.10(right) demonstrates the effects of Rd
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and Da on Nusselt number. In figure 5.10(left), the Nusselt number gives decelerating
behaviour for large thermal radiation along high permeability of porous media at right

wall but in figure 5.10(right) a quite opposite behaviour is noted at left wall.

2.0f
1.5}
1.0}

0.5}

oogf . . . ...
-1.0 -0.5 0.0 0.5 1.0

Figure 5.4(a): Impression of velocity corresponding to different M .

2.0}
1.5}
= 1.0

0.5}

oof/
~1.0 ~0.5 0.0 0.5 1.0

Figure 5.4(b): Impression of velocity corresponding to different Da.
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Figure 5.5(c): Impression of temperature profile corresponding to different Rd
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Figure 5.7(right): C; plotted against Ei and M .
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Figure 5.8(right): Nu plotted against Ec and Gr .
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Figure 5.8(right): Nu plotted against Et and M .
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Figure 5.8(right): Nu plotted against Rd and Da.

128



)

f{

5.4 Conclusions

This chapter successfully addresses the influence of heat on convective boundary layer

flow. Flow is generated by solely the exertion of pressure on the fluid inside the wavy

channel of some width. The role of parameter concern with momentum and heat along

with particle flux are presented through figures in order to vet obtained results. Some

such result are highlighted as:

Velocity profile of nanofluid near center of channel decreases with increase
of M, Daand Rd while it increases in the vicinity of walls.

Temperature profiles of nanofluid enhance for large values of M, Da and

Rd .
Skin friction is rising for Gr and Ec at left wall while it decelerating at

right wall.

Skin friction declines with increase of M , El , Da and Rd at the left of
the channel while a quite contradictory results are noted at right wall.
Nusselt number rises for large values of Gr, Ec, M and E,| atleft of

channel whereas it decreases at right of the channel.
Nusselt number is decreased for dissimilar values of Da and Rd at left of

channel however opposite trend at right of channel.

129



Chapter 6

6 Modelling study on internal energy loss due to
entropy generation for non-Darcy Poiseuille
flow of silver-water nanofluid: An application

of purification

In this paper, an analytical study of internal energy losses for the Forchheimer
Poiseuille flow of Ag-H,O nanofluid due to entropy generation in porous media is
investigated. Spherical-shaped silver nanosize particles with volume fraction 0.3%,
0.6%, and 0.9% are utilized. Four illustrative models are considered: (i) heat transfer
irreversibility (HTI), (ii) fluid friction irreversibility (FFI), (iii) Joule dissipation
irreversibility (JDI), and (iv) non-Darcy porous media irreversibility (NDI). Basic
governing equations are simplified by taking long wavelength approximations on the
channel walls. The results represent nonlinear together with flow and heat differential
coupled equations that are solved analytically with homotopy analysis method. It is
shown that for minimum and maximum averaged entropy generation, 0.3% by vol and
0.9% by vol of nanoparticles, respectively, are observed. Also, a rise in entropy is
evident due to an increase in pressure gradient. The current analysis provides an
adequate theoretical estimate for low-cost purification of drinking water by silver

nanoparticles in an industrial process.

6.1 Problem formulation

6.1.1 Flow analysis

Consider two-dimensional steady, laminar incompressible viscous Poiseuille flow

nanofluid between two horizontal symmetric wavy walls (channels), as presented in
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figure 6.1. The middle of channel taken at origin and the configuration of the walls (left

and right) with amplitude &, , width d , length L of the walls and wavelength A which
is proportional to 27z/L . The configuration of the left and right walls are defined as,

respectively

H,=-d-a,cos 27”2 , H,=d+a,cos 27”2 . 6.1)

L LI,

Figure 6.1: Geometry of the flow model.

6.1.2 Governing equations (Tiwari and Das’s model)

According to said nanofluid model, the equations (1.18), (1.19) and (1.38) given in

chapter 1, for a steady state, incompressible nanofluid with effect of electric, magnetic,
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buoyancy, viscous and Ohmic dissipation transporting through a porous medium with

non-Darcy Forchheimer correction is mathematically modeled as

b o5 {5 o (3] (5] e

The appropriate bounda.ry conditions are
=0,T=T, aty=H,
0, T=T aty=H, |

0,
0,

<l <I

L K|
I

Let us acquaint the following nondimensional quantities

_x ¥ u H,
=y = = =—_VyV= —_ __
2V Ty Ua =T =

d'p d T-T* ., T,-T*

p= s ,6= m

U, A A T-T* T -T*

Hence, governing equations (6.2) to (6.4) become

5@—+@=0

ox o

132

(6.2)

(6.3)

6.4)

(6.5)

(6.6)

6.7)



4Re§(u%+v%)=4{ pr [52 d 52 ]:| AM u——;’—u AF*u +4,6r0,  (6.8)

o’ 5}’
-
2 2 2
4RePr5(u%+va—g)=A6(5zgx—? Zy—e)+A3EcPeru2+A1EcPr(Z) . (6.9)
By applying the theory of long wavelength approximation, equations (6.7) to (6.9)
become
—AlP+A1—6_—L2‘—AGM2u-—A¢u—AZF*u2 +A4,Gré=0, (6.10)
oy Da
2’0 ouY
+ABrM2uZ+ABr[ J =(. (6.11)
o o
Boundary conditions are
u=0,8=m*at y=h, =1+£Cos(ﬂx)
d L
g - ) (6.12)
a TT.
=0, =1 at y=h=-1-—Cos| ——
u at y=h 4 0 ( i x)
where
pB) gd* (T -T* Ud o,Bd’
=( )f (l ),Re=pf n oM=L ,Da=KZ‘,Br=PrEc
»ufUm /u[ luf d
H;\PC 2 wor . p FdU
Pr = f( p)f,E: U, ,d=1€T O',szfc . y (6.13)
Pk, (c,), (z-T%) 3k*k, u, :
‘unf pnf o.nf (p ﬂ )n[ (pCp )nf kn/
A=— 4=—, 4=— 4= A5 = ’Aﬁ:k_
aloee e (eB), T (eG,), T
-~ The physical thermal properties using in above system of equations are define in

equations (1.9), (1.10) and (1.11). The nanofluid viscosity M, and thermal
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conductivity k,!, at minimum valume of concentration (0.3, 0.6, and 0.9% ) with

temperature between 323 K and 363 K are defined in equations (1.4) and (1.7).

