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Abstract

This dissertation presents new heuristic computational schemes for solving the nonlinear
problems in engineering that are governed by nonlinear ordinary differential equations
(NODESs) and nonlinear partial differential equations (NPDEs).

The heuristic schemes comprising of Evolutionary Algorithms (EAs) and a linear
combination of some basis functions are presented for solving NODEs. The approximate
solution of NODEs is deduced as a linear combination of some basis functions with
unknown parameters. Three different basis functions including log sigmoid, Bernstein
polynomials, and polynomial basis have been used for the approximate modeling. A
fitness function is used to convert the NODE into an equivalent global error minimization
problem. Two popular EAs including Genetic Algonthm (GA) and Differential Evolution
(DE), and local search techniques, such as, Interior Point Algorithm (IPA) and Active Set
Algorithm (ASA) are used to solve the minimization problem and to obtain the unknown
parameters. The memetic algorithm schemes combining GA with IPA (GA-IPA) and GA
with ASA (GA-ASA) are also explored. The schemes have been tested on various
nonlinear problems including Bratu problem, Duffing van der pol oscillator, Michaelis-
Menten biochemical reaction system, and power-law fin-type problem.

An elegant hybridization of Exp-function method with nature inspired computing (NIC)
has been presented for the numerical solution of NPDEs. Exp-function method is used to
express the travelling wave solution of the given NPDE. The NPDE is converted into an
optimization problem. Two popular NIC techniques including GA and particle swarm
optimization (PSO) are used to solve the optimization problem. The scheme has been
successfully tested on some important NPDEs including generalized Burger-Fisher,
Burger-Huxley, and Fisher equations.

The propesed numerical solutions are found in a good agreement with the exact solutions
and quite competent with those reported by some well-known classical methods like
adomian decomposition method (ADM), variational iteration method (VIM), and
homotopy perturbation method (HPM). It is also observed that the memetic algorithm
schemes are good choice for the optimization of such problem.

The presented schemes are simple as well as efficient, and they provide the numerical

solution not only at the grid points but also at any value in the solution domain.
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CHAPTER 1

INTRODUCTION

1.1  DESCRIPTION OF THE PROBLEM

Most of the nonlinear problems arising in diverse fields of engineering and science
are by and large modeled by the nonlinear differential equations. The systems of
n;)nlinear ordinary differential equations (NODEs) have sustained their impoﬁance
due to their wide ranging applications from classical areas of engineering to more
recent use in biology, chemistry, economics, and ecology. Nonlinear partial
differential equations (NPDEs) govern the fundamental laws of nature and are crucial
to many areas of engineering and science such as fluid dynamics, population models,
plasma physics, and nonlinear optics etc. Due to their central role in engineering and
science, NODEs and NPDEs are studied extensively by the research community
including mathematicians, engin_eers, and scientists,

A good number of nonlinear problems governed by NODEs and NPDEs have been
solved effectively using the classical and modern techniques such as Runge Kutta
method, Variational iteration method (VIM), Adomian decomposition method
(ADM), homotopy perturbation method (HPM), and Exp-function method.

The advent of high speed computing and the consequent emergence of scientific
computation have witnessed much interest in new analytical and numerical

approximation techniques coupled with computational algorithms. Recently, the




evolutionary compwation based techniques have been employed by some of the
researchers as an alternate to the standard methods for numerically solving the
nonlinear problems. However, comparatively lesser amount of work has been carried
for the numerical sofution of nonlinear problems modeled by NODEs, coupled
nonlinear ordinary differential equations (CNODEs), and NPDEs. A lot more needs
to be explored and a good number of these problems need to be solved numerically,
Therefore, investigating the numerical solutions to these nonlinear problems
especially CNODEs and NPDEs is still a crucial task and a great area of research.

Motivated by the potential of nature inspired computation based techniques and the
importance of the nonlinear problems in engineering, this research work considers
numerical solution of NODEs, CNODEs, and NPDEs through nature inspired
computation. The key issues which have to be addressed in this regard are as follows.

e To devise efficient heuristic technique for solving systems of nonlinear
differential equations using nature inspired computation (NIC).

e The log sigmoid based NIC technique suggested and used in [1] should be
exploited for solving other NODEs.

e One should investigate the combination of polynomial basis functions and
heuristic computation based methodology for numerically solving nonlinear
NCODEs in chemical reaction system and biomedical engineering problems.

e A novel scheme based on the elegant hybrid approach of the weil-known
Exp-function method and NIC should be investigated for the numerical

sotution of NPDEs.




o The applicability, efficacy, and reliability of the proposed heuristic schemes

should be investigated on various nonlinear problems.

12  CONTRIBUTIONS OF THE DISSERTATION
This dissertation presents some new stochastic heuristic schemes for obtaining the
numerical solution of noﬂlinear problems in engineering govemed by NODEs,
CNODEs, and NPDEs. Although we have adopted four different heuristic schemes
for solving NODEs, CNODEs, and NPDEs, but all the schemes share the common
concept of formulating a problem exclusive fitness function, which represents a trial
solution of the given nonlinear problem.
The basic idea of the proposed heuristic schemes is to transform the given nonlinear
problem into an equivalent optimization problem using a problem exclusive fitness
function with unknown parameters. The optimization problem is solved using the
application of nature inspired optimization techniques. The main contributions of this
thesis are given below.
1. Application of Evolutionary Computing Technique With Log Sigmoid Basis For
Solving Nonlinear ODEs
This technique which was suggested and used in [1] has been employed to solve
the Bratu problem, Troech’s problem, Duffing van der pol oscillator equation, as
well as nonlinear singular boundary value problems in physiology. The
approximate solutions are found in a good agreement with the exact solutions and

quite comparable or better than some of the classical methods.




2. Polynomial Basis Along With Hybrid Evolutionary Algorithm Technique for
Solving CNODEs
A heuristic approach based on the combination of polynomial basis and hybrid
evolutionary algodtﬁms is applied for solving CNODEs. A linear combination of
polynomial basis with unknown parameters is used to construct the approximate
solution. The CNODE is converted into a global error minimization problem.
Hybrid evolutionary algorithms are used to solve the minimization problem and to
achieve the unknown parameters. The technique has been applied for the first
time to Michaelis-Menten nonlinear biochemical reaction system and HIV
infection model of CD4™T cells. The proposed scheme has shown supremacy on
some well-known traditional method in obtaining the solution of biochemical
reaction model with greater accuracy.

3. Hybridization of Exp-function Method with Nature Inspired Computing for
Solving Nonlinear Partial Differential Equations (NPDEs).
An elegant hybrid approach of Exp-function method and nature inspired
computing is for the first time attempted to obtain the numerical solution of
NPDEs. Exp-function method is used to express the travelling wave solution of
the given NPDE whi&_:h is converted into an optimization problem. Nature inspired
algorithms are used to solve the optimization problem. The scheme has been
successfully tested on some important NPDEs including genefaliﬁed Burger-
Fisher, Burger-Huxley and Fisher equations. The numerical results from the
proposed scheme are found in sharp agreement with the exaét solutions.

4. Bernstein Polynomials based Stochastic Technique for Solving NODEs.




A heuristic technique based on the couple of Bernstein polynomials and nature
inspired algorithms is applied for obtaining the approximate solution of NODEs.
Bernstein polynomial basis with unknown coefficients are used to construct the
approximate solution of the NODE. Hybrid genetic algorithm is used to solve the
optimization problem and to obtain the unknown coefficients. The technique-has
been applied to the strongly nonlinear power law-fin-type problem and nonlinear
Riccati equation. Comparisons of numerical results validate the effectiveness and

reliability of the suggested technique.

1.3  ORGANIZATION OF THE DISSERTATION

Chapter 2, starts with an introduction of nature inspired optimization algorithms,
followed by an overview of global and local search techniques. It also provides the
literature review regarding the applications of nature inspired algorithms in solving
diverse optimization problems in engineering and science.

Chapter 3, gives the description of the hybrid log sigmoid basis evolutionary
algorithm technique for solving NODEs. Moreover procedural steps of hybrid genetic
algorithm (HGA) are provided. The application of the devised technique is illustrated
on several nonlinear problems including the Bratu problem, Troesch’s problem,
Duffing van der pol oscillator equation, and nonlinear singular boundary value
problems in physiology.

Chapter 4, introduces the hybrid polynomials basis evolutionary technique for solving
nonlinear coupled ordinary differential equations. It gives essential details of

evolutionary algorithms such as Genetic Algorithm (GA) and Differential Evolution




(DE). It illustrates the application of the proposed approach to nonlinear biochemical
reaction model and HIV infection model of CD4'T cells. To our knowledge these
problems are solved for the first time using such a scheme.

Chapter 5, presents a new scheme based on the couple of Exp-function method and
nature inspired algorithms for sélving NPDEs. It gives an overview of the Exp-
fuﬁction method. Some essential procedural steps of the .natu.re inspired algorithms
are provided. An elegant couple of Exp-function method and nature inspired
algorithms is for the first time attempted as per our literature survey. The scheme is
implemented to solve well-known NPDEs including generalize Burger-Fisher,
Burger-Huxley, and Fisher equations. The viability of the proposed scheme is also
illustrated by various simulations.

Chapter 6, starts with an introduction of the Bernstein polynomials. Heuristic
approach combining Bernstein polynomials and nature inspired algorithms is
described. The proposed approach is applied to solve nonlinear Riccati differential
equations and power-law fin-type problem with high order nonlinearity to illustrate
its effectiveness. The reliability is also tested by many simulations. A study of
comparative analysis between log sigmoid based technique and Bernstein
polynomials technique is also presented.

Chapter 7, gives the summary of the work described in this dissertation. Some future

work directions also made at the end.




CHAPTER 2

NATURE INSPIRED OPTIMIZATION ALGORITHMS

21 IINTRODUCTION

In past few decades, many optimization methods have been suggested for solving
optimization problems. Although deterministic optimization methods perform well on
many problems, they are not efficient in solving highly nonlinear and large scale
combinatorial problems [2]. Also, these methods need huge computational efforts, which
tend to fail as the problem size increases [3]. Nature inspired algorithms (NIAs) are
metaheuristics that mimics the nature for solving optimization problems. NIAs are
computationally efficient and derivative-free global optimization methods that work well
on noisy target functions which have many local optima. The main thrust behind NIAs is
the nature itself, which is the real source of inspiration for solving complex and stiff
problems efficiently. Moreover, NIAs can handle highly nonlinear and high diﬁ)ensional
problems efficiently due to their characteristics such as adaptability, paralleiization,
robustness, and cooperation, which also makes these techniques suitable for scientific
computing [4], [5]. In recent years many metaheuristic techniques have been developed,
however we confine our study to the evolutionary algorithms (EAs) such as genetic
algorithm (GA) and differentia] evolution (DE), particle swarm optimization (PSQ), and |

pattern search (PS) algorithms, which are briefly introduced in the next sections.



22  EVOLUTIONARY ALGORITHMS

Evolutionary algorithms (EAs) are subclass of NIAs which are based on the idea of
biological evolution in nature. EAs are population based stochastic computational
algorithms that employ survival of the fittest philosophy for solving optimization
problems. EAs maintain a population of individuals, which represent the potential
solutions to the given problem. Each solution is subject to a fitness based selection
criteria. New solutions are formed by applying genetic operators, and better solutions are
selected for the next generation in an iterative manner. EAs are robust and able to cope
with problems with discontinuities. The family of EAs comprises of genetic algorithm
(GA), differential evolution (DE), genetic programming (GP) etc. however our study is
primarily concerned with GA and DE which are briefly discussed next. The interested
readers can find good source of material on EAs in books [6], [7].

2.2,1 GENETIC ALGORITHMS

The genetic algorithm (GA) invented by Holland [8] is one of the most renowned
stochastic global search optimization technique in EAs. GA uses the principle of natural
selection and genetics by mimicking the nature to solve optimization problems [9], {10]).
GA is attractive in solving various optimization problems because they are easy, efficient,
and robust [11], [12]. GAs have beer; used in the optimization of diverse problems in
engineering and science such as nonlinear heat conduction problem [13], predictive
controller for nonlinear system [14], antenna array thinning problem [15], parameter
estimation of chromatography process [16], fuzzy nonlinear problem [17]. Specifically
GA has been effectively used as the optimization algorithm for solving various systems

of linear and nonlinear differential equations [18], [19], [.20], {21}, [22], [23], [24]. [25].
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(26}, {27]. Moreover many authors have used GA optimized artificial neural networks
(ANNs) for solving various NODEs [1], [28], [29], [30}], [31], [32]. Although there 1s a
long list of applications of GA as optimization tool in various problems, only some have
been narrated as a reference to confirm the great potential and broad applicability of GAs.
The GA commences by creating a population of individuals called chromosome. A
chromosome consists of genes typically encoded as a string of values. Each chromosome
is regarded as a possible solution to the given problem. Each chromosome is assigned a
fitness value which indicates how good solution a particular individual is to the given
problem. The individuals within a population are evatuated using a fitness function that is
specific to the problem at hand. The- algorithm evolves population of individuals
iteratively by means of three genetic operations, selection, crossover, and mutation {33).
The parents are selected on the basis of their fitness values which produce offspring.
Offspring act as parents for the new generation. It is expected that new offspring would
give better solutions over the course of generations. The pseudo-code of the GA is given

in algorithm 2.1 and its flow chart is given in Fig. 2.1.

Algorithm 2.1: Genetic Algorithm (GA)

Begin
Initialize population of candidate solutions
Evaluate each candidate solution

Repeat until (stoppage criterion 1s satisfied)
Select parents
Crossover and generate offspring

Mutate offspring




Evaluate offspring

Select new population

-~

End
M ¢
Generate Initial . Selection of Individual
Population of Sclutions Solutions
L. /
7 |
N
Evaluate Fitness of [ Crossover }
each Solution D v
Mutation ]
Fitness Evaluation of
Children

v

[ Update population

Stoppage
Criterion

[ Return Best Solution

Fig. 2.1 Flow chart for GA Optimization

No

The steps of working of GA are now briefly explained. A detailed discussion on the

elements and its working of GA can be found in the books {33], [34).
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Encoding: The first and important step in GA is the appropriate encoding that is.
representatic of the chromosome. The chromosome is normally represented as a fixed
length binary string of 0’s and 1’s. The choice of encoding greatly affects the
performance of GA [33].

Initialization of population: As mentioned before GA is a population based search
method. A population is initially created randomly in the search space. The performance
of GA largely depends of the size of the initial population [33].

Selection: After the encoding and random population initialization, selection of
chromosomes that will act as parents is performed. Selection picks the chromosome in a
manner similar to the Darwin’s theory of natural selection. At the end of each generation
a new population of candidate solutions is selected. The chromosomes with better
performance or with the relatively high value of fitness survive through generations.
Selection of chromosomes is performed using a problem specific ﬁt:ness_ function. Oyer
the years many types of selection operators have been developed which include stochastic
uniform, rank, roulette wheel, and tournament.

Crossover: crossover operator is like natural mating in which two different chromosomes
swap their genes to produce offsprings. Crossover is explorative, it makes a big jump to
an area somewhere “in between” two- parent areas. [n GAs crossover is carried in many
different forms like scattered, heuristic, single point, etc.

Mutation: Finally mutation operator is used to provide genetic diversity from one
generation of a population to next to search a broader space. It makes smali random

changes in the individuals of the population. It is exploitative, it creates random small
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diversions, thereby staying near around the parent. Some of the types of mutation used in
GA are adaptive feasible, Gaussian, and uniform.

This process of selection, crossover, and mutation is continued until the termination
criterion such as number of generations, or fitness value, 1s satisfied.

2.2.2 DIFFERENTIAL EVOLUTION

Differential evolution (DE) developed by Price and Storn [35] is another popular and
powerful paralle] search global optimization algorithm in EAs. It is a population based
algorithm like other EAs, but it differs from others, such as GA, in the mutation and
recombination stage. DE produces offspring by mutating the solution vectors with a
weighted difference of two randomly picked population vectors. Moreover, DE adopts a
one-to-one logic for reproduction which allows replacement of an individual only if the
offspring gives better fitness value than its corresponding parent [36]. DE has illustrated
its strength and robustness in diverse applications, such as nonlinear system identification
[37], edge detection in images [38], control and synchronization of chaotic systems [39],
process engineering problems [40], and leaming of neural networks (NNs) {41], [42],
[43]. [44], [45]. Further a survey of variants of DE proposed in recent years and their
applications can be found in [36).

DE like other EAs begins by creating a random initial population of individuals in the
search space. At each generation, for each individual three unique vectors are selected in
the population. The weighted difference of two vectors is added to the third one. A trial
vector is produced and compared to the target vector in the population. The one with the
lower fitness value survives and becomes parent for the next generation. The basic

implementation steps of DE are described below [7], [35].
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Population initialization: A population of N chromosomes is randomly. generated within
the user defined bount!s. Each chromosome consists of D number of genes.
Mutation: Mutation operation creates a trial vector for each individual of the current
population by perturbing the target vector with a weighted difference of two vectors. For
each parent, x"¢, three individuals ny, nz, and n; which are mutually distinct and also
different from #, are randomly chosen from the population. The mutation is applied to the
target vector to produce a perturbed vector accord'ing to the following formula.

yhotl = y™Md 4 F(x™08 — x"28) (2.1)
where F e [0,2] is a real constant which controls the amplification of the weighted
difference vector. The mutated vectors perturbed vectors are
Crossover: Subsequent to the mutation crossover operation is applied to the population
which introduces diversity in the mutated vectors. The crossover recombines the trial

vector and the parent vector to produce offspring as follows.

Lg+1
Lg+l _ yj
zj - ig ,
Xy otherwise

if rand < CR or | = frana (22)

where CR € [0,1] is called crossover constant.

Selection: Following recombination selection is applied to decide which individual
should become the ;nember 1 the next generation. At this stage trial vector is compared
with the target vector, and only the fitter one is selected for the next generation. If the
trial vector gives better fitness than the target vector it rcplaccs- the target vector
otherwise the target vector is retained. The selection method is as follows (if a

minimization problem is considered).
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xs.gﬂ:{z‘*g“ if fir(z"0) < fir(z49*) 23)
x"¥  otherwise

The above procedure of mutation, crossover, and selection is continued until some
stopping criterion like desired fitness or maximum number of generations is reached.

2.3  PARTICLE SWARM OPTIMIZATION

The Particle swarm optimization (PSO) belongs to a broad class of swarm intelligence
(SI). The fundamental idea behind the SI techniques is derived from the natural behavior
and social interactions of flock of birds, a school of fish, and ant colonies etc. where
individuals in a group interact and exchange local information and ultimately solve the
complex global objective efficiently [33].

PSO is a stochastic global search optimization algorithm which was introduced by
Eberhart and Kennedy in 1995 [46], [47]. PSO applies the concept of simulating the
social behavior of birds within a flock for solving optimization problems. Due to the
simple concept, ease in implementation, and computational efficiency, PSO has attracted
many researchers and practitioners. PSO has béen successfully applied to solve many
optimization problems involving ODEs such as Riccati equation [48], Wessiger's
equation [49], [50], Bagley-Torvik equation [51], nonlinear damped pendulum [52}, fluid
flow and heat transfer problem [53], fractional ODEs [54], [55]. Although PSO has been
used for solving wide varety of problems, only few of its applications to solve
optimization problems that are modeled by the differential equations are reported here as
a reference. For a comprehensive detail of applications of standard PSO and its variants

proposed in recent years, refer to the book [33] and references [56], [57], [58].
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Fig. 2.2 Flow Chart of PSO
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PSO is a population based search method in which individuals, calied as particles are
grouped into a swarm. Each particle in the swarm is a candidate solution. Starting with a
randomly generated population the particles move around in the search space for the best
solution. All particles exhibit velocities that direct flying of the particles and fitness
values which are computed by the problem exIclusive fitness function. Each particle in
search space keeps track of its best solution obtained called Pbest, and the best value
achieved by any paricle called Gbest, and adjusts its travelling speed dynamically
according to its personal flying experience as well as flying of colleague particles. It is
expected that the particles will move towards a optimum global solution area. At each
iteratioh veloéity andlthe position of each particle are updated accordingly. We have

employed following relations for updating the velocity and position of the particle [59].

v]*! = piv] + ¢[y1(Pbest; - x/)] + c;[yi(Gbest —x])] @4

%I = o 4 2" @5)

where c; and c; are positve acceleration constants, i= 0, 1, 2,...M, where M is the total
number of paticles in the swarm, y; , are random numbers chosen uniformly in the range
[0,1], @ is the linearly decreasing inertia weight, xf , and vf are current position and
velocity vectors respectively. The generic PSO is given in Fig. 2.2 in the form of the flow
chart.

24. MEMETIC ALGORITHMS

Memetic algorithms (MAs) are optimization techniques based on the hybrid approach of
global search EAs and local search [60]. MA term was first introduced by Moscato in

[61), and was regarded as a population based hybrid genetic algorithm (HGA). MAs are
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inspired by both Darwinian evolution and the cultural evolution [62]. MAs also referred
ir: more diverse context as hybric evol:tionary aigorithms have been proved to be more
accurate and computationally efficient than EAs [60]. in recent years a number of hybrid
evolutionary techniques have been reported for solving various problems such as
generation maintenance scheduling [63], brain computer interface {64], and nonlinear
flight control [65]. Further a detail of several hybrid evolutionary schemes and their
applications can be found in [60]. The application of hybrid evolutionary algorithm
ANNs are also reported in [27], [28] for solving many systems of ODEs effectively.

In this study I have used the hybrid approach of stochastic global search algorithm such
as GA with local search algorithms including interior point algorithm (IPA), active set
algorithm (ASA), and pattern search (PS), In our approach, GA has been used as global
search optimizer which finds global best solutions, and IPA, ASA, and PS are used as
local optimizers for the fine tuning and improvement of the solutions. The memetic

algorithm approach adopted in this dissertation is shown in Fig 2.3.
\

Nonlinear Problem (NODE, NCODE,
NPDE)
(Represented as Optimization Problem)

Global Search
Algorithm (GA)

[ Global Optimal

Local Search Optimizer
Chromosome

(IPA/ASA/PS) .

I

[ "~ Best Individual J

Fig. 2.3 Flow Diagram of Memetic Algorithm
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The global best chromosome found by GA for the given problem is fed into the local
search optimizers which perfoim the iacal search refinement, and consequently improved
solutions are obtained. The local search algorithms such as IPA, ASA, and PS used in this
dissertation are briefly explained below,

25 INTERIOR POINT ALGORITHMS

Interior-point algorithms (IPAs) atthough were introduced in late 1940°s (66}, they only
became popular since the revolutionary work of Kamarkarin in 1984 {67]. IPA also
referred to as barrier method navigates through intertor feasible region following a
middle path to reach an optimal solution [68]. At each iteration IPA attempts to solve a
sequence of approximate minimization pl;oblems using either direct step also called
Newton step or conjugate gradient (CG) step [69].

The algorithm tries the direct step by default. When the approximate problem is not
locally convex near the current iterate then the algorithm attempts CG step. In the direct
step the algorithm uses linear approximation to solve the Karush-Kuhn-Tucker (KKT)
equations and a CG step is attempted using trust region. At each iteration, the algorithm
decreases a merit function that is specific to problem. In case the attempted step does not
give any decrease in the merit function, it is rejected and a new step is attempted by the
algorithm. The algorithm iteratively tracks the middle path of the feasible region while
decreasing the barrier parameter to ultimately reach an optimal point [70].

2.6 ACTIVE SET ALGORITHM

Active set algorithm (ASA) belongs to the larger class of quadratic programming (QP)
[71]. ASA is an iterative method that creates a sequence of approximate solutions to the

given problem. The objective of the algorithm is to maintain and update a prediction of
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the optimal sets of active and inactive constraints. The prediction usually turns wrong
therefore these m~thods contain prbcedure-s for testing and altering the current prediction
[72). At each iteration the algorithm attempts to solve KKT equations defined by the
active constraints. |

The classical active set methods usually work in two phases such as feasibility and
optimality. In the feasibility phase the algorithm attempts to compute the feasible point
for the constraints, while ignoring the objective. In the optimality phase the algorithm
maintains feasibility and attempts to compute an optimal point by minimizing the
objective [71], [72).

2.7 PATTERN SEARCH

The Pattern Search (PS) first introduced by Hooke and Jeevs [73] belongs to the direct
search methods (DSM). DSMs does not involve the gradient of the optimization
problems, hence PS can be applied to optimization problems that are non-continuous,
non-differentiable, and multimodal [74]. The PS algorithm proceeds by computing a set
of points that approach to the optimal point. The algorithm begins by searching a set of
points called mesh, around the given point that is computed in the previous step of the
algorithm. The mesh is formed by adding the current point to a scalar multiple of .vectors
called a pattern. If PS finds that a point in the mesh improves thé objective function at the
current point, the new point becomes the current point in the next iteration. PS is simple,
easy, and computationally efficient, and also possesses adaptability for local search

refinement [75].
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28 SUMMARY
This chapter presents the review of evolutionary computing techniques and their
applications to many problems in engineering. It also presents an overview of hybrid

genetic algorithms known as memetic algorithms.
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CHAPTER 3

APPLICATION OF EVOLUTIONARY COMPUTING TECHNIQUE FOR

SOLVING NONLINEAR ORDINARY DIFFERENTIAL EQUATIONs

This chapter provides the detail of the suggested heuristic computation method,
combining log sigmoid basis functions and evolutionary algorithm for solving nonlinear
ODEs. The approximate solution of NODE is deduced as a linear combination of log
sigmoid basis functions with some unknown parameters. A fitness function is used to
convert the NODE into an equivalent global error minimization problem. One of the
popular EAs such as GA and memetic algorithms combining GA with IPA, ASA, and PS
are used to solve the minimization problem and to obtain the unknown parameters. The
numerical applications of the suggested method are extensively studied for solving
several nonlinear problems. The material provided in the fellowing sections is mostly
from the published work [76], [77], [78], [79], [80].

3.1 INTRODUCTION

Nonlinear problems appearing in many physical phenomena, engineering and scientific
applications are modeled with nonlinear ordinary differential equations (NODESs). Mostly
these NODEs are formulated as initial and/or boundary value problems. Some of the
useful applications of NODEs include the modeling of gas dynamics, beam deflection,
thermodynamics, optimization theory, atomic physics, nuclear, chemical reactions, and

fluid dynamics [81], [82). Solving such NODEs is vital to get the insight of the systems
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behavior. Since many NODE:s either do not have an exact solution or obtaining the same
is difficult analvticallv, therefore these problems are tackled using various approximate
analytical and numerical techniques. There are many traditional methods like adomian
decomposition method (ADM), variational iteration method (VIM), and homotopy
perturbation method (HPM) applied for the solutions of NODEs [83]. These methodS
have their own strengths as well as some limitations that are addressed in [82].

