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Preface 

 
Pulsatile accounts for pumping produced by heart that deals with the propagation of sinusoidal waves which 

enforces the blood to flow through vessels. In the cardiovascular system, pulsatile procedure occurs due to 

contractions and relaxation of heart which pumps blood from heart to different part of the body. The 

pulsatile procedure is also responsible for general propulsive and mixing movements and it also involves 

in pumping the blood against pressure rise. The mathematical models for pulsatile flow of blood through 

arteries are of major significance because they provide non-invasive mean to estimates various important 

hemodynamical variables. The utility of these models further increase when the arteries under consideration 

have localized narrowing called stenosis. These localized narrowing are due to fat deposition, abnormal 

internal growth and proliferation of convective tissue in the arterial lumen. It is generally accepted that the 

development and progression of stenosis is intimately linked to the fluid dynamics of the post-stenotic blood 

flow. Although experimental estimates to quantify the role of blood fluid dynamics on the formation of 

stenosis and its progression are clinically more acceptable. Nevertheless, the mathematical models of blood 

flow constitute an alternative and useful tool for supporting experiments and detect mildly constricted 

phenomena and the local features which are not always obvious by experiments. Motivated by the above 

facts, the present thesis focuses on development and simulation of mathematical models of pulsatile flow 

in rigid constricted/ normal arteries. The developed models explore the effects of rheology of the blood, 

geometrical parameters of the stenosis and catheter radius on unsteady characteristics of the blood. The 

thesis is structured in the following manner.   

The preliminary information regarding blood and its rheological behavior and some basic definition 

equations are included in chapter one. A review of literature on pulsatile flow of blood in arteries is 

provided. The numerical scheme used for simulations is also explained in this chapter.  

Chapter 2 deals with two-layered pulsatile blood flow through a circular tube. The Sisko non-Newtonian 

model is integrated in the analysis to capture the rheological behavior of the blood in the core region. The 

blood in the peripheral region is modeled as Newtonian fluid. The equations governing the flow in each 



region are derived assuming the flow to be uni-directional and one-dimensional. An explicit finite 

difference scheme is employed to solve these nonlinear equations. The behavior of various flow quantities 

is analyzed through a parametric study. The contents of these chapter are published online in Engineering 

Science and Technology, an International Journal, (2015) Doi.org/10.1016/j.jestch.2015.09.013. 

The mathematical model presented in chapter 2 is modified to take into account the viscoelastic nature of 

the blood in chapter 3. In this chapter Oldroyd-B model is used instead of Sisko model to characterize the 

rheology of the core region. The equations governing the flow in both core and peripheral regions are 

modeled and solved numerically with appropriate boundary/initial conditions. The results are graphically 

displayed and analyzed for several values of pertinent parameters. The analysis presented in this chapter is 

published in International Journal of nonlinear Sciences and Numerical simulation 16 (2015) 5. 

Chapter 4 provides an analysis of pulsatile flow of blood through a porous-saturated overlapping stenotic 

artery under the effects of magnetic field and body acceleration. The power-law model is used to capture 

the hemo-rheological characteristics of blood. The equations governing the flow is modeled under the 

assumption of mild stenosis. An explicit finite difference scheme is employed for solution of these equation. 

An extensive quantitative analysis is carried out to investigate effects of various involved parameters on 

axial velocity, flow rate, resistance impedance and wall shear stress. The instantaneous patterns of 

streamlines are also displayed. The findings of this chapter are published in Journal of Mechanics in 

Medicine and Biology 16 (2015) 2.   

The pulsatile flow of blood in a catheterized overlapping stenosed vessel is analyzed in this chapter 5. The 

streaming blood in the artery is assumed to obey Carreau constitutive law. Employing the mild stenosis 

condition, the equation governing the flow is derived and solved numerically using an explicit finite 

difference scheme. The blood velocity, flow rate, arterial wall shear stress and resistance impedance are 

computed and shown graphically for several values of involved parameters. The bolus dynamics is also 

studied qualitatively. The material presented in this chapter is published in Mathematical Biosciences 269 

(2015) 94-103.   



Chapter 6 is devoted to analyze unsteady flow characteristics of blood through a catheterized artery with a 

combination of stenosis and aneurysm. The Eringen’s micropolar model is used to capture the rheological 

characteristics of the streaming blood. The two-dimensional flow equations are reduced to one-dimensional 

equations under mild stenosis assumption. The numerical computations carried out using finite difference 

method and validated against finite element simulations. The important hemodynamical variables are 

qualitatively analyzed for geometrical and rheological parameters of the model. The streamline of the flow 

indicating the effects of various involved parameter are also shown graphically. The material of this chapter 

is published online in Medical & Biological Engineering & Computing DOI 10.1007/s11517-015-1415-

3. 

In chapter seven, the effects of unsteadiness and non-Newtonian rheology on blood flow through a tapered 

time-variant stenotic artery are examined through numerical method. A two-dimensional model is used to 

analyze the unsteady pulsatile flow of blood through a tapered artery with stenosis. The problems under 

consideration is made dimensionless and solved numerically using finite difference method. The axial and 

radial velocities, flow rate, wall shear stress and resistance impedance are analyzed graphically for several 

values of the involved parameters. The results presented in this chapter are published in AIP Advances 5, 

(2015) 037129. 

The theoretical analysis regarding the effects of peripheral thickness on pulsatile flow of blood through a 

stenotic artery is carried out in chapter 8. A two-fluid model consisting of core region as a Herschel-Bulkley 

material and a plasma layer as a Newtonian fluid is employed. The equations governing the flow in both 

core and peripheral regions are setup and solved numerically using explicit finite difference scheme which 

is forward in time and central in space. The results obtained through the numerical computations are 

compared with existing experimental and theoretical results. The important flow quantities are analyzed 

graphically for different values of the emerging parameters. The contents of this chapter are submitted for 

publication in Canadian Journal of Physics.  

A two-dimensional model of blood flow through a time variant stenotic artery is investigated using Sisko 

model in chapter nine. The continuity and momentum equations along with expression of stresses are 



numerically solved for axial and radial velocity components. The important hemodynamical variables based 

on physiologically relevant data are graphically shown and discussed in detail. The significance of Sisko 

model over power-law in context of problem under consideration is highlighted. The results presented in 

this chapter are published in Computers & Fluids 101 (2014) 42–49.   
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Nomenclature 

 

Greek Symbol 

 

a  Radius of the artery 

A0 Amplitude of the pressure gradient 

A1 Amplitude of the pulsatile component 

Ag Amplitude of the body acceleration 

b  Radius of the core region 

B Total magnetic field 

B1 Dimensionless pulsatile constant 

B2 Dimensionless body acceleration constant 

d  Length of non-stenotic arterial segment 

e  Ratio of the systolic to diastolic pressure 

fp Heart pulse frequency 

G(t) Body acceleration 

k  Radius ratio 

k   Permeability of the porous medium 

l0 Length of the stenotic region 

n  Power law constant 

p  Pressure  

Q Volumetric flow rate 

r  Radial coordinate 
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t  Time 

u1 Velocity component in core region 

u2 Velocity component in periphery region 

U0 Average velocity 

V Velocity vector 

We Weisenberg number 

z  Axial coordinate 

 

Greek Symbol 

 

  The second invariant of strain-rate tensor 

*

1A  First Rivilin-Ericksen tensor 

1  Viscosity of the non-Newtonian fluid 

2  
Viscosity of the Newtonian fluid 

1  
Density of the core fluid 

2  
Density of the Plasma fluid 

  Phase angle 

p  Circular frequency 

1  Asymptotic value of viscosity at very high shear rates 

2  Consistency index 

  Womersley number in the core region 
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  Womersley number in the peripheral region 

s  Wall shear stress  

*  Dimensionless viscosity 

*  Dimensionless density 

1  Relaxation time 

2  Retardation time 

  Tapering parameter 

  Tapering angle 

  Height of the stenosis 

  Time sonstant 

eff  Effective viscosity parameter 
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Chapter 1 

 

Introduction and some basic definitions 
 

In this chapter, we introduce the reader with basic terminology about pulsatile blood flow in arteries. The 

fundamental equations used in blood flow modeling are given. A review of literature on pulsatile flow of 

blood in arteries is presented. The explicit finite difference method is also illustrated with example. Basic 

definitions given here are based on internet resources. 

1.1 Some basic definitions 

1.1.1 Blood  

 

Blood is a heterogeneous multi-phase mixture of solid corpuscles (red blood cells, white blood cells and 

platelets) suspended in liquid plasma which is an aqueous solution of proteins, organic molecules and 

minerals.  

1.1.2 Pulsatile Flow  

 

In fluid dynamics, a flow with periodic variations is known as pulsatile flow. The cyclic nature of heart 

pumping creates pulsatile flow of blood in arteries. These phenomena in medical science are called systolic 

and diastolic. In systolic, the blood is pumped out, while in diastolic, the blood is pumped into the heart. 

The cardiovascular system of chordate animals is very good example where pulsatile flow is found. 
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Pulsatile flow is also observed in engines and hydraulic systems as a result of rotating mechanisms 

belonging to them.  

1.1.3 Atherosclerosis 

 

Atherosclerosis is a disease in which plaque builds up inside your arteries. Plaque is made up of fat, 

cholesterol, calcium, and other substances found in the blood. Over time, plaque hardens and narrows your 

arteries. This limits the flow of oxygen-rich blood to your organs and other parts of your body. 

Atherosclerosis can lead to serious problems, including heart attack, stroke, or even death.  

1.1.4 Stenosis 

 

A stenosis is an abnormal narrowing in a blood vessel or other tubular organ or structure. It is also 

sometimes called a stricture. Stricture as a term is usually used when narrowing is caused by contraction 

of smooth muscle. Stenosis is usually used when narrowing is caused by lesion that reduces the space 

of lumen.  

1.1.5 Aneurysm 
 

An aneurysm or aneurism is a localized, blood-filled balloon-like bulge in the wall of a blood vessel. 

Aneurysms can occur in any blood vessel, with examples including aneurysms of the circle of Willis in the 

brain, aortic aneurysms affecting the thoracic aorta, and abdominal aortic aneurysms. Aneurysms can also 

occur within the heart itself. As an aneurysm increases in size, the risk of rupture increases. A ruptured 

aneurysm can lead to bleeding and subsequent hypovolemic shock, leading to death. Aneurysms are a result 

of a weakened blood vessel wall, and can be a result of a hereditary condition or an acquired disease. 

 

 

http://www.nhlbi.nih.gov/health/health-topics/topics/heartattack
http://www.nhlbi.nih.gov/health/health-topics/topics/stroke
https://en.wikipedia.org/wiki/Blood_vessel
https://en.wikipedia.org/wiki/Organ_(anatomy)
https://en.wikipedia.org/wiki/Smooth_muscle
https://en.wikipedia.org/wiki/Lumen_(anatomy)
https://en.wiktionary.org/wiki/bulge
https://en.wikipedia.org/wiki/Blood_vessel
https://en.wikipedia.org/wiki/Circle_of_Willis
https://en.wikipedia.org/wiki/Aortic_aneurysm
https://en.wikipedia.org/wiki/Aorta
https://en.wikipedia.org/wiki/Abdominal_aortic_aneurysm
https://en.wikipedia.org/wiki/Hemorrhage
https://en.wikipedia.org/wiki/Hypovolemic_shock
https://en.wikipedia.org/wiki/Death
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Atherosclerosis 

      

Fig. 1. 1. Shows a normal artery with normal blood flow. The inset image shows a cross-section of a normal artery. 

Figure B shows an artery with plaque buildup. The inset image shows a cross-section of an artery with plaque buildup. 

Figure is taken from the website http://www.nhlbi.nih.gov/ (National Heart, Lungs, and Blood institute).   

1.1.6 Catheterization 

 

Catheterization is the insertion of a catheter into a chamber or vessel of the heart. Catheters are commonly 

used for the diagnosis and treatment of diseases like atherosclerosis. Subsets of this technique are mainly 

coronary catheterization, involving the catheterization of the coronary arteries, and catheterization of 

cardiac chambers and valves of the cardiac system. 

https://en.wikipedia.org/wiki/Catheter
https://en.wikipedia.org/wiki/Heart_chamber
https://en.wikipedia.org/wiki/Blood_vessel
https://en.wikipedia.org/wiki/Heart
https://en.wikipedia.org/wiki/Coronary_catheterization
https://en.wikipedia.org/wiki/Coronary_arteries
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1.1.7 Externally imposed Body acceleration 

 

The human body may experience body acceleration in many situations e.g. helicopter crew members, flying 

in an aircraft, astronauts, jet pilots, athletes and sportsmen for their sudden movements. In such situation, a 

human body may be subjected to vibratory or acceleratory motion. Such acceleratory motion is known as 

the imposed body acceleration. There are evidences that, prolonged exposures to the body acceleration may 

bring some serious physiological effects, e.g. headache, abdominal pain and loss of vision.  

1.1.8 Womersley number  

 

The Womersley number is a dimensionless number in bio-fluid mechanics. It is a dimensionless expression 

of the pulsatile flow frequency in relation to viscous effects. The Womersley number is also important in 

determining the thickness of the boundary layer to see if entrance effects can be ignored. 

1.1.9 Reynolds number 

 

The Reynolds number is defined as the ratio of momentum forces to viscous forces. In fluid mechanics, 

the Reynolds number is a dimensionless quantity that is used to help predict similar flow patterns in 

different fluid flow situations. Reynolds numbers frequently arise when performing scaling of fluid 

dynamics problems. 

1.1.10 Fahraeus-Lindqvist (F-L) effect 

 

The Fahraeus–Lindqvist (F-L) effect is an effect where the viscosity of a fluid, in this case blood, changes 

with the diameter of the tube it travels through. It is clear that red blood cells cannot pass through 

the capillary wall, which implies that the centers of red blood cells must lie at least one red blood cell half-

thickness away from the wall. This means that, on average, there will be more red blood cells near the 

center of the capillary than very near the wall. 

https://en.wikipedia.org/wiki/Dimensionless_number
https://en.wikipedia.org/wiki/Biofluid_mechanics
https://en.wikipedia.org/wiki/Pulsatile_flow
https://en.wikipedia.org/wiki/Frequency
https://en.wikipedia.org/wiki/Viscosity
https://en.wikipedia.org/wiki/Boundary_layer
https://en.wikipedia.org/wiki/Ratio
https://en.wikipedia.org/wiki/Viscous
https://en.wikipedia.org/wiki/Fluid_mechanics
https://en.wikipedia.org/wiki/Dimensionless_quantity
https://en.wikipedia.org/wiki/Viscosity
https://en.wikipedia.org/wiki/Blood
https://en.wikipedia.org/wiki/Diameter
https://en.wikipedia.org/wiki/Red_blood_cell
https://en.wikipedia.org/wiki/Capillary
https://en.wikipedia.org/wiki/Red_blood_cell
https://en.wikipedia.org/wiki/Red_blood_cell
https://en.wikipedia.org/wiki/Red_blood_cell
https://en.wikipedia.org/wiki/Capillary
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1.2 Literature Review 
 

Though non-Newtonian in nature in diseased arteries, blood is also treated as Newtonian fluid by various 

researchers in stenotic arteries. Young et al. [1] undertaken a study to investigate the pressure loss across 

the arterial stenosis of varying severities at elevated flow rates and the corresponding effects of the stenosis 

on the vascular bed reserve. A technique for the solution of the approximate equations governing steady 

flow through models of mild axisymmetric arterial stenosis was presented by MacDonald [2]. Yongchareon 

and Young [3] studied experimentally the development of turbulence under both steady and pulsatile flow 

through models of arterial stenosis. Doffin and Chagnaeu [4] carried out a study to understand the special 

flow conditions which may be produced by a clot of blood in the vessel. A modified MAC-SOLA method 

was implemented by Liou et al. [5] to compute numerically the steady non-uniform viscous flow part a 

partial stenosis in a circular vessel. Pollard [6] investigated numerically the laminar flow in axisymmetric 

sudden expansions using three diameter ratios and up to four inlet velocity profiles. The pulsatile flow of 

blood with periodic body acceleration was investigated with the help of finite Hankel and Laplace 

transforms by Chaturani and Palanisamy [7]. Chakravarty et al. [8] studied pulsatile flow characteristics of 

blood in a distensible bifurcated artery having a stenosis when it is subjected to whole body acceleration. 

Two-dimensional blood flow through tapered arteries under stenotic conditions was numerically simulated 

by Chakravarty and Mandal [9]. Pulsatile flow of blood through stenotic artery using finite Hankel and 

Laplace transforms was studied by El-Shahed [10]. The application of Adomian decomposition method to 

blood flow through stenotic arteries in the presence of a magnetic field was presented by Halder [11]. A 

mathematical model based on the principles of Ferrohydrodynamics (FHD) and Magneto-hydrodynamics 

for bio-magnetic flow of blood in a stenotic channel was developed and simulated by Tzirtzilakis [12]. 

Mehmood et al [13] employed MAC method to understand the flow characteristics of an unsteady axi-

symmetric two-dimensional blood flow in a diseased arterial segment with flexible wall. Sharma et al. [14] 

investigated uni-directional model of pulsatile flow of blood through a porous-saturated stenotic artery 

under the influence of transverse magnetic field. Eldesokyet al. [15] employed the differential quadrature 
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method (DQM) to study the unsteady pulsatile flow of blood through an artery filled with porous medium. 

A time-variant overlapping stenosis model was incorporated by Haghighi et al. [16] to simulate the pulsatile 

flow of blood through elastic tapered artery. Srivastava presented an analytical investigation of magneto-

hydrodynamic blood flow in a porous inclined stenotic artery.  

Recently, it is also observed through experiments that the rheological behavior of blood does not obey the 

Newtonian postulate, which linearly relates shear stress to the rate of deformation, and therefore cannot be 

modeled through Newtonian fluid. Blood exhibits non-Newtonian effects such as shear thinning, 

Thixotropy, Visco-elasticity and Yield Stress. It is pointed out by Cho and Kensey [17] that in large arteries 

the instantaneous shear rate over a cardiac cycle ranges from 0 to approximately 1000 s-1. Therefore, over 

the whole cardiac cycle there exists a time span when the shear rate ( ) is low  2 110 sec   , medium 

 2 3 110 10 sec   and high  3 110 sec  . Further observations reveal that shear rate is low in some 

regions for instance near bifurcations, grafts anastomoses, stenosis and aneurysms [18]. Blood being 

concentrated suspension of cells displays both thixotropic and visco-elastic behavior. However, thixotropy 

and visco-elasticity are exhibited by blood at low shear rates and they diminish as it rises. Blood behaves 

like a Newtonian fluid when shear rate exceeds over a critical value. Its critical value is 50 s-1 [19], 100 s-1 

[20] or from 100 s-1 to 300 s-1 [21]. The shear thinning behavior is exhibited by normal blood at low and 

medium rates. Shear thinning is generally perceived as a decrease in the blood viscosity with increase in 

the shear rate. For instance the general shape of the curve of shear rate of blood flow indicates three distinct 

regions: a lower Newtonian region (low shear rate constant viscosity), an upper Newtonian region (high 

shear rate constant viscosity), and a middle region where apparent viscosity decreases with increasing shear 

rate. The choice of appropriate model to represent shear thinning effects should encompass all the above 

mentioned requirements. A critical review of blood flow in large arteries with relevance to blood rheology 

and physiological conditions is presented by Yilmaz and Gundogdu [22].  Studies pertaining to blood flow 

in stenotic arteries using different non-Newtonian models will be reviewed in the following paragraph. 
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Srivastava [23] examined the non-Newtonian effects of blood using couple stress model to study blood 

flow through mild stenotic artery. He concluded that the magnitude of resistance to flow and wall shear 

stress is greater in couple stress model as compared to the Newtonian model.  The pulsatile flow of blood 

under body acceleration is studied by Majhi and Nair [24] using third grade fluid model.  The Laplace 

transform technique was used by Misra and Pal [25] to obtained analytical solution for pulsatile flow of 

blood under externally imposed body acceleration. They have constructed a mathematical model by treating 

blood as a non-Newtonian fluid, using a biviscosity model for blood.  Mandal [26] carried out a study using 

power-law model to investigate the effects of the non-Newtonian rheology of blood, the vessel tapering, 

the severity of stenosis and the wall deformability on pulsatile blood flow through stenotic arteries. A two-

dimensional power law model for blood through an elastic stenosed artery in the presence of periodic body 

acceleration was presented by Mandal et al. [27]. The Power law model has been implemented successfully 

by Ismail et al. [28] to represent haemo-rheological transport phenomena through overlapping stenotic 

artery. The micropolar fluid model is a common choice to account for the suspension nature of blood in 

fluid dynamical studies on blood flow through stenotic arteries. The Eringen micropolar fluid model has 

been successfully applied to blood flow through stenotic arteries by Makheimer and Elkot [29].  