Expression of coefficient of skin friction defined in equation (1.54) and Nusselt number

defined in equation (1.56) are transformed in view of equation (6.6) as

Re Cf =2Alu’(y) |y=h,,hz (6.14)
Nu = _Aée'(y)|y=h,,hz |

6.1.3 Entropy generation analysis

For non-Darcy porous media, energy loss due to entropy generation for the case of heat

in the presence of a magnetic field is described as

k i 7\ o, B
E = '12 (G_TJ + Eﬁ'&(a—uj + =2 *° + —!;(ﬂ+p,,,Fc .
"\ & I*\ o _Ir . IMK ‘ (6.15)
entropy due to  entro dpg tropy dug to €NtTOPY d‘;.e :0 entropy due to non-Darcy
heat transfer  fluid friction  Magnetic field porous media

Equation (6.15) comprises four parts, the first term on the right-hand side is entropy
generation due to the contribution of thermal irreversibility that is due to axial
conduction from the wavy surface, the second term describes how friction resists the
flow, the third term denotes the movement of electrically conducting fluid under the
consideration of magnetic field induces an electric current that circulates in the fluid,
and the last one is energy loss due to non-Darcy porous media, which occurs due to the
flow rate in porous media. The entropy generation number is similar to the entropy

generation rate, which shows the ratio between the local entropy generation rate and
the characteristic entropy generation rate EGO . Mathematically, one can write it as
k, (T, -T*)
Ec =421 ~_ 1 (6.16)

0 le*Z ’
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Ec
NG =—,
EGO 6.17)

where NG is the dimensional entropy generation

) k =\2 _N\2 i
N = T x| —L o e o +._1_ 'u"f+p,!fF;17 u |,
k(L-T* | T¥\ &y T*( &y T* K (6.18)

hence, the dimensionless entropy generation number NG is obtained as

2 2 .
Naz(@j +iﬂ[@) cA M A B AEB L 6
») 4 0\y) e T Ty,

where

A

=— /L= 6.20)
e Uk (5-T) (

Q=

The dominance of the entropy procedure is essential due to the feebleness of the entropy
generation number, so the Bejan number Be is employed to comprehend the possible

mechanism. Mathematically, it can be defined as follows

_ Entropy generation due to heat transfer ie. Be HTT

Be , L =
Total entropy generation HTI + FFI + JDI + NDI

» (6.21)

fm:(@J ,m:iﬂ(a—”J DI =M oy B s AEB 6o
oy 4 Q\ 4, Q 4 QDa 4, Q

In view of equation (6.6), the equation (6.21) becomes

(%)2

0

Be= ; ; 4 - . (6.23)
o0 A Br(ou A MBr , 4 Br , A F Br ,
— |+t == +2—u+ w+—2t——u
oy A4, Q\ oy 4, Q A4, QDa 4 Q
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It is understood from equation (6.22) that Be € [0, 1] . When the Bejan number = zero,

the heat transfer irreversibility is negligible. When the Bejan number < 0.5,
irreversibility by viscous effects dominates. In the case where the Bejan number = 0.5,
the sum of fluid friction, Joule dissipation, and non-Darcy porous media irreversibility
is double the heat transfer irreversibility. When the Bejan number > 0.5, the entropy
due to heat transfer leads to dominance over entropy due to fluid friction, magnetic
field, and non-Darcy porous media irreversibility. When the Bejan number = 1, then
HTI is considered as like viscous effects. The average entropy generation number is

computed by following dimensionless relation

1 1
NG_avg=g:[NG dv=g!J;£Ndedy dz, (6.24)
here
l h2
No_aw = { Nc dy, (6.25)
or
] hy
NG oz = | (HTI + FFI +JDI +NDI) dy, (6.26)
A

where V denotes the area of geometry. The volume triple integral (equation (6.24))
reduces to a line integral due to unidirectional flow. The average energy loss due to
entropy generation from fluid flow and heat transfer components can be calculated for

a large finite domain, but in this scenario, we obtained average entropy generation in

the domain h] and h2 , as shown by equation (6.26).

6.2 Solution of the problem

To get an analytic solution, a homotopy technique is utilized to solve equations (6.10)

and (6.11).

Zeroth—order solution
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Assume, initial guesses ¥), 6,(y) and supplementary linear operators £,, £, for

velocity and temperature are

uy(y)=y —(h +h)y+(hh)
_ y—hz (6.27)
% (y) B h—h,
and
R

The convergence control parameters hu , h6’ and nonlinear operators N,, N g °of

velocity, temperature with embedding parameter & € [0, 1] yields the following zero™-

order deformations respectively are
(1-8) £ [u(2€) o (v)] = Shuu[u(5.€).0 (3¢
(1-8)£5[0(3.£) -6, ()] = ¢t gNg [u(5:€).6(.)]

N’

I}

———
o~
o
N
\O
A4

with boundary conditions
,E)=0, 8(y,E)=m* aty =
u(y,¢) (3,€)=m* aty hz} 630
u(y,£)=0, 8(».8)=1 aty=~n

and

u(y, : : G
N,,:A[-m%ﬁ}m (9 2)- 2, £) AF 44 (12) 4, 2 0(3)
(6.31)
F6(y.¢) ou(y.£)

Ny =4 5 +AJBrM2u2(y,§)+43r[—ay—J

| th—order solution

The ! th —order deformation expression for ¥ (y) and 6, (y) as follows

£, I:ul (J’)_Z/u/—l (y)] = huRlu (y) }

£,[6,(0) - 26.(»)]=1gR’ () (6.32)
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,(»,6)=0, (y,§)=m* aty:l} (6.33)

u,(»,£)=0, 6,(y,¢)=1 aty=-1

. A ,
RY (y)=4[-P+u |- AMy, —E;—u, — A,F*u’ + A,Gr6,

1 (6.34)
R,‘9 (v) = A69, + A3BrM2u,2 + A4Br E()u;‘u""‘

The solution can be described as of / th—order

u(y)= Zuk(y)
9(v)=6,(») 29 (y

(6.35)

The solutions at second-order iterations by utilizing the Mathematica package BVPh2.0

based on the HAM can be expressed for velocity and temperature as

u(y) =C +C2y+C3y2 +C4y3 +C5y4 +C6y5 +C7y6 +C8y7 +C9y8 +Cloy'°, (6.36)
H(.V) =D, +Dzy+D3y2 +D4.V3 +D5y4 +Dsy5 +D7y6 +Dsy7 +D9ys +D10ylo~ (6.37)

Coefficients of polynomial equation (6.40) are

C =-1-34h, - 54, . +11A2F*h" _A,Grh" +7A1AzBrGrh"ha -ﬁhi _6l4] e
6D, 15 2 45 2 360Da
254} R} . 224 4, F*h’ . 254 4,F*h, 49194 F*i. AAGrh, 54A4Grh)
24Da 15 56Da 18900 4 48Da
114, 4,F *Grh? N 7394,4,BrGrM* - AAMH ' S4AM? B 14,4, F*M?
60 5040 we 2 24Da " 30