Recently, there has been a growing interest in using stochastic solvers based on
evolutionary computation as an alternative to the traditional methods for solving NODEs.
The efficiency of these stochastic solvers has been demonstrated by many aufhors, for
example Blasius equation [84], MHD Jeffery-Hamel problem ({85], Emden-Fowler
equation [86], and van der pol oscillator equation [87] are among several nonlinear
problems that have been successfully solved using these techniques. The main advantage
of these techniques is that they can provide the numerical solution of NODE on
continuous points as compared to the traditional methods which give the solution only at
pre-defined grid points. Moreover the complexity of these techniques does not grow with
the increase in sampling points, which is one of the main drawbacks of most traditional
methods [49].

Although a good number of NODEs has been solved using the traditional as well as
stochastic methods, still new methods are sought to handle these and many other such
problems. The strengths of stochastic solvers need to be explored on NODEs of physical

interest in engineering and science.
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3.. METHODOLOGY FOR SOLVING NODEs

In this sectior:, the methodology for solving NODEs is presented. The method is basically
heuristic in nature which combines log sigmoid basis functions and evolutionary
algorithms (EAs). An approximate mathematical model employing the linear
combinations of log sigmoid basis functions with unknown parameters is deduced. The
given NODE is converted into an equivalent optimization problem. EA is used to solve
the optimization problem. The method is explained below.

Consider a general nth order ODE given in the following form.

dny [N TINNTT, - (3,1)
2o = 9y YY"y y"‘ , 0<x<T

subject to the following initial and boundary conditions respectively

déy

my(o) = Ay, k= 0123, .....n—-1 (32)
dk}? .

&";,;}’(T) = Bk, k= 0,1,2,3, e, =1 (3.3)

where g represents the nonlinear function, prime denotes the derivation with respect to x,
T is the upper bound of the solution span, ¢, and f5; are real constants denoting the initial
and boundary conditions respectively.

To solve (3.1), we assume that the approximate solution y(x) and its n derivatives
y'(x),y"(x), " (x), . ......,and y™*(x) are a linear combination of basis functions,

which can be expressed as follows.

)?(X) = Z a; (0(!)(36 + C[) (3.4)

i=1
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yi(x}= Z agy; @'(bix + ¢;) (3.5
i=1
)= ) aytebix ) ()
i=1 )
y*(x) = Z a;¥e" @™ (bix + ¢ 37

i=1
where a;,b;, and ¢; are real valued unknown parameters to be determined, m is the
number of basis functions, and @{x) is assumed to be the log sigmoid function which is

given by

p(x) = (ERS)

1+e*

The derivates of y(x) given by (3.5) — (3.7) can be simply obtained using the basic
calculus or any available mathematical tool. Besides, in this chapter 1 have solved
NODEs of second order only however this methodology can be applied to higher order
NODEs as well. Hence in view of the second order NODE as a special case of (3.1), first

two derivates of (3.4) are given by (3.9) and (3.10) respectively as follows.

i)

—(bix+ce
.'Vf(JC) = Z aibi (1 + e—(b;x-l-ci])z (3.9)
i=1
It — S b 2 26 _Z(Dlx‘l’C[) e_(bix+(«'i) .
y () = Z a;o; (1 + e-(b[x+q))3 - (1 + e_(bix'l'c‘t})z (3.10)
=1
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The objective is to find the values of unknown parameters (a;.b;, and ¢;) in (3.4),
which consequently Vields the approximate numerical solution :.y(x) t‘f the given
problem. To determine the values of these unknown parameters (a;,b;, and ¢;), the
given NODE along with its initiai and/or boundary conditions is converted into an
equivalent optimization problem using a fitness function defined below.

3.2.1 FITNESS FUNCTION

The fitness funétion (FF) denoted as (¢;) basically represents the global error associated
with the given NODE along with its initial and/or boundary conditions to be solved using
the approximate model defined above. FF consists of the sum of two parts, first part
represents the mean of sum of square errors associated with the given NODE denoted by
(&4) , the second part represents the mean of sum of square errors linked with the given
initial and/or boundary conditions denoted by (&;). Assuming a second order NODE (¢;}

is developed as follows.

N
1
& = ﬁ;()’”(xi) - g(xi :V(xi),y'(:uc[)))2 (3.11)
n1 2 n-1 2
_1 d*y 1 dy
£ = ;;} (E;EY(U) - a;,;) + ;kZo (E;k-y(r) - bk) (3.12)

where y(x),y'(x), and , y"'(x) are given by (3.4), (3.9), and (3.10) respectively, N is the
total number of steps on the interval [0, T]. The FF is accordingly written as

g=&+& j=123.. (3.13)
where j is the generation number/iteration count of the algorithm.
The fitness function (&) represents the global error minimization problem. As it is

evident that FF contains unknown parameters (a;,b;, and c;), therefore it solely
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depends on the values of these unknown parameters. It is also quite obvious that smaller
the & the better the approximate solution. The error minimization problem given by
(3.13) is solved using the evolutionary algorithm (EA) to find the values of the unknown
parameters (a;,b;, andc;) that correspond to the best possible minimum ¢g;.
Consequently the approximate numerical solution y(x) of the given NODE is
straightforward obtained by using the values of unknown parameters in (3.4).

3.2.2 HYBRID GENETIC ALGORITHMS

In this section, evolutionary algorithm used throughout the chapter for solving the
minimization problem given by the fitness function (3.13) is introduced. The GA, IPA,
ASA, and PS, and three hybrid schemes combining GA with PS, IPA, and ASA have
been employed for solving the fitnéss function and to obtain the unknown parameters
(a;,b;, and c¢;). The three hybrid schemes used are referred to as GA-IPA, GA-ASA,
and GA-PS in the rest of the chapter. The GA has been used as global optimizer while
[PA, ASA, and PS have been utilized for local search refinement. The procedural steps of

the hybrid schemes are given in algotithm 3.1.

Algorithm 3.1: Hybrid Genetic Algorithm (HGA)

Step 1: (Population Initialization)
A population of N chromosomes or individuals is gcnerotcd using
random number generator. Each populatioﬁ consists of M number of
genes. The number of genes is equal to the number of unknown
adjustable parameters.

Step 2: (Fitness Evaluation)

Fitness of each chromosome is computed in the current population using
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the problem exclusive fitness function (FF). Rank the individuals

according their fitness values.
Step 3: (Stoppage Criteria)

The algorithm stops if the maximum number of generations/iterations
has exceeded or a predefined fitness value is achieved. If the stoppage
criterion is satisfied then go to step 6 for local search refinement, else
continue and repeat steps 2 to 5.

Step 4: (Selection and Reproduction)

A new generation is populated using the crossover operation. Parents
are selected on the basis of their ﬁfness which produces offspring
(children) to act as parents for the next generation,

Step 5: Mutation
This operation is optional and it is carried if there is no improvement in
the fitness in a generation. Mutation introduces intermittent changes in
the genes to preserve the genetic diversity.

Step 6: (Local Search Fine Tuning)
The optimal chromosome achieved by the GA is fed to the IPA, ASA,

and PS as a starting point for fine tuning and improvement.
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3.3. NUMERICAL APPLICATIONS

In this section, the methodology described above is applied to many nonlinear problems
including the Bratu problem, Troesch’s problem, Duffiing van der pol oscillator problem,
and nonlinear singular boundary value problems in physiology, to assess and test ils
performance. The nonlinear problems solved in this chapter using the proposed
methodology have been selected due to their physical importance in diverse applications
of engineering.

In order to demonstrate the accuracy, efficiency, and viability of the presented method,
comparisons of the numerical solutions are made with the exact solutions and the
solutions obtained by some traditional methods.

For implementation Matlab 7.6 and its built in optimization tool has been utilized
throughout.

3.31 BRATUPROBLEM

Examplel. We consider the classical Bratu problem in one-dimensional planner
coordinates represented by the boundary value problem of the following form [88], [89],

[30], [91], [92], [93], [94], [95].

y'(x) +2e¥® =0, x €[0,1] (3.14)

y(0)=0,and y(1) =0 (3.15)
The classical Bratu problem has wide spread applications in engineering and science
including the model of fuel ignition, chemical reaction theory, radiative heat transfer,
Chandrasekhar model of the expansion of the universe, and nanotechnology [88], [89],

[90], [91], [92], [93], [94],[95].
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The Bratu problem has received much attention due to its diverse applications and many

methods have been utilized for the solution of the standard Bratu and Bratu-type

problems [88], [89], [90], [91), {92], (93], [94], [95]. The methods include DM by Deeba

and Khuri [88], LTDM by Khuri [89], ADM by Wazwaz [5], RADM by Vahidi, and
Hasanzade [92], non-poly épline by Rashidinia and Jalilian [93], cubic B-spline

collocation by Abukhalid [91].

The exact solution of (3.14) for A > 0 is given in [90], [91], [92], [93], [94]. ['95] and is

given by the equation below

Vexace(x) = =2In g (3.16)
cosh (1)
where 8 satisfies
]
8 = V22 cosh (Z) (3.17)

The approximate numerical solution y(x) of the Bratu problem (3.14) — (3.15) is
obtained using the suggested method in the interval [0, 1] with a step of 0.1, for two
different values of A = 1, 2, for a direct comparison with some other methods.

To apply the proposed method, the given problem (3.14) = (3.15) is converted into an
equivalent global error minimization problem by formulating its fitness function for each
case A =1and A =2 . The number of basis functions is taken équal to 10, The fitness

function ¢; for 2 = 1 is developed as follows.

. 11
& = -i}Iz (y"(x;) + 1((-;'3’("’t')))2 (3.18)

i=1
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1 2 2 (3.19)
& == (@) + (G))
Consequently the fitness function &; is given as follows
1 11 2 1
2 2
f=77) (1" +1(e7®)) +5 (@) + () (3.20
i=1
Similarly the fitness function for 2 = 2 is formulated which is given by
o . 1
2
g = HZ (v + 2(e7%9)) +3 (@) + ((W))") (3.21)

i=1

where y(x) and y"'(x) are given by (3.4) and (3.10) respectively.

The fitness functions given by (3.20) and (3.21) are minimized by applying GA, IPA,

ASA, and PS, and three hybrid schemes GA-IPA, GA-ASA, and GA-PS for achieving

the values of unknown adjustable parameters {a;,b;, and ¢;).

The parameter settings and values used for the implementation of the algorithms are

given in Table 3.1 for GA and IPA and in Table 3.2 for PS and ASA respectively,

Since we have taken the number of basis functions equal to 10, therefore the size of
chromosome ie. the number of unknown  adjustable  parameters

{(a;,az, ., 010; by, by, oo, byg; €1, €5, .., €1 } are chosen equal to 30. The values of these

unknown adjustable parameters are restricted between -20 and + 20. This was observed |
by several simulations that by bounding these unknown adjustable parameters to the

specified interval we get good results.
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Table 3.1 Parameter values and settings of GA and [PA for Bratu problem

GA IPA
Parameters Settings/Value Parameters Settings/Value |
Name Example 1 Example 2 Name Example 1 Example 2
Population 249 240 Start point Random/best Random/best
size chromosome  chromosome
from GA from GA
Chromosome 30 30 Maximum 48000 200000
size function
evaluations
Selection Stochastic Stochastic | Derivative Forward Central
function uniform uniform type differences differences
Mutation Adaptive Adaptive | Hessian BFGS BFGS
function feasible feasible
Crossover Heuristic Heuristic | Subproblem 1dl idl
function algorithm factorization  factorization |
Crossover 08 0.8 X tolerance le-10 le-10
fraction j
No. of 1500 2000 Maximum 1000 1000
_generations iterations
Function le-22 le-18 Function le-22 le-18
tolerance tolerance
Bounds =20, +20 <20, +20 Bounds -20, +20 -20, +20

Table 3.2 Parameter values and settings of PS and ASA for Bratu problem

PS ASA
Parameters Settings/Value Parameters Settings/Value
Name Example 1 Example 2 Name Example 1 Example 2
Start point Optimal Optimal Start point Random/best Random/best
chromosome  chromosome chromosome chromosome
from GA from GA from GA from GA
Poll method  GPS positive MADS Maximum 400 400
basis 2N positive basis | iterations
2N

Polling order Random consecutive | Maximum 48000 200000

function

gvaluations
Maximum 3000 4000 Function le-22 le-18
iterations tolerance
Maximutm 200000 230000 Nonlinear le-10 le-18
function constraint
evaluation tolerance
Function le-22 le-22 5QP le-6 le-6
tolerance constraint

tolerance
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The algorithms are executed according to the prescribed settings to achieve the minimum
value of fitness function (g;). The algorithms run iteratively until the termination criteria
of either maximum number of generations exceeds or the desired fitness value is
achieved. The best chromosome found by the algorithms is accordingly chosen as the
values of unknown parameters. The values of unknown parameters acquired by the
algorithms are used in (3.4) to yield the approximate solution y(x).

In Table 3.3 we provide the optimal values of unknown parameters acquired by GA for
A =12 and in Table 3.4 and Table 3.5 values of unknown parameters acquired by three
hybrid schemes GA-IPA, GA-ASA, and GA-PS are given for A=1 and 1 =2
respectively. Further in Table 3.6 — Table 3.8 the values of unknown parameters acquired

by IPA, ASA, and PS are given respectively.

Table 3.3 Optimal values of unknown parameters acquired by GA for Bratu problem
(example 1) with 2 = 1,2

A=1 A=2

[ b; ¢ a; b; ¢
-1.1873 09927 4.3567 2.0106 1.8214 0.1774

0.0532 2.8125 1.3375 -0.2814 0.1561 00798
33774 00092 -2.8024 10925  3.6038  2.0671
23967 -14546  -03605  -0.5204 -0.0327 08305
-1.9747 -0.2414 1.5959 -2.33%94 0.7914 -0.3817
04933 -0.7706  2.8568 04159  -1.7345 46111
27251 12393 L7020  -0.6076 22922 -1.8711
20717 15492 32516 -3.8191 16470  -2.8017
26098 -1.4604 39947  -16690 22575  0.0809
10 30735 20118 31644 03176 06789  -0.1111

—
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Table 3.4 Optimal values of unknown parameters acquired by hybrid schemes for Bratu
problem {example 1) with A = 1

GA-PS _ GA-ASA GA-IFA
1 a; bf Ci Qi bf_ Ci ai b,‘_ Ci
-1.2026 -0.9780  4.7183 -1.1873 -0.9927 43567 -0.9870 -0.8866  4.0878

1

2 0.0636  3.1262 1.758¢  0.0532 28125 13375 0.1371 25885 1.3474
3 33970 00286  -2.8143 33774 00092  -2.8024  3.1203 -0.1468 -2.6795
4 -2.4075  -i4589 03726 23967 -14546 -0.3605 22438 -1.5079 .0.2057
b -1.9894 -0.2529 16472 -19747 -0.2414 1.5959 -1.7019 -0.2075 1.4432
6
7
8
9

0.488% -0.8683 3.0274 04933 -07706 28568 04368 -0.7396  2.6768
-2.7638  1.2354 -1.6975 -2.7251 1.2393 -1.7020 -2.5884 1.1878 -1.5518
-2.0535 1.6769 33943 20717 15492 32516 -1.7665 14070  3.1085
2.6244 14582 4.0706  2.6098 -1.4604 39947 23478 -1.4449  3.6874

1o 3.0827 2.0025 32143 3.0735 2.0118 31644 26066 20180 29024

Table 3.5 Optimal values of unknown parameters acquired by hybrid schemes for Bratu
problem (example 1) with A = 2

GA-PS GA-ASA GA-IPA
i a; bi Ci a; bj Ci a; b,‘ Ci
2.0497 20166 02739 19631 19209 02519 192109 19301 0.2668

-02482 -0.3913  0.1337 -0.3238 -0.1363  0.0881 -0.2924 -0.1368 0.0864

1.0784  3.5803 23166 L1453 34939 23152 10969 34901 2359
-0.5860  -0.0930 1.0323 -0.5827 0.0042  0.844% -0.5221 0.0024  0.8409
-22732 07748 01741 23987 (.7396  -0.4401 23208 06664  -0.4480

0.4298 23960 52107 04101 -1.8643 45666 03630 -1.9026  4.5434
-0.5210 25587 -2277% 08380 23214 -2.1652 -0.BI158 23580 -2.1672
-4.0139 1.6085 -2.7957 40283 15533 -3.0031 -4.0585 1.571F -2.9750
-1.7985  -2.0488 -0.0763 -1.7691 -2.0924 -0.0573 -1.7780 -2.0643 -0.0848
10 04287 -1.5663 -0.388¢ 0.2635 -0.6650 -0.1063 0.2335 -0.654% -0.1033

—_—
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The approximate solution y{x) of the Bratu problem (3.14) is obtained straightforward
by using the values of unknown parameters in (3.4). The solutions obtained by the

proposed method with GA and three hybrid schemes GA-IPA, GA-ASA, and GA-PS are
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presented in Table 3.9 and Table 3.10 for A = 1l-and A = 2 respectively, also exact
se. ‘ions are 77 en for the comparison purpose.

Table 3.6 Optimal Values of unknown parameters acquired by IPA for Bratu problem
(example 1) withA = 1,2

—

aj by Cj a; b; Ci
0.3992 -0.0455 -0.9373 =5.1128 1.6163 2.8336

2 0.8232  -0.1400  -0.8866 1.0195 0.8413 0.7468
3 -1.6445  -1.3328 09705  -3.0910 -1.6747 0.6457
4 -3.4513 1.2628 29330 -1.5674  -1.5443 -1.1531
5 1.6397 0.0244  -0.7520 -D.8372  -(.8444 -0.6081
6 -1.3173  -1.8875  -2.1328 -1.3665 -1.14G7 -0.8240
7 0.6709 1.7674  -0.0797  -1.6926 -1.5776 -2.2070
8 0.0044  -0.3470  -0.2056 06572  -0.7454 1.6052
9 -0.8562 1.4735 -1.6205 25609  -2.1051 1.6029

10 -1.6134  0.0690  -1.4985 0.3224  -0.3243 0.4474

Table 3.7 Optimal Values of unknown parameters acquired by ASA for Bratu problem
{example 1) withAi=1,2 '

A=1 A=2

1 a; b; ¢; a; b; ¢

1 0.5927 16649  -1.5896  0.2217  -0.3299 -1.6089
2 06306  0.7886  -2.1247  -49753  -1.6655 -0.1554
3 -1.4929 13215 -1.5765 08901 02419 1.8635
4 03649  0.5369  -1.1720  1.7046  -0.8554 -1.2245
5 32966 02018  -0.6828  -0.2667 -1.3758 -1.0384
6 0.3009 00477  -1.4860  -3.6200 1.8887 4.0655
7 32056  0.0620  -0.5341 04903  -0.5940 -0.4413
8 -4.9089 1.2200 -1.0732 0.6553  -0.1726 -1.5118
9 -0.6137 6.2596 0.1714 22965  -2.5983 -2.9132
10 -5.7031 08584 09471 29963 -1.9038 1.8238
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To show the accuracy and the efficacy of the proposed method, absolute errors
(¥exace (X) — y(x)]) have been computed and presented in Table 3.11 and Table 3.12 for
A =1and A =2 respectively. For comparisons the absolute errors obtained by the
standard methods DM [88], LTDM [89], and B-spline [91] are also provided.

Table 3.8 Optimal Values of unknown parameters acquired by PS for Bratu problem
(example 1) withA =1, 2

A=1 A=2

i a; b; € a; b; [

I -0.0491 13713 17478 -04768 -4.1539 -2.6383
2 -153581 03592 -0.7000  1.6841  0.4060 -0.3223
3 -23463 -18.2663 -12.0579 04716 1.5749 11711
4 33143 1.8380 17670  0.8389  4.8710 4.4206
5 0.9526 24088  -3.0868 -0.1825 -5.5634 0.1554
6 0.8614 -0.3402 1.2269  -4.6172 1.8696 -2.6017
7 3.3925 1.4900 00493  -1.2924 -0.0795 0.1325
g -0.1187 2.8442  -0.0739 22351 -2.0640 -0.2275
9  -00284 -0.1801 1718  .00548  7.4645 -0.4996
10 -0.1181 03570 -0.0463 05227  0.1003 -0.0645

Table 3.9 Comparison of numerical results for Bratu problem (example 1) with 1 =1

Proposed Method y(x)

X Yerace(®) GA GA-IPA GA-ASA GA-PS
0.1  0.049847 0049845  0.049847  0.049847  0.049847

0.2 0.089190 0.089187 0.089190 0.089191 0.089190
0.3 0.117609 0.117606 0.11760% . 0.117610 0.117609
0.4 0.134790 0.134785 0.134790 0.134791 0.134790
0.5 0.140539 0.140533 0.140539 0.140539 0.140539
0.6 0.134790 0.134782 0.134790 0.134789  0.134790
0.7 0.117609 0.117601 0.117609 (.117608 0.117609
0.8 0.089190 0.089181  0.089190 0.089189 0.089190
0.9 0.049847 0.049838 0.049847 0.049847 0.049847
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Comparison of the absolute errors reveals that the proposed method based on the
heuristic computational approach yields the results of the Bratu problem (3.14) for two
special cases 1 = 1 and 1 = 2 with the significantly greater accuracy, with an average

absolute error of 5.20E-08 for A = 1 and 3.09E-07 for 4 = 2 respectively.

Table 3.10 Comparison of numerical results for Bratu pronlem (example 1) with 1 = 2

Proposed Method y(x)
X Yexact () GA GA-TPA GA-ASA GA-PS
0.1 0.114411 0.114442 0.114411 0.114411 0.114430

0.2 0.206419 0.206454 0.206419 0.206419 0.206435
03 0.273879 0.273924 0.273880 0.273880 0.273893
04 0.315089 0.315146 - 0.315090 0.315090 0.315102
0.5 0.328952 0.329014 0.328952 0.328953 0.328963
0.6 0.315089 0.315149 0.315089 0.315089 0.315098
0.7 0.273879 0.273937 0.273879 0.273879 0.273886
0.8 0.206419 0.206480 0.206419 0.206419 0.206423
0.9 0.114411 0.114474 (.114411 0.114411 0.114411

Furthermore comparison shows that the absolute errors obtained by standard methods
DM, LTDM, and B-spline are quite high compared to the absolute errors obtained by the
proposed method, which illustrates the supremacy of the proposed method over the

standard methods DM, LTDM, and B-spline.

The improved performance achieved by the hybrid schemes GA-IPA, GA-ASA, and GA-

PS are also quite evident from the comparison.
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Table 3,11 Comparison of absolute errors for Bratu problem (example 1} withA =1

Proposed Method Standard Methods
X GA GA-IPA  GA-ASA GA-PS DM B-spline LTPM

LA

0.1 1.62E-06 1.11E-07 3.59E-07 1.57E-08 2.68E-03 298E-06 625E-07
02 262E-06 235E-08 627E-07 6.25E-08 2.02E-03 5.46E-06 4.36E-07
03 351E-06 15SE-07 8.71E-07 265E-08 1.52E-04 733E-06 2.26E-07
04 4.86E-06 1.71E-07 520E-07 723E-08 220E-03 8.50E-06 4.76E-07
05 6.53E-06 6.82E-08 268E-07 6.72E-08 3.0lE-03 $.89E-06  8.06E-08
0.6 791E-06 3.34E-07 88IE-07 3.75E-08 2.20E-03 8.50E-06 8.76E-07
0.7 8.58E-06 3.01E-07 884E-07 933E-08 1.52E-04 733E-06 1.01E-06
08 872E-06 646E-08 4.54E-07 1.30E-083 2.02E-03 546E-06 3.14E-07
0.9 904E-06 3.03E-07 2.83E-07 802E-08 228E-03 298E-06 2.13E-07

Table 3.12 Comparison of absolute errors for Bratu problem (example 1) with A = 2

Proposed Method Standard Methods
X GA GA-IPA  GA-ASA  GA-PS DM LTDM

0.1 3.15E-05 2.98E-07 5.19E-07 1.89E-05 1.52E-02 2.13E-03
0.2 351E-05 2.53E-07 345E-07 1.59E-05 1.47E-02 4.21E-03

A

03 448E-05 2.18E-07 237E-07 1.36E-05  5.89E-03 6.19E-03
0.4 5.68E-05 4.03E-07 7.12E-07 1.23E-05  3.25E-03 8.00E-03
0.5 6.18E-05 1.34E-07 8.07E-08 1.09E-05 6.98E.03 9.60E-03
0.6 5.95E-05 343E-07 491E-07 9.12E-06  3.25E-03 1.09E-02
0.7 579E-05 3.11E-08 2.32E-07 6.70E-06  5.89E-03 1.19E-02
0.8 6.14E-05 1.51E-07 1.19E-07 3.68E-06 1.47E-02 1.24E-02
0.9 634E-05 147E-07 4.95E-08 6.82E-07 1.52E-02 1.09E-02
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Example 2: Consider an initial value problem of the Bratu-type model given by the

following equation [901, {91], {92].

y'(x)—2e¥® =0, 0gx<1 (3.22)
y(0) = 0,and y(0) =0 '

The exact solution of (3.23) is given by the following equation [90], [91].
Vexace(X) = =2In(cos(x)) (3.23)

The approximate solution y(x) of (3.22) is obtained in the domain {0, 1] using the

proposed methed by formulating the fitness function as follows.

= .11_121 () -2 @) +2(G@) +(@)) 629

The global error minimization problem given by (3.24) is solved using the HGAs to
obtain the optimal values of the unknown parameters.

The number of basis functions is taken same as for the example 1. The values and
settings of parameter used for the implementation of the algorithms for this example are
given in Table 3.1 for GA and IPA and in Table 3.2 for PS and ASA respectfvely.

