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Abstract 

This dissertation presents new heuristic computational schemes for solving the nonlinear 

problems in engineering that are governed by nonlinear ordinary diffe~ential equations 

(NODEs) and nonlinear partial differential equations (NPDEs). 

The heuristic schemes comprising of Evolutionary Algorithms (EAs) and a linear 

combination of some basis functions are presented for solving NODEs. The approximate 

solution of NODEs is deduced as a linear combination of some basis functions with 

unknown parameters. Three different basis functions including log sigmoid, Bernstein 

polynomials, and polynomial basis have been used for the approximate modeling. A 

fitness function is used to convert the NODE into an equivalent global error minimization 

problem. Two popular EAs including Genetic Algorithm (GA) and Differential Evolution 

(DE), and local search techniques, such as, Interior Point Algorithm (IPA) and Active Set 

Algorithm (ASA) are used to solve the minimization problem and to obtain the unknown 

parameters. The memetic algorithm schemes combining GA with IPA (GA-IPA) and GA 

with ASA (GA-ASA) are also explored. The schemes have been tested on various 

nonlinear problems including Bratu problem, Duffmg van der pol oscillator, Michaelis- 

Menten biochemical reaction system, and power-law fin-type problem. 

An elegant hybridization of Exp-function method with nature inspired computing (NIC) 

has been presented for the numerical solution of NPDEs. Exp-function method is used to 

express the travelling wave solution of the given NPDE. The NPDE is converted into an 

optimization problem. Two popular NIC techniques including GA and particle swarm 

optimization (PSO) are used to solve the optimization problem. The scheme has been 

successfiAly tested on some important NPDEs including generalized Burger-Fisher, 

Burger-Huxley, and Fisher equations. 

The proposed numerical solutions are found in a good agreement with the exact solutions 

and quite competent with those reported by some well-known classical methods like 

adomian decomposition method (ADM), variational iteration method (VIM), and 

homotopy perturbation method (HPM). It is also observed that the memetic algorithm 

schemes are good choice for the optimization of such problem. 

The presented schemes are simple as well as efficient, and they provide the numerical 

solution not only at the grid points but also at any value in the solution domain. 
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CHAPTER 1 

INTRODUCTION 

1.1 DESCRIPTION OF THE PROBLEM 

Most of the nonlinear problems arising in diverse fields of engineering and science 

are by and large modeled by the nonlinear differential equations. The systems of 

nonlinear ordinary differential equations (NODEs) have sustained their importance 

due to their wide ranging applications from classical areas of engineering to more 

recent use in biology, chemistry, economics, and ecology. Nonlinear partial 

differential equations (NPDEs) govern the fundamental laws of nature and are crucial 

to many areas of engineering and science such as fluid dynamics, population models, 

plasma physics, and nonlinear optics etc. Due to their central role in engineering and 

science, NODEs and NPDEs are studied extensively by the research community 

including mathematicians, engineers, and scientists. 

A good number of nonlinear problems governed by NODEs and NPDEs have been 

solved effectively using the classical and modern techniques such as Runge Kutta 

method, Variational iteration method (VIM), Adomian decomposition method 

(ADM), homotopy perturbation method (HPM), and Exp-function method. 

The advent of high speed computing and the consequent emergence of scientific 

computation have witnessed much interest in new analytical and numerical 

approximation techniques coupled with computational algorithms. Recently, the 



evolutionary computation based techniques have been employed by some of the 

researchers as an alternate to the standard methods for numerically solving the 

nonlinear problems. However, comparatively lesser amount of work has been carried 

for the numerical solution of nonlinear problems modeled by NODEs, coupled 

nonlinear ordinary differential equations (CNODEs), and NPDEs. A lot more needs 

to be explored and a good number of these problems need to be solved numerically. 

Therefore, investigating the numerical solutions to these nonlinear problems 

especially CNODEs and NPDEs is still a crucial task and a great area of research. 

Motivated by the potential of nature inspired computation based techniques and the 

importance of the nonlinear problems in engineering, this research work considers 

numerical solution of NODEs, CNODEs, and NPDEs through nature inspired 

computation. The key issues which have to be addressed in this regard are as follows. 

To devise efficient heuristic technique for solving systems of nonlinear 

differential equations using nature inspired computation (NIC). 

The log sigmoid based NIC technique suggested and used in [I] should be 

exploited for solving other NODEs. 

One should investigate the combination of polynomial basis functions and 

heuristic computation based methodology for numerically solving nonlinear 

NCODEs in chemical reaction system and biomedical engineering problems. 

A novel scheme based on the elegant hybrid approach of the well-known 

Exp-function method and NIC should be investigated for the numerical 

solution of NPDEs. 



The applicability, efficacy, and reliability of the proposed heuristic schemes 

should be investigated on various nonlinear problems. 

1.2 CONTRIBUTIONS OF THE DISSERTATION 

This dissertation presents some new stochastic heuristic schemes for obtaining the 

numerical solution of nonlinear problems in engineering governed by NODEs, 

CNODEs, and NPDEs. Although we have adopted four different heuristic schemes 

for solving NODEs, CNODEs, and NPDEs, but all the schemes share the common 

concept of formulating a problem exclusive fitness function, which represents a trial 

solution of the given nonlinear problem. 

The basic idea of the proposed heuristic schemes is to transform the given nonlinear 

problem into an equivalent optimization problem using a problem exclusive fitness 

function with unknown parameters. The optimization problem is solved using the 

application of nature inspired optimization techniques. The main contributions of this 

thesis are given below. 

I. Application of Evolutionary Computing Technique With Log Sigmoid Basis For 

Solving Nonlinear ODES 

This technique which was suggested and used in [I] has been employed to solve 

the Bratu problem, Troech's problem, Duffing van der pol oscillator equation, as 

well as nonlinear singular boundary value problems in physiology. The 

approximate solutions are found in a good agreement with the exact solutions and 

quite comparable or better than some of the classical methods. 



2. Polynomial Basis Along With Hybrid Evolutionary Algorithm Technique for 

Solving CNODEs 

A heuristic approach based on the combination of polynomial basis and hybrid 

evolutionary algorithms is applied for solving CNODEs. A linear combination of 

polynomial basis with unknown parameters is used to construct the approximate 

solution. The CNODE is converted into a global error minimization problem. 

Hybrid evolutionary algorithms are used to solve the minimization problem and to 

achieve the unknown parameters. The technique has been applied for the first 

time to Michaelis-Menten nonlinear biochemical reaction system and HIV 

infection model of CD~'T cells. The proposed scheme has shown supremacy on 

some well-known traditional method in obtaining the solution of biochemical 

reaction model with greater accuracy. 

3. Hybridization of Exp-finction Method with Nature Inspired Computing for 

Solving Nonlinear Partial Differential Equations (NPDEs). 

An elegant hybrid approach of Exp-function method and nature inspired 

computing is for the first time attempted to obtain the numerical solution of 

NPDEs. Exp-function method is used to express the travelling wave solution of 

the given NPDE which is converted into an optimization problem. Nature inspired 

algorithms are used to solve the optimization problem. The scheme has been 

successfully tested on some important NPDEs including generalized Burger- 

Fisher, Burger-Huxley and Fisher equations. The numerical results from the 

proposed scheme are found in sharp agreement with the exact solutions. 

4. Bernstein Polynomials based Stochastic Technique for Solving NODES. 



A heuristic technique based on the coup4e of Bernstein polynomials and nature 

inspired algorithms is applied for obtaining the approximate solution of NODEs. 

Bernstein polynomial basis with unknown coefficients are used to construct the 

approximate solution of the NODE. Hybrid genetic algorithm is used to solve the 

optimization problem and to obtain the unknown coefficients. The technique.has 

been applied to the strongly nonlinear power law-fin-type problem and nonlinear 

Riccati equation. Comparisons of numerical results validate the effectiveness and 

reliability of the suggested technique. 

1.3 ORGANIZATION OF THE DISSERTATION 

Chapter 2, starts with an introduction of nature inspired optimization algorithms, 

followed by an overview of global and local search techniques. It also provides the 

literature review regarding the applications of nature inspired algorithms in solving 

diverse optimization problems in engineering and science. 

Chapter 3, gives the description of the hybrid log sigmoid basis evolutionary 

algorithm technique for solving NODEs. Moreover procedural steps of hybrid genetic 

algorithm (HGA) are provided. The application of the devised technique is illustrated 

on several nonlinear problems including the Bratu problem, Troesch's problem, 

Duffing van der pol oscillator equation, and nonlinear singular boundary value 

problems in physiology. 

Chapter 4, introduces the hybrid polynomials basis evolutionary technique for solving 

nonlinear coupled ordinary differential equations. It gives essential details of 

evolutionary algorithms such as Genetic Algorithm (GA) and Differential Evolution 



(DE). It illustrates the application of the proposed approach to nonlinear biochemical 

reaction model and HIV infection model of C D ~ + T  cells. To our knowledge these 

problems are solved for the first time using such a scheme. 

Chapter 5, presents a new scheme based on the couple of Exp-function method and 

nature inspired algorithms for solving NPDEs. It gives an overview of the Exp- 

function method. Some essential procedural steps of the nature inspired algorithms 

are provided. An elegant couple of Exp-function method and nature inspired 

algorithms is for the first time attempted as per our literature survey. The scheme is 

implemented to solve well-known NPDEs including generalize Burger-Fisher, 

Burger-Huxley, and Fisher equations. The viability of the proposed scheme is also 

illustrated by various simulations. 

Chapter 6, starts with an introduction of the Bernstein polynomials. Heuristic 

approach combining Bernstein polynomials and nature inspired algorithms is 

described. The proposed approach is applied to solve nonlinear Riccati differential 

equations and power-law fin-type problem with high order nonlinearity to illustrate 

its effectiveness. The reliability is also tested by many simulations. A study of 

comparative analysis between log sigmoid based technique and Bernstein 

polynomials technique is also presented. 

Chapter 7, gives the summary of the work described in this dissertation. Some future 

work directions also made at the end. 



CHAPTER 2 

NATURE INSPIRED OPTIMIZATION ALGORITHMS 

2.1 IINTRODUCTION 

In past few decades, many optimization methods have been suggested for solving 

optimization problems. Although deterministic optimization methods perform well on 

many problems, they are not efficient in solving highly nonlinear and large scale 

combinatorial problems 121. Also, these methods need huge computational efforts, which 

tend to fail as the problem size increases [3]. Nature inspired algorithms (NIAs) are 

metaheuristics that mimics the nature for solving optimization problems. NIAs are 

computationally efficient and derivative-free global optimization methods that work well 

on noisy target functions which have many local optima. The main thrust behind NIAs is 

the nature itself, which is the real source of inspiration for solving complex and stiff 

problems efficiently. Moreover, NIAs can handle highly nonlinear and high dimensional 

problems efficiently due to their characteristics such as adaptability, parallelization, 

robustness, and cooperation, which also makes these techniques suitable for scientific 

computing [4], [ 5 ] .  In recent years many metaheuristic techniques have been developed, 

however we confine our study to the evolutionary algorithms @As) such as genetic 

algorithm (GA) and differential evolution (DE), particle swarm optimization (PSO), and 

pattern search (PS) algorithms, which are briefly introduced in the next sections. 



2.2 EVOLUTIONARY ALGORITHMS 

Evolutionary algorithms (EAs) are subclass of NIAs which are based on the idea of 

biological evolution in nature. EAs are population based stochastic computational 

algorithms that employ survival of the fittest philosophy for solving optimization 

problems. EAs maintain a population of individuals, which represent the potential 

solutions to the given problem. Each solution is subject to a fitness based selection 

criteria. New solutions are formed by applying genetic operators, and better solutions are 

selected for the next generation in an iterative manner. EAs are robust and able to cope 

with problems with discontinuities. The family of EAs comprises of genetic algorithm 

(GA), differential evolution (DE), genetic programming (GP) etc. however our study is 

primarily concerned with GA and DE which are briefly discussed next. The interested 

readers can find good source of material on EAs in books [6], [7]. 

2.2.1 GENETIC ALGORITHMS 

The genetic algorithm (GA) invented by Holland [8] is one of the most renowned 

stochastic global search optimization technique in EAs. GA uses the principle' of natural 

selection and genetics by mimicking the nature to solve optimization problems 191, [lo]. 

GA is attractive in solving various optimization problems because they are easy, efficient, 

and robust [ l l] ,  [12]. GAS have been used in the optimization of diverse problems in 

engineering and science such as nonlinear heat conduction problem [13], predictive 

controller for nonlinear system [14], antenna array thinning problem [15], parameter 

estimation of chromatography process [16], fuzzy nonlinear problem [17]. Specifically 

GA has been effectively used as the optimization algorithm for solving various systems 

of linear and nonlinear differential equations [IS], [19], [20], [21], [22], [23], [24], [25], 



[26], [27]. Moreover many authors have used GA optimized artificial neural networks 

(ANNs) for solvizlg various NODES [I], [28], [29], [30], 1311, [32]. Although there is a 

long list of applications of GA as optimization tool in various problems, only some have 

been narrated as a reference to confirm the great potential and broad applicability of GAS. 

The GA commences by creating a population of individuals called chromosome. A 

chromosome consists of genes typically encoded as a string of values. Each chromosome 

is regarded as a possible solution to the given problem. Each chromosome is assigned a 

fitness value which indicates how good solution a particular individual is to the given 

problem. The individuals within a population are evaluated using a fitness function that is 

specific to the problem at hand. The algorithm evolves population of individuals 

iteratively by means of three genetic operations, selection, crossover, and mutation [33]. 

The parents are selected on the basis of their fitness values which produce offspring. I 
I 

Offspring act as parents for the new generation. It is expected that new offspring would 

give better solutions over the course of generations. The pseudo-code of the GA is given 

in algorithm 2.1 and its flow chart is given in Fig. 2.1. 

Algorithm 2.1: Genetic Algorithm (GA) 

Begin 

Initialize population of candidate solutions 

Evaluate each candidate solution 

Repeat until (stoppage criterion is satisfied) 

Select parents 

Crossover and generate offspring 

Mutate offspring 



Evaluate offspring 

Select new population 

End 

start 1 

Generate Initial 
Population of Solutions 

\ J 
1 

Evaluate Fitness of 

Selection of Individual + 
Crossover LJ 
Mutation r l  

I Fitness Evaluation of \ 
Children L 

I Update population 1 

( Return Best Solution ~~d ] 

Fig. 2.1 Flow chart for GA Optimization 

The steps of working of GA are now briefly explained. A detailed discussion on the 

elements and its working of GA can be found in the books [33], [34]. 



Encoding: 'The first and important step in GA is the appropriate encoding that is 

repres~ntatic:: of the chromosome. The chromosome is normally represented as a fixed 

length binary string of 0's and 1's. The choice of encoding greatly affects the 

performance of GA 1331. 

Initialization of population: As mentioned before GA is a population based search 

method. A population is initially created randomly in the search space. The performance 

of GA largely depends of the size of the initial population 1331. 

Selection: After the encoding and random population initialization, selection of 

chromosomes that will act as parents is performed. Selection picks the chromosome in a 

manner similar to the Darwin's theory of natural selection. At the end of each generation 

a new population of candidate solutions is selected. The chromosomes with better 

performance or with the relatively high value of fitness survive through generations. 

Selection of chromosomes is performed using a problem specific fitness function. Over 

the years many types of selection operators have been developed which include stochastic 

uniform, rank, roulette wheel, and tournament. 

Crossover: crossover operator is like natural mating in which two different chromosomes 

swap their genes to produce offsprings. Crossover is explorative, it makes a big jump to 

an area somewhere "in between" two parent areas. In GAS crossover is carried in many 

different forms like scattered, heuristic, single point, etc. 

Mutation: Finally mutation operator is used to provide genetic diversity from one 

generation of a population to next to search a broader space. It makes small random 

changes in the individuals of the population. It is exploitative, it creates random small 



diversions. thereby staying near around the parent. Some of the types of mutation used in 

GA are adaptive feasible, Gaussian, and uniform. 

This process of selection, crossover, and mutation is continued until the termination 

criterion such as number of generations, or fitness value, is satisfied. 

2.2.2 DIFFERENTIAL EVOLUTION 

Differential evolution (DE) developed by Price and Storn [35] is another popular and 

powerful parallel search global optimization algorithm in EAs. It is a population based 

algorithm like other EAs, but it differs from others, such as GAY in the mutation and 

recombination stage. DE produces offspring by mutating the solution vectors with a 

weighted difference of two randomly picked population vectors. Moreover, DE adopts a 

one-to-one logic for reproduction which allows replacement of an individual only if the 

offspring gives better fitness value than its corresponding parent [36]. DE has illustrated 
I 

its strength and robustness in diverse applications, such as nonlinear system identification 

[37], edge detection in images [38], control and synchronization of chaotic systems [39], 

process engineering problems [40], and learning of neural networks (NNs) [41], [42], 

[43], [44], [45]. Further a survey of variants of DE proposed in recent years and their 

applications can be found in [36]. 

DE like other EAs begins by creating a random initial population of individuals in the 

search space. At each generation, for each individual three unique vectors are selected in 

the population. The weighted difference of two vectors is added to the third one. A trial 

vector is produced and compared to the target vector in the population. The one with the 

lower fitness value survives and becomes parent for the next generation. The basic 

implementation steps of DE are described below [7], [35]. 



Population initialization: A population of N chromosomes is randomly generated within 

the user defined bounlls. Each chromosome consists of D number of genes. 

Mutation: Mutation operation creates a trial vector for each individual of the current 

population by perturbing the target vector with a weighted difference of two vectors. For 

each parent, x'xg, three individuals nl, n2, and n3 which are mutually distinct and also 

different from i, are randomly chosen from the population. The mutation is applied to the 

target vector to produce a perturbed vector according to the following formula. 

yi.g+l = X n ~ , 9  + F(Xnzd  - ~ " 3 . 9 )  (2.1) 

where F E [0,2] is a real constant which controls the amplification of the weighted 

difference vector. The mutated vectors perturbed vectors are 

Crossover: Subsequent to the mutation crossover operation is applied to the population 

which introduces diversity in the mutated vectors. The crossover recombines the trial 

vector and the parent vector to produce offspring as follows. 

i,g+l = fig" if rand I CR or j = jrmd z. 
I x;lg otherwise 

where CR E [0,1] is called crossover constant. 

Selection: Following recombination selection is applied to decide which individual 

should become the member in the next generation. At this stage trial vector is compared 

with the target vector, and only the fitter one is selected for the next generation. If the 

trial vector gives better fitness than the target vector it replaces the target vector 

otherwise the target vector is retained. The selection method is as follows (if a 

minimization problem is considered). 



'The above procedure of mutation, crossover, and selection is continued until some 

stopping criterion like desired fitness or maximum number of generations is reached. 

2.3 PARTICLE SWARM OPTIMIZATION 

The Particle swarm optimization (PSO) belongs to a broad class of swarm intelligence 

(SI). The fundamental idea behind the SI techniques is derived from the natural behavior 

and social interactions of flock of birds, a school of fish, and ant colonies etc. where 
' 

individuals in a group interact and exchange local information and ultimately solve the 

complex global objective efficiently [33]. 

PSO is a stochastic global search optimization algorithm which was introduced by 

Eberhart and Kennedy in 1995 [46], [47]. PSO applies the concept of simulating the 

social behavior of birds within a flock for solving optimization problems. Due to the 

simple concept, ease in implementation, and computational efficiency, PSO has attracted 

many researchers and practitioners. PSO has been successfully applied to solve many 

optimization problems involving ODEs such as Riccati equation [48], Wessiger's 

equation [49], [50], Bagley-Torvik equation [5 11, nonlinear damped pendulum [52], fluid 

flow and heat transfer problem [53], fractional ODEs [54], [55]. Although PSO has been 

used for solving wide variety of problems, only few of its applications to solve 

optimization problems that are modeled by the differential equations are reported here as 

a reference. For a comprehensive detail of applications of standard PSO and its variants 

proposed in recent years, refer to the book [33] and references [56], [57], [58]. 
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PSO is a population based search method in which individuals, called as particles are 

grouped into a swarnl. Each particl,: in the swarm is a candidate solution. Starting with a 

randomly generated population the particles move around in the search space for the best 

solution. All particles exhibit velocities that direct flying of the particles and fitness 

values which are computed by the problem exlclusive fitness hc t ion .  Each particle in 

search space keeps track of its best solution obtained called Pbest, and the best value 

achieved by any paricle called Gbest, and adjusts its travelling speed dynanlically 

according to its personal flying experience as well as flying of colleague particles. It is 

expected that the particles will move towards a optimum global solution area. At each 

iteration velocity and the position of each particle are updated accordingly. We have 

employed following relations for updating the velocity and position of the particle [59]. 

j + l  
vi = @v( + ~ , [ y ~ , ~ ( ~ b e s t ~  - x i ) ]  + ~ ~ [ y ~ , ~ ( ~ b e ~ t  - x ! ) ]  (2-4) 

where cl and c2 are positve acceleration constants, i= 0, 1, 2, .... M, where M is the total 

number of paticles in the swarm, yl,2 are random numbers chosen uniformly in the range 

[O,l], q is the linearly decreasing inertia weight, x i ,  and v!  are current position and 

velocity vectors respectively. The generic PSO is given in Fig. 2.2 in the form of the flow 

chart. 

2.4. MEMETIC ALGORITHMS 

Memetic algorithms (MAS) are optimization techniques based on the hybrid approach of 

global search EAs and local search [60]. MA term was first introduced by Moscato in 

[61], and was regarded as a population based hybrid genetic algorithm (HGA). MAS are 



inspired by both Darwinian evolution and the cultural evolution [62]. MAS also referred 

i~:  more diverse context as hybrid evo1:-tionary algorithms have been proved to be more 

accurate and computationally efficient than EAs [60]. In recent years a number of hybrid 

evolutionary techniques have been reported for solving various problems such as 

generation maintenance scheduling [63], brain computer interface [64], and nonlinear 

flight control [65]. Further a detail of several hybrid evolutionary schemes and their 

applications can be found in [60]. The application of hybrid evolutionary algorithm 

ANNs are also reported in [27], [28] for solving many systems of ODES effectively. 

In this study I have used the hybrid approach of stochastic global search algorithm such 

as GA with local search algorithms including interior point algorithm (IPA), active set 

algorithm (ASA), and pattern search (PS). In our approach, GA has been used as global 

search optimizer which finds global best solutions, and IPA, ASA, and PS are used as 

local optimizers for the fine tuning and improvement of the solutions. The memetic 

algorithm approach adopted in this dissertation is shown in Fig 2.3. 

Nonlinear Problem (NODE, NCODE, Global Search 
NPDE) Algorithm (GA) 

I (Represented as Optimization Problem) 1 - 
f \ f 

Local Search Optimizer Global Optimal 
Chromosome 

(IPA/ASA/PS) 1 
Best Individual ? 

Fig. 2.3 Flow Diagram of Memetic Algorithm 



The global best chromosome found by GA for the given problem is fed into the local 

search optin1:zers which perf.xm the iscal s2wch refinement, and consequently improved 

solutions are obtained. The local search algorithms such as IPA, ASA, and PS used in this 

dissertation are briefly explained below. 

2.5 INTERIOR POINT ALGORITHMS 

Interior-point algorithms (IPAs) although were introduced in late 1940's [66], they only 

became popular since the revolutionary work of Kamarkarin in 1984 [67]. IPA also 

referred to as barrier method navigates through interior feasible region following a 

middle path to reach an optimal solution [68]. At each iteration IPA attempts to solve a 

sequence of approximate minimization problems using either direct step also called 

Newton step or conjugate gradient (CG) step [69]. 

The algorithm tries the direct step by default. When the approximate problem is not 

locally convex near the current iterate then the algorithm attempts CG step. In the direct 

step the algorithm uses linear approximation to solve the Karush-Kuhn-Tucker (KKT) 

equations and a CG step is attempted using trust region. At each iteration, the algorithm 

decreases a merit function that is specific to problem. In case the attempted step does not 

give any decrease in the merit function, it is rejected and a new step is attempted by the 

algorithm. The algorithm iteratively tracks the middle path of the feasible region while 

decreasing the barrier parameter to ultimately reach an optimal point [70]. 

2.6 ACTIVE SET ALGORITHM 

Active set algorithm (ASA) belongs to the larger class of quadratic programming (QP) 

[71]. ASA is an iterative method that creates a sequence of approximate solutions to the 

given problem. The objective of the algorithm is to maintain and update a prediction of 



the optimal sets of active and inactive constraints. The prediction usually turns wrong 

therefore t h e  m-thods contain procedures for testing and altering the current prediction 

[72]. At each iteration the algorithm attempts to solve KKT equations defined by the 

active constraints. 

The classical active set methods usually work in two phases such as feasibility and 

optimality. In the feasibility phase the algorithm attempts to compute the feasible point 

for the constraints, while ignoring the objective. In the optimality phase the algorithm 

maintains feasibility and attempts to compute an optimal point by minimizing the 

objective [71], [72]. 

2.7 PATTERN SEARCH 

The Pattern Search (PS) first introduced by Hooke and Jeevs [73] belongs to the direct 

search methods (DSM). DSMs does not involve the gradient of the optimization 

problems, hence PS can be applied to optimization problems that are non-continuous, 

non-differentiable, and multimodal [74]. The PS algorithm proceeds by computing a set 

of points that approach to the optimal point. The algorithm begins by searching a set of 

points called mesh, around the given point that is computed in the previous step of the 

algorithm. The mesh is formed by adding the current point to a scalar multiple of vectors 

called a pattern. If PS finds that a point in the mesh improves the objective function at the 

current point, the new point becomes the current point in the next iteration. PS is simple, 

easy, and computationally efficient, and also possesses adaptability for local search 

refinement [75]. 