+ A MR

2
n,

T4AGr . 194AF*Gr ,

C, = 1 A,Grh, +L AAGri’ + 2 2,
6 12 720Da 1260

1 1 3 5
C,=1+34h, +g';h,, ~AF b, + S AGrh, — = AABrGrhp, + > 4K, + 243 .
54° W _aqapen  SAAFY . 1]

o T h 30A2F*2h2 —A,AGth+ S AAF " Gri, -
a a

MZF"'i*z"—l—1 ABrGrMh h, —— M - — M2h2+— AF*M*h?,
4 u'8 u u 3 u
60 2 4Da 2
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1
Cy == AGrh

u’

A 5A1 2 7A:A2F 2 p2 A4A4,6r .
C.=- K- F*n + F¥pn -2 —pn+
* 24Da " 24Da A‘A7 36D A“ 48Da

AlAgM’hi ‘gAsAzF*Mzhfa

1 1
— F*Gri® +— A, A,BrGrM*h h, +
15 A E *Grh, + o A ABrGT “"24Da

AlGr 2
C = F*Grii?,
¢ 240Da R A“AZ "

A 2 2A,A1F 2 2A2 2,2
C, = AF*h, +— ABrGrh i, +——— Fant— F® R -
4 A4 4BrGr 360D 77 A‘Az s aspa s

—AAF*hz—— A,GrBrM*h h, +— F*M*,
60 4472 u 180A3 4 r u'e 30A‘JA1 u

2
Co=— L A AF*Gri?, C, = ALFT A F*2h2+-—A3A BrGrM’h,h,,
252 280Da * 140 1680

Cp = Azz * 3
1350

Coefficients of polynomial equation (6.41) are

1 2 1 13A,ZBr 1634, 4,BrF* 11
D =——-—A4Brh, —— Bri? — hh,+ hh,—— ABrM*h —
175 3‘41 iy 3A1A6 g «g 630 ule 55A3 r u
l A,BrGrh h —-1—1 BrM*h —2—3 BrM*h b, — 511 BrM*h b, +
6 4 u''8 [’ u'te 5040D u'to

ABrhpy 4o 4919 o BT rF*M*hh, ——A A, BrGrM*h h, + AfBerhuhe,

D, =—~1 1;()AA BrGrM*h h, + AZA BrGrM*h h,,

- 2
D, = +A,BrM*h +—A3AﬁBrM2hz +2 AgAlBrM P+ A, BrM?*h b, —

§6A3AzBrF* M*h h, +ZA,A4BrGrM2huh9 —EA;BrM“hth,

D4 = I%AIA4BrGrhuhg _'3_16 A3A4BrGerhuh6’
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2 1 1 1 1
D, =+ ABrh, +§A1A63rh§, + 3—D;AlzBrh\h2 ~3 A4BrF 2 b, + A ABrGrhh, -
1 1 5 11 .
gAzBerhg —gAgAﬁBrM"hf, —EA,AgBerhuhg + A2 Bri by~ AABIMh Ry +

1

D, =——A1A BrGrh h, + ASA BrGrM*h h,,

AABrM*h b, +

D, ———A *Brh h, + AAZBrF*h h +—A3AﬁBrM2 o+
45 180 a

LOAABrMZh ] ——AJAzBrF*Mzh h +—1-AgBrM2h + L AABrGerh hy—

?6AfBrM“hlh2,

1
D, =_EA3A4BrGrM2huhe,
D, =——1—A1A73rF*h,,hg ___I_AlAgBerhuha +T‘11—0A3AzBrF*M2huhg,

D=——— BrE*M*hh,.
o =~ 350 LB

6.3 Discussion of results

6.3.1 Inspection of convergence

The admissible convergence range of both auxiliary parameters hu and A g that arises
in equation (6.35) is very important for an analytic solution. The suitable range for h—

curves are found at 20th-order of approximations. The range for best values of hu and

B, are estimated as —1.3< hu <-04 and -1.3<71, <-0.3, respectively.
6 0

6.3.2 Residual error of norm 2

The residual error of velocity Eu and temperature distribution Eg at two

successive approximations over embedding parameter e [0, 1] up to the 20th-order

approximations is computed by the following mathematical relations
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1 & . 2 1 & . 2
E, = -2—1;)(14(1/20)) . Ey= E;(9(,/20)). (6.38)

The above residual formulas give the minimum error at hy = —0.7 for velocity and

hig=-0.6 for temperature distribution at 1y =-0.6, which are displayed in figures 6.2

and 6.3, respectively. Table 6.1 shows residual error for the convergence series solution

up to the 20th-order approximation.
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Figure 6.2: Residual error Eu —curve for velocity profile.
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Table 6.1: Residual error (RE) of series solutions when Gr=0.5, Br=1,
F*=1,Da=2,and M =02.

Order of approximation Time E, E,
05 8.2651 1.3340 x 107 2.3980 x 10
10 351732 7.4001 x 10°  3.2385x 107
15 67.9793  1.5624x 10 3.5705x 107
20 187.6291  1.6199 x 1072 4.7723 x 107
25 296.1218  1.7193 x 1076 1.7037 x 1077

1

6.3.3 Tlustration of graphical results

This section describes the role of various parameters on nanoparticle volume fraction,
MHD parameter, entropy generation, Darcy number, non-Darcy parameter, Brinkman
number, group parameter, Eckert number, Grashof number, Reynolds number, Prandtl
number, Bejan number, skin friction, and Nusselt number. Figures 6.4 to 6.7 represent
the impact of M, Da, F * and Br on velocity as well as temperature. Moderately
high temperature is used to perform the simulations. The temperature at the right and

left walls is assumed to be 323 K and 363 K, respectively, in this study. Moreover, high
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temperature in the range of 323 K to 363 K is used in the inlet section of the channel
according to the Godson nanofluid model. In figure 6.4(a)-(b), the manifestation of M

on velocity and temperature is shown. The Lorentz force is developed by inflicting a
vertical magnetic field on the electrically conducting nanofluid. The resultant Lorentz
force has the ability to reduce the fluid velocity in confined geometry and causes an
increase in temperature. Hence, values of M directly affect thermal boundary layer
thickness, but velocity in flow direction decreases. In figure 6.5(a)-(b), the
manifestation of Da on velocity and temperature is elaborated. The performance of
the non-Darcy (Forchheimer) number F * on velocity and temperature is shown in
figure 6.6(a)-(b). It is detected that larger values of the Forchheimer number lead to a
stronger thermal boundary layer and weaker momentum boundary layer thickness. In
figure 6.7(a)-(b), the impact of the Brinkman number Br on velocity and temperature
is shown. The impression of Br on velocity in figure 6.7(a) and at temperature in figure
6.7(b) are displayed.