The optimal values of unknown parameters acquired by three hybrid schemes are
provided in Table 3.13, while the values of parameters acquired by GA, IPA and ASA are

given in Table 3.14 and Table 3.15 respectively.
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Table 3.13 Optimal values of unknown parameters acquired by hybrid schemes for Bratu
problem (example 2)

GA-PS GA-ASA GA-IPA
i i1; b,; C; a; bi C; a; bi L;
i -1.57¢ -4.3007 -53328 -0.7058 -29004 65500 -0.3453 -15097 -2.5190

50112 6.1085 99512 56296 6.1657 -10000 359163 51799 -3.0063
32318 -2.00%84  -1.787  3.5729 -1.6589% -1.356%  1.5015 -2.7157 -2.4613
99683  1.5681 32017 97022 09337 20803 16462 04369 -0.6561
22362 32781 -2.894% 29962 -4.6725 -5.6242 15190 24307 -1.8001
5.0632 2.0861 -6.0192 50085 13898 -6.2992 21032 03709 -2.5095
-5.378  -2.058 -2.8193 -4.8552 -0.5026 -3.1264 -2.0347 -0.6000 - -1.5370
72745 0.6289 -3.9587 -7.3139 03284 -3.5974  -1.9510 -0.8493  -2.6926
-0,5584 3154 39479 14498 33044 42272 -0.6270 -4.6463  4.6490
10 01407  3.2648 99211  0.1360 32655 -9.9216  0.6655 33812 -2.3110

O - G B w2

Table 3.14 Optimal values of unknown parameters acquired by GA for Bratu problem

(example 2)
i a; by Ci
1 -1.5776 -4.3045 -5.3297
2 5.0105 6.1082 -9.9508
3 3.2303 -2.0088 -1.7872
4 9.9685 1.5680 -3.2014
5 2.2362 -3.2779 -2.8930
6 5.0646 2.0867 -6.0184
7 -5.1779 -2.0583 -2.8192
8 -7.2720 0.6292 -3.9584
- @

-0.5584 -3.1541 3.9491]
10 0.1439 3.2662 9.9204
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Using the values of unknown parameters achieved by the algorithms, we can find the

approximate sclution at any point in the solution domain of x.

Table 3.15 Optimal values of unknown parameters acquired by IPA, ASA, and PS for

Bratu problem (example 2)
1IPA ASA PS
1 a; bg C; a; bg Ci d; bg Ci

—_—

14581  0.5270 04738 -0.3680 -1.1426 00403 -2.6757 -0.8110 L.1234

2 09208 31691 22430 -0.7143 07902 -1.1973 05042 4.1937 3.29%
3 06426 11818  0.7531 21814 -3,0543 3.821] 2.2801 47116  -6.8452
4 035124 0.3398  -0.6950 2.1474 05028 28979  1.6878 2.6565  -5.1608
5 04135 01116 01689 32240 06879 04128 -0.2803 56840 0.6241
6 59228 52682 -B.1379 -1.4715 32768 37599 10.0000 -10.0000 -7.3151
7 -1.5984 30668 2.0979 1.9487  -2.1496 -04357  (.8328 6.5450  8.1343
§ 02180 -1.2097 -1.0061 10,0000 55137 95235 3.2812 0.1775  1.3812
¢ 1.2828 -0.8675 -1.5663 39595 -2.566% -3.3636  3.0230 43743  -7.5306
10 -0.6828 4.5%46 46801 -1.5912 -1.305% 03872 -1.7997 04498  1.4555

The approximate solutions obtained using GA and hybrid schemes for different values of
x are given in Table 3.16. Further Table 3.17 shows the comparison of absolute errors
(1Y orace (x) = ¥(x)[) between the proposed method and the standard methods ADM [92]
and RADM {92]. |

It is observed from the comparisons that the proposed method provides satisfactory
results of the Bratu-type problem (3.22) which are in a good agreement with the exact
solution. The comparison further shows that the absolute errors obtained from the
proposed method based on the hybrid approaches are comparable with those ADM and
RADM. However, it can be seen from Table 3.17 that ADM and RADM give much
smaller absolute error in the vicinity of x, but as x increases towards 1 absolute error also

rises drastically. If we compute the average absolute errors from Table 3.17 by
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considering the range of x in two partitions such as x € [0.1,0.5] and x € [0.5,1.0], Our
method gives average absolute errors of 3.96E-06 and 1.74E-05, while ADM gives
1.04E-06, and 1.91E-03, and RADM gives 2.35E-07 and 1.93E-04 average absolute
errors respectively for the mentioned intervals of x. Also the average absolute errors in
the interval x € [0.1,1.0] obtained by the proposed method, ADM, and RADM are
1.07E-05, 9.54E-04, and 9.67E-05 respectively. This proves the effectiveness and
reliability of the proposed method and its accuracy for large values of x. Furthermore the

etfectiveness of the hybrid schemes is also evident in this example.

Table 3.16 Comparison of numerical results for Bratu problem {example 2)

Proposed Method y(x)

X Vexarr(X) GA GA-IPA GA-ASA GA-PS
0.0 0.000000 -0.000127 0.000007 0.000004 -0.000073
0.1 0.010017 (.009903 0.010022 0.010012 0.009947
0.2 0.040270 0.040198 0.040275 0.040255 0.040232
03 0.091383 0.091355 0.091382 0.091363 0.091377
0.4 0.164458 0.164447 0.164453 0.164429 0.164459
0.5 0.261168 0.261160 0.261165 0.261124 0.261162
0.6 0.383930 0.383936 0.383922 0.383870 0.383929
0.7 0.536172 0.536212 0.536154 0.536102 0.536199
0.8 0.722781 0.722853 0.722765 0.722703 0.722834
0.9 0.950885 0.950962 0.950859 0.950782 0.950937
1.0 1.231253 1.231367 1.231234 1.231133 1.231336
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Table 3.17 Comparison of absolute errors for Bratu problem (example 2)

Proposed Method Other Methods

x GA GA-IPA  GA-ASA  GA-PS ADM LADM
0.1 1.14E-04 511E-06 5.05E-06 7.02E-05 4.39E-13  9.30E-14

02 7.15E-05 4.99E-06 142E-05 3.79E-05 4.54E-10 9.72E-11
03 287E-05 106E-06 207E-05 598E-06 2.66E-08 5.78E-09
0.4 1.10E-05 4.84E-06 292E-05 9.75E-07 4.85E-07 1.07E-07
0.5 882E-06 349E-06 441E-05 669E-06 4.67E-06 1.06E-06
0.6 521E-06 8.32E-06 ¢6.01E-05 1.08E-06 3.01E-05 7.07E-06
0.7 4.07E-05 1.73E-05 6.91E-05 275E-05 148E-04 3.62E-05
0.8 7.15E-05 1.66E-05 7.80E-05 5.27E-05 6.00E-04 1.54E-04
0.9 768BE-05 256E-05 1.03E-04 524E-05 2.11E-03 574E-04
1.0 1.14E-04 192E-05 120E-04 8.33E-05 6.65E-03 1.95E-04

3.3.2 TROESCH’S PROBLEM

We now investigate the numerical solution of the Troesch’s problem using the proposed
method. Troesch’s problem is a boundary value problem which appears in the
investigation of the confinement of a plasma column by radiation pressure, theory of gas
porous electrodes, and applied physics [96], {97], [98], {991, [100], {101], {102], [103],
[104]. This problem was formulated and solved by Weibel [105]. Troesch’s obtained the
numetical solution of this problem by the shooting method [106].

The goveming equation of ihe Troesch’s problem is given by [96], [97], [98]. 1991, {100},

[1017, {102], [103].

y'(x) =csinh(cy(x)) 0<x<1 (3.25)
with the boundary conditions
y(0) =0, and y(1) =1 (3.26)
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where ¢ 1S @ positive constant.

The closed form solution of (3.25) is given as follows [96], [97], [98]. [99].

y'(0)

2
yema(x)=;smh 1{ 5

sc (axll - %@’(0))2)} (327)

The approximate numerical solution y(x) of the Troesch’s problem is obtained in the
domain x € [0,1] using the proposed method for three special values of the constant o for
a direct comparison with some standard methods.

Casel: o =05 | I:

To apply the proposed method, fitness function (FF) is developed as given below.

11

1
5 = Hz (y"(x) - O.SSEnh(O.Sy(xi)))z + % (G@Y + o -12) (28

i=1

The number of basis functions m has been taken 10. The FF given by (3.28) is minimized :
by applying heuristic optimization algorithms GA, PS, IPA, GA-PS, and GA-IPA for |
obtaining the unknown parameters.

The parameter values and settings for the execution of the optimization algorithms are

given in Table 3.18. Since 10 number of basis functions have been taken therefore the
unknown parameters that need to be tailored are 30. The values of these unknown

parameters are bounded between real numbers -20 and + 20.
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Table 3.18 Parameter values and settings of algorithms for Troesch’s problem

GA PS IPA

Parameters _ Value/Settings | Parameters Value/Settings | Parameters Value/Settings
Population 240 Start point Random/ best | Start point Random/ best
size : values from values from

GA GA
Chromosome 30 Poll method  GPS positive | Derivative Central
size basis 2N type differences
Selection Stochastic Polling consecutive | Hessian BFGS
function uniform order
Mutation Adaptive Search Nelder mead | subproblem Id]
function feasible method algorithm factorization
Crossover Heuristic Maximum 150000 Maximum 150000
function function function

evaluation evaluations

Function le-18 Function le-18 Function le-18
tolerance tolerance tolerance
No. of 1000 Maximum 3000 Maximum 1000
generations iterations iterations
Bounds -20, +20 Bounds =20, +20 Bounds =20, +20

The best values of unknown parameters{a,,@;,...,Q10; b1, D34 e, Brg; C1,€2 oy C1p)

found by the algorithms GA, GA-IPA, and GA-PS are given in Table 3.19, while Table

3.20 show the values of unknown parameters acquired by IPA and PS respectively.

Table 3.19 Optimal values of unknown parameters acquired by GA and hybrid schemes

{for d = 0.5)
GA GA-IPA GA-PS
i i b; i & b i ai b; Ci

—

R = = = T I I

17119 1.5684 20633 27198 13023 27030
-4.6814 -0.6693 14850 -6.8853 -0.6605 1.92]2
46063 -0.5614 72784  6.8810 -0.7873 11.0064
-0.5755  -1.3349  0.2917
03034 0.0733  -1.5361 04717 01718 -22140
12785 -0.1976  -1.5037 1.8254 -0.0013
-1.8026 -1.5340  4.1413
1.2235  -0.571% -5.0429 1.7635 -0.8101
-0.7416 -0.9677  3.3371

-0.7906 -1.0790 -0.3645

-2.1874
-2.7284 -1.8211 6.7238
-7.4410
-1.0727 -1.5059  4.8666

10 0.2802  0.1051 1.310%  0.5266  0.2231  1.8975

17159 1.5582  2.0632
46783 -0.6688  1.4864
46092 02025  6.6903
05712 -13301  0.2898
02864 00082 -14850
12685 -0.1756  -1.5029
-1.8016 -1.5304  4.1614
0.6954 0.1338  -4.5161
-0.7450 -0.9923  3.3092
0.2801 -0.0254  1.2470
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The values of the unknown parameters can be used to obtain the approximate solution of
the Troesch’s problem at any value in x € [0,1]. The numerical solutions obtained by the
proposed method at different values of x are presented in Table 3.21. Further in Table
3.22 absolute errors (Yexaer-y(x)) obtained by the proposed method are¢ provided, also
absolute errors obtained by the standard methods HPM [96], VIM {98}, and ADM [99]

are given for the purpose of comparison to show the accuracy of the proposed method.

Table 3.20 Optimal values of unknown parameters acquired by IPA and PS (for ¢ = 0.5)

IPA PS
a; b; ¢; a; b; C;
1.0537 13713 13713 -1.0290 -2.9378 5.8257
-1.2478 03592 03592 02431  1.7351 -0.5637
2.1226  -18.2663 -18.2663 -1.2566  -1.5175 2.1363
-22443  1.8330  1.8380  -0.8462  -1.9903 -0.2576
45561 24088  -2.408% 151573  0.0714 -1.4095

2.2651 -0.3402 03402 -19.9617 -3.6835 -8.4486
-1.7096 1.4900 1.4900 -1.0211  -0.0309 0.3251
-2.9082  2.8442 28442 -199915  -3.6868 -5.4472

-1.968%  -0.1801  -0.1801 0.1737 44795 3.1516
10 3.7907 0.3970 0.3970 01161 -3.1513 29235

Lx T - O N = T T O VL e

From the comparison it is observed that the absolute errors by the proposed method are
quite similar to ADM and HPM, and much smaller than VIM, which confirms that the

proposed method is more accurate than VIM,
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Table 3.21 Comparison of numerical solution (for o = 0.5)

Proposed Method y(x) _

X YVexger{X) GA PS IPA GA-PS - GA-IPA
0.1  0.095177 0.095953 0.095815 0.095944 0.095944  0.095944
0.2 0.190634 0.192135 0.192018 0.192129 0.192128  0.192129
0.3 0.286633 0.288798 0.288716 0.288794 0.288794  0.28879%4
0.4  0.383523 0.386188 0.386118 0.386185 0.386184  0.386185
0.5 0481537 0.484550 0.484463 0.484547 0.484548  0.484547
0.6 0.581002 0.584136  0.584027  0.584133 0.584135 0.584133
0.7 0.682235 0.685202 0.685092 0.685201 0.685203 0.685201
0.8 0785572 0.788016  0.787931 0.788017 0.788017 0.788017
09 0891367 0.892852 0.892792 0.892854 (.892855 0.892854

Table 3.22 Comparison of absolute errors for (for o = 0.5)
Proposed Method Standard Methods
x GA GA-PS  GA-TPA HPM VIM ADM
0.1 7.76E-04 7.68E-04 7.68E-04 7.71E-04 4.87E-03 7.62E-04
02 1.50E-03 1.50E-03 1.50E-03 1.50E-03 9.70E-03  1.48E-03
03  2.15E-03 2.14E-03 2.14E-03 2.15E-03 1.45E-02 2.13E-03
0.4  2.67E-03 266E-03 266E-03 2.67E-03 1.92E-02 2.65E-03
0.5 3.01E-03 3.01E-03 3.01E-03 3.02E-03 2.37E-02 2.99E-03
0.6  3.13E-03 3.13E-03 3.13E-03 3.14E-03  2.81E.02 3.12E-03
0.7  2.97E-03 297E-03 297E-03 2.98E-03 3.22E-02  2.95E-03
08  2.44E-03 245E-03 245E-03 2.45E-03 3.61E-02 243E-03
0.9 1.49E-03 1.49E-03 1.49E-03 149E-03 3.96E-02 1.48E-03
a6
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Case2:0=1

The fltn'e.ss: function is formulated as follows.

£

11

L 1
i =11 (}' “(x;) — sinh(y (xi)))z + E((y([l))2 + (¥(1) - 1)2)

(3.29)

i=1
The algorithms GA, PS, IPA, GA-PS, and GA-IPA are used with the same parameter

values and settings as far case 1, for solving the FF given by (3.29) and to obtain the

unknown patameters.

The best values of unknown parameters(a, ,ay, ..., d19; b1, b2, s D105 €14 €24 ees C10)

found by the algorithms GA, GA-IPA, and GA-PS are given in Table 3.23, while Table

3.24 show the values of unknown parameters acquired by IPA and PS respectively.

In Table 3.25 numerical results obtained by the proposed method are given. To prove the

accuracy again a comparison of absolute errors is made in Table 3.26 between the

proposed method and other methods VIM, HPM, and ADM. The comparison evidently

shows the reliability of the proposed methods, as the results are quite comparable to

ADM and HPM and relatively good than VIM.

Table 3.23 Optimal values of unknown parameters acquired by GA and hybrid schemes

(foro =1)
GA GA-IPA GA-PS
i a; Eli_ Ci a; bi Ci ai bi Cj
1 -1.930%  -0.7643 §.8285 -0.1373 -0.6229 64797  -1.9309  -0.7995 8.8559
2 54753 -8.9500 -19.5842 2.6492 -2.7798 -10.1327 -15391% 42390 -12,5779
3 54965  -5.5327 -12.9705 42095 -36319 -BOI170  19.9965 -3.8608  -12.9705
4 3.088 -19.1565 -19.8576 23400 13419 -39916 -17.9730 -15.9924  -15.7951
5 12.9644 35159 160530 46751 23041 6.6194 129644 199924 15.6780
] 1.3739 35675 12071 7.6424  2.8621 -71.5088 1.3739 3.5675 -1.2071
7 14540  -1.4889  -3.9443 1.6334  0.0463  -2.6546 14540 -1.4889 -3,9448
3 0.8380 3.7172 -17.6828 0.2192 16717  -46563 -19.1933 -19.9962 -16.0578
9 -11.0564  -1,0704 3.2561  -4.6509 -1.0621 24865 -11.0564  -1.0704 3.2561
10 -13.7740  -1.1367 -3.4685  -83942 -1.0788  -3.0064 -13.7740  -1.1367 -3.4685
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Table 3.24 Optimal values of unknown parameters acquired by [PA and PS (foro = 1)

IPA PS

i a; b; Ci a; b; i

1 -1.2911 -0.2756 -4.6943 -0.5322 0.8219 1.9201
2 24965 09767 42146  -0.0804 -1.0385 -4.0600
3 -3.6082 14786 44117 0.8681 0.0628 -0.0766
4 10,7375 2.8061 -7.6192 1.0898 -2.3449 -1.8634
5 -2.9104 -2.1790 58197 0.2645 -3.8994 -3.3029
6 4.5015 1.2481 2. 7211 47255 -t.2716 1.6378
7 -2,0397 -1.5369 -4.3454 -0.1395 -0.1811 0.4929
3 0.9157 0.2675 =0.9205 -0.6078 -3.9700 -2.3049
9 -2.0222 -0.7856  -1.8465 -3.0373 -0.6668 0.1342
to -1.1094  -0.866¢  -1.9246 10.6662 1.3687 -3.3266

Table 3.25 Comparison of numerical solution (for ¢ = 1)

Proposed Method y(x)

X Verace(®) GA PS IPA GA-PS  GA-IPA
0.1 0.081797 0.084687 0.084676 0.084662 0.084657 0.084661
0.2 0.164531 0.170193 0.170166  0.170172 0.170168  0.170171
0.3 0249167 0257411 0257402  0.257393 0.257391 0.257392
0.4 0336732 0347235 0347255  0.347222 0.347221 0347220
05 0428347 0.440611 0.440623 0.440599 0.440600 0.440597
0.6 0525274  0.538545 0.538491 0.538535 0.538538  0.538533
0.7 0.628971 0.642139 0.641981 0.642129 0.642135 0.642129
0.8 0.741168 0.752615 0.752374  0.752608 0.752613  0.752607
0.9 0.863970 0.871366 0.871120 0.871362 0.871366 0.8?1 361
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Case3: 0 = 10

For ¢ = 10 the Troesch’s problem is difficult to be solved, as reported in [103]. We

simply formulate its fitness function as follows.

11
1

. 2 1 2
§ =13 (y"(xi) - 10$mh(10y(xi))) +§ ((y((})) + (y(1) - 1)2) (3.30)
i=1
Without any change in the algorithm settings, the FF given by (3.30) is solved for

achieving the unknown parameters and consequently the approximate solution, y(x).

Table 3.26 Comparison of absolute errors (for o = 1)

Proposed Method Standard Methods

X GA GA-PS  GA-IPA HPM VIM ADM
0.1  2.89E-03 2.86E-03 2.86E-03 1.42E-02 1.84E-02  2.45E-03

0.2  5.66E-03 564E-03 5.64E-03 2.76E-02 3.68E-02 4.90E-03
0.3 8.24E-03 8.22E-03  8.22E-03 3.96E-02 5.54E-02 7.25E-03
04 1.05E-02 1.05E-02 1.05E-02 4.95E-02 741E-02 935E-03
0.5 1.23E-02 1.23E-02 1.23E-02 5.62E-02 9.30E-02 1.11E-02
0.6 1.33E-02 1.33E-02 1.33E-02 5.89E-02 1.12E-01  1.21E-02
0.7 1.32E-02 1.32E-02 1.32E-02 5.62E-02 1.31E-01 1.21E-02
0.8 1ISE-02 1.15E-02 1.14E-02 4.69E-02 1.50E-01  1.06E-02
0.9  740E-03 7.40E-03 7.39E-03 2.89E-02 1.69E-01 - 6.94E-03

The best values of unknown parameters {ay,as, ..., @10 b1, b2, wer D105 €1,€2) o) C10)
acquired by the algorithms GA, GA-IP-A, and GA-PS are given in Table 3.27 and for IPA
and PS in Table 3.28. In Table 3.29 we provide the numerical results obtained by the
proposed method, while in Table 3.30 numerical results obtainedl by classical methods
including combined reproducing kernel method and ADM (RKM-ADM), ADM, VIM,

and modifted HPM (MHPM) given in [103] are provided.
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Further in Table 3.31 a comparison of absolute errors between the proposed method and

the above mentioned classical methods is carried to demonstrate the efficacy, accuracy,

and reliability of the proposed method.

From the comparison the quite good accuracy of the proposed scheme is remarkable. The

comparison evidently shows the ascendancy of the proposed method over some of the

classical methods like ADM, VIM, and MHPM. As it can be seen from the comparison of

Table 5.23 ADM, VIM, and MHPM methods completely fail to solve the Troesch’s

problem with the constant parameter o = 10, while the proposed method has yielded the

solution conveniently and accurately which are also fairly competent with RKM-ADM.

Table 3.27 Optimal values of unknown parameters acquired by GA and hybrid schemes

(for ¢ = 10)
GA GAIPA GA-PS
i a; by C; a; by C; a; by C;
1 9.1928 -8.0971 -16.6108 1.3415 0.2033 -1.5843 58178 127154  -17.188%
2 25445 -7.7444 172812 -12057 03585 -1.381%1 19.1118 50369  -13.2187
3 24610 -3.0616 12.8335 12506 -16.9949 17.0689 24610 -g.0616 12.8335
4 2.7639 1.7930 17.4762 1.3900 3.6624 33795 27639 09570 77131
5 9.8742  17.0661  10.8081 13582  2.5388 31580  9.8742 -11.3402  17.3081
6 -152671 92333 -17.2564 0.6712 37427 23670 -199859 107510  -17.2564
7 -125161 -10.9707 15.8814 -5.8458 -12.5778 141888 -12.5161 -10.9707  15.8814
8 3.7853 55099 -10.8241 45510 02360 -37174 50665 55099  -10.8241
9 56594 92024 -16.6433 26373 -0.7653 -2.8890  8.6907 27337  -8.5183
10 -2.5833 159531 11.6347 1.8428 -1.8201 21505  -2.5333 -4.6250 10.6347
50
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Table 3.28 Optimal values of unknown parameters acquired by [PA and PS (for o = 10}

IPA PS

i a; b; € 4 b &

1 1.6138 47208  -2.76%0 1.3426  -0.0055 2.5223
2 1.6102  -18.77004 17.5195 0.2089 4.1615 1.2086
3 7.8896 5.6415 -6.3116 0.0831 .9156 0.4843
4 0.8073 5.489i -3.5872 ¢.3747 0.2348 -1.3420
5 -1.8685 42408 34157 0.1696  -0.3304 0.3463
6 1.2527  -6.4293  2.5012 0.3241 0.6353 0.3136
7 -0.5993  3.8931 0.2186 -0.1001  0.6786 0.0983
8 -1.4033 8.8531 -5.1692  -1.8718 0.3702 2.4907
¢ -5.9635 05063 -1.9422  -0.1235  0.2935 1.3210
10 -2.0724  1L.1143  -8.6891 0.0693  -0.4508 0.3006

Table 3.29 Approximate numerical solution by the proposed schemes and comparison

Lt

with the exact solution (for ¢ = 10)

Proposed method y(x)

x Vexace (X GA IPA GA-PS GA-TPA
0.1 00000763 -0,0001750 0.0006507 0.0000959 -0.0022146
0.2  0.0001299  -0.0000617  0.0003901 -0.0001366  -0.0008775
03  0.0003589  0.0000972 0.0001604  -0.0001633 -0.0005250
04  0.0009779 0.0003808 0.0006313 0.0001016 0.0002556
0.5 0.0026590  0.0009327 0.0013073 0.0008483 0.0018240
0.6 0.0072289  0.0021076 0.0039797 0.0025192 0.0043090
0.7 00196640  0.0048757 0.0096452 0.0062620 0.0104308
0.8 0.0537303  0.0120360 0.0306525 0.0154046 0.0300570
0.9 0.1521140  0.0318843 0.0640741 0.0403545 0.0801700
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Table 3.30 Numerical solution by classical methods and comparison with the exact

solution (for ¢ = 10)

0.1 0.0000763 0.0000576  0.1186109866  667081.1874 17.61750
0.2  0.0001299 0.0001902  0.4461962517 1333955.1189 33.69333
0.3 0.0003589 0.0005676  3.8003366781 1999860.1189 46.78583
0.4 0.0009779 0.0016654 79.89147273  2661970.7366 55.65333
0.5  0.0026590 0.0048331 1880.3539472  3310585.4201 59.35417
0.6 0.0072289 0.0137488  41642.365193  3914127.8659 57.34667
0.7  0.0196640 0.0374013  878764.64189 4374578.5342 4958917
0.8 0.0537303 0.0936540  18064027.967 44067244178 36.64000
0.9 0.1521140 0.2189270  366613074.02 3290268.6374 19.75750
Table 3.31 Comparison of absolute errors (for ¢ = 10)
Proposed Method Classical Methods
X GA IPA GA-PS ADM-RKM ADM MHPM YIM
0.1 2.51E-04 5.74E-04 1.96E-05 1.87E-05 6.67E+H05 1.76E+01 1.19E-01
02 192E-04 2.60E-04 2.67E-04 6.03E-05 1.33E+06 3.37E+01 4.46E-01
03 2.62E-04 1.99E-04 5.226-04 2.09E-04 2 OOE+06 4.68E+01 3 80E+00
0.4  S97E-04  3.47E-04 8.76E-04 6.88E-04 2 66E+06 5.57E+01 7.99E+H01
0.5  173E-03 1.35E-03 1.31E-03 2.17E-03 3.31E+06 5.94E+01 1.88E+03
0.6  5.12E-03 3.25E-03 4.71E-03 6.52£-03 3.91E+06 5. T3E401 4.16E+04
0.7  1.48E-(2 1.00E-02 1.34E-02 1.77E-02 4.38E+06 4,96E+01 8.79E+05
0.8  417E-02 2 31E-02 3.83E-02 3,99E-02 4 41E+06 3,66E+01 1.81E+07
0.9  1.20E-01 8.BOE-02 1.12E-0} 6.68E-02 329E+06 1.96E+01 3.67E+08
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3.3.3 DUFFING VAN DER POL OSCILLATOR

Duffing van der pol (DVP) oscillator is one of the most extensively studied dynamical
system, which can be used as a model in engineering, electronics, physics, biology,
neurology, and many other disciplines [107), [108], [109],. Moreover the chaotic
behavior and coupling of the Duffing van der pol oscillator (DVP) makes it useful in
applications, such as chaos communication systems, synchronization in communication
engineering, image processing, electrical and automation engineering {107}, [110].

The DVP oscillator investigated in this dissertation is given by the following second

order NODE [111}.

y'(x) = (1 =y )y’ + ax(t) + fy*(x) = g(f.0,x) (331)

where g(f,w,t) = f cos{wt), which represents the periodic excitation function for a
forced DVP oscillator, for a force-free Duffing van der pol oscillator g(f, w,t) = 0.
is the angular frequency of the driving force, f is the amplitude of the excitation, g > 0
is the damping parameter of the system, while a and # are constant parameters.