2.8 SUMMARY 

This chapter presents the review of evolutionary computing techniques and their 

applications to many problems in engineering. It also presents an overview of hybrid 

genetic algorithms known as memetic algorithms. 



CHAPTER 3 

APPLICATION OF EVOLUTIONARY COMPUTING TECHNIQUE FOR 

SOLVING NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS 

This chapter provides the detail of the suggested heuristic computation method, 

combining log sigmoid basis functions and evolutionary algorithm for solving nonlinear 

ODES. The approximate solution of NODE is deduced as a linear combination of log 

sigmoid basis functions with some unknown parameters. A fitness function is used to 

convert the NODE into an equivalent global error minimization problem. One of the 

popular EAs such as GA and memetic algorithms combining GA with IPA, ASA, and PS 

are used to solve the minimization problem and to obtain the unknown parameters. The 

numerical applications of the suggested method are extensively studied for solving 

several nonlinear problems. The material provided in the following sections is mostly 

from the published work [76], [77], [78], [79], [SO]. 

3.1 INTRODUCTION 

Nonlinear problems appearing in many physical phenomena, engineering and scientific 

applil 

these 

usefu 

ations are modeled with nonlinear ordinary differential equations (NODEs). Mostly 

NODEs are formulated as initial andor boundary value problems. Some of the 

applications of NODEs include the modeling of gas dynamics, beam deflection, 

thermodynamics, optimization theory, atomic physics, nuclear, chemical reactions, and 

fluid dynamics [Sl], [82]. Solving such NODEs is vital to get the insight of the systems 



behavior. Since many NODEs either do not have an exact solution or obtaining the same 

is difficult analyticallv, therefore these problen~s are tackled using various approximate 

analytical and numerical techniques. There are many traditional methods like adomian 

decomposition method (ADM), variational iteration method (VIM), and homotopy 

perturbation method (HPM) applied for the solutions of NODEs [83]. These methods 

have their own strengths as well as some limitations that are addressed in [82]. 

Recently, there has been a growing interest in using stochastic solvers based on 

evolutionary computation as an alternative to the traditional methods for solving NODEs. 

The efficiency of these stochastic solvers has been demonstrated by many authors, for 

example Blasius equation 1841, MHD Jeffery-Hamel problem [85], Emden-Fowler 

equation [86], and van der pol oscillator equation [87] are among several nonlinear 

problems that have been successfully solved using these techniques. The main advantage 

of these techniques is that they can provide the numerical solution of NODE on 

continuous points as compared to the traditional methods which give the solution only at 

pre-defined grid points. Moreover the complexity of these techniques does not grow with 

the increase in sampling points, which is one of the main drawbacks of most traditional 

methods 1491. 

Although a good number of NODEs has been solved using the traditional as well as 

stochastic methods, still new methods are sought to handle these and many other such 

problems. The strengths of stochastic solvers need to be explored on NODEs of physical 

interest in engineering and science. 



3 METHODOLOGY FOR SOLVING NODEs 

In this section, the methodology for solving NODEs is presented. The method is basically 

heuristic in nature which combines log sigmoid basis functions and evolutionary 

algorithms (EAs). An approximate mathematical model employing the linear 

combinations of log sigmoid basis hc t ions  with unknown parameters is deduced. The 

given NODE is converted into an equivalent optimization problem. EA is used to solve 

the optimization problem. The method is explained below. 

Consider a general nth order ODE given in the following form. 

subject to the following initial and boundary conditions respectively 

d k y  - d x k  y(0) = a,, k = 0,1,2,3. .... . . n  - 1 

where g represents the nonlinear hct ion,  prime denotes the derivation with respect to x, 

T is the upper bound of the solution span, ak and Pk are real constants denoting the initial 

and boundary conditions respectively 

To solve (3.1), we assume that the approximate solution y(x) and its n derivatives 

y l (x) ,  yU(x) ,  yU'(x), ... ... ...., and yn(x) are a linear combination of basis functions, 

which can be expressed as follows. 



where ai , bi , and ci are real valued unknown parameters to be determined, m is the 

number of basis hnctions, and q(x) is assumed to be the log sigrnoid function which is 

given by 

The derivates of y(x) given by (3.5) - (3.7) can be simply obtained using the basic 
I 

calculus or any available mathematical tool. Besides, in this chapter I have solved 

NODEs of second order only however this methodology can be applied to higher order 

NODEs as well. Hence in view of the second order NODE as a special case of (3. I), first 

two derivates of (3.4) are given by (3.9) and (3.10) respectively as follows. 



The objective is to find the values of unknown parameters (ai , bi , and Ci) in (3.4), 

which consequently yields the approximate numerica! solution y(x) of the given. 

problem. To determine the values of these unknown parameters (ai , bi , and ci), the 

given NODE along with its initial and/or boundary conditions is converted into an 

equivalent optimization problem using a fitness function defined below. 

3.2.1 FITNESS FUNCTION 

The fitness function (FF) denoted as ( E ~ )  basically represents the global error associated 

with the given NODE along with its initial and/or boundary conditions to be solved using 

the approximate model defined above. FF consists of the sum of two parts, frrst part 

represents the mean of sum of square errors associated with the given NODE denoted by 

( E ~ )  , the second part represents the mean of sum of square errors linked with the given 

initial andlor boundary conditions denoted by ( E ~ ) .  Assuming a second order NODE (E,) 

is developed as follows. 

where y ( x )  , y ' (x), and , y " (x) are given by (3.4), (3.9), and (3.10) respectively, N is 

total number of steps on the interval [O, TI. The FF is accordingly written as 

Ej = + E~ j = 1,2,3 ... 

where j is the generation numberliteration count of the algorithm. 

the 

The fitness function ( ~ j )  represents the global error minimization problem. As it is 

evident that FF contains unknown parameters (ai , bi , and  ci), therefore it solely 
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depends on the xralues of these unknown parameters. It is also quite obvious that smaller 

thc ~j :he bette:. the approximate solutiott. The error minimization problem given by 

(3.13) is solved using the evolutionary algorithm (EA) to find the values of the unknown 

parameters ( a i ,  bi , and ci) that correspond to the best possible minimum E,. 

Consequently the approximate numerical solution y ( x )  of the given NODE is 

straightforward obtained by using the values of unknown parameters in (3.4). 

3.2.2 HYBRID GENETIC ALGORITHMS 

In this section, evolutionary algorithm used throughout the chapter for solving the 

minimization problem given by the fitness fbnction (3.13) is introduced. The GA, IPA, 

ASA, and PS, and three hybrid schemes combining GA with PS, IPA, and ASA have 

been employed for solving the fitness function and to obtain the unknown parameters 

( a i ,  b i t  and ci). The three hybrid schemes used are referred to as GA-IPA, GA-ASA, 

and GA-PS in the rest of the chapter. The GA has been used as global optimizer while 

IPA, ASA, and PS have been utilized for local search refinement. The procedural steps of 

the hybrid schemes are given in algorithm 3.1. 

Algorithm 3.1: Hybrid Genetic Algorithm (HGA) 

Step 1: (Population Initialization) 

A population of N chromosomes or individuals is generated using 

random number generator. Each population consists of M number of 

genes. The number of genes is equal to the number of unknown 

adjustable parameters. 

Step 2: (Fitness Evaluation) 

Fitness of each chromosome is computed in the current population using 



the problem exclusive fitness function (FF). Rank the individuals 

according their fitness values. 

Step 3: (Stoppage Criteria) 

The algorithm stops if the maximum number of generationsliterations 

has exceeded or a predefined fitness value is achieved. If the stoppage 

criterion is satisfied then go to step 6 for local search refinement, else 

continue and repeat steps 2 to 5. 

Step 4: (Selection and Reproduction) 

A new generation is populated using the crossover operation. Parents 

are selected on the basis of their fitness which produces offspring 

(children) to act as parents for the next generation. 

Step 5: Mutation 

This operation is optional and it is carried if there is no improvement in 

the fitness in a generation. Mutation introduces intermittent changes in 

the genes to preserve the genetic diversity. 

Step 6: (Local Search Fine Tuning) 

The optimal chromosome achieved by the GA is fed to the IPA, ASA, 

and PS as a starting point for fine tuning and improvement. 



3.3. NUMERICAL APPLICATIONS 

In thk section, the methodology described above is appliei? to many nonlinear problems 

including the Bratu problem, Troesch's problem, Duffiing van der pol oscillator problem, 

and nonlinear singular boundary value problems in physiology, to assess and test its 

performance. The nonlinear problems solved in this chapter using the proposed 

methodology have been selected due to their physical importance in diverse applications 

of engineering. 

In order to demonstrate the accuracy, efficiency, and viability of the presented method, 

comparisons of the numerical solutions are made with the exact solutions and the 

solutions obtained by some traditional methods. 

For implementation Matlab 7.6 and its built in optimization tool has been utilized 

throughout. 

3.3.1 BRATU PROBLEM 

Examplel. We consider the classical Bratu problem in one-dimensional planner 

coordinates represented by the boundary value problem of the following form [88], [89], 

~901, [911, [921,[931, WI,  ~951. 

y"(x) + ~ e y ( ~ )  = 0, x E [0, 11 (3.14) 

y(0) = 0, and y(1) = 0 ( ? - w  

The classical Bratu problem has wide spread applications in engineering and science 

including the model of fuel ignition, chemical reaction theory, radiative heat transfer, 

Chandrasekhar model of the expansion of the universe, and nanotechnology [88], [89], 

[go], [9 11, [9217 [ W ,  [941,[951. 



The Bratu problem has received much attention due to its diverse applications and many 

methods have been utilized for the solutior of the standard Bratu and Bratu-type 

problems [88], [89], [90], [91], [92], [93], [94], [95]. The methods include DM by Deeba 

and Khuri [88], LTDM by Khuri [89], ADM by Wazwaz [5], RADM by Vahidi, and 

Hasanzade [92], non-poly spline by Rashidinia and Jalilian [93], cubic B-spline 

collocation by Abukhalid [9 11. 

The exact solution of (3.14) for A. > 0 is given in [90], [91], [92], [93], [94], [35] and is 

given by the equation below 

where 8 satisfies 

The approximate numerical solution y(x) of the Bratu problem (3.14) - (3.15) is 

obtained using the suggested method in the interval [0, 11 with a step of 0.1, for two 

different values of A. = 1,2, for a direct comparison with some other methods. 

To apply the proposed method, the given problem (3.14) - (3.15) is converted into an 

equivalent global error minimization problem by formulating its fitness function for each 

case A. = 1 and A. = 2 . The number of basis functions is taken equal to 10. The fitness 

function ~j for A. = 1 is developed as follows. 



Consequently the fitness function ~j is given as follows 

Similarly the fitness function for il = 2 is formulated which is given by 

where y ( x )  and y " ( x )  are given by (3.4) and (3.10) respectively. 

The fitness functions given by (3.20) and (3.21) are minimized by applying GA, IPA, 

ASA, and PS, and three hybrid schemes GA-IPA, GA-ASA, and GA-PS for achieving 

the values of unknown adjustable parameters (ai , bi , and  Ci). 

The parameter settings and values used for the implementation of the algorithms are 

given in Table 3.1 for GA and IPA and in Table 3.2 for PS and ASA respectively. 

Since we have taken the number of basis functions equal to 10, therefore the size of 

chromosome i.e. the number of unknown adjustable parameters 

(a, , a,, ... , ale; b,, b2, ... , blo; el, c,, ... , clo ) are chosen equal to 30. The values of these 

unknown adjustable parameters are restricted between -20 and + 20. This was observed 

by several simulations that by bounding these unknown adjustable parameters to the 

specified interval we get good results. 



Table 3.1 Parameter values and settings of GA and IPA for Bratu problem 

- - 
Parameters Settings/Value 

C, A IPA 

size 1 chromosome chromosome 

Name Example 1 Example 2 
Population 240 240 

Name Example 1 Example 2 
Start point Randomhest Randomhest 

size I function 
Chromosome 30 30 

from GA from GA 
Maximum 48000 200000 

Selection Stochastic Stochastic 
evaluations 
Derivative Forward Central 

function uniform uniform 
Mutation Adaptive Adaptive 

type differences differences 
Hessian BFGS BFGS 

function feasible feasible 
Crossover Heuristic Heuristic Subproblem Id1 Id1 
function 
Crossover 0.8 0.8 

Table 3.2 Parameter values and settings of PS and ASA for Bratu problem 

algorithm factorization factorization 
X tolerance le-10 le-10 

fraction 
No. of 1500 2000 
generations 
Function 1 e-22 le-18 
tolerance 
Bounds -20, +20 -20, +20 

Parameters Settin~sNalue 

Maximum 1000 1000 
iterations 
Function 1 e-22 le-18 
tolerance 
Bounds -20, +20 -20, +20 

Name Example 1 Example 2 
Start point Optimal Optimal 

chromosome chromosome 
from GA from GA 

Poll method GPS positive MADS 
basis 2N positive basis 

2N 
Polling order Random consecutive 

Maximum 3000 4000 
iterations 
Maximum 200000 230000 
function 
evaluation 
Function 1 e-22 1 e-22 
tolerance 

chromosome chromosome 
from GA from GA 

Maximum 400 400 
iterations 

Maximum 48000 200000 
function 
evaluations 
Function 1 e-22 le-18 
tolerance 
Nonlinear le-10 le-18 
constraint 
tolerance 
SQP 1 e-6 1 e-6 
constraint 
tolerance 



The algorithms are executed according to the prescribed settings to achieve the minimum 

valw af fitness knction ( E ~ ) .  The algorithms run iteratively until the termination criteria 

of either maximum number of generations exceeds or the desired fitness value is 

achieved. The best chromosome found by the algorithms is accordingly chosen as the 

values of unknown parameters. The values of unknown parameters acquired by the 

algorithms are used in (3.4) to yield the approximate solution y ( x ) .  

In Table 3.3 we provide the optimal values of unknown parameters acquired by GA for 

A = 1,2, and in Table 3.4 and Table 3.5 values of unknown parameters acquired by three 

hybrid schemes GA-IPA, GA-ASA, and GA-PS are given for A = 1 and A = 2 

respectively. Further in Table 3.6 - Table 3.8 the values of unknown parameters acquired 

by IPA, ASA, and PS are given respectively. 

Table 3.3 Optimal values of unknown parameters acquired by GA for Bratu problem 
(example 1) with A = 1,2 



Table 3.4 Optimal values of unknown parameters acquired by hybrid schemes for Bratu 
problem (example 1) with A = 1 

GA-PS GA-ASA GA-IPA 

Table 3.5 Optimal values of unknown parameters acquired by hybrid schemes for Bratu 
problem (example 1) with A = 2 

GA-PS GA-ASA GA-IPA 

The approximate solution y ( x )  of the Bratu problem (3.14) is obtained straightforward 

by using the values of unknown parameters in (3.4). The solutions obtained by the 

proposed method with GA and three hybrid schemes GA-IPA, GA-ASA, and GA-PS are 



presented in Table 3.9 and Table 3.10 for 1 = 1 and A = 2 respectively, also exact 

sc. 5cns al; .;: en for the comparison purpose. 

Table 3.6 Optimal Values of unknown parameters acquired by IPA for Bratu problem 
(example 1) with A = 1, 2 

Table 3.7 Optimal Values of unknown parameters acquired by ASA for Bratu problem 
(example I )  with A = 1, 2 



To show the accuracy and the efficacy of the proposed method, absolute errors 

(lyeXact(x) - y(x) I )  have been computed and presented in Table 3.1 1 and Table 3.12 for 

A = 1 and A = 2 respectively. For comparisons the absolute errors obtained by the 

standard methods DM 1881, LTDM [89], and B-spline [91] are also provided. 

Table 3.8 Optimal Values of unknown parameters acquired by PS for Bratu problem 
(example 1) with A. = 1, 2 

Table 3.9 Comparison of numerical results for Bratu problem (example 1) with A = 1 

Proposed Method y ( x )  

 exact (XI GA GA-IPA GA-ASA GA-PS 
0.049847 0.049845 0.049847 0.049847 0.049847 



Comparison of the absolute errors reveals that the proposed method based on the 

heuristic computational approach yields the results of the Bratu problem (3.14) for two 

special cases A = 1 and A = 2 with the significantly greater accuracy, with an average 

absolute error of 5.20E-08 for A = 1 and 3.09E-07 for A = 2 respectively. 

Table 3.10 Comparison of numerical results for Bratu pronlem (example 1) with A. = 2 

Proposed Method y ( x )  
GA G A-IP A GA-ASA GA-PS 

Furthermore comparison shows that the absolute errors obtained by standard methods 

DM, LTDM, and B-spline are quite high compared to the absolute errors obtained by the 

proposed method, which illustrates the supremacy of the proposed method over the 

standard methods DM, LTDM, and B-spline. 

The improved performance achieved by the hybrid schemes GA-PA, GA-ASA, and GA- 

PS are also quite evident from the comparison. 



Table 3.11 Comparison of absolute errors for Bratu problem (example 1) with it = 1 

Proposed Method Standard Methods 
x GA GA-IPA GA-ASA GA-PS DM B-spline LTDM 

0.1 1.62E-06 1 .l lE-07 3.59E-07 1.57E-08 2.68E-03 2.98E-06 6.25E-07 

Table 3.12 Comparison of absolute errors for Bratu problem (example 1) with A = 2 

Proposed Method Standard Methods 
x GA GA-IPA GA-ASA GA-PS DM LTDM 

0.1 3.15E-05 2.98E-07 5.19E-07 1.89E-05 1.52E-02 2.13E-03 



Example 2: Consider an initial value problem of the Bratu-type model given by the 

following equation [90], [9 11, [92]. 

The exact solution of (3.23) is given by the following equation [90], [91]. 

The approximate solution y(x) of (3.22) is obtained in the domain [0, 11 using the 

proposed method by formulating the fitness function as follows. 

The global error minimization problem given by (3.24) is solved using the HGAs to 

obtain the optimal values of the unknown parameters. 

The number of basis functions is taken same as for the example 1. The values and 

settings of parameter used for the implementation of the algorithms for this example are 

given in Table 3.1 for GA and IPA and in Table 3.2 for PS and ASA respectively. 

The optimal values of unknown parameters acquired by three hybrid schemes are 

provided in Table 3.13, while the values of parameters acquired by GA, IPA and ASA are 

given in Table 3.14 and Table 3.15 respectively. 



Table 3.13 Optimal values of unknown parameters acquired by hybrid schemes for Bratu 
problem (example 2) 

GA-PS GA-ASA GA-IPA 

Table 3.14 Optimal values of unknown parameters acquired by GA for Bratu problem 
(example 2) 



Using the values of unknown parameters achieved by the algorithms, we can find the 

approxin~ate solution at any point in the solution domain of x. 

Table 3.15 Optimal values of unknown parameters acquired by PA,  ASA, and PS for 
Bratu problem (example 2) 

IPA AS A PS 

The approximate solutions obtained using GA and hybrid schemes for different values of 

x are given in Table 3.16. Further Table 3.17 shows the comparison of absolute errors 

(x) - y(x) I) between the proposed method and the standard methods ADM [92] 

and RADM 1921. 

It is observed from the comparisons that the proposed method provides satisfactory 

results of the Bratu-type problem (3.22) which are in a good agreement with the exact 

solution. The comparison further shows that the absolute errors obtained from the 

proposed method based on the hybrid approaches are comparable with those ADM and 

RADM. However, it can be seen from Table 3.17 that ADM and RADM give much 

smaller absolute error in the vicinity of x, but as x increases towards 1 absolute error also 

rises drastically. If we compute the average absolute errors from Table 3.17 by 



considering the range of x in two partitions such as x E [0.1,0.5] and x E [0.5,1.0], Our 

method gives average absolute errors of 3.96E-06 and 1.74E-05, while ADM gives 

1.04E-06, and 1.91E-03, and RADM gives 2.35E-07 and 1.93E-04 average absolute 

errors respectively for the mentioned intervals of x. Also the average absolute errors in 

the interval x E [0.1,1.0] obtained by the proposed method, ADM, and RADM are 

1.07E-05, 9.54E-04, and 9.67E-05 respectively. This proves the effectiveness and 

reliability of the proposed method and its accuracy for large values of x. Furthermore the 

effectiveness of the hybrid schemes is also evident in this example. 

Table 3.16 Comparison of numerical results for Bratu problem (example 2) 

Proposed Method y ( x )  
GA GA-IPA GA-ASA GA-PS 

-0.000127 0.000007 0.000004 -0.000073 



Table 3.17 Comparison of absolute enors for Bratu problem (example 2) 

- Proposed Method Other Methods 
x GA GA-IPA GA-ASA GA-PS ADM LADM 

0.1 1.14E-04 5.11E-06 5.05E-06 7.02E-05 4.39E-13 9.30E-14 

3.3.2 TROESCH'S PROBLEM 

We now investigate the numerical solution of the Troesch's problem using the proposed I 

I 

I 

method. Troesch's problem is a boundary value problem which appears in the 

investigation of the confinement of a plasma column by radiation pressure, theory of gas 

porous electrodes, and applied physics [96], [97], 1981, [99], [loo], [loll,  [102], [103], I 

[104]. This problem was formulated and solved by Weibel [I 051. Troesch's obtained the 

numerical solution of this problem by the shooting method [106]. 

The governing equation of the Troesch's problem is given by [96], [97], [98], [99], [loo], 

[ lo l l ,  [102], [103]. 

ytt(x) = a sinh (ay(x)) 0 I x 5 1 

with the boundary conditions 

y(0) = O,andy(l)  = 1 



where a is a positive constant. 

The closed form solution of (3.25) is given as follows [96], [97], [98], [99]. 

The approximate numerical solution y(x) of the Troesch's problem is obtained in the 

domain x E [0,1] using the proposed method for three special values of the constant a for 

a direct comparison with some standard methods. 

Case 1: a = 0.5 

To apply the proposed method, fitness function (FF) is developed as given below. 

The number of basis functions m has been taken 10. The FF given by (3.28) is minimized 

by applying heuristic optimization algorithms GAY PS, IPA, GA-PS, and GA-IPA for 

obtaining the unknown parameters. 

The parameter values and settings for the execution of the optimization algorithms are 

given in Table 3.18. Since 10 number of basis functions have been taken therefore the 

unknown parameters that need to be tailored are 30. The values of these unknown 

parameters are bounded between real numbers -20 and + 20. 



Table 3.18 Parameter values and settings of algorithms for Troesch's problem 

IPA 
Parameters ValueISettings 
Start point Random1 best 

GA 
Parameters ValueISettings 
Population 240 
size 

Chromosome 3 0 

PS 
Parameters ValueISettings 
Start point Random1 best 

size 
Selection Stochastic 

values from 
GA 

Poll method GPS positive 

function uniform I order 
Mutation Adaptive I Search Nelder mead 

values from 
GA 

Derivative Central 
basis 2N 

Polling consecutive 

subproblem Id1 
function feasible 
Crossover Heuristic 

type differences 
Hessian BFGS 

function 

Function le-18 

method 
Maximum 150000 

tolerance 
No. of 1000 

The best values of unknown pararneters(a, , a,, ... , a,,; b,, b2, ... , blo; c,, c2, ..., clO) 

algorithm factorization 
Maximum 150000 

function 
evaluation 
Function le-18 

generations 
Bounds -20, +20 

found by the algorithms GA, GA-IPA, and GA-PS are given in Table 3.19, while Table 

function 
evaluations 
Function le-18 

tolerance 
Maximum 3000 

3.20 show the values of unknown parameters acquired by IPA and PS respectively. 

tolerance 
Maximum 1000 

iterations 
Bounds -20, +20 

Table 3.19 Optimal values of unknown parameters acquired by GA and hybrid schemes 
(for a = 0.5) 

iterations 
Bounds -20, +20 

GA GA-IPA GA-PS 



The values of the unknown parameters can be used to obtain the approximate solution of 

the Troesch's problem at any value in x E [0,1]. The numerical solutions obtained by the 

proposed method at different values of x are presented in Table 3.21. Further in Table 

3.22 absolute errors (ye,,,,-y(x)) obtained by the proposed method are provided, also 

absolute errors obtained by the standard methods HPM [96], VIM 1981, and ADM [99] 

are given for the purpose of comparison to show the accuracy of the proposed method. 

Table 3.20 Optimal values of unknown parameters acquired by IPA and PS (for a = 0.5) 

IPA PS 
1 ai bi ci ai bi ci 
1 1.0537 1.3713 1.3713 -1.0290 -2.9378 5.8257 

From the comparison it is observed that the absolute errors by the proposed method are 

quite similar to ADM and HPM, and much smaller than VIM, which confirms that the 

proposed method is more accurate than VIM. 