Mathematical modelling of pulsatile flow of Casson’s fluid in arterial stenosis is investigated by Siddique 

et al. [30]. Srivastava and Mishra [31] used the Casson fluid model for blood flow through overlapping 

stenotic artery. The Erigen micropolar fluid model has been used by Abdullah and Amin [32] and Abdullah 

et al. [33] to investigate the characteristics of blood through a tapered stenotic artery. Unsteady Analysis of 

viscoelastic blood flow through arterial Stenosis is examined by Ikal et al. [34]. Makheimer and Elkot [35] 

investigated mathematical modelling of unsteady flow of a Sisko fluid through an anisotropically tapered 

elastic arteries with time-variant overlapping stenosis. Numerical simulation of Casson fluid flow through 

differently shaped arterial stenosis are carried out by Sarifuddin et al. [36]. Akbar and Nadeem [37] 

analyzed steady flow of Carreau fluid in an artery under the assumption of mild stenosis using perturbation 

technique. 



14 
 

It has been observed through clinical studies that the stenosis may develop in series and may not be regular 

in shape. According to Moore [38] multiple stenosis and post-stenotic dilatations are common in the 

coronary arteries. Therefore investigations of hemodynamics in an artery with post-stenotic dilation is of 

major clinical significance. Very few studies in the literature deal with the simultaneous effects of stenosis 

and dilatation on flow through small arteries. Mention may be made of the work of Pincombe and 

Mazumdar [39], Pincombe et al. [40] and Wong et al. [41]. In the above studies Casson, Bingham and 

Ostwald-DeWaele power law models were used to characterize the rheology of blood. Supplementary to 

the above-mentioned studies, more sophisticated investigations addressing blood flow in three-dimensional 

models of human thoracic aorta at different stages of atherosclerotic lesion growth (using computed 

tomography images and a mathematical model of biological structures in relation to coronary arteries with 

atherosclerosis) have been presented by Dabagh et al. [42] and Wang et al. [43], respectively.  

Medical catheters are commonly used for the diagnosis and treatment of diseases like atherosclerosis. The 

technique used for diagnosis of stenosis in coronary arteries is usually known as angiography while 

treatment procedure of such arteries is called as angioplasty. In diagnostic procedure, such as angiography, 

small catheters are inserted under X-ray guidance to the opening of coronary arteries in order to get 

information about location and severity of stenotic arterial segment. Once the location of the stenosis is 

identified, the next procedure is to treat the diseased segment through angioplasty. In angioplasty two types 

of Catheters namely, guided catheter and Doppler catheter are commonly used. Doppler catheters are used 

to monitor the changes in proximal and distal flow velocity during coronary angioplasty while guided 

catheters with a small balloon at their tips are inserted into the artery and advanced to the stenotic region of 

the coronary artery. The balloon is then inflated to enlarge the stenotic segment. When inserted in arteries, 

these catheters will significantly alter the flow patterns of blood. It has been shown by Kanai et al. [44] that 

apart from other factors, the error in the measurement of blood pressure by catheter-insertion may also be 

due to reflection of pressure wave at the tip of the catheter. Back and Denton [45] and Back [46] provided 

estimates of wall shear stress and mean flow resistance due to the insertion of a catheter in a stenosed artery. 

The influence of the presence and size of a catheter on mean pressure gradient across human coronary 
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stenosed artery was also examined by Back et al. [47]. The study of Sarkar and Jayaraman [48] revealed 

that pressure drop, shear stress and impendence vary markedly in the presence of catheter. Dash et al. [49] 

performed the analysis of blood in a curved catheterized stenosed artery and found that increase in catheter 

size leads to a considerable increase in pressure drop, impendence and wall shear stress. Apart from the 

attempts reported above, some other hemo-dynamical studies encompassing formation and progression of 

plaque in coronary artery, analysis in an intracranial aneurysm and mathematical analysis of differential 

models of circulatory system can be found in refs. [50-54]. For example, Dash et al. [55] carried out a study 

to estimate the increase in flow resistance in a narrow catheterized artery using a Casson model to account 

for blood rheology. A mathematical model of pulsatile flow of blood in a catheterized artery using Herschel-

Bulkley constitutive equation is studied analytically by Sankar and Hemalatha [56]. Reddy et al. [57] 

utilized the constitutive equation of couple stress fluid and investigated the effect of tapering angle and slip 

velocity on unsteady blood flow through a catheterized stenosed artery. Two-phase model of blood flow 

through a catheterized stenosed artery is analyzed by Srivastava and Rastogi [58]. Nadeem and Ijaz [59] 

investigated the effects of nanoparticles on blood flow through a catheterized artery using regular 

perturbation method. Steady flow of a Herschel-Bulkley fluid in a catheterized artery is analyzed by Sankar 

and Hemalatha [60].  

Hemodynamical studies reveal that blood shows anomalous behavior while flowing through large vessel 

(femoral artery) because its viscosity varies along the diameter of vessel which depicts Fahraeus-Lindqvist 

(F-L) effect. The definition of F-L effect is given in the literature as, a phenomena in which the viscosity of 

a fluid/blood changes with the diameter of the vessel. This effect is observed due to migration of suspended 

cells in the radial direction which is due to variation of composition of blood [61-63]. In order to capture 

the F-L effect, the blood flow in arteries is treated as two-phase. The core layer is treated as a non-

Newtonian while peripheral layer is modeled as a Newtonian fluid. Since the flow of blood in arteries is 

generated by pulsatile pressure gradient produced by the pumping action of the heart, therefore several 

authors examined the F-L effects by considering the flow to be unsteady. For instance, Majhi and Usha [64] 

http://en.wikipedia.org/wiki/Viscosity
http://en.wikipedia.org/wiki/Blood
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have examined the F-L effect by considering third grade non-Newtonian fluid in the core. In another study, 

Majhi and Nair [65] followed the same study in the presence of body acceleration. Halder and Anderson 

[66] investigated the two-layer blood flow in a cosine shape artery considering Casson model for blood. 

The pulsatile flow of blood in the presence of body acceleration was examined by Usha and Prema [67] by 

considering blood as Newtonian fluid. Pulsatile flow of blood using a generalized second grade fluid model 

in the core region was investigated by Massoudi and Phouc [68]. Recently Sankar [69] carried out a 

perturbative analysis to discuss the one dimensional flow of blood through stenosed artery by taking 

Herschel–Bulkley fluid in the core. An unsteady analysis of blood flow through a stenotic artery using two-

fluid model, consisting of Erigen’s micropolar fluid in the core region was presented by Ikbal et al. [70]. 

1.3 Fundamental Equations 
 

The analysis of blood flow is based on mass and momentum conservation equations. In this section, we 

shall give vectorial form of these equations. 

1.3.1 Mass conservation/continuity equation 
 

This equation relates the density at a point inside the fluid with the velocity at that point. In mathematical 

form, it reads 

     0,
t





 


V                 (1.1) 

where   is the fluid velocity and  V  is the velocity. For incompressible fluid, Eq. (1.1) reduces to 

continuity equation 

 0, V                            (1.2) 

 

 

1.3.2 The momentum equation 
  

The momentum equation is based on law conservation of momentum. For a fluid flowing through a porous 

medium and subjected to magnetic field, the momentum equation reads 
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           ( ) ,
effd

t
dt k


      



VV
T G J B                                            (1.3) 

where k is the permeability of the porous medium, eff is the effective viscosity of the porous medium, 

( )tG is body acceleration vector, T  is the Cauchy stress tensor, J is the current density, 
0 1B = B B  is 

the total magnetic field, 0B is the constant applied a magnetic field and  1B  is the induced magnetic field   

and  d dt   is the material time derivative given by: 

 
( ) ( )

   .
d

dt t


  


V                                          (1.4) 

The expression of Cauchy stress tensor T is based on the choice of fluid model used to represent the 

rheology of blood.  

1.3.3 Generalized Ohm’s law  
 

The current density J in Eq. (1.3) is given by 

 

   ,  J E V B        (1.6) 

where is the electrical conductivity of blood and E is the total electric field. In the present thesis, it is 

assumed that the induced magnetic field is negligible in comparison with constant applied magnetic field. 

Moreover, the imposed and induced electrical fields are also assumed to be negligible.  Thus 

2

0 .   J B B V        (1.7) 

1.3.4 Explicit Finite Difference Method 
 

The finite difference approximations for derivatives are one of the simplest and the oldest methods to solve 

differential equations. The advent of finite difference techniques in numerical applications began in the 

early 1950s and their development was stimulated with the emergence of computers that offered a 

convenient framework for dealing with complex problems of science and technology.  
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An example of typical second order parabolic partial differential equation is taken to explain the forward 

time/ central space (FTCS) method [71].The model equation under consideration has the following form 

2

2
,

u u

t x


 


 
                                                             (1.8) 

where   is assumed as a constant. Let u t   be represented by a forward difference approximation of 

order t : 

1

( ).
n n

i iu uu
O t

t t

 
  

 
                                                       (1.9) 

Similarly, the space derivative is represent by a central difference approximation formula: 

 

2
21 1

22

2
( ).

n n n

i i iu u uu
O x

x x

  
  

 
                                              (1.10) 

In view of Eqs. (1.8) and (1.9), Eq. (1.1) can be approximated by the following difference equation: 

 

1

1 1

2

2
.

n n n n n

i i i i iu u u u u

t x




   


 
                                                      (1.11) 

In Eq. (1.8), 1n

iu   is the only unknown and, therefore, it can be computed in the following form   

 
 1

1 12
2 .n n n n n

i i i i i

t
u u u u u

x



 


   


                                                   (1.12) 

Now with suitably defined time and space step sizes Eq. (1.12) can be used along with initial/boundary 

conditions to compute 1n

iu  . It can been shown that the solution obtained via above expression is stable for 

 
2

0.5.t x    
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Chapter 2 

 

Numerical study of unsteady blood flow 

through a vessel using Sisko model 

 

In this chapter, an analysis is carried out to study two-phase blood flow through an artery under the influence 

of pulsatile pressure gradient and externally imposed body acceleration. It is assumed that the blood in the 

core region obeys the Sisko constitutive equation whilst it behaves as a Newtonian liquid in the peripheral 

region. The mass and momentum conservation laws are used to model the proposed problem in terms of 

nonlinear partial differential equations. These equations along with initial and boundary conditions are 

made dimensionless and then solved numerically. The behavior of various flow quantitates is analyzed 

through a parametric study. 

2.1 Mathematical formulation 
 

 

For the present analysis, the artery is assumed to be a circular tube of radius a and a cylindrical co-ordinates 

 , ,r z  system is employed. Following [68], a periodic forcing term due externally imposed body 

acceleration is also included in the force balance. The geometry of the flow configuration is presented in 

Fig. 2.1. Here it is shown that blood flow in the vessel is divided into two regions, a core region 0 r b 

and a periphery region b r a  . 
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Fig. 2.1. Schematic diagram of flow in vessel. 

 

For the subsequent analysis, it is assumed the Reynolds number associated with the flow is small. As an 

implication of this assumption the radial velocity can be neglected in comparison to the axial velocity.  Thus 

for the present case the velocity field is taken as   

 0,  0,  ( , ) .i iu r t , i = 1,2V                                                                        (2.1) 

Where 1u and 2u are the axial velocities in core and periphery regions, respectively. Using Eq. (2.1) in Eq. 

(1.2), continuity equation is identically satisfied and z-component of equation of motion gives (in absence 

of magnetic field and porous medium) 

 
1

( ) , .rz
iu p

G t rS i = 1,2
t z r r

 
  

   
  

                          (2.2) 

where it is assumed that G(t) =(0, 0, G(t)). It is assumed that the fluid in the core is a Sisko fluid and in the 

periphery a Newtonian fluid. The Cauchy stress tensor for a Sisko fluid is given by [72] 

      ,p T I S                              (2.3) 

in which p  is the pressure, I  is the identity tensor and S  is the extra stress tensor defined by 

1
*

1 2 1  Π
n

 
  

  
S A ,                                                                   (2.4) 

where n, 1  and 2  are the material parameters of the Sisko fluid. The Sisko model include Newtonian and 

generalized power law models for n = 1 (or 2  = 0) and 1 = 0, respectively. The first Rivilin-Ericksen 

tensor *

1A  is defined by 

b z 

r a 
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*

1

T A L L                                                  (2.5) 

in which                                                                     L = V                                                           (2.6) 

and                                                                      *2

1

1
Π    tr .

2
 A                                                         (2.7) 

 For a Newtonian fluid, the extra stress tensor is 

*

2 1  ,S A                                                                                 (2.8)    

where 2 is the dynamic viscosity. In view of Eqs. (2.1), (2.4) and (2.8), the shear stress in core and 

periphery region is given by      

                                    

1

1 1
1 2

2
2

  ,          0 ,   

,                              b ,

n

rz

u u
r b

r r
S

u
r a

r

 



    
     

      
 

 


                                               (2.9)   

Following Burton [99], we choose  

0 1 cos ,p

p
A A t

z



  


                         (2.10) 

where /p z    is the driving pressure gradient due to the contraction and expansion of the heart, 0A  and 

1 A  are the systolic and diastolic components of the pressure gradient, respectively,   2p pf   is the 

circular frequency and pf is the pulse rate frequency. Further, we assume G(t)as follows: 

 ( ) cos .g bG t A t                                   (2.11) 

In Eq. (2.11) gA is the amplitude,  bf  is the frequency [ 2 ]b bf  and   is the lead angle of G(t) with 

respect to the heart action. Eliminating Srz between (2.7) and (2.8), the equation in the core region. i.e 0 

r b  is obtained as         
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 
1

1 1 1 1
0 1 2

0

1
1 cos( ) cos .

n

p g b

u A u u
A t A t r

t A r r r r
      

          
            

            

           (2.12) 

 Similarly, for the periphery region i.e  ,b r a   we get        

 
2

2 1 2 2 2
0 2 2

0

1 cos( ) cos .p g b

u A u u
A t A t

t A r r r


     

   
      

   
                                     (2.13) 

The boundary and initial conditions for the present flow configuration are  
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        



                                          (2.14) 

                       1 2( , ) ( , ) 0,    u u at r t r t t = 0.     (Initial conditions)                                    (2.15) 

The last two boundary conditions in (2.14) represent the continuity of velocities and stresses at the interface. 

The expressions of flow rate and wall shear stress are respectively given by 

Q = 1 2

0

2   2   ,

b a

b

u r dr u r dr                                                                                (2.15) 

2
2   s

r a

u

r
 



 
  

 
.                                                                                    (2.16) 

2.2 Dimensionless formulation of the problem 
 

Introducing the dimensionless variables [68] 

0

,  ,  ,
2

p
r t

u
u

a

r
t

U




                                                                                 (2.17) 

Where 0U  and p are average velocity and angular frequency, respectively. Eqs. (2.12) - (2.13) may be 

casted as (after dropping bars) 
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    
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                       

     
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      

1

1 1 ,
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   (2.18) 
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 
 
 

                                                (2.19) 

Where  and  are the Womersley numbers. The other parameters appearing in Eqs. (2.18) and (2.19) are 
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The dimensionless boundary conditions becomes 
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                                                            (2.21) 

where 0 .r b a  It is pointed out that Eq. (2.18) reduces to the corresponding equation of Massoudi and 

Phuoc [68] when 0  . In dimensionless variables, volume flow rate and wall shear stress become 
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2.3 Numerical solution 
 

We have integrated the Eqs. (2.18) - (2.19) with the initial and boundary data given in Eq. (2.21) 

numerically by using a finite difference method which is forward in time and central in space. Let us denote 

 1 ,i ju r t  as
1

j

iu and approximate various partial derivatives as 
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Similarly, for the time derivative we define the approximation: 
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1 11
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Δ
.

j j

i i
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u uu
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t t







                                                                                  (2.25) 

The partial derivative of axial velocity computed 2u are approximated in a similar manner. Using (2.24) 

and (2.25), Eqs. (2.18) and (2.19) take the following discretized form 
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                       (2.27) 

For the solution of present problem we have discretized the radius by using the formula ( 1) ,i i rr     

 1, 2,...., 1ci N   such that  1c
cN orer r


 and    1 1, 2,,i c c ci N r i N Nr       ......., 1N 

 
with 

1 1,Nr   where r is the increment in the radial direction. Similarly for discretization of time, we have use 
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the following discretization formula      1  Δ ,   1, 2,  ..jt j t i    , where Δt  is the small time increment. For 

the present computations, we have chosen Δ 0 25  .0r   and Δt  0.00001, so that the results are accurate up 

to 7~1  0 .   

2.4 Results and discussion 
 

 

To observe the quantitative effects of the Sisko material parameter, computer code is developed for the 

numerical simulations in Matlab. In this study, generally we have taken 0   and assume the core radius 

to be 60% of the tube radius. Our results are based on the data of two different arteries (radius): Smaller 

vessel, coronary artery, the data is chosen as (A0 = 698.65  dyne/cm3, a  = 0.15 cm) and for larger vessel, 

femoral artery, the data is chosen as (A0 = 32 dyne/cm3 , a = 0.5 cm) [68] and value of Womersley number is 

chosen as 2. Moreover, in all the simulations we have assumed
1 1B B , 

2 2B B  and .   
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Fig. 2.2. Time -series of velocity at a = 0 for flow in two arteries, where Figs. 2.2 a, c and e are for larger artery (a = 

0.5 cm, A0 = 32 dyne/cm3) and Figs. 2.2 b and d are for smaller artery (a = 0.15 cm, A0 = 698.65 dyne/cm3). Velocity 

graphs for different values of B2 (varying Ag) are shown in Fig. 2.2 (a, b); Velocity graphs for different values of fb are 

shown in the Fig. 2.2(c and d); velocity graphs for different values of 𝜀 are shown in Fig. 2.2 (e). 

 

The time-series of velocity at the central plane are shown in Fig. 2.2 for both femoral and coronary arteries. 

These graphs shows that irrespective of the artery type, the velocity at the centre fluctuates around its mean 

value, increases and eventually attains the steady state condition as the time increases (here we define 𝜏𝑠 is 

the dimensionless steady state time where the maximum velocity distribution is obtained). Fig. 2.2 (a) and 

(b) show that the amplitude of the velocity increases by increasing the amplitude of the body acceleration 

while it shows decreasing trend by increasing the pulse frequency 𝑓𝑏 (Fig. 2.2 (c) and (d)) and material 

parameter of the Sisko model (Fig. 2.2(e)).  

    

0 1 2 3 4 5 6

-1

-0.5

0

0.5

1

 

 

0 2 4 6

0

1

2

3

Our Results

Ref. [20] 

0 2 4 6

0

1

2

3

Our Results

Ref. [20] 

D
im

e
n

si
o

n
le

ss
 V

e
lo

ci
ty

 a
t 

r 
=

0
 

 

Dimensionless Time, 𝝉 

 

 𝑩𝟏= 1.41,  𝑩𝟐=21.67, n = 0.635   

𝜀 = 0.1 𝜀 = 0.8 𝜀 = 1.5 

D
im

e
n

si
o

n
le

ss
 V

e
lo

ci
ty

 a
t 

r 
=

0
 

 

Dimensionless Time, 𝝉 

 

D
im

e
n

si
o

n
le

ss
 V

e
lo

ci
ty

 a
t 

r 
=

0
 

 

Dimensionless Time, 𝝉 

 

𝐁𝟐= 9.27 

fb = 0.6 Hz 

       𝑩𝟏= 6.6,  𝒇𝒃= 1.2,  = 0.0, n = 0.5, 𝜶 = 𝟑  𝑩𝟏= 6.6,  𝑩𝟐= 4.64,   = 0.0,  n = 0.5, 𝜶 = 𝟑 

 

(b) (a)  

(e) 

68  
68  



27 
 

  

 

Fig. 2.3: Comparison of our results with Massoudi and Phuoc results for coronary artery. 

A comparison of our numerical results in the limiting case when 0   with that of Massoudi and Phuoc 

[68] is presented in Fig. 2.3. Here radial and time evolutions of axial velocity for coronary artery are 

compared. It is observed that our results are in pleasing agreement with the existing results of Massoudi 

and Phuoc [68]. This obviously corroborates the validity of our model and further strengthen our faith on 

results obtained through it. 
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Fig. 2.4: Radial distribution of axial velocity graphs for larger artery (a = 0.5 cm, A0 = 32 dyne/cm3). Velocity Graphs 

for different values of B2 (varying Ag) are shown in Fig. 2.4 (a and b); Graphs for different values of fb are shown in 

Fig. 2.4(c and d); Graphs for different values of B1 and B2 are shown in Fig. 2.4 (e and f). 

The velocity profiles at different time instants for femoral artery are shown in Fig. 2.4. It is generally 

observed from these plots that the body acceleration increases the magnitude of velocity while an increase 

in pulse frequency 𝑓𝑏 decreases its magnitude. There are inflection points within time cycle of the velocity 

profile where the shapes of velocity changes from convex to concave. It is observed from Fig. 2.4 (a) that 

the shape of the velocity profile is parabolic in the absence of body acceleration at the beginning of the 

fluctuation cycle or t = s  as evident in Fig. 2.4 (b).  Figs. 2.4 (c) and (d) indicate that the maximum velocity 

shifts from the centre of an artery toward the wall during the first half of fluctuation cycle and then moving 

back to the centre of an artery during the second half of fluctuation cycle. The core region is taken as 

Newtonian and the effects of body acceleration are minimized in comparison with other panels in Fig. 2.4 

(e). It is noted from this figure that the velocity profile returns to its parabolic shape and the curve becomes 

concave at t = s  + thalf. In Fig. 2.4(f) the core region is assumed as non-Newtonian fluid and effect of body 

acceleration is increased. This results in the forward shift of the fluctuation cycle. 