The DVP oscillator equation has three main physically fascinating situations, (a) single-
well (@ > 0, B > 0), (b) double-well (¢ <0, § > 0), and (c¢) double- hump (c > 0, B <0)
1111,

Many authors have investigated solution of DVP oscillator from different perspectives,
and in this regard many methods have been utilized. Among many authors, Cordshooli
and Vahidi [112] used ADM, Chen and Liu [113] applied homotopy analysis method

(HAM) to study the limit cycle of DVP oscillator, Sajadi et al. [114] used HPM and VIM
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to investigate the problem of single-well, double-well and double-hump of DVP
oscillator. Khan et al. {115] studied the farce-free DVP equation using modified version
of homotopy pertubation method (NHPM).
Keeping in view the importance of DVP oscillator, we aim to investigate the solution of
the DVP oscillator using the proposcd heuristic computation approach. Further to exploit
the application of HGA the force-free and forced DVP oscillator problems and its three
special situations such as single-well, double-well, and double- hump are studied. The
effectiveness and reliability of the proposed method are illustrated in comparison to some
well-known classical approximate analytical and numerical methods.
Example 1: Consider the forced DVP oscillator given by (3.31) with the initial
conditions y¥(0) = 1, y'(0) = 0, and the values of parameters as follows {114].

a) a=0.5, =05, p=0.1, ©=0.79, £=0.5 o> 0, p > 0 (single-well sitnation)

b) a=-0.5,B=0.5, p=0.1, ©=0.79, £=0.5 <0, B> 0 (double- well situation)

¢) a=0.5,8=-05 p=0.1, =0.79, £=0.5 a«> 0, B <0 (double-hump situation}
The approximate solution is obtained in the domain x € [0, 1] with a step of 0.1 and m =
10. To apply the proposed method fitness function for each of the three cases is
formulated. For instance the fitness function for single well situation is given as follows.

11
1

& =7 E (v"(x) = 0.1(1 = yB)y + 0.5y" (%) + 0.5y3(xp)
11 s (3.32)

- 0.5C08(0.79x5))2 + % ((}’(0) -1)%+ (Y'(O))z)
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Similarly fitness functions for double well and double hump are formulated. GA, IPA,
and hvbrid scteme GA-IPA aré' used to solve the minimization problem corresponding to
each case to find the best values of unknown parameters(@y, ..., @yg; 81, v, Byo; €1, v C10)-
The parameters settings used for the implementation of the algorithms are given in Table
3.32 and Table 3.33 for GA and IPA respectively. Further the approximate solution is

obtained for x € {0,1].

Table 3.32 Parameter values and settings of GA for DVP oscillator (example 1) -

Value/Setting
Parameter Name Single well Double well Double hump
Population Size - 240 240 240
Chromosome Size 30 30 30
Creation function Uniform Uniform Uniform
Fitness scaling function Proportional - Proportional Proportional

Stochastic Stochastic Remainder

Selection function Uniform uniform

Adaptive feasible Adaptive
Mutation function Adapiive feasible feasible
Crossover function Heuristic Heuristic Heuristic
Crossover fraction 0.6 0.8 0.6
Reproduction elite count 2 3 3
Migration direction Both Forward Both
No. of generations 1000 1500 1500
Function tolerance le-20 le-22 le-24
Bounds (-10,10] [~10,10) (-20,20]

The values of unknown parameters achieved by the algorithms are provided in Table
3.34, Table 3.35, and Table 3.36 for single-well, double-well, and double-hump situations

respectively.
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Table 3.33 Parameter values and settings of IPA for DVP oscillator (example 1)

Value/Setting

Parameter Name Single well Double well Double hump

Start point Random/best Random/best Random/best
chromosome from  chromosome from  chromosome from GA
GA GA
Maximum iterations 1000 1000 1000
Maximum function 200000 60000 150000
evaluations I
Function tolerance 1e-20 le-18 le-22
Derivative type Forward Forward Central differences
differences differences

Hessian BFGS BFGS BFGS
Subproblem algorithm 1d} factorization Idl factorization 1dl factorization

Table 3.34 Optimal values of unknown parameters (single-weil)

GA IPA GA-TPA
i a; b o & b i q; b; €
1 -12659 1.0928 25220 -3.3665 -0.6959 -1.4886 -1.5957 08992 -2.1621
2 -0.0810 -2.6850 090651 -04120 -0.1052 0.2921 04326 -1.7698 1.0654
3 16722 -1.0819 1.7361 -0.2152 -0.6109 -0.7739 11261 -0.8825 1.7507
4 -0.0940 -3.1047 -0.6228 -0.5178 0.5514 -0.6724 -0.0252 -2.007% -0.8485
5 04393 1.8360 -09288 0.8251 -1.3982 0.6871 0.0000 09947  -0.5034
6 17550 1.8%84  3.1466 -0.2017 14037 3.1358 09758 17730 17857
7 00057 -04851 02978 0.1842 00729 -22518 00722 -0.3246 0.2143
8§ -14339 -03037 4.6513 1.2980 10659 04704 -0.7680 -0.0419 29356
9 09572 04222 -1.4989 26753 06193 -1.0091 05494 -0.184) .1.1014 |
10 -0.7418  -1.3007 1.0751 1.7129  -0.B858 3.1321 - -0.6217 -1.4058 0.5313
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Table 3.35 Optimal values of unknown parameters (double-weil)

GA _TPA GA-IPA

g by ) a; by ¢ @ by ¢

I -L1064 05200 02427 28392 09916 -2.5073 -02841 -0.2368 0.2452

2 2.0328 12182 24292 22350 -1.0415 -0.5402  0.6256 11292  0.7149

3 22182 0.8602 28779 0.6521 0.2876 1.6866 12648  -0.6402 -1.0964
4 02162 1.2268 -14041 -1.5160 1.1629 -L1019 -0.0425 0.5539 -0.63%6
5 03778 -1.4876 25962 -1.7064 0.1104 -0.8143 05624 -1.6808 0.7901

6 -23095 03318 -1.4263 08760 14383 -0.0927 -1.1647 05725 -0.6754
7 -0.7805  1.9331 1.5199 -0.6281 02778 0.3370 027126  -0.1679 1.5727

8 14112 15310 38129 -0.15392 1.0519 07380 -1.0453 13442 1.5174
9 24571 1.3904  -19188 3.6263  1.3949 -1..8049 1.5484 1.6832 .2.2322
10 22683 -1.5445 337714 0.738 1.2720 04530 1.7858  -1.0023 29674

Table 3.36 Optimal values of unknown parameters {double-hump)
GA IPA GA-TPA

i a; b; Ci a; b; Ci a; b, (]

1 1.1929 07118 1.043%3 38178 0.1871 -3.3957 1.2406 -0.7222 1.0955
2 20498 0.1176 -0.1452 53321 1418  -3.2507  2.1829 0.1944  .0.1591
3 00017 43052 1.5300 -2.1584 -3.0855 7.7026 0.0100 4,5949 1.6283
4 15534  1.609% -1.8847 -1.3983 -0.569% 1.0850 1.6996 1.587F  -2.1010
5 -1.5118 -0.6555 00933 21968 -0.7480 -0.4469 -1.6212 -0.6521 01255
6 14405  -1.0716 17971 21958  (.0615 39974 14824  -10839 1914
7 -13925 16797 20564  -1.7812 -09191 14696 -1.4521 1L.7219  1.9197
8 02457 -1.3267 20866 2.5775  0.7387 09743 02035 -1.4070 22227
9 25294 24623 53330 89235 07729 25057 27916 25695 -5.8750
10 -0.4822 20900 52569 02738 -0.5004 -13017 -04838 21950 56379

The values of parameters from Table 3.34, Table 3.35 and Table 3.36 are used in (3.4) to

obtain the numerical solutions for each case at any desired value in the interval [0,1]. The

numerical results obtained by the proposed method with GA and GA-IPA for the three

situations, single-well, double-well, and double-hump are presented in Table 3.37, Table

3.38, and Table 3.39 respectively.
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Since there isn’t exact solution available to this problem, therefore fourth-order Runge-
Kutta (RK4) method has been used for comparing the results. From the comparison of
numerical results it can be clearly seen that the proposed method yields the approximate
solutions for single-well, double-well, and double hump situations of DVP osciliator with
significantly greater accuracy with an average absolute error of 9.29E-07, 6.03E-07, and
7.31E-07 for singie-well, double-well, and double-hump respectively.

Furthermore in Table 3.40 we give a comparison of numerical solutions between the
proposed method and the classical methods HPM and VIM reported in [114] at various
values of x. The comparison of numerical solutions clearly shows that the proposed

method is more accurate than HPM and VIM.

Table 3.37 Comparison of numerical solution (for single-well)

Proposed Absolute error
method y(x) 1YRKa = ¥ ()|

x Yrica GA GA-IPA GA GA-1PA
0.0  1.000000 1.000003 1.000000 3.49E-06 8.33E-08
0.1 0.997503 0.997506 0.997503 3.53E-06 5.09E-08
0.2 0990045 0.99004% 0.990045 3.64E-06 4.06E-07
0.3 0977726 0.977729 0.977725 3.22E-06 6.21E-07
0.4 0960702 0.960705 0.960702 2.85E-06 7.15E-07
0.5 0939183 0.939186 0.939182 2.80E-06 9.53E-07
0.6 0913415 0.913418 0.913414 2.60E-06 1.35E-06
0.7 0.883673 0.883676 0.883672 2.01E-06 1.60E-06
0.8  0.850249 0.850251 0.850248 1.43E-06 1.48E-06
0.9 0.813436 0.813437 0.813435 1.15E-06 1.37E-06
1.0 0.773522 0.773523 0.773521 6.63E-07 L75E-06
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Table 3.38 Comparison of numerical solution (for double-well}

Proposed Absolute error
method y(x) |YVexs — ¥(x)]

b3 _ VpKa GA GA-IPA GA GA-IPA
0.0 1.000000 0.999998 1.000000 1.90E-06 3.08E-09
0.1 1.002497 1.002495 1.002497 1.96E-06 9.84E-08
0.2  1.009945 1.009945 1.009945 -1.45E-08 3.69E-07
0.3  1.022222 1.022224 1.022221 -2.46E-06 4.80E-07
0.4  1.039115 1.039118 1.039114 -3.43E-06 4.09E-07
0.5  1.060322 1.060325 1.060322 -2.87E-06 4 47E-07
0.6  1.085449 1.085451 1.085443 -2.41E-06 7.39E-07
0.7  1.114001 1.114005 1.114000 -3.65E-06 1.05E-06
0.8  1.145385 1.145391 1.145384 -6.43E-06 1.06E-06
0.9  1.178%07 1.178915 1.178906 -8.54E-06 9.00E-07
1.0 1.213778 1.213787 1.213777 -8.41E-06 1.08E-06

Table 3.39 Comparison for numerical solution (for double-hump)
Proposed Absolute error
mefhod y(x) |ygxe = ¥ (2]

X VRK4 GA GA-IPA GA GA-IPA
0.0  1.000000 0.999997 1.000000 2.57E-06 5.97E-09
0.1 1.002501 1.002498 1.002501 2.61E-06 1.09E-07
0.2 1.010012 1.010010 1.010012 2.49E-06 3.27E-07
0.3 1022563 1.022560 1.022563 2.71E-06 3.87E-07
0.4  1.040203 1.040199 1.040202 3.18E-06 4 51E-07
0.5  1.063007 1.063004 1.063007 3.28E-06 6.90E-07
0.6  1.091089 1.091086 1.091088 2.92E-06 9.44E-07
0.7 1124605  1.124602 1.124604 3.00E-06 1.03E-06
0.8 1.163775 1.163770 1.163774 4 45E-06 1.11E-06
0.9  1.208901 1.208895 1.208899 6.36E-06 1.42E-06
1.0 1.26039%4 1.260388 1.260392 6.33E-06 1.57E-06
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Table 3.40 Comparison numerical solutions and absolute errors for DVP oscillator

(example 1)
Absolute errors

X RK-4 GA-IPA HPM VIM  GA-IPA __ HPM VIM

02 099004 099004  0.99004  0.99004 0.0 0.0 0.0
= 04 096070 056070  0.96075  0.96070 0.0 5.0E-05 0.0
E, 06 091341 091341 091383  0.91341 0.0 4 2E-04 0.0
%‘” 0.8 085024 0.85024  0.85216  0.85025 0.0 19E-03  1.0E-05

L0 077352 077352  0.77973  0.77353 0.0 62E-03  1.0E-05

02 100994 100994  1.00994  1.00994 0.0 0.0 0.0
= 04 103911 103911  1.03918  1.03911 0.0 7.0E-05 0.0
E 06 108544 108544  1.08621  1.08544 0.0 7.7E-04 0.0
E 0.8  1.14538  1.14538  1.14937  1.14539 0.0 40E-03  10E-05

10 121377 121377 122785 121382 0.0 14E-02  5.0E-05

0.1 100250 1.00250  1.00250  1.00250 0.0 0.0 0.0
£ 02 101001 101001  1.01001  1.01001 0.0 0.0 0.0
% 0.5 106300 1.06300  1.06296  1.06300 0.0 4.0E-05 0.0
g 075 114346  1.14346  1.14209  1.14346 0.0 1.3E-03 0.0
~ 1.0 126039 126039 125055 126035 0.0 10.0E-03  4.0E-05

Example 2: Consider the following particular case of force-free DVP oscillator equation

taken from [1185]

4 1
YO +(3+37)y 43y +y0 =0 39

with Initial conditions,
y(0) = ~0.28868, y(0) = 0.12

The approximate solution of (3.33) is obtained using the proposed method in the interval

x € [0,1]. Converting (3.33) into an equivalent global error minimization problem by

formulating its fitness function given below.
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i1 2
1 4 1
g = H; (y"(x,-) — (-3- + 3y2(xi)) v+ '373”("‘) + J’s(xi))

(3.34)

+ % ((y(0) + 0.28868)* + (¥'(0) — 0.12)?)

The minimization problem given by (3.34) is solved using GA, IPA, and GA-IPA to

achieve the best values of unknown parameters. The algorithms are executed according to

the prescribed parameters values and settings given in Table 3.41.

Table 3.41 Parameter values and settings of the algorithms for DVP oscillator (example 2)

GA IPA

Parameters Value/Settings Parameters Value/Settings

Population size 240 Start point Random/ best values
from GA
Chromosome size 30 Derivative type Forward difference
Selection function Stochastic uniform | Hessian BFGS
Mutation function Adaptive feasible. | Subproblem algorithm Ldl factorization
Crossover function Heuristic Maximum function 200000
| evaluations

Reproduction 0.6 Nonlinear consteaint le-10
crossover fraction tolerance
Function tolerance le-24 Function tolerance le-24
No. of generations 1500 Maximum iterations 1000
Bounds -10,+10 Bounds -10, +10

The unknown parameters achieved by the algorithms are given in Table 3.42, using these

parameter values in (3.4) one can find the solution of (3.34) at any value of x in the

solution domain. For the purpose of comparison with other methods the solution of (3.34)

obtained using GA-IPA at different values of x in the interval [0,0.1] are presented in

Table 3.43, also the solutions by RK4, NHPM, and DTM reported in {115] are provided.

M
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To show the efficiencv and accuracy of the proposed method absolute errors of the
proposed method, NHPM, and DTM, computed relative to the RK4 method are provided
in Table 3.44.

Table 3.42 Optimal values of unknown parameters for DVP oscillator (example 2)

GA IPA GA-IPA

J a; b; £ ay by ¢ a4 b; (i

1 -19131 00218 12990 -14770 -0.7548 -1.1181 -0.7596 -0.1201 0.7729
2 17054 09885 0.1404  0.0858 06864 03618 02300 13452 -0.0264
30 14322 1.3488 26614 -D.1268 14177 03862 1.0234 12464 22217
4 07786 -02738 1.1724  0.1645 -1.9591 -09329 00264 02895 05620
5 03101 -06118 -1.1765 -02491 -1.6587 -1.2621 0.1240 -0.3583 .-0.5593
6 -0.8639 1.0202 1.8268 -D.1192 -0.0368 -0.5265 -0.4020 1.1062 03713
7 00784 -0.6968 -0.2652 0.0011 07248 03644  0.0995 03095 -0.1391
8  -1.5082  0.9693 00739 04054 -09014 -1.1719 -1.2477 00225 02815
9 10304 01999 -13700 00226 17136 -0.2219 04482 07606  -0.7004
10 -0.9040 -0.5012 -0.1366  0.0448 -0.7260 -0.0224 -0.2430 05741  -0.1272

The comparison of absolute errors clearly illustrates the competency of the proposed
method. The results obtained from the proposed method are found in an excellent
agreement with the numerical method based on RK4 and more accurate than DTM and
NHPM.

The higher accuracy of the proposed method can be best ascertained by comparing the
absolute errors in Table 3.44, as it is found that DTM provid‘_es significantly high absolute
errors with an average absolute ervor of 1.48E-4, NHPM gives an average absolute error
of 8.37E-4, whilé the average absolute error yielded by the proposed method is 2.24E-8
in the interval x € [0,.1]). Furthermore the improved performance of hybrid scheme GA-

IPA is quite significant from the results.

62




Table 3.43 Comparison of numerical results for DVP oscillator (example 2}

Proposed method

Classical methods

x RK4 GA GA-IPA NHPM DTM
0.0 -0.28868000 -0.28868030 -0.28867998 -0.28868000  -0.28868000
0.01 -0.28748349 -0.28748376 -0.28748346 -0.28748347  -0.28748523
0.02 -0.28629387 -0.28629413 -0.28629384 -0.28629386  -0.28630661
0.03 -0.28511110 -0.28511135 -0.28511107 -0.28511108  -0.28514429
0.04 -0.28393510 -0.28393534 -0.28393507 -0.28393509  -0.28399838
0.05 -0.28276583 -0.28276606 -0.28276580 -0.28044716  -0.28286905
0.06 -028160320 -0.28160343 -0.28160318 -0.27929767  -0.28175642
0.07 -0.28044718 -0.28044740 -0.28044716 -0.27814566  -0.28066066
0.08 -0.2792976%9 -0.27929791 -0.27929768 -0.27701806  -0.27951892
0.09 -0.27815468 -0.27815490 -0.27815468 -0.27815466  -0.27852038
0.1 -0.27701808 -0.27701831 -0.27701811 -0.27701806  -0.27747621
Table 3.44 Comparison of absolute errors for DVP oscillator (example 2)
Proposed method Classical methods
X GA IPA GA-IPA NHPM DTM

0.0  297E-07 1.92E-08 1.56E-08 0.00E+00 0.00E+00

001 270E-07 1.12E-09 3.01E-08 1.75E-08 1.73E-06

0.02 259E-07 1.00E-10 2.95E-08 1.75E-08 1.27E-05

0.03  248E-07 4.00E-1¢ 2.97E-08 1.74E-08 3.32E-05

004 239E-07 1.32E-09 2,96E-08 1.72E-08 6.33E-05

0.05 231E-07 6.02E-09 2.79E-08 2.32E-03 1.03E-04

0.06 225E-07 143E-08 2.39E-08 2.31E-03 1.53E-04

0.07 222E-07 2.64E-08 1.68E-08 2.30E-03 2.13E-04

0.08 222E-07 4.30E-08 .6.03]3-09 228E-03  2.21E-04

0.09 225E-07 6.41E-08 9.00E-09 1.71E-08 3.66E-04

0.1 2.32E-07  8.97E-08 2.86E-08 1.68E-08 4.58E-04
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33.4 NONLINEAR SINGULAR BOUNDRY VALUE PROBLEMS ARISING IN
PHYSIOLOGY

The numerical treatment of singular boundary value problems (BVPs) has been considered by
many authors due to their substantial significance in engineering and science such as gas
dynamics, atomic structures, atomic calculations, chemical reactions etc. [82].

Motivated by the potential applications of the nonlinear singular boundary value problems and
the real challenge to solve such problems, we aim to investigate the numerical solution of
nonlinear singular BYPs of the following form [116] using th'.;: proposed method.

x - .
V'@ +{a+l)y@ = fy), 0sxs1 (3.35)

my(0) + 1y (0} =1, (3.36)
y(1) + &Y' (1) =y, (3.37)

The assumptions normally applied on f(x, y) are that it is continuous, % exists and is

continuous and -z—; >0 ,VY0<x<1. The singular BVP (3.35) — (3.37) occurs in

numerous applications, especially with { = 0,1,2 and a = 0, in the study of many tumor
growth problems [117], [118], with linear f(x,y) and with nonlinear f(x,y) of the

following form.

= =Y (3.38)
f =G y+k’n>0‘k>0 |

and with ! = 2 and a = 0 in the study of steady state oxygen diffusion in a spherical cell
with Michaelis-Menten uptake kinetics [119], [120], [121], [122].
A similar problem for I = 2 and a = 0 also arises in the study of the distribution of heat

sources in the human head [123], [124], [125] in which
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| f,yy=fy) =—ne™¥ n>0k>0 (3.39)

A glance at the literature reveals that the BVPs of the form (3.35) have been given much
attention and many analytical and numerical methods including non-polynomial cubic
spline method (NPCSM) [116], finite difference method (FDM) [126], modified
decomposition combined with B-spline collocation technique (MDM-BSC) [127], B-
spline method (BSF) [128), cubic spline method (CSM) [129], nenclassical pseudo-
spectral method (NCPSM) [130] have been utilized for their numencal solution.

We shall consider some special forms of (3.34) and obtain their numerical solutions by

the proposed method to show its reliability and potency.

Example 1: Consider the following special case of (3.35) which arises in thermal

explosions [127], [128]

1 (3.40)
" B
¥y + g e
subject to the boundary conditions

y(@=0, y(1}=0 (3.41)

The exact solution of (3.40) is given by
c+1 (3.42)

Vexact(x) =21n (cxz s 1)

where ¢ = 3 - 2v/2

The approximate numerical solution y(x) of (3.40} is obtained in the domain x € [0, 1]
using the proposed method by transforming the given problem into an equivalent global
error minimization problem by formulating its fitness function ¢. Assuming the number

of basis functions m = 10 the fimess function is developed as follows.
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(3.43)

(3.44)

(s +e) +5(0@) + GWY) G

The fitness function given by (3.45) is minimized by employing the algorithms GA, IPA,

ASA and two hybrid schemes GA-IPA and GA-ASA for the determination of the optimal

values of unknown adjustable parameters (a;, b; , ;).

The parameter values and settings used for the implementation of the algorithms GA,

IPA, GA-IPA and GA-ASA are given in Table 3.45.

Table 3.45 Parameter values and settings of algorithms for physiology problem (example 1)

GA ASA IPA
Parameter  Value/Settings | Parameter Value/Settings | Parameter Value/Settings
Name Name Name
Population 240 Start point  Optimal values | Start point Optimal values
size from GA from GA
Chromosome 30 Maximum 150000 Maximum 150000
size function function
evaluations evaluations
Selection Stochastic Derivative Central
function uniform Minimum le-8 type differences
perturbation-
Mutation Adaptive , Hessian BFGS
function feasible Maximum 0.1
perturbation
Crossover Heuristic Nonlinear le-18 Nenlinear le-18
function constraint constraint
tolerance tolerance
Crossover 0.8 X tolerance le-6 X le-10
fraction tolerance
No. of 2000 Maximum 400 Maximum 1000
generations iterations iterations
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The size of the chromosome i.e the number of unknown adjustable parameters (a;, b , ¢;)
are chosen equal to 30. The values of these unknown adjustable paramelters are bounded
between -15 and + 15.

The algorithms are executed according to the prescribed settings in Table 3.45 to achieve
the minimum fitness. The optimal values of the unknown adjustable parameters
corresponding to the minimum fitness are acquired.

The optimal values achieved by the hybrid schemes GA-IPA and GA-ASA are given in
Table 3.46, while the values of unknown parameters achieved by IPA and ASA are
provided in Table 3.47 respectively. Thé optimal values of the parameters are used in
(3.4) and consequently the approximate numerical solution y(x)of example 1 is
cbtained.

Table 3.46 Optimal values of unknown parameters acquired by hybrid schemes for
physiology problem (example 1)

GA-IPA GA-ASA
i a; b; ¢ a b; Fof
1 -0.8811 0.1759 2.6939 -1.2227 0.1892 8.2529
2 -1.9142 1.0248 -0.2728 -2.5235 09329 -1,2987
3 0.9019 1.5552 0.2088 0.0937 2.9289 1.2779
4 -1.9473 0.2465 28167 -3.1845 0.0323 7.1516
5 0.3192 03115 2.5890 0.8419 0.6241 6.0167
6 0.3388 1.4130 2.1349 0.5436 2.6099 4.6536
7 1.8157 -1.1190 2.5583 2.1806 -1.2464 5.6357
8 0.5979 1.4398 0.8316 1.0886 1.6358 0.6876
9 -0.9108 -2.0555 -2.2809 -1.1748 -3.9638 -5.3264
10 0.9210 -0.5012 1.1042 L0171 -0.8336 22371
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The numerical resulis obtained by the proposed method are given in Table 3.48. Further
for the accuracy of numerical results and the potency of the proposed method, absolute
errors obtained by the proposed method are also presented in Table 3.49.

The comparisons are made with the exact solutions and the absolute errors obtained by
the classical method MDM-BSC used in [127], further in [127] the authors used two
different approaches of their method MDM-BSC, therefore the absolute emors
corresponding to both the approaches are given for the purpose of comparison. It is quite
evident from comparison of Table 3.49 that the absolute errclars relative to the exact
solutions by the proposed method with hybrid schemes GA-IPA and GA-ASA are much
smaller than the errors by the approach I, whereas they are relatively smaller than
approach Il of MDM-BSC used in [127]. This means that the proposed method yields the
approximate solutions more accurately than MDM-BSC.