Figures 6.8-6.11 represent the impact of M, Da, F*, and BrQ™" on energy loss due
to entropy generation and the Bejan number. In figure 6.8(a)-(b), the impression of M
on entropy generation NG and the Bejan number Be is shown. Energy loss occurs in
the system when Lorentz or drag force is created between the fluid and M . In figure
6.8(a), it is perceived that the influence of M energy loss is maximum at both walls
and gradually decreases toward the center of the channel. Energy loss in the middle of
the channel is almost zero, so it is detected that M is a major source of energy loss in
the system, while the Bejan number gives the dominant decision about fluid friction,
magnetic field, and non-Darcy porous media entropy over heat transfer entropy in the
system and vice versa. Performance of the magnetic parameter M on Be is depicted
in figure 6.8(b). It is perceived that the Bejan number at the center of channel becomes
the extreme value when the magnetic field is neglected. In figure 6.9(a)~(b), the impact
of Da on NG and Be is shown. A large increase in entropy generation is detected at
the left wall as related to the right wall, with increase of Darcy number in figure 6.9(a).
Also, the impact of Da the Bejan number is displayed in figure 6.9(b). It is perceived
that the Bejan number at the center of the channel attained the extreme value when Da
increased. The influence of the non-Darcy (Forchheimer) number F * on entropy

generation Ng in figure 6.10(a) and the Bejan number Be in figure 6.10(b) is
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presented. The same large increment in entropy generation is noticed at both left and
right walls for different values of F * but also noticed is that the energy loss is zero
nearby the middle of geometry for large values of Forchheimer parameter. The Bejan
number for F* can be observed in figure 6.10(b). It is analyzed that for Forchheimer
number and Bejan number nearby the middle of geometry increases with the
corresponding values of F*. In figure 6.11(a)-(b) controlling effects of BrQ™ on
energy loss due to Ng and Be is observed. As entropy is a function of the group
parameter BrQ™', it contains the ratio of Br and Q. The behavior of BrQ™" when
Br=2 and a mixed convection parameter Gr=0.5 on energy loss is displaced in
figure 6.11(a), which describes that increasing values of group parameter cause an
enhancement of the buoyancy force in the system, and in response to this a large
increase in entropy generation is detected at left wall as compared to right wall. Result
of the group parameter with Br = 2 and Gr=0.5 on the Bejan number is clearly
elaborated in figure 6.11(b). The Bejan number attains its maximum value 1 at y = 0.2
due to enhanced in HTI with absence of the group parameter, but gradually decreases
and has a value less than 1 toward both walls. This energy loss only occurs due to fluid
heat transfer in a particular cross-section of the channel. Non-Darcy porous media

irreversibility is introduced in average entropy generation for first time.

Figures 6.12-6.16 represent, in bar charts, the impact of _,, M, Da, F * and BrQ)™'
on average energy loss due to entropy generation. These bar charts are drawn at
different pressure gradients (P =-0.5 and P=-10). In figure 6.12(a)-(b), it is seen
that average entropy at both pressure gradients is gradually reduced with large amount
of & . In the case of a low concentration of silver nanoparticle sustained in the base
fluid, when ¢ =0.3% , the average entropy of the whole system is 0.4603 at P=-0.5
and 2.1762 at P =-1.0. Gradually, when the amount of silver nanoparticles increases
in base fluid, it is clearly observed that the average energy loss due to entropy
generation is increased. Nanoparticle concentration directly affects the fluid friction,
Joule dissipation, and non-Darcy irreversibility, therefore FFl, JDI, and NDI are
increased with dense ¢ . The average breakdown in entropy generation due to MHD
directly affects Joule dissipation irreversibility, as given figure 6.13(a)-(b). It is realized
in both figures that when the magnetic parameter M is zero, the Joule dissipation
irreversibility vanishes, but as the magnetic parameter increases its values, the Joule
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dissipation irreversibility boosts up speedily. Observed that FF is diminished for large
values of the magnetic parameter at different pressure gradients. Non-Darcy porous
media irreversibility depends on the Darcy number Da and the non-Darcy
(Forchheimer) parameter F*, as given in figure 6.14(a)-(b) and 6.15(a)-(b). The Darcy
number gives the opposite behavior of its increasing values via NDL As the Darcy
number increases, the average entropy and non-Darcy porous media irreversibility of the
system decrease, while fluid friction, heat transfer, and Joule dissipation irreversibility
boost up quickly for both pressure gradient cases. However, in figure 6.15(a)-(b), the
non-Darcy (Forchheimer) parameter F* gives the same trend for non-Darcy porous
media irreversibility as the Darcy number in figure 6. 14(a)-(b), because when the Darcy
number is large, the flow tends to behave as a non-Darcy flow. For Br = 1, the variation
of four group parameters BrQ2™' on average entropy generation is given figure 6.16(a)-
(b). Concluded that when BrQ™ =0, then 100% entropy loss occurs in heat transfer
irreversibility, while there is no entropy loss in fluid friction, Joule dissipation, and non-
Darcy porous media irreversibility. The magnitude of the average entropy generation

rate is higher for higher values of BrQ'. The effects of concened parameters are
presented in Tables 6.2 and 6.3. It observed that C s at both left as well as right walls

arw decreases with increase of Da and F*, while Nu increases at right wall, but

reduction is shown at left wall. Similar results for G and Br are deducted for Nusselt

number at both walls, but Cf decreases at right wall while increasing at left. The

behavior of C s and Nu via magnetic field parameter M and ¢ are revealed in Tables