Table 3.21 Comparison of numerical solution (for a = 0.5) 

Proposed Method y ( x )  
x h c t  (x) GA PS IP A GA-PS GA-IPA 

Table 3.22 Comparison of absolute errors for (for a = 0.5) 

Pro~osed Method Standard Methods 
GA GA-PS GA-IPA 

7.76E-04 7.68E-04 7.68E-04 

1.50E-03 1.50E-03 1.50E-03 

2.15E-03 2.14E-03 2.14E-03 

2.67E-03 2.66E-03 2.66E-03 

3.01E-03 3.01E-03 3.01E-03 

3.13E-03 3.13E-03 3.13E-03 

2.97E-03 2.97E-03 2.97E-03 

2.44E-03 2.45E-03 2.45E-03 

1.49E-03 1.49E-03 1.49E-03 

HPM 
7.71E-04 

1.50E-03 

2.15E-03 

2.67E-03 

3.02E-03 

3.14E-03 

2.98E-03 

2.45E-03 

1.49E-03 

VIM 
4.87E-03 

9.70E-03 

1.45E-02 

1.92E-02 

2.37E-02 

2.81E-02 

3.22E-02 

3.6 1 E-02 

3.96E-02 

ADM 
7 . 6 2 ~ - 0 4  

1.48E-03 

2.13E-03 

2.65E-03 

2.99E-03 

3.12E-03 

2.95E-03 

2.43E-03 

1.48E-03 

IT' 1 



Case 2: a = 1 

The fitness function is formulated as follows. 

i = l  
The algorithms GA, PS, IPA, GA-PS, and GA-IPA are used with the same parameter 

values and settings as far case 1, for solving the FF given by (3.29) and to obtain the 

unknown parameters. 

The best values of unknown parameters(al , a2, ... , alo; bl, b2, ... , blo; cl, c,, ..., clo) 

found by the algorithms GA, GA-IPA, and GA-PS are given in Table 3.23, while Table 

3.24 show the values of unknown parameters acquired by IPA and PS respectively. 

In Table 3.25 numerical results obtained by the proposed method are given. To prove the 

accuracy again a comparison of absolute errors is made in Table 3.26 between the 

proposed method and other methods VIM, HPM, and ADM. The comparison evidently 

shows the reliability of the proposed methods, as the results are quite comparable to 

ADM and HPM and relatively good than VIM. 

Table 3.23 Optimal values of unknown parameters acquired by GA and hybrid schemes 
(for a = 1) 

GA GA-IPA G A-PS 



Table 3.24 Optimal values of unknown parameters acquired by IPA and PS (for a = 1) 

IPA PS 
i a bi ci ai bi ci 
1 -1.2911 -0.2756 -4.6943 -0.5322 0.8219 1.9901 

Table 3.25 Comparison of numerical solution (for a = 1) 

Proposed Method y ( x )  
GA-PS GA-IPA 



Case 3: a = 10 

For a = 10 the Troesch's problem is difficult to be solved, as reported in [103]. We 

simply formulate its fitness function as follows. 

Without any change in the algorithm settings, the FF given by (3.30) is solved for 

achieving the unknown parameters and consequently the approximate solution, y(x) .  

Table 3.26 Comparison of absolute errors (for a = 1) ~ 

p p p p p p  

Proposed Method Standard Methods 
x GA GA-PS GA-IPA HPM VIM ADM 

0.1 2.89E-03 2.86E-03 2.86E-03 1.42E-02 1.84E-02 2.45E-03 

The best values of unknown parameters (a, , a,, ... , alo; bl, b2, ... , blO; el, c2, ... , clO) 

acquired by the algorithms GA, GA-IPA, and GA-PS are given in Table 3.27 and for IPA 

and PS in Table 3.28. In Table 3.29 we provide the numerical results obtained by the 

proposed method, while in Table 3.30 numerical results obtained by classical methods 

including combined reproducing kernel method and ADM (RKM-ADM), ADM, VIM, 

and modified HPM (MHPM) given in [I031 are provided. 



Further in Table 3.3 1 a comparison of absolute errors between the proposed method and 

the above mentioned classical methods is carried to demonstrate the efficacy, accuracy, 

and reliability of the proposed method. 

From the comparison the quite good accuracy of the proposed scheme is remarkable. The 

comparison evidently shows the ascendancy of the proposed method over some of the 

classical methods like ADM, VIM, and MHPM. As it can be seen from the comparison of 

Table 3.23 ADM, VIM, and MHPM methods completely fail to solve the Troesch's 

problem with the constant parameter a = 10, while the proposed method has yielded the 

solution conveniently and accurately which are also fairly competent with RKM-ADM. 

Table 3.27 Optimal values of unknown parameters acquired by GA and hybrid schemes 
, 

(for a = 10) 

GA GA-IPA GA-PS 
I 

1 a i b i C i a i b i C i a i b i Ci 1 

1 9.1928 -8.0971 -16.6108 1.3415 0.2033 -1.5843 5.8178 12.7154 -17.1889 



Table 3.28 Optimal values of unknown parameters acquired by IPA and PS (for a = 10) 

Table 3.29 Approximate numerical solution by the proposed schemes and comparison 
with the exact solution (for a = 10) 

Pronosed method v(x)  
x  exact (XI GA IP A GA-PS GA-IPA 

0.1 0.0000763 -0.0001750 0.0006507 0.0000959 -0.0022 146 



Table 3.30 Numerical solution by classical methods and comparison with the exact 
solution (for a = 10) 

ADM-RKM VIM ADM MHPM 
0.0000576 0.1 186 109866 667081.1874 17.61750 

Table 3.31 Comparison of absolute errors (for a = 10) 

Proposed Method Classical Methods I 

I 
I 

x GA IPA GA-PS ADM-RKM ADM MHPM VIM 



3.3.3 DUFFING VAN DEK POL OSCILLATOR 

Duffing van der pol (DVP) oscillatdr is one of the most extensively studied dynamical 

system, which can be used as a model in engineering, electronics, physics, biology, 

neurology, and many other disciplines [107], [108], [109],. Moreover the chaotic 

behavior and coupling of the Duffing van der pol oscillator (DVP) makes it useful in 

applications, such as chaos communication systems, synchronization in communication 

engineering, image processing, electrical and automation engineering [107], [110]. 

The DVP oscillator investigated in this dissertation is given by the following second 

order NODE [l  1 11. 

where g (f, o , t) = f cos(ot), which represents the periodic excitation function for a 

forced DVP oscillator, for a force-free Duffing van der pol oscillator g( f ,  w , t) = 0. o 

is the angular frequency of the driving force, f is the amplitude of the excitation, p > 0 

is the damping parameter of the system, while a and P are constant parameters. 

The DVP oscillator equation has three main physically fascinating situations, (a) single- 

well (a > 0, p > O), (b) double-well (a < 0, P > O), and (c) double- hwnp (a > 0, $ < 0) 

[ I l l ] .  

Many authors have investigated solution of DVP oscillator from different perspectives, 

and in this regard many methods have been utilized. Among many authors, Cordshooli 

and Vahidi [I121 used ADM, Chen and Liu [I131 applied homotopy analysis method 

(HAM) to study the limit cycle of DVP oscillator, Sajadi et al. [I141 used HPM and VIM 



to investigate the problem of single-well, double-well and double-hump of DVP 

oscillator. Khan et al. [I151 studied the fzrce-free DVP equation using modified version 

of homotopy pertubation method (NHPM). 

Keeping in view the importance of DVP oscillator, we aim to investigate the solution of 

the DVP oscillator using the proposed heuristic computation approach. Further to exploit 

the application of HGA the force-free and forced DVP oscillator problems and its three 

special situations such as single-well, double-well, and double- hump are studied. The 

effectiveness and reliability of the proposed method are illustrated in comparison to some 

well-known classical approximate analytical and numerical methods. 

Example 1: Consider the forced DVP oscillator given by (3.31) with the initial 

conditions y(0) = 1, y '(0) = 0, and the values of parameters as follows [114]. 

a) a =0.5, P =0.5, p=0.1, a=0.79, e 0 . 5  a > 0, P > 0 (single-well situation) 

b) a = -0.5, P =0.5, p=0.1, a=0.79, f-0.5 a < 0, > 0 (double- well situation) 

c) a =0.5, P = -0.5, p=0.1, a=0.79, f-0.5 a > 0, P < 0 (double-hump situation) 

The approximate solution is obtained in the domain x E [0, 11 with a step of 0.1 and m = 

10. To apply the proposed method fitness function for each of the three cases is 

formulated. For instance the fitness function for single well situation is given as follows. 



Similarly fitness functions for double well and double hump are formulated. GA, IPA, 

and hybrid scl- ?me GA-TPA are used to solve the minimization problem corresponding to 

each case to find the best values of unknown parameters(al, ... , alo; bl, ... , blo; el, ... clo). 

The parameters settings used for the implementation of the algorithms are given in Table 

3.32 and Table 3.33 for GA and IPA respectively. Further the approximate solution is 

obtained for x E [0,1]. 

Table 3.32 Parameter values and settings of GA for DVP oscillator (example 1) 

Parameter Name Single well Double well Double hump 
Population Size 240 240 240 

Chromosome Size 3 0 30 3 0 

Creation function Uniform Uniform Uniform 

Fitness scaling function Proportional Proportional Proportional 

Stochastic Stochastic Remainder 

Selection function Uniform uniform 

Adaptive feasible Adaptive 

Mutation function Adaptive feasible feasible 

Crossover function Heuristic Heuristic Heuristic 

Crossover fraction 0.6 0.8 0.6 

Reproduction elite count 2 3 3 

Migration direction Both Forward Both 

No. of generations 1000 1500 1500 

Function tolerance 1 e-20 1 e-22 1 e-24 

Bounds [-10,10] [-10,10] [-20,201 

The values of unknown parameters achieved by the algorithms are provided in Table 

3.34, Table 3.3 5, and Table 3.36 for single-well, double-well, and double-hump situations 

respectively. 



Table 3.33 Parameter values and settings of IPA for DVP oscillator (example 1) 

ValueISetting 
Parameter Name Single well Double well Double hump 

Start point Randomhest Randomhest Randomlbest 

chromosome from chromosome from chromosome from GA 

GA GA 

Maximum iterations 1000 1000 1000 

Maximum function 200000 60000 150000 

evaluations 

Function tolerance 1 e-20 le-18 1 e-22 

Derivative type Forward Forward Central differences 

differences differences 

Hessian BFGS BFGS BFGS 

Subproblem algorithm Id1 factorization Idl factorization Idl factorization 

Table 3.34 Optimal values of unknown parameters (single-well) 

GA IPA GA-IPA 
i a i bi ci ai bi ci a i bi ci 

-1.2659 1.0928 -2.5220 -3.3665 -0.6959 -1.4886 -1 S957 0.8992 -2.1621 



Table 3.35 Optimal values of unknown parameters (double-well) 

G A IPA - GA-IPA 
p- 

- 

Table 3.36 Optimal values of unknown parameters (double-hump) 

GA IPA GA-IPA I 

The values of parameters from Table 3.34, Table 3.35 and Table 3.36 are used in (3.4) to 

obtain the numerical solutions for each case at any desired value in the interval [0,1]. The 

numerical results obtained by the proposed method with GA and GA-IPA for the three 

situations, single-well, double-well, and double-hump are presented in Table 3.37, Table 

3.38, and Table 3.39 respectively. 



Since there isn't exact solution available to this problem, therefore fourth-order Runge- 

Kutta (RK4) method has been used for comparing the results. From the comparison of 

numerical results it can be clearly seen that the proposed method yields the approximate 

solutions for single-well, double-well, and double hump situations of DVP oscillator with 

significantly greater accuracy with an average absolute error of 9.29E-07, 6.03E-07, and 

7.3 1 E-07 for single-well, double-well, and double-hump respectively. 

Furthermore in Table 3.40 we give a comparison of numerical solutions between the 

proposed method and the classical methods HPM and VIM reported in [I141 at various 

values of x. The comparison of numerical solutions clearly shows that the proposed 

method is more accurate than HPM and VIM. 

Table 3.37 Comparison of numerical solution (for single-well) 

Proposed Absolute error 
I Y R K ~  - Y ( x )  I 

x YR ~4 GA GA-IPA GA GA-IPA 



Table 3.38 Comparison of numerical solution (for double-well) 

Proposed Absolute error 
method y ( x )  ~ Y R K ~  - Y (  x )  1 

x Y R K ~  GA GA-IPA GA GA-IPA 
1 .OOOOOO 0.999998 1 .OOOOOO 1.90E-06 3.08E-09 

Table 3.39 Comparison for numerical solution (for double-hump) 

Proposed 
method y ( x )  

GA GA-IPA 
0.999997 1 .OOOOOO 

Absolute error 
I Y R K ~  - Y I 

GA GA-IPA 
2.57E-06 5.97E-09 



Table 3.40 Comparison numerical solutions and absolute errors for DVP oscillator 
(example 1) 

Absolute errors 
x RK-4 GA-IPA HPM VIM GA-IPA HPM VIM 

0.2 0.99004 0.99004 0.99004 0.99004 0.0 0.0 0.0 

Example 2: Consider the following particular case of force-free DVP oscillator equation 

taken from [I151 

with initial conditions, 
y(0) = -0.28868, y'(0) = 0.12 

The approximate solution of (3.33) is obtained using the proposed method in the interval 

x E [0,1]. Converting (3.33) into an equivalent global error minimization problem by 

formulating its fitness function given below 



The minimization problem given by (3.34) is solved using GA, IPA, and GA-IPA to 

achieve the best values of unknown parameters. The algorithms are executed according to 

the prescribed parameters values and settings given in Table 3.4 1. 

Table 3.41 Parameter values and settings of the algorithms for DVP oscillator (example 2) 

I from GA 

Parameters ValueISettings 
Population size 240 

Chromosome size 30 I Derivative type Forward difference 

Parameters ValueISettings 
Start point Random1 best values 

I 

I 

Selection function Stochastic uniform 1 Hessian BFGS 
I 

Mutation function Adaptive feasible I Subproblem algorithm Ldl factorization 

I evaluations 

I 

Crossover function Heuristic 

Function tolerance le-24 I Function tolerance 1 e-24 

Maximum function 200000 

Reproduction 0.6 

crossover fraction 

I 

No. of generations 1500 / Maximum iterations 1000 

Nonlinear constraint le-10 

tolerance 

The unknown parameters achieved by the algorithms are given in Table 3.42, using these 

I 

parameter values in (3.4) one can find the solution of (3.34) at any value of x in the 

Bounds -10, +10 

solution domain. For the purpose of comparison with other methods the solution of (3.34) 

Bounds -10, +10 

obtained using GA-IPA at different values of x in the interval [0,0.1] are presented in 

Table 3.43, also the solutions by RK4, NHPM, and DTM reported in [I151 are provided. 



To show the efficiency and accuracy of the proposed method absolute errors of the 

proposed method, NHPM, and DTM, computed. relative to the RK4 method are provided 

in Table 3.44. 

Table 3.42 Optimal values of unknown parameters for DVP oscillator (example 2) 

GA IPA GA-IPA 

The comparison of absolute errors clearly illustrates the competency of the proposed 

method. The results obtained from the proposed method are found in an excellent 

agreement with the numerical method based on RK4 and more accurate than DTM and 

NHPM. 

The higher accuracy of the proposed method can be best ascertained by comparing the 

absolute errors in Table 3.44, as it is found that DTM provides significantly high absolute 

errors with an average absolute error of 1.48E-4, NHPM gives an average absolute error 

of 8.37E-4, while the average absolute error yielded by the proposed method is 2.24E-8 

in the interval x E 10, .I]. Furthermore the improved performance of hybrid scheme GA- 

IPA is quite significant from the results. 



Table 3.43 Comparison of numerical results for DVP oscillator (example 2) 

Proposed method Classical methods 
x RK4 GA GA-IPA NHPM DTM 

0.0 -0.28868000 -0.28868030 -0.28867998 -0.28868000 

Table 3.44 Comparison of absolute errors for DVP oscillator (example 2) I 

- - 

~ro~osedmethod  
- 

Classical methods 
x GA IPA GA-IPA NHPM DTM 

0.0 2.97E-07 1.92E-08 1.56E-08 0.00E+00 0.00E+00 



3.3.4 NONLINEAR SINGULAR BOUNDRY VALUE PROBLEMS ARISING IN 

PHYSIOLOGY 

The numerical treatment of singular boundary value problems (BVPs) has been considered by 

many authors due to their substantial significance in engineering and science such as gas 

dynamics, atomic structures, atomic calculations, chemical reactions etc. [82]. 

Motivated by the potential applications of the nonlinear singular boundary value problems and 

the real challenge to solve such problems, we aim to investigate the numerical solution of 

nonlinear singular BVPs of the following form [I161 using the proposed method. 

r l l~ (0 )  + <IY'(~)  = YI (3.36) 

rl2ym + t2y1(1) = Y2 (3.37) 

a f The assumptions normally applied on f (x, y) are that it is continuous, - exists and is 
ay 

continuous and df > 0 , V 0 5 x 5 1. The singular BVP (3.35) - (3.37) occurs in 
a~ 

numerous applications, especially with 1 = 0,1,2 and a = 0, in the study of many tumor 

growth problems [117], [118], with linear f (x, y) and with nonlinear f ( x ,  y )  of the 

following form. 

and with 1 = 2 and a = 0 in the study of steady state oxygen diffusion in a spherical cell 

with Michaelis-Menten uptake kinetics [119], [120], [12 11, [122]. 

A similar problem for 1 = 2 and a = 0 also arises in the study of the distribution of heat 

sources in the human head [123], 11241, [I251 in which 



A glance at the literature reveals that the BVPs of the form (3.35) have been given much 

attention and many analytical and numerical methods including non-polynomial cubic 

spline method (NPCSM) [116], finite difference method (FDM) [126], modified 

decomposition combined with B-spline collocation technique (MDM-BSC) [127], B- 

spline method (BSF) [ 12 81, cubic spline method (CSM) [ 1291, nonclassical pseudo- 

spectral method (NCPSM) [I301 have been utilized for their numerical solution. 

We shall consider some special forms of (3.34) and obtain their numerical solutions by 

the proposed method to show its reliability and potency. 

Example 1: Consider the following special case of (3.35) which arises in thermal 

explosions [127], [I281 

subject to the boundary conditions 

y1(0) = 0 ,  y(1) = 0 

The exact solution of (3.40) is given by 

where c = 3 - 2d2 

The approximate numerical solution y(x) of (3.40) is obtained in the domain x E [O,1] 

using the proposed method by transforming the given problem into an equivalent global 

error minimization problem by formulating its fitness function E,. Assuming the number 

of basis functions m = 10 the fitness function is developed as follows. 



The fitness hnction given by (3.45) is minimized by employing the algorithms GA, IPA, 

ASA and two hybrid schemes GA-IPA and GA-ASA for the determination of the optimal 

values of unknown adjustable parameters (ai ,  bi , ci). 

The parameter values and settings used for the implementation of the algorithms GA, 

IPA, GA-IPA and GA-ASA are given in Table 3.45. 

Table 3.45 Parameter values and settings of algorithms for physiology problem (example 1) 

GA 
Parameter ValueISettings 

Name 
Population 240 

size 
Chromosome 30 

size 

Selection Stochastic 
function uniform 

Mutation Adaptive 
function feasible 

Crossover Heuristic 
function 

Crossover 0.8 
fraction 
No. of 2000 

generations 

ASA 
Parameter ValueISettings 

IPA 
Parameter ValueISettings 

Name 
Start point Optimal values 

function 1 function 

Name 
Start point Optimal values 

from GA 
Maximum 150000 

from GA 
Maximum 150000 

evaluations 

Minimum 1 e-8 

X tolerance le-6 I X le-10 

evaluations 
Derivative Central 

fype differences 
perturbation- 

Maximum 0.1 
perturbation 
Nonlinear le-18 
constraint 
tolerance 

Hessian BFGS 

Nonlinear le-18 
constraint 
tolerance 

iterations ( iterations 
Maximum 400 

tolerance 
Maximum 1000 



The size of the chromosome i.e the number of unknown adjustable parameters (ai, bi , ci) 

are chosen equal to 30. The values of these unknown adjustable parameters are bounded 

between -15 and + 15. 

The algorithms are executed according to the prescribed settings in Table 3.45 to achieve 

the minimum fitness. The optimal values of the unknown adjustable parameters 

corresponding to the minimum fitness are acquired. 

The optimal values achieved by the hybrid schemes GA-IPA and GA-ASA are given in 

Table 3.46, while the values of unknown parameters achieved by IPA and ASA are 

provided in Table 3.47 respectively. The optimal values of the parameters are used in 

(3.4) and consequently the approximate numerical solution y ( x )  of example 1 is 

obtained. 

Table 3.46 Optimal values of unknown parameters acquired by hybrid schemes for 
physiology problem (example 1) 

GA-IPA GA-ASA 
z a1 b, C I  ai b~ C1 

1 -0.881 1 0.1759 2.6939 - 1.2227 0.1 892 8.2529 

2 -1.9142 1.0248 -0.2728 -2.5235 0.9329 -1.2987 

3 0.9019 1.5552 0.2088 0.0937 2.9289 1.2779 

4 - 1.9473 0.2465 2.8167 -3.1 845 0.0323 7.1516 

5 0.3 192 0.3115 2.5890 0.8419 0.6241 6.0 167 

6 0.3388 1.4130 2.1349 0.5436 2.6099 4.6536 

7 1.8157 -1.1190 2.5583 2.1806 - 1.2464 5.6357 

8 0.5979 1.4398 0.83 16 1.0886 1.6358 0.6876 

9 -0.9108 -2.0555 -2.2809 -1.1748 -3.963 8 -5.3264 

10 0.9210 -0.5012 1.1042 1.0171 -0.8336 2.2371 



Tne numerical results obtained by the proposed method are given in Table 3.48. Further 

for the accuracy of numerical results and the potency of the proposed method, absolute 

errors obtained by the proposed method are also presented in Table 3.49. 

The comparisons are made with the exact solutions and the absolute errors obtained by 

the classical method MDM-BSC used in [127], further in [I271 the authors used two 

different approaches of their method MDM-BSC, therefore the absolute errors 

corresponding to both the approaches are given for the purpose of comparison. It is quite 

evident from comparison of Table 3.49 that the absolute errors relative to the exact 

solutions by the proposed method with hybrid schemes GA-IPA and GA-ASA are much 

smaller than the errors by the approach I, whereas they are relatively smaller than 

approach I1 of MDM-BSC used in [127]. This means that the proposed method yields the 

approximate solutions more accurately than MDM-BSC. 

Table 3.47 Optimal values of unknown parameters acquired by GA, IPA, and ASA for 
physiology problem (example 1) 

GA IPA AS A 



Table 3.48 Comparison of numerical results for phpiology problem (example 1) 

Proposed method y ( x )  

ye,Wt (4 GA IPA ASA- GA-IPA GA-ASA- 
0.3 16694 0.3 16666 0.3 16724 0.3 16690 0.3 16692 0.3 16696 

Moreover in Table 3.50 a comparison of maximum absolute errors obtained by the 

proposed method are made with maximum absolute errors obtained by MDM-BC [I271 

and BSM [128], for different numbers of mesh points (N and h). It may be worth to 

mention here that we have solved the given example (3.41) in the interval [0, 11 with a 

step of 0.1, which means total number of mesh points N = 11 in our case. The maximum 

absolute error obtained by the proposed method with hybrid schemes GA-IPA and GA- 

ASA are 3.99E-06 and 2.33E-06 respectively, while the maximum absolute errors by 

MDM-BSC (approach I) and MDM-BSC (approach 11) are 1.05E-05 with N=20 and 

2.00E-06 with N=20 respectively, also the maximum absolute errors of BSM are 3.50E- 

06 with h=1/60 and 1.55E-06 with h=1/90 respectively. One can clearly see from the 

comparison that the proposed method with fewer number of mesh points yield better 



accuracy than MDM-BSC and BSM, it can be hence inferred that the proposed method is 

much efficient and accurate. 

Table 3.49 Comparison of absolute errors for physiology problem (example 1) 

Proposed method 

x GA GA-IPA GA-ASA 
0.0 2.87E-05 3.99E-06 -2.13E-06 

0.1 3.04E-05 3.26E-06 - 1.36E-06 

0.2 3.13E-05 3.05E-06 -6.17E-07 

0.3 2.99E-05 2.65E-06 -9.22E-07 

0.4 2.91E-05 2.17E-06 -9.39E-07 

0.5 2.98E-05 1.94E-06 -2.89E-07 

0.6 3.04E-05 2.05E-06 5.00E-07 

0.7 2.93E-05 2.17E-06 8.25E-07 

0.8 2.62E-05 1.93E-06 5.64E-07 

0.9 2.26E-05 1.36E-06 1.29E-07 

1.0 2.04E-05 9.65E-07 6.22E-08 

MDM-BSC 
Approach I Approach I1 

( with N = 20) (with N = 20) 
1.05E-05 2.00E-06 

Table 3.50 Comparison of maximum absolute errors for physiology problem (example 1) 

Proposed Method MDM-BSC MDM-BSC BSM 
(Approach I) (Approach 11) 

3.13E-5 (GA)  1.05E-5 (N = 5) 3.22E-5 (N = 5) 3.16E-5 (h=20) 

2.92E-5 (PA) 1.05E-5 (N = 10) 8.06E-6 (N = 10) 7.87E-6-(h=1/40) 

2.37E-6 (ASA) 1.05E-5 (N = 20) 2.00E-6 (N = 20) 3.50E-6 (h=1/60) 

3.99E-6 (GA-PA) - - 1 S5E-6 (h=1/90) 

2.13E-6 (GA-ASA) - 4.97E-7 (h=1/161) 



Example 2: We consider the following nonlinear singular boundary value problem [I161 

with the boundary conditions 

1 (3.47) 
~ ' ( 0 )  = 0 ,  ~ ( 1 )  + 5y1(l) = ln (?) - 5 

To obtain the approximate numerical solution of (3.46) subject the boundary conditions 

(3.47) using the proposed method its fitness function with m = 10 is developed as 

follows. 