The velocity profile for smaller artery, coronary artery, is shown in Fig. 2.5. Figs. 2.5 (a)-(b) show that the 

velocity profiles follow the same pattern as shown in Fig. 2.4. A Comparison of the velocity profiles in 

Figs. (2.4) and (2.5) for two arteries reveals that the velocity is faster in larger artery as compare to smaller 
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artery while its grows significantly slowly for Newtonian case as compared to the non-Newtonian case. Fig. 

2.5 (g) shows the effect of material parameter of Sisko model. It is found that the magnitude of velocity 

increases by decreasing 𝜀 which ultimately shows that velocity profile is a decreasing function of material 

parameter. Fig. 2.5(h) show a decrease in velocity by increasing the thickness of the peripheral layer. 
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Fig. 2.5. Dimensionless Velocity graphs for smaller artery (a = 0.15 cm, A0 = 698.65 dyne/cm3). The Effects of 

𝐵2(varying 𝐴𝑔) are shown in Fig. 2.5 (a & b); Velocity graphs for different values of 𝑓𝑏 are shown in Fig. 2.5 (c & d); 

Graphs for different values of  are shown in Fig. 2.5 (e, f and g); Graphs for different peripheral thickness are shown 

in Fig. 2.5 (h). 

Figs. 2.6 and 2.7 present the effects of body acceleration 𝐴𝑔, body force 𝑓 𝑏, shear-thinning and material 

parameter on the dimensionless wall shear stress and flow rate. The profiles indicate that the flow rate and 

the wall shear stress fluctuate around mean values and these mean values become constant values when 

steady state conditions are achieved. It is also observed that the amplitude of fluctuation increase with an 

increase in the amplitude of body acceleration while it shows converse behavior with increasing the material 

constant of the Sisko model. The fluctuation of these profile is always between a positive and a negative 

value in the time cycle for the larger artery, while for the small artery such fluctuation of wall shear stress 

in the smaller artery are significantly higher (about three to five times) than those obtained for the larger 

artery.  

Now in the end, we would like to comment on significance of Sisko model in the light of above discussion. 

It has been pointed by Yilmaz and Gundogdu [22] that all the generalized Newtonian fluid models of 

(blood) viscosity show shear-thinning behavior and must meet the following requirements. They must 

effectively fit the viscosity shear rate data of blood at all shear rates, whether high, medium or low. Power-

law model is suitable for blood at medium shear rates. However, it does not represent the blood rheology 

at low and high shear rates. In fact power-law equation predicts infinite viscosity at low shear rate and zero 
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viscosity as shear rate approaches to infinity. Sisko model extends the power-law model to include a finite 

value of viscosity as shear rates approaches infinity. In this sense, Sisko model is better capable of 

predicting the blood rheology at high shear rates. Graphical illustrations show that the additional constant 

 ( in dimensionless form) in Sisko equation significantly alters the flow characteristics of blood. It is 

observed that the power-law model predicts higher value of the amplitude of dimensionless velocity at r = 

0 than the Sisko model. Similar is the case with dimensionless radial velocity. This significant effect of 

on velocity is later transmitted in other variables such as flow rate and wall shear stress. It is found that 

flow rate through artery decreases whilst wall shear stress increases in going from power-law to Sisko 

model. For instance, keeping the other parameters fixed, a decrease of 20 % is noted in the flow rate as 

changes from 0 to 1.5.  

The above discussion clearly shows that inclusion of  in the power law equation brings significant 

qualitative changes in the results. 
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Fig. 2.6. Flow rate graphs in two different artery for different values of emerging parameters. Figs.2.6 a, c and e are 

for larger artery and Figs.5 b and d are for smaller artery. Fig.2.6 (a and b) demonstrate the effects of varying  𝐵2; 

Graphs for different values of fb are shown in Fig.2.6 (g and h) and Fig.2.6 (e) shows the effects of varying 𝜀. 

 

2.5 Concluding Remarks 
 

 

A mathematical model for two-layer unsteady pulsatile flow in the presence of body acceleration is 

developed using the constitutive equation of a Sisko model. The important phenomena associated with the 

flow under consideration are discussed in detail and their interaction with pulsatile pressure gradient and 

body acceleration is analyzed. Following points are concluded from this study. 

 The magnitude of blood velocity in the femoral artery is greater than in the coronary artery. 

 Body acceleration increases the amplitude of the flow velocity. 

 The material parameter of Sisko has greater influence on blood flow in coronary artery as compared to the 

femoral artery.  

 This study also demonstrate the potential of rheological properties of the blood to control the important 

variables associated with the blood flow. 

 The results obtained here show pleasing agreement with the existing results of Massoudi and Phuoc [68]. 
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Fig. 2.7. Wall shear stress graphs in two different arteries for different values of emerging parameters. Figs. 2.7 a, c 

and e are for larger artery and Figs. 2.7 b and d are for smaller artery. Fig.2.7 (a and b) demonstrates the effects of 

varying B2 (Ag = 0,5g); Fig.2.7 (c and d) shows the effects of varying fb (Ag=0,5g) and Fig.2.7 (e) demonstrates the 

effects of varying 𝜀. 
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Chapter 3 

 

Computations of pulsatile blood flow in a tube for 

an Oldroyd-B fluid 

This chapter investigates the effects of body acceleration on unsteady pulsatile flow of blood in a vessel. 

The non-Newtonian behavior of blood in the core region is modeled by the constitutive equation of an 

Oldroyd-B fluid. The peripheral region is assumed to obey Newtonian constitutive law. Our interest lies in 

investigating the effects of stress relaxation and retardation on various hemodynamical variables associated 

with the unsteady blood flow. The modeled equations are normalized and solved numerically using finite 

difference method. The results are graphically displayed and impact of various parameters on physical 

quantities of interest is analyzed. 

3.1 Problem formulation 
 

 

 

The flow geometry and the underlying assumptions are same as described in the previous chapter. However, 

the rheological behavior of streaming blood in the core region, in this chapter, is characterized by an 

Oldroyd-B fluid model.  

The extra stress tensor of an Oldroyd-B fluid is given by [73] 

* *

1 1 1 2 1       
  

   
 

S S A A ,                                                             (3.1) 
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where 1 , 2 are the relaxation and retardation times respectively, 1 is the viscosity of the blood in core 

region. 


S is the upper convected time derivative (a materially objective time derivative) 

          
t

 
      


S
S V S - V S S V                                                                   (3.2) 

In view of Eq. (3.1), the shear stress in the core region  0 r b  satisfies 

1
1 1 2  1     1     .rz

u
S

t t r
  

    
     

     
                                                                    (3.3) 

The shear stress in the periphery region  b r a  is already defined in Eq. (2.8). Eliminating rzS between 

Eqs. (3.3) and (2.7), we get the governing equation for flow in the core region: 

   

 

2

1 1 1 1
1 0 12

0 0

2 2

1 1 1 1 1
1 1 2 22 2

  1 cos( ) cos

                                   .

p p p g p

g p p

u u A A
A t sin t A t

t t A A

u u u u
A sin t

r t r r r t r

        


      

   
       

    

          
         

         

    (3.4) 

The flow in periphery region is governed by Eq. (2.12). Eqs. (3.4) and (2.12) are subject to same boundary 

and initial conditions as defined in (2.13) and (2.14) except at the interface r = b. At the interface r = b, we 

shall only employ the condition of continuity of the velocities. 

3.2 Dimensionless analysis 
 

To this end, we first normalize these equations by using the new variables as defined in Eqns. (2.17). In 

terms of new variables Eqns. (3.4) and (2.12) after dropping the bars yield  

        
2

1 1
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1 2 11
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r r
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     

      
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    
2
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1 2 2

1
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                                   (3.6) 

where *

1 1 2 2  2 ,  / / p        . 

The dimensionless boundary and initial conditions become 

0 0

1
1 212

0

0,  0,    .
r r r

rr

u
u u u





  


                                                                  (3.7) 

The volume flow rate and the shear stress at the wall are defined through expressions (2.21) and (2.22), 

respectively.  

0
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Q u rdr u rdr
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                                                                                  (3.8) 
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The various dimensionless variables appearing in Eqs. (3.5) and (3.6) are already defined in previous 

chapter through Eq. (2.23). The reader is only cautioned to use   instead of   in Eq. (2.23) for the 

definitions of dimensionless variables appearing in this chapter. 

3.3 Numerical solution using finite difference method 
 

 

The methodology to obtain the solution of Eqs. (3.5) and (3.6) with corresponding initial and boundary 

conditions is same in described in the previous chapter. The formulae used to approximate the space 

derivatives are already given in previous chapter. However, in contrast to Eqs. (2.12), Eq. (3.5) involve 

mixed and second order derivatives. These derivatives are approximated as 
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Using (2.24) and (3.8), Eqns. (3.5) and (3.6) may be transformed to the following difference equation 
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                              (3.10) 

The temporal and spatial discretizations are also carried out in a similar manner as done in chapter 2. 

Moreover, the choice of temporal and spatial time steps sizes is also the same as given in the previous 

chapter. 

3.4 Results and Discussion 
 

 

In simulation we have assumed that  = 0 and the core diameter is assumed to be 60% of the tube diameter. 

In addition, the effect of the non-Newtonian nature of the blood is studied using Oldroyd-B fluid for 

different values of 1 and 2 . Following [68], we have performed two simulations having radius size and 

systolic component of the pressure gradient. The set with 0 698.65A   dyne/cm3, r = 0.15 cm represents 

the values the constant pressure gradient inside the coronary artery whilst the other one with ( 0 32A 

dyne/cm3, r  = 0.5 cm) representing the corresponding variables for femoral artery. The effect of the body 

acceleration on the flow field are shown for different values of gA  = (0, 0.5g, g) and pulse frequency bf  

(= 0.6, 1.2 and 2.4).    
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Fig. 3.1. Unsteady Dimensionless velocity at the centre of the tube for flow: Results in the larger artery (r = 0.5 cm, 

A0 =32 dyne/cm3) are shown in Fig. 3.1 (a, c, and e); Results in the smaller artery (r= 0.15, A0 = 698.65 dyne/cm3) are 

shown in Fig.3.1 (b, d and f). Velocity graph for different values of B2 (varying Ag) are shown in Fig.3.1 (a and b); 

Velocity graph for different values of fb are shown in the Fig.3.1(c and d); Velocity graph for different values of B2 

are shown in Fig.3.1 (e and f). 

It is observed that due to the pulsating pressure and the body acceleration the velocity at the centre 

fluctuates, increases and finally attains the steady state as time increases (𝜏𝑠 is the dimensionless steady 

state time where the maximum velocity distribution is obtained). Such behavior of velocity is shown in Fig. 
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3.1. The effects of the amplitude of the pressure gradient 𝐴0, the body acceleration in term of the 

amplitude 𝐴𝑔, and the frequency 𝑓𝑏 are also shown in Fig. 3.1 in the core of the artery for non-zero values 

of 1 and 2 . Fig. 3.1a and 3.1b shows that the velocity fluctuates around its mean value with constant 

frequency and amplitude after achieving the steady state. Moreover, the amplitude of velocity increases by 

increasing the amplitude of body acceleration. However, it decreases by increasing the frequency of body 

acceleration as evident Fig. 3.1c and 3.1d. One may also conclude from the velocity plots that the mean 

value of the velocity fluctuation in absence of body acceleration is significantly higher than mean value of 

velocity fluctuation in presence of body acceleration.  

Fig. 3.2 illustrates the velocity profiles for steady state condition in femoral artery. Hence 𝑡𝑠 is the 

dimensionless steady state time where the maximum velocity distribution is obtained. Therefore, 𝑡𝑠 is the 

starting time of the first half of one fluctuation cycle. In general, it is observed that if 𝐴𝑔 is larger or 𝑓𝑏  is 

smaller, the value of velocity grow faster. Same behavior is also observed when fluid is taken in the core 

region non-Newtonian. There are inflection points within cycle of the velocity profile where the shapes 

changes from being convex to concave.  
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Fig. 3.2. Dimensionless velocity profile in the larger artery(r=0.5cm,𝐴0=32 dyne/𝑐𝑚3); Graphs for different values 

of B2 (varying Ag) are shown in Fig. 3.2 (a and b); Graphs for different values of fb are shown in Fig.3.2(c and d); 

Graphs for different values of  1 and 2  are shown in Fig.3.2 (e and f). 

From Fig.3.2a, it is observed that when 0gA   the shape of the velocity profile is parabolic. Similar 

behavior is also found in Fig.3.2b at the start of the fluctuation cycle or t = s . From Figs. 3.2c and 3.2d 

one can observe that the velocity does not achieve maximum at the centre of the artery. Moreover, 

maximum in velocity is moving from the centre toward the arterial wall during the first half and moving 

back to the centre during the second half of the fluctuation cycle. Moreover, for the femoral artery when 

the velocity profile becomes negative, the maximum velocity can be seen near the wall beyond the core 

region.  
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Fig. 3.3. Dimensionless velocity graphs in the smaller artery(r=0.15cm,𝐴0=32 dyne/𝑐𝑚3): Fig. 3.3 (a & b): The 

Effects of 𝐵2(varying 𝐴𝑔);Fig(c & d): The effects of varying 𝑓𝑏; Graphs for different values of  1 and 2   are shown 

in Fig. 3.3 (g and h) 

In Fig. 3.2e, the core region is taken Newtonian and body acceleration is assumed minimum. It is found 

that the velocity profile to return to its parabolic shape and the curve becomes concave at t = s +  𝑡ℎ𝑎𝑙𝑓. 

Fig. 3.2f is shown for non-zero values of 1 and 2 . This figure indicates shift in fluctuation cycle in time. 
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Fig. 3.4. Unsteady Dimensionless flow rate in two different arteries: Fig. 3.4 (a, c, and e) results for the larger artery(r 

= 0.5 cm, A0 =32 dyne/cm3); Fig. 3.4 (b, d and f) results for the smaller artery (r= 0.15, A0 = 698.65 dyne/cm3). Fig. 

3.4 (a and b) Effects of varying B2 (varying Ag); Fig. 3.4(c and d): the effects of varying fb (Ag=0.5g); Graphs for 

different values of  𝜆1 𝑎𝑛𝑑 𝜆2  are shown in Fig. 3.4 (g and h). 

The variation in velocity with time after achieving steady state for coronary artery is shown in Fig. 3.3. It 

is evident from Figs. 3.3a and b that the profiles of velocity show increasing trend by increasing Ag. It is 

interesting to note that the shape of velocity profile is parabolic at all time. Figs. 3.3c and d indicate a 

decreasing trend in velocity by increasing fb. The velocity in coronary artery when fluid in the core region 

is Newtonian is shown in Fig. 3.3e. The velocity with same set of values bit with non-zeros values of 1

and 2 is shown in Fig. 3.3f. A comparison of Figs. 3.3e and f indicates a faster decrease in velocity with 

time when fluid in the core region is non-Newtonian Oldroyd-B fluid. The effects of 1 and 2 on velocity 

at t = 𝑡𝑠 are shown in Figs. 3.3g and h respectively. These figures show that the effect of 1 on velocity is 

quite opposite to the effect of 2 .  

The effects of Ag, fb, 1 and 2  on the non-dimensional wall shear stress and flow rate are shown through 

Figs. 3.4 and 3.5. It is observed that both flow rate and wall shear stress fluctuate with time around some 

mean value after steady state has been reached. The profiles further indicate that the amplitude of fluctuation 

increases by increasing Ag (the parameter controlling the amplitude of body acceleration). The effects of fb 

on these profiles are quite opposite to the effects of Ag. 
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Moreover, the amplitude of fluctuate in flow rate and shear stress increases in going from Newtonian to 

Oldroyd-B fluid. Another interesting observation is that for the larger artery both flow rate and shear stress 

fluctuates between positive and negative value whilst for smaller artery such fluctuation is always between 

positive values. As an implication of the mean values flow rate and shear stress in the coronary artery are 

in excess of those in the femoral artery.   

3.5 Conclusion 
 

 

A mathematical model based on Oldroyd-B constitutive equation is developed for pulsatile flow of blood 

subject to body acceleration. The model bears the potential to explore the effects of stress relaxation and 

retardation effects. The analysis presented here is general and includes the results of Newtonian and 

Maxwell fluids as special cases. The important hemodynamical variables in pulsatile flow with 

superimposed body acceleration are analyzed for several values of relaxation and retardation parameters. 

The present analysis is general and even such an analysis with Fahraeus-Lindqvist effect in Oldroyd B-

fluid is yet not available in the literature. 
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Fig.3.5. Dimensionless wall shear stress for flow in two different arteries as a function of the dimensionless time: 

Fig.3.5 (a, c, and e) results for the larger artery (r = 0.5 cm, A0 =32 dyne/cm3); Fig. 3.5 (b, d and f) results for the 

smaller artery (r= 0.15, A0 = 698.65 dyne/cm3). Fig. 3.5 (a and b) Effects of varying B2 (varying Ag); Fig. 3.5 (c and 

d): the effects of varying fb (Ag=0,5g); Fig. 3.5 (g and h): the effects of varying 𝜆1 and 𝜆2. 
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Chapter 4 

 

Unsteady magnetohydrodynamic blood flow in a 

porous-saturated overlapping stenotic artery 

Unsteady pulsatile flow of blood through a porous-saturated, tapered and overlapping stenotic artery in the 

presence of magnetic field is examined theoretically and computationally in this chapter. The power law 

constitutive model is employed to simulate haemo-rheological characteristics. The governing equation is 

derived assuming the flow to be unsteady, laminar and two-dimensional. A robust, finite difference method 

is employed for the solution of the governing equation, subject to appropriate boundary conditions. Based 

on this solution, an extensive quantitative analysis is performed to analyze the effects of blood rheology, 

body acceleration, magneto-hydrodynamic parameter, permeability parameter and arterial geometrical 

parameters of stenosis on various quantities of interest such as axial velocity, flow rate, resistance 

impedance and wall shear stress. The computations demonstrate that velocity, flow rate and shear stress 

increase while resistance to flow decreases with greater permeability parameter. Additionally, the effects 

of magnetic field are observed to be converse to those of permeability i.e. flow is decelerated and resistance 

is increased, demonstrating the powerful utility of exploiting magnetic fields in haemo-dynamic flow 

control (e.g. intra-corporeal surgical procedures). Furthermore, the size of trapped bolus of fluid is also 

found to be reduced for large values of the permeability parameter indicating that progressively more porous 

media circumvent bolus growth. 
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4.1 Mathematical Model 
 

 

Let us consider incompressible power-law blood flow through a tapered artery of length L with a 

overlapping stenosis subject to periodic body acceleration. We employ a cylindrical coordinate system (r, 

θ, z) with r directed along the radial direction and z along the axis of the tube (artery). The geometry of the 

overlapping stenosed arterial segment is simulated according to (see Fig. 4.1(a)): 

 
         

 

2 3 43 2

0 0 0 0

64 11 47 1 3
1 ,

10 32 48 3 2

,                                                           ,

,z a l z d l z d l z d z d d z d l
R z

z a otherwise

 



   
               

    
  

                               

(4.1) 

where a is the radius of the non-tapered artery in the non-stenotic region, 0l  is the length of stenosis, d is 

the length of non-stenotic region,   tan   is the tapering parameter and  is called taper angle. The 

cases 0  , 0,  0  correspond to converging, non-tapered and diverging tapering artery respectively. 

These cases are depicted in Fig. 4.1 (b).  

 

  

 

Fig. 4.1. Geometry of the stenosed arterial segment. 
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Since the flow under consideration is unsteady two-dimensional and axisymmetric, therefore we define 

 ( , , ),  0,  ( , , ) .u r z t w r z tV                                                         (4.4) 

The Cauchy stress tensor of power law fluid is given by [22] 

 1 *

1

n  S A ,                                                                              (4.5) 

where  is the second invariant of rate of deformation tensor *

1A and n is the power law index. According 

to the effective viscosity of the porous medium for a power law fluid is [74] 

1

,
n

eff 


  V                                                                                      (4.6) 

where  is the blood dynamic viscosity. 