Table 3.47 Optimal values of unknown parameters acquired by GA, IPA, and ASA for
physiology problem (example 1)

GA IPA ASA
b; € G b ¢ a; b; C;
13785  0.1894  3.2529  1.0795 0.1077  -0.7024 0.1764 _ 0.8695  0.1437

K

—

2 -25646 09838 -1.6204 -2.0467 -06301 -1.3108 -0.70i6 -1.4298 -1.3980
3 -00133 29216 13046 -0.0374 04182 07255 -1.2910 09288 -1.9555
4 -36260 00321 7.1516 1.5718 -0.1663 -0.2336 -0.2463 -0.9022 -1.1689
5 0986t 06213 60177 -0.1613 -0.4959 -1.0897 -0.7336¢ -1.0942 -1.6778
6 06469 25866 46814 -3.9504 0.8494 01398 02519 04502 -1.6248
724711 -1.0249 56964 02630 -0.5200 -0.6565 -0.1269 -0.0376 -0.5292
& 1035 18424 09401 11727 -00055 -0.6617 -19183 13167 -3.0009
9 -1.1208 -3.9339 -53886 -4.0539 -1.0826 -0.8891 12639 -1.3530 1.1566
10 1.0204 -0.6813 22690 25942 -0.8618 -0.0224 -0.2430 0.5741 -0.1272
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Table 3.48 Comparison of numerical resuits for physiology problem (example 1)

Proposed method y(x) _
X Yoraos (%) GA IPA ASA GA-IPA GA-ASA
0 0316694 0316666 0.316724 0316690 0.316692 0.316696

0.1 0313266 0313235 0.313289 0.313263 0313264 0.313267
0.2 0303015 0302984 0303037 0.303012 0.303014 0.303016
0.3 0286047 0.286017 0.286066 0.286045 0.286046 0.286048
0.4 0262531 0262502 0.262546 0.262529 0262530 0.262532
0.5 0.232697 0232667 0.232709 0.232695 0.232696 0.232697 |
0.6 0.196827 0.196796 0.196837 0.196825 0.196826 0.196826
0.7 0.155248 0.155219 0.15525% 0.155246 0.155248 0.155247
0.2 0.108323 0.108297 0.108335 0.108321 0.108322 0.108322
0.9 0.056439 0.056416 0.056451 0.056437 0.056438 0.056438
1.0 0.000000 -0.000020 0.000011 -0.000001 0.000000 0.000000

Moreover in Table 3.50 a comparison of maximum absolute errors obtained by the
proposed method are made with maximum absolute errors obtained by MDM-BC {127]
and BSM [128], for different nmnﬁers of mesh points (N and h). It may be worth to
mention here that we have solved the given example (3.41) in the interval [0, 1] with a
step of 0.1, which means total number of mesh points N = 11 in our case. The maximum
absolute error obtained by the proposed method with hybrid schemes GA-IPA and GA-
ASA are 3.99E-06 and 2.33E-06 respectively, while the maximum absolute errors by
MDM-BSC (approach [) and MDM-BSC (approach II) are 1.05E-05 with N=20 and
2.00E-06 with N=20 respectively, also the maximum absolute errors of BSM are 3.50E-
06 with h=1/60 and 1.55E;06 with h=1/90 respectively. One can clearly see from the

comparison that the proposed method with fewer number of mesh points yield better
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accuracy than MDM-BSC and BSM, it can be henes inferred that the propose'd method is

much efficient and accurate.

Table 3.49 Comparison of absolute errors for physiology problem (example 1)

Proposed method MDM-BSC
Approach 1 Approach I
X GA GA-IPA  GA-ASA  (withN=20) (with N=20)
0.0 2.87E-05 3.99E-06 -2.13E-06 1.05E-05 2.00E-06
0.1 3.04E-05 3.26E-06 -1.36E-06 1.05E-05 1.99E-06
0.2  3.13E-05 3.05E-06 -6.17E-07 1.03E-05 1.97E-06
0.3 299E-05 265E-06 -9.22E-07 1.02E-05 1.94E-06
04 291E-05 217E-06 -9.39E-07 9.93E-06 1.83E-06
0.5 298E-05 1.94E-06 -2.89E-07 9.62E-06 1.78E-06
0.6 3.04E-05 2.05E-06 5.00E-07 6.93E-06 1.67E-06
0.7 293B-05 2.17E-06 8.25E-07 4,75E-06 1.34E-06
0.8 262E-05 1.93E-06 5.64E-07 2.93E-06 9.20E-07
0.9 226E-05 136E-06 129E-07 1.37E-06 4.57E-07
1.0 2.04E-05 9.65E-07 6.22E-08 0 0

Table 3.50 Comparison of maximum absolute errors for physiology problem (example 1)

Proposed Method MDM-BSC MDM-BSC BSM
{Approach I) {Approach I1)
3.13E-5  (GA) 1.05E-5 (N=5) 322E-5(N=5)  3.16E-5 (h=20)
292E.5  (IPA) 1.0SE-S(N=10)  8.06E-6 (N=10) 7.87E-6-(h=1/40)
237E-6  (ASA) L.OSE-5 (N=20)  2.00E-6 (N=20) 3.50E-6 (h=1/60)
3.99E-6 (GA-IPA) ; . 1.55E-6 (h=1/90)
2.13E-6 {GA-ASA) - - 4.97E-7 (h=1/161)

il
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Example 2: We consider the following nonlinear singular boundary value problem [116]

S5x3(5x%¢Y —x — [ —4) (3.46)
4 + x5

v+ (145)y @ =

with the boundary conditions

1 3.47
y0)y=0, yO)+5y'(D= '"(g) -5 (3.47)

To obtain the approximate numerical solution of (3.46) subject the boundary conditions
(3.47) using the proposed method its fitness function with m = 10 is developed as

follows.

& = %2 (y”(x,;) + (1 + xii)y’(xs)

Sx?(Sx?ey - = - 4-) :
4+ x7

(3.48)

2
& == (@) + () + 53’ V) = tn(2) + 5 (3.49)
2 5

=g +¢g (3.50)

The algorithms GA, IPA, GA-IPA and GA-ASA are executed with the same parameter
values and settings used for example 1 and prescribed in Table 3.45 for the minimization
of (3.50). To prove the effectiveness and viability of the proposed method the
approximate numerical solutions are obtained for various values of the parameter

(1=0.251,2,and 8). The fitness function corresponding to each value of 7 is

constructed and the minimization is performed using the above mentioned algorithms,
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The optimal values of the unknown parameters are achieved:corresponding to each valuc
of i, which consequently provides the solution using (3.4).

In Table 3.51, Table 3.52, Table 3.53, and Table 3.54, the vatues of unknown parameters
for { =025,1=1,1=2, and I = 8 acquired by GA, GA-IPA, and GA-ASA are given
respectively. Further in Table 3.55, Table 3.56, Table 3.57, and Table 3.58 the values of
parameters for / = 025,/ =1,/ =2, and / = 8 acquired by IPA and ASA are given
respectively.

The approximate numerical solutions obtained by the proposed method with hybrid
schemes for / = 0.25, 1 are provided in Table 3.59 and for / = 2, 8 in Table 3.60
respectively and compared with the exact solutions. Comparisons show that the results
are in a good agreement with the exact solutions.

Furthermore the comparison of the maximum absolute errors between the proposed
method and the standard numerical methods including finite difference method (FDM )
[126] and non-polynomial cubic spline method (NPCSM) [116] are presented in Table
3.61 for /=025 and ! =1 and in Table 3.62 for/ =2 and ! = 8 respectively. From the
comparison it is seen that the proposed method provides more accurate solutions with
fewer mesh points as compared to FDM and NPCSM. For example the maximum
absolute errors obtained by FDM and NPCSM for / = 0.25 and N = 64 are 7.64E-5 and
9.20E-5 respectively, whereas our method gives maximum absolute error of 7.17E-5 for {
=0.25 with total steps N = 11. Similarly the comparison of other values in Table 3.61 and
Table 3.62 show that our method is more accurate than FDM and NPCSM even with less
number of mesh points. More importantly our method is quite capable of providing the

solutions of the given problem at any point in the solution domain, and not only at the
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mesh points, whereas classical methods lack this feature. The comparison of numerical

results and absolute errors hence testify the effectiveness and reliability of the proposed

method.
Table 3.51 Optimal values of unknown parameters (for /= 0.25)
GA GA-IPA GA-ASA

i a; b; Gi @ by ¢ a by &

I 04645 -11.0029 -12.7637 20000 -2.5333 -2.0444 04645  -11.0029  -12.7637
2 -3.3333 21132 -5.3719 12860  0.628¢  -3.0862  -3.3332 21132 -5.3719
3 -0.1945 04747  -0.0423 07652  -0.8261 -0.4480 -0.1943 04747 -0.0424
4 34541 27010 37574 33632 19412 22402 34541 27010 37572
5 .54830 -149999  -138060 28175 19073  -2.6633 -54880 149999  -13.8060
6 -12864  -2.9748 26265 -0.7491  -3.0092 15960  -1.2865  -2.9750 2.6267
7 65630  -5.1595  -8.0904 25675 -1.6468 -2369% 63630  -51596  -8.0001
8 1.9884 2.4267 -3.9786  1.6710 33098  -2.9503 1.9884 2.4267 «53.9786
9 90556  -1.1570  -11.8681 -29193 -14379 -14352 -00556  -1.1570  -11.8681
10 -1.0514  -12376 100917 -05162 -D6235 27035 10514 12376  -10.0917

Table 3.52 Optimal values of unknown parameters (for / = 1}
GA GA-IFA GA-ASA

; a; b; < ﬂt b« a; by €

1 38195 -19143 02293  3.7882 -20878 12707 18965  -2.1341 2.9564
2 72250 -3.2295 64082  7.2667 34787 -6.1098  {(.3267 1.9719 -5.2003
3 49797 -1.9%6 7.1616 -4.6588 11020 74933 08850 1.2080 1.77717
4 31273 -1.3689 04379  -2.8993  -1.4443 00504 22760  2.8463 26211
5 45041 17432 10191 43725 25080 -20967 19020  3.3901 3,131
6 -19877  1.5358 05245 16835 11045 0.0682 07209  -1.1057 2.5836
7 00330  -5.6962 05521 00596 45078 13921 20803  -2.7215 1.8019
8 23172 1.049% 40610 23887  1.6406 43001 09292 [.8675 0.7355
$ 03648  -14280  -51585  0.3849  -1.4387 -5.1515 00021 03118  -1.2402
10 -3.4563 3.1205 -4.4838 -4.5847 25148 34766 48986 1.3781 -2.102%
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Table 3.53 Optimal values of unknown parameters (for [ = 2)

GA GA-IPA GA-ASA

i a b; ci a b ci g b Ci

1 -8.6140 16960 01481  -1.5719 -16444 -07302 -97449  1.6242 -1.5700

2 10170 53433 -L6950  -1.8035 13918  -1.5266 1.6474 29120 -1.3303

30 -3.1255 45555 .83842 35063 22638 -2.8817 27850  0.7339 -4.2018
4 34662 13151 76439 07128  1.8895 07040 1.2212  -1.5083 7.5182

5 -1.7994 70615 09825  -14399 26231 14387 08603  4.4232 0.8013

6 47603 5.95%0 -0.1783 -(.3132 04443 0.7348 5.0458 2.5000 1.4183

7 -0.5780  -02694 21789  1.2425 06745 00592 -0.6824  0.2961 -2.1216

8 26990 87355 16223 . 24579 13260 13594 31398 71871 4.7598
9 16005 44085  -3.1078 08418 09377 14212 28864 30900  -2.6822
10 -0.3619  -1.7673 49763  -2.1032 31070 28363 -1.7047  -0.4566 57473

Table 3.54 Optimal values of unknown parameters (for / = 8)
GA GA-TPA GA-ASA

i a; b; ¢ a; b; € a; b; €

1 02257  -1.1836 28669  -13239 -1.1273  0.0434 -0.7399 -1.5733 27228
2 B3734 34546 25224 14318 26117 -1.0620  0.8242 3.0552 25513
3 -07075 01457 15161  -1.0112 09984  0.6244 -1.0746 0.0356 1.3827
4 00419 22342 12315 04112 31178 06917 0.1894 22031 15957
5 -38394 09589  -4.1366 -4.0473  2.1213  -2.5848  -3.8033 12021 -4.0579
6 21366  -3.5035 49886 26130 -1.6064 22561  2.5461 3.0677  4.3265
7 12592 1.9825 53292 07952 10222  -0.0842  1.4097 2.5280 49714
3 0.6915 -0.9305 -2.9232  -1.0%8 04663  -0.83065  0.5381 0.4168 -2.8960
9 223620 44942 148668  -1.7548 32295 29002  -2.4955 -4.4851  14.8720
10 18242 0.3485 43434 -1.6845 00721  0.7767 -1.9805 0.2997 4.3166
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Table 3.55 Optimal values of unknown parameters acquired by IPA and ASA (for /= 0.23)

IPA ASA
a; b,‘_ Ci a; bi |
-5.0450 -2.1297 0.2688 -2.5341 0.55735 0.4658

—_—| .

2 07089  2.1228 04124  -6.4%18  0.2307 -3.6270
3 0.4363 0.0338 -5.1717 -1.6216  -2.8541 2.5707
4 20510 30286 27527 -12127 -0.3124 0.9431
S 37253 03941 -1.7940 14676  -0.2832 1.6961
6 1.6650 2.1654 3,9908 40139  -2.6245 3.6650
7 39611 23016 -0.1608 -0.5124  -0.0296 -1.1720
3 6.1221 21664 2.8072 21264  0.4966 -2.8326
9 -04042  0.6195 1.6191 -2.3181  -0.1038 2.7637
10 09155 39117 3.6583 -1.6515  -1.0750 -1.7132

‘Table 3.56 Optimal values of unknown parameters acquired by IPA and ASA (for/= 1)

IPA ASA
a; b; < a; b; Ci
1.4269 1.7359 27372 -0.6465 -0.3778 =2 2004

-

—

2 05171 0.6346  -0.5211  -1.6257 -0.7012 -4.3560
3 -3.5356 23600  -3.0655  -3.2384  2.8295 -3.9248
4 -0.83349%  -1.7210 1.0385 -2.6482 26118 2.3807
5 04766  0.0978 05076  -1.5857  0.7136 -1.5254
6 04918  -17178  -0.9725  -3.4426  -1.0424 -1.1269
7 0.0063  -0.8879  0.6653 -5.3317  0.8744 -8.9517
8 1.3780 0.0851 0.5231 0.2110 2.6660 -3.8604
9 -1.2440  0.6034  -2.0543 1.393%  -2.1289 2.0037
10 25210 -2.8455  2.6489 72126 0.6346 -1.7331
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Table 3.57 Optimal values of unknown parameters acquired by IPA and ASA (for!=2)

IPA ASA
i a; b; Cy a; b; Cy
1 1.2185 0.8865 -0.3997 -3.3992 2.9605 -4.0291

2 14334 -28795 11542 -4.0197 21469  -1.4973
3 1.4202 0.1907 07721 20958 -2.4289 2.6983
4 00849 02228 -15794 66361 00983  1.3600
3 0.4499 -0.3395 -1.0997 -0.4092 -1.8121 -2.1186
6. -1.5452 27385 -1.0849 -1.6187 14943 -2.6948
7 09775 05348 09554 09990 -5.4605 -5.7493
g -1.3872 -3.1154 27321 1.5214 0.4419 -8.0573
9 05762 -0.3566 -0.2574 -43467 22675  1.7185
10 -43952 24202 -33998 -09211 1.7231 -2.3386

Table 3.58 Optimal values of unknown parameters acquired by IPA and ASA (for [ = 8)

IPA - - ASA
a; b; Ci [t b; Ci
1.6413 2.1312 1.546%  -2.2039  2.8183 1.2797

—

—_—

2 0.5038 2.9201 -1.5619  -1.0631  0.3609 1.9999
3 1.3585 0.2000 -2.2557 5.7234 0.0890 -3.1640
4 0.6267  -1.7196 24872 3.5446  -2.7146 4.1850
5 14304  -1.6661  -1.2063  -0.5995  3.8796 -4.5984
6 -1LH030 -3.3340 29756 -0.4438  -1.2752 1.8647
7 -1.4255 0.5231 42091 26149 25180 -2.3338
3 -0.8620  -1.6547  -1.6612  -3.4821  -2.9503 -1.5066
9 -4.0077  2.3362 -3.2787  -1.5088 -2.6187 27029
10 12676 2.0930 2.0654 -1.0031 0.8921 =3.0921
76




Table 3.59 Comparison of numerical results (for I = 0.25, 1)

Proposed method

|yexact -y (x)l

x Yexact y(x)

[=0.25 =1 1=0.25 =1
0.0 -1.386294 -1.386223 -1.386291 7.17E-05 3.21E-06
01 -1.386297 -1.386232 -1.386296 6.47E-05 6.58E-07
02 -1.386374 -1.386316 -1.386377 5.80E-05 2.49E-06
03 -1.386902 -1.386849 -1.386907 526E-05 5.21E-06
04 -1.388851 -1.388803 -1.388858 4.83E-05 7.19E-06
0.5 -1.394077 -1.394032 -1.394085 447E-05 8.57E-06
0.6 -1.405548 -1.405507 -1.405558 4.13E-05 1.04E-05
0.7 -1.427453 -1.427415 -1.427465 3.85E-05 1.16E-05
0.8 -1465032 -1464995 -1.465044 3.65E-05 1.21E-05
0.9 -1.523987 -1.523953 -1.524000 3.41E-05 1.35E-05
1.0 -1.609438 -1.609405 -1.609452 3.28E-05 1.38E-05

Table 3.60 Comparison of numerical results (for /=2, 8)

Proposed method y(x) |Verace = y(x)|

X Yexact =2 [=8 I=2 =8
0.0 -1.386294  -1.38632 -1.386328 2.91E-05 3.35E-05
0.1 -1.386297 -1.38626 -1.386332 3.27E-05 3.47E-05
0.2 -1.386374  -1.38633 -1.386409 4.45E-05 3.46E-05
0.3 -1.386902  -1.38686 -1.386936 4.38E-05 3.47E-05
04  -1.388851 -1.3888 -1.388886 5.28E-05 3.46E-05
0.5 -1.3%94077  -1.39402 -1.394111 5.17E-05 3.45E~05
0.6 -1.405548 -1.4055 -1.405583 4.45E-05 3.48E-05
0.7  -1.427453  -1.42741 -1.427488 4.69E-05 3.46E-05
0.8 -1.465032  -1.46498 -1.465066 5.47E-05 3.44E-05
0.9  -1.523987  -1.52393 -1.524022 S5.27E-05 3.50E-05
1.0 -1.609438  -1.60939 -1.609472 4.67E-05 3.46E-05
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Table 3.61 Comparison of maximum absclute errors (for /=025, 1)

Other methods

Proposed method
(N=10) FDM NPCSM
I=0.25 =1 N (=025 =1 =025 =1
GA 1.36E-4 646E-4 | 16 1.17E-4 2.07E-4 146E-3  1.71E-3
IPA 1.10E-4  143E4 | 32 3.04E-4 187E4  3.68E-4 1.87E-4
ASA 142E-4 3.23E4 { 64 767E-5 3.88E-5 920E-5  1.96E-5
GA-IPA  7.17E-5 1.14E-5 | 128 192E-5 8.10E-5 230E-5  1.72E-5

Table 3.62 Comparison of maximum absolute (for /= 2, §)

Proposed method Other methods
(N=11) FDM NPCSM
=2 =8 N =2 iI=8 =2
GA 5.04E.2 1.11E-4 16 1.82E-3 7.71E-3 4.11E-3
IPA 126E-4 1.IE4 | 32 452E4 7.78E-5 9.76E-4
ASA 9.52E-5 142E-4 | 64 9.20E-5 7.05E-5  2.38E-4
GA-IPA  547E-5 647E-5 | 128 280E-5 645E-6  5.89E-5

Example 3: Consider the special case of (3.35) - (3.37), the non-linear heat conduction

model of the human head as follows [127], [128], [129], [130].

i 2 r
Y@ +oy () = e

with the following boundary conditions

i

y'(0) =0

yO+y(1) =0
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To apply the proposed method for obtaining the approximate numerical solution of this
problem its fitness function & is formulated. Assuming the number of basis functions, m
= 10 then & can be expressed as follows.
11 > 2 i
=3 (V@ oy +e)

X (3.54)

=1

+3 (@) + (W +y@)?)

where y(x), y'(x) and y"(x) are given by (3.4), (3.9), and (3.10) respectively.

The FF given by (3.54) is minimized by applying GA, IPA and hybrid scheme GA-IPA
for the obtaining the unknown parameters(ay, ..., @1g; b1, e, b1o; and ¢; ..., €10)

The algorithms are implemented with the parametér values and settings prescribed in
Table 3.63. The size of the chromosome is chosen equal to 30 which basically equals the
number of the unknown parameters with the assumed number of basis functions.

The optimal values of the unknown parameters achieved by the algorithms GA, IPA, and
GA-IPA are given in Table 3.64. Consequently the approximate solution y(x) is ﬁbtained
by using the values of the unknown parameters in (3.4).

The approximate numerical results by our method are given in Table 3.65 and compared
with results obtained by some standard methods including CSM and NCPSM. Since there
isn’t any exact solution of this problem, comparisons are therefore made with the
approximate results reported in the literature, in order to prove the validly of our results.
The comparison shows that the proposed method provides numerical results that are

fairly comparable with other methods.
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Table 3.63 Parameter values and settings of the algorithms for physiology problem (example 3)

GA IPA
Parameter Name Value/Setting Parameter name Value/Setting
Population size 240 Start point Random/Optimal
chromosome from GA
Chromosome size 30 Maximum 1000
iterations

Selection function Stochastic Maximum function 150000

uniform evaluations
Mutation function Adaptive feasible | Function tolerance  fe-18

Crossover function Heuristic Derivative type Central differences
Hybridization IPA Hessian BFGS
No. of generations 1000 Sub problem [d] factorization
algorithm
Function tolerance le-18 Initial barrier 0.1
parameter
Bounds -10, +10 Bounds -10, +10

Table 3.64 Optimal values of unknown parameters for physiology problem (example 3)

GA IPA GA-ASA

i o bg Ci a4 b,’ Ci a; bi Ci

1 -1.1233 1.7934 -2.1238 06193  0.0376 02301 -1.2971 0.9206 -1.6694
2 -31302 0.4825 25170 -3.0118 1.3522  -5.1618  -2.1063 0.3835 1.3038
3 1.7488 27557 1.8540 01008 -0.2647 0.6070 09493 1.9724 1.3476
4  -0.0342  -4.6162 -1.2431 0.7647 14617 23210  0.2877 -2.2574 -(.3831
3 0.6347 1.3466 -3.8221 -11134 00916 -0.5656  -0.2777 9.0754 -2.2691
& 1.0341 <0.3713 -4.8659 0.3104 0.1709 04989  0.6410 -0.2561 -2.3409
7 1.3022 2.0246 -1.0301 06769 -i.1856 1.9077  (.3875 1.9560 -0.7369
8 3.2473 -1.0030 0.8715 -0.1090  0.1419 -1.3540 2.4039 -0.6392 1.3026
9 08915 23917 2.8963 0.1920 00710 -1.2344 - =0.58% -1.8764 2.3467
10 0.5030 -4.1038 -1.80%4 -0.9833  -0.0720 04972  -0.3548 -1.8158 -0,7197
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Table 3.65 Comparison of numerical results for physiology problem (example 3)

Proposed method Other methods
X GA IPA GA-IPA CSM NCPSM
0.0 0367508 0.367518 0.367516 0.367518 0.367517

0.1 0366348 0.366363 0366361 0.366363 0.366362
0.2 0.362879 0.3628%94 0.362893 0.362895 0.362894
0.3 0357082 0357098 0357095 0357099 0.357098
0.4 0348932 0.348948 0.348946. 0.348950 0.348948
0.5 0338395 0.333412 0.333411 0.338413 0.338412
0.6 0325427 0325444 0325442 0.325445 0.325444
0.7 0309968 0.309986 0.309984 0.309987 0.309986
0.8 0291951 0.291971 0291969 0.291972 0.291971
0.9 0271296 0271317 0271315 0.271318 0.271317
1.0 0247908 0.247928 0247926 0.247929 0.247928

Example 4: We Consider another special case of (3.35) — (3.37), the oxygen diffusion
problem, given by (3.55) — (3.57) [127], [128], [129], [130], as the final

example to illustrate the effectiveness of the proposed method.

. 2, . _ 076129y (3.55)
Y+ V¥ = S0 03119
with the boundary conditions
y'(0)=0 (3.56)
Sy(D+y'(1) =5 (3-37)
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As explained above we formulate the fitness function (FF) to convert the given problem
into an equivalent global error minimization problem. We have taken m = 10 therefore

the FF is expressed as given below.

11

1 ( 2 0.76129y \?
=) (@) + =y (o) = et
1 11 - ¢ X y+ 0.03119 (3.58)

+1((@) + By +y' (1) - 5?)

The FF given by (3.58) is minimized by applying GA, IPA and hybrid scheme GA-IPA
for the obtaining the unknown parameters{a,, ..., a4¢; by, ..., bygr and ¢ ..., €4g).

The algorithms are implemented with the same parameter values and settings prescribed
in Table 3.63 for example 3.

The optimal values of the unknown parameters achieved by the algorithms GA, IPA, and
GA-IPA are given in Table 3.66. Consequently the approximate solution y(x) of the
oxygen diffusion problem is obtained by using the values of the unknown parameters in
(3.4).

The approximate numerical results by our method are presented in Table 3.67, also
results obtained by other methods including BSM, CSM, and MDM-BSC are shown for
the sake of comparison and validity of our results. From the comparison the accuracy of

the proposed method is found comparable to other methods.
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Table 3.66 Optimal values of unknown parameters for physiology problem (examplc 4)

GA IPA GA-ASA

i a; by C; a0 b; ¢ a; by Ci

1 2.5066 0.9151 -0.3361 -0.0721 0.9923 0.7528  -1.5397 0.4938 6.1192
2 0.1773 -1.4705 -(.9257 1.6288 0.5059  -0.8761 0.1912 -1.3684 -1.0948
3 2.0467 ¢.531 -0.3352 04121 0.7771 0.1804 1.8041 -0.0003 0.1195
4 0.8442 0.6962 =0.8461 20729 08476  -2.0114  0.8651 0.4690 -0.9862
5 0.6371 ~1.8234 -1.5871 -0.6035 0.6472 1.0943 0.9935 ~1.1294 ~2.3936
6 04674 -0.1594 -2.5157 -0.6359  -0.0892 .1.8421 -0.4392 -0.]436 -2.7392
7 08110 1.0952 0.5406 1.4881 09799  -1.2437 0.1778 1.0984 0.4652
8 1.7931 0.8252 -2.0903 -0.2568  -0.668¢  0.2576  2.6786 07694 - 27146
9 -0.2965 -0.28a1 -0.8390 -0.2557 0.7775 -0.0619 01124 -0.2406 -0.8413
10 (1647 0.635% -1.850t 0.4901 -1.2738 1.5504 0.8953 0.7298 -1.9954

Table 3.67 Comparison of numerical solutions for physiology problem (example 4)

Proposed method Traditional methods
X GA IPA GA-IPA CSM BSM MDM-BSC
0.1 082845 0.82847 0.82848 0.82848  0.82348 0.82848

02 08299 082970 0.82970 0.82971 0.82971 0.82971
03 083336 0.83337 0.83337 0.83337 (.83337 0.83337
0.4 083948 0.83949 083949 0.83949 (0.83949 0.83949
0.5 084804 0.84805 0.84805  0.84805 0.84805 0.84805
0.6 085906 0.85907 085906 0.85906 0.85906 0.85906
0.7 087252 0.87253 0.87253 0.87253 0.87253 0.87253
0.8 0.88843 0.88845 088845 0.88845 0.88845 0.88845
0.9 090680 090682 090682 0.90682 0.90682 0.90682
1.0 092763 092765 092765 0.92765 0.92765 0.92765
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34 CONCLUSION

A simple yet an efficient heuristic computation method based on the hybrid approach of
polynomial basis and evolutionary algonthm has beeﬁ successfully applied to the solution
of nonlinear problems governed by NODEs. The accuracy and reliability of the proposed
method have been demonstrated by numerically solving several important nonlinear
problems arising in diverse fields of engineering.