6.4 and 6.5, respectively. The prominent increase in ¢ and magnetic field parameter is

noticed, whereas Nu and Cf decrease at right, while the opposite trend occurs at left.
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Table 6.2: Variation of Da and non-Darcy (Forchheimer) parameter F* on Nuand
C, when Gr=0.5, Br=1, M =0.5,and ¢=0.3%.
Da EF* Nu(_l) N“(l) Cy (”1) ¢ (l)
0.0 0.3111 0.6329 1.3898 -1.069
0.5 0.5 0.3836 0.5634 1.2572 —-0.9680
’ 1.0 0.3928 0. 5483 1.0021 —0.7155
1.5 0.5067 0. 4428 0.7424 —0.4595
0.0 0.6497 0.3028 1.5772 -1.2715
1.0 0.5 0.6854 0.2655 1.5600 —1.2552
) 1.0 0.8509 0.0987 1.6243 -1.3209
1.5 1.1791 —0.2298 1.9714 —1.6666
0.0 0.7814 0.1738 1.7266 -1.4126
20 0.5 0.9048 0.0496 1.8225 -1.5089
) 1.0 1.1602 -0.2057 2.1024 -1.7891
1.5 1.5454 -0.5894 2.7338 -2.4202
0.0 0.9064 0.0517 1.8619 -1.5410
10.0 0.5 1.0892 -0.1309 2.0655 —1.7442
’ 1.0 1.3881 —0.4285 2.5071 —2.1850
1.5 1.7725 —-0.8098 3.2985 -2.9743
Table 6.3: Variation of Gr and Br on Nu and C, when Da=10, F*=1,
M=05,and ¢p=0.3%.
Gr Br Nu(-1) Nu(1) C,(-1) C,(1)
0 0.4768 0.4768 1.9264 —1.8003
0.2 1 1.1824 —0.2266 1.8695 —1.7435
) 2 1.8639 —-0.9062 1.8104 —1.6846
3 2.5192 -1.5601 1.7491 -1.6234
0 0.4768 0.4768 2.2683 —1.9541
05 1 1.1602 -0.2057 2.1024 -1.7891
’ 2 1.7575 -0.8043 1.9234 -1.6110
3 2.2464 -1.3067 1.7315 -1.4199
0 0.4768 0.4768 2.4907 -2.0519
0.7 1 1.1301 -0.1795 2.2375 —1.8004
) 2 1.6391 -0.6957 1.9601 —1.5246
3 1.9802 —1.0481 1.6583 —1.2244
0 0.4768 0.4768 2.8159 -2.1914
1 1.0622 -0.1220 2.4125 -1.7912
1.0 2 1.3923 -0.4735 1.9632 ~1.3449
3 1.4183 -0.5289 1.4679 -0.8527
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6.4 Conclusions

In this paper, entropy for non-Darcy porous media in Poiseuille (different pressure
gradient) nanofluid flow through a wavy channel is analyzed. The momentum (flow),
energy (heat), and entropy generation (energy loss) equations are transformed by using
a similarity transformation to obtain nonlinear ordinary differential equations (ODEs).
Homotopy analysis method is implemented to tackle nonlinear ODEs along suitable
boundary conditions. Results of nanoparticle volume fraction, magnetic field
parameter, Darcy number, non-Darcy (Forchheimer) parameter, Brinkman number,
entropy generation, Bejan number, skin friction, Nusselt number, and average energy
loss due to entropy generation on velocity and temperature were determined
numerically as well as graphically by using Mathematica software. The major findings

investigated during the study are as follows:

e Itis perceived that velocity gives reduction flow map with large values of magnetic
field and non-Darcy (Forchheimer) parameter, while velocity increases for large

values of Darcy and Brinkman number.

e Temperature distribution increases with M and F*. Instead, the temperature
profile reduces for various values of Da and Br .

* Energy loss due to entropy generation becomes stronger along the walls of the
channel for M and F*, and near the center of the channel, energy loss becomes
zero for said parameters.

e Energy loss due to entropy generation becomes weaker at left wall as related to
right wall of channel for Da, and B»Q' is also negligible near middle of channel.

¢ The Bejan number at center of geometry attained maximum value when the
magnetic field was neglected and Be gained extreme value when group parameter
was zero. Moreover, the Bejan number accelerated at boundaries with a large value
of Darcy number and at the center of the channel increased with non-Darcy
(Forchheimer) parameter.

e  Average energy loss due to NDI was enhanced with enhancing nanoparticle volume
fraction ¢ , non-Darcy (Forchheimer) parameter F*, and group parameter BrQ™',
but the reduction in non-Darcy porous media irreversibility was due to M and Da.

¢ Increase in entropy is associated with the rise in pressure gradient.
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Chapter 7

7 Effect of radiative electro magnetohydrodynamics
diminishing internal energy of pressure-driven
flow of titanium dioxide-water nanofluid due to

entropy generation

The internal average energy loss caused by entropy generation (E;) for steady natural

and forced convective Poiseuille flow of a nanofluid, suspended with titanium dioxide
(TiO») particles in water, and passed through a wavy channel, was examined. The
models of viscosity as well as thermal conductivity of titanium dioxide of 21 nm size
particles with a volume concentration at temperature reaching from 15 °C to 35°C
were utilized. The characteristics of the working fluid were dependent on electro-
magnetohydrodynamics (EMHD) and thermal radiation. The governing equations
were first modified by taking long wavelength approximations, which were then
solved by a homotopy technique, whereas for numerical computation, the software
package BVPh2.0 was utilized. The results for the leading parameters, like as electric
field, nanoparticle volume fraction and radiation parameters for three different
temperatures scenarios were examined graphically. The minimum energy loss at the
middle of the wavy channel due to the rise in the electric field parameter was noted.
However, an increase in entropy was observed due to the change in the pressure

gradient from low to high.

7.1 Problem formulation

7.1.1 Flow analysis

An incompressible, electrically conducting, steady-state laminar TiO»-water nanofluid

flowing between horizontal wavy channels is taken, as displayed in figure 7.1. The
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middle of channel taken at origin and the left and right walls of channel having a length
[ with amplitude @,, width d and wavelength A that proportional to 2z/L consider.

The configuration of the left and right walls are defined as, respectively

H =-d-a cos(%i], H2=d+alcos(27ﬂ5c'). (7.1

9.

0[__.y i

{/ZM __

Figure 7.1: Geometry of the flow model.

B,

7.1.2 Governing equations (Tiwari and Das’s model)

According to said nanofluid model, the equations (1.18), (1.19) and (1.38) given in
chapter 1, for a steady state, incompressible nanofluid with effect of electric, magnetic,
buoyancy, thermal radiation, viscous and Ohmic dissipation transporting through

symmetric wavy walls are modeled mathematically as
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ou ov (72)

_ou _ou ap o'n o _ =
”"f(“%”§)=‘é*ﬂv[é*#}*%(a&—Béu)+(pﬂ)"fg(T—T*)’ (7.3)

(C) —a_T+—ya_T =k a_zz.+i_+
pp,,fuaf ‘a?_nf & 6}32 Hos

=H,
_H, 7.5

Il
SR
< <

[
oo

B
~1 N~1

S 7 H, H,
=, =—,u=——, v= 5 =—_—, = —
vttt o TR

. o e b (71.6)

_dB g d o TT* LT

wUL A L-T* T-T*

Using the variables which have ho dimensions, defined in equation (7.6), the governing

equations (7.2) to (7.4) become

ou ov
55?} =0, (7.7)
AZReé(u%: +v%:-) = 4, {(52 %+%})—%}+Ajw (E, -u)+A4,Gro,» (7.8)