In view of (4.4), the continuity equation (1.2) reduces to 

0.
u u w

r r z

 
  

 
                                                                            (4.7) 

Similarly, the momentum equation (1.3) in the presence of magnetic field and component of extra stress S

take the following form: 

     11 n

rr rz

u u w p u
u rS S u

t r z r r k
w

r z
 

        
                  

,                         (4.8) 
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              (4.9) 
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(4.12) 

In Eq. (4.9) G(t) represents the body acceleration acting on stenosed arterial flow in axial direction. The 

above equation can be made dimensionless by defining  
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           (4.13)  

Making use of these variables Eqns. (4.7) - (4.12) after dropping bars can be casted as  

0,
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For the subsequent analysis, we assume that the stenosis is mild  1 ,a     and the ratio 

0 (1).a l O    In view of above assumptions, Eqns. (4.15) - (4.16) reduce to 

0,
p

r


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
                                                                                                                                                      (4.18) 
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Moreover, the pressure gradient is assumed to be of the form defined in Eq. (2.9). In dimensionless form it 

becomes 
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                                                                                   (4.20) 

In Eqs. (4.14) - (4.17), 
0 /Re U a   is the Reynolds number, 1/ nk k a   is the modified permeability, 

and  
1

2
0 /M B a    is the Hartmann number.  

Inserting value of p z  in axial momentum equation (4.19), we get 
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             (4.21) 

The appropriate boundary and initial conditions for the problem under consideration are [26] 

( , )
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w r t
at r

r


 


                                                  (4.22) 

 ( , ) 0,  ,w r t at r R z                                                     (4.23) 

( ,0) 0,                              0.w r at t                                                      (4.24)   

The physical quantities of interest such as volumetric flow rate, the shear stress at the wall and resistance 

impendence in terms of the new variables become: 
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The dimensionless expression of geometry of stenosis is given by: 
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Employing the radial coordinate transformation [75] 
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Eq. (4.21) can be cast as 
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The dimensionless boundary conditions assume the form: 
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Similarly the volumetric flow rate, the shear stress at the wall and resistance impendence respectively takes 

the form: 
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substituting the value dimensionless form of pressure gradient in Eq. (4.24), we can write, 

 1

1

0

0

1 (2 )
 .

( )

tL

l
u

B

x

ecos

R zdx




 
 
 




                                                                           

(4.35) 

 

4.2 Numerical solution  
 

Employing the finite difference formulas of various partial derivatives appearing in Eq. (4.30), we get the 

following difference equation. 
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The finite difference representation of the prescribed conditions is given by 
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The numerical solution is sought for N+1 uniformly discrete points  , 1,2, .. 1ix i N     with a grid size

1Δ
1

x
N




 at the time levels  1 Δjt j t  , where Δt  is the small increment in time. To obtain the 

accuracy of the order 
7~ 10 ,

we have taken the following step sizes: Δ 0.025x  and 0.0t = 0001 . 

 

4.3 Results and Discussion 
 

 

The following default parameters are used in the simulations: 00.2, 1, 2.0,d l L    

2 , 1.2, 2 , 1.2, 0.0, 0.2.p p p b b bf f f f          
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Fig. 4.2 (a), illustrates the variation of dimensionless velocity profiles with permeability parameter at a 

time instant at which the maximum velocity is obtained. A decrease in axial velocity is noted from this 

figure with increasing k. Greater permeability diminishes the porous matrix resistance which serves to 

accelerate the blood flow.  

 
 

 

 

Fig. 4.2. Velocity profile for different values of permeability parameter k and Hartmann number M with the following 

data:
 

0.52,  ,  0.2,  0.8, 0.5.st z n M       

The dimensionless velocity profiles for different values magnetic field parameter Hartmann number, M, are 

shown in Fig. 4.2 (b). It is observed that magnitude of velocity decreases by increasing the value of the 

Hartmann number, since greater hydro magnetic body force acts to retard the flow i.e. induces deceleration 

in the blood flow. 
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Fig. 4.3. Velocity profile for different values of dimensionless amplitude body acceleration and   with the following 

data: 0.52,  ,  0.2,  0.8,  0.5.st z n k     
 

The variation in axial velocity for various values of dimensionless amplitude of body acceleration is shown 

in Fig. 4.3(a).As expected the magnitude of axial velocity increases with increasing the amplitude of the 

body acceleration. Fig. 4.3(b) shows the non-dimensional axial velocity in the stenotic region for different 

values of  and tapering parameter in the absence of magnetic field and porous medium. It is observed that 

an increase in  decreases the velocity. i.e., magnitude of velocity in stenotic artery is less than that in 

normal artery, a physically realistic trend. 

 
 

 

Fig. 4.4. Flow rate for different values of Hartmann number, M  and k with the following data: 
2 0.524,   ,B z   

 0.8,  0.5.n k   
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Fig. 4.5. Flow rate for different values of   and
 2B with the following data: 

2 0.524,  ,  0.8,  0.5,B z n k     

0.5.M   
 

 

 

 

Moreover, the diverging tapering accelerates the flow in the stenotic region in comparison with the 

converging tapering. Divergence in geometry enhances momentum flux and accelerates the flow. The 

converse behavior is induced with a convergence in taper.  

The velocity curve for artery without tapering lies in between the corresponding profiles of converging and 

diverging arteries. Fig. 4.4 (a) shows the influence of M on dimensionless flow rate in the stenotic region. 

It is observed that an increase in the magnitude of M reduces the magnitude of flow rate i.e. impedes arterial 

flow. Further, it can be seen through Fig. 4.4 (a) that the flow rate fluctuates around its mean value after 

the achievement of steady state time which is observed to be approximately 1.3 in this case.
 

  

Fig. 4.6. Dimensionless wall shear stress for different values of Hartmann number, M and 
2B with the following data:

2 0.520.2, 4, , 0.8,  0.5.B z n k       

 

The plots of dimensionless flow rate for different values of k in the stenotic region are shown in Fig. 4.4 

(b). This figure reveals that flow rate increases by increasing the permeability of the porous medium, which 

is again attributable to the reduction in Darcian drag force (lesser fibers are present to resist the flow with 

greater permeability). 
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Fig.4.7. Wall shear stress for different values of k and   with the following data: 
2 0.2, 4,  0.52,B z     

0.8, 0.5.n M   

 

The variation of dimensionless flow rate with   in the stenotic region is illustrated through Fig. 4.5 (a). 

This figure indicates a decrease in the flow rate with an increase in the size of stenosis. Contrary to the 

observation made in Fig. 4.5(a), Fig. 4.5(b) shows that the flow rate increases by increasing the 

dimensionless amplitude of body acceleration.
 

The profiles of wall shear stress for different values of Hartmann number, M, and shape parameter, 
2B are 

shown in Fig. 4.6 (a) and (b), respectively. Fig. 4.6 (a) indicates that wall shear stress decreases from the 

purely hydrodynamic (non-magnetic) to the magneto hydrodynamic case, since the presence of magnetic 

field decelerates the flow and reduces wall stress. Fig. 4.6 (b) indicates that wall shear stress increases with 

increase of amplitude of body acceleration. 

The time evolution of non-dimensional wall shear stress for different values of permeability parameter k is 

shown in Fig. 4.7 (a). It is evident from inspection of Fig. 4.7 (a) that an increase in the permeability 

parameter k increases the magnitude of the wall shear stress. The influence of  on dimensionless wall 

shear stress at a specific location z = 0.52 is shown in Fig. 4.7(b). It is interesting to note that shear stress 

decreases by increasing . The time series of dimensionless resistance to flow of various values of 
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permeability parameter is plotted in Fig. 4.8. This figure depicts that resistance to flow decreases with the 

permeability parameter k.
 

 

Fig. 4.8. Resistance to flow for different values of permeability parameter k with the following data:

20.2, 0,  0.52, 0.8,  0.5.B z n M     
 

Blood flow patterns over for the whole arterial segment at time instant t = 0.3 (which belongs to systolic 

phase) are shown in Fig. 4.9 (Panels (a)-(f)). Panel (a) is considered as standard and rest of the panels are 

compared with it in order to illustrate the effects of various parameters on bolus pattern. Panels (a) and (b) 

illustrate streamlines for k = 0.5 and ∞ (purely blood flow i.e. vanishing porous medium), respectively. 

Both panels indicate a circulating bolus of fluid and their comparison reveals a decrease in the size of bolus 

by increasing the permeability of the porous medium. The effect of Hartmann number on streamlines 

pattern can be observed through the comparison of Panels (a) and (c). It is observed that an increase in the 

strength of magnetic field increases the size of the circulating bolus. This is perhaps due to the decelerating 

effect of magnetic on the flow velocity. A comparison of Panels (a) and (d) illustrate the effects of power 

law index n on streamlines pattern. It clear that size and circulation of trapped bolus increases when n 

approaches unity. In other words the size and circulation of trapped bolus increases from the shear-thinning 

blood scenario to the Newtonian blood scenario. 
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Fig. 4.9. Blood flow patterns for:
1 2 0.2,  2,  2  B B , t = 0.3.    

 
 

 

Streamlines patterns for converging and diverging arteries are shown in Panels (e) and (f) respectively. It 

is interesting to note that the outer streamline of the eddying region has a sharp edge on the upstream side 

for a converging artery while this sharp edge appears on the downstream side for a diverging artery. A close 
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examination of panels (e) and (f) also indicate the formation of a small eddy in the downstream zone for a 

converging artery and in the upstream region for a diverging artery. 

 

4.4 Conclusions 
 

 

A mathematical model for magneto-hydrodynamic pulsatile flow of blood through a porous saturated artery 

incorporating the effect of body acceleration and asymmetric shape of stenosis is presented. A power-law 

constitutive model is used to account for the blood rheology. The unsteady flow regime is shown to be 

governed by a nonlinear partial differential equation which is solved numerically using finite difference 

technique. The physical quantities of interest are plotted for various values of the emerging fluid dynamic 

and geometric parameters. The present computations have shown that: 

 Dimensionless velocity in the stenotic region increases by increasing amplitude of the body acceleration 

and permeability parameter. However, it decreases when tapering parameter changes from positive to 

negative or when the height of the stenosis increases. 

 A reduction in the magnitude of velocity accompanies increasing Hartmann number. 

 The dimensionless flow rate in the stenotic region decreases by increasing the height of the stenosis while 

the converse response is computed by increasing permeability. 

 Wall shear stress increases by increasing the permeability of the porous medium. 

 The resistance to flow is a decreasing function of the permeability of the porous medium. 

 The size of trapped bolus of fluid decreases by increasing the permeability of the porous medium. However 

bolus size is amplified as we progress from the shear-thinning to Newtonian blood scenarios. 
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Chapter 5 

 

Unsteady non-Newtonian blood flow through a 

tapered overlapping stenosed catheterized vessel 

This chapter investigates the unsteady flow characteristics of blood in a catheterized overlapping stenosed 

artery in presence of body acceleration and magnetic field. The stenosed arterial segment is modeled as a 

rigid constricted tube. An improved shape of stenosis in the realm of the formulation of the arterial 

narrowing caused by atheroma is integrated in the present study. The catheter inside the artery is 

approximated by a thin rigid tube of small radius while the streaming blood in the artery is characterized 

by the Carreau model. Employing mild stenosis condition, the governing equation of the flow is derived 

which is then solving numerically using finite difference scheme. The variation of axial velocity, flow rate, 

resistance impendence and wall shear stress is shown graphically for various parameters of interest. The 

flow patterns illustrating the global behavior of blood are also presented. 

5.1 Geometry of the problem 
 

 

A homogenous incompressible Carreau fluid is assumed to be flowing in a catheterized tapered stenosed 

artery of length L. The flow is subject to a constant applied radial magnetic field and periodic body 

acceleration. The flow analysis will be carried out in a cylindrical co-ordinate system ( ,  ,  ),r z  where r 
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and z axes are along the radial and axial directions of the artery. It is assumed that the stenosed arterial 

segment is composed of two overlapping bell shaped curves whose equation is 

 
         

 

2 3 4* 3 2

0 0 0 0

*

64 11 47 1
1 , 1.5

10 32 48 3

,                                                           ,

,z a l z d l z d l z d z d d z d l
R z

z a otherwise

 



   
              

   
 


                       

(5.1) 

In above expression d represents the length of non-stenotic arterial region, a is the radius of undisturbed 

non-tapered part of the artery, 0l  the length of stenotic region, k is a parameter such that 0 1k   and 

 *
 tan   the parameter controlling the convergence  0   or divergence  0  of post-stenotic 

region. The case  0  corresponds to non-tapered artery. A schematic diagram of the both non-tapered 

and tapered catheterized arteries are shown in Fig. 5.1(a) and (b). 

                

 

 

Fig. 5.1(a). Geometry of the overlapping stenotic artery with a catheter. 

 

5.2 Flow equations 
 

 

The appropriate velocity field for two-dimensional and axi-symmeteric flow under consideration is defined 

in Eq. (4.4). The constitutive equation for Carreau fluid model is [22] 
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In Eq. (5.2), 0  and  are zero-shear-rate and infinite-shear-rate viscosities, respectively and  is the time 

constant.  

In view of (4.4), the continuity equation (1.2) reduces to 

0.
u u w

r r z

 
  

 
                                                                            (5.3) 

Similarly, the momentum equation (1.3) in the presence of magnetic field and component of extra stress S

take the following form: 
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Making use of dimensionless variables defined through Eqs. (4.13), (5.4) - (5.8) after dropping bars can 

be casted as  
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Employing mild stenosis assumption. i. e.  1 ,a 


   and further assuming that 0 (1),a l O    the 

above equations take the following form 
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Note that Eq. (5.9) does not need to be considered further because in view of the mild stenosis assumption 

the information given by it i.e. 0w
z

 


is already integrated in Eq. (5.14). Following Burton [99], we take 
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where 0A is the mean pressure gradient and 1A  is the amplitude of the pulsatile component which is 

responsible for systolic and diastolic pressures. In dimensionless form (5.15) becomes 
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It is pointed out that expression (5.16) slightly differs from its counterpart given in previous chapters 

because of the use of  as normalization frequency instead of p . In Eqs. (5.9) - (5.12), 0 /We U a  is 

the Weissenberg number and  
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Inserting value of p z  in axial momentum equation (5.16), we get 
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(5.18) 

The above equation is subject to following boundary and initial conditions 
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The formulas of volume flow rate, wall shear stress (WSS) and resistance impendence in new variables read 
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The formula (5.21) actually represents the magnitude of generalized wall shear stress given in [76] under 

mild stenotic assumption. According to [76] 

,s  w w                                                                              (5.24) 

where   w Tn Tn.n n , T is the stress tensor given through Eq. (2.2) and n is outward normal to the wall 

surface.  

 
Fig. 5.1(b). Geometry of the stenotic artery with different tapering angles. 

Employing the radial coordinate transformation [75] 
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Eq. (5.18) can be transformed as 
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and the dimensionless boundary conditions becomes 
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Similarly the volume flow rate, the shear stress at the wall and resistance impendence, respectively takes 

the form 
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Substituting the dimensionless form of pressure gradient in Eq. (5.30), we can write 
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5.3 Solution methodology 
 

 

Due to nonlinear nature of Eq. (5.26), an exact solution is difficult to find. Therefore, a numerical solution 

is inevitable for further discussion. Now, employing a similar procedure to approximate the various partial 

derivatives appearing in Eq. (5.26), we get the following discretized version of Eqs. (5.26):  
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The finite difference representation of prescribed conditions is given by 

1

1

1

   0,               0,

0,                1,

   0                 (  ).

i

k

N

k

w at t

w at x

w at x k cathetered radius



 

 

 

                                                               (5.33) 

Eq. (5.32) is used to compute the value of w  at N+1 uniformly discrete points  1, 2, .. 1,i i Nx      with 

a space grid size 1Δ
1

x
N




 at the time levels  1 Δkt k t  , where t  is the small increment in time. To 

obtain the accuracy of the order 
7~ 10 ,

 we have taken the following step sizes: Δ 0.025x   and 

0.00001t  . 

5.4 Results and discussion 
 

 

The computation are carried out for the following set of parameters:

0 00.5, 1.0, 2.7, 0.8,  0.0345 0.0, 2 ,  0.25,   0.1.= 0.56, = , p pd l L f k            
 

Fig. 5.2 demonstrates the dimensionless velocity profiles of blood at different locations of the arterial 

segment. Panel (a) is plotted for a specific set of parameters. Each parameter of this specific set is varied to 

produce plots in panels ((b)-(h)) at the same cross-sections as taken in panel (a). In this way panel (a) is 

considered as standard and other panels are compared with it in order to observe the effects of various 

parameters. In panel (b) the velocity profiles are shown by changing the radius of the catheter. This panel 

when compared with panel (a) indicates that the effect of increasing catheter radius is to decrease the 

magnitude of velocity significantly at each cross-section. Panel (c) illustrates the effects of increasing 

critical stenotic height on velocity profile. It is evident from the comparison of panel (c) and panel (a) that 

blood flow velocity decreases by increasing the critical height of the stenosis. The effects of power law 

index n on velocity profile at various location of the artery are shown in panel (d). It is seen that an increase 

in n decreases the flow velocity of blood. The parameter We which control the viscoelastic behavior of 
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blood also bears the potential to significantly affect the velocity profile at each cross –section. It is observed 

through comparison of panel (a) and panel (e) that velocity profile of blood is an increasing function of 

Weissenberg number (We). In panel (a) the profiles are shown at the time instant t =0.3 which belongs to 

systolic phase. For a time instant which belong to diastolic phase i.e. t =0.45 the velocity profile are shown 

in panel (f). In diastolic phase pressure gradient fall down and as a result of that the magnitude of velocity 

at each cross-section reduces. The velocity profiles at different cross-sections of the artery also show 

decreasing behavior by increasing the strength of the magnetic field. This behavior of velocity can be 

readily observed by a comparison of panel (a) with panel (h). The effects of amplitude of body acceleration 

on velocity profiles at various cross-sections can be observed by comparing panels (a) and (h). The 

comparison shows that an increase in amplitude of body acceleration increases the magnitude of velocity. 

A general observation from Fig.5.2 is that the rheological parameters of blood, the catheter radius, the 

amplitude of body acceleration, the magnetic field alter the magnitude of velocity in both stenotic and non-

stenotic region. However, the geometric parameter of stenosis  effects the velocity profile only in the 

stenotic region. The decrease in the magnitude of velocity by inserting a catheter is of major concern to the 

clinicians. This may result in some complications during the treatment/diagnostic procedure. However, the 

non-Newtonian rheology of the blood could be exploited to tune the velocity profile in a manner so that the 

effects of catheter on flow velocity are minimum. Indeed, in case of Newtonian fluid, the flow velocity is 

only function of geometrical parameters of the stenosis. The only way to modify, for example, the flow 

velocity is to change the geometrical parameters of the stenosis which is of course not possible. However, 

for a non-Newtonian fluid the velocity in addition to the geometrical parameters of fluid is controlled by 

the mechanical properties of the blood. Thus the non-Newtonian feature of blood allows the flow velocity 

to be tuned without modification of geometrical parameters of the stenosis. It is worth mentioning that our 

approach basically follows the approach of Mandal [26] and that is why our results are in accordance with 

his results. In fact it is shown by Mandal [26] that axial velocity get reduced to a considerable extent in case 

of a steeper stenosis. Thus following Mandal [26], we have prescribed the pressure gradient of sinusoidal 

type instead of prescribing the flow rate. In this way flow rate in our study is unknown. Since pulsatile 
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pressure gradient is the main source of flow in our case therefore no flow velocity is imposed at the inlet. 

On the contrary, Tzirtzilakis [77] has prescribed the flow rate at inlet and calculated the stream function 

(consequently the velocity). His study shows different flow jets and downstream recirculation zones. 

Similar results are reported by Lee et al [78] by prescribing the Poiseuille type flow at the inlet, where apart 

from different flow jets and downstream recirculation it is also shown that axial velocity increases in the 

case of narrowing of stenosis. From the above discussion it concluded that increase of axial velocity in the 

stenotic region is attributed to the prescription of flow rate at the inlet. On the other hand, the decrease of 

axial velocity in the stenotic region is attributed to the prescription of pressure gradient. It is remarked here 

that fixing the correct boundary conditions at inlet and outlet in term of flow rate or velocity is an active 

subject of research. We refer the reader to recent articles by Guerra et al. [79] and Elia et al. [80] where 

data assimilation techniques based on variational approach are used to address the issue.  

The time series of flow rate at z = 0.77 (where the maximum height of the stenosis is observed) for various 

values of emerging parameters is shown in Fig. 5.3. The solid line curve corresponds to a specific set of 

parameters i.e. We = 1.8, n = 0.8, M = 0.5, k = 0.1, 𝛿 = 0.1, B2 =2.  Each parameter from this set except B2 

is varied to produce all the other curves in Fig. 5.3. For instance the dashed curve is generated by changing

 . It is noticed that due to pulsatile nature of flow, the flow rate also oscillates with time. For initial times 

its behavior is not periodic. However, it achieves periodicity after t = 2.3sec. The amplitude of oscillations 

shows quantitative variations by changing n, We,   and M. In fact it is seen by examining the other curves 

that flow rate decreases by increasing n, M,   and k, while it exhibits opposite trend by increasing We. 