The proposed method has been applied to the Bratu boundary value problem and an
initial value problem of the Bratu-type. The numerical solutions obtained by the proposed
method are found in a good agreement with the exact solutions and more accurate than
some of the standard methods.

The validity of the proposed method has also been demonstrated by solving the Troesch’s
problem with three special cases of the parameter ¢ governing the equarion, and
especially for ¢ = 10 for which methods like ADM, VIM, and MHPM fail to solve this
problem, the proposed method has obtained approximate solutions with good accuracy.
Furthermore the efficiency of the proposed method has been illustrated by solving the
three interesting situations, single-well, double-well, and double-hump of forced DVP
oscillator, It has been established from the comparisons of numerical solutions that the
proposed method gives more accurate solutions than some of the well-known classical
methods.

Moreover, the strength of proposed method has been demonstrated by solving several
nonlinear problems appearing in physiology. The results from the proposed method are
found in an excellent agreement with the exact solutions and quite comparable (or more

accurate) than some of the classical methods.
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On the basis of the simulation results and comparisons made with some standard methods
and exact solutions, it can be concluded that the proposec-i heuristic computing method is
effective, handy, and possesses a great potential and viability for broad range of NODEs.
Moreover the beauty of the proposed method is that it can provide the approximate
solution at any point in the solution domain once the optimal values of unknown

parameters are obtained.

35 SUMMARY

This chapter provides the detail of the heuristic computation method combining log
sigmoid basis functions and evolutionary algorithm for solving nonlinear ODEs. It also
presents an extensive study of numerical applications of the designed method. The
chapter gives the basic idea of fitness function used for transforming the NODE into an
equivalent optimization problem in the -feasible form for evelutionary algorithm. The
procedural steps of memetic algorithms combining GA with local search algorithms IPA,
ASA, and PS for solving the optimization problen"n are also presented. The designed
method has been successfully applied to solve some important nonlinear problenis
including the classical Bratu problem, Troesch’s problems, Duffing van der pol oscillator
equation, nonlinear oxygen diffusion problem, nonlinear heat conduction model of
human head and various other nonlinear singular BVPs arising in physiology. From the
simulation results presented in this chapter it has been established that the proposed
method is quite competent and viable for solving broad fangc of nonlinecar ODEs.
‘Moreover the overall performance of the memetic algorithm schemes GA-IPA, GA-ASA,
and GA-PS have been found quite better than using GA alone as a global search

optimizer.
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CHAPTER 4

HYBRID EVOLUTIONARY ALGORITHM TECHNIQUE FOR SOLVING

COUPLED NONLINR ORDINARY DIFFERNTIAL EQUATIONs

This chapter provides the detail of the proposed heuristic computation method,
combining polynomial basis functions and EAs for solving coupled nonlinear ODEs
(CNODEs). The approximate solution of CNODE is deduced as a linear combination of
polynomial basis functions with some unknown parameters. A fitness function is used to
convert the system of CNODE:s into an equivalent global error minimization probiem.
Two popular EAs including GA and DE and memetic algorithms schemes GA-IPA, and
GA-ASA are employed to solve the minimization problem and to obtain the unknown
parameters. The numerical applications of the proposed method are investigated for
solving two important problems_modelcd by the systems of CNODEs. The material

provided in the rest of the chapter is mostly from the published work [131}], [132].

41 INTRODUCTION

Coupled nonlinear ODEs {(CNODEs) occur in many situations in applied science and
engineering including the models of biological systems, énzyme reactions, and fluid
mechanics. Most of such nonlinear problems do not admit the analytical solution,
therefore these problems are solved using some applroximate tcchhiqucs. Many standard
methods including VIM, ADM, HPM, and LADM have been proposed for solving such

CNODEs.
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In this dissertation, an alternate heuristic computation method to the existing standard
methods is presented for solving the systems of CNODEs. The method is based on the
combination of polynomial basis functions and EAs, which is described in the next
section. The method has been successfully applied to two important problems including
Michaelis-Menten biochemical reaction model and the HIV infection model of CD4™T
cells. Although stochastic solvers based on EAs have been used in recent years by many
authors for solﬁing various nonlinear problems of NODESs, but nobody as yet has

attempted the method that is proposed in this dissertation for solving these CNODEs.,

42 METHODOLOGY FOR SOLVING CNODEs

In this section, the methodology for solving CNODEs is described. The method is
heuristic which employs the hybrid apﬁroach of polynomial basis functions and EAs.
The approximate solution of CNODE is expanded as a linear combination of polynomial
basis with unknown parameters. The CNODE is transformed into an equivalent global
error minimization problem. A trial solution is formulated using a fitness function with
unknown parameters. EAs are used to solve the minimization problem and to obtain the
unknown parameters. The description of the method is given below.

Consider a system of CNODEs of the following form.

d -
y;ft) = fix 712, y2(8), o oo oo 3a(D)) (4.1)
dy.(t) @2)

el ACSACBAGRNIRR N ()
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dyn(t) (4.3)

== = (O 72O, e 3 (D)

with the following initial conditions
y1(0) =ky, 30 =k 3(0)=k; (4.4)

where k;, k;, and k; are real constants, and f;, /5, ...,/ represent some nonlinear functions.
To solve the system of CNODEs given by (4.1) — (4.3), we may assume that the

approximate  solutions  $;(t), $,(¢), ..., Po(t) and thewr first derivatives

df(c) dP(0) d9a(t)

dt o ar g are a linear combinations of some polynomial basis

functions,t?, ¢/, ..., t* which can be expressed as follows.

1) = Z a; t! (4.5)

Falt) = ) byt! 4.6)

Pult) = ) cuth @7
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d3,(t) - zai { ¢i-1 (4.8)

dt
=0
a9, <« .
= S
dt Zb, it 4.9)
j=0

(4.10)

where a;, &, and ¢ are unknown real parameters, m is the number of basis functions.

The aim is to find the unknown parameters {a;, &; , and ¢;) in (4.5) — (4.7), which
consequently gives the approximate solutions 7, (£), ¥, (¢}, ....., $,(¢) of the given system
of CNODESs. To find the required unknown coefficients the given system of CNODE is
converted into an equivalent global error minimization problem using a problem

exclusive fitness function.

4.2.1 FITNESS FUNCTION
The fitness function (FF) denoted as (&;) represents.the global error associated with the

given system of CNODEs, and is represented as follows
=g 4g+te j=123.. @.11)

where | is the generation number/iteration count of the algorithm, and ¢,, ¢,,..., &, are

defined as the mean of sum of square errors linked with each ODE, which are given by
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N
1 d
£ = E; yl(t)"'fi(tinyl(ti):j}z(ti);----------;?n(ti)) 4.12)
N d ' 2
N .
ﬁz M -h ( 5, 918 ) 92(8), ....,?n(tj)) (4.13)
f=
N & 2
1 n . . R
&y = EZ %t")—fl(fk.yl(tk).yz(tk), e e e I ()} (4.14)

d; (t) dFa(t) dPn(t)
dt ' dt "7 de

where 9, (), $,(¢), ....., $,(t) and their first derivatives are given
by (4.5) — (4.10) respectively. N is the total number of steps taken in the solution domain
of time ¢.

The error minimization problem given by (4.11) is solved using EAs and the optimal
values of the unknown coefficients are achieved. The optimal values of these unknown

coefficients are wsed in (4.5) — (4.7), which provide the approximate solutions

$1(8), §,(t), ..., and $,(¢) of the given system of CNODEs.

4.2.2 EVOLUTIONARY ALGORITHMS

In this section, evolutionary algorithms used for solving the minimization problem given
by the fitness function (4.11) are introduced.

GA, GA-IPA, GA-ASA, and DE, have been employed for solving FF and to obtain the
unknown parameters (a; , b;, and c;). The procedural steps of DE are given in algorithm

4.1, while the procedural steps of HGA’s are given in algorithm 3.1.
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Algorithm 4.1: Differential Evolution (DE)

Step 1: (Population Initialization)
A population of N chromosomes (X3, X2, ....,Xy) is generated randomly.
Each chromosome has D number of genes representing the number of
unknown parameters.

Step 2: (Updating): Yi=1to N
Update the target vector, X; using the following operations.

a) Mutation: choose 3 members randomly between I and N, all
three different among themselves and also different from { to
generate a mutant vector as follows

Yi = Xp1 + F(Xnp = Xn3)

b) Crossover: The trial vector is formed as follows

7. = [yj.i if rand; < CR or j = jrand
PET X o.w

where CR € [0,1]and 1 € jrand = D

¢) Selection: Fitness of parents and mutants are evaluated for next

generation. Parents and mutants are sorted according to their

fitness values.

€ = [)’g,i if fu < fyi
: Xgi o.w

where f,; and f,,; are the fitness values of parent x; and mutant
¥ai-
Step 3: (Stopping Criterion)
The algorithm stops if the number of generations or a desired fitness
reaches, else the algorithm goes to step 2.
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43 NUMERICAL APPLICATIONS

In this section, the methodology described above is applied to two main problems
including the biochemical reaction model and the HIV infection model of CD4™T cells, to
illustrate its effectiveness and viability. These problems are of practical importance
therefore the invéstigation of their solutions has been considered by many authors. Since
both these problems do not have exact solution, hence many approximate analytical and
numerical methods have been utilized. But the literature survey reveals that nobody as yet
has attempted to solve these problems using the stochastic solver based on polynomial
basis and EAs presented in this dissertation.

In order to show the efficacy and reliability of the suggested method, comparisons of the

numerical solutions are made with the RK4 and some well known classical methods.

4.3.1 BIOCHEMICAL REACTION MODEL
We consider the well-known Michaelis-Menten biochemical reaction model given by

[133], [134], [135], {136]. [137].

E+A=Y-E+X 4.15)

where E is the enzyme, A the substrate, Y the intermediate complex and X the product.
The time evolution of scheme (4.15) can be determined from the solution of the system of

CNODESs [133], [134], [135], [136], [137].

dA | 4.16
— = ~hEA+ k.Y )
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dE 4.17
-5 = "kllEA + (k_l + kg)y ( )

dt
dy 4.18
-_—= klEA - (kui + kz)y ( )
dt
dX (4.19)
Fri

subject to the initial conditions

A0)Y=4, EW0=E,, Y(0)=0 and X(0)=0 (4.20)

where the parameters k,, k_; and k, are positive rate constants for each reaction. The
system of CNODESs (4.15) — (4.19) can be reduced to only two equations for A and Y and
in dimensionless form of concentrations of substrate, x, and intermediate complex

between enzyme and substrate, y, [133], [134], [135], [136], [137].

dx 4.21
—=—x+{f-a)y+txy ( )_
dt
dy 1 (4.22
Tl Gi S ank))
subject to initial conditions
x(0)=1  y{(0)=0 (4.23)

where a , 8, and £ are dimensionless parameters.

The reader may refer [133] and references therein for a detailed mathematical formulation of
equations (4.21) and (4.23).
Our aim is solve the system of CNODEs given by (4.21) and (4.22) with the initial conditions

(423) and obtain the approximate numerical solutions £(t} and §(t). The values of
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dimensionless parameters are taken as a = 03752, 8 =10, ¢=01, for a direct
comparison with the reported numerical results by some classical methods including
HPM [134 ], VIM [135], and modified Picard-Padé method (PPM) [137].

In view of the suggested method with m = 7 the approximate solutions £(¢) and §(t) and

their first denivatives 220 ond dff) can be expressed as follows.
7
2(t) = Z at (4.24)
=0
7
y(t) = ij th (4.25)
=0
A3 () <
—_ g i1
= Zalct 4.26)
i=0
d9() <
= @27
j=0

where (a, a4, ...,a; and by, by, ..., b;)} are real valued unknown parameters to be
determined.

Using the given initial conditions (4.23) in (4.24) and (4.25) we get ag=x(0) =1
and bg = y(0) = 0. The remaining unknown parameters {@,, @, ..., @, and b, by, ... b;}

that need that need to be tailored is 14. The values of these unknown parameters are

obtained by formulating the fitness function & and then applying EAs such as GA and '

DE for the minimization of &;. The numerical solutions are found in the interval 0 <t <

1 with a time step of 0.1, therefore &; is developed as given below.
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€= li ) + Z(ty) — (1.0 — 0.3752)9(¢t;) — 2(t)F() (4.28)
1"10i=1 de i L-=0. y(t; Dt

2

11
1 dyce) 1 e are ol 429
( dt 0375 (%(e) — 1.09(%) x(t;)y(t;))) (4.29)

E}' =& -+ €2 (4430)

where 2(¢), ¥(t), dﬁc:) and dz(:) are given by (4.24) — (4.27) respectively.

The GA and DE are executed with the parameter values and settings as prescribed in
Table 1 and Table 2 for the minimization of (4.30) in order to find the optimal values of
the unknown parameters. The size of chromosome is chosen equal to the total number of
unknown parameters which is 14,

The optimal values of the unknown parameters corresponding to one of the minimum

fitness achieved by GA and DE are provided in Table 4.3 and Table 4.4 respectively.

Table 4.1 Parameter settings for GA for biochemical reaction model

Parameter Name Setting
Population creation function -~ Uniform
Fitness scaling function Proportional
Setection function Stochastic uniform ?
Mutation function Adaptive feasible
Crossover function Heuristic
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The approximate numerical solutions £(¢) and $(¢) of the biochemical reaction model

(3.21) and (3.22) are obtained by using the optimal values of unknown parameters from

Tables 4.3 and Table 4.4 in (4.5) and (4.6).

Table 4.2 Parameter values of GA and DE

Parameter VYalue
GA DE

Population size 400 400
Chromosome size 14 14
No. of generations 1000 1000
Crossover fraction 0.8 -
Crossover constant {(CR) 0.9
Amplification factor (F) 0.3

Table 4.3 Optimal values of unknown parameters achieved by GA for various values of m

mc}ex m=3 m=>5 m=7

® aj b; @ b; a; b;

1 -0.8353 292569 -0.6916 5.4836 -0.7514 7.2345
2 0.7355 -5.3780 1.9908 -22.4817 3.4798 -44.6143
3 -0.2613 2.8396 -3.5280 41.7696 -11.1921 1453710
4 -— -—- 2.9292 -35.9838 20.5707 -271.3640
5 —u- - -0.9192 11.6568 -21.5824 290.5740
6 -— -—- -— - 12.0233 -165.7713
7 --- -—- - - -2.7582 35.0119
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Table 4.4 Optimal values of unknown parameters achieved by DE for different values of m

index m=23 m=25 m=7

(H

a; bi qp bi a; 'bi
-0.8354 29369  -0.6928 5.4836 -0.6534 5.8836

0.7359  -5.3780 1.9990 -22.4926 2.0945 -26.8811
-02616 2839  -3.5457 41.7737 39277  5742%4
2.9446 -35.9897 4.4977  -56.1427
--- -—-- -09238 11,6595 -4.4623 125218
- - - --- 32402  15.1704
- —- == -- -0.9993 -7.9352

-~ & th W B e
H
[]
]
]
¥

The approximate numerical solutions 2(t) and $(t) obtained by the proposed method are
presented in Table 4.5 and Table 4.6 respectively, also numerical solutions obtained by

RK4, HPM, VIM, and PP are given for comparison.

Table 4.5 Comparison of numerical solution for x(1)

Proposed Method Classical Methods

¢ RK4 GA DE HPM VIM PPFM

0 LO00000  1.000000 1.000000 1.0000:00 1.000000 1.000000
0.1 0947400  0.950319  0.952082 0.950847 0.927545 0.947400
0.2 0925070  0.926115 0.927634 1.254025 0.684203 0.925068
03 0506893  0.907912 0.914159 5.389823 -0.121830 0.906858
0.4 0.8389444  0.890244 0.903458 28.827507 -2.047393  0.8389234
0.5 0.872255  0.872766 0.890432 114931424 -5.883123 0.871539
0.6  0.855261  0.855848 0.872700 358.179651  -12.669723 0.853491
0.7 0.8338455  0.839271 0.85054 934.695192  -23.669732 0.834879
0.8 0.821837  0.822619  0.826642  2140.089715 -40.302786 0.815531
0.9 0.805407  0.805998 0.803171 4434.619833  -64.052391 0.795307
1O 0789166  0.789671 0.789640  B495.655924  -96.352183 0.774092
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Table 4.6 Comparison of numerical solution for y(t)

Proposed Method Classical Methods
t RK4 GA DE HPFM VIM PPM
0 0.000000 0.000000 0.000000 0.000000 0.000000 __ 0.000000
0.1 0421519 0.398289 0.371506 0.382724 0.648910 0.421520
02 0473657 0.473996 0.476073 -3.241408 3.126695 0.473650

03 0476763 0.475826 0.482292 -50.263656 11.166230 0.476676
04 0473092 0.472756 0472026 -316.226683 28.767390 0.472754
035 0468437 0.469874 0.46989 -1293.903524  59.8353051 0.467684
0.6 04635811 0.463852 0.471657 -4057.909720  107.190086 0.462402
0.7 0458731 0.457704 0.46759 -10612.348782 170.815371 0.457180
0.8 0453813 0.454513 0456699  -24324.990805 246.206781 0.452164
0.9 0448860 0.449759 0447926  -50437.484352 322.439191 0.447436
Lo 0443875 0441936 0.444256  -96669.101562  380.563477 0.443037

Further to illustrate the validity and accuracy of the proposed solutions, comparisons of
absolute errors computed relative to the RK4 are given in Table 4.7. The accuracy and
effectiveness of the proposed method is quite evident from the comparisons, one can
clearly see that the proposed method gives approximate solutions that are in good
agreement with RK4, while the classical methods including HPM and VIM utterly
diverge after ¢ = 0.1. The comparison also shows that our results are quite comparable to
the results obtained by PPM. |

The influence of different number of basis functions (i.e. change in m) on the accuracy of
the approximate solution and convergence of the evolutionary algorithms GA and DE are
analyzed next, to demonstrate the effectiveness and reliability of the proposed method.
We used m = 3, 5 for evaluating the performance, therefore the number of unknown
parameters to be tailored are 6 and 10 respectively. Without any other change in the

parameter values except the chromosome size 6 and 10 for m = 3 and 7 respectively, GA
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and DE are executed to acquire the unknown parameters. The optimal values of the

unknown parameters aoquired by GA and DE are given in Table 4.3 and Table 4.4

respectively.

Table 4.7 Comparison of absolute errors for biochemical reaction model

Proposed
Method Classical Methods
t GA DE HPM VIM PPM
0.0 0 0 0 0 0
0.1 2.92E-03 4.68E-03 345E-03 1.99E-02 9.06E-08
0.2 1.05E-03 257E-03 329E-01 241E-01 1.83E-06
0.3 1.02E-03 7.27E-03 448E+00 1.03E+00 3.54E-05
0.4 8.00E-04 1.40E-02 279E+01 294E+00 2.10E-04
x 05 S5.11E-04 1.82E-02 [.14E+02 6.76E+00 7.16E-04
0.6 S5.87E-04 1.74E-02 357E+02 1.35E+01 1.77E-03
0.7 8&.16E-04 121E-02 934E+02 245E+01 3.58E-03
0.8 7.83E-04 4381E-03 2.14E+03 4.11E+01 6.31E-03
0.9 591E-04 235E-04 443E+03 6.49E+01 1.01E-02
1.0 5.05E-04 4.74E-04 850E+03 9.71E+0f 1.51E-02
0.0 0 0 0 0 0
0.1 2.32E-02 5.00E-02 3.88E-02 2.27E-01 6.28E-08
0.2 339E-04 242E-03 3.72E+00 2.65E+00 7.31E-06
0.3 9.38E-04 553E-03 S507E+01 1.07E+01 8.70E-05
0.4 3.36E-04 1.07E-03 3.17E+02 2.83E+0! 3.38E-04
yr» 05 144E-03 1.45E-03 129E+03 S594E+01 7.53E-04
0.6 2.40E-04 8.05E-03 406E+03 1.07E+02 121E-03
0.7 1.03E-03 B8.86E-03 1.06E+04 1.70E+02 1.55E-03
0.8 7.00E-04 289E-03 243E+04 246E+02 1.65E-03
0.9 8.99E-04 9.34E-04 5.04E+04 3.22E+02 142E-03
1.0 8.99E-04 9.34E-04 5.04E+04 322E+02 1.42E-03

il
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In Fig. 4.1 and Fig 4.2 we provide the approximate solutions x(?) and y(?} obtained using
the proposed method with m = 3,5, also solutions using RK4 and with m = 7 by-the
proposed method are shown for the comparison.

It is evident from Fig. 4.1 and Fig 4.2 that the accuracy of approximate soiutions
improves with an increase in m (number of basis functions). In Table 4.8 we also give a
comparison of average absolute errors yielded by the proposed method in the interval
[0,1] for m = 3, 5, 7 and the number of generations taken for achieving the desired
minimum fitness by GA and DE.

From Table 4.8 it is seen that the proposed method yields improved accuracy with
increase in m but at the cost of large number of generations consequently high
computational cost. Nonetheless the proposed method provides the solution of the
biochemical reaction mode! with better accuracy even with m = 3 as compared to popular

classical methods HPM and VIM which proves the effectiveness and reliability of our

method.

Table 4.8 Effect of change in number of basis functions (m)

m Number of Average Absolute Errors
Generations Ixpxs — % |ygra — 7|
3 294 1.095E-01 5.561E-02
5 517 6.542E-03 1.135E-02
7 1000 8.707E-04 2.826E-03
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Fig. 4.1 Effect of change in m on approximate solution x¢) and comparison with RK4
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Fig. 4.2 Effect of change in m on approximate solution y and comparison with RK4
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4.3.2 HIV INFECTION MODEL OF CD4'T CELLS
We shall now apply the sugges »d method to the numerical solution of the HIV infection
model of CD4*T cells [138], which is governed by the following system of CNODEs

[139], [140], {141], [142], [143], [144].

ar T+1
Et"zp-aT'l'fT(l—m)—kVT

dl 4.31)
a—kVT—ﬁI

av

E=Nﬁf—}'v

subject to the initial conditions

T(0) =T, | y=1I,, ad V)=V, (4.32)

In the model of HIV (4.31), the dependent variables T(t), I(t), and V(t} denote the
concentration of susceptible CD4'T cells, the concentration of CD4'T cells infected by
HIV viruses, and free HIV virus particles in the blood respectively. The parameters a, §,

and y denote the natural turnover rates of uninfected T cells, infected T cells, and virus

particles respectively. The term (1 - :H

Tax

) describes the logistic growth of the healthy

CD4™T cells, while the proliferation of the infected CD4'T cells is neglected. The term
kVT describes the incidence of HIV infection of healthy CD4"T cells, where k > 0 is the
infection rate. Each infected CD4"T cell is assumed to produce N virus particles during
its lifetime, including any of its daughter cells. The body is believed to produce CD4'T

cells from precursors in the bone marrow and thymus at a constant rate p. T cells multiply
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through mitosis with a rate r when they are stimulated by antigen or mitogen. Tiax
denotes the maximum leve' af CD4*T cel) ~oncentration in the body [141], {142], {143],
[144].

The numerical solution of the HIV infection model of CD4™T cells has been obtained by
several authors using several different standard methods such as HPM by Merdan {139],
LADM by Ongun [145), multi-stage VIM by Merdan et al. [146], Bessel collocation
method (BCM) by Yiizbag [147], VIM by Merdan et al. [140], and HAM by Goreishi et
al. [148).

To apply the proposed method to the HIV infection model of CD4+T cells {(4.31) we take

m = 5, therefore approximate solutions T'(t),(t),and V(t) and their first derivates

af ai da¥v
TS and —; can be expressed as follows.
5
(o) = Z a; t* (4.33)
=0
5 -
=Y by (4.34)
j=0
s
Pt = Z oy th (435)
K=0
daT(t
—di-)_ = ) q;itt? (4.36)
{=0
di(t) i
= b jt/~t 4.37)
j=0
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5
dV(t)
Kt (4.38)
g

The approximate numerical solution of the HIV infection model of CD4" T cells {(4.31) is
obtained in the interval 0 <t <1, with initial conditions T(0)=10.1, I(0) =
0.0, and V{(0) = 0.1, also settiﬁg p=01,a=002,8=03,r=3,y=24,
k = 00027, Tper = 1500 ,and N = 10 in (4.31) for a direct comparison of our results
with the results reported by other methods used in [139 ], [140], [147].

From the given initial conditions we get ap = T{0) = 0.1, by = /{(0) = 0.0, and ¢y =
V(0) = 0.1.

Now formulating the fitness function (&;) as follows

11 .
1 s (Y {
& = 1—1;( d(:) — 0.1 4 0.02T(¢;) — 3T(t) (1 _ M)

1500 (4.39)
2
+ 0.0027V(ti)T(t,-))
ar(t;) 2
¢

&= Z (— — 0.0027V (¢)T(t).+ 0 31(::.)) (4.40)

1 < [dV(e) i |
g =& +&+& (4.42)

The FF given by (4.42) is subject to minimization by using GA, PS, IPA, and memetic
algorithm schemes GA-IPA, and GA-ASA for acquiring the unknown parameters

(ay,...ag; by, ... bg; ¢y, ..., cg). The algorithms are executed according to the prescribed
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settings and values given in Table 4.9 for GA and in Table 4.10 for [PA and ASA

respectively, to achieve the optimal values of thg unknown parameters.

Table 4.9 Parameter values and settings of GA for HIV model

Parameter - Value/Setting
Population size [240 240]
Chromosome size 15

Fitness scaling function Proportional
Selection function Stochastic uniform
Crossover function Heuristic |
Mutation function ' Adaptive feasible
Reproduction crossover fraction 0.8
Generations 2000
Function tolerance 1E-18
Nonlinear constraint tolerance 1E-18

The optimal values of the unknown parameters achieved by GA, GA-IPA, and GA-ASA

are provided in Table 4.11, while the values of these unknown parameters achieved by

IPA and ASA are given in 1able 4,12,

Once we have achieved the optimal values of unknown parameters the approximate

solutions T'(t), f(£), and 7(t) can be obtained easily by using these values in (4.33) —

(4.35) respectively.