~j = &I + E~ (3.50) 

The algorithms GA, IPA, GA-IPA and GA-ASA are executed with the same parameter 

values and settings used for example 1 and prescribed in Table 3.45 for the minimization 

of (3.50). To prove the effectiveness and viability of the proposed method the 

approximate numerical solutions are obtained for various values of the parameter 

(1 = 0.25,1,2,and 8). The fitness h c t i o n  corresponding to each value of 1 is 

constructed and the minimization is performed using the above mentioned algorithms. 
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The optimal values of the unknown parameters are achievedscorresponding to each value 

of I ,  which consequentiy provides the solution using (3.4). 

In Table 3.51, Table 3.52, Table 3.53, and Table 3.54, the values of unknown parameters 

for 1 = 0.25, 1 = 1, 1 = 2, and 1 = 8 acquired by GA, GA-IPA, and GA-ASA are given 

respectively. Further in Table 3.55, Table 3.56, Table 3.57, and Table 3.58 the values of 

parameters for 1 = 0.25, 1 = 1, 1 = 2, and 1 = 8 acquired by IPA and ASA are given 

respectively. 

The approximate numerical solutions obtained by the proposed method with hybrid 

schemes for 1 = 0.25, 1 are provided in Table 3.59 and for 1 = 2, 8 in Table 3.60 

respectively and compared with the exact solutions. Comparisons show that the results 

are in a good agreement with the exact solutions. 

Furthermore the comparison of the maximum absolute errors between the proposed 

method and the standard numerical methods including finite difference method (FDM ) 

[I261 and non-polynomial cubic spline method (NPCSM) [I161 are presented in Table 

3.61 for 1 = 0.25 and 1 =1 and in Table 3.62 for 1 = 2 and 1 = 8 respectively. From the 

comparison it is seen that the proposed method provides more accurate solutions with 

fewer mesh points as compared to FDM and NPCSM. For example the maximum 

absolute errors obtained by FDM and NPCSM for 1 = 0.25 and N = 64 are 7.64E-5 and 

9.20E-5 respectively, whereas our method gives maximum absolute error of 7.17E-5 for I 

= 0.25 with total steps N = 11. Similarly the comparison of other values in Table 3.61 and 

Table 3.62 show that our method is more accurate than FDM and NPCSM even with less 

number of mesh points. More importantly our method is quite capable of providing the 

solutions of the given problem at any point in the solution domain, and not only at the 



mesh points, whereas classical methods lack this kature. The comparison of numerical 

results and absolute errors hence testify the effectiveness and reliability of the proposed 

method. 

Table 3.51 Optimal values of unknown parameters (for I = 0.25) 

GA GA-IPA GA-ASA 

Table 3.52 Optimal values of unknown parameters (for 1 = 1) 

GA-IPA GA-ASA 
Q i  b i ci 
1.8965 -2.1341 2.9564 

0.3267 1.9719 -5.2003 

-0.8850 1.2080 1.7777 

-2.2760 2.8463 -2.621 1 

1.9020 3.3901 -3.1131 

-0.7209 -1  .I057 2.5836 



Table 3.53 Optimal values of unknown parameters (for 1 = 2) 

GA - -- GA-IPA GA-ASA 

Table 3.54 Optimal values of unknown parameters (for 1 = 8) 

GA GA-IPA GA-ASA 



Table 3.55 Optimal values of unknown parameters acquired by P A  and ASA (for 1 = 0.25) 

-- - 
IPA ASA 

Table 3.56 Optimal values of unknown parameters acquired by P A  and ASA (for 1 = 1) 

IPA ASA 



Table 3.57 Optimal values of unknown parameters acquired by P A  and ASA (for 1 = 2) 

IP A ASA 

Table 3.58 Optimal values of unknown parameters acquired by IPA and ASA (for 1 = 8) 

IPA ASA 



Table 3.59 Comparison of numerical results (for 1 = 0.25, 1) 

Proposed method IYexact - Y ( x ) I  
x Yexact Y ( X I  

1 = 0.25 I =  1 1 = 0.25 1 = 1  
0.0 -1.386294 -1.386223 -1.386291 7.17E-05 3.21E-06 

Table 3.60 Comparison of numerical results (for I = 2,8) 

Proposed method y(x) lye,,,, - y(x)l 
X Yexact 1 = 2  1 = 8  1 = 2  1 = 8  

0.0 

IT' I 



Table 3.61 Comparison of maximum absolute errors (for 1 = 0.25, 1) 

ASA 1.42E-4 3.23E-4 64 7.67E-5 3.88E-5 9.20E-5 1.96E-5 

Proposed method 
(N = 10) - 
l=0.25 l = 1  

Other methods 
FDM NPCSM 

N l=0.25 l = 1  1 = 0.25 1 = 1  

Table 3.62 Comparison of maximum absolute (for I = 2, 8) 

GA-IPA 7.17E-5 1.14E-5 128 1.92E-5 8.10E-5 2.30E-5 1.72E-5 

IPA 1.268-4 l.lE-4 1 32 4.528-4 7.78E-5 9.768-4 

Proposed method 
(N = 11) 

ASA 9.52E-5 1.428-4 1 64 9.208-5 7.05E-5 2.38E-4 

Other methods 
FDM NPCSM 

GA-IPA 5.478-5 6.478-5 1 128 2.80E-5 6.45E-6 5.89E-5 

Example 3: Consider the special case of (3.35) - (3.37), the non-linear heat conduction 

model of the human head as follows [127], [128], [129], [130]. 

with the following boundary conditions 

y1(0) = 0 



To apply the proposed method for obtaining the approximate numerical solution of this 

problem its fitness function E~ is formulated. Assuming the number of basis functions, m 

= 10 then ~j can be expressed as follows. 

where y(x), yl(x) and y" (x) are given by (3.4) , (3.9), and (3.10) respectively. 

The FF given by (3.54) is minimized by applying GAY IPA and hybrid scheme GA-IPA 

for the obtaining the unknown parameters(al, ... , alo; bl, ... , blo; and cl ... , clo). 

The algorithms are implemented with the parameter values and settings prescribed in 
I 

Table 3.63. The size of the chromosome is chosen equal to 30 which basically equals the 

number of the unknown parameters with the assumed number of basis functions. 

The optimal values of the unknown parameters achieved by the algorithms GAY IPA, and 

GA-IPA are given in Table 3.64. Consequently the approximate solution y(x )  is obtained 

by using the values of the unknown parameters in (3.4). 

The approximate numerical results by our method are given in Table 3.65 and compared 

with results obtained by some standard methods including CSM and NCPSM. Since there 

isn't any exact solution of this problem, comparisons are therefore made with the 

approximate results reported in the literature, in order to prove the validly of our results. 

The comparison shows that the proposed method provides numerical results that are 

fairly comparable with other methods. 



Table 3.63 Parameter values and settings of the algorithms for physiology problem (example 3) 

I chromosome li-om GA 

GA 
Parameter Name ValueISetting 

Population size 240 

I 

Chromosome size 3 0 I Maximum 1000 

IPA 
Parameter name ValuelSetting 

Start point Random/Optimal 

I iterations 

uniform I evaluations 

I 

Mutation function Adaptive feasible I Function tolerance le-18 

Selection fhnction Stochastic 

I 

Crossover function Heuristic 1 Derivative type Central differences 

Maximum function 150000 

I 

I algorithm 

Hybridization IPA 
I 

Hessian BFGS 

No. of generations 1000 

( parameter 

Sub problem Idl factorization 

I 

I 

Bounds -10, +I0 I Bounds -10, + I0  

Function tolerance le-18 

Table 3.64 Optimal values of unknown parameters for physiology problem (example 3) 

Initial barrier 0.1 

GA IPA GA-ASA 



Table 3.65 Comparison of numerical results for physiology problem (example 3) 

Proposed method 
GA IPA GA-IPA 

0.367508 0.36751 8 0.367516 

0.366348 0.366363 0.366361 

0.362879 0.362894 0.362893 

0.357082 0.357098 0.357095 

0.348932 0.348948 0.348946 

0.338395 0.338412 0.33841 1 

0.325427 0.325444 0.325442 

0.309968 0.309986 0.309984 

0.291 95 1 0.291971 0.291969 

0.271296 0.2713 17 0.2713 15 

0.247908 0.247928 0.247926 

Other methods 
CSM NCPSM 

0.3675 18 0.3675 17 

0.366363 0.366362 

0.362895 0.362894 

0.357099 0.357098 

0.348950 0.348948 

0.338413 0.338412 

0.325445 0.325444 

0.309987 0.309986 

0.291972 0.291971 

0.271318 0.271317 

0.247929 0.247928 

Example 4: We Consider another special case of (3.35) - (3.37), the oxygen diffusion 

problem, given by (3.55) - (3.57) [127], [128], 11291, [130], as the final 

example to illustrate the effectiveness of the proposed method. 

with the boundary conditions 

yl(0) = 0 



As explained above we formulate the fitness function (FF) to convert the given problem 

into an equivalent global error minimization problem. We have taken m = 10 therefore 

the FF is expressed as given below. 

The FF given by (3.58) is minimized by applying GA, IPA and hybrid scheme GA-IPA 

for the obtaining the unknown parameters(al, ... , alo; bl, ... , blo; and cl ... , qo) .  

The algorithms are implemented with the same parameter values and settings prescribed 

in Table 3.63 for example 3. 

The optimal values of the unknown parameters achieved by the algorithms GA, IPA, and 

GA-IPA are given in Table 3.66. Consequently the approximate solution y(x)  of the 

oxygen diffusion problem is obtained by using the values of the unknown parameters in 

(3.4). 

The approximate numerical results by ow  method are presented in Table 3.67, also 

results obtained by other methods including BSM, CSM, and MDM-BSC are shown for 

the sake of comparison and validity of our results. From the comparison the accuracy of 

the proposed method is found comparable to other methods. 



Table 3.66 Optimal values of unknown parameters for physiology problem (example 4) 

GA IPA GA-ASA 
i a i b i ci a i bi ci a i bi ci 
1 -2.5066 0.9151 -0.3361 -0.0721 0.9923 0.7528 -1.5397 0.4938 0.1 192 

Table 3.67 Comparison of numerical solutions for physiology problem (example 4) 

Proposed method Traditional methods 
x GA IPA GA-IPA CSM BSM MDMBSC 

0.1 0.82845 0.82847 0.82848 0.82848 0.82848 0.82848 



3.4 CONCLUSION 

A simple yet an efficient heuristic computation method base4 on t b  hybrid approach of 

polynomial basis and evolutionary algorithm has been successfully applied to the solution 

of nonlinear problems governed by NODES. The accuracy and reliability of the proposed 

method have been demonstrated by numerically solving several important nonlinear 

problems arising in diverse fields of engineering. 

The proposed method has been applied to the Bratu boundary value problem and an 

initial value problem of the Bratu-type. The numerical solutions obtained by the proposed 

method are found in a good agreement with the exact solutions and more accurate than 

some of the standard methods. 

The validity of the proposed method has also been demonstrated by solving the Troesch's 

problem with three special cases of the parameter a governing the equarion, and 

especially for a .= 10 for which methods like ADM, VIM, and MHPM fail to solve this 

problem, the proposed method has obtained approximate solutions with good accuracy. 

Furthermore the efficiency of the proposed method has been illustrated by solving the 

three interesting situations, single-well, double-well, and double-hump of forced DVP 

oscillator. It has been established from the comparisons of numerical solutions that the 

proposed method gives more accurate solutions than some of the well-known classical 

methods. 

Moreover, the strength of proposed method has been demonstrated by solving several 

nonlinear problems appearing in physiology. The results from the proposed method are 

found in an excellent agreement with the exact solutions and quite comparable (or more 

accurate) than some of the classical methods. 



On the basis of the simulation results and comparisons made with some standard methods 

and exact solutions, it can be concluded that the proposed heuristic computing method is 

effective, handy, and possesses a great potential and viability for broad range of NODES. 

Moreover the beauty of the proposed method is that it can provide the approximate 

solution at any point in the solution domain once the optimal values of unknown 

parameters are obtained. 

3.5 SUMMARY 

This chapter provides the detail of the heuristic computation method combining log 

sigmoid basis functions and evolutionary algorithm for solving nonlinear ODEs. It also 

presents an extensive study of numerical applications of the designed method. The 

chapter gives the basic idea of fitness function used for transforming the NODE into an 

equivalent optimization problem in the feasible form for evolutionary algorithm. The 

procedural steps of memetic algorithms combining GA with local search algorithms IPA, 

ASA, and PS for solving the optimization problem are also presented. The designed 

method has been successfully applied to solve some important nonlinear problems 

including the classical Bratu problem, Troesch's problems, Duffing van der pol oscillator 

equation, nonlinear oxygen diffusion problem, nonlinear heat conduction model of 

human head and various other nonlinear singular BVPs arising in physiology. From the 

simulation results presented in this chapter it has .been established that the proposed 

method is quite competent and viable for solving broad range of nonlinear ODEs. 

Moreover the overall performance of the memetic algorithm schemes GA-IPA, GA-ASA, 

and GA-PS have been found quite better than using GA alone as a global search 

optimizer. 



CHAPTER 4 

HYBRID EVOLUTIONARY ALGORITHM TECHNIQUE FOR SOLVING 

COUPLED NONLINR ORDINARY DIFFERNTIAL EQUATIONS 

This chapter provides the detail of the proposed heuristic computation method, 

combining polynomial basis functions and EAs for solving coupled nonlinear ODEs 

(CNODEs). The approximate solution of CNODE is deduced as a linear combination of 

polynomial basis functions with some unknown parameters. A fitness function is used to 

convert the system of CNODEs into an equivalent global error minimization problem. 

Two popular EAs including GA and DE and memetic algorithms schemes GA-IPA, and 

GA-ASA are employed to solve the minimization problem and to obtain the unknown 

parameters. The numerical applications of the proposed method are investigated for 

solving two important problems modeled by the systems of CNODEs. The material 

provided in the rest of the chapter is mostly from the published work [13 11, [132]. 

4.1 INTRODUCTION 

Coupled nonlinear ODEs (CNODEs) occur in many situations in applied science and 

engineering including the models of biological systems, enzyme reactions, and fluid 

mechanics. Most of such nonlinear problems do not admit the analytical solution, 

therefore these problems are solved using some approximate techniques. Many standard 

methods including VIM, ADM, HPM, and LADM have been proposed for solving such 

CNODEs. 



In this dissertation, an aiternate heuristic computation method to the existing standard 

methods is presented for solving the systems of CNODEs. The method is based on the 

combination of polynomial basis functions and EAs, which is described in the next 

section. The method has been successfully applied to two important problems including 

Michaelis-Menten biochemical reaction model and the HIV infection model of C D ~ + T  

cells. Although stochastic solvers based on EAs have been used in recent years by many 

authors for solving various nonlinear problems of NODES, but nobody as yet has 

attempted the method that is proposed in this dissertation for solving these CNODEs. 

4.2 METHODOLOGY FOR SOLVING CNODEs 

In this section, the methodology for solving CNODEs is described. The method is 

heuristic which employs the hybrid approach of polynomial basis hnctions and EAs. 

The approximate solution of CNODE is expanded as a linear combination of polynomial 

basis with unknown parameters. The CNODE is transformed into an equivalent global 

error minimization problem. A trial solution is formulated using a fitness function with 

unknown parameters. EAs are used to solve the minimization problem and to obtain the 

unknown parameters. The description of the method is given below. 

Consider a system of CNODEs of the following form. 



with the following initial conditions 

where kl, kz, and kj  are real constants, and fr, fi, ...,f, represent some nonlinear functions. 

To solve the system of CNODEs given by (4.1) - (4.3), we may assume that the 

approximate solutions y1 (t), y2 (t), ... . . ,yn (t) and their first derivatives 

-- dP1( t )  d92( t )  d9n(t) are a linear combinations of some polynomial basis 
d t  ' d t  '"" d t  

functions,ti, t i ,  ... , tk which can be expressed as follows. 



where a,, b, , and ck are unknown real parameters, m is the number of basis functions. 

The aim is to find the unknown parameters (a, , b, , and ck) in (4.5) - (4.7), which 

consequently gives the approximate solutions j4(t), 9, (t), ... . . , pn(t) of the given system 

of CNODEs. To find the required unknown coefficients the given system of CNODE is 

converted into an equivalent global error minimization problem using a problem 

exclusive fitness function. 

4.2.1 FITNESS FUNCTION 

The fitness function (FF) denoted as ( z j )  represents the global error associated with the 

given system of CNODEs, and is represented as follows 

E~ = + z2 + - - -  + E, j = 1,2,3 ... (4.1 1) 

where j is the generation numberliteration count of the algorithm, and E,, €2, ..., E,, are 

defined as the mean of sum of square errors linked with each ODE, which are given by 



d P l ( D  d M t )  dYn(t)  xe given where 9, (t),  a (t),  .. . . . , yn ( t )  and their first derivatives y , y , ... , 
d t  

by (4.5) - (4.10) respectively. N is the total number of steps taken in the solution domain 

of time t. 

The error minimization problem given by (4.1 1) is solved using EAs and the optimal I 
1 

I 
values of the unknown coefficients are achieved. The optimal values of these unknown 

coefficients are used in (4.5) - (4.7), which provide the approximate solutions 

P1 (t) ,  9, (t),  ... . . , and ( t )  of the given system of CNODEs. 

4.2.2 EVOLUTIONARY ALGORITHMS 

In this section, evolutionary algorithms used for solving the minimization problem given 

by the fitness function (4.1 1) are introduced. 

GA, GA-IPA, GA-ASA, and DE, have been employed for solving FF and to obtain the 

unknown parameters (ai , bi , and ci). The procedural steps of DE are given in algorithm 

4.1, while the procedural steps of HGA's are given in algorithm 3.1 
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Algorithm 4.1: Differential Evolution (DE) 

Step 1: (Population Initialization) 

A population of N chromosomes (xl, x2, ... . , xN) is generated randomly. 

Each chromosome has D number of genes representing the number of 

unknown parameters. 

Step 2: (Updating): V i = 1 to N 

Update the target vector, xi using the following operations. 

a) Mutation: choose 3 members randomly between 1 and N, all 

three different among themselves and also different from i to 

generate a mutant vector as follows 

Yi = F(xnz - xn3) 

b) Crossover: The trial vector is formed as follows 

if randj < CR or j = jrand 
0. W 

where CR E [0,1] and 1 5 jrand I D 

c) Selection: Fitness of parents and mutants are evaluated for next 

generation. Parents and mutants are sorted according to their 

fitness values. 

xi = { yci,i if fxi --< fyi 
0 . W  

where fxi and fyi are the fitness values of parent Xg,i and mutant 

Yg,i- 

Step 3: (Stopping Criterion) 

The algorithm stops if the number of generations or a desired fitness 

reaches, else the algorithm goes to step 2. 



4.3 NUMERICAL APPLICATIONS 

In this section, the methodology described above is applied to two main problems 

including the biochemical reaction model and the HIV infection model of C D ~ + T  cells, to 

illustrate its effectiveness and viability. These problems are of practical importance 

therefore the investigation of their solutions has been considered by many authors. Since 

both these problems do not have exact solution, hence many approximate analytical and 

numerical methods have been utilized. But the literature survey reveals that nobody as yet 

has attempted to solve these problems using the stochastic solver based on polynomial 

basis and EAs presented in this dissertation. 

In order to show the efficacy and reliability of the suggested method, comparisons of the 

numerical solutions are made with the RK4 and some well known classical methods. 

4.3.1 BIOCHEMICAL REACTION MODEL 

We consider the well-known Michaelis-Menten biochemical reaction model given by 

[133], [134], [135], [136], [137]. 

where E is the enzyme, A the substrate, Y the intermediate complex and X the product. 

The time evolution of scheme (4.15) can be determined from the solution of the system of 

CNODEs [133], [134], [135], [136], [137]. 



subject to the initial conditions 

A(0) = A,, E(0) = E, , Y ( 0 )  = 0  and  X(0) = 0  (4.20) 

where the parameters kl, k-, and k2 are positive rate constants for each reaction. The 

system of CNODEs (4.15) - (4.19) can be reduced to only two equations for A and Y  and 

in dimensionless form of concentrations of substrate, x, and intermediate complex 

between enzyme and substrate, y, [133], [134], [135], [136], [137]. 

subject to initial conditions 

where a , p , and E are dimensionless parameters. 

The reader may refer [I331 and references therein for a detailed mathematical formulation of 

equations (4.21) and (4.23). 

Our aim is solve the system of CNODEs given by (4.21) and (4.22) with the initial conditions 

(4.23) and obtain the approximate numerical solutions ?(t) and  9(t) . The values of 



dimensionless parameters are taken as a = 0.3752, P = 1.0 , E = 0.1, for a direct 

comparison with the reported numerical results by some classical methods including 

HPM [I34 1, VIM [135], and modified Picard-Pade method (PPM) [137]. 

In view of the suggested method with m = 7 the approximate solutions R(t) and 9 ( t )  and 

d i y t )  
their first derivatives and can be expressed as follows. 

d t  

where (ao, al, ..., a7 and  bo, b,, ..., b7) are real valued unknown parameters to be 

determined. 

Using the given initial conditions (4.23) in (4.24) and (4.25) we get a. = x(0)  = 1 

and bo = y(0)  = 0. The remaining unknown parameters (al, a2, ... , a7 and bl, bz, ... b7) 

that need that need to be tailored is 14. The values of these unknown parameters are 

obtained by formulating the fitness function E, and then applying EAs such as GA and 

DE for the minimization of E,. The numerical solutions are found in the interval 0 I t I 

1 with a time step of 0.1, therefore E, is developed as given below. 



d f ( t )  
where P ( t ) ,  p( t )  , , and are given by (4.24) - (4.27) respectively. 

d t  

The GA and DE are executed with the parameter values and settings as prescribed in 

Table 1 and Table 2 for the minimization of (4.30) in order to find the optimal values of 

the unknown parameters. The size of chromosome is chosen equal to the total number of 

unknown parameters which is 14. 

The optimal values of the unknown parameters corresponding to one of the minimum 

fitness achieved by GA and DE are provided in Table 4.3 and Table 4.4 respectively. 

Table 4.1 Parameter settings for GA for biochemical reaction model 

Parameter Name Setting 

Population creation function Uniform 

Fitness scaling function Proportional 

Selection function Stochastic uniform 

Mutation function Adaptive feasible 

Crossover function Heuristic 



The approximate numerical solutions ?(t) and 9(t) of the biochemical reaction model 

(2.2 1) arid (3.22) are obtained by using the optimal values of unknown parameters from 

Tables 4.3 and Table 4.4 in (4.5) and (4.6). 

Table 4.2 Parameter values of GA and DE 

Parameter Value 

Population size 400 400 

Chromosome size 14 14 

No. of generations 1000 1000 

Crossover fraction 0.8 - 
Crossover constant (CR) - 0.9 

Amplification factor (F) - 0.3 

Table 4.3 Optimal values of unknown parameters achieved by GA for various values of rn 

index m = 3  m = 5  m = 7  
( 9  ai bi ai bi ai bi 
1 -0.8353 2.9369 -0.6916 5.4836 -0.7514 7.2345 



Table 4.4 Optimal values of unknown parameters achieved by DE for different values of rn 

index m = 3 m = 5  m = 7  

The approximate numerical solutions 2( t )  and y ( t )  obtained by the proposed method are 

presented in Table 4.5 and Table 4.6 respectively, also numerical solutions obtained by 

RK4, HPM, VIM, and PP are given for comparison. 

Table 4.5 Comparison of numerical solution for x(t) 

Proposed Method Classical Methods 

t RK4 GA DE HPM VIM PPM 



Table 4.6 Comparison of numerical solution for y(t) 

Proposed Method Classical Methods 

t RK4 GA DE HPM VIM PPM 

Further to illustrate the validity and accuracy of the proposed solutions, comparisons of 

absolute errors computed relative to the RK4 are given in Table 4.7. The accuracy and 

effectiveness of the proposed method is quite evident from the comparisons, one can 

clearly see that the proposed method gives approximate solutions that are in good 

agreement with RK4, while the classical methods including HPM and VIM utterly 

diverge afier t = 0.1. The comparison also shows that our results are quite comparable to 

the results obtained by PPM. 

The influence of different number of basis functions (i.e. change in m) on the accuracy of 

the approximate solution and convergence of the evolutionary algorithms GA and DE are 

analyzed next, to demonstrate the effectiveness and reliability of the proposed method. 

We used m = 3, 5 for evaluating the performance, therefore the number of unknown 

parameters to be tailored are 6 and 10 respectively. Without any other change in the 

parameter values except the chromosome size 6 and 10 for m = 3 and 7 respectively, GA 



and DE are executed to acquire the unknown parameters. The optimal values of the 

unknowi parameters acquired by GA and DE are given in Table 4.3 and Table 4.4 

respectively. 

Table 4.7 Comparison of absolute errors for biochemical reaction model 

Proposed 
Method Classical Methods 

HPM 
0 

3.45E-03 

3.29E-01 

4.48E+OO 

2.79E+01 

1.14E+02 

3.57E+02 

9.34E+02 

2.14E+03 

4.43E+03 

8.50E+03 

VIM 
0 

1.99E-02 

2.41E-01 

1.03E+00 

2.94E+00 

6.76E+00 

1.35E+01 

2.45E+0 1 

4.1 1E+01 

6.49E+01 

9.71E+01 

PPM 
0 

9.06E-08 

1.83E-06 

3.54E-05 

2.10E-04 

7.16E-04 

1.77E-03 

3.58E-03 

6.3 1 E-03 

1.0 1 E-02 

1.5 1E-02 

0 

6.28E-08 

7.3 1 E-06 

8.70E-05 

3.38E-04 

7.53E-04 

1.2 1E-03 

1.55E-03 

1.65E-03 

1.42E-03 

1.42E-03 



In Fig. 4.1 and Fig 4.2 we provide the approximate solutions x(t) and y(t) obtained using 

the proposed method with m - 3.5. also solutions using RK4 and with m = 7 by the 

proposed method are shown for the comparison. 