The time series of WSS at stenotic throat for some specific values of We, n, M, k and   is shown through 

Fig. 5.4. Various curves in Fig. 5.4 are compared according to the rule as used in Fig. 5.3. It is observed 

from this figure that WSS is found to decrease by increasing critical height of stenosis, strength of magnetic 

field, radius of catheter and Weissenberg number. However, it magnitude increases by increasing amplitude 

of body acceleration. 
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The time series of resistive impedance at z = 0.77 corresponding to the critical height of stenosis is 

calculated using Eq. (5.33) and shown in Fig. 5.5 for various parameters. A quantitative comparison of 

solid line curves with other curves indicates that impedance increases by increasing magnetic field strength, 

catheter radius, critical height of stenosis and power-law index. However, it follows opposite trend by 

increasing Weissenberg number. It is also observed during simulations that the magnitude of impedance at 

a location in overlapping region of stenosis (z = 1.26) is less than its magnitude at stenotic throat (z = 0.77).  

The blood flow patterns for different values of involved parameters are shown in Fig. 5.6. Panel (a) shows 

the flow pattern for specific values of We, n, M,  , and t. This panel confirms the appearance of circulating 

bolus of fluid in the stenotic region. By increasing n from 0.8 to 0.9, the size and circulation of bolus 

increases as evident from panel (b). A comparison of panel (a) and panel (c) discloses the potential of applied 

magnetic field to reduce the strength of the circulating region. The effects of Weissenberg number on 

circulating bolus of fluid can be observed by comparing panel (a) and panel (d). It is noted that the strength 

of circulation region increases by increasing Weissenberg number. A comparison of flow patterns of panel 

(a) and panel (e) indicates that the outer most streamline of circulating region in non-tapered artery splits 

in case of converging artery. Moreover, there is an appearance of small eddy in the downstream region for 

converging artery. Panel (f) shows flow pattern for a diverging artery. When compared with panel (a), this 

panel also indicates the splitting of the outer most streamline and small eddy in upstream region. The effects 

of critical height of stenosis on flow pattern can be understood from a comparison of panel (a) and panel 

(g). It is seen that strength of circulating region increases by increasing the stenotic height.  The strength of 

circulation bolus of fluid also varies with the passage of time. In fact the bolus size decreases in systolic 

phase while in diastolic its behavior is reversed panel (h). The effect of catheter radius on blood flow pattern 

can be well understood by comparing Figs. 5.6(a) and 5.6(i). It is interesting to note that the size and 

circulation of bolus increases by increasing the catheter radius. 
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5.5 Concluding remarks 
 

 

A mathematical model for unsteady magneto-hydrodynamics blood flow through a catheterized stenotic 

vessel is analyzed. The constitutive equation of Carreau model is used to represent blood rheology. A 

numerical solution of the governing initial-boundary value problem is obtained employing the finite 

difference method. The velocity and volumetric flow rate of blood, arterial wall shear stress, impedance 

and streamlines of flow are analyzed quantitatively for geometrical parameter of stenosis, rheological 

parameters of blood, catheter radius and magnetic field. It is found that blood velocity and flow rate 

decrease with increasing the catheter radius. On the contrary, the impedance increases with increasing the 

catheter radius. Moreover, the strength of recirculating zones appearing in the stenotic region is also an 

increasing function of catheter radius. These observations may have certain clinical implications. In fact it 

is desired in any clinical procedure regarding treatment/diagnosis of atherosclerosis to avoid the reduction 

of flow rate and to decrease the impedance (resistance to flow) due to insertion of a catheter. The present 

study discloses two remedies to avoid such effects. One remedy, of course, is to manufacture the catheters 

of very thin radius and the other remedy is to tune the rheology of the blood. The later cannot be proposed 

by incorporating Newtonian fluid in the flow analysis. Moreover, power-law model gives the choice to tune 

the velocity of blood only by exploiting the shear-thinning nature of the blood.  However, the Carreau 

model gives additional solution i.e., to use the viscoelastic nature of blood to tune the velocity of blood. In 

the end we would like to mention that the present analysis has certain limitations. In fact a more detailed 

analysis, without using mild stenosis condition, which encompasses wall properties, two- or three-

dimensional aspects of the flow etc. may be more helpful in bringing out the realistic results. 
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Fig. 5.2. Velocity profile at different cross sections of the artery. 
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Fig. 5.3. Dimensionless flow rate profiles for: 
1 2 2,  2B B .    

 

 
 

 

 

Fig. 5.4. Dimensionless shear stress profiles for:
1 2 2,  2B B .    
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Fig. 5.5. Dimensionless resistance to flow profiles for:
 1 2 2,  0B B .    
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(𝑒) We = 1.8, n = 0.8, M = 0.0, 𝛿 = 0.1, 𝝃 = -0.05 
 

(𝑓) We = 1.8, n = 0.8, M = 0.0, 𝛿 = 0.1, 𝝃 = 0.05
 

  

(𝑔) We = 1.8, n = 0.8, M = 0.0, 𝜹 = 0.2, t = 0.3
 

(ℎ) We = 0.5, n = 0.8, M = 0.5, 𝛿 = 0.1, t = 0.45
 

  

 

(𝑖) We = 1.8, n = 0.8, M = 0.0, 𝒌 = 0.3, t = 0.3
 

 

Fig. 5.6. Blood flow patterns for: 1 2 2,  2B B .  
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Chapter 6 

 

Unsteady micropolar hemodynamics in a tapered 

catheterized artery with a combination of stenosis 

and aneurysm 

In this chapter, the unsteady flow characteristics of blood are analyzed through a catheterized stenotic artery 

with post-stenotic dilatation. A rigid tube with a pair of abnormal wall segments in close proximity to each 

other is employed to geometrically simulate the diseased artery. A micropolar fluid model is used to capture 

the rheological characteristics of the streaming blood in the annulus. The mild stenosis approximation is 

employed to derive the governing flow equation which is then solved using a robust finite difference 

method. Particular attention is paid to the effects of geometrical parameters of the arterial wall and 

rheological parameters of the blood on axial velocity, flow rate, resistance impedance and wall shear stress. 

The global behavior of blood is also analyzed through instantaneous pattern of streamlines. 

6.1 Geometric Model  
 

 

Consider the unsteady two-dimensional and incompressible flow of non-Newtonian blood in a straight, 

rigid and axisymmetric catheterized artery of length L that contains two diseased segments. A cylindrical 

coordinate system ( ,  ,  )r z has been utilized for the analysis of the current problem, in which r  and z  
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axes are along the radial and axial directions of the artery respectively. The equation describing the 

geometry of wall is given by: 

 
 

 

*
*

*

2
1 1 cos ,      

2 2

,                                                     .

,

 

i
i i i i

i

 i = 1
l

z a z z l
a lR z

z a otherw

, 2.

ise

 
   



     
                     




                         (6.1) 

In the above expression, i  represents the length of ith abnormal segment from the origin, a denotes radius 

of the undisturbed non-tapered component of the artery, il  is the length of abnormal segment and

 *
 tan   the parameter controlling the convergence or divergence of an artery. A schematic diagram 

of the non-tapered artery is shown in Fig. 6.1 (a), in which 
*

i denotes the critical height of the ith abnormal 

segment appearing at two specific locations respectively i.e. 

                       0 0
1 2,   .

2 2

l l
z and z    

                                                                                      

(6.2) 

The cases 0,  0,  0     corresponding to converging, non-tapered and diverging artery scenario’s, 

respectively are displayed in Fig. 6.1 (b). It is emphasized that 
*

i is positive for stenosis and negative for 

aneurysms. The radius of the catheter inserted in the diseased artery is ka (k << 1). 
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  Fig. 6.1(a). Geometry of the arterial segment in pulsatile rheo-hemodynamic model. 
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For the problem under consideration we have assumed 
1 2 0 ,l l l   * *

1  and * *

2   for simplicity. 

6.2 Flow equations 
 

. 

The equations that govern the unsteady flow of an incompressible micropolar fluid are [81]: 

  2

1 1 ,p m m
t

 
 

         
 


V

V V V V                                          (6.3) 

     1 12  ,j m m
t

    
 

             
 

 
v

V v v V v v                            (6.4) 

where V  is the velocity vector, v is the micro-rotation vector,  is the fluid density, j  is the micro-

gyration parameter, p is the fluid pressure, ,  ,     are the coefficients of the viscosities and 
1,  m  are 

coefficients of the vortex and shear viscosity, respectively. Moreover, the parameters
1,  ,  ,   and m   

are subject to the following constraints [29]:  

1 12 0,  0,  3 0,    .m m                                                                                     (6.5) 

Since the flow under consideration is unsteady, two-dimensional and axisymmetric, therefore, we define 

the vectors: 

 ( , , ),  0, ( , , ) ,u r z t w r z tV                                                                             (6.6) 

 0,  ( , , ), 0 .v r z tv                                                                                                      (6.7) 

In view of (6.6)-(6.7), the continuity equation (1.2) reduces to 

0.
u u w

r r z

 
  

 
                                                                                       (6.8) 

Similarly, the balances of linear and angular momenta given through Eqs. (6.3) and (6.4) take the following 

form: 

 1 1

2

2 2

1
,

u u u p v
u m

u u u
w

r r r
m

r z r zrt
 

      
        

 

 
 

    
                                     (6.9) 
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 
 2 2

2 2

1
1 ,

1 rvmw w w p w w w
u w m

t r z r r zrz r r
 

     
        

    

  
 
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                                   (6.10) 

  2

21 1

1
2  .

rvv v v w u v
J u w m v m

r rt r z z r r z
 
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  

 

      
                       

                                 (6.11) 

Let us scale the variables r, z, w, u, t and p in a similar fashion as done in previous chapter and write Eqs. 

(6.1), (6.9)–(6.11) as follows: 

0,
u u w

r r z


 
  

 

 
 
 

                                                                                                               (6.12) 

2
2 2 2 2

2 2

1
,

u u u p u u u v
Re u w M

r zt r r r r r z
     

         
          

                                                
(6.13)     
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1
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rvw w w p w w w M
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r z r r zt z r r r
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                                              

(6.14)
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For the subsequent analysis, we assume that the stenosis/aneurysm is mild  1 ,a     and the ratio 

0 (1)a l O    [57]. As an implication of these assumptions, Eqs. (6.13)-(6.15) reduce to: 

0,
p

r





                                                                                                                                                      (6.16) 
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 1
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J M v K

r rt r r


       
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(6.18)           
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Inserting the value of p z  from Eq. (5.16) in the axial momentum equation (6.17), we get: 

   
 2

2

1 1
1 ( ) 1 .

rvw w w
B ecos c M M

r r r r r
t

t


      
                 

                                           (6.19) 

Eqs. (6.18) and (6.19) are subject to following boundary and initial conditions: 

( , ) 0, ( , ) 0,  ( ,0) 0,

( , ) 0, ( , ) 0,  ( ,0) 0,

r r

r

ka R

k ra R

w r t w r t w r

v r t v r t v r

 

 

  

  
                                                                   (6.20) 

The appropriate expressions for wall shear stress (WSS) may be defined as: 

2 2

1
,w

M w M

r
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
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

     
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Employing a radial coordinate transformation [75]: 
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Fig. 6.1 (b). Geometry of the diseased artery with tapering. 
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Eqns. (6.18) and (6.19) now assume the form: 

 
 2

2 2 2

1 1 1
1 ( ) ,

rvw M w w M
B ecos c

R x R
t

x x xt x


         
                   

                       (6.24) 
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               

                                                             (6.25) 

The dimensionless boundary conditions become: 

/ 1 0
0, 0,  0,

x xk R t
w w w

  
                                                                               (6.26) 

/ 1 0
0, 0,  0.

x xk R t
v v v

  
                                                                                          (6.27) 

Similarly the volumetric flow rate, shear stress at the wall and resistance impedance, respectively, take the 

form: 

1
.s

M w M

r
v

R


 

     
    

    
                                                                                      (6.28) 

 

6.3 Numerical method 
 

 

Although Eqns. (6.24) and (6.25) are linear partial differential equations, their analytical solutions are still 

difficult to obtain. In these circumstances it is judicious to employ an approximate numerical technique. 

The finite difference scheme employed in the previous chapter is also implemented here to obtain the 

numerical solution of Eqs. (6.24) and (6.25). Inserting the finite difference approximations of various partial 

derivatives, Eqs. (6.24) and (6.25) may be transformed to the following form: 
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Where k

iw and k

iv are the corresponding values of w and v at node xi and at time instant tk.  The boundary 

conditions in discretized form read 

1 1

1 1

1 1

   0,  0,                   0,

0,  0,                1,

   0,   = 0,                   (  ).

i i

k k

N N

k k

w v at t

w v at x

w v at x k cathetered radius

 

  

  

 

                                                               (6.31) 

With the help of Eqns. (6.29) - (6.30), the numerical solution over each arterial cross-section can be easily 

obtained for (N+1) uniformly discretized points  1, 2, .. 1,i i Nx     with a space grid size 1Δ
1

x
N




 

and at time levels  1 Δkt k t  , ( 1,2,k   and Δt  is the time step size). Test computations have shown 

that for the present case, a stable solution with an accuracy of 710  is achievable by taking Δ 0.025x   and

0.00001t  . Validation of the present numerical solutions with another computational method 

(Nakamura’s tridiagonal method), is provided in the next section. Excellent correlation is achieved. 

 

6.4 Validation 
 

The explicit numerical scheme which is forward in time and central in space [71] is validated using a 

variational finite element method (FEM). The FEM is found to be a powerful tool for solving partial 

differential equations as well as integral equations and utilizes numerical integration, rather than 

differentiation as with difference methods.  The whole domain is delineated into smaller elements (sub-

domains) of finite dimensions called “finite elements”. The finite element mesh or grid refers to the 

collection of elements. By choosing a typical element from the mesh, the variational formulation of the 

given problem over the typical element is constructed. An approximate solution of the variational problem 

is assumed and the element equations are derived by substituting this solution in the governing differential 

equations. This process generates an element matrix, referred as stiffness matrix, is constructed by using 

element interpolation functions. The algebraic equations so obtained are assembled by imposing the inter-

element continuity conditions. This yields a large number of algebraic equations defining the global finite 

element model, which governs the whole domain.  The essential and natural boundary conditions are 
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imposed on the assembled   equations.  The assembled equations so obtained can be solved by any “matrix” 

numerical technique e.g. Gaussian elimination method, Householder’s approach, LU Decomposition 

method etc as elaborated by Bathe [82]. Numerous nonlinear micro- and nano-scale biofluid mechanics 

problems have been successfully addressed in recent years with variational FEM including biomagnetic 

micropolar convection flow in tissue [83], deoxygenated blood flows [84], pulsating drug dispersion [85], 

nano-bio-polymer manufacture [86] and nano-pharmaco-dynamics [87]. In the present transient problem, 

the linear momentum eqn. (6.24) and angular momentum eqn. (6.25) contain the two dependent  variables, 

w and v, and the independent variables, x and t.  Discretization is performed separately in the time domain 

(t) and in the spatial domain (x). Quadratic elements are used. The variational form associated with 

equations (6.24)-(6.25) over a typical quadratic element is constructed and arbitrary test functions invoked. 

Interpolation functions are applied for the dependent variables in the form: 





2

1j

jjww  and  
2

1

.j j

j

v v


             (6.32) 

With w1= w2= i, i= 1, 2. The shape elements for a typical quadratic element (xe, xe+1) in the space variable, 

take the form [71]: 
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Valid for 1 ee xxx .  A similar procedure is used for the time-domain. The finite element model of the 

equations thus formed is given in matrix-vector form by; 
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Here [Kmn] and [m] (m, n =1, 2) are the components of the stiffness matrix and displacement vector, and 

are lengthy integral expressions, which are omitted for conservation of space here. Further details are 

readily available in the articles of Bég and co-workers [82-87].  The entire flow domain is divided into 600 

quadratic elements. Approximately 1800 linear equations are generated. Following the assembly of all 

element equations, a large order matrix is generated. The non-linear algebraic system of equations is solved 

iteratively. The process is terminated when the relative difference between the current and previous 

iterations is less than 0.00001. The integrations are carried out using two point Gaussian formula. The FEM 

code is developed in MATLAB running on an Octane SGI desktop workstation and takes 25 seconds on 

average.  Comparisons of the FEM and FDM solutions are documented in Tables 6.1, 6.2 and 6.3 for axial 

velocity at two different locations, for both diverging and converging arteries in micropolar blood flow 

(M0). Excellent correlation is obtained testifying to the validity of the FDM computations, the latter which 

are used in all graphical illustrations. 

 

R 

Numerical values of axial velocity 

Non-tapered artery ( 0.0  ) M = 0.1 

M = 0.1 M = 0.8 

FDM 

M = 0.8 

FEM 

Diverging 

artery  

( 0.1  ) 

FDM 

Diverging 

artery  

( 0.1  ) 

FEM 

Converging 

artery. 

( 0.1   ) 

FDM 

Converging 

artery. 

( 0.1   ) 

FEM 

0.1000 0 0 0 0 0 0 0 

0.1889 0.0958 0.0669 0.0670 0.1065 0.1063 0.0846 0.0845 

0.2779 0.1409 0.0992 0.0994 0.1567 0.1568 0.1246 0.1245 

0.3668 0.1606 0.1138 0.1137 0.1786 0.1785 0.1420 0.1421 

0.4557 0.1628 0.1157 0.1159 0.1812 0.1813 0.1438 0.1437 

0.5447 0.1512 0.1076 0.1074 0.1684 0.1682 0.1334 0.1335 

0.6336 0.1277 0.0908 0.0910 0.1425 0.1427 0.1126 0.1128 

0.7225 0.0939 0.0666 0.0668 0.1050 0.1049 0.0826 0.0827 

0.8115 0.0509 0.0360 0.0361 0.0570 0.0571 0.0447 0.0448 

0.9000 0 0 0 0 0 0 0 
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Table 6.1: Numerical values of axial velocity at a cross-section z = 0.7 corresponding to the critical height of the 

stenosis for k = 0.1,   = 0.1, t=0.3. 

 

r 

Numerical values of axial velocity 

Non-tapered artery ( 0.0  ) M = 0.1 

M = 0.1 

FDM 

M = 0.8 

FDM  

Diverging 

artery ( 0.1  ) 

FDM 

Converging 

artery. 

( 0.1   )FDM 

0.1000 0 0 0 0 

0.2111 0.1287 0.0969 0.1572 0.0923 

0.3222 0.1891 0.1446 0.2302 0.1358 

0.4333 0.2157 0.1665 0.2626 0.1548 

0.5444 0.2193 0.1701 0.2681 0.1569 

0.6555 0.2046 0.1587 0.2522 0.1456 

0.7666 0.1741 0.1345 0.2170 0.1229 

0.8777 0.1290 0.0990 0.1631 0.0903 

0.9888 0.0706 0.0537 0.0905 0.0490 

1.0999 0 0 0 0 
 

Table 6.2: FDM numerical values of axial velocity at a cross-section z = 2 corresponding to the critical height of the 

post-stenotic dilated region (aneurysm) for k = 0.1,   = 0.1, t=0.3. 

 

r 

Numerical values of axial velocity 

Non-tapered artery ( 0.0  ) M = 0.1 

M = 0.1 

FEM 

M = 0.8  

FEM 

Diverging artery 

( 0.1  ) 

FEM 

Converging artery. 

( 0.1   ) 

FEM 

0.1000 0 0 0 0 

0.2111 0.1288 0.0970 0.1573 0.0924 

0.3222 0.1893 0.1445 0.2303 0.1359 

0.4333 0.2155 0.1666 0.2625 0.1547 

0.5444 0.2191 0.1702 0.2681 0.1568 

0.6555 0.2047 0.1588 0.2523 0.1455 

0.7666 0.1742 0.1346 0.2172 0.1228 
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0.8777 0.1289 0.0991 0.1630 0.0904 

0.9888 0.0704 0.0538 0.0907 0.0491 

1.0999 0 0 0 0 

 

Table 6.3: FEM computations for axial velocity at a cross-section z = 2 corresponding to the critical height of the 

post-stenotic dilated region (aneurysm) for k = 0.1,   = 0.1, t=0.3. 

6.5 Results  
 

 

In this section, the axial velocity of flowing blood obtained through numerical simulations is plotted over 

the whole arterial segment for various values of the geometrical parameter of the stenosis/aneurysm and 

rheological blood parameters. Also volumetric flow rate, wall shear stress, resistive impedance and 

instantaneous streamlines of the blood flow are also visualized graphically. The following parameters are 

kept constant throughout the simulations: 0 1,  2.8, 2,  l L e = 0.5, J = 0.1, K = 0.1,   B= 2 . It is pointed 

out that values of J and K are chosen in accordance with the available theoretical studies [35-36].  