The approximate numerical solutions obtained by the proposed method with memetic

algorithm scheme GA-IPA are shown in Fig. 4.3, Fig. 4.4, and Fig. 4.5 for T(t), I(¢), and

V(¢) respectively, also numerical solutions using RK4 are shown for the purpose of

comparison. From the comparison the numerical solutions obtained by the proposed

method are found in a good agreement with RK4.

M
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Table 4.10 Parameter values and settings of [PA and ASA for HIV model

Value/Setting

N Parameter IPA | ASA

Start point Random/optimal Random/optimal
chromosome from GA  chromosome from GA

Maximum iterations 200 200
Maximum function 60000 60000
evaluations
Maximum perturbation 0.1 0.1
Function tolerance 1E-18 1E-18
Nonlinear constraint 1E-18 1E-18
tolerance
Derivative type Central differences @ == ==eeeee
Hessian BFGS . e
Subproblem algorithm Ldl factorization @ =00 o==emem-

Table 4.11 Optimal values of unknown parameters for HIV model

index GA GA-TPA GA-ASA

(i) ai b, 4] a b ) & b o

1 0.4014 0.0001 -0.2399 0.4016 0.0000  -0.2399 04016  0.0000 -0.23

2 0.4355  -0.0008 0.2846 0.4353 0.0003 0.2853 0.4354 0.0003 0.2851
3 1.3520 0.0020  -0.2123 1.3571  -0.0008 -0.2143 1.3569 -0.0009 -0.2133
4 -0.9%844  -0.0020 0.0977  -0D.9905 0.0009 0.0995  .0.9902 0.0010 0.0984
5 1.2734 0.0007 -0.0209 1279t -0.0004  -0.0216 12790 00004  -0.0211

Fable 4.12 Optimal values of unknown parameters acquired by IPA and ASA for HIV model

index IrA ASA
(i) g bi < @ bi Cj
1 0.40159 0.00001 -0,23993 040158 0.00001  -0,23990
2 0.43529 0.00026 0.28535 0.43539 0.00028  0.28500
3 1.35713 -0.00077  -0.21428  1.35681 0.00077 -0.21318
4 -0.99052 (.00089 0.00954 -0.,99014 0.00085 0.09827
5 1.27910 -0.00035 -0.02158 1.27896 0.00032  -0.02108
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Concerration of susceptible CD4 ™ Tcells
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Fig. 4.3 Comparison of numerical solutions for T(t)
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Fig. 4.4 Comparison of numerical solutions for I{t)
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Free HIV virus particles
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Fig. 4.5 Comparison of numerical solutions for V(t)

Moreover in Table 4.13, Table 4.14, and Table 4.15 a comparison of numerical solutions
obtained by the proposed method are made with VIM, BCM, and HPM. To show the

accuracy of our results absolute errors obtained by the proposed method and VIM, BCM,

and HPM are computed relative to RK4 and provided in Table 4.16.

Table 4.13 Comparison of numerical solutions for Tit)

! RK4 Proposed VIM HPM BCM
0.0 0.1 0.1 0.1 0.1 0.1
0.2 040594071 0.40487784 0.40613466 0.40613583 0.38033093
0.4 0.76357978 0.76188751 0.76245304 0.76247621 0.69546238
0.6 141195609 1.40812421 1.39788059 1.39808281 1.27596244
0.8 258677696 2.58258960 2.50674667 2.50787401 2.38322774
1.0 0.20872956 0.20741048 0.20880732 0.20880733 0.20386166
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Table 4.14 Comparison of numerical solutions for Ift}

BCM

t RK4 Proposed VIM HPM
0.0 0 0 0 0 0
0.2  6.031510E-06 7.693902E-06 6.032634E-06 6.032706E-06  6.247872E-06
0.4 1315302E-05 1.561454E-05 1.314878E-05 1.315890E-05 1.293552E-05
0.6 2.121060E-05 2.138633E-05 2.101417E-05 2.123298E-05  2.035267E-05
0.8 3.015178E-05 3.033203E-05 2.795130E-05 3.024270E-05  2.837302E-05
1.0 3.999421E-05 4.187400E-05 2.431562E-05 4.033321E-05  3.690842E-05
Table 4.15 C.omparison of numerical solutions for V(¢
t RK4 Proposed VIM HPM BCM
0.0 0.1 0.1 0.1 0.1 0.1
0.2 0.06187985 0.06186666 0.06187995 0.06187995 0.06187992
0.4 0.03829490 0.03829830 0.03830820 0.03830818 0.03825493
0.6 0.02370455 0.02370762 0.02392029 0.02391982 0.02370432
0.8  0.01468036 0.01467245 0.01621705 0.01621234 0.01467957
1.0 0.00910082 0.00910746 0.01608419 0.01605502 0.02370432

The comparison of the absolute errors from Table 4.16 reveals that the proposed
technique yields the results of the HIV infection model of CD4'T cells (4.21) with fairly
good accuracy. Furthermore from the comparison it is observed that the average absolute
errors for T(t) by the proposed method are fairly smaller than BCM and comparable to
VIM and HPM while the absolute errors of V(t}) yielded by proposed schemes are much
smaller than VIM and HPM. However for I(t) our method gives relatively greater
absolute errors as compared to VIM and HPM but fairly comparable with BCM.
Nonetheless the overall performance of the proposed method is fairly comparable with

the standard methods VIM, HPM, and BCM in comparison with RK4.

[
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Table 4.16 Comparison of absolute errors for HIV model

f Proposed VIM HPM BCM
0.0 0 0 0 0
() 02 1.32E-03 7.78E-05 7.78E-05  4.87E-03
0.4 1.06E-03 194E-04 1.95E-04 2.56E-02
06 169E-03 1.13E-03 1.10E-03 6.31E-02
0.8 3.83E-03 141E-02 1.39E-02 1.36E-0!
1.0 4.19E-03 8.00E-02 7.89E-02  2.04E-01
0.0 0 0 0 0
i 02 1662E-06 1.124E-09 1.196E-09 2.164E-07
0.4 2.462E-06 4.240E-09 S5.880E-09 2.175E-07
0.6 1.757E-07 1964E-07 2233E-08 8.579E-07
0.8 1.802E-07 2.200E-06 9.092E-08 1.779E-06
1.0 1.880E-06 1.568E-05 3.390E-07 3.086E-06
0.0 0 0 0 0
Vi) 0.2  1.320E-05 1.004E-07 1.004E-07 6.590E-08
04 3404E-06 1.330E-05 1.328E-05 3.790E-08
0.6 3.070E-06 2.157E-04 2.153E-04 2.306E-07
0.8 7.905E-06 1.537E-03 1.532E-03 7.872E-07
1.0 6.640E-06 6.983E-03 6.954E-03 1.460E-02

44  CONCLUSION
A simple and effective stochastic heuristic scheme based on hybrid approach of

polynomial basis functions and EAs has been suggested for numerically solving system

of CNODESs.

The effectiveness of the presented method has been illustrated by numerically solving the
nonlinear biochemical reaction model. The comparisons have revealed that the proposed

method outperforms some well-known classical methods including HPM and VIM.

M
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The proposed method has also been successfully applied to solve the HIV infection
model of CD4 T cells. The approximate numerical solutions by the .proposed method are
found in a fairly good agreement with RK4. Morebver, it is also established from the
comparisons that the proposed method prbvides approximate solutions that are fairly
comparable with some of the classical methods including VIM, HPM, and BCM.

On the basis of numerical results and comparisons, it can be concluded that the proposed

method is effective and viable for solving such CNODEs,

45 SUMMARY

This chapter provides the detail of the heuristic computation method combining
polynomial basis functions and EAs for solving systems of CNODEs, It also presents the
investigation of numerical applications of the designed method. The chapter gives the
basic idea of fitness function used for transforming the CNODEs into an equivalent
optimization problem. The procedural steps of DE for solving the optimization problem
are also presented. The designed method has been successfully applied to solve two
problems of practical importance including the Michaelis-Menten biochemical reaction
mode! biochemical reaction model and the HIV infection model of CD4"T cells. From
the simulation result presented in this chapter it has been illustrated that the proposed
method is quite competent and viable for solving éystems of CNODEs like HIV and

biochemical reaction models.
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CHAPTER 5

HYBRIDIZATION OF EXP-FUNCTION METHOD AND NATURE INSPIRED
COMPUTING FOR SOLVING NONLINEAR PARTIAL DIFFERENTIAL

EQUATIONS

This chapter provides the detail of the heuristic scheme based on the hybridization of the
Exp-function method and nature inspired computing for solving NPDEs. The given
NPDE is converted into a NODE using a wave transformation variable. The approximate
solution of NODE is expressed using the Exp-function method with unknown constants.
The unknown constants are achieved by transforming the NODE into an optiniization
problem. Two popular nature inspired algorithms including GA and PSQ are used to
solve the optimization problem and to obtain the unknown constants. The numerical
applications of the proposed scheme are tested on some well-know NPDEs including the

Fisher, Burger-Fisher, and Burger-Huxley equations.

5.1 INTRODUCTION

Nonlincar wave propagation problems appear in numerous engineering and scientific
fields including plasma physics, nonlinear optics, -fluid dynamics, chemical kinetics,
quantum field theory, population models etc. These problems are by and large govemed
by the systems of nonlinear partial differential equations {(NPDEs). The investigation of
solitary solutions to such NPDEs has been of great interest to the scientific community. A

glance at the literature reveals that a number of effective methods have been reported in

112




past few years, such as tanh-function method [149,[150], [151], Hirota’s bilinear method
[152], Haar wavelets method (HWM) [153], VIM [154], [155], ADM [156], [157],
[158], HPM [159], [160] for handling NPDEs. These methods have their built in
deficiencies and limitations and therefore the research community is paying much
attention to seek new and efficient methods for solving the crucial systems of NPDEs.
Recently He and Wu [161] introduced a simple and §trai ghtforward method known as the
Exp-function method for obtaining the generalized solilt(:unar),r and periodic solutions of
nonlinear wave equations. The method has attracted much attention and it has been
successfully applied to a wide variety of problems including the Burger-Fisher equation
[162], Fisher equation [163], Burger-Huxley equation [164], Burger equation [165],
Kawahara equation [166], and many other probiem of PDEs and NPDEs see for example
[167], [168], [169], [170], [171], [172], [173] and references therein.

In recent years, stochastic solvers based on evolutiopary computation (EC) and artificial
neural networks (ANNs) have been increasingly used as an alternate tool for solving
vartety of differential equations. However, there has been comparatively little work
reported where EC and ANN has been used for NPDEs. Nonetheless, the strength of
these methods for solving PDEs has been illustrated on several problems, for example
Samir et al. [174] used ANN based approach for solving Burger-Fisher and Burger-Huxly
equations, Puffer et al. [175] used cellular NN for solving some NPDEs including Burger
equation, S. He at al. [176] applied NN based technique for solving linear PDEs, and
Rarnuhalli et al. [177] employed the merger of ANN and finite element method (FEM)

for the approximate solution of various PDEs.

113




X,

In this dissertation, a novel scheme based on the ¢legant couple of Exp-function method

and nature inspired computing (NIC) is proposed for the numerical solution of NPDEs.
The literature survey reveals that the couple of Exp-function method and NIC is
attempted for the first time to tackle NPDEs numerically. The proposed method has been
successfully tested on some popular NPDEs including Fisher equations, Burger-Fisher,
and Burger-Huxley equations. The details of the proposed scheme follow in the next
section.

5.2 THE EXP-FUNCTION METHOD

To illustrate the basic idea of the Exp-Function method, an NPDE solved by He and Wu
in {161] using the same method is presented.

Consider an NPDE given in the following form

N u_u,u_,u,,u )=0 5.1)
A transformation variable 7 is introduced below

n=kc+at (5.2)
The transformation variable converts (5.1) into an NéDE of the following form:

Plu, k', ot k20, )= 0 (5.3)
where kand o are unknown constants, and prime denotes derivation with respect to 7.

According to the Exp-function method, the solution of (5.3) can be expressed in the
following form:

uln) = Zl_can explnn) _4 explen)+..n..... +a_, exp(-dn)
Zq . b, explmn) b, exp(pn)+ oo +b_, exp(—q7)

=

(5.4)

where ¢, 4, p, and ¢ are unknown positive integers, @, and b,, are unknown constants.
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The values of ¢ and p are determined by balancing the linear term of highest order in
(5.3) with the highest order nonlinear term. Similarly the values of d and g are
determined by balancing the lowest order of linear and nonlinear terms in (5.3). Next the
unknown constants a, and b, are determined by substituting (5.4} into (5.3) and equating
the coefficients of exp{nn) to zero, which results into a set of algebraic equations with
unknown constants. The systems of algebraic equations are solved using some software
package hke Matlab, Maple or Mathematica for determimung the unknown constants a,
and b,,. Consequently the solution of NPDE (5.1) is obtained.
Now consider the following example for the illustration of the method described above.
u, +utu, vu,, =0 | (5.5)
Using the transformation given by (5.2) leads to the following ODE

ou'+hd W'+ k=0 (5.6)

Assume the solution of (5.6) is given by (5.4). The values of ¢ and p are determined by

balancing the linear and nonlinear terms of highest and lowest orders in (5.6) as follows

from [161] after some calculations.

e G exp[(?P +ehn]+ ... ' 57
¢, expl8 pq]+
and
o Colpr 3kl _eiexplp+daple. oo
e expldpn]+ ... cexp[8pn]+ ... ‘

In order to determine the values of ¢ and p balance the highest order of Exp-function in
(5.7) and (5.8) vields
Tp+c=5p+3c¢ (5.9

Simplifying (5.9} gives
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pc (5.10)

Similarly d and ¢ are found by balancing the linear term of lowest order in (5.6)

I et d, exp[—'(’)'q+d)?z] (5.11)
vt d, epr- Sqn]
and
e et dy exp[—-(q + 3d)q] ot d, exp{— (5q +3d)~7] (5.12)

d, expl(- 447)] d, expl(~34n)]
Balancing the lowest order of Exp-function in (5.11) and (5.12) yields
—(7q +d)=—(5¢+3d) | (5.13)
which gives
g=d (5.14)
Once the ¢, p, d, and ¢ are determined, their values are freely chosen. For instance in

[161] authors have set p = ¢ = ] and d = ¢ = [ as a simple case, therefore (5.4) becomes

u(y)= & expln) +a, + a_, expl-n) (5.15)

exp(i7)+8, +b_, expl-17)

Equation (5.15) is substituted into (5.6) and some software package like Matlab or Maple

is utilized to solve the system of algebraic equations as follows [161].

l[C3 exp(3n)+ C, exp(277)+C, expln)+C, +C_, exp(- f])] =0 (5.16)

4| +C, exp(— 2r;)+ C., exp(4n)

where

A= (expln)+b, +b_ exp(-7)),

- 3 3 ? 3
C, =wab, +ka;b,—k’a, —wa, - ka,a, + k ab,,
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C, =8kapb_, +2kalb_, —4k’a b} —2wa_, - 2ka,a; +2wa,b., +4k>a,b,

C, = wa,b} +6axbb_, —wabl - k*a,bl —18k°abb_ - 6ka,a,a_, +ka,azh,
—ka’ + 23K ab_, — wagh_, - Swa_b, +k*abl —Ska_b, + kaja_b, +Skajab_,

C, = dwa b’, — dkaa’, +32k>a_b_, + 4ka,alb_, - 32 a b’ +4k’abyb.,

-daxt_b_ —4k*a_b? ~dkala_, - 4wa b} +4kala b, +dwabib_,,

C, =18k%a_b,b_, —6wa_bb_, -k a b} +K’ab_ b} + wab’, —5ka,a’,
+ Sca,byb”, + wab_ bt — wa_ by —ka_a’ b, -23k’a bl - kala_b,
+Sk*ab,b? + kadb_, +Gkaaga b

= 20a,b}b, - 20a_b = 2ka’, + 2ka,a’b_, + 2wa b}, - dk*a,blh,
-2aa_bib_ +4k’a_blb_ - 8k’a b’ +2kala_b_, —2ka.a’ b, +8k’a)b’,,

C_, =kaya’ b +wab’, —ka’ b, +ka,b’, - wa_bb% —ka_bbl.
Setting the coefficients of exp(m;) to zero

C,=0, C,=0, C, =0, C,=0, C,=0, C,=0, C,=0. (517)

The system of (5.17) is solved which gives the unknown constants and consequently the

solution of (5.5).

3.3 PROPOSED SCHEME FOR SOLVING NPDEs

In this section, the description of the proposed scheme for solving NPDEs is presented.
The scheme is based on the elegant hybridization of Exl:-v-function method with NIC. The given
NPDE is converted into a corresponding NODE given by (5.3) using the transformation (5.2). In
view of the Exp-function method the solution of (5.3) can be expressed by (5.4). As mentioned

above the values of ¢, p, d g can be freely chosen. The rest of the unknown parameters a,, by, £,
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¢« are acquired by transforming the NODE given by (5.3) into an equivalent global error
minimization problem by formulating a problem exclusive fitness function.
Nature inspired algorithms {NIAs) such as GA and f’SO are employed to solve the minimization
problem and to achieve the unknown parameters. The suggested novel approach for
determining the unknown constants and consequently the approximate solution is simple
and straightforward. The detail of the scheme is given below,
We consider the transformed NODE given by (5.3) subject to thé initial con_dition given
by

u(x,0)= 1(x) | (5.18)
We assume that the approximate solution of (5.3) is expressed in the following form in

view of the Exp-function method.

- a, exp(crp)+........ +a_, exp(— d,?)
= (5.19)
) b, exp(pr)+........ +b_, exp(~qn)

As mentioned above the values of ¢, p, d, ¢ can be freely chosen, also it has been
illustrated that p = ¢, and d = g, therefore we set their values freely. The rest of the

unknown constants existing in (5.19) including (a,,....,a_;;b b

posb_g 3 kK andw) are
achieved using the application of nature inspired algorithms (NIAs) such as GA and PSO.
To apply the NIAs such as GA and swarm intelligence PSO the unknown parameters in
(5.19) are chosen as a chromosome/particle. The transformed NODE (5.3) along with the
given initial condition (5.18) is converted into a global error minimization problem by
developing fitness function (FF) given by

=t tes (5.20)

where j is the generation/iteration index.
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The first part in the fitness function represents the mean of the sum of square errors
associated with the transformed NODE (5.3) and the second part represents the mean of
the sum of square errors associated with the given imitial condition (5.18), given,

respectively, as follows.

N 5 3

f= NLSEEP(“(’“J ot e o, + aor Y2 o, + o, ).) (521
. |

k =%Z.(”(xf o)-s&F .22)

where N and S are the total number of steps taken in the solution domain of x and ¢. The
FF given by (5.20) contains unknown constants in the form of a chromosome/particle for
the stochastic algorithms such as GA and PSO. The objective is to solve the minimization
problem (5.20) and to achieve the optimal chromosome/particle which represents the

values of unknown constants {(a,,...a_;3b,,...0_,; k ando) Consequently the

approximate solution #{;7) of the given problem is obtained straightforward by using

these optimal values in (5.19).

5.4 NATURE INSPIRED OPTIMIZATION ALGORITHMS

In this section, NIAs used throughout the chapter for solving the minimization problem
given by the FF (5.20) are introduced. The PSO, GA, and memetic algorithm scheme
GA-IPA have been employed for solving the FF and to obtain the unknown constants (

Ao sernns@_y3b 5B, 5 k and o). The basic procedural steps of these algorithms used for

L

the implementation are given in algorithm 3.1 for GA hybridized with [PA (HGA) and in

algorithm 5.1 for PSO respéctively.
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Algorithm 5.1: Particle Swarm Optimization {PSO)

Step 1: (Initialization)
A population (swarm) of N particles is randomly created. Each particle
has n number of elements which represent the number of unknown
parameters. Assign values to parameters ¢, and ¢, and set j=jma.
Step 2: (Fitness Evaluation)
Fitness of each particle is computed using a problem exclusive fitness
function.
Step 3: (Updating velocity and position)
The velocity and position of each particle are updated using the
following equations respectively.
v/t =wiv! 4o, (Pbesr - xf)-l- C2¥2; (Gbest - x{)
x/M =x/ +v/"
Step 4a: (Updating Local Bests)
If a particle’s current position gives better fitness than its previous best
position, then replace Pbest with it and pl;eserve its fitmess.
Step 4b: (Updating Global Best)
If any particle gives better fitness than Gbest, replace Gbest with that
Pbest and preserve the new fitness of new Gbest.
Step 5: (Stoppage Criteria)
If fitness of GBest meets criteria or number of iterations is greater than

jmax then algorithm terminates, else go to step 2.
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55 NUMERICAL APPLICATIONS

In this section, the proposed scheme described above is tested on some popular systems
of NPDEs arising in diverse practical applications of engineering, including Fisher’s
equations, Burger’s-Fisher equation, Huxley equation, and Burger’s-Huxley equation. In
order to demonstrate the effectiveness and accuracy of the proposed scheme comparisons
of the numerical solutions are made with the exact solutions and the solutions obtained by
some traditional methods. Moreover, an extensive investigation with the help of

simulations is carried to show the viability of the proposed scheme.

5.5.1 FISHER EQUATION

The Fisher equation introduced by Fisher in 1937 [178] is encountered in many
applications such as chemical kinetics, tissue engineering, gene propagation, flame
propagation, neurophysiology, branching Brownian motion, autocatalytic chemical
reactions, and nuclear reactor theory [179], [180], [181].

The Fisher’s equations have been paid much attention due to their diverse applications. A
glance at the literature reveals that an ample of powerful analytical and numerical
methods have been utilized to solve the Fisher equations, such as ADM [182], (VIM)
[183], modified VIM (MVIM) [184], variational HPM (VHPM) [179], [185], Differential
quadrature method (DQM) [180], DTM [186], HWM [187], optimal homotopy
asymptotic method (OHAM) [187], and many others see for example [188], [189], [190],
[191], [192], [193], [194] and references therein. But nobody as yet has tackled Fisher
equations using the scheme proposed here. We have solved some three different forms of

Fisher equations including the generalized Fisher equation as follows.
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Example 1: We consider the Fisher’s equation of the following form [179], [184]
u, =1 +6ull—u) (5.23)

subject to the initial condition

1
w{x,0) = ——— 5.24
(=0) (1 + e)q::(x))2 624
the exact solution is given by
u(x,r) = (5.25)

(1+ explx - 5¢))°

The approximate solution of (5.23) is obtained using the proposed scheme in domain
x,t €[0,1] with a step of 0.05, which means the total number of steps S = 21.

Converting (5.23) into a NODE using the transformation variable n=kx+ ot yields

o' = k2" +6u(l - u) (5.26)
The approximate solution of (5.26) is expressed using Exp-method given by (5.19). As
mentioned above the values of ¢, d, p, and ¢ can be frecly chosen, we set p=c =2 and

d =g =2 1n(519) and we get following trial function

ily)= % exp{2n)+ a, expli) + a, + a_, expl-7)+ a_, exp(-27)

= 5.27
b, exp(2n)+b, exp(2n)+ b, +a_, exp(-n)+ b_, exp{- 27) 527

The unknown constants {(ay, ...,a.2 by,....b., and k, o) in (5.27) are achieved using EAs
by transforming (5.26) along with the initial condition (5.24) into a global error

minimization problem using a fitness function () as follows
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1 21 18 a)u'(kxjé—wtj)—»k2u”(b:j+wf,-)—

SR )

=1 4=1 6u(kxj + wt; Xl —u(k:tj- + Wk ))

.
_L” _ 1
82 = 21 - [H(IJ,O) i1+CXp(xJ)j§]

2
(5.28)

(5.29)

(5.30)

The FF given by (5.30) is minimized by applying GA, IPA, and GA-IPA for obtaining

the optimal values of unknown constants.

The parameter settings used for the implementation of the algorithms, such GA and IPA

are given in Table 5.1. The number of unknown constants (a3,...,a.3 bs,...b.5 and k, )

which need to be tailored is 12, therefore the size of chromosome is chosen as 12. The

values of these unknown constants are restricted between -20 and +20. The search

algorithms GA, [PA, and GA-IPA are executed to achieve the minimum fitness, with the

prescribed parameter settings and values given in Table 5.1.

Table 5.1 Parameter settings and values for GA and IPA for Fisher equation

Parameter Na mEA Setting/Value | Parameter N am: A Setting/value
Population size 400 Start point Random/Optimal
values from GA
No. of generations 1000 Maximum iterations 1000
Selection function Stochastic Maximum function 90000
uniform evaluations
Mutation function Adaptive Function tolerance le-18
feasible
Crossover function Heuristic Nonlinear constraint le-18
tolerance
Crossover fraction 0.3 Hessian BFGS
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The optimal chromosome corresponding to the minimum fitness achieved by the
algorithms GA, IPA, and GA-IPA are provided in Table 5.2. The approximate solution
ii(7) of the Fisher's equation (5.23) is consequently obtained by using the values of
unknown constants from Table 5.2 in (5.27).

In Table 5.3 we present the numerical solutions from the proposed scheme GA-IPA for
different values of time ¢ and x, also exact solutions are provided for the comparison

purpose.

Tahle 5.2 Optimal values of unknown constants for Fisher equation

Constant GA IPA GA-IPA
a 16.446380 -0.179080 9.007126
ay -14.714076 0.787201 -8.006905
o 17.292580 -1.154062 1.907914
oy -0.002424 0.514752 -0.000004
a. 0.000309 0.081439 0.000000
b, 16.446390 -0.387261 9.007126
by 18.177991 1.418956 10.007317
by 4310516 -1.502830 -5.098783
b.s 19.870224 0.598411 -4,191039
b2 17.284500 0.073787 1.907886
k -1.000016 0.224904 -1.000001
@ 5.000003 -1.125617 4.999999

From the comparison, numerical solutions are found in an excellent agreement with the
exact solutions with an average absolute error of 1.21E-07 in the solution domain {0, 1].

Further in Table 5.4 and Table 5.5 we show a comparison of absolute errors at various
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values of ¢ and x, obtained by the proposed scheme_and some well-known classical
methods, including VIM [179], VHPM [1 79]3 ADM [184], and MVIM [184].

The comparison from Table 5.4 and Table 5.5 reveals that the proposed method yields the
numerical solutions of the Fisher’s equation (5.23) with remarkably greater accuracy and

much accurate than methods ADM, MVIM, VIM, and VHPM.