It is evident from Fig. 4.1 and Fig 4.2 that the accuracy of approximate solutions 

improves with an increase in m (number of basis functions). In Table 4.8 we also give a 

comparison of average absolute errors yielded by the proposed method in the interval 

[0,1] for m = 3, 5: 7 and the number of generations taken for achieving the desired 

minimum fitness by GA and DE. 

From Table 4.8 it is seen that the proposed method yields improved accuracy with 

increase in m but at the cost of large number of generations consequently high 

computational cost. Nonetheless the proposed method provides the solution of the 

biochemical reaction model with better accuracy even with m = 3 as compared to popular 

classical methods HPM and VIM which proves the effectiveness and reliability of our 

method. 

Table 4.8 Effect of change in number of basis functions (m) 

m Number of Average Absolute Errors - 
Generations - 21 IyRK4 - yI h 

3 294 1.095E-0 1 5.561E-02 



0 0.2 0.4 0.6 0.8 1 
t 

Fig. 4.1 Effect of change in m on approximate solution x(i) and comparison with RK4 

Fig. 4.2 Effect of change in m on approximate solution y(i) and comparison with RK4 



1.3.2 HIV INFECTION MODEL OF C D ~ + T  CELLS 

We sE41 now apply the sugges :.d m&od to the n~merical solution of the HIV infection 

model of C D ~ + T  cells [138], which is governed by the following system of CNODEs 

[139], [140], [141], [142], [143], [144]. 

subject to the initial conditions 

T ( 0 ) = T o ,  1 ( 0 ) = 1 0 ,  a n d V ( 0 ) = V o  (4.32) 

In the model of HIV (4.31), the dependent variables T(t), I(t), and V(t) denote the 

concentration of susceptible C D ~ + T  cells, the concentration of C D ~ + T  cells infected by 

HIV viruses, and free HIV virus particles in the blood respectively. The parameters a, P, 

and y denote the natural turnover rates of uninfected T cells, infected T cells, and virus 

particles respectively. The term (1 - 5) describes the logistic growth of the healthy 

C D ~ + T  cells, while the proliferation of the infected C D ~ + T  cells is neglected. The term 

kVT describes the incidence of HIV infection of healthy C D ~ + T  cells, where k > 0 is the 

infection rate. Each infected CD~'T cell is assumed to produce N virus particles during 

its lifetime, including any of its daughter cells. The body is believed to produce CD~+T 

cells from precursors in the bone marrow and thymus at a constant rate p. T cells multiply 
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I 

through mitosis with a rate r when they are stimulated by antigen or mitogen. T,, 

denotes the maximum level ~ l f  CDA" cell wncentratiol: in the body [141]. [142], [143], 

[144]. 

The numerical solution of the HIV infection model of C D ~ + T  cells has been obtained by 

several authors using several different standard methods such as HPM by Merdan [139], 

LADM by Ongun [145], multi-stage VIM by Merdan et al. [146], Bessel collocation 

method (BCM) by Yiizbag [147], VIM by Merdan et al. [140], and HAM by Goreishi et 

al. [148]. 

To apply the proposed method to the HIV infection model of CD4+T cells (4.3 1) we take 

m = 5, therefore approximate solutions p ( t ) , f ( t ) ,  and P ( t )  and their first derivates 

df dl - -  d ii 
and ; can be expressed as follows. 

d t  ' d t '  

5 
d f  ( t )  -= Cbjtj-1 

d  t 



The approximate numerical solution of the HIV infection model of C D ~ '  T cells (4.3 1 )  is 

obtained in the interval 0 2 t 2 1, with initial conditions T(0)  = 0.1, I(0) = 

0.0, and V(0)  = 0.1, also setting p = 0.1 , a = 0.02 , /.3 = 0.3 , r = 3 , y = 2.4 , 

k = 0.0027 , T,,, = 1500 , and N = 10 in (4.3 1 )  for a direct comparison of our results 

with the results reported by other methods used in [I39 1, [140], [147]. 

From the given initial conditions we get a. = T(0)  = 0.1, bo = I(0) = 0.0, and co = 

Now formulating the fitness function ( E ~ )  as follows 

Ej = E I  + ~2 + E~ (4.42) 

The FF given by (4.42) is subject to minimization by using GA, P S ,  IPA, and memetic 

algorithm schemes GA-IPA, and GA-ASA for acquiring the unknown parameters 

(a,, ... as; bl, ... b5; cl, ... , cS).  The algorithms are executed according to the prescribed 



settings and values given in Table 4.9 for GA and in Table 4.10 for IPA and ASA 

respectively, to achieve the optimal values of the unknown parameters. 

Table 4.9 Parameter values and settings of GA for HIV model 

Parameter ValueISetting 

Population size [240 2401 

Chromosome size 

Fitness scaling function 

Selection function 

Crossover function 

Mutation function 

Reproduction crossover fraction 

Generations 

Function tolerance 

Nonlinear constraint tolerance 

15 

Proportional 

Stochastic uniform 

Heuristic 

Adaptive feasible 

0.8 

2000 

1E-18 

1E-18 

The optimal values of the unknown parameters achieved by GAY GA-IPA, and GA-ASA 

are provided in Table 4.1 1, while the values of these unknown parameters achieved by 

IPA and ASA are given in Table 4.12. 

Once we have achieved the optimal values of unknown parameters the approximate 

solutions T(t), f(t), and v(t) can be obtained easily by using these values in (4.33) - 

(4.3 5) respectively. 

The approximate numerical solutions obtained by the proposed method with memetic 

algorithm scheme GA-IPA are shown in Fig. 4.3, Fig. 4.4, and Fig. 4.5 for T ( t ) ,  I(t), and 

V ( t )  respectively, also numerical solutions using RK4 are shown for the purpose of 

comparison. From the comparison the numerical solutions obtained by the proposed 

method are found in a good agreement with RK4. 



Table 4.10 Parameter values and settings of IPA and ASA for HIV model 

- .------ -4 ----. -- - 
Parameter IP A ASA 

Start point Random/optimal Randodoptimal 

chromosome from GA chromosome from GA 

Maximum iterations 200 200 

Maximum function 60000 60000 

evaluations 

Maximum perturbation 0.1 0.1 

Function tolerance 1E-18 1E-18 

Nonlinear constraint 1E-18 1E-18 

tolerance 

Derivative type Central differences ------- 

Hessian BFGS . ------- 

Subproblem algorithm Ldl factorization ------- 

Table 4.11 Optimal values of unknown parameters for HIV model 

index GA GA-IPA GA-ASA 
(i) ai bi Ci ai bi Ci ai bi Ci 
1 0.40 14 0.0001 -0.2399 0.4016 0.0000 -0.2399 0.4016 0.0000 -0.2399 

Table 4.12 Optimal values of unknown parameters acquired by IPA and ASA for H N  model 

index IPA AS A 



Concentration of suscepti ble C D ~ + T  cells 
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Proposed 

t 

Fig. 4.3 Comparison of numerical solutions for T(t) 

10'~ Concentration of infected C D ~ + T  cells 
4.5 I , 1 

t 

Fig. 4.4 Comparison of numerical solutions for I(t) 



Free HIV virus particles 

Fig. 4.5 Comparison of numerical solutions for V(t) 

I 

Moreover in Table 4.13, Table 4.14, and Table 4.15 a comparison of numerical solutions 

obtained by the proposed method are made with VIM, BCM, and HPM. To show the 

accuracy of our results absolute errors obtained by the proposed method and VIM, BCM, 

and HPM are computed relative to RK4 and provided in Table 4.16. 

Table 4.13 Comparison of numerical solutions for T(t) 

t RK4 Proposed VIM HPM BCM 
0.0 0.1 0.1 0.1 0.1 0.1 

I 



Table 4.14 Comparison of numerical solutions for I(t) 

t -. RK4 Proposed VIM HPM - --- BCM 
0.0 0 0 0 0 0 

Table 4.15 comparison of numerical solutions for V(I) 

t RK4 Proposed VIM HPM BCM 
0.0 0.1 0.1 0.1 0.1 0.1 

The comparison of the absolute errors from Table 4.16 reveals that the proposed 

technique yields the results of the HIV infection model of C D ~ + T  cells (4.21) with fairly 

good accuracy. Furthermore from the comparison it is observed that the average absolute 

errors for T(t) by the proposed method are fairly smaller than BCM and comparable to 

VIM and HPM while the absolute errors of V(t) yielded by proposed schemes are much 

smaller than VIM and HPM. However for I(t) our method gives relatively greater 

absolute errors as compared to VIM and HPM but fairly comparable with BCM. 

Nonetheless the overall performance of the proposed method is fairly comparable with 

the standard methods VIM, HPM, and BCM in comparison with RK4. 



Table 4.16 Comparison of absolute errors for HIV model 

t Proposed VIM HPM - .- BCM 
0.0 0 0 0 0 

T(t) 
0.2 1.32E-03 7.78E-05 7.78E-05 4.87E-03 

0.4 1.06E-03 1.94E-04 1.95E-4 2.56E-02 

0.6 1.69E-03 1.13E-03 1.10E-03 6.81E-02 

0.8 3.83E-03 1.41E-02 1.39E-02 1.36E-01 

1 .O 4.19E-03 8.00E-02 7.89E-02 2.04E-01 

0.0 0 0 0 0 

I(t) 
0.2 1.662E-06 1.124E-09 1.196E-09 2.164E-07 

0.4 2.462E-06 4.240E-09 5.880E-09 2.175E-07 

0.6 1.757E-07 1.964E-07 2.238E-08 8.579E-07 

0.8 1.802E-07 2.200E-06 9.092E-08 1.779E-06 

1.0 1.880E-06 1.568E-05 3.390E-07 3.086E-06 

4.4 CONCLUSION 

A simple and effective stochastic heuristic scheme based on hybrid approach of 

polynomial basis functions and EAs has been suggested for numerically solving system 

of CNODEs. 

The effectiveness of the presented method has been illustrated by numerically solving the 

nonlinear biochemical reaction model. The comparisons have revealed that the proposed 

method outperforms some well-known classical methods including HPM and VIM. 



The proposed method has also been successfdly applied to solve the HIV infection 

model of CD~'T cells. The approximate numerical solutions by the proposed method are 

found in a fairly good agreement with RK4. Moreover, it is also established from the 

comparisons that the proposed method provides approximate solutions that are fairly 

comparable with some of the classical methods including VIM, HPM, and BCM. 

On the basis of numerical results and comparisons, it can be concluded that the proposed 

method is effective and viable for solving such CNODEs. 

4.5 SUMMARY 

This chapter provides the detail of the heuristic computation method combining 

polynomial basis functions and EAs for solving systems of CNODEs. It also presents the 

investigation of numerical applications of the designed method. The chapter gives the 

basic idea of fitness function used for transforming the CNODEs into an equivalent 

optimization problem. The procedural steps of DE for solving the optimization problem 

are also presented. The designed method has been successfidly applied to solve two 

problems of practical importance including the Michaelis-Menten biochemical reaction 

model biochemical reaction model and the HIV infection model of C D ~ + T  cells. From 

the simulation result presented in this chapter it has been illustrated that the proposed 

method is quite competent and viable for solving systems of CNODEs like HIV and 

biochemical reaction models. 



CHAPTER 5 

HYBRIDIZATION OF EXP-FUNCTION METHOD AND NATURE INSPIRED 

COMPUTING FOR SOLVING NONLINEAR PARTIAL DIFFERENTIAL 

This chapter provides the detail of the heuristic scheme based on the hybridization of the 

Exp-function method and nature inspired computing for solving NPDEs. The given 

NPDE is converted into a NODE using a wave transformation variable. The approximate 

solution of NODE is expressed using the Exp-function method with unknown constants. 

The unknown constants are achieved by transforming the NODE into an optimization 

problem. Two popular nature inspired algorithms including GA and PSO are used to 

solve the optimization problem and to obtain the unknown constants. The numerical 

applications of the proposed scheme are tested on some well-know NPDEs including the 

Fisher, Burger-Fisher, and Burger-Huxley equations. 

5.1 INTRODUCTION 

Nonlinear wave propagation problems appear in numerous engineering and scientific 

fields including plasma physics, nonlinear optics, .fluid dynamics, chemical kinetics, 

quantum field theory, population models etc. These problems are by and large governed 

by the systems of nonlinear partial differential equations (NPDEs). The investigation of 

solitary solutions to such NPDEs has been of great interest to the scientific community. A 

glance at the literature reveals that a number of effective methods have been reported in 



past few years, such as tan.-function method [149,[150], [151], Hirota's bilinear method 

[152], Haar wavelets method (HWM) [153], VIM [154], [155], ADM [156], [157], 

[158], HPM [159], [I601 for handling NPDEs. These methods have their built in 

deficiencies and limitations and therefore the research community is paying much 

attention to seek new and efficient methods for solving the crucial systems of NPDEs. 

Recently He and Wu [I611 introduced a simple and straightforward method known as the 

Exp-function method for obtaining the generalized solitonary and periodic solutions of 

nonlinear wave equations. The method has attracted much attention and it has been 

successfully applied to a wide variety of problems including the Burger-Fisher equation 

[162], Fisher equation [163], Burger-Huxley equation [164], Burger equation [165], I 

Kawahara equation 11661, and many other problem of PDEs and NPDEs see for example 

[167], [168], [I 691, [170], [171], [172], [I731 and references therein. 

In recent years, stochastic solvers based on evolutionary computation (EC) and artificial 

neural networks (ANNs) have been increasingly used as an alternate tool for solving 

variety of differential equations. However, there has been comparatively little work 

reported where EC and ANN has been used for NPDEs. Nonetheless, the strength of 

these methods for solving PDEs has been illustrated on several problems, for example 

Samir et al. [I741 used ANN based approach for solving Burger-Fisher and Burger-Huxly 

equations, Puffer et al. [I751 used cellular NN for solving some NPDEs including Burger 

equation, S. He at al. [176] applied NN based technique for solving linear PDEs, and 

Ramuhalli et al. [I771 employed the merger of ANN and finite element method (FEM) 

for the approximate solution of various PDEs. 



In this dissertation, a novel scheme based on the elegant couple of Exp-function method 

and nature inspired computing (NIC) is proposed for the numerical solution of NPDEs. 

The literature survey reveals that the couple of Exp-function method and NIC is 

attempted for the first time to tackle NPDEs numerically. The proposed method has been 

successfully tested on some popular NPDEs including Fisher equations, Burger-Fisher, 

and Burger-Huxley equations. The details of the proposed scheme follow in the next 

section. 

5.2 THE EXP-FUNCTION METHOD 

To illustrate the basic idea of the Exp-Function method, an NPDE solved by He and Wu 

in [I611 using the same method is presented. 

Consider an NPDE given in the following form 

~ ( u , u ~ , u , , u , , u , , , u , ) = ~  

A transformation variable 7 is introduced below 

q=kX+wt  (5.2) 

The transformation variable converts (5.1) into an NODE of the following form 

~ ( u ,  ku', wu', k2u" ,.... )= 0 (5.3) 

where k and co are unknown constants, and prime denotes derivation with respect to 7 .  

According to the Exp-function method, the solution of (5.3) can be expressed in the 

following form: 

where c, d, p, and q are unknown positive integers, a, and b, are unknown constants. 



The values of c and p are determined by balancing the linear term of highest order in 

(5.3) with the highest order nonlinear term. Similarly the values of d and q are: 

determined by balancing the lowest order of linear and nonlinear terms in (5.3). Next the 

unknown constants a, and b, are determined by substituting (5.4) into (5.3) and equating 

the coefficients of exp(nrl) to zero, which results into a set of algebraic equations with 

unknown constants. The systems of algebraic equations are solved using some software 

package like Matlab, Maple or Mathematica for determining the unknown constants a, 

and b,. Consequently the solution of NPDE (5.1) is obtained. 

Now consider the following example for the illustration of the method described above. 

2 
U, +U U, +U, = o  (5.5) 

Using the transformation given by (5.2) leads to the following ODE 

m'+ku2u'+k3u'"= 0 (5-6) 

Assume the solution of (5.6) is given by (5.4). The values of c andp  are determined by 

balancing the linear and nonlinear terms of highest and lowest orders in (5.6) as follows 

from [16 11 after some calculations. 

and 

c, exp[(p + L ) ~ ]  + .. .. c, exp[(5p + 3c)tl]+ . . .. 
U ul= - - 

C, exp[4~1~]+ .... c, exp[8prl]+ .... (5.8) 

In order to determine the values of c and p balance the highest order of Exp-function in 

(5.7) and (5.8) yields 

7 p + c  = 5 p + 3 c  

Simplifying (5.9) gives 



Similarly d and q are found by balancing the linear term of lowest order in (5.6) 

and 

Balancing the lowest order of Exp-function in (5.11) and (5.12) yields 

- (7q + d) = -(5q + 3d) (5.13) 

which gives 

Once the c, p, d, and q are determined, their values are freely chosen. For instance in 

[16 11 authors have set p = c = 1 and d = q = 1 as a simple case, therefore (5.4) becomes 

Equation (5.15) is substituted into (5.6) and some software package like Matlab or Maple 

is utilized to solve the system of algebraic equations as follows [161]. 

where 

A = (exp(7) + bo + b-I exp(- v))', 

C,  = m 1 b ,  + ka:bo - k3a0 -amo - kaia, + k3a,bo, 



- 2m-,bib-, + 4k3a-,bib-, - 8k3a-,b!, + 2ka:a-,b, - 2ka,a~,bo + 8k3a1b!, , 

C-, = kaoa!,b-, +mob: ,  -ka?,bo + k3aob:, -am-,bob: -k3a-,bob:. 

Setting the coefficients of exp(nrl) to zero 

C, =O, C2 = 0 ,  C1 = 0 ,  Co = 0 ,  C-l = 0 ,  C-2 =0, C-, =O. (5.17) 

The system of (5.17) is solved which gives the unknown constants and consequently the 

solution of (5.5). 

5.3 PROPOSED SCHEME FOR SOLVING NPDEs 

In this section, the description of the proposed scheme for solving NPDEs is presented. 

The scheme is based on the elegant hybridization of Exp-function method with NIC. The given 

NPDE is converted into a corresponding NODE given by (5.3) using the transformation (5.2). In 

view of the Exp-function method the solution of (5.3) can be expressed by (5.4). As mentioned 

above the values of c, p, d, q can be freely chosen. The rest of the unknown parameters a,,, b,, k, 



w are acquired by transforming the NODE given by (5.3) into an equivalent global error 

minimization problem by formulating a problem exclusive fitness function. 

Nature inspired algorithms (NIAs) such as GA and PSO are employed to solve the minimization 

problem and to achieve the unknown parameters. The suggested novel approach for 

determining the unknown constants and consequently the approximate solution is simple 

and straightforward. The detail of the scheme is given below. 

We consider the transformed NODE given by (5.3) subject to the initial condition given 

by 

We assume that the approximate solution of (5.3) is expressed in the following form in 

view of the Exp-function method. 

As mentioned above the values of c, p, d, q can be freely chosen, also it has been 

illustrated that p = c, and d = q, therefore we set their values freely. The rest of the 

unknown constants existing in (5.19) including ( a ,  ,...., a-, ; b, ,...., b_, ; k and m) are 

achieved using the application of nature inspired algorithms (NIAs) such as GA and PSO. 

To apply the NIAs such as GA and swarm intelligence PSO the unknown parameters in 

(5.19) are chosen as a chromosome/particle. The transformed NODE (5.3) along with the 

given initial condition (5.18) is converted into a global error minimization problem by 

developing fitness function (FF) given by 

E .  =El + E 2  J 

where j is the generationliteration index. 



The first part in the fitness function represents the mean of the sum of square errors 

associated with the transformed NODE (5.3) and the second part represents the mean of 

the sum of square errors associated with the given initial condition (5.18), given, 

respectively, as follows. 

where N and S are the total number of steps taken in the solution domain of x and t .  The 

FF given by (5.20) contains unknown constants in the form of a chromosome/particle for 

the stochastic algorithms such as GA and PSO. The objective is to solve the minimization 

problem (5.20) and to achieve the optimal chromosome/particle which represents the 

values of unknown constants ( a  ,,...., a-,;b ,,...., b-,; k ando). Consequently the 

approximate solution G ( ~ )  of the given problem is obtained straightforward by using 

these optimal values in (5.19). 

5.4 NATURE INSPIRED OPTIMIZATION ALGORITHMS 

In this section, NIAs used throughout the chapter for solving the minimization problem 

given by the FF (5.20) are introduced. The PSO, GAY and memetic algorithm scheme 

GA-IPA have been employed for solving the FF and to obtain the unknown constants ( 

a, ,...., a_, ; b, ,...., b-, ; k and o ). The basic procedural steps of these algorithms used for 

the implementation are given in algorithm 3.1 for GA hybridized with IPA (HGA) and in 

algorithm 5.1 for PSO respectively. 



Algorithm 5.1: Particle Swarm Optimization (PSO) 
Step 1: (Initialization) 

A population (swarm) of N particles is randomly created. Each particle 

has n number of elements which represent the number of unknown 

parameters. Assign values to parameters c, and c, and set j=j,,. 

Step 2: (Fitness Evaluation) 

Fitness of each particle is computed using a problem exclusive fitness 

function. 

Step 3: (Updating velocity and position) 

The velocity and position of each particle are updated using the 

following equations respectively. 

v;" = w'v' + c, Y , , ~   best - x:)+ c, y,,  b best - I/) 

Step 4a: (Updating Local Bests) 

If a particle's current position gives better fitness than its previous best 

position, then replace Pbest with it and preserve its fitness. 

Step 4b: (Updating Global Best) 

If any particle gives better fitness than Gbest, replace Gbest with that 

Pbest and preserve the new fitness of new Gbest. 

Step 5: (Stoppage Criteria) 

If fitness of Gbest meets criteria or number of iterations is greater than 

j,, then algorithm terminates, else go to step 2. 



5.5 NUMERICAL APPLICATIONS 

In this scction, the proposed scheme described above is tested on some popular systems 

of NPDEs arising in diverse practical applications of engineering, including Fisher's 

equations, Burger' s-Fisher equation, Huxley equation, and Burger's-Huxley equation. In 

order to demonstrate the effectiveness and accuracy of the proposed scheme comparisons 

of the numerical solutions are made with the exact solutions and the solutions obtained by 

some traditional methods. Moreover, an extensive investigation with the help of 

simulations is carried to show the viability of the proposed scheme. 

5.5.1 FISHER EQUATION 

The Fisher equation introduced by Fisher in 1937 [178] is encountered in many 

applications such as chemical kinetics, tissue engineering, gene propagation, flame 

propagation, neurophysiology, branching Brownian motion, autocatalytic chemical 

reactions, and nuclear reactor theory [179], [180], [18 11. 

The Fisher's equations have been paid much attention due to their diverse applications. A 

glance at the literature reveals that an ample of powerful analytical and numerical 

methods have been utilized to solve the Fisher equations, such as ADM [182], (VIM) 

[183], modified VIM (MVIM) [184], variational HPM (VHPM) [179], [185], Differential 

quadrature method (DQM) [180], DTM [186], HWM [187], optimal homotopy 

asymptotic method (OHAM) [187], and many others see for example [188], [189], [190], 

[191], 11921, [193], [I941 and references therein. But nobody as yet has tackled Fisher 

equations using the scheme proposed here. We have solved some three different forms of 

Fisher equations including the generalized Fisher equation as follows. 



ExampIe 1: We consider the Fisher's equation of the following form [179], [I841 

u, = u, + 6u(l- u )  (5.23) 

subject to the initial condition 

the exact solution is given by 

The approximate solution of (5.23) is obtained using the proposed scheme in domain 

x,t E [0,1] with a step of 0.05, which means the total number of steps S = 21. 

Converting (5.23) into a NODE using the transformation variable q = kx +wt yields 

2 mu'= k uU+6u(l - u )  (5.26) 

The approximate solution of (5.26) is expressed using Exp-method given by (5.19). As 

mentioned above the values of c, d, p, and q can be freely chosen, we set p = c = 2 and 

d = q = 2 in (5.19) and we get following trial fhction 

The unknown constants (a2, ..., a-2, b2, ..., b-2, and k, w) in (5.27) are achieved using EAs 

by transforming (5.26) along with the initial condition (5.24) into a global error 

minimization problem using a fitness function ( c j  ) as follows 



1 l 1  wu'(h, + a t , ) -  k2u"(h, + a t , ) -  
& - L C [  

23 1 ,.I ,=I 6u(h, + at, 11 - u(h, + wt, )] 

The FF given by (5.30) is minimized by applying GA, IPA, and GA-IPA for obtaining 

the optimal values of unknown constants. 

The parameter settings used for the implementation of the algorithms, such GA and IPA 

are given in Table 5.1. The number of unknown constants (a2, ..., a-2, bz, ..., b-2, and k, o) 

which need to be tailored is 12, therefore the size of chromosome is chosen as 12. The 

values of these unknown constants are restricted between -20 and +20. The search 

algorithms GA, IPA, and GA-IPA are executed to achieve the minimum fitness, with the 

prescribed parameter settings and values given in Table 5.1. 