‘;"J Aﬁ((sz%i—?+éigj+,4,£cP (Z‘) + A EcPrM* (u-E,) +Rd(g;0]. (71.9)

Under the long wavelength approximation, equations (7.7) to (7.9) along with linked

A;RePro (u 2—0 +v

boundary in dimensionless form are renewed as
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—A1P+Agy +AM?(E, —u)+A4,Gré=0, (7.10)

(4, +Rd)—+AB (‘2;) +A,BrM (u—E,) =0, (7.11)

27
0, 8=m* at =1+ Cos| =2
u= m* at y=h, y ( i x)

- (7.12)
a T
u=0, 8=1 at y=h =-1-—Cos| —x
y=h=-1-Scos( 2]
Parameters defined in equation (7.10) and (7.11) are
d* (I, -T* U,d B d*
_(eh), 8 (@ ),Re=pf =220 pe—prEc
#U, Hy Hy
#\PC 2 * ok
_ /( p)f,Ec= u: ,Rd=1€T*G = E, ! 7.13)
Pk, (c,), (5-T*) 3k*k, BU, |
b oy o oy, (0B),  (#G),
4= 4=t 4= = g = Aﬁ—
My Py Gf (/3) ( )/ ky

The physical thermal properties using in above resulting equations (7. 10) and (7.11) are
define in equations (1.9), (1.10) and (1.11). The viscosity as well as thermal
conductivity of Titanium dioxide-water nanofluid explain in equations (1.5) and (1.8)

are used for this chapter respectively.

Expression of coefficient of skin friction defined in equation (1.54) and Nusselt number

defined in equation (1.56) are transformed in view of equation (7.6) as

ReC, = 2Alu'(y) |y=h, hz
Nu = —A60,(y)|y=h,hz

(7.14)
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7.1.3 Entropy generation analysis

The entropy generation E; in a nanofluid with effective influences of electro-

magnetohydrodynamics (EMHD) and thermal radiation is described in the subsequent

relation as
— 2
L 9y (Bjii - E,)

so-rolr(2)o(F))- (3] -5
\ | ——— \——\,—.—J (7' 1 5)
loss via €nergy loss via

energyﬂ)ss via energy loss O e
fluid friction  Joule dissipation
heat transfer and electric field

The entropy generation rate EG0 is determined by

k, (T,-T*Y
o
EGo = —_dZ;T*Z— (716)

Entropy generation number NG is defined as

N = EG/EG0 ) (7.17)

Such that

NG=—dzT-i—2x LZ knf(a—Tj —q,[?—z) i (@——) +L0',1I(Boﬁ—Eo)2
ke (T-T*) T \@) &)} T\F) T* (7.18)

Hence, the total entropy generation is

IR

where
T,-T* 1,
Q=1 , Brz__f'"___
T * kf (T; —T*) (7-20)

The Bejan number Be can be made as

Be-= HIT : (7.21)
HTI + FFI + JDEI
2 2
HTI:[%) ,FFI:ﬁﬂ[@] JDEI =25 A (u-E . (7.22)
oy Ql\oy 4, Q

From equations (7.6) and (7.13), it follows that
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r3e5)

Be = 3 2 1 (723)
(3o &)< B3] s

Average entropy generation can be calculated by

NG_avg= \—;--\[NG dv. (7.24)
Here
hy
NG _ag= —1— I Nc dy (7.25)
(d x L) " ’
or
[ "
Am_mg=(de)£uﬂ7+fTY+JDEnL@, (7.26)

7.2 Solution of the problem

To get an analytic solution, a homotopy technique is utilized to solve equations (7.10)
and (7.11).

Zeroth-order solution

Consider, the initial approximations “o( y), 00( y) and supplementary linear operators

f,,, £9 for velocity and temperature are

uy (¥)=y" — (b + 1)y +(hh,)

—h, (1.27)
6y =%
(») hh
and
d ( du d(dé
£, =22 g=222 :
‘ dy(dyj 0 dy(ayj (7:28)

The convergence control parameters hu , h g and nonlinear operators N,, N g of

velocity, temperature with embedding parameter ¢ € [0, 1] yields the following zero™-
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(.

order deformations respectively are

JEAK H’ )=ty (¥)] =y [ (. 9(%5)]} 029)
(- é £0[9 (7.€)-8(y)] =EhgNg[u(2,€).6(».6)])’
with boundary conditions
u(y.£)=0, 6(y.&)=m* aty=h, } (7.30)
u(y.£)=0, 8(y.&)=1 aty=h '
and
62
V=24 L e - )] A0
, ) (7.31)
o= (4+ Rd)ae(};’g)wm[a"(y’:)} + ABM? (u(y.)-E,)
6y oy
[ th—order solution
The [/ th—order deformation expression for u,( and 6, (y as follows
£, [u/ V) Z/ull y)] h Ru()’) 1.32)
£,[6.(»)- 26 (»)]=hgR? (v)] '
u,(y,.£)=0, 6,(y,&)=m* aty=1 ,
1, (7,£)=0, 8,(».£)=1 aty=- 73
R (v)=A4]-P+u |- 4M* (E,~u,)+ 4,Gr6,
. 7.34
R,é’(y)=(A,,+Rd)0,”+Ac,BrM2(u,—El)2+AlBrZi:u;‘u,'_,r 739
The solution can be described as of / th—order
u( y)=uo(y)+2uk(y)
(7.35)

8(y)=6,( Zt"(y
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7.3 Discussion of results
7.3.1 Inspection of convergence

The velocity and temperature results in equation (7.35) hold hy and h 9> respectively.

In homotopy analysis method, a faster convergence can be achieved by the optimum
selection of the involved auxiliary parameters. Figure 7.2 portrays the 7 —curves at

thirtieth-order approximations for Y and &, to estimate accurate range of

convergence, that visibly predicts admissible ranges for hu and h g to lie between —2.0

to 0.5 and —1.5 to 0.5.

1.0
Velocity h—curve
051 | e Temperature #i—curve
g
B
3 0.0}
OS5l e

_1.0— :
-25 =20 -15 -10 -05 00 05 1.0
h . h

u’ 9

Figure 7.2: 7 —curves for velocity and temperature profile.

7.3.2  Residual error of norm 2
The residual error of velocity Eu and temperature distribution E g at two successive

approximations over embedding parameter £ E[O, 1] up to the 30th-order

approximations is computed by the following mathematical relations
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try
I

1=0

The above residual formulas give minimum error for velocity at hu

temperature distribution at h@

( (i/30)) (Z (6(i/30) .

(1.36)

=—0.7 and for

=—0.6, which are displayed in figures 7.3 and 7.4,

correspondingly. Table 7.1 shows residual error for the convergence series solution up

to the 30th-order approximation.