The axial velocity of blood in the systolic phase (t = 0.3) over the whole arterial segment is plotted for 

0.1, 0.1, 0.1and 0M k       in panel (a) of Fig. 6.2. The remaining panels in Fig. 6.2 illustrate the 

axial velocity profiles over the whole arterial segment by changing either of the parameters used in panel 

(a). This makes it possible to observe the quantitative variations in axial velocity due to pertinent parameters 

associated with the blood rheology and geometry of the arterial segment. Panel (b) of Fig. 6.2 is prepared 

by changing the radius of the catheter. A comparison of panel (b) with panel (a) clearly indicates a 

significant decrease in axial velocity due to a corresponding increase in catheter radius. The effects of 

increasing the critical height of stenosis/aneurysm ( ) can be observed by comparing panel (c) with panel 

(a). It is quite apparent from the comparison of both panels that blood velocity is substantially reduced in 

the stenotic region whereas the converse behavior i.e. acceleration is observed in the post-stenotic dilated 

region by increasing  .   
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Fig. 6.2. Velocity profiles at different cross sections of the artery. 
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The blood velocity is also found to be influenced by the tapering of the artery. Computations are conducted 

for the axial velocity for two possible cases i.e. negative tapering (converging artery, 0  ) and positive 

tapering (diverging artery, 0  ). A comparison of panel (d) and panel (a) reveals that the blood velocity 

in a non-tapered artery attains lower values than in an artery with positive tapering. However, as is evident 

by comparing panel (a) and panel (e) the negative tapering in an artery suppresses the magnitude of axial 

velocity of blood i.e. induces axial deceleration. The velocity profiles over the whole arterial segment in 

the diastolic phase are shown in panel (f). A comparison of panel (a) and panel (f) shows a decrease in the 

magnitude of axial velocity in the diastolic phase. The rheological parameter i.e. micropolar parameter (M) 

also bears the potential to affect the magnitude of axial velocity. In fact it is evident from comparing panels 

(a) and (h) that the magnitude of axial velocity of blood decreases by increasing M. A general observation 

from Fig. 6.2 is that the rheological parameter (M) of blood and the catheter radius alter the magnitude of 

velocity over the whole arterial segment. However, the geometric parameter 𝛿 affect the velocity profile 

only in the stenotic and post-stenotic dilated regions. These observations further confirm the findings of 

Kang and Eringen [96]. They further highlight the intrinsic sophistication inherent to the micropolar 

constitutive model which simply is absent in other haemo-rheological formulations. 

The time-series of flow rate at z = 0.7 (where the maximum height of the stenosis is observed) for various 

values of emerging parameters is shown in Fig. 6.3. The solid line curve corresponds to a specific set of 

parameters i.e. M = 0.1, k = 0.1, 𝛿 = 0.1, B =2.  Each parameter from this set is varied to produce all the 

other curves in Fig. 6.3. For instance the dashed curve is generated by changing the value of 𝛿. It is noticed 

that due to the pulsatile nature of flow (an inevitable result of the human heart beat), the flow rate also 

oscillates with time. For initial times flow rate behavior is not periodic. However, it is strongly periodic 

after t = 1.2sec. The amplitude of oscillations shows quantitative variations by changing k,  δ and M. In fact 

it is seen by examining the other curves that flow rate decreases by increasing M, 𝛿 and k, while it exhibits 

an even faster descent by increasing the magnitude of  𝛿. The solid line with open circles corresponds to 



89 
 

flow rate curve at z = 2 (where the critical height of the aneurysm is observed). This curve when compared 

with the solid line curve indicates higher values of flow rate in the post-stenotic dilated region. 

The variation of wall shear stress over entire arterial length for some specific values of M, k, δ, and   is 

shown through solid line curve in Fig. 6.4. Various curves in Fig. 6.4 are compared according to the same 

rule used in Fig. 6.3. It is observed from this figure that wall shear stress (WSS) increases by increasing 

critical height of stenosis, radius of catheter and micropolar parameter, M. It is hypothesized that the 

acceleration in flow associated with increasing WSS is intimately linked to the decrease in viscosity of the 

blood with greater micropolar effect, an observation emphasized by Kang and Eringen [96]. Further details 

of viscosity variation with micropolarity are provided in Bég et al. [83] and Chaturani and Palanisamy 

[100]. The wall shear stress profiles for converging and diverging arteries are also included in this plot. It 

is noted that the WSS for the converging artery attains higher values as compared to the WSS for a diverging 

artery. This is most likely associated with the alteration in momentum with geometry- a diverging artery is 

associated with deceleration and a converging artery with acceleration. Moreover, a plummet in WSS is 

observed in the post-stenotic dilated region. 

              
 

Fig. 6.3. Dimensionless flow rate profiles. 
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Fig. 6.4. Dimensionless wall shear stress (WSS) profiles. 
 

The time-series of resistive impedance at z = 0.7 corresponding to the critical height of stenosis is calculated 

using Eqn. (6.37) and shown in Fig. 6.5 for various values of the flow parameters. A comparison of solid 

line curve with others curves predicts that resistance to flow or impedance increases by elevating the 

catheter radius, critical height of stenosis and also the micropolar parameter. However, magnitudes 

considerably decrease at the location corresponding to the critical height of the post-stenotic dilated region. 

Thus it may be concluded that the overall value of impedance for a diseased arterial segment with a 

combination of stenosis and aneurysm is less than the overall value of impedance for a diseased arterial 

segment with stenosis only. 

The blood flow patterns for different values of the hemodynamic and geometric parameters are shown in 

Fig. 6.6. Panel (a) shows the flow pattern for specific values of k, M, 𝛿, and t. This panel confirms the 

appearance of a circulating bolus of fluid in the post-stenotic dilated region. The effects of critical height 

of stenosis/aneurysm on flow patterns can be understood by comparing panel (a) and panel (b). It is seen 

that the strength of the circulating region increases by increasing the critical height parameter (𝛿). A 

comparison of flow patterns in panel (a) and panel (c) indicates that the circulating region extends from the 

post-stenotic dilated region to the stenotic region in the case of a converging artery. On the contrary, the 
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strength of the circulating region in the post-stenotic dilated region reduces from the non-tapered artery 

scenario to the diverging artery scenario, as illustrated in panel (d). However, a small eddy materializes in 

the upstream region for a diverging artery which is not present for a non-tapered artery. The strength of the 

circulating bolus of fluid also varies with the passage of time. In fact the bolus size decreases in the systolic 

phase while in the diastolic phase its behavior is reversed (panel (e)). Similarly it is observed from panel 

(f) that the increase in size and circulation of bolus in post-stenotic dilated region is largely attributable to 

the larger values of the radius of catheter. The effect of non-Newtonian (micropolar) parameter on flow 

patterns is depicted in panel (g). It is evident that the strength of the circulating bolus of fluid decreases by 

increasing the micropolar parameter. 

 

 

 

 

 

Fig. 6.5. Dimensionless impedance\resistance to flow profiles. 
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(a) M = 0.1, k = 0.1, 𝛿 = 0.1, t = 0.3, 0   (b) M = 0.1, k = 0.1, 𝜹 = 0.2, t = 0.3, 0   

  

(c) Converging Artery (d) Diverging Artery 

  

(e) M = 0.1, k = 0.1, 𝛿 = 0.,1 t = 0.45, 0   (f) M = 0.1, k = 0.3, 𝛿 = 0.1, t = 0.3, 0   

 

  

 

 

(g) M = 0.8, k = 0.1, 𝛿 = 0., t = 0.3, 0   
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Fig. 6.6. Instantaneous flow patterns of streaming blood. 

 

6.6 Discussion 
 

 

Generally, it is observed that flow velocity attains higher values in the post-stenotic dilated region as 

compared to the stenotic region. The results further indicate that axial velocity of the blood decreases 

substantially by increasing the catheter size and rheological parameter of the micropolar fluid in both 

stenotic and post-stenotic dilated region. This decrease in flow velocity simultaneously modifies the other 

operating variables such as wall shear stress, volumetric flow rate and resistance to flow. In fact, it is found 

that volumetric flow decreases at the stenotic throat and at the critical height of the post-stenotic dilated 

region by increasing catheter radius and micropolar parameter. As an implication of the general observation 

of higher values of flow velocity in the post-stenotic dialateral region, the wall shear stress (WSS) also 

attains higher values in that region. However, WSS substantially descends by increasing catheter radius and 

rheological parameter of the blood. The impedance to flow at the stenotic throat is found to increase by 

increasing catheter radius and rheological parameter of the blood. On the contrary, it decreases at a critical 

height of the post-stenotic dilated region. 

The previous studies [39-41] report the results for impedance and the other variable without taking into 

account the pulsatile nature of the flow. The rheology of the blood in these simulations is captured by 

Bingham, Casson and power-law models. The current study differs from previous studies in three ways. 

Firstly, we have computed the flow quantities by taking pulsatile pressure gradient, secondly the rheology 

of the blood is characterized by the constitutive equations of micropolar fluid and lastly the whole analysis 
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is carried out in presence of an inserted catheter. In contrast to the results presented in [39-41], our results 

indicate that for fixed values of geometrical and rheological parameters of the model, the flow quantities 

vary periodically at each arterial cross-section after the steady state condition has been reached. Initially 

these quantities fluctuate and increase and finally reaches the steady state condition as time increases. The 

presumed steady state condition imposed in previous studies does not delineate such situations. 

Previous available studies also reveal that a dilatation near the stenosis causes an amelioration in the 

increase of the resistance to flow ratio that would occur were the stenosis isolated. Our results also comply 

well with such observations. However, improvement in the increase of resistance to flow ratio due to the 

presence of dilatation is deteriorated by inserting a catheter. This deterioration can be controlled by tuning 

the rheology of the blood which is not possible with a Newtonian fluid. According to Eringen’s micropolar 

theory, the rheology of blood is a concentrated suspension of neutrally-buoyant deformable particles in a 

viscous fluid. The deformability of these particles, in particular erythrocytes (red blood cells) have a 

pronounced effects on the apparent viscosity. For instance at normal concentration, hardened cells will 

exhibit a viscosity ten times higher than normal blood. The dimensionless parameter M employed in the 

current study successfully captures this increase in the viscosity of the blood. Our study shows that the 

increase in the resistance to flow either due to the presence of the stenosis or due to insertion of catheter 

can be reduced by choosing M to be smaller. This observation suggests the possibility of tuning the rheology 

of the blood to control the reduction in blood flow rate and increase in the resistance to flow. The present 

study also indicates an increased wall shear stress arises at the throat of the post-stenotic dilated region for 

a Newtonian fluid in comparison with micropolar fluid. The increased wall shear stress at the throat of the 

post-stenotic dilated region may be of some concern to clinicians. Again Newtonian theory does not suggest 

any remedy to control this increase in wall shear stress. However, as disclosed by our computations, 

micropolar theory suggests that such an increase in WSS at the throat of the post-stenotic dilated region can 

be reduced by adjusting the rheology of the blood. 
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6.7 Conclusions 
 

 

A mathematical model is presented to analyze the unsteady flow characteristics of blood through a diseased 

catheterized artery with a combination of stenosis and post-stenotic dilated regions. The constitutive 

equation of Eringen micropolar fluids has been implemented to simulate non-Newtonian micro-structural 

blood characteristics.  A numerical method based on explicit finite difference scheme has been used to 

obtain the solution of the governing initial-boundary value problem. The velocity, volumetric flow rate of 

blood, arterial wall shear stress, impedance and streamlines of flow are analyzed quantitatively for 

geometrical parameter of stenosis, rheological parameters of blood and catheter radius. The computations 

reveal that blood velocity and flow rate both decrease while impedance increases by enhancing the size of 

catheter radius, critical height parameter and micropolar parameter in the stenotic region. However, these 

quantities demonstrate the contrary trend in the post-stenotic dilated region. Moreover, the strength of 

recirculating zones appearing in the post-stenotic region is also an increasing function of catheter radius, 

critical height parameter and micropolar parameter. These observations may have practical implications 

regarding treatment/diagnosis of atherosclerosis where it is desired to avoid the reduction of flow rate and 

to decrease the impedance (resistance to flow) due to insertion of a catheter in surgical procedures. The 

micropolar hameo-rheological model demonstrates some elegant features which warrant further 

investigations. It is envisaged that subsequent investigations will employ computational fluid dynamics 

(CFD) simulations to extend the two-dimensional computations to three dimensions. Efforts in this regard 

are being made with the ADINA-F finite element code [88] and other numerical approaches e.g. discrete 

particle dynamics (DPD) [89] which have demonstrated exceptional ability in stenotic hemodynamics. 
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Chapter 7 

 

Time-dependent non-Newtonian blood flow 

through a tapered time-variant stenosed artery 

 

In this chapter, a two-dimensional model is used to analyze the unsteady pulsatile flow of blood through a 

tapered artery with stenosis. The rheology of the flowing blood is captured by the constitutive equation of 

Carreau model. The time-variant nature of the stenotic artery has been incorporated in the present analysis. 

The flow equations are set up under the long wavelength assumption which states that the lumen radius is 

small in comparison to the wavelength of the pulsatile pressure wave. The effects of the vessel wall are 

immobilized by using a radial coordinate transformation. The resulting partial differential equations along 

with the boundary and initial conditions are solved using finite difference method. The important 

hemodynamical variables are analyzed for normal and diseased arteries with particular focus on their 

variation with non-Newtonian parameters.  

7.1 Geometry of the problem 
 

 

Let us consider flow of an incompressible Carreau fluid through a tapered artery with a single stenosis. We 

employ a cylindrical co-ordinate (r, θ, z) system for the purpose of flow analysis with r along the radial 
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direction and z along the axis of the tube (artery). The mathematical model of the time-variant stenosed 

arterial segment (see Fig. 7.1) is  

 
Fig. 7.1. Geometry of the stenotic artery with different tapering angles. 
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In above expression  ,R z t denotes the radius of the tapered stenotic artery ,  is the angle of the tapering, 

a is the radius of the non-tapered artery in the non-stenotic region, 0l  is the stenotic length of an artery, d 

is the location of the stenosis and *sec   is taken to be the height of the stenosis for the tapered stenosed 

artery appearing at *0

2
 
l

z d sin     and  = tan   represents the slope of the tapered vessel and in our 

case * 0.4a  . The time-variant parameter  1a t is given by the following expression 

    1

1 1 ,1 1
b t

pa t b cos t e
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                                                                         (7.2) 

where   represents the angular frequency with 2 pf   , pf  being the pulse frequency and 1b  is a 

constant. The length of the arterial segment is L. Note that the model given by (7.1) bears the possibility to 
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explore the case of  non-tapered artery  0  , converging tapering  0   and the diverging tapering 

artery  0   as evident from Fig. 7.1. 

7.2 Problem formulation 
 

 

 

Consider two-dimensional time-dependent flow of a Carreau fluid through a diseased arterial segment. The 

geometry of the present problem is given in Fig. 7.1. The velocity field for two-dimensional flow is given 

by: 

 

 ( , , ),0, ( , , ) .u r z t w r z tV                                                     (7.3) 

In view of (7.3) the continuity equation (1.2) reduces to 

0.
u u w

r r z

 
  

 
                                                                            (7.4) 

Similarly, the momentum equation (1.3) take the following form: 

   
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u u w p
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t r z r r
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r z
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        
        

        
,                          (7.5) 

   
1

,rz zz

w w w p
u w rS S

t r z z r r z


        
        

        
                                          (7.6) 

where ,    rr zz rzandS S S  are defined in Eqns. (5.12).  

Our current analysis is based on the assumption that the lumen radius R is taken sufficiently smaller than 

wavelength , of the pressure wave. i.e. R   1 [90]. On the basis of this assumption the radial 

momentum equation simply reduces to ∂p/∂r = 0, which gives that pressure has no variation along the radial 

coordinate. 

The boundary and initial conditions for the problem under consideration are [26] 
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   , , 0 , , 0 0.u r z w r z                                                                                   (7.9)   

 

7.3 Dimensionless formulation of the problem 
 

 

We are interested in numerical solution of Eqns. (7.5) and (7.6) subject to conditions (7.7)-(7.9). To this 

end, we first normalize these equations by defining the new variables 
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In terms of new variables Eqns. (7.5), (7.6) and (5.12) after dropping the bars read 
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The Womersley number and Weissenberg number in above equation are given as 
2
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   , ,0 , ,0 0.u r z w r z                                                                                (7.17) 

Similarly as a consequence of (7.10), the geometry of the stenosis takes the following form: 
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7.4 Transformation of the Problem 
 

Employing the radial coordinate transformation [75] 
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r
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Eqs. (7.11) - (7.14) can be casted in the following form 
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Similarly we can write the boundary and initial conditions as 
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An explicit expression for  , ,u x z t can be obtained as follows: Multiplying Eq. (7.21) by xR  and 

integrating with respect to x  from 0 to x , we get 
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Eq. (7.27) takes the following form by making use of the boundary condition (7.25)  
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where ( )f x is an arbitrary function. Let us choose ( )f x of the form 
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Equating the integrands on both sides of (7.28), we find 
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utilizing (7.30) in (7.27), we finally arrive at 
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7.5 Numerical solution 
 

The numerical method employed for solution of Eqs. (7.20)-(7.23) subject to boundary conditions (7.24)-

(7.26) is forward in time and central in space and is already implemented in previous chapters for solutions 

of one-dimensional time-dependent equations. Here our system of equations is two-dimensional and time 

dependent. Due to this fact, we present a somewhat detailed procedure of discretization. The value of w at 
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In a similar manner we write following expression for the time derivative,   
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The discrete points in radial and axial directions are given as    1 Δ ,   1,2, .. 1x j x j N     such that
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Similarly, Eqns. (7.22) - (7.23) have the following discretized form 
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The boundary and initial conditions can be written in the discretized form as: 
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1 1

( , ) ( , ) 0.i j i ju w                                                                              (7.42) 

The volumetric flow rate (Q) and the wall shear stress  w  are given by [26, 27]  
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7.6 Results and Discussion 
 

In this section graphical results are displayed for the following set of parameters [91-93]: 
0 = 0.56, 

 = 

0.0345, L = 50, a = 1, d= 20, l0=16, A0 = 7, A1 = 0.2A0,  = 0.4, ∆𝑥 = 0.025, ∆𝑧 = 0.01. The accuracy of 

the numerical solution is maintained up to 10-7 by choosing the time step 0.0001. 

The dimensionless axial velocity graphs of streaming blood in normal and stenotic artery for different 

values of tapering angles are shown in Fig. 7.2a. One can see from Fig. 7.2(a) that the magnitude of velocity 

is greater in the normal artery as compared with the stenotic artery. It is also observed that the velocity 

profile achieves higher values for diverging tapering as compared with the converging tapering. The graph 

of non-tapered artery lies in between. This observation is true for both normal and constricted artery. 

However, the shape of profile in considered artery for converging tapering is flat near the centre. This flat 

shape indicates a plug-flow like region in the centre of the artery. The existence of flat velocity profile in 

the constricted artery for converging tapering is because of the fact that near the artery wall the viscous and 

inertial forces are of the same order. However, near the centre of the artery the inertial forces dominate, 

thus compelling the axial velocity profile to attain a flat shape. The dimensionless radial velocity graphs of 

the flowing blood in normal and constricted artery for different taper angles are shown in Fig. 7.2b. All the 

graphs are taken at specific location z = 28 and for time instant t = 0.45. This figure reveals that radial 

velocity is negative over the whole cross-section. All the curves start from zero and approach a constant 

value at wall due to the presence of wall movement in the stenosis geometry. It is further observed from 

this figure that the effects of vessel tapering on radial velocity are prominent for constricted artery compared 
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with the normal artery. The maximum deviation in the curves of radial velocity occurs near the wall both 

of the stenotic and normal artery. 

 
 

 

Fig. 7.2: Dimensionless Axial (Fig. 7.2(a)) and radial (Fig. 7.2(b)) velocity graphs for different tapering angles. 

Calculation is based on the following data: ( 28, 0.45,z t 
020, 16, 2, 1, 0.639d l We n     ). 

  
 

Fig. 7.3: Dimensionless Axial (Fig. 7.3(a) & 7.3.(b)) velocity graphs for different We (Weissenberg numbers) and

(Womersley numbers). Calculation is based on the following data: ( 0.4 , 20,28, 0.45, a dz t    

0 16, 3, 0.639l We n   ). 
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Fig. 7.3. (a) depicts the profiles of dimensionless axial velocity for different values of We (Weissenberg 

numbers) at a specific location at z = 28. These graphs indicate an increase in axial velocity with an increase 

in We both for normal and constricted artery. Thus Carreau fluid model predicts higher axial flow speed of 

blood in comparison with Newtonians fluid model. The effects of Wormsley number  on axial velocity of 

blood at a specific location z =28 and time instant t = 0.45 are illustrated in Fig. 7.3(b).  These profiles 

show that an increase in  decrease the axial velocity of blood.  

  
 

 

 

Fig. 7.4: Dimensionless Axial (Fig. 7.4(a)) and radial (Fig. 7.4(b)) velocity graphs for different n (Power law constant). 

Calculation is based on the following data: 
0

0.4, 20, 16, 2, 1)( 0.45,  d l Wet       . 