Table 5.1 Parameter settings and values for GA and IPA for Fisher equation 

I values •’rom GA 

G A 
Parameter Name SettingNalue 

Population size 400 

I 

No. of generations 1000 I Maximum iterations 1000 

IPA 
Parameter Name Settinghalue 

Start point Random/Optimal 

uniform I evaluations 

1 

Selection function Stochastic 

Crossover function Heuristic Nonlinear constraint le-18 

Maximum function 90000 

Mutation function Adaptive 

feasible 

Function tolerance le-18 

Crossover fraction 0.8 

tolerance 

Hessian BFGS 



The optimal chromosome corresponding to the minimum fitness achieved by the 

algorithms GA, IPA, and GA-IPA are provided in Table 5.2. The approximate solution 

G ( ~ )  of the Fisher's equation (5.23) is consequently obtained by using the values of 

unknown constants fiom Table 5.2 in (5.27). 

In Table 5.3 we present the numerical solutions from the proposed scheme GA-IPA for 

different values of time t and x, also exact solutions are provided for the comparison 

purpose. 

Table 5.2 Optimal values of unknown constants for Fisher equation 

Constant GA IP A G A-IP A 
a2 16.446380 -0.179080 9.007126 

From the comparison, numerical solutions are found in an excellent agreement with the 

exact solutions with an average absolute error of 1.2 1E-07 in the solution domain €0, 11. 

Further in Table 5.4 and Table 5.5 we show a comparison of absolute errors at various 



values of t and x, obtained by the proposed scheme and some well-known classical 

methods, including VIM [179], VHPM [179], ADM [184], and MVIM [184]. 
/ 

The comparison from Table 5.4 and Table 5.5 reveals that the proposed method yields the 

numerical solutions of the Fisher's equation (5.23) with remarkably greater accuracy and 

much accurate than methods ADM, MVIM, VIM, and VHPM. 

Table 5.3 Comparison of numerical solutions at different values of time t .  

Exact Proposed Absolute 
scheme error 

t = 0.8 
Exact Proposed Absolute 

scheme I error I 



Table 5.4 Comparison of absolute errors at t = 0.2 and t = 0.4 

t = 0.2 
x Proposed ADM MVIM Proposed ADM MVIM 

(GA-IPA) 
2.499E-07 5.75E-02 5.01E-02 

2.373E-07 1.6 1E-01 5.27E-02 

2.137E-07 1.39E-01 4.12E-02 

1.78E-07 1.51E-01 2.25E-02 

1.301E-07 1.43E-01 5.28E-03 

7.128E-08 1.93E-01 4.23E-03 

Table 5.5 Comparison of absolute errors at t = 0.1 

x Proposed scheme VIM VHPM 
(GA-IPA) 

0.0 2.499E-07 2.07E-05 3.90E-07 

In order to investigate the reliability of the proposed scheme and also the effect of change 

in the values of c, p, d, and q in (5.1 9) on the accuracy of the approximate solution, we 

now set p = c = 1 andd = q = 2 in (5.19), therefore the trial solution can be expressed as 

follows 

The unknown constants (al, .. . , a-2; bl, . . . , b-z; k and o ) are achieved using the procedure 

described above. The heuristic algorithms GA, IPA, and GA-IPA are executed with the 



same parameter values and settings prescribed in Table 5.1, except a change in the 

chromosome size now chosen as 10 which determine the number of unknown constants. 

The unknown constants are achieved and consequently the approximate solution of 

(5.23). 

In Table 5.6 and Table 5.7 we provide the values of unknown constants and the 

approximate numerical solutions obtained using the proposed scheme respectively. 

The comparison with exact solution from Table 5.7 shows that numerical results are in a 

good agreement with the exact solution and yet accurate than some standard methods 

such as ADM and MVIM, which confirms the reliability of the proposed scheme. 

However a considerable raise in absolute error is observed as compared to the case with 

p = c = 2  and q = d = 2 .  

Table 5.6 Optimal values of unknown constants with p = c = 1 and q = d = 2 

Constant G A IP A GA-IPA 

a1 10.736310 4.76801 3 9.521559 



Table 5.7 Comparison of numerical soiutions for Fisher equation (example 1) 

Exact Proposed Absolute 
scheme error 

X u(x, t )  (GA-IPA) lu(x, t )  - c ( ~ ]  
471) 

Exact Proposed Absolute 
scheme error 

Example 2: We consider the following generalized Fisher equation [180], [181], [184], 
[185], [186], 11871. 

u, = u,  + u(1- ua ) (5.32) 

subject to the following initial condition 

The exact solution is given by 
2 - 



The numerical solution of (5.32) is obtained using the proposed scheme in domain [0, 11, 

for a = 3 and a = 6 .  We assume that approximate solution is given by (5.27) in view of 

Exp-function method. The corresponding FF of this problem is given as follows. 

Here we have taken N, S = 11 for a = 3, and for a = 6 N,  S = 21 respectively. The 

minimization problem given by (5.35) is solved using GA, IPA, and GA-IPA to achieve 

the constants (a2, . . . ,a-2, b2, . .. , b-2, and k, o ) and consequently the approximate solution 

u ^ ( ~ )  of (5.32). 

The algorithms GA, IPA, and GA-IPA are executed with the same parameter settings as 

prescribed in Table 5.1 and values of the unknown constants are achieved, which are 

provided in Table 5.8. One can use the values of unknown constants from Table 5.8 in 

(5.27) and obtain the numerical solution of (5.32) at any value of x and t in the solution 

domain [0, 11. In Table 5.9 we provide numerical solutions by the proposed scheme for 

a = 3 and a = 6 at different values of t and x, also exact solutions are presented for the 

comparison. To further illustrate the accuracy of the proposed scheme comparison of 

absolute errors obtained by the proposed scheme at various values of time t are made 

with absolute errors obtained using classical methods VIM [185], VHPM [I851 and DTM 

[186] in Table 5.10, ADM [184] and MVIM [I841 in Table 5.1 1 for a = 3 and a = 6 



respectively. Furthermore Table 5.12 shows a comp&son of absolute errors between the 

proposed scheme, HWM [187], and OHAM [I871 for a = 6 at different values of time t .  

From the comparisons of numerical solutions and absolute errors it is observed that the 

proposed scheme yields the approximate solutions of Fisher equation (5.32) with a 

remarkably great accuracy and in a sharp agreement with the exact solutions as compared 

to the methods used in [184], [185], [186], [187]. 

Table 5.8 Optimal values of unknown constants for a = 3 and a = 6 

-. - 

Constant G A IP A GA-IPA 
a2 1.956183 2.396043 1.955010 

IPA 
-0.776000 

16.577801 

10.249838 

1 1.892683 

0.3 19823 

-0.773863 

16.546023 

10.202 153 

16.208 127 

6.027368 

-0.734617 

1.836550 

GA-IPA 
10.788171 

13.547594 

11.263619 

5.824778 

0.122577 

10.787785 

13.522874 

14.001583 

11.013277 

3 .O 19663 

-0.705098 

1.762658 



Table 5.9 Comparison of numerical solutions (for a = 3,6) 

Exact 

u(xy t )  

0.75228 

0.73543 

0.7 1794 

0.69987 

0.68126 

0.662 17 

0.64266 

0.62278 

0.60262 

0.58224 

0.56 172 

Proposed 
scheme 

(GA-IPA) 

~ ( d  
0.75228 

0.73543 

0.71 794 

0.69987 

0.68126 

0.662 17 

0.64266 

0.62278 

0.60262 

0.58224 

0.561 72 

Absolute 
error 

t ) -  ~ ( q :  

3.29E-08 

2.77E-08 

2.92E-08 

1.15E-08 

7.24E-08 

1.30E-07 

1.67E-07 

1.72E-07 

1.45E-07 

9.81E-08 

5.10E-08 

Exact 

.(xy 1 )  

0.96715 

0.96223 

0.95663 

0.95029 

0.943 12 

0.93507 

0.92604 

0.91598 

0.90482 

0.8925 1 

0.87901 

Proposed 
scheme 

(GA-IPA) 

i(d 
0.96715 

0.96222 

0.95663 

0.95029 

0.943 12 

0.93507 

0.92604 

0.91598 

0.90482 

0.8925 1 

0.87901 

Absolute 
error 

I 4 x 9 t ) -  471 

1.48E-06 

8.67E-07 

2.43E-07 

3.12E-07 

7.15E-07 

9.03E-07 

8.57E-07 

6.1 1E-07 

2.46E-07 

1.20E-07 

3.68E-07 

Table 5.10 Comparison of absolute errors at t  = 0.1 (fora = 3) 

x GA IPA GAIPA 
0.0 5.01E-05 4.96E-08 3.85E-06 

Classical Methods 
VHPM VIM DTM 
1.22E-04 3.76E-05 5.23E-05 



Table 5.11 Comparison of absolute errors (for a = 6 )  at t = 0.2,0.4 

x Proposed ADM MVIM / Proposed ADM MVIM 
(GA-IPA) I (GA-IPA) 

0.0 1.0 1 E-06 5.24E-02 4.54E-02 7.09E-07 1.2 1E-01 1.97E-01 

Table 5.12 Comparison of absolute errors (for a = 6 )  at t = 0.4,0.8 

t = 0.4 

x Proposed HWM OHAM 
(GA-IPA) 

0.0 7.09E-07 5.48E-03 4.07E-03 

0.1 6.40E-07 1.06E-02 2.34E-03 

0.2 3.69E-07 1.5 1E-02 4.31E-04 

0.3 2.10E-08 1.86E-02 1.56E-03 

0.4 4.14E-07 2.06E-02 3.52E-03 

0.5 6.89E-07 2.1 0E-02 5.34E-03 

0.6 7.52E-07 1.94E-02 6.94E-03 

0.7 5.66E-07 1.59E-02 8.25E-03 

0.8 1.67E-7 1.1 1E-02 9.23E-03 

0.9 3.43E-07 5.58E-03 9.86E-03 

1.0 8.24E-07 5.48E-03 4.07E-03 

t = 0.8 

Proposed HWM OHAM 
(GA-IPA) 
5.92E-07 2.76E-03 7.41 E-02 

1.04E-06 5.82E-03 6.78E-02 

1.20E-06 8.93E-03 5.81E-02 

1.14E-06 1.17E-02 4.53E-02 

9.94E-07 1.37E-02 3.00E-02 

8.67E-07 1.45E-02 1.3 1E-02 

8.77E-07 1.40E-02 4.63E-03 

1.12E-06 1.2 1 E-02 2.21 E-02 

1.67E-06 9.09E-03 3.84E-02 

2.55E-06 5.58E-03 5.27E-02 

3.7 1 E-06 2.76E-03 7.41 E-02 



Example 3: We consider the following Fisher equation [I801 

11, =u ,  +u2(l-11) 

subject to the following initial condition 

The exact solution is given by 

The numerical solution of (5.23) is obtained using the proposed scheme in domain [0, 11 

with total steps N, S = 11 taken in the solution domain. We assume that approximate 

solution of (5.36) is given by (5.27). The corresponding FF is accordingly formulated as 

follows. 

The minimization problem given by (5.39) is solved using GA, IPA, and GA-IPA to 

achieve the constants (a2, ..., a-3 b2, ..., b-2, and k, a). Algorithms are executed with the 

parameter settings prescribed in Table 5.1. 



Table 5.13 Optimal values of unknown constants for Fisher equation (example 3) 

Constant GA IPA G A-IP A 
a2 -0.016912 0.000009 -0.001 872 

In Table 5.13 we provide the values of unknown constants acquired by the algorithms 

GA, IPA, and GA-IPA. Once we have acquired the unknown constants the approximate 

solution of (5.36) can easily be obtained by using these values in (5.27). 

The numerical solutions obtained at various values of time t using the proposed scheme 

are compared with the exact solution in Table 5.14. Further in Table 5.15 we present 

comparison of numerical solutions and absolute errors obtained by the proposed scheme 

with those reported by the DQM used in [180]. From the comparisons of numerical 

solutions in Table 5.14 and Table 5.15, it can be seen that the proposed scheme gives the 

approximate solution in an excellent agreement with the exact solutions and fairly 

accurate than DQM. 



Table 5.14 Comparison of numerical solutions for Fisher equation (example 3) 

Exact 

.(At ) 

Proposed 
scheme 

(GA-IPA) 

û (d 

Exact Proposed Absolute 
scheme error 

u(x,  t )  (GA-IPA, 144 4 - ~ ( v l  
~ ( 1 1 )  

0.62246 0.62246 2.29E-08 

0.60570 0.60570 2.88E-08 

0.58870 0.58870 8.32E-08 

0.57147 0.57147 1.40E-07 

0.55408 0.55408 1.99E-07 

0.53655 0.53655 2.60E-07 

Table 5.15 Comparison of numerical solutions between the proposed method and DQM 

t x Exact Proposed DQM Absolute errors 
Proposed DQM 
(GA-IPA) 
2.60E-08 1.23E-05 

1.38E-07 1.52E-05 

3.14E-07 1.7 1 E-05 

1.1 1 E-07 1.04E-05 

2.60E-07 1.36E-05 

4.19E-07 1.19E-05 



5.5.2 GENERALIZED BURGER-FISHER EQUATION 

The generalized Burger-Fisher (B-F) equation is one of the important NPDE which 

appear in various applications such as fluid dynamics, shock wave formation, turbulence, 

heat conduction, traffic flow, gas dynamics, sound waves in viscous medium, and some 

other fields of applied science [195], [196], 11971. 

The generalized B-F equation is of the form [198], 11 991 

6 u, + a u  ux-u,=pu(1-U6) V O < x ~ I ,  1 2 0  

subject to the following initial condition 

The exact solution is given by 

Many analytical and numerical methods such as OHAM [197], ADM [198], HPM [199], 

collocation based radial basis functions (RBF) [200], and several others [195], [196], 

[201], [202], [203], [204], have been utilized for solving B-F equation (5.40). 

We obtain the numerical solution of the generalized B-F equation (5.40) using the 

proposed scheme in the following two examples. 

Example 1: Consider the generalized B-F equation (5.40) and apply the transformation 

variable q = kx +at yields the following NODE. 

m'+au6ku'-k2u"= pu(1 - a6 )  (5.43) 



The numerical solution of (5.43) with the initial condition given by (5.41) is obtained in 

the domain x E (0,l) and t E (0~1) for various values of a, P, and S as follows. 

Casel:  a =p=0.001,6=1 

Case2: a = p = 0 . 1 , 6 = 1  

Case3: a = p = 0 . 5 , 6 = 1  

Case 4: a = p = 1,6 = 2 

We assume the approximate solution c ( ~ )  is given by (5.27). The unknown constants 

(a2, ..., a-2, b2, ..., b-z, and k, a) in equation (5.27) are achieved using GA by formulating 

the FF corresponding to each case. For instance the FF corresponding to case 1 is given 

by 

Similarly we formulate FF corresponding to each case defined above. The parameter 

settings and values used for the implementation of GA are given in Table 5.16. The 

number of unknown constants (a2, ..., a-2, b2, ... , b 4  and k, o) which need to be tailored is 

12, therefore the size of chromosome is chosen as 12. The values of these unknown 

constants are restricted between -10 and +lo. The GA is executed to achieve the 

minimum fitness, with the prescribed parameter settings and values given in Table 5.16. 



Using the values of unknown constants from Table 5.17 in equation (5.27) provides the 

numerical solution c ( ~ )  of the genera!ized R-F equation at any value of x and r in the 

solution domain. 

The numerical solutions obtained by the proposed scheme at time t = 0.1 are presented in 

Table 5.1 8 for case 1 and case 2, and in Table 5.19 for case 3 and case 4 respectively, 

also exact solutions are given for comparison. It is seen from the comparisons of Table 

5.1 8 and Table 5.19 that numerical solutions obtained by the proposed scheme are in an 

excellent agreement with the exact solutions with average absolute errors of 1.20E-8, 

1.49E-08,4.40E-07, and 1.85E-06 for case 1, case 2, case 3, and case 4 respectively. 

Table 5.18 Comparison of numerical solutions for B-F equation at t = 0.1 (for case 1, case2) 

Case 1 

X umcr 
Proposed 

4d 
0.0 0.500025 0.500025 

Case 2 

Proposed 

i+l) 
0.502562 

0.501312 

0.500062 

0.498812 

0.497562 

0.4963 13 

0.495063 

0.493813 

0.492563 

0.491313 

0.490064 

Absolute errors 

I ~ . X U C I  - 44 
Case 1 Case 2 



To show the accuracy of our results in comparison to the numerical solutions of this 

problem reported in the literature by some classical methods, we provide the comparison 

of numerical solutions with the exact solutions at various values o f t  and x in Table 5.20, 

Table 5.21, Table 5.22, and Table 5.23 for case 1, case 2, case 3, and case 4 respectively. 

Also the absolute errors obtained by the proposed scheme are compared with the absolute 

errors obtained by OHAM [197] and ADM [198], in Table 5.20 and Table 5.23, and 

HPM [I991 in Table 5.2 1 and Table 5.22. 

From the comparison of numerical solutions and absolute errors the accuracy of the 

proposed scheme is quite notable. It is observed from the comparisons that the absolute 

errors yielded by the proposed scheme are relatively smaller than absolute errors obtained 

using OHAM [197], ADM [198], and HPM [199], which confirms the effectiveness and 

efficiency of the proposed scheme. 

Table 5.19 Comparison of nume1 
Case 3 

X uexact 
Proposed 

4l) 
0.0 0.5 14059 0.5 14057 

0.1 0.507812 0.50781 1 

0.2 0.501562 0.501562 

0.3 0.4953 13 0.4953 12 

0.4 0.489064 0.489064 

0.5 0.482819 0.482819 

0.6 0.476580 0.476580 

0.7 0.470347 0.470347 

0.8 0.464124 0.464124 

0.9 0.457912 0.457912 

1.0 0.451713 0.451714 

Proposed 

w 
0.745205 

0.734038 

0.722640 

0.7 1 1024 

0.699206 

0.687204 

0.675033 

0.6627 13 

0.650261 

0.637698 

0.625042 

:a1 solutions for B-F equation at t = 0.1 (for case 3, case 4) 

Case 3 

Case 4 

Case 4 

1.396E-06 

8.65 1 E-07 

3.266E-07 

2.146E-07 

7.568E-07 

1.303E-06 

1.859E-06 

2.4368-06 

3.047E-06 

3.704E-06 

4.4 18E-06 

Absolute errors 

l%lYfl -471 



Table 5.20 Comparison of numerical solutions and absolute errors fo ra  = P = 0.001 and 6 = 1 

Absolute errors 
X t 

"exac, Proposed 
~ ( 7 )  Proposed ADM OHAM 

0.1 0.00 1 0.499988 0.499988 1.97E-08 1.94E-06 2.25E-08 

Table 5.21 Comparison of numerical solutions and absolute errors fo ra  = P =  0.1 and 6 = 1 

Absolute error 
t X 

Umct Proposed Proposed HPM 



Table 5.22 Comparison of numerical solutions and absolute errors for a = P = 0.5 and 6 = 1 

Absolute error 

urn,/ Proposed Proposed HPM 
t x  .^(d 

0.1 0.2 0.501562 0.501562 7.77E-07 6.17E-08 

Table 5.23 Comparison of numerical solutions and absolute errors for a = P = 1 and 6 = 2 

Absolute errors 
X t 

Uu,ct Proposed -I \ 

%'rl) Proposed ADM OHAM 
0.1 0.0001 0.695266 0.695267 1.08E-06 2.80E-04 1.17E-05 



Example 2: With ,8 = 0 and a = 1 equation (5.40) is reduced to the generalized Burger's 

equation [198]. 

The approximate solution is obtained by the proposed scheme for three different values 

of S = 1,2,3 in the domain x E (0,l) and t E (0~2) for 6 = 1,2, and t E (0,s) for S = 3 . 

We assume the solution is expressed by Exp-function method given by equation (5.27). 

The fitness function is developed for each value of 6 with P = 0 and a = 1. For example 

the fitness function for 6 = 3 is given as follows 

GA is used to solve the minimization problem such as given by equation (5.47) and to 

obtain the optimal values of unknown constants in (5.27). GA is executed with the 

parameter settings and values as prescribed in Table 5.16. 

The optimal values of unknown constants achieved by GA are given in Table 5.24 for 

each value of 6 = 1,2 and3. The numerical solutions of generalized Burger's equation are 

obtained consequently by using the values of unknown constants in equation (5.27). 

In Tables 5.25, Table, 5.26, Table 5.27, and Table 5.28 we provide the comparison of 

numerical solutions for 6 = 1,2 and 3 obtained by the proposed scheme with the exact 

solutions, and the solutions obtained by ADM [I981 and RBF [200]. The comparisons of 

numerical solutions and absolute errors reveals that the proposed scheme is quite 

competent with other methods including ADM and RBF used in [198, 2001 for solving 

the generalized Burger equation. The comparison further reveals that the proposed 



scheme is capable to achieve the approximate solutions in the larger domain of time t 

with greater accuracy. Moreover, it is observed from Table 5.27 that our scheme gives 

more accurate solutions than ADM for the interval t E (0.0001,0.001) and 6 = 3. 

Table 5.24 Optimal values of unknown constants for different values of S 

Constant S = l  6 = 2  S = 3  

a2 -0.02 125 -1.17068 9.75002 

Table 5.25 Comparison of numerical solutions for j? = 0,a = I ,  and S = 1 

Proposed Absolute errors 
1 

uemc, 
x u^(v) ADM RBF Proposed ADM RBF 

0.5 0.1 0.518741 0.518740 0.518741 0.518739 1.14E-07 6.348-08 2.00E-06 

0.5 0.468791 0.468791 0.468791 0.468790 1.13E-07 5.66E-08 I .OOE-06 

0.9 0.41 9458 0.419459 0.419458 0.419449 1.56E-06 4.128-08 9.00E-06 

1.0 0.1 0.549834 0.549833 0.549832 0.549831 1.17E-06 2.028-06 3.00E-06 

0.5 0.500000 0.499999 0.499998 0.499998 3.798-08 1.848-06 2.00E-06 

0.9 0.4501 66 0.450167 0.450165 0.4501 57 1.28E-06 1.378-06 9.00E-06 

2.0 0.1 0.61 0639 0.610638 0.610575 0.610635 8.44E-07 6.428-05 4.00E-06 

0.5 0.562177 0.562176 0.5621 16 0.562175 1.16E-07 6.06E-05 2.00E-06 

0.9 0.5 12497 0.512498 0.5 12450 0.5 12488 9.72E-07 4.758-05 9.00E-06 



Table 5.26 Comparison of numerical solutions for ,B = 0,  a = 1, and S = 2 

Proposed Absolute errors 
t u,a 

x iih) ADM Proposed ADM 

Table 5.27 Comparison of numerical solutions forP = 0 , a  = I ,  and 8 = 3 

Proposed Absolute 
t 

uemc1 
x ~(d ADM errors 

Proposed ADM 
0.0001 0.1 0.783660 0.783659 0.784106 4.55E-07 4.46E-04 



Table 5.28 Comparison of numerical with R3F for P = 0,a = I ,  and 6 = 3 

Proposed u,,, Absolute errors 
t x .^(d RBF Proposed RBF 

Finally we study the effect of change in the values of p, q, c, and d in equation (5.27) on 

the accuracy of approximate solution, and show reliability of the proposed scheme. We 

used following test cases 

Case (i): p = c = 1 q = d = I 

Case (ii): p = c = 2 q = d = 2 

Case (iii): p = c = 3 q = a' =3 

Case (iv): p = c = I q = d = 2 

We consider the generalized B-F equation (5.40) with a = P = 0.001 and 6 = I .  The 

approximate solution is obtained in the domain x, t E (0,l). 

The approximate solution is expressed in view of the Exp-function method by choosing 

the values of p , q , c and d in (5.27), we get following trial functions for case (i) - case 

(iv) respectively. 



The GA has been used to solve the FF given by (5.46) with same settings for all the four 

cases (i) - (iv) as prescribed in Table 5.16 for example 1, except with a change in 

chromosome size for each case which is 8, 12, 16, and 10 for case (i), case (ii), case (iii), 

and case (iv) respectively. The optimal values of unknown constants acquired by GA are 

provided in Table 5.29. 

The numerical solutions have been obtained for each case and absolute errors have been 

computed. In Table 5.30 we present a comparison of numerical solutions obtained by the 

proposed scheme with each case at time t = 0, also exact solutions are shown for the 

comparison. To further evaluate the influence of the parameters p, q, c, and d average 

absolute errors obtained by the proposed scheme for each case (i) - (iv) in the solution 

domain [0, 11 have been computed and presented in Table 5.3 1. Moreover, computational 

time and number of generations utilized are also given for the sake of comparison in 

Table 5.3 1. From the comparison of Table 5.3 1, it is observed that the average absolute 



error corresponding to case (i) withp = c = 1 and d = q = 1 is relatively high compared 

to other cases (ii) - (iv). It is also observed that the accuracy is fairly equal for the 

remaining cases (ii) - (iv), however the computational time is quite different. It can be 

seen from Table 5.3 1 that for case (iv) we get the average absolute error quite comparable 

to cases (ii) and (iii), but with lesser number generations and smaller computational time. 

Therefore it can be concluded on the basis of the simulation results that the choice of p, q, 

c, and d have influence on the accuracy of numerical solutions and computational time. 

Nonetheless the comparison clearly demonstrates the accuracy and reliability of the 

proposed scheme. 