0.12f% i T T T T
\ )
SN ]
0.10F .
[ ]
N ]
0.08f AN ]
] i \\ - -
] 0.6} Y g ]
\\ 1', ]
0.04} AN < ]
L \ /” ;
N ’ 4
0.02f AN /’ -
\ , )
L N/ )
N7 E
0.00 b — e — A
-1.0 -0.8 -0.6 -04 -0.2 0.0
h,
Figure 7.3: Residual error Eu —curve for velocity profile.
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1
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1
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~02
fig

Figure 7.4: Residual error E g —curve for temperature profile

Table 7.1. Residual error estimation when M =0.25, E, =1.0, Gr=2.0,
Rd=0.5, and Pr=70.
Order of Approximation  Time E, E,
05 5.3818 4.4073 x 107 2.8357 x 10°°
10 9.7290 2.8199 x 107® 46835 x 107°
15 16.7899  4.0554 x 107"
20 26.9812
30

5.0418 x 107*
1.0687 x 1077
40.6344

1..0454 x 107"
1.3593 x 107

73.3

The sketches of the key factors, such as the electric field, nanoparticle volume fraction,

radiation and group parameter are presented for temperatures at (15 °C, 25 °C, 35 °C).

7.9903 x 107

Illustration of graphical results

Figures 7.5-7.8 signify the impressions of E, @ and Ri on velocity (¥ ) and

temperature (& ) profiles. The plots of electric field parameter E, on velocity and

temperature distributions are shown in figures 7.5 and 7.6. Figure 7.5, identified that

velocity gradually increased by an upturn of E,, whereas the combined effects of the
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electro-magnetohydrodynamics (EMHD) produced Lorentz forces to resist the fluid
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velocity. Also, the size of the boundary layer increased with the rise of E;. However,

in figure 7.6, the opposite behavior for the fluid temperature was noted, which was due

to the applied electric field. The effects of the nanoparticle volume fraction ¢ on the

fluid flow are shown in figure 7.7. It could easily be examined that when the volume
fraction of the nanoparticle upsurges in the base fluid, the base fluid’s density increased.
Subsequently, the fluid became denser, so the suspension of particles in fluid resulted
in a reduction in nanofluid velocity. In figure 7.8, the temperature distribution of the
nanofluid against the radiation parameter Rd is displayed. The temperature of nanofluid
could also be controlled with the radiation factor, because the fluid temperature was
very sensitive to Rd , which meant that the heat flux of channel walls would be as large

as perceived.

Figures 7.9~7.14 portray the effects of E,, BrQ" and R4 on NG and Be. Figures

7.9 and 7.10 show the behaviors of the electric field parameter E on NG and Be.

The entropy generation rate near the walls increased with rise of the electric field
parameter, as exposed in figure 7.9, while at the left wall, the entropy loss was greater
as compared to the right wall. It is further noted that near the center of the channel,

energy loss was at a minimum, between y =-0.3and y =0.2. This was due to the

combined effects of the electro-magnetohydrodynamics, which produced Lorentz
forces to resist the fluid flow. In figure 7.10, The Bejan number near to the center of
the channel with a large electric parameter value gradually accelerated and approached
to 1, but near to the walls, a reduction in the Bejan number against large values of
electric field parameter was detected. The impacts of group parameters BrQ™' on NG
and Be are shown in figures 7.11 and 7.12. The entropy generation rate escalated with
large vales of BrQ™, as exposed in figure 7.11. The upshot BrQ™' was visible in

figure 7.12. Here Be attained an extreme value, almost at y =-0.1, because of the

escalation of the heat transfer irreversibility for BrQ™' = 0.2, but gradually decreased
for large value of the group parameter values. The influence of R4 on entropy
generation rate are displayed in figure 7.13. Here, the entropy generation are seen by
the nice curved shape and almost symmetrical profiles for all values of Rd. A small
change in Rd caused a large variation of NG, as perceived in figure 7.13. It could also
be found that the energy loss entropy generation rate around the center of the channel

was approximately zero, but as one proceeded towards the channel walls, entropy
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occurred. Figure 7.14 shows the same increasing results for the radiation parameter Rd
on Be , as shown in the case of entropy generation. The Bejan number near center of
channel was about to attain its extreme position for low radiation evolvement, but near
the vicinity of the walls, the Bejan number increased with the growing radiation factor.
The increasing results suggested that heat transfer irreversibility plays a dominant role
in energy loss.

Figures 7.15(a)~(d) and 7.16(a)}—(d) depict the effects of M, E, ¢ and Rd on
average HTI: heat transfer irreversibility, average FFL: fluid friction irreversibility,
average JDEIL: joule dissipation and electric field irreversibility by using
Duangthongsuk and Wongwises model at 7 =25°C . In figure 7.15(a), phi diagrams
are displayed against the magnetic parameter for different M . In figure 7.15(b), the phi

diagrams show the performance of the electric field for different E, . In figure 7.15(c),
the phi drawings deal with the nanoparticle volume fraction for different ¢ . In figure
7.15(d), the phi drawings describe the radiation parameter for different values of R4 .

The effects of energy loss for M are plotted in the phi diagrams, as revealed in figure
7.16(a), whereas figure 7.16(b), show phi diagrams against the electric field parameter

for diverse values of E,. In figure 7.16(c), the phi diagrams depict energy loss for
diverse values of ¢ , while figure 7.16(d), demonstrates the Rd involvments in energy

loss via phi diagrams. In all phi diagrams, it was determined that when the pressure
gradient increased, the average entropy loss and consequently entropy generation
increased in the system. Thus, one can say that the reported results about electro-
magnetohydrodynamics (EMHD), thermal radiation and entropy generation on
Poiseuille flow with Titanium dioxide nanoparticles are very effective to reduce the
energy losses and escalate the heat transfer in wavy surfaces. The said analysis is very
informative for food industries, as in the presence of titanium dioxide in the consumer

packaging, which helps to preserve food for a considerable time period.
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Figure 7.5: Manifestation of E onu.
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Figure 7.6: Manifestation of B-Q™' on & .
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Figure 7.8: Manifestation of R4 on & .
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Figure 7.10: Manifestation of E, on Be.
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Figure 7.11: Manifestation of BrQ™ on NG .

Figure 7.12: Manifestation of BrQ™ on Be .
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Figure 7.14: Manifestation of R4 on Be.