 

The plots of dimensionless axial velocity of the flowing blood characterized by the Carreau fluid for 

different values power law parameter n at t = 0.45 and z = 28 are illustrated in Fig. 7.4 (a). One can see 

that the axial velocity decreases in going from shear-thinning (n = 0.0, 0.639) to shear-thickening (n = 1, 

1.2) fluid. The profile of axial velocity for Newtonian fluid (n=1) lies in between shear-thinning and shear-

thickening profiles. It is further observed that for shear-thinning fluid (n = 0) the profile tend to become 

flatter predicting a thin boundary layer near the wall. The behavior of radial velocity for different values of 

power law parameter n is depicted in Fig. 7.4 (b). One can see that radial velocity in a normal artery is 
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independent of power law parameter n. However, it is slightly affected by n in the constricted artery. i.e. 

magnitude of radial velocity increases in going from shear-thinning to shear-thickening fluid.   

The graphical illustrations of axial velocity profile of streaming blood characterized by the Carreau fluid 

for different values of 
m  are shown in Fig. 7.5(a). Fig. 7.5 (a) comprises of the three distinct curves 

showing different arteries with different stenotic height. The top most profile is for normal artery while the 

second and third curve correspond to the stenotic artery. One can see that the magnitude of the axial velocity 

decreases rapidly with an increase in the severity of the stenosis. Fig. 7.5(b) shows the profile of radial 

velocity for arteries with different severity level of stenosis at a specific location z = 28 and time instant t 

= 0.45. These profiles indicate that the magnitude of the radial velocity decreases with an increase in the 

severity level of stenosis. 

   
 

 

 

Fig. 7.5: Dimensionless Axial (Fig. 7.5(a)) and radial (Fig. 7.5(b)) velocity graphs for different values of m . 

Calculation is based on the following data: 
0

0.4, 20, 16, 2, 1)( 0.45,  d l Wet       . 

The graphical illustrations of time series of dimensionless flow rate of streaming blood characterized by 

the Carreau fluid for a different tapering angles and different material parameters are presented Fig. 7.6(a) 

and (b), respectively. Fig. 7.6 (a) comprises of the five distinct curves of flow rate. The top most curve is 

for normal non-tapered artery while below it is the curve for diverging normal artery. The variation of flow 
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rate with time for diverging stenotic artery is shown in third curve. The fourth curve from the top 

corresponds to non-tapered stenotic artery. The last curve depicts the case of flow rate for a converging 

artery. We may conclude from Fig. 7.6 (a) that flow rate attain higher value in normal artery with wall 

movement as compared with stenotic artery. The positive values of taper angle further enhance the flow 

rate while the presence of stenosis reduces it significantly. Fig 7.6 (b) indicates an increase in the flow rate 

with increasing the material parameter We both in normal and constricted arteries. It is interesting to note 

that flow rate does not become periodic in the first four cardiac cycles. 

 
 

Fig. 7.6: Dimensionless flow rate for different values of tapering angles  𝜙 (Fig.7.6(a)) and for different We 

(Weissenberg numbers) (Fig. 7.6(b)) at 𝑧 = 28. Calculation is based on the following data: 0.4,0.45,( t    

0
20, 16, 2, 1)d l We     . 

The time series of wall shear stress for four cardiac cycles at a specific location z = 28 for different taper 

angles and different values of material parameter We are shown in Fig. 7.7 (a) and (b), respectively. We 

note from Fig. 7.7 (a) that the value of shear stress in the stenotic region for a diverging constricted artery 

is higher than those of non-tapered and converging artery. We further note from Fig. 7.7 (a) that the profile 

of wall shear stress for a normal artery lies below of all other curves. This indicates that the presence of 

stenosis significantly enhances the wall shear stress. The influence of We (Weissenberg numbers) on wall 

shear is depicted in Fig. 7.7 (b). This figure predicts a reduction in wall shear stress by increasing We. This 

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

 = 0.2
o

 = -0.2
o
, 

m
 = 0  = 0

o
, 

m
 = 0

 = 0
o  = - 0.2

o

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

 

 

We = 3

We = 2

We = 1 = 0.0
o
, 

m
 = 0

 = 0
o

𝜙 = −0.20; 

ϕ = −0.20, τm = 0; 

ϕ = 00; 

ϕ = 0.20 

Dimensionless Time 

 

Fig. 7. 6(a) Fig. 7. 6(b) 

ϕ = 0.00, τm = 0 

ϕ = 00 

Dimensionless Time 

ϕ = 00, τm = 0; 𝑊𝑒 = 1 
𝑊𝑒 = 2 

 
𝑊𝑒 = 3 

 

D
im

e
n

si
o

n
le

ss
 F

lo
w

 R
a

te
 

D
im

e
n

si
o

n
le

ss
 F

lo
w

 R
a

te
 

 



109 
 

result can also be anticipated from the profiles of flow rate in Fig. 7.6 (b) where the flow is found to be an 

increasing function of We. It is also evident from both the figures 7.7 (a) and (b) that wall shear stress 

become periodic immediately after the start of the flow. 

   
 

Fig. 7.7: Dimensionless Wall shear stress for different values of tapering angles  𝜙 (Fig. 7.7(a)) and for different We 

(Weissenberg numbers) (Fig. 7.7(b)) at 𝑧 = 28𝑚𝑚. Calculation is based on the following data: 

0
0.4, 20, 16, 2, 1)( 0.45,  d l Wet       . 

 

Figs. 7.8(a) and (b) are plotted to see the time series of resistance impedance at a specific location z = 28 

for different taper angles and different values of We (Weissenberg numbers). It is observed that these 

profiles follow a reverse trend in contrast to  the flow rate profiles as expected from the formula of the 

resistance to flow given by expression (7.56). Contrary to flow rate profiles, one may observe that the 

resistance to flow in a stenotic region decreases as tapering angle increase from -0.2 to 0.2. A further 

decrease is observed in the absence of the stenotic region. Fig. 7.8 (b) reveals that the resistance to flow is 

a decreasing function of the We (Weissenberg numbers). Moreover, Fig. 7.8 (a) and (b) also indicate that 

like flow rate, the periodicity in the resistance to flow is not achieved within the first four cardiac cycles.  
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Fig. 7.8: Dimensionless variation of resistance to flow for different values of tapering angles 𝜙 (Fig. 7.8(a)) and for 

different We (Weissenberg numbers) (Fig. 7.8(b)) at 𝑧 = 28. Calculation is based on the following data: 

0
0.4, 20, 16, 2, 1)( 0.45,  d l Wet       . 

7.7 Conclusions 
 

 

A theoretical model is presented for unsteady pulsatile flow of blood through a time-variant stenotic artery 

using the constitutive equation of a Carreau fluid. The equations governing are modeled under long 

wavelength assumption and then solved numerically using an explicit finite difference scheme. The present 

theoretical model is capable of exploring the effects of shear-thinning/thickening and viscoelastic nature of 

blood on various characteristics of blood. In addition to that the model also incorporates the effects of 

tapering and time-variant geometry of stenosis. The major findings of the present study are: 

 The presence of stenosis reduces the magnitude of axial and radial velocity of blood. 

 Axial velocity is an increasing function of Weissenberg number while it decreases by increasing Womersley 

number. 

 Axial velocity decreases in going from shear-thinning to shear-thickening fluid. 

 Radial velocity is not affected to an appreciable amount by increasing Weissenberg number. 

 Flow rate increases while shear stress decreases by increasing Weissenberg number. 
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 Resistance to flow is found to be a decreasing function of Weissenberg number. 
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Chapter 8 

 

Two-dimensional and two-layered pulsatile flow of 

blood in a stenotic artery  

 

In this chapter, a theoretical study has been carried out to investigate the unsteady two-phase flow of blood 

through a flexible artery under stenotic conditions. The Newtonian and Herschel–Bulkley constitutive 

relations are used to model the core and peripheral regions, respectively. The present analysis treats the 

wall of the artery to be elastic. An explicit finite difference algorithm is implemented for the solution of the 

governing unsteady partial differential equations along with the given boundary and initial conditions. The 

radial and axial velocities of the streaming blood are computed for several values of the emerging 

parameters. The volumetric flow rate, resistance impedance and wall shear stress are also shown graphically 

and discussed in detail. 

8.1 Geometry of the two layer stenotic artery 
 

 

Let us consider two-dimensional flow of blood through a stenotic artery. It is assumed that due to 

aggregation of red blood cells, core and peripheral regions are developed in the centre and near the boundary 

of the artery, respectively. The flow is analyzed using cylindrical co-ordinate system (r, θ, z). A schematic 

diagram is illustrated in Fig. 8.1. 
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The mathematical model of the time-variant stenosed arterial segment is  
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       (8.1) 

In above expression  ,R z t denotes the radius of the arterial segment with stenosis,  is the maximum 

height of the stenosis, a  is the constant radius of the artery in the non-stenotic region, *a is the constant 

radius of interface in the non-stenotic region, 0l  is the length of the stenosis, d is the length of the pre-

stenotic region, *  is the bulging of interface and  1 ,R z t  denotes the radius of the central core layer. The 

time-variant parameter  1a t  is given by the following expression 

   1 1 ,r pa t k cos t                                                                          (8.2) 

where p  represents the angular frequency with 2p pf  , pf  being the pulse frequency, 
rk represents 

the amplitude constant and   is the phase angle. 

 

8.2 Mathematical formulation  
 

 

Let  ,  ,  ,  i i i i = 1, 2 TV  denote the velocity vector, density and stress field in the core and peripheral 

regions, respectively. The governing laws of mass and momentum conservation in core and peripheral 

region becomes: 

Plasma region

Core region

Interface

0.95

 R
1

0.866




*

R

Fig. 8.1. Geometry of the stenotic artery with peripheral layer  

 

𝑑 𝑙0 
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      Law of conservation of mass:                  i = 0, i = 1, 2. V                                                      (8.3) 

Law of conservation of Momentum:        
 i = 1, 2,i

i i

d

dt
   T ,

V
                                       (8.4) 

where                                                  i ip i = 1,2.  T I S ,                                    (8.5) 

The blood in the core region is characterized by the constitutive equation of Herschel–Bulkley model. 

According to Yilmaz and Gundogdu [22], the extra stress for Herschel Bulkley model is  

1 *

1 1 1 , 
yn


  

  
 




S A                                                                  (8.6) 

where y is the yield stress, 
2 2

*

1

T A V V and  * *

1 1

2

2

1
= tr .T

 A A   

The stress tensor in the peripheral region is given by: 

 22 2 2 .T  S V V                                                                            (8.7) 

The velocity field for two-dimensional flow in the core and peripheral regions is given by: 

 ( , , ),0, ( , , ) .i i iu r z t w r z t , i = 1, 2V                                                      (8.8) 

In view of (8.8), the continuity equation (8.3) in core and periphery region reduces to 

0,  1,  2.i i iu u w
i

r r z

 
   

 
                                                                           (8.9) 

The momentum equation (8.4) in the core region takes the following form: 

   1 1 1
1 1 1

1
rzrr

u u u
u w rS S

t r z r r z

p

r


        
       

       
,                               (8.10) 

   1 1 1
1 1 1

1
,rz zz

w w w p
u w rS S

t r z z r r z


        
       

       
                                               (8.11) 
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




                        

                                                       


               

,




(8.12) 

  12 ,zz

w
S

z

 
              

 
                                                                                                                 (8.13) 

  1 1 .rz

w u
S

r z

  
              

  
                                                                                                         (8.14) 

Similarly the momentum equations for the peripheral region are defined as: 

2 2

2 2 2 2 2 2 2
2 22 2 2 2

1
,

u u u u u u u
u

t r z r r r r z r

p
w 

       
         

         
                          (8.15) 

2 2

2 2 2 2 2 2
2 22 2 2

1
.

w w w w w w
u

t r z z r r r z

p
w 

       
        

         
                                (8.16) 

The subsequent analysis is based on the assumption that the lumen radius R  is taken sufficiently smaller 

than wavelength , of the pressure wave in our current analysis. i.e. ,R    1 [90]. On the basis of this 

assumption the radial Navier-Stokes equation simply reduces to ∂p/∂r = 0 which gives that pressure is 

independent of radial coordinate. 

The boundary and initial conditions for the problem under consideration are [26] 

  1
1

( , , )
, , 0, 0 0,  0,rz

w r z t
u r z t and S on r

r


   


                                                 (8.17) 

   2 2, , , , , 0,  ,
R

u r z t w r z t on r R
t


  


                                                           (8.18) 

  
   , ,0 , ,0 0,  1,  2.i iu r z w r z i                                                                             (8.19)   
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At the interface, it is assumed that both the axial and radial velocities are continuous i.e. 

                                                1 2 1, , , , ,        ,w r z t w r z t on r R 
  
 

   1 2 1, , , , .       .u r z t u r z t on r R                                                                      (8.20) 

 

8.3 Non-dimensionalization of the problem 
 

We are interested in numerical solution of Eqns. (8.10) and (8.11) subject to conditions (8.17)-(8.19). We 

first normalize these equations by defining given in Eq. (7.10). In terms of new variables Eqns. (8.10), 

(8.15), (8.13)-(8.14) after dropping the bars read 

 i i iu u w
= 0,   i = 1,  

r r
2,

z

 
 

 
                                                                                    (8.21) 

   1 1 1
1 1

1
rz zz

w w w p
u w rS S

t r z z r r z


        
       

       
,                                                     (8.22) 

and the Newtonian equation in the periphery region 

2 2

2 2 2 2 2 2
1 1 2 2

1w w w w w wp
u w

t r z z r r r z


       
        

         
,                                                  (8.23) 

where  

2 2 2 2

1

2

1 1 1 1 1 1 1 1

1

2 2

1

2

2

1 1 1

2

2 2

       

n

rz

u u w u w u u w
S

r r z z r r r z

u w w u

z r r z








                        

                                                       



     




 
          




,


        (8.24) 

  ,zz

w
S

z

 
              

 
                                                                                 (8.25) 
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 y
n




 
 
 

is the dimensionless yield stress and where 
1

n  is the average viscosity. The 

dimensionless boundary and initial conditions are: 

  1
1

( , , )
, , 0, 0 and 0,  0,rz

r
r r

r

w z t
u z t S on


   


                                               (8.26) 

 2 2, , , ( , , ) 0, on ,r r
R

u z t w z t r R
t


  


                                                         (8.27) 

   , ,0 , ,0 0,  1,2.i iu r z w r z i                                                                         (8.28) 

The boundary condition at the interface becomes 

                                   1 2, , , , ,w r z t w r z t   

   1 2 1, , , ,          .u r z t u r z t on  r = R                                            (8.29) 

In above equations 

  
 

 
 

   

0

0

*

1 0

1

1

2
1, 1 cos , 2

2 2, ,

1, ,

,
,

.

l
z d a t d z d z

a lR R z t

a t otherwise






    
          

       



            (8.30) 

where 
*

  , where

*a

a
 
 
 
 

is a geometric parameter. 

 

8.4 Problem transformation 
 

Now we introduce a radial coordinate transformation [75]  

( , )

r
x

R z t
 ,                                                                                  (8.31) 

to map the constricted domain into a rectangular one. Using this transformation, Eqns. (8.22)-(8.29) can be 

rewritten in the following form 
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1 1 1 1
1 1

1 1 1 1
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t R t R R z x z z

x

xR R x z R z x 
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           
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      (8.32) 
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 
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           

             

      
     

        

                             

(8.33) 
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0,  1,  2,i i i iu u w wR

i
R x xR z R z x

x  
    
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                                                                (8.34) 
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           (8.35)        
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w wR

z R z
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x

  
              

   
                                                                                                     (8.36)  

Similarly, we can write the boundary and initial conditions as 

 
 1

1

, ,
, , 0, 0,  0,                0,xz

w x z t
u x z t S on x

x


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
                                           (8.37) 

   2 2, , ,  , , 0,                             1,
R

u x z t w x z t on x
t


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

                                        (8.38) 

   , ,0  , ,0 0,  1,  2.i iu x z w x z i                                                                             (8.39) 

The interface boundary condition becomes 

                                    1 2, ,  , , ,w x z t w x z t  
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   1 2, ,  , , ,         ,u x z t u x z t on  x =                                             (8.40) 

An explicit expression for  1 ,  ,  u x z t can be obtained as follows: Multiplying Eq. (8.34) by xR  and 

integrating with respect to 𝑥 from 0 to x , we get 
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1 1
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2
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x x
wR R
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  

   
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                                                                (8.41) 

Eq. (8.41) takes the following form by making use of the boundary condition (8.40)  
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(8.43)

 

Since the choice of  f x  is arbitrary therefore we take  
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Utilizing (8.44) in (8.41), we finally arrive at 
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In a similar manner, for the plasma region  1 ,x    multiplying (8.36) by xR  and integrating with 

respect to x between the limits   and x  1 ,x    and exploiting the boundary conditions (8.43), one 

finds 
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and finally 
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(8.47) 

now from Eqns (8.46) and (8.47) one can obtain 
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                                                    (8.48) 

8.5 Finite difference technique 
 

Following Mandal [26] and Mandal et al. [27], we use the central difference formula for the approximation 

of space derivatives and forward difference formula for the approximation of time derivative. The discrete 

points in radial directions are given as    1 Δ ,  1,2, .. 1 ,j cx j x j N    
 
such that  1cN

x 


  and 

  1 Δ ,j cx j N x    1, 2,..., 1 ,c cj N N N     such that
 1

1
N

x


  where Δx  is the increment in the 

radial direction. Similarly, we define    1 Δz,   1,2, .. 1 ,iz i i M      where Δz the increment is in the 

axial direction, as uniformly distributed points in axial direction. Similar approach is used to define time 

step as    1 Δ ,   1,2, ..kt k t k    , where Δt is the time increment. Using (7.32) and (7.34), Eqs. (8.32) 

and (8.33) may be transformed to the following difference equations 
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The boundary and initial conditions can be written in the discretized form as: 
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The discretized form of interface conditions read  
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The volumetric flow rate (Q) and the wall shear stress (𝜏𝑤) and the resistance impedance 𝛬 are given by 

Mekheimer and Mohamed [94]  
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The expression for normalized flux ( Q ), resistance to flow ( ) and the wall shear stress (  ) are obtained 

as  
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(8.60) 

where 
nQ ,  and 

n are the flux, the resistance to flow and the wall shear stress respectively for the normal 

artery in the absence of peripheral layer. 

 

8.6 Numerical results and discussion 
 

In this section graphical results are displayed for the following set of parameters in Mandal [26]: Numerical 

computations have been carried out using the following parameter values: 
0 = 0.56, L = 18, a = 1, d= 5, 

l0= 8, A0 = 7, A1 = 0.2A0,  = 0.3. To obtain a convergent and stable solution, the temporal and spatial step 

sizes are chosen as: x   0.025, z   0.1, t  0.0001. These values are also in accordance with the 

criteria for the convergent and stability of such method proposed by Hoffmann and Chiang [71]. Test 

computations show that the proposed method with the indicated restrictions is convergent up to 10-5. 
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Fig. 8.2 shows the results of the axial velocity profile of the two-layered fluid model characterized by the 

Herschel Bulkley fluid in the core region and Newtonian fluid in the plasma region for various time instants 

and different peripheral layer thickness at a specific location (z = 9) of the artery. It is observed that velocity 

profile increases with time in both peripheral and core regions. Since the thickness of the peripheral region 

is small therefore the profiles in this region are found to be linear. However, in the core region the curves 

become parabolic. For a fixed value of time the effects of increasing peripheral layer thickness on velocity 

in peripheral region are negligible. Interestingly the velocity profile in the core region is found to increase 

by increasing peripheral layer thickness for a fixed value of time t. Such results are also reported by Ikbal 

et al. [70] in their analysis where the blood in the core region is modeled as a micropolar fluid. For a 

comparative study, the experimental results of Bugliarello [95] are also included in Figure 8.2. In addition 

to that the plots of steady state solutions obtained by Kang and Eringen [96] and Akay and Kaye [97] (both 

used Micropolar model to describe blood rheology) have also been shown in this figure. It is observed that 

the velocity profile predicted by our model (for t = 8, 0.95  ) approximates the experimental data 

relatively closer than the velocity profiles obtained through the models given in references [96] and [97]. It 

is pointed out that the value of yield stress taken in Fig. 8.2 is chosen from the data given by Valencia et al. 

[98]. However, it is expected that if we increase the yield stress parameter, the velocity profile shifts toward 

the origin and in this case it better fits the experimental results of Bugliarello and Sevilla [95]. This shift of 

velocity toward the origin by increasing yield stress parameter is shown in Fig. 4(b). 
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Fig. 8.2: Dimensionless axial velocity profiles at various dimensionless times; (o), experimental results of Bugliarello 

and Sevilla for blood containing 40% RBC (-), prediction of Kang and Eringen’s model for blood with 40% RBC ;(+), 

prediction of Akay and Kaye for 0.866  . Calculation is based on the following data:  5,9, 0.7, dz n    

0 8,  1.5,   = 0.0175 .l     

The profiles of dimensionless radial velocity of the flowing blood in constricted artery at different time 

instants are shown in Fig. 8.3. All the graphs are taken at specific location z = 9. All the curves start from 

zero at the centre and approach a constant value at the interface thereby indicating the presence of wall 

movement. It is also noted from Fig. 8.3 that for a fixed value of time the magnitude of flow velocity 

diminishes as the peripheral layer thickness decreases. Moreover, in the systolic phase (t=2) the radial 

velocity assumes positive values while in the diastolic phase (t = 5, 8) it continues with negative values 

only.  