Table 5.29 Optimal values of unknown constants with different values ofp, q, c, and d 

Constant Case (i) Case (ii) Case (iii) Case (iv) 



Table 5.30 Con~parison of numerical solutions for B-F equation 

Proposed Scheme. G ( ~ )  

Case (i) Case (ii) Case (iii) Case (iv) 
0.499641 0.500025 0.500025 0.500025 

0.499629 0.500012 0.500013 0.500013 

0.499616 0.500000 0.500000 0.500000 

0.499604 0.499988 0.499988 0.499988 

0.499591 0.499975 0.499975 0.499975 

0.499579 0.499963 0.499962 0.499963 

0.499566 0.499950 0.499950 0.499950 

0.499554 0.499938 0.499937 0.499938 

0.499541 0.499925 0.499925 0.499925 

0.499529 0.49991 3 0.499912 0.499913 

0.4995 16 0.499900 0.499900 0.499900 

Table 5.31 Effect of change inp, q, c, and d on the performance of the scheme 

Values of Average absolute No. of generations Computational 
P, q, c, d error time in sec 

Case (i) 1.9 1 E-03 196 80 

Case (iii) 1.42E-07 279 97 

Case (iv) 

5.5.3 GENERALIZED BURGER-HUXLEY EQUATION 

In this section, we consider the generalized Burger-Huxley (B-H) equation as a final 

NPDE problem and obtain its numerical solution using the proposed scheme. To prove 

the efficacy and viability of the proposed scheme generalized B-H equation is 



numerically solved for various values of the parameters governing the equation, besides 

the numerical solutions of the generalized Huxley equation are obtained for various 

choices of the parameters. 

We consider the generalized B-H equation as follows [205], [206], [207] 

subject to the initial condition 

with the exact solution given by 

where c = 6(p - a)/4(1+ 6) and p = The generalized B-H equation 

(5.39) describes the prototype models of interaction between reaction mechanisms, 

convection effects, and diffusion transports [205], [206], [207]. When a = 0 ,  equation 

(5.39) reduces to the generalized Huxley equation, which describes wall motion in liquid 

crystals [207], [208], [209], [2 101. B-H equation has been paid much attention and many 

methods have been proposed so far, but no one yet has tried the method proposed here. 



Example 1: We consider the generalized B-H equation (5.52) and obtain its approximate 

solution in the domainx,t E [O,l], with following values of the parameters for a direct 

comparison with other methods reported in [205], [206]. 

Case 1: a =p=6=1,y=0.001 

Case 2: a = p = 1, y = 0.01, 6 = 2,4,6 

To apply the proposed scheme we first convert the given NPDE into corresponding 

NODE by applying the wave the transformation variable 7 to the generalized Burgers- 

Huxley equation to get the following equation. 

The unknown constants (a, ,...., a-,;b2 ,...., b-,; k and w )  in (5.27) are achieved using GA 

and PSO by formulating the FF for each case. For instance the FF for case 1 that is 

a = p = 6 = 1,y = 0.001 is givenby 

The FF given by (5.56) is minimized by applying GA and PSO for obtaining the optimal 

values of unknown parameters. 

The parameter settings and values used for the implementation of the algorithms GA and 

PSO are given in Table 5.32. 



The number of unknown constants (a, ,...., a-,;b, ,...., b-,, k ando ) which need to be 

tailored is 12, therefore the size of chromosome and the size of particle eac5 is chosen as 

12 respectively for GA and PSO. 

The values of these unknown constants are restricted between -20 and +20. The GA and 

PSO are executed to achieve the minimum fitness, with the prescribed parameter settings 

and values given in Table 5.32. 

Table 5.32 Parameter values and settings of GA and PSO for B-H equation 

Parameter Name 
Population size 

Chromosome size 

Scaling function 

Selection function 

Mutation function 

Crossover function 

Crossover fraction 

No. of generations 

Function tolerance 

Bounds 

12 

Rank 

Stochastic uniform 

Adaptive feasible 

Heuristic 

0.8 

1000 

le-18 

-20, +20 

PSO 
Parameter Name Value 
Population size 620 

Particle size 12 

Cognitive constant 0.5 

Social constant 1 .O 

No. of generations 1000 

Function tolerance 1 e- 1 8 

Bounds -20, +20 

The optimal chromosome corresponding to the minimum fitness achieved by GA and 

PSO are given in Table 5.33 and Table 5.34 for case 1 and case 2 respectively. 

The approximate solution of the generalized B-H equation (5.52) is consequently 

obtained by using the values of unknown parameters from Table 5.33 and Table 5.34 in 



Table 5.33 Optimal values of unknownconstants for a = P = 6 = 1, y = 0.001 

Value 
Constant GA PSO 

Table 5.34 Optimal values of unknown constants fora = P = 1, y = 0.01, and 8 = 2,4, and 6 

Value 
S = 2  6 = 4  S = 6  

Constant G A PSO G A PSO G A PSO 

a2 2.6333 -0.5878 4.6845 -1 .I357 5.6753 -3.5955 



Table 5.35 Numerical solutions by proposed scheme for a = P = 6 = 1 and y = 0.001 

Pro~osed scheme Absolute errors 

~ ( v )  I~c.m - .^ (71 
t x Uexact GA PSO GA PSO 

0.2 0.2 0.0005001 0.0005000 0.0005000 7.61 E-08 7.50E-08 

In Table 5.35 and Table 5.36 we present numerical solutions obtained by the proposed 

scheme for case 1 at different values of x and t, also the exact solution and absolute errors 

obtained by classical methods ADM [205] and VIM 12061 are provided for the 

comparison purpose. From the comparison of absolute errors approximate solutions are 

found in good agreement with the exact solution with an average absolute error of 

1.874E-07 in the solution domain x, l E (0,l). 



Table 5.36 Comparison of numerical solutions for a = P = 6 = 1 and y = 0.00 1 

Proposed 

Absolute Errors 
x t %act G A PSO G A PSO ADM VIM 

0.1 0.05 0.00050002 0.00050000 0.00050000 2.05E-08 1.87E-08 1.87E-08 1.87E-08 

Table 5.37 Comparison of numerical solutions for a = P = 1, y = 0.01 and 6 = 2,4 

I 

6 = 2  6 = 4  Absolute errors I 

I 

Proposed Proposed 



Moreover the absolute errors yielded by the proposed scheme are found quite comparable 

to ADM and VIM, which shows the efficiency of the proposed scheme. Further a 

comparison of numerical solutions and absolute errors obtained by the proposed scheme 

is made with the exact solutions and absolute errors obtained using ADM and VIM for 

a = p = l , y  =0.01, and 6=2 ,4  inTable 5.37andTable 5.38 and for a = P = l ,  y =O.Ol 

, and S = 6 in Table 5.39 respectively. 

The comparison of absolute errors from Table 5.38 and Table 5.39 reveals that the 

proposed scheme gives approximate solution relatively with greater accuracy than ADM 

and VIM for 6 = 2 while for 6 = 4 and 6 = 6 the accuracy of the proposed scheme is 

quite comparable to ADM and VIM used in [205], [206]. 
I 

I 

I 
Table 5.38 Comparison of absolute errors for a = P = 1, y = 0.Oland S = 2,4 



Table 5.39 Comparison of numerical solutions for a! = P = 1, y = 0.0land S = 6 

Proposed Absolute errors 
t x Uexact 47) Proposed ADM 



Example 2: Consider the generalized B-H equation (5.52) witha = 0 ,  the equation is 

reduced to the generalized Huxley equation as follows. 

The numerical solution of (5.57) subject to the initial condition (5.53) is obtained by the 

proposed scheme in domain x, t E (0,1), for p = 1 ,  y = 0.00 1, and for different values of 

6 = 1,2 and 3. We assume that approximate solution is given by (5.27) in view of Exp- 

function method. Equation (5.57) is first converted into a NODE using the transformation 

variable 7 and fitness function ( E ,  ) with the parameter values P = I, y = 0.001, and for 

each value of 6 = 1,2 and 3 is developed. For example E,  corresponding to ,B = 1, 

y =0.001, and S = 3 i s  given by 

The minimization problem given by (5.58) is solved using GA and PSO to achieve the 

constants (u2, ..., a_*, b2, ..., b-2, and k, o) in (5.27), and consequently the approximate 

solution of (5.57) is obtained. 

The algorithms are executed with the parameter values and settings as prescribed in Table 

5.32. The optimal chromosome1particle learned by the algorithms GA and PSO which 

represents the values of unknown constants in are provided in Table 5.40. The values of 

158 



unknown constants are used in (5.27) to obtain the approximate numerical solution at any 

value of x and t in the solution domain [0, 11. 

Table 5.40 Optimal values of unknown constants for B-H equation (example 2) 

Value 
6  = 1 6 = 2  6  = 3  

Constants GA PSO GA PSO GA PSO 
a2 -0.395617 3.305 147 0.05 1950 -6.998792 -0.197379 2.248346 

Table 5.41 Comparison of numerical solutions for /? = 1, y = 0.00 1 and 6 = 1 

Proposed scheme d n )  Absolute errors 
t 

\ . I  

X 
uexact GA PSO GA PSO 

0.1 0.05 0.00050003 0.00050001 0.00050001 1.70E-08 2.50E-08 



Table 5.41, Table 5.42, and Table 5.43 show a comparison of numerical solutions 

obtained by the proposed schemes GA and PSO with the exact solutions for 6 = 1 .  

6 = 2,and 6 = 3respectively. It can be seen from the comparison that numerical 

solutions are in a good agreement with the exact solutions. 

Table 5.42 Comparison of numerical solutions for P = 1, y = 0.00 1 and 6 = 2 

Proposed scheme E ( ~ )  Absolute errors 
X t uexact GA PSO GA PSO 

0.1 0.05 0.022362 0.022361 0.022361 1.12E-06 1.12E-06 

Table 5.43 Comparison of numerical solutions for P = 1, y = 0.00 1 and 6 = 3 

Proposed scheme Absolute errors 
X I Bexact ~ ( 7 )  

GA PSO GA PSO 
0.1 0.05 0.079374 0.079370 0.079370 4.07E-06 3.88E-06 

0.1 0.079376 0.079368 0.079368 8.04E-06 7.85E-06 
412 0.079332 0.079332 - ..................... 7.95E-05 - 7.93E-05 - .. 



Table 5.44 Comparison of absolute errors for ,O = 1, y = 0.001 and 6 = 1 

Absolute errors 
- - 

x t GA PSO - VIM HPM ADM 
0.1 0.05 1.70E-08 2.50E-08 2.50E-08 2.50E-08 2.50E-08 

Table 5.45 Comparison of absolute errors for ,O = 1, y = 0.001 and 6 = 2 

Absolute errors 
x t GA PSO VIM HPM ADM 

0.1 0.05 1.12E-06 1.12E-06 1.12E-06 1.12E-06 1.12E-06 

Further, to show the accuracy of the proposed scheme in comparison to the classical 

methods, we provide comparisons of absolute errors obtained by the proposed scheme 

with the absolute errors obtained by HPM [208], ADM [209], and VIM [210] in Table 

5.44, Table 5.45, and Table 5.46 for 6 = 1 ,  6 = 2, and 6 = 3 respectively. One can 



clearly see that the absolute errors obtained by the proposed scheme for the generalized 

Huxley equation (5.57) are quite similar to the absolute errors obtained by HPM [208], 

ADM [209], and VIM [210] which confirms the accuracy of the proposed scheme. 

Table 5.46 Comparison of absolute errors for P = 1, y = 0.001 and 6 = 3 

Absolute errors 
x t GA PSO VIM HPM ADM 

0.1 0.05 4.07E-06 3.88E-06 3.97E-06 3.97E-06 3.96E-06 

Finally, we investigate the influence of change in the values ofp ,  q ,  c and d on the 

accuracy of the approximate solution and show the reliability of the proposed scheme. 

We consider the generalized Huxley equation (5.54) with P = 1, y = 0.00 1 and 6 = 2 .  

The numerical solution using the proposed scheme is obtained in domain x, t  E (0,1) for 

various values of p ,  q ,  c and d as follows. 

Case(i): p = c = l ;  q = d = l  

Case(ii): p = c = l ;  q = d = 2  

Case(iii): p = c = 3 ;  q = d = 3  



The approximate solution is expressed in view of the Exp-function method by choosing 

the values of p ,  q ,  c and d in (5.27), we get following trial functions for case (i) - case 

(iii) respectively. 

GA and PSO are used to solve the minimization problem given by the fitness function 

corresponding to each case to achieve the unknown constants in (5.59) - (5.61). 

The GA and PSO are implemented with the same parameter values and settings for all the 

cases as prescribed in Table 5.32, except a change in the chromosome/particle size which 

equals the number of unknown constants as 8, 10, and 16 for case (i), case (ii), and case 

(iii) respectively. The unknown constants acquired by the algorithms GA and PSO are 

provided in Table 5.47. 



Table 5.47 Optimal values of unknown constants for B-H equation for different values of 

p, q, c, and d 

Value 
Case (i) Case (ii)  Case (iii)  

Constants GA PSO G A PSO GA PSO 
a3 - - -0.01 5473 15.458505 

In Table 5.48 and Table 5.49 we present a comparison of numerical solutions and 

absolute errors obtained by the proposed scheme for each case at different values o f t  and 

x with exact solutions, also approximate solutions with p = c = 2 and q = d = 2 obtained 

above are given for sake of comparison. To further evaluate the effect of change in the 

values of p ,  q ,  c and d ,  we have computed average absolute errors in the solution 

domain x , y  E (oJ), corresponding to each i.e. cases (i) , case (ii), and case (iii), also 



average absolute errors with p  = c  = 2 and q = d = 2 are computed and shown in Table 

Table 5.48 Comparison of numerical solutions for P = 1, y = 0.00 1 and 6 = 2 for 
different values of p, q, c, d 

Proposed Scheme c ( ~ )  
p = c = l  p = c = l  p = c = 3  p = c = 2  

From the comparison it is observed that the accuracy of the proposed scheme is quite 

comparable for all cases, which illustrates the effectiveness and reliability of the 

proposed scheme. 



Table 5.49 Comparison of absolute errors for different values ofp, q, c, and d 

Table 5.50 Effect ofp, q, c, and don  the accuracy of approximate solutions 

Average Absolute Error 
Valueof p ,  q ,  C, d  GA PSO 

p = c = l ;  q = d = l  2.307E-05 1.142E-05 



5.6 CONCLUSION 

A simple and straightforward scheme based on the elegant couple Exp-function method 

and evolutionary algorithm has been 'presented for numerically solving NPDEs. The 

proposed scheme has been applied for the numerical solution of some well-known 

NPDEs to illustrate its usefulness. 

The effectiveness of the proposed method has been tested on the Fishers equations. The 

simulation results have revealed that the proposed scheme shows supremacy on some of 

the classical methods including ADM, VIM, MVIM, VHPM, HWM, and OHAM. 

The proposed heuristic scheme has also been successfully implemented for obtaining the 

numerical solutions of the generalized Burger's-Fisher, and Burger's equations. The 

numerical solutions obtained by the proposed scheme are found in a good agreement with 

the exact solutions, and also quite comparable or more accurate than some of the classical 

methods including ADM, HPM, OHAM, and RBF. Also the reliability of the proposed 

scheme has been illustrated by solving the generalized Burger's-Fisher and Burger's 

equations with different choice of parameters governing the equations. 

The suggested method based on the couple of Exp-function method and nature inspired 

computing has been effectively applied for the numerical solutions of the generalize 

Burger's-Huxley (B-H) and Huxley equations. The B-H and Huxley equations have been 

considered with several different choices of involved parameters to show the accuracy 

and efficacy of the proposed scheme. Further the performance of the proposed scheme 

with different choices of parameters for approximating the solution has also been 

demonstrated with comprehensive simulations. It has been established from the 

comparison that the proposed scheme gives numerical solutions which are in a complete 



agreement with the solutions reported by some classical methods like ADM, VIM, and 

HPM. 

On the basis of the simulation results and comprehensive comparisons, it can be 

concluded that the proposed scheme is a viable tool for solving such NPDEs. 

Furthermore the extensive investigation of change in the parameters of the trial solution 

has demonstrated the efficacy and reliability of the proposed scheme. Moreover the 

proposed scheme can provide the approximate solution of the given NPDE at any point in 

the solution domain once the unknown constants are achieved. 

5.7 SUMMARY 
i 

This chapter provides the details for hybridization of the Exp-function method with 

nature inspired computing scheme for solving NPDEs. It also gives the basic idea of the 

Exp-function method. The detailed description of the fitness function used for converting 

the given NPDE into an optimization problem is presented. The procedural steps of 

stochastic global search algorithm PSO are also provided. The designed scheme has been 

successfully applied for the numerical solution of some well-known NPDEs including the 

Fisher equations, Burger-Fisher equation, Burger-Huxley equation, and Huxley equation. 

On the basis of simulation results and comparisons made with some popular classical 

methods it can be concluded that the proposed heuristic scheme is a promising and viable 

tool for solving such systems of NPDEs tackled in this dissertation. 



CHAPTER 6 

BERNSTEIN POLYNOMIALS BASED STOCHASTIC TECHNIQUE FOR 

SOLVING NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS 

In this chapter, a heuristic method based on the hybrid approach of Bernstein 

polynomials and evolutionary algorithms (EAs) is introduced for solving power-law fin 

type problem and Riccati equations. Earlier in chapter 3 we used log sigmoid basis 

functions for the approximation of numerical solution to NODEs, however in this 

chapter different basis functions such as Bernstein polynomial basis are investigated. 

6.1 INTRODUCTION 

Bernstein polynomials (B-polynomials) were originally introduced by S. N. Bernstein 

[2 111 more than a century ago, however these polynomials began to enjoy widespread 

use only after the advent of digital computers. In recent years, B-polynomiaIs have 

received tremendous attention from researchers of diverse fields, and the methods based 

on these polynomials have been extensively used for solving wide variety of problems 

including systems of ODES [2 121, [2 131, [2 141, [2 151, [2 161, integral equations [2 171, 

[2 1 81, [2 191, and integro-differential equations [220], [22 11. 

Although B-polynomials have been utilized by many authors, but to the best of my 

knowledge nobody so far has used these polynomials in combination with EAs for 

solving NODEs. With the aim to seek some different basis functions for a better 

approximation and computational efficiency, besides their feasibility for hybridization 



with the EAs for solving NODEs, B-polynomials are investigated and explored in this 

dissertation. 

This dissertation suggests a simple and straightforward, yet an efficient heuristic method 

for numerically solving NODEs. The scheme is based on the combination of B- 

polynomials and EAs such as GA and DE. B-polynomials basis with unknown 

coefficients are used to construct an approximate solution of the NODE. The NODE is 

transformed into an equivalent global error minimization problem. A trial solution is 

formulated using an exclusive fitness function with unknown coefficients. GA, DE, and 

GA-IPA are used to solve the minimization problem and to obtain the unknown 

coefficients. In the following sections we first introduce B-polynomials, then give the 

description of the proposed scheme and finally numerical applications are studied. 

6.2 AN OVERVIEW OF BERNSTEIN POYLNOMIALS 

The R-polynomials of nth degree are defined on the interval [0, TI as follows 12121, 

[213], [214]. 

where 

There are n + 1 nth degree B-polynomials. Usually we set Bi,"(x) = 0, if i < 0 or i > 

n, for mathematical convenience. Each B-polynomial is positive, i.e., Bi,n(x)  > 0 and 

also the sum of all the B-polynomials is unity for all real x E [0, TI ,  i.e. 



B-polynomials defined over the interval form a complete basis [212], {213], [214] over 

the interval [0, TI. For detail of B-pol ynomials and their properties see [2 121, [2 131, [2 141 

and references therein. These polynomials are quite easy to write and can be generated 

recursively. The ith nth degree B-polynomial and derivates of B-polynomials over the 

interval [0, TI are given by [2 121, [2 131, [214] [222]. 

6.3 B-POLYNOMIALS BASED HEURISTIC SCHEME 

In this section, the description of the methodology hybridizing B-polynomials and EAs is 

presented. Since the systems of NODES of first and second order have been solved in this 

chapter, therefore a second order ODE is considered to illustrate the methodology as 

follows 

subject to the following initial and/or boundary conditions respectively 
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d k y  
l ; ~ ( 0 )  dx = b,, k = 0 , 1  

where g represents the nonlinear function, prime denotes the derivation with respect to x, 

T is the upper bound of the solution span, bk and ck are real constants denoting the initial 

and boundary conditions respectively. 

To solve (6.7), we assume that the approximate solution F(x) and its first and second 

derivates Y1(x) and E"(x) can be expressed as linear combinations of Bernstein 

polynomials (B-polynomials) basis functions of degree n as follows. 

where (ao, a,, ..., a,) are real valued unknown coefficients, to be further determined, 

Bi,, (x) , B 'i,, (x) , and B 'Ii,, (x) are given by (6.4) - (6.6) respectively. 

To obtain the unknown coefficients (ao, a,, ..., a,) and consequently the approximate 

solution 9(x) given by (6.10), the given NODE is transformed into an equivalent 

optimization problem using a fitness fimction (E,) as follows. 



E~ = + E~ j = 1,2,3 ... 

where j is the generatioditeration index of the algorithm. 

The fitness function (FF) denoted as ( E ~ )  basically represents the global err or associated 

with the given NODE along with its initial and/or boundary conditions. The first part in 

FF represents the mean of sum of square errors associated with the given NODE denoted 

by ( E ~ )  , the second part represents the mean of sum of square errors linked with the 

given initial and/or boundary conditions denoted by (E,), which are given respectively as 

follows. 

where 9(x) yt(x), and , 7" (x) are given by (6.1 O), (6.1 I), and (6.12) respectively, N is 

the total number of steps on the interval [0, TI. 

The minimization problem given by (6.13) is solved using GA and hybrid scheme GA-IP 

to find the optimal values of the unknown coefficients (ao, a,, ... , a,). Consequently the 

approximate numerical solution y(x) of the given NODE is straightforward obtained by 

using the optimal values of coefficients in (6.10). 



6.4 NUMERICAL APPLICATIONS 

In this section, the methodology described above is applied to solve Riccati equations and 

power-law fin-type problem to assess and test its performance. In order to illustrate the 

validity and efficacy of the suggested scheme comparisons of numerical solutions are 

made with some state of the art classical methods as well as with the exact solutions. 

Moreover extensive analysis, through simulations is carried to show the reliability and 

accuracy of the proposed scheme. 

6.4.1 RICCATI EQUATION 

In this section, we used the proposed scheme to solve two different forms of well-known 

Riccati NODE of the following form [223], [224], [225], 2261,2271, [228]. 

subject to the initial condition 

where P(x), Q(x), and R(x) are real functions and c is an arbitrary constant. 

The differential equation (6.16) introduced by the mathematician Count Jacopo 

Francesco Riccati (1676-1754) is imperative due to its existence in diverse fields of 

engineering and science such as optimal control, random processes, quantum mechanics, 

diffusion problems, etc. [223], [225], [227]. To date an incredibly great number of 

methods have been utilized for solving various forms of the Riccati equation. These 

methods also include OHAM [223], HPM [224], MHPM [225], ADM [226], VIM [227], 

and B-polynomials based collocation method (BPCM) [2 121. 



Example 1: Consider the following Riccati nonlinear differential equation [223], [224], 

[225], [226], [227], [228]. 

Y' (x )  = -y2 ( x )  + 1, y(0) = 0 (6.18) 

The exact solution of (6.18) is given by 

To apply the proposed scheme we assume the approximate solution of (6.18) is given by 

(6.10) with n = 7 (B-polynomial of degree 7) as follows. 

The given NODE (6.18) is transformed into an optimization problem using the FF to find 

the unknown coefficients (ao, al, ... , a,). The numerical solution is obtained in the 

interval x E (0 , l )  with a step of 0.1, therefore FF is given by 

GA has been employed to solve the minimization problem given by (6.21) and to achieve 

the unknown coefficients (ao,  a,, ... , a,). The GA is executed according to the prescribed 

parameter values and settings given in Table 6.1. The number of unknown coefficients 

that need to be adapted is 8 therefore the size of chromosome for GA is also chosen to be 

8. The optimal values of the unknown coefficients achieved by GA are given in Table 6.2 

for various values of n. 



Table 6.1 Parameter values and settings of GA for Riccati equation 

Parameter Name Parameter SettingsNalue 

Population size [loo 1001 

Chromosome size 6 ,7 ,8  

(for n = 5,6,7) 

No. of generations 1000 

Selection function Stochastic uniform 

Mutation function Adaptive feasible 

Crossover function Heuristic 

Crossover fraction 0.8 

Table 6.2 Values of unknown coefficients obtained by GA for Riccati equation (example I )  

Value 
x E [0, 11 x E [O,5] 

Coefficients n = 5  n = 6  n = 7  n = 7  

Once the unknown coefficients have been found, the numerical solution of (6.1 8) can be 

obtained at any value of x in the interval [0, 11 by using the values of these coefficients in 

(6.10). In Table 6.3 comparison of numerical results obtained by the proposed scheme is 

made with the exact solution, ADM, VIM, and OHAM solutions, also a comparison of 

absolute errors are provided in Table 6.4. It is seen from the comparison of Table 6.4 that 

the average absolute error in the interval x E [O,l] obtained by the proposed scheme is 
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9.14E-07, while the average absolute errors of ADM, VIM, and OHAM are 8.35E-04, 

6.74E-04, and 1 S7E-06 respectively, which shows that the proposed scheme gives more 

accurate results. It is seen that the classical methods like ADM and VIM give better 

approximation initially but as the value of x increases their accuracy also decreases, 

whereas the accuracy of the proposed scheme is seen fairly steady in the solution domain 

of x. 