The numeric features of C ; and Nu on both opposite walls w.r.t three different

temperature conditions, as suggested by Duangthongsuk and Wongwises against
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different values of @, E1 and M are calculated in Tables 7.2 and 7.3, respectively. It

could be noted that C f reduced at right wall, with increasing values of @, El and M,

while the opposite effects occurred at left wall of the concerned parameters. In heat

transfer phenomena, heat rate increased at right wall but decreased at left wall, for large

values of @, El and M .
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Table 7.2: Numeric attributes of C ; on opposite walls with respect to three different temperature

conditions against different points of & , E and M when Gr=2.0 and Rd=1.0.

r=15°C T =25C T =35C

¢ E M C, (_1) Cf(l) <, (_1) C; (1) C, (—1) < (1)

0.00 3.80765 —2.41647 3.79748  —2.40690  3.80302 -2.41211

0.0 025 3.56943 -2.19941 3.55835 -2.18901  3.56439 —2.19466

0.50 3.36696 —2.01740 335512  -2.00632  3.36157 —2.01235

0.00 3.80765 —2.41647 3.79748 -2.40690  3.80302 -2.41211

0.5% 0.5 025 3.79915 —2.42912 3.78789  —2.41854  3.79402 —2.42430
0.50 3.79582 —2.44626  3.78342 —2.43462  3.79017 —2.44096

0.00 3.80765 —2.41647 3.79748 —2.40690  3.80302 -2.41211

1.0 025 4.02891 -2.65888 4.01746  —2.64812  4.02370 —2.65398

0.50 422474 -2.87519 421177  -2.86298 4.21883 —2.86962

0.00 3.79649 —2.41100 3.78657  —2.40167  3.79221 —2.40697

0.0 025 3.56060 —2.19602 3.54979  -2.18588  3.55594 -2.19164

0.50 3.35987 -2.01553  3.34833 —2.00473  3.35489 —2.01086

0.00 3.79649 241100 3.78657 -2.40167  3.79221 —2.40697

1.0% 0.5 025 3.78872 —2.42414 3.77774  -2.41382  3.78398 —2.41968
0.50 3.78594 244161 3.77386  —-2.43026  3.78073 —2.43671

0.00 3.79649 241100 3.78657 —2.40167  3.79221 —2.40697

1.0 025 4.01688 —2.65231 4.00572  -2.64181 4.01207 —-2.64777

0.50 421208 -2.86774 4.19945 —2.85586  4.20663 —2.86261

0.00 3.78532 -2.40553  3.77565 -2.39643  3.78140 —2.40183

0.0 025 3.55174 —2.19262 3.54122  -2.18273  3.54747 —2.18860

0.50 3.35275 -2.01363  3.34151 -2.00311  3.34818 —-2.00935

0.00 3.78532 —2.40553  3.77565 -2.39643  3.78140 —2.40183

1.5% 0.5 025 3.77827 —2.41915 3.76738 —2.40909 3.77393 —2.41506
0.50 3.77605 —2.43693 3.76429  —2.42589 3.77127 —2.43244

0.00 3.78532 —2.40553  3.77565 —2.39643  3.78140 —2.40183

1.0 0.25 4.00485 —2.64573  3.99398 —2.63550  4.00044 —2.64157

0.50 4.19941 —2.86030 4.18712 -2.84873  4.19442 —2.85559
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Table 7.3: Numeric attributes of N on opposite walls with respect to three different temperature

conditions against different points of @, E and M when Gr=2.0 and Rd=1.0.

T=15C T=25C T=35C

B M TG Ne()  Ne(1) Nu()  Ne(-1)  Nu(1)
0.00 0.510991 0.511551 0.509936 0.510495 0.506687 0.507244

0.0 0.25 0.511011 0.511534  0.509955 0.510479 0.506707 0.507228

0.50 0.511032 0.511517 0.509976 0.510461 0.506728 0.507211

0.00 0.510991 0.511551 0.509936 0.510495 0.506687 0.507244

0.5% 0.5 0.25 0.510989 0.511553  0.509934 0.510497 0.506685 0.507247
0.50 0.510987 0.511555 0.509932 0.510499 0.506683 0.507249

0.00 0.510991 0.511551 0.509936 0.510495 0.506687 0.507244

1.0 025 0.510962 0.511613  0.509872 0.510556 0.506623 0.507306

0.50 0.510863 0.511672  0.509809 0.510616 0.506560 0.507365

0.00 0.511061 0.511618 0.510000 0.510556 0.506752 0.507306

0.0 0.25 0.511081 0.511601 0.510019 0.510540 0.506771 0.507289

0.50 0.511101 0.351158 0.510040 0.510523 0.506791 0.507272

0.00 0.511061 0.511618 0.510000 0.510556 0.506752 0.507306

1.0% 0.5 0.25 0.511059 0.511620 0.509998 0.510558 0.506749 0.507308
0.50 0.511057 0.511622  0.509996 0.510560 0.506747 0.507310

0.00 0.511061 0.511618 0.510000 0.510556 0.506750 0.507306

1.0 0.25 0.510997 0.511679  0.509936 0.510617 0.506688 0.507367

0.50 0.510934 0.511738 0.509873 0.510676 0.506625 0.507425

0.00 0.511131 0.511685 0.510000 0.510617 0.506816 0.507367

0.0 0.25 0.511150 0.511668 0.510083 0.510601 0.506835 0.507351

0.50 0.511171 0.511651 0.510103 0.510584 0.506855 0.507334

0.00 0.511131 0.511685 0.510064 0.510617 0.506816 0.507367

1.5% 0.5 0.25 0.511129 0.511687 0.510062 0.510619 0.506814 0.507369
0.50 0.511126 0.511689 0.510060 0.510621 0.506811 0.507371

0.00 0.511131 0.511685 0.510064 0.510617 0.506816 0.507428

1.0 0.25 0.511067 0.511746  0.510000 0.510678 0.506752 0.507428

0.50 0.511004 0.511804 0.509938 0.510736 0.506690 0.507486
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7.4 Conclusions

The electro-magnetohydrodynamics (EMHD) and entropy analysis are investigated here.

The most vital findings were:

e The electric field E, applied in a tangential direction to the fluid affected both

velocity and temperature distributions, which produced a reduction in the

temperature and rise in the velocity.

e The amount of nanoparticles ¢ in base fluid affected a slowdown in nanofluid

velocity.

e The thermal boundary layer increased against the growing radiation parameterRd ,

which was why an increase in temperature was observed.
e The entropy generation near the boundary of the channel prolonged, while was very

insufficient at the vicinity of the center for the electric field E .

o Initially, Be attained a high impact near the middle of channel, but gradually it fell

for a large value of the electric field parameter near the walls.

e The energy loss for BrQ~' and radiation parameter R4 at the intermediate of the

channel was approximately zero, while an enhancement was noted near the walls.

e The average energy loss was due to a rise in the pressure gradient.
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