 

 

Fig. 8.3: Dimensionless radial velocity profiles at various dimensionless times. Calculation is based on the following 

data: ( 9,  0.7,z n 
05,  8,  1.5d l    ). 

The plots of dimensionless axial velocity of the flowing blood characterized by the Herschel Bulkley fluid 

for different values of power law parameter n at t = 5 and z = 9 are illustrated in Fig. 8.4a. One can see that 

the axial velocity decreases in going from shear thinning (n = 0.7) to shear thickening (n = 1, 1.3) fluid. 

The profile of axial velocity for n=1 lies in between shear thinning and shear thickening profiles. As 

expected it is observed that trend of axial velocity does not change with n in the plasma region near the 
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wall. The plots of dimensionless axial velocity for different values of yield stress are shown in Fig. 8.4b. 

This figure indicates that the trend of axial velocity is strongly influenced by the values of yield stress. It is 

found that the magnitude of the velocity profile decreases by increasing the value of yield stress. 

 
 

Fig. 8.4: Dimensionless Axial (Fig. 8.4(a) & 8.4. (b)) velocity graphs for different n and (yield stress). Calculation 

is based on the following data: ( 𝑧 = 9, 𝑡 = 5 , 𝛿 = 0.3, 𝑑 = 5, 𝑙0 = 8, 𝜏 = 0.0175, 𝑛 = 0.7). 

 

Fig. 8.5. (a) shows a comparison among three different models namely: single layer Newtonian model, 

single layer non-Newtonian model and two layer non-Newtonian model. One can observe that the profile 

of axial velocity for single layer Newtonian model coincides with that two-layered non-Newtonian model 

in plasma region while it predicts lower values of axial velocity in core region. Moreover, the values of 

axial velocity predicted by single layer non-Newtonian model are in excess of the values predicted by the 

other two models. Fig. 8.5 (b) shows the profiles of dimensionless axial velocity for different stenotic 

heights at a specific instant of time t = 5. It can be deduced that in these profile the magnitude of velocity 

decreases with an increase in the stenotic height. 

Fig. 8.6 shows the curves of the flow rate over whole arterial length for three instants of time. It is evident 

from these curves that qualitative behavior of flow rate is same at different time instants. However, there 

do arise a qualitative difference i.e. the flow rate increases with time. Furthermore, at a fixed instant of time 

the flow rate is found to increase by increasing peripheral layer thickness. 
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Fig. 8.5: Dimensionless Axial (Fig. 8.5(a) & 8.5.(b)) velocity graphs for different peripheral layer thickness and   

(stenotic length). Calculation is based on the following data: ( 𝑧 = 9, 𝑡 = 5 , 𝑑 = 5, 𝑙0 = 8, 𝜏 = 0.0175, 𝑛 = 0.7).  

 

 

 

Fig. 8.6: Distribution of flow rate for different dimensionless time (t). Calculation is based on the following data: 

00.3, 5, 8, 0.7, 1.5)(  d l n      . 

 

The curves of Fig. 8.7 illustrate the distribution of the normalized resistive impedances    at the same 

critical location of stenosis z = 9 at t = 5. These curves indicate that on one hand resistance to flow increases 

by increasing the height of stenosis while on other hand it decreases by increasing the peripheral layer 

thickness. The profile of impedance based on the existing study performed by Young [1] is also shown in 
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Fig. 8.7. It is found that our results are qualitatively similar to those given by Young [1]. However, 

quantitative differences are observed which may be attributed to unsteadiness and nonlinear model of the 

blood used in the present study. 

 

  

Fig. 8.7: Distribution of normalized resistance to flow for t = 5 at z = 0; (o-o), Young results (1968). Calculation is 

based on the following data: 
05, 8, 1.5,  n = 0.7)( d l    . 

 
Fig. 8.8: Distribution of normalized wall shear stress at 𝑧 = 9 𝑎𝑡 𝑡 = 5. Calculation is based on the following data: 

05, 8, 1.5,  n = 0.7)(d l    . 

Fig. 8.8 illustrates the plots of normalized wall shear stress  w   versus stenotic height corresponding to 

the critical location z = 9 at t = 5 with different peripheral layer thickness. The increasing trend of the 

curves indicates the development of the stress due to the increase of the severity of the stenosis from 0.0 to 
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0.2. Interestingly, the single layer Newtonian model predicts lower values of wall shear stress than that of 

two layer model. Further the wall shear stress predicted by two layer model is quite sensitive to the thickness 

of the peripheral layer. In fact, it increases by increasing peripheral layer thickness. 

The time series of wall shear stress at a specific location z = 14 of the constricted arterial segment for 

different Womersley number is shown in Fig. 8.9. It is inferred from this figure that the wall shear stress is 

compressive in nature and its magnitude increases with Womersley number. 

 

 

Fig. 8.9: Variation of wall shear stress for different Womersley number (  ) with dimensionless time. Calculation is 

based on the following data:  00.3, 5, 8d l , 9, n = 0.7z =   . 

8.7 Conclusion 
 

 

The analysis of pulsatile flow of blood through a diseased artery exhibiting the importance of peripheral 

layer thickness is carried out in the present study. The important findings of the study can be summarized 

as: 

 The magnitude of the velocity profile increases by increasing the peripheral layer thickness and decreases 

with the increase of height of the stenosis. 

 Wall shear stress increases with the increase of yield stress and height of the stenosis. 

 The flow rate is found to increase by increasing the peripheral layer thickness. 
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 Resistance to flow increases by increasing the height of stenosis while on other hand it decreases by 

increasing the peripheral layer thickness. 

 Resistance to flow increases with the increase in the size of stenosis. 
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Chapter 9 

 

Unsteady blood flow through a tapered stenotic 

artery using Sisko model 

 

This chapter explores the simultaneous effects of unsteadiness and non-Newtonian characteristics on flow 

of blood through a tapered stenosed artery. The rheology of blood is characterized by the constitutive 

equation of Sisko model. The time-variant nature of the stenosed artery is integrated in the geometry. The 

flow equations are derived for the scenario when the lumen radius is small than the wavelength of the 

pulsatile pressure wave. Employing radial coordinate transformation, the governing equations are 

integrated numerically along with the initial and boundary data over the whole arterial domain.  Some 

important observations regarding the radial and axial velocities, volumetric flow rate and resistance 

impedance are made through graphical results. 

9.1 Geometry of the problem 
 

 

The model of the tapered artery with stenosis in its lumen is considered as a thin elastic tube with circular 

cross-section containing non-Newtonian fluid characterized by Sisko fluid model. A cylindrical polar co-

ordinate (r, θ, z) system is employed for the purpose of flow analysis with r along the radial direction, while 

θ, z are taken along axial and circumferential directions respectively. A schematic diagram of stenosed 
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arterial segment is already shown in Fig. 7. 1. The expression defining the shape of this segment is reported 

in Eq. (7.1). 

9.2 Problem formulation 
 

 

 The geometry and under lying assumption of the flow problem under consideration are similar as given in 

chapter 7. However, the rheological behavior of the streaming blood through the artery is characterized by 

the constitutive equation of Sisko model which is already given in (2.3) i.e. 
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Assuming the flow to be two-dimensional, it is appropriate to choose a velocity field defined through Eq. 

(7.3) for the present flow situation. The continuity and momentum equations governing the flow under 

consideration are given by Eqs. (7.4) and (7.5)-(7.6). 

Since the Sisko model (2.3) is employed to capture the rheology of the blood. Therefore, the components 

of extra stress arising in momentum equations (7.5) and (7.6) can be written as 
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With a similar argument based on evidence that the lumen radius R is sufficiently smaller than 

wavelength 𝜆, of the pressure wave. i.e. R / 𝜆 ≪ 1 [90], the radial Navier-Stokes equation simply reduces 

to  ∂p/∂r =0 which implies that pressure is independent of the radial coordinate [90]. 
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The problem defined through Eqs. (7.4)-(7.6) and (9.2)-(9.4) is subject to the boundary and initial 

conditions given through (7.7)-(7.9). 

9.3 Transformation of the Problem 
 

In order to immobilize the effects of vessel wall the following radial coordinate transformation is obtained 

[75] 
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In terms of new variable x , Eqns. (7.4), (9.2)-(9.4) read 
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Similarly 
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The boundary conditions are 
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and                                   , ,0 , ,0 0.u x z w x z                                                                                    (9.13) 

As explicit expression for  , ,u x z t  can be obtained as follows: Multiplying Eq. (9.7) by xR  and integrating 

with respect to x  from 0 to x , we get 
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Eq. (9.14) takes the following form by making use of the boundary condition (9.12)  
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where ( )f x  is an arbitrary function. Let us choose ( )f x  of the form 
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Equating the integrands on both sides of (9.14) yields 
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Utilizing (9.17) in (9.14), we finally arrive at 
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9.4 Numerical solution using finite difference method 
 

Due to their nonlinear nature, it is difficult to obtain a closed form solution of Eqns. (9.6) and (9.8) subject 

to the boundary and initial conditions (9.11)-(9.13). For further analysis, these equations are integrated 

numerically using an explicit finite difference method. This method is based on the approximation of partial 

derivatives with their finite difference counterparts. The formulae of various derivatives appearing in (9.6) 

are already provided in chapter 7 through (7.32)-(7.34). 

Using (7.32)-(7.35), Eq. (9.6) may be transformed to the following difference equation 
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and Eqns. (9.8)-(9.10) have the following discretized form 
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The boundary and initial conditions can be written in the discretized form as:  
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 The wall shear stress (𝜏𝑤) is given by  
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The resistance to flow or impedance experienced by flowing blood at any cross-section is given by [26] 
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9.5 Results and Discussion 
 

 

The computations presented in this section are carried out for the following physiologically relevant values 

of parameters [26, 91-93]: a = 0.8mm, n = 0.639, 𝜌 = 1.06× 103 kg m-3, fp = 1.2 Hz, A0 = 100 kg m-2 s-2, 

A1 = 0.2A0, 𝛿= 0.4a. In fact the parameters chosen here correspond to flow of blood in a coronary stenosed 

artery. The step sizes are taken [26] x   0.025, z   0.01. Since no data is available about the value of 

 𝑎̅, therefore for the calculation purpose we have chosen it equal to 0.035P. The accuracy of the numerical 

solution is maintained up to 10-7 by choosing the time step 0.0001. Test computations show that if we 

decrease the spatial step size then simulations will take more time and accuracy will be slightly improved. 
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Thus we can say that numerical solution is nearly independent of spatial step size for 0.025x   and ∆z <

0.1. 

The profiles of the axial velocity of streaming blood in normal and stenotic artery for different values of 

tapering angles are shown in Fig. 9.1a. We can observe from Fig.9.1a that the magnitude of velocity is 

greater in the normal artery as compared with the stenotic artery. Further velocity profile attains higher 

values for diverging tapering as compared with the converging tapering. The profile of non-tapered artery 

lies in between. This observation is true for both normal and constricted artery. However, the profile in 

constricted artery for converging tapering is flatter over whole cross-section except near the wall. For such 

case, except the thin boundary layer the flow in the interior region is similar to a plug flow. The existence 

of flat velocity profile in the constricted region for converging tapering is because of the fact that near the 

artery wall the viscous and inertial forces are of the same order. However, near the centre of the artery the 

inertial forces dominate, thus compelling the axial velocity profile to attain a flat shape. The profiles of 

radial velocity of the flowing blood in normal and constricted artery for different taper angles are illustrated 

in Fig. 9.1b. All the profiles are taken at specific location z = 28mm and at time instant t = 0.45 s. This 

figure reveals that radial velocity is negative over the whole cross-section. All the curves start from zero 

and approach a constant value at wall due to the presence of wall movement in the stenosis geometry. It is 

further observed from this figure that the effects of vessel tapering on radial velocity are prominent for 

constricted artery as compared with the normal artery. The maximum deviation in the shape of curves of 

radial velocity occurs near the wall for both stenotic and normal artery.        

Fig. 9.2. (a) depicts the profiles of axial velocity for different instants of time t within single cardiac period 

at a specific location z = 28mm in the stenotic region. These profiles indicate a decreasing trend of the axial 

velocity when t increases from 0.1 to 0.45 s. However opposite trend is observed at t = 0.7 s i.e., axial 

velocity starts to rise again. Such a trend is clearly due to the pulsatile pressure gradient produced by the 

imposed boundary condition. The time instants 0.1, 0.3 and 0.45 s belong to systolic phase while time 

instant 0.7 s belongs to diastolic phase. The plots of radial velocity for different instants of t over a single 

cardiac cycle at a location z = 28mm in the stenotic region are shown in Fig. 9.2b. It is noted from this 
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figure that radial velocity assumes positive values in the time period 0.1 to 0.3 s while as time increases 

further from 0.3 s it decreases and become negative for t = 0.45s. It further continues with negative values 

for t =0.7s. The shift in the values of radial velocity from positive to negative is due to the pulsatile pressure 

gradient while its non-symmetric shape owes due to the arterial wall movement.  

The results for the axial velocity profile of the flowing blood characterized by the Sisko fluid at different 

axial positions for t = 0.45 s are illustrated in Fig. 9.3a. One can see that the shape of velocity profile at 

cross-section z = 15mm is parabolic. However, as one moves downstream toward the stenotic region a 

flattening trend is observed. The change in the velocity profile is confined in a thin layer near the wall at z 

= 28mm and outside this layer there is no appreciable change in it. At the offset of the stenosis i.e z = 34mm 

the velocity profile gets back to its original parabolic form.  Fig. 9.3b exhibits the profiles of radial velocity 

at different axial stations for 𝜙 =  −0.1𝑜 and t=0.45s. We can observe that the behavior of all curves is 

similar except the curve for z = 34 mm i.e. they get concave near the wall. However, at the location z =34 

mm the radial velocity changes its sign from positive to negative. The change of sign in the radial velocity 

at the downstream stenosis is an indicator of separation in the flow field. 

Figs.9. 4(a) and (b) show the axial and radial velocity plots for different tapering angles at t= 0.45 s. It is 

observed from both panels that when the tapered angle increases from -0.2o to -0.4o, the velocity profiles 

do shifts toward the origin. Similarly it shows opposite behavior when taper angle assumes positive values 

from 𝜙 =  0o to  𝜙 =  0.2o i.e the magnitude of the velocity increases or shift away from the origin. From 

these graphs one may conclude that there are significant effects of the tapering angle on the flow field of 

blood. 

Figs.9. 5(a) and (b) show the axial and radial velocity profiles for different values of the material parameter  

2 at z = 28mm and t = 0.45 s. It is observed from both panels that with an increase in value of 2 from 

0.1735 to 0.5735, the velocity profiles do shift away from the origin.  A comparison of axial and radial 

velocity for power law and Sisko fluid is shown in Fig. 9.6(a) and (b). This figure predicts higher values 

of axial velocity both in stenotic and normal artery for power-law fluid in comparison with Sisko fluid.  



138 
 

The graphical illustrations of time series of flow rate of streaming blood is characterized by the Sisko fluid 

for a different tapering angles and different material parameters are presented in Fig. 9.7(a) and (b), 

respectively. Fig.9.7 (a) comprises of the five distinct curves of flow rate. The top most curve is for normal 

converging artery with wall movement. Below it lays the curve for diverging stenotic artery. The third curve 

from the top corresponds to non-tapered stenotic artery. The variation of flow rate with time for diverging 

stenotic artery is shown in fourth curve. The last curve depicts the case of flow rate for artery with rigid 

wall. We may conclude from Fig. 9.7(a) that flow rate attain higher value in normal artery with wall 

movement as compared with stenotic artery. The positive values of taper angle further enhance the flow 

rate while the presence of stenosis reduces it significantly. Moreover, the flow rate fluctuates in the first 

two cardiac cycles and after that the periodic behavior prevails. This is because of the arterial wall 

movement included in the geometry of stenosis through the factor 𝑎1(𝑡) given by Eq. (7.2). Now with the 

increase of time the factor 𝑎1(𝑡) goes to unity due to its dependence on e−t and thus the profiles of flow 

rate becomes periodic. This is also evident from the curve for rigid wall where the flow rate is periodic for 

all times. Fig 9.7(b) indicates an increase in the flow rate with increasing the material parameter 2 .  

The time series of wall shear stress for four cardiac cycles at a location z = 28mm for different taper angles 

and different values of material parameter 2  are shown in Fig. 9.8 (a) and (b) respectively. We note from 

Fig. 9.8 (a) that the value of shear stress value in the stenotic region for a diverging constricted artery is 

higher than those of non-tapered and converging artery. We further note from Fig. 9.8 (a) that the profile 

of wall shear stress for a normal artery lies below of all other curves indicating how significantly the 

presence of stenosis can affect the wall shear stress. The material parameter of Sisko fluid 2  also affects 

the wall shear in the sense that wall shear stress reduces with an increase in 2 . Thus the non-Newtonian 

characteristics of blood also bear the potential to influence the wall shear stress. It is also evident from both 

the figures 9.8(a) and (b) that wall shear stress become periodic immediately after the start of the flow. 

Figs. 9. 9 (a) and (b) are plotted to see the time series of resistance impedance at a specific location z = 

28mm for different taper angles and different values of material parameter 2 . It is observed that these 
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profiles follow a reverse trend in contrast to  the flow rate profiles as expected from the formula of the 

resistance to flow given by expression (9.31). Contrary to flow rate profiles, one may observe that the 

resistance to flow in a stenotic region decreases as tapering angle increase from -0.1 to 0.1. A further 

decrease is observed in the absence of the stenotic region. Fig. 9.9 (b) reveals that the resistance to flow is 

a decreasing function of the material parameter 2 . Moreover Fig. 9.9 (a) and (b) also indicate that like flow 

rate, the periodicity in the resistance to flow is not attained within the first four cardiac cycles. 

9.6 Conclusion 
 

 

A mathematical model based on Sisko constitutive relation is developed to study the unsteady pulsatile 

flow of blood through a time variant stenotic artery. The analysis carried out here is general and includes 

the results for Newtonian and power law fluids as limiting cases.  The present model is also capable of 

predicting the effects of vessel tapering and severity of the stenosis on the important variables associated 

with the blood flow. The study reveals that the axial velocity of blood, resistance to flow, flow rate and wall 

shear stress are greatly influenced by the blood rheology, wall movement, presence of stenosis and degree 

of taperness of the artery. The study further gives a motivation to incorporate more realistic constitutive 

equations in the present model to represent the blood rheology. 

 



140 
 

 
 

Fig. 9.1: Axial (panel (a)) and radial (panel (b)) velocity profiles for different values of  . The others parameters are 

( 0 228 ,   0.45  , 0.4 ,  20 ,  16 , 0.1735 . nz mm t s a d mm l mm Pa s       ). 

 

 

 
 

Fig. 9.2: Axial (panel (a)) and radial (panel (b)) velocity profiles at different time instants. The others parameters are 

( 0 228 ,   0.45  , 0.4 ,  20 ,  16 , 0.1735 . nz mm t s a d mm l mm Pa s       ). 
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Fig. 9.3: Axial (panel (a)) and radial (panel (b)) velocity profiles for different axial stations. The others parameters 

are ( 0 2   0.45  , 0.4 ,  20 ,  16 , 0.1735 . nt s a d mm l mm Pa s      ). 

 

 

   
 

 

Fig. 9.4: Axial (panel (a)) and radial (panel (b)) velocity profiles for different values of  . The others parameters are 

( 0 228 ,   0.45  , 0.4 ,  20 ,  16 , 0.1735 . nz mm t s a d mm l mm Pa s       ). 
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Fig. 9.5: Axial (panel (a)) and radial (panel (b)) velocity profiles for different values of 2 . The others parameters are 

(
028 ,   0.45  , 0.4 ,  20 ,  16z mm t s a d mm l mm     ). 

 

             

   
 

 

Fig. 9.6: Axial (panel (a)) and radial (panel (b)) velocity profiles for different values of a . The others parameters are 

( 0 228 ,   0.45  , 0.4 ,  20 ,    16 ,  0.1735 . nz mm t s a d mm l mm Pa s       ). 
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Fig. 9.7: Time series of flow rate for different values of tapering angles    (panel (a)) and different material parameter 

values (panel (b)) at 28z mm . The others parameters are ( 0.4 , m a    0 220 ,  16 , 0.1735 . nd mm l mm Pa s    ). 

 

   
 

Fig. 9.8: Time series of Wall shear stress for different values of tapering angles    (panel(a)) and different material 

parameter values (panel(b)) at 28 .z mm  The others parameters are ( 0.4 , a    

0 220 ,  16 , 0.1735 . nd mm l mm Pa s   ). 
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Fig. 9.9: Time series of variation of resistance to flow for different values of tapering angles    (panel (a)) and 

different material parameter values (panel (b)) at 28 .z mm  The others parameters are ( 0.4 , a    

0 220 ,  16 , 0.1735 . nd mm l mm Pa s    ). 
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