Table 6.3 Comparison of numerical results for Riccati equation (example 1) 

Proposed method 
P(x> 

with (n=7) Other methods 
bt (x) GA ADM VIM OHAM 
0.000000 0.000000 0.000000 0.000000 0.000000 



Table 6.4 Comparison of absolute errors for Riccati equation (example 1) 

x GA ADM VIM OMAM 
0 1.66E-09 0 0 

The influence of the change in degree of B-polynomials i.e. change in n on the 

performance of the proposed scheme is analyzed next. We used n = 5, 6 in (6.10) for 

evaluating the performance, therefore the number of unknown coefficients to be tailored 

are 6 and 7 respectively for n = 5 and n = 6. GA has been used for solving the FF given 

by (6.21) and to achieve the unknown coefficients corresponding to each value of n 

mentioned. GA is implemented with the same parameter settings prescribed in Table 6.1 

except a change in the chromosome size which is now chosen as 6 for n = 5 and 7 for n = 

6 respectively. 

The optimal values of the unknown coefficients acquired by GA are given in Tables 6.2 

and using these values the approximate solution F(x) is obtained from (6.10). The 

approximate solutions obtained using the proposed method for different values of n = 5, 

6, are presented in Table 6.5, also exact solution and solution with n = 7 obtained by the 

proposed method are given for comparison. From the comparison of Table 6.5 the 



improvement in the approximate solution is observed with the increase in n (i.e. increase 

in degree of B-polynomials). 

To further investigate the effect of change in the degree of B-polynomials (i.e. change in 

n), a comparison of average absolute errors, computational time, and number of 

generations utilized by GA is given in Table 6.6. From the comparison of Table 6.6 it is 

observed that the accuracy of the solution drastically improves with the increase in n  

from 5 to 7, but at the cost of high computational time and more number of generations. 

Table 6.5 Comparison of numerical results for various values of n 

Proposed method 9 ( x )  Absolute errors 
I (Y exact - 9 (4 I 

x yeXact(x) n  = 5  n = 6  n = 7  n = 5  n = 6  n = 7  
0.0 0.000000 0.000001 0.000000 0.000000 7.908-07 4.78E-07 1.66E-09 

Moreover, in Table 6.7 we show a comparison of our results with the results reported in 

[212] using BPCM with same degree of B-polynomials (n = 5). It can be clearly seen 

from the comparison of Table 6.7 that the suggested scheme gives numerical solutions 
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fairly comparable indeed slightly better than BPCM, which further confirms the accuracy 

and viability of our scheme. 

Table 6.6 Effect of change in the degree n 

Degree of No. of Computational Average Absolute 
B-polynomials Generations Time (sec) Error 

(n) 
5 240 11 3.4391.33-05 

Table 6.7 Comparison of numerical results with BPCM (with n = 5) 

Proposed method Absolute Error 

9 ( x )  BPCM Proposed BPCM 
X 

 exact (XI ( w i t h n = 5 )  ( w i t h n = s )  
method 

-- 
0.0 0.000000 0.000001 0.000000 7.9028-07 0.000000 

We now investigate the reliability and accuracy of the proposed scheme in the larger 

interval x E [O, 51. The FF is formulated and GA is used for its minimization to achieve 

the values of the unknown coefficients. GA is executed with the same parameter settings 

as prescribed in Table 6.2. The values of unknown parameters achieved by GA are 

provided in Table 6.2. The comparison of our approximate solution is graphically made 

with two well-known classical methods ADM and VIM and the exact solution in Fig. 6.1. 
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The comparison of results in Fig. 6.1 evidently shows that the proposed scheme is quite 

capable of yielding the numerical solution of the Riccati equation (6.18) with a 

significant accuracy in the larger domain of x, while ADM and VIM diverge after 

x = 1.4 and x = 1.1 respectively. 

Fig 6.1 Comparison of numerical solutions for x E [O, 51 

Example 2: We now consider another Riccati NODE as follows [223], [224], [225], 

[226], [227], [228]. 

the exact solution is given by 

yexocr(x) = 1 + fitanh ( at + - log (c)) (6.23) 



The approximate solution of (6.22) is obtained using the proposed scheme with n = 5,7 

(B-polynomial of degree 5, 7), in the interval x E (0,l) and x E (0,2) with a step of 0.1 

for each interval of x. The FF is formulated for each interval of x separately, for instance 

FF for the interval x E (0,2) given by 

The FF given by (6.23) is solved using GA for finding the optimal values of unknown 

coefficients corresponding to the minimum zj . GA is implemented according to the 

prescribed parameter values and settings given in Table 6.1. The values of the unknown 

coefficients achieved by GA are provided in Table 6. 8. 

Table 6.8 Optimal values of coefficients obtained by GA for Riccati equation (example 2) 

Value 

Coefficient n = 5 n = 7  n = 7  
ao 0.000076 0.000002 0.000330 

Using the values of unknown coefficients in (6.10) yields the approximate numerical 

solution of (6.22) straightforward. 



The numerical solutions obtained by the proposed method are presented in Table 6.9 

forx E (0,1), Table 6.10 for x  E (0,2), and in Fig. 6.2 graphically for x E (0,2), also the 

exact solutions and the approximate solutions reported by methods including OHAM 

[223], MHPM [224], VIM [225], MVIM [226], and BPCM [2 121 are given for the sake of 

comparison. 

Table 6.9 Comparison of numerical results for x € (0 , l )  

Proposed method i 
9 ( x )  Other methods 

BPCM MMPM VIM OHAM 

Further Table 6.11 and Table 6.12 show a comparison of absolute errors yielded by our 

method and other methods including MHPM, VIM, MVIM, OHAM, and BPCM in 

contrast to exact solutions. The comparison clearly reveals that the proposed method 

provides the solution with significantly smaller absolute errors as compared to OHAM, 



MHPM, and VIM. Moreover, from Fig. 6.2 it is noticeable that VIM gives good accuracy 

only in the short interval x E (0,1.4) after that it diverges drastically, while our method 

provides the approximate solution with a high degree of accuracy in the intervalx E 

(0,Z). The comparison further reveals that numerical results by our method with n = 5 are 

fairly comparable to those reported by BPCM with n = 5. 

Table 6.10 Comparison of numerical results for x E (0,2) 

Proposed method Other methods 
(with n=7) 

X ~exact(x) 9 ( x >  MHPM VIM 



Table 6.11 Comparison of absolute errors for x E (0 , l )  

/ 
d 

l 

Proposed method Other methods 
BPCM 

x n = 5  n = 7  n = 5  MHPM VIM OHAM 
0 7.58E-05 2.04E-06 0 0 0 0 

d' 1 0.5 ,, 
I 

i 

Exact 
Proposed 1 / /  /'/' , , i -A,L- VIM MVlM 

8.2 014 016 0l8 1 1.2 1.4 1.6 1.8 2 
X 

Fig 6.2 Comparison of numerical solutions for x E (0,2) 



Table 6.12 Comparison of absolute errors for x E (0,2) 

x Pronosed (with n = 7) MVIM VIM 

6.4.2 NONLINEAR FIN PROBLEM 

Fins are most commonly encountered in numerous engineering applications to aid the 

transfer of heat. In many situations the heat transfer coefficient is non-uniform and varies 

in a nonlinear manner with the temperature, which gives rise to the power-law type form 

[229], [230], 123 11, [232]. Accordingly, the equation of temperature happens to be highly 

nonlinear. The analytical solutions of such problems are not easy to obtain, therefore 

approximate analytical and numerical methods are being utilized for handling these 

problems. In view of the practical importance of fin problems in engineering applications 

like heat exchangers, transformers, and electronic devices, such problems have been 

considered by a number of authors and numerous methods have been reported to tackle 

these problems, see for example [233], [234], [235], [236] , [237], [238], [239], [240] and 

references therein. 



The fin problem investigated here is a one-dimensional steady-state heat conduction 

equation given as follows in the dimensionless form [230], [23 11, [232], [233] 

subject to the following boundary conditions 

y' (0)  = 0  

where prime denotes the differentiation with respect to the dimensionless coordinate x, y 

is the dimensionless temperature, M is the convective-conductive parameter of the fin, 

and the exponent m depends on the heat transfer mode [230], [231], [232], [233]. The 

physical values of m that are of practical importance are 514 and 413 for laminar and 

turbulent convection, 3 for nucleate boiling, and 4 for radiation [230], [231], [232], [233]. 

The fin problem given by (6.25) - (6.27), has been considered by many authors and 

several approximate methods including ADM [232], Homotopy analysis method (HAM) 

[231], VIM [233], and Runge-Kutta shooting method (RKSM) [230] have been utilized 

for its solution. 

Our aim is to investigate the numerical solution of (6.26) using the proposed method. The 

numerical solution will be obtained for various values of the parameters M, and m that 

govern the problem under consideration and also denote the degree of nonlinearity. 

Case (1): M = 1, rn = 1 

For this case we have analytical solution of (6.25) given by [230] 

e  
ran1 (XI = - ( e x  + e -X )  e2  + 1 

accordingly we get the first derivate as follows 



We assume that the approximate solution is expressed by (6.10) with n = 6 (B- 

polynomials of degree 6). The unknown coefficients (ao, a,, ... , a,) in (6.10) are obtained 

by transforming the given problem (6.25) - (6.27) into an equivalent global error 

minimization problem using FF as follows. 

where E, represents the mean of sum of square errors of (6.25) in the interval [0,1] with a 

step of 0.1, E~ represents the mean of sum of square errors of (6.26) and (6.27), and 9(x), 

p' (x)  and 9 " ( x )  are given by (6.10) - (6.12) respectively. 

The global error minimization problem given by (6.32) is solved using GA, IPA, and 

GA-IPA to find the optimal values of the unknown coefficients, which consequently 

gives the approximate numerical solution of (6.25). GA and IPA are implemented with 

the parameter values and settings prescribed in Table 6.13. The number of unknown 

coefficients (a,, a,, ... , a,) that need to be tailored is 7, therefore the size of chromosome 

is chosen equal to 7. 



Table 6.13 Parameter settings and values of GA and IPA for fin problem 

C A 
Parameter Name SettingNalue 

Population size [loo 1001 

uniform 1 evaluations 

IPA 
Parameter Name Settinglvalue 

Start point RandomIOptimal 

No. of generations 1000 

Selection function Stochastic 

values from GA 

Maximum iterations 500 

Maximum function 3000 

feasible I 
I 

Crossover function Heuristic Nonlinear constraint I le-15 

Mutation function Adaptive Function tolerance le-15 

tolerance I differences 

Function tolerance le-15 

Nonlinear constraint le-15 

tolerance 

Hessian BFGS 

Derivative type Central 

The unknown coefficients found by GA, IPA and GA-IPA corresponding to one of the 

I 

best chromosome are provided in Table 6.14. Using the values of these coefficients in 

Bounds -10, +10 

(6.10) we can obtain the approximate numerical solution 9 ( x )  of (6.25) at any value of x 

Bounds -10, +I0 

in the interval [0, 11. 

Table 6.14 Optimal values of unknown coefficients with M = 1 and m = 1 

Value - 
Coefficient GA IP A GA-IPA 

ao 0.648033 0.648055 0.648055 



The numerical solution obtained by our method with GA and GA-IPA are presented in 

Table 6.15, also the exact solution and solutions obtained by HAM [23 11 and RKSM 

[230] are presented for comparison. 

Table 6.15 Comparison of numerical solutions with M = 1 and m = 1 

Proposed method - 

9(x> Other methods 
x  exact (XI GA GA-IPA HAM RKSM 
0 0.648054 0.648033 0.648055 0.648054 --- 

Further in Table 6.16 comparison of absolute errors is shown to prove the accuracy of 

results From the comparison approximate solutions by our method are found fairly close 

to the exact solution with an average absolute error of 1.27E-07 in the interval [0, 11. The 

comparison further shows that solutions by the proposed method are quite comparable 

with HAM solutions which also give an average absolute error of 1.13E-07, however our 

method gives comparatively more error in comparison to RKSM which gives an average 

absolute error of 7.18E-08. But as illustrated earlier in Riccati problem above we can use 
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B-polynomials of higher degree to improve the accuracy of the solutions but at the cost of 

computational time. Moreover, the improved performance of GA-IPA in comparison to 

GA is also evident from the comparison. 

Table 6.16 Comparison of absolute errors with M = 1 and m = I 

x GA GA-IPA HAM K S M  
0 2.148E-05 2.728E-07 1.160E-07 --- 

We now investigate the approximate solution of (6.25) with different value of M and m 

and show the validity and efficacy of the proposed method. As it can be seen from (6.25) 

that with larger values of M and m the nonlinearity increases, hence it is vital to show that 

the proposed method provides the numerical solution for higher values of M for which 

the problem is strongly nonlinear. We consider following test case studies. 

Case (2a): M = I, and m = 514, 413, 3, and 4 

Case (2b): M = 2, and m = 514, 413, 3, and 4 

Case (2c): M = 5, and m = 514, 413, 3, and 4 



To apply the proposed method we need to develop the FF for each value of M and m 

exclusively, For instance, FF with M = 1 and m = 5/4 is given by 

Similarly FF for other values of M and m is formulated. GA and GA-IPA are used to 

solve the FF such as given by (6.35) and to find the optimal values of the unknown 

coefficients. The GA and GA-IPA are implemented with the same parameter values as 

prescribed in Table 6.13 throughout for this problem for all the cases. The unknown 

coefficients acquired by GA, and GA-IPA are provided in Table 6.17, Table 6.18 and 

Table 6.19, for case (2a), case (2b), and case (2c) respectively. 

Table 6.17 Optimal values of for M = 1, and m = 514, 413, 3, and 4 

GA GA-IPA 
rn=5/4 m=4/3 m=3 m=4 I m=5/4 m=4/3 m=3 m=4 



Table 6.18 Optimal values of for M = 2, and m = 514, 413, 3, and 4 

GA-IPA 
m=5/4 m=4/3 m=3 m=4 

Table 6.19 Optimal values of for M = 5, and m = 514, 413, 3, and 4 

GA GA-IPA 
m=5/4 m=4/3 m=3 m=4 i m=5/4 m=4/3 m=3 m=4 

a0 0.2722 0.2900 0.5060 0.5730 0.2722 0.2900 0.5059 0.5730 

The approximate solution is straightforward obtained by using the values of the 

coefficients in (6.10). The approximate numerical solutions for dimensionless 

temperature y and temperature gradient y' are depicted in Fig. 6.3 and Fig. 6.4 for case 

(2a), Fig. 6.5 and Fig. 6.6 for case (2b), and Fig. 6.7 and Fig. 6.8 for case (2c) 

respectively. 
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Fig. 6.3 Comparison of numerical solution for various values of m with M = 1 

Fig. 6.4 Numerical solution y' for various values of m with M = I 



Fig 6.5 Numerical solution for various values of m with M = 2 

X 

Fig 6.6 Numerical solution y' for various values of m with M = 2 



X 

Fig 6.7 Numerical solution for various values of m with M = 5 

X 

Fig 6.8 Numerical solution y' for various values of m with M = 5 



In order to show the validity of our results, we also compare our results with some of the 

reported results by ADM [232] and RKSM [230]. In Fig. 6.3 comparison of numerical 

solutions is made with ADM solution for case (2a) and in Table 6.20 comparison is 

presented with RKSM for M = 2 and m = 4/3 respectively. It can be seen that proposed 

solutions are quite comparable with ADM and RKSM solutions. Further in Table 6.21 

and Table 6.22 a comparison of y(0) and yf(l) values with RKSM is presented. It is seen 

that the proposed results are quite similar to RKSM results, which confirms the validity 

as well as efficacy of the proposed method. 

Table 6.20 Comparison of numerical results for fin problem with M = 2 and rn = 4/3 

y (x) y ' (x) 
x RKSM Proposed / RKSM Proposed 

0.0 0.5 101 79 0.5 10192 i 0.000000 0.000000 



Table 6.21 Comparison of y(0) and y l ( l )  values for different m and M = 1 

m RKSM Proposed , RKSM Proposed 
514 0.667898 0.667899 0.728303 0.728304 

Table 6.22 Comparison of y(0) and y l ( l )  values for different m and M = 2, 5 

(0) '(1) 0 '(1) 
m RKSMY Proposed RKSMY Proposed RKSMY(P!oposed 1 RKSMY Proposed 

6.5 CONCLUSION 

The Bernstein polynomials based heuristic technique has been proposed for numerically 

solving NODEs. The effectiveness of the proposed technique has been demonstrated by 

numerically solving Riccai NODEs. The presented method has shown supremacy on 

some of the well known classical methods like VIM, MHPM, ADM and OHAM in terms 

of accuracy. 

Further the efficacy and reliability of the proposed method have been illustrated by 

numerical solving the power-law fin type problem for several values of the convective- 

conductive parameter M and the exponent m involved in the governing equation. 

Moreover, the effect of nonlinearity due to M and m has been investigated. The 



nuinerical results by the proposed method have been found quite comparable to other 

methods like ADM and RKSM and also in a good agreement with the exact solutions. It 

can be concluded that the proposed method based on the hybrid approach of Bernstein 

polynomials and evolutionary algorithms is a promising tool and viable for solving such 

highly nonlinear problems. Furthermore the proposed method can give the numerical 

solution of the given NODE on the continuous values in the solution domain. 

6.6 COMPARISON BETWEEN TWO HEURISTIC SCHEMES 

In this section, the comparative analysis between two heuristic schemes used in this 

dissertation for solving NODEs is presented. In chapter 3,  we used log sigmoid based EA 

scheme, and in the current chapter B-polynomials based EA scheme has been used for 

solving NODEs. The aim is to investigate the performance such as computational time 

and accuracy of two schemes. 

The two schemes including the log sigmoid based EA approach and B-polynomials based 

EA approach are applied for solving the same problems. We consider Riccati equations 

(6.18) and (6.22), and fin problem (6.25) (with M =  1 and m = 1) solved above in section 

(6.4), for the purpose of comparison between two schemes. The approximate solutions of 

these problems are obtained in the interval [0, 11, with various values of n ( i.e different 

degree of B-polynomials) and m (i.e. number of basis functions). 

The FF corresponding to each case is formulated and GA is used for solving the FF and 

to achieve the unknown coefficients. The GA is implemented with the same parameter 

values and settings for both the schemes as prescribed in Table 6.23 for the minimization 

of the FF that represents the global error (E,) of the given problem. 

The values of unknown coefficients as well as the approximate solutions have been 

omitted here, because our focus is to give a comparison of convergence speed of GA and 
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accuracy of the approximate solutions for two schemes. The number of generations and 

the computational time of GA utilized to achieve the minimum fitness have been 

recorded for each problem. Further, the average absolute errors have been computed in 

the interval [0, 11 for each problem. 

In Table 6.24, Table 6.25, and Table 6.26, comparison of two schemes such as log 

sigmoid based EA scheme and B-polynomials based EA scheme are provided. For the 

purpose of comparison number of generations, computational time, and the average 

absolute errors are shown corresponding to various values of n (degree of B-polynomials) 

and rn (number of basis functions). 

From the comparison of simulation results it is observed that overall B-polynomials 

based EA scheme is computationally efficient than log sigmoid based EA scheme, also 

the average absolute errors obtained by this scheme are relatively smaller than log 

sigmoid based EA scheme. 

It is also seen from the comparison that increase in m from 5 to 7 does not give any 

significant improvement in the solutions but relative increase in computational time, 

while an increase in n shows relative improvement in solutions particularly for example 1 

and example 2, but at the cost of increased computational time. However, it may be worth 

to mention here that the change in the input parameters of GA such as selection function, 

crossover fraction, population size etc. have great influence on its performance on 

different problems. 

The comparative analysis of two schemes shown here corresponds to their performance 

on the considered problem (6.18), (6.22), and (6.25), with the prescribed input parameters 

in Table 6.23. It can be concluded on the basis of these comparisons that B-polynomials 



based EA scheme is more efficient than log sigmoid based EA scheme for solving such 

problems. 

Table 6.23 Parameter values and settings of GA 

Parameter Name Parameter SettingNalue 
Population size [loo 1001 

Max. No. of generations 1000 

Selection finction Stochastic uniform 

Mutation function Adaptive feasible 

Crossover function Heuristic 

Crossover fraction 0.8 

Function tolerance le-15 

Bounds -10, +10 

Table 6.24 Comparison of convergence speed and accuracy for example 1 

! B-polynomials based EA scheme I Log sigmoid based EA scheme 

Parameter n = 5 n = 6  n = 7  m = 5  m = 6  m = 7  
No. of 4 I 

generations 

time (sec) 

Average 
I 

absolute error 3.44E-05 3.58E-06 9.14E-07 , 3.89E-06 1.88E-06 2.1 1 E-06 



Table 6.25 Comparison of convergence speed and accuracy for example 2 

1 B-polynomials based EA scheme / Log sigmoid based EA scheme 

Parameter j n = 5 n  = 6 n = 7  m = j  m = 6  m = 7  
No. of 

1 228 generations ; 3 09 539 1000 1000 1000 

Computational 

time (sec) i 11 

Average 
; 4.398-04 1.1 1 E-04 5.1 1E-05 1 1.99E-05 2.1 1E-05 1.06E-05 absolute error ! 

Table 6.26 Comparison of convergence speed and accuracy for fin problem 

; B-polynomials based EA scheme 

Parameter n = 5 n  = 6  n = 7  
No. of 

i 267 generations 419 60 1 
... . ... . .......... ....... -. ...... ......... ..... " 

Computational [ 

time (sec) i 27 54 78 

Average 
6.13E-06 4.44E-06 3.84E-06 absolute error : 

Log sigmoid based EA scheme 

6.7 SUMMARY 

This chapter provides the detail of the heuristic computation method hybridizing the 

Bernstein polynomials basis and evolutionary algorithm for solving NODES. The chapter 

gives the introduction of the Bernstein polynomials. The numerical applications of the 

method are presented for solving Riccati equations and power-law fin type p'roblem. 

From the simulation results presented in this chapter it has been established that the 
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proposed method is quite competent and viable for solving strongly nonlinear problems 

that are of practical interest to engineers. Moreover, from the comparative analysis 

between log sigmoid based EA scheme and B-polynomials based EA it can be concluded 

that B-polynomials based EA scheme is quite efficient and promising for solving 

NODES. 



CHAPTER 7 

CONCLUSION 

This chapter furnishes thesis conclusion and outlines some future research problems that 

one may attempt. 

7.1 SUMMARY OF THE THESIS 

This thesis work has mainly investigated the numerical solution to nonlinear problems 

governed by differential equations, using the heuristic computation based techniques. 

Four different heuristic computation schemes have been used for solving various 

nonlinear problems arising in diverse applications of engineering. 

A heuristic scheme comprising of EAs and the linear combinations of log sigmoid 

basis functions has been successfully applied for the numerical solution of several 

nonlinear problems of NODES, including the Bratu problem, Troesch's problem, 

and Duffing van der pol oscillator. Further, the scheme has been successfully 

tested on some nonlinear singular boundary value problems, such as, heat 

conduction model of the human head, oxygen diffusion problem, and many other 

problems in physiology. It has been found that the scheme gives quite accurate 

results that are in good agreement with the exact solutions and quite competent 

with those reported by some traditional methods. 

The polynomial basis along with hybrid EA technique has been applied for 

numerically solving CNODEs. To validate the scheme it has been tested on 
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Michaelis-Menten nonlinear biochemical reaction system and HIV infection 

model of C D ~ + T  cells. The proposed results have been found in a good agreement 

with RK4. Moreover it has been found that the proposed scheme shows 

significant supremacy on some well-known traditional methods including VIM, 

HPM, and DTM in obtaining the solution of biochemical reaction model. 

A simple and straightforward scheme based on the hybridization of Exp-function 

method with nature inspired computation has been presented for numerically 

solving NPDEs. The efficacy and viability of the proposed scheme has been 

demonstrated by numerically solving some important NPDEs including Fisher's 

equations, generalized Burger's-Fisher (B-F) equation, and generalized Burger's- 

Huxley (B-H) equation. The comparison of numerical results have revealed that 

the proposed scheme gives more accurate solution for the Fisher's and B-F 

equations, as compared some state of the art classical methods including ADM, 

VIM, MVIM, VMPM, HWM, and OHAM. Furthermore, it has been established 

that the proposed scheme provides the numerical solution to B-H equation that are 

quite comparable to ADM, VIM, and HPM. 

The Bernstein polynomials based hybrid EA scheme has been presented for the 

numerical solution of NODES. The efficacy of the proposed approach has been 

demonstrated by numerically solving strongly nonlinear power-law fin-type 

problem. The numerical results have been found very close to the available exact 

solutions and quite comparable with some approximate numerical techniques like 

ADM and RKSM. Moreover, the reliability of the proposed approach has been 

illustrated by solving power-law fin-type problem for several values of the 



parameters governing the equation and nonlinearity as well. Furthermore, the 

applicability of the proposed scheme has been tested on nonlinear Riccati 

equations. It has been found that the proposed approach yields highly accurate 

solution to Riccati equations in comparison to VIM, ADM, MHPM, and OHAM. 

In general the numerical simulations show that the proposed schemes are 

promising and viable for solving such nonlinear problems tackled in this 

dissertation. Furthermore, the simulation results show that memetic algorithm 

schemes GA-IPA, GA-ASA, and GA-PS on the average provide superior results. 

7.2 DIRECTIONS OF FUTURE WORK 

One may attempt the proposed schemes for solving other NODES, CNODEs, and 

NPDEs such as MHD squeezing flow, Chen system, and Schrodinger equations. 

The exploitation of different basis functions like exponential and hat functions 

can be investigated. 

Use of other nature inspired techniques like bee colony and ant colony 

optimization may be looked into as candidate solutions. 

The comparative analysis and computational aspect of different heuristic 

techniques and optimization algorithms can be an area of research. 

The applicability of the proposed schemes on fractional order nonlinear problems 

may be investigated. 
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