Table 5.3 Comparison of numerical solutions at different values of time .

t=0.0 =08
Exact Proposed Absolute Exact  Proposed Absolute
scheme error scheme error
x  u(r)  (GAIPA) |u(yi)-ilp) | wu(ve) (GA-IPA) |uxd)-ily)
20) it{y

0.0 025000 0.25000 3.93E-07 0.96435  0.96435 2.36E-08
0.1  0.22564 0.22565 3.36E-07 0.96071  0.96071 2.29E-08
0.2 0.20265 0.20265 2.80E-07 0.95672  0.95672  2.17E-08
0.3 0.18110 0.18110 2.27E-07 0.95233  0.95233 1.98E-08
0.4 0.16105 0.16105 1.77E-07 0.94751  0.94751 1.73E-08
0.5  0.14254 0.14254 1.30E-07 0.94223  0.94223 1.40E-08
0.6  0.12556 0.12556 8.86E-08 0.93645  0.93645 9.69E-09
0.7  0.11010 0.11010 5.19E-08 093012 093012  4.34E-09
0.8 0.09612 0.09612 2.02E-08 092320  0.92320  2.22E-09
0.9  0.08355 0.08355 7.38E-09 091564  0.91564 1.01E-08
1.0 0.07233 0.07233 3.06E-08 0.90740  0.90740 1.96E-08
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Table 5.4 Comparison of absolute errorsat¢ = 0.2 and t = (.4

t=02 =04
X Proposed ADM MVIM Proposed ADM MVIM
(GA-IPA) (GA-IPA)
00  448E-07 7.22E-03 2.69E-03 2499E-07  5.75E-02  5.01E-02
0.2 3.90E-07 9.89E-03 2.15E-03 2.373E-07 1.61E-01 5.27E-02
04  3.19E-07 1.09E-02 1.13E-03 2.137E-07 1.39E-01 4.12E-02
0.6 2.37E-07 1.04E-02 7.38E-04 1.78E-07 1.51E-01 2.25E-02
0.8 1.51E-07  8.50E-03 5.73E-04 1.301E-07  143E-01 5.28E-03
1.0 6.57E-08 5.87E-03  9.07E-04 7.128E-08 193E-01 4.23E-03

Table 5.5 Comparison of absolute errors at #= 0.1

x Proposed scheme YIM VHPM
(GA-IPA)
0.0 2.499E-07 2.07E-05. 3.90E-07
0.1 2.373E-07 2.33E-05 4.03E-07
0.2 2.137E-Q7 2 42E-05 1.02E-06
0.3 1.78E-G7 2.35E-05 1.35E-06
0.4 1.301E-07 2.12E-05 1.37E-06
0.5 7.128E-08 1.77E-05 1.09E-06

In order to investigate the reliability of the proposed scheme and also the effect of change
in the values of ¢, p, d and ¢ in {5.19) on the acov;u'acy of the approximate solution, we
now set p=c=1 andd =g =2 in (5.19), therefore the trial solution can be expressed as

follows

uln) = a, expln)+a, +a_, exp(-n)+a_, exp(-27)

- b, cxp(r;)+ b, +b_, t:xp(—ir;ar)-i-b_2 exp(— 217) (3:31)

The unknown constants (ay, ...,a.s” by,....b.3 k and o) are achieved using the procedure

described above. The heuristic algorithms GA, IPA, and GA-TPA are executed with the
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same parameter values and settings prescribed in Table 5.1, except a change in the
chromosome size now chosen as 10 which determine the number of unknown constants.
The unknown constants are achieved and conseqt‘xently the approximate solution of
(5.23).

In Table 5.6 and Table 5.7 we provide the values of unknown constants and the
approximate numerical solutions obtained using the proposed scheme respectively.

The comparison with exact solution from Table 5.7 shows that numerical results are in a
good agreement with the exact solution and yet accurate than some standard methods
such as ADM and MVIM, which confirms the reliability of the proposed scheme.
However a considerable raise in absolute error is observed as compared to the case with

p=c=2and g=d=2.

Table 5.6 Optimal values of unknown constants with p=c=1and g=d =2

Constant GA IPA GA-TIPA
as 10.736310  4.768013 _ 9.521559
ag -13.482780  -6238337  -12.492168
a 6223437 2970817  5.958235
a -1.031807  -0.506884  -1.018934
by 10.803787 4799643  9.579296
Bo [14.809442  -6.849699  -13.658821
b.i 18279926 8371573  16.930231
b.s 4455646 2351191  -4.982365

k 0391884 0396776  -0.402247
o 1.964916 1945464  1.962834
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Table 5.7 Comparison of numerical solutions for Fisher equation (example 1)

t=02 t=1.0
Exact Proposed  Absolute Exact  Proposed Absolute
scheme error scheme error
x u(x,r) (GA-IPA) )u(x, ;)_ {;‘(n] u(x,t) (GA-IPA)  |ulx,1)-aln)
() )

00 0.53445 0.53481 3.68E-04 | 0.98666 0.98755  8.92E-04
0.1 0.50545 0.50558 1.31E-04 | 0.98527 098621  9.36E-04
0.2 0.47606 0.47598 8.09E-05; 0.98374 0.98471  9.68E-04
03 0.440647 0.44622 2.58E-04 | 0.98205 098304  9.85E-04
0.4 0.41687 0.41648 3.96E-04 | 0.98020 098118  9.87E-04
0.5 0.38746 0.38697 4.89T-04 | 0.97815 097912  9.73E-04
0.6 0.35843 0.35789 5.35E-04 | 0.97589 097683  9.39E-04
0.7 0.32998 0.32945 5.33E-04 | 0.97341 0.97429  8.85E-04
0.8 0.30232 0.30183 4.86E-04 | 0.97067 097148  B8.08E-04
0.9 0.27560 0.27521 3.97E-04 | 0.96766 096837  7.06E-04
1.0 0.25000 0.24973 2.71E-04 | 0.96435 0.96493  5.76E-04

Example 2: We consider the following gencralized Fisher equation [180], [181], [184],
[185], [186], [187].

u, =u, +ull-u”) (5.32)
subject to the following initial condition

IS S SR e T
u(x,())-{ztm\h( N ch}+2} (5.33)

The exact solution is given by

2
[ ]

1 a a+4 1
ulx, t}={—tanh< - - - .
(s} [2 { 2J2a +4 (x V2a +4 r]}+ 2} 39
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The numerical solution of (5.32) is obtained using the proposed scheme in domain [0, 1],
for @ =3anda =6. We assume that approximate solution is given by (5.27) in view of

Exp-function method. The corresponding FF of this problem is given as follows.

~uller, +a, Y- (fex, + at,)

=l s=i
2
R 1 ][ a 1|
— ulx . 0)—<—t ey A b e
Ny b 0) {2 2J2a +4 ’]Tz}

Here we have taken N, § = 1] for a =3,and for ¢ =6 N, § = 2] respectively. The

g [am'(ka +(a‘,)——k2u"(kxj +mr,)];l .

2 (5.35)

minimization problem given by (5.35) is solved using GA, IPA, and GA-IPA to achieve
the constants (a,...,a.2 b ....ba and k, ©) and consequently the approximate solution
ii{i7) of (5.32).

The algorithms GA, IPA, and GA-IPA are cxecutcd-with the same parameter settings as
prescribed in Table 5.1 and values of the unknown constants are achieved, which are
provided in Table 5.8. One can use the values of unknown constants from Table 5.8 in
(5.27) and obtain the numerical solution of (5.32) at any value of x and t in the solution
domain [0, 1]. In Table 5.9 we provide numerical solutions by the proposed scheme for
a =3 and a = 6at different values of ¢ and x, also exact solutions are presented for the
comparison. To further illustrate the accuracy of the proposed scheme comparison of
absolute errors obtained by the proposed scheme at various values of time ¢ are made
with absolute errors obtained using classical methods VIM [185], VHPM [185] and DTM

[186] in Table 5.10, ADM [184] and MVIM [184] in Table 5.11 for @ =3 and a =6
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respectively. Furthermore Table 5.12 shows a comparison of absolute errors between the
proposed scheme, HWM [187], and OHAM [187] for .ct = 6 at different values of time 1.

From the comparisons of numerical solutions and absolute errors it is observed that the
proposed scheme yields the approximate solutions of Fisher equation (5.32) with a
remarkably great accuracy and in a sharp agreement with the exact solutions as compared

to the methods used in [184], [185], {186}, [187].

Table 5.8 Optimal values of unknown constants for ¢ =3and a =6

a=3 a=6
Constant GA iPA GA-IPA GA IPA GA-TPA
a 1.956183 2396043 1955010 11.842042 -0.776000 10788171
a, 3.472735 0989144 3475511 | 16.008676 16.577801 13.547594

dg 7.935255  0.440256  7.933308 | 13.109621 10249838 11.263619
a.; 3.253756  0.758158  3.251794 1 6.548537 11.892683  5.824778

a; 0.083236  -0.007743  0.086775 0.265929 0319823  0.122577
by 1.958695 2387092 1956615 | 11.839029 -0.773863 10.787785
b; 4.824603 1.213233 4810081 | 16.088964 16.546023 13.522874

by 10.020968 2.578967 10.024919 | 17.658665 10202153 14001583
by 8.299114  0.148455  8.279836 | 11.410827 16.208127 11.013277

b. 1.410277 0935976  1.442175 3.194830 6.027368  3.019663

k -0.967265  -0.569803 -0.960679 | -0.786989 -0.734617 -0.705098

0} 2.140420 1261315 2.126651 1.967286  1.836550  1.762658
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Table 5.9 Comparison of numerical solutions (for a =3,6)

a=3 x=06
1=03 t=0.6
Exact Proposed  Absolute Exact Proposed  Absolute
scheme error | scheme error
x ulx,r)  (GA-IPA) [u(x, ()-i (r;] ulx,r)  (GA-IPA)  |ulx.r)-al()
iln “(72)
0.0 0.75228 0.75228 3.29E-08 0.96715 0.96715 1.48E-06
0.1 0.73543 0.73543 2.77E-08 0.96223 0.96222 8.67E-07
02 071794 0.71794 2.92E-08 0.95663 0.95663 2.43E-07
0.3 0.69987 0.699R7 1.15E-08 0.95025 0.95029 3.12E-07
0.4 0638126 0.68126 7.24E-08 0.94312 0.94312 7.15E-07
0.5 0.66217 0.66217 1.30E-07 0.93507 0.93507 9.03E-07
0.6 0.64266 0.64266 1.67E-07 0.92604 0.92604 8.57E-07
0.7 062278 0.62278 1.72E-07 0.91598 0.91598 6.11E-07
0.8 0.60262 0.60262 1.45E-07 0.90482 0.90482 2 46E-07
0.9 0.58224 0.58224 9.81E-08 0.89251 0.89251 1.20E-07
1.0 056172 0.56172 5.10E-08 0.87901 0.87901 3.68E-07
Table 5.10 Comparison of absolute errors at ¢ = 0.1 (foray =3)
Proposed Scheme Classical Methods
X GA IPA GAIPA VHPM VIM DTM
00 S5.01E-05 4.96E-08 3.85E-06 1.22E-04 3.76E-05 5.23E-05
0.1 5.79E-05  2.06E-09 3.76E-06 1.28E-04 2.58E-05 1.06E-04
0.2 6.57E-05 1.88E-08 340E-06 1.32E-04 1.45E-05 2.43E-04
03 7.32E-05 7.03E-09 2.66E-06 1.35E-04 423E-06 3.81E-04
04 7.99E-05 321E-08 1 .49E-06 1.35E-04 490E-06 4.35E-04
0.5 8.58E-05 8.30E-08 1.51E-08 1.33E-04 1.26E-05 3.1 8]_3-04
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Table 5.11 Comparison of absolute errors (for ¢ =6)atr=02,04

=02 t=04
x  Proposed ADM MVIM Proposed ADM MVIM
(GA-IPA) (GA-IPA)

0.0 1.01E-06 524E-02  4.54E-02 7.09E-07 121E-01 1.97E-01
0.2 942E-07 7.79E-02  4.17E-02 3.69E-07 2.17E-01  8.39E-02
0.4 8.53E-08 1.10E-01 3.23E-02 414E-07 341E-01 922E-04
0.6 6.7E-07 1.51E-01 1.91E-02 752E-07 4.94E-01 4.]0E-02
0.8 5.2E-07 1.99E-01 5.03E-03 1.67E-07 6.74E-01  4.10E-02
1.0 1.27E-07  2.55E-01 7.85E-03 8.24E-07 8.78E-01 1.46E-02

Table 5.12 Comparison of absolute errorsl(for a=6)atr=04,0.8
t=04 1=0.8
x  Proposed HWM OHAM | Proposed HWM OHAM
(GA-TPA) (GA-IPA)

0.0 7.09E-07 S48E-03 4.07E-03 | 592E-07 2.76E-03  7.4lE-02
0.1 640E-07 1.06E-02 234E-03 | 1.04E-06 S5.82E-G3  6.78E-02
02 3.69E-07 1.51E-02 431E-04 | 1.20E-06 8.93E-03 S581E-02
03 2.10E-08 1.86E-02 1.56E-03 | 1.14E-06 1.17E-02  4.53E-02
04 4.14E-07 2.06E-02 3.52E-03 | 9.94E-07 137E-02  3.00E-02
05 6.89E-07 2.10E-02 534E-03 | 8.67E-07 145E-02 1.31E-02
0.6 7.52E-07 194E-02 6.94E-03 | 8.77E-07 1.40E-02  4.63E-03
0.7 5.66E-07 1.59E-02 8.25E-03 | 1.12E-06 1.21E-02 221E-02
08 1.67E-07 1.11E-02 923E.03 | 1.67E-06 9.09E-03  3.84E-02
09 3.43E-07 S5.58E-03 9.86E-03 | 2.55E-06 5.58E-03  S5.27E-02
1.0 824E-07 548E-03 4.07E-03 | 3.71E-06 2.76E-03  7.41E-02
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Example 3: We consider the following Fisher equation [180]
u, =, +u(l-u) (5.36)

subject to the following initial condition

I

u(x,0)=] ——— (537
X
l+exp| —=
"[ﬁ}
The exact solution is given by
1
ulx,t)= (5.38)

i 1
l+expl =|x——=¢
V2 ( V2 D
The numerical solution of (5.23) is obtained using the proposed scheme in domain {{, 1]
with total steps N, § = 11 taken in the solution domain. We assume that approximate

solution of (5.36) is given by (5.27). The corresponding FF is accordingly formulated as

follows.

€, =Li > (‘-”-’“'(kxj +a)r,-)~k2u"(/ocj + @, )f“z(kxj +ax Il "“(kx; +ax, )))2

(5.39)

The minimization problem given by (5.39) is solved using GA, IPA, and GA-IPA to
achieve the constants (ay,...,a.; by, ....b.,, and k, »). Algorithms are executed with the

parameter settings prescribed in Table 5.1.
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Table 5.13 Optimal values of unknown constants for Fisher equation (example 3)

Constant GA IPA GA-IPA
a> 0016912 0000009  -0.001872
a 0082512 3231307  0.047214
as 5099919 -0.100825  -3.968665
Ca -18.600571  1.807064  -0.000854
a, 135735 0.806983  -1.622407
by -3807980 3231250  -4.053147
b -18.660492  3.130570  0.179000
b 7552964 1706175 -5.632102
by .18339570  2.614088  0.039252
b.s (1180987  0.806984  -1.626181
k 0369348 0707122 0347313
o 0261127 0500008  -0.245582

In Table 5.13 we provide the values of unknown cﬁnstants acquired by the algorithms
GA, IPA, and GA-IPA. Once we have acquired the unknown constants the approximate
solution of {5.36) can easily be obtained by using these values in (5.27).

The numerical solutions obtained at various values of time ¢ using the proposed scheme
are compared with the exact solution in Table 5.14, Further in Table 5.15 we present
comparison of numerical solutions and absolute errors obtained by the proposed scheme
with those reported by the DQM used in [180]. From the comparisons of numerical
solutions in Table 5.14 and Table 5.15, it can be seen that the proposed scheme gives the
approximate solution in an excellent agreement with the exact solutions and fairly

accurate than DQM.
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Table 5.14 Comparison of numerical solutions for Fisher equation (example 3}

t=05 t=1.0
Exact Proposed  Absolute Exact Proposed  Absolute
scheme error scheme error
x ulx,t)  (GA-IPA) M| wlx,t)  (GA-IPA)  fulx,e)- i)
il i)

0.0 0.56218 0.56218 1.74E-07 | 0.62246 0.62246  2.29E-08
0.1 0.54470 0.54470 1.17E-07 | 0.60570 0.6057¢  2.88E-08
0.2 0.52712 0.52712 5.69E-08 { 0.58870 0.58870  8.32E-08
0.3 0.50047 0.50947 5.54E-09 | 0.57147 0.57147  1.40E-07
0.4 0.49179 0.49179 7.04E-08 [ 0.55408 0.55408  1.99E-07
0.5 0.47413 0.47413 1.38E-07 | 0.53655 0.53655  2.60E-07
0.6 0.45654 0.45654 2.07E-07 | 051892 0.51892 | 3.22E-07
0.7 0.43906 0.43906 2.78E-07 | 0.50126 0.50126  3.86E-07
0.3 0.42173 042173 3.51E-07 | 0.48358 0.48358  4.52E-07
0.9 0.40459 0.40458 4.24E-07 [ 0.46595 0.46595  5.19E-07
1.0 038767 0.38767 4.99E-07 | 0.44841 044841  5.87E-07

Table 5.15 Comparison of numerical solutions between the proposed method and DQM

t x Exact Proposed DQM Absolute errors
u(x,r)  (GA-IPA) Proposed DQM
() (GA-IPA)

0.25 051830 0.51830 0.51831 | 2.60E-08 1.23E-05
0.5 05 047413 047413 0.47415 | 1.38E-07 1.52E-05
0.75 0.43037 043037 043039 | 3.14E-07 1.71E-05
0.25 058011 0.58011 0.58012 | 1.11E-07 1.04E-05
1.0 05 0.53655 0.53655 0.53656 | 2.60E-07 1.36E-05
0.75 049242 0.49242  0.49243 | 4.19E-07 1.19E-05
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5.5.2 GENERALIZED BURGER-FISHER EQUATION
The generalized Burger-Fisher (B-F) equation is one of the important NPDE which
appear in various applications such as fluid dynamics, shock wave formation, turbulence,
heat conduction, traffic flow, gas dynamics, sound waves in viscous medium, and some
other fields of applied science [195], [196], [197].
The generalized B-F equation is of the form [198], [199]

u +olu, —u, = pul-u’)  VO<xsl 120 (5.40)

subject to the following initial condition

u(x,0)=[ tanh[ “5) D% (5.41)

26 +1

The exact solution is given by

s (5,1) = [ m‘[z(_aaf 1)( [5+1 ﬁ(f;l)}))]l 642)

Many analytical and numerical methods such as OHAM [197], ADM {198], HPM [199],

collocation based radial basis functions (RBF) [200], and several others [195], [196],
[201], [202], [203], [204], have been utilized for solving B-F equation (5.40).
We obtain the numerical solution of the generalized B-F equation (5.40) using the

proposed scheme in the following two examples.

Example 1: Consider the generalized B-F equation (5.40) and apply the transformation

vatiable n =kx +otyields the following NODE.

o' +ou’ k' k"= Pull - 1°) (5.43)
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The numerical solution of (5.43) with the initial condition given by (5.41) is obtained in
the domain x € (0,1) and 7 € (0,1) for various values (i\f a, f,and & as follows.

Casel: a=£=0.00,6 =1

Case2: ¢ =4=0186=1

Case3: a=5=05,0=1

Cased a=pF=156=2

We assume the approximate solution ﬁ(r}') is given by (5.27). The unknown constants

(az,....az by...by and k o) in equation (5.27) are achieved using GA by formulating

the FF corresponding to each case. For instance the FF corresponding to case 1 is given

by
1 L (gu'(kxj+(orj)+(0.l)u(,-’cx;.+a}t,)hl'(kxj +a¥,-)"-k2?-¢"(kxj+a”r) 2
£ = : . (5.44)
121 24| = (0. el + o, Y1 - e, +ax, )
1 L1 o1 WYY '
£ =ﬁ§[u(xJ ,O)—[E +Etanh[-—4—xj )]) (5‘45)
£, =5 +E, : (5.46)

Similarly we formulate FF corresponding to each case defined above. The parameter
settings and values used for the implementation of GA are given in Table 5.16. The
number of unknown constants (@, ...,a.3, ba,...,b.2, and k, &) which need to be tailored is
12, therefore the size of chromosome is chosen as 12. The values of these unknown
constants are restricted between -10 and +10. The GA is executed to achieve the

minimumnt fitness, with the prescribed parameter settings and values given in Table 5.16.
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Using the values of unknown constants from Table 5.17 in equation (5.27) provides the
numerical solution #(;7) of the generalized B-F equation at any value of x and 7 in the
solution domain.

The numerical solutions obtained by the proposed scheme at time £ = 0.1 are presented in
Table 5.18 for case 1 and case 2, and in Table 5.19 for case 3 and case 4 respectively,
also exact solutions are given for comparison. It is seen from the comparisons of Table

5.18 and Table 5.19 that numerical solutions obtained by the proposed scheme are in an
excellent agreement with the exact solutions with average absolute errors of 1.20E-8,

1.49E-08, 4 40E-07, and 1.85E-06 for case 1, case 2, case 3, and case 4 respectively.

Table 5.18 Comparison of numerical solutions for B-F equation at r = 0.1 (for case 1, case2)

Case 1 Case2 Absolute errors
[ e~ 2007)
. T Prtiposed U, Pnlposed Case 1 Case 2
() i(n)
0.0 0500025 0500025 | 0.502562 (.502562 | 2.236E-08  8.009E-08
0.1 0500013 0.500012 : 0.501312- 0.501312 1.988E-08  7.001E-08
0.2 0500000 0.500000 0.500062  0.500062 1.706E-08  5.985E-08
0.3 0499988  0.499987 0.498813  0.498812 1.390E-08  4.967E-08
0.4 0499975 0.499975 %0.497563 0.497562 1.040E-08  3.954E-08
0.5 0499963 0.499962 | 0.496313  0.496313 6.547E-09  2.9S4E-08
0.6 0.499950 0.499950 ! 0.495063  0.495063 2.354E-09  1.972E-08
0.7 0.499938 0499938 . 0.493813  0.493813 2.182E-09  1.018E-08
0.8 0.499925 0.499925 %0.492563 0.492563 7.062E-09  9.795E-10
0.9  0.499913 0.499913 | 0491313 0.491313 1.228E-08  7.780E-09
1.0 0.499900  0.499900 | 0.490064  0.490064 1.785E-08  1.601E-08
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To show the accuracy of our results in comparison to the numerical solutions of this
problem reported in the literature by some classical methods, we provide the comparison
of numerical solutions with the exact solutions at various values of 7 and x in Table 5.20,
Tabile 5.21, Table 5.22, and Table 5.23 for case 1, case 2, case 3, and case 4 respectively.
Also the absolute errors obtained by the proposed scheme are compared with the absolute
errors obtained by OHAM [197] and ADM [198], in Table 5.20 and Table 5.23, and
HPM [199] in Table 5.21 and Table 5.22.

From the comparison of numerical solutions and absolute errors the accuracy of the
proposed scheme is quite notable. It is observed from the comparisons that the absolute
errors yielded by the proposed scheme are relatively smaller than absolute errors obtained
using OHAM [197], ADM [198], and HPM [199], which confirms the effectiveness and
efficiency of the proposed scheme.

Table 5.19 Comparison of numerical solutions for B-F equation at ¢ = 0.1 (for case 3, case 4)

Case 3 Case 4 Absolute errors
[ = (1)
¥ Uyt Proposed W graor Proposed Case3 Case 4
it(n) i(n)

0.0 0514059 0.514057 | 0.745203 0.745205 1.669E-06 1.396E-06
0.1 0.507812 0.507811 | 0.734037 0.734038 1.165E-06 8.651E-07
02 0501562 0.501562 | 0.722639 0.722640 1.771E-A07 3.266E-07
03 0495313 0495312 | 0.711024 0.711024 4.836E-07 2.146E-07
0.4  0.489064 0.489064 | 0.699207 0.699206 2.670E-07 7.568E-07
05 0482819 0.482819 { 0.687205 0.687204 1.123E-07 1.303E-06
0.6  0.476580 0.476580 { 0.675035 0.675033 6.852E-09 1.859E-06
0.7  0.470347 0.470347 | 0.662715 0.662713 S971E-08  2.436E-06
0.8  0.464124 0.464124 | 0.650264 0.650261 9.571E-08 3.047E-06
0.9 0457912 0.457912 | 0.637701 - 0.637698 1.074E-07 3.704E-06
1.0 0451713 0451714 | 0.625046 0.625042 9.900E-08 4.418E-06
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Table 5.20 Comparison of numerical solutions and absolute errors fora = £ =0.001and & =1

Absolute errors

x t Uy Proposed
#(n)  Proposed ADM OHAM
0.1 0001 0499988 0499988  1.97E-08 1.94E-06 2.25E-08
0.005 0499989 0499989  197E-08 9.69E-06 1.12E-07
001 0499990 0499990  1.97E-08 1.94E-06  2.25E-07
0.5 0001 0499938 0499938  3.58E-09 1.94E-06 4 58E-08
0.005 0.499939  0.499939  3.71E-09 9.69E-06 129E-07
001 0499940 0499940  3.88E-09 1.94E-06 4 58E-07
09 0.001 0499888 0.499888  1.80E-08 1.94E-06 4.58E-08
0.005 0.499889 0499889  1.77E-08 9.69E-06 2.29F-07
0.01  0.499890  0.499890  1.74E-08 1.94E-06 4.58E-07

Table 5.21 Comparison of numerical solutions and absolute errors fora = £ =10.1 and 6 =1

Absolute error
t X u Proposed Proposed HFM

- i(n)

0.1 02 0500062 0500062  S98E-08 432608
04 0497563 0497562  395E-08  1.08E-07
0.6 0495063 0495063  197E-08  1.74E-07
08 0492563 0492563 - 9.80E-10  2.40E-07

04 02 0507749 0507749 6.75E-08  3.85E-07
04 0505250 0505250  4.89E-08  6.65E-07
0.6 0502750 0502750  293E-08  171E-06
0.8 0500250 0500250  9.08E-09  2.76E-06

08 02 0517992 0517992  SO9E.08  7.28B-06
04 0515495 0515495  427E-08  3.08E-06
0.6 0512997 0512997  3.09E-08  1.12E-06
0.8 0510498 0510498  1.63E-08  5.32E-06
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Tabie 5.22 Comparison of numerical solutions and absolute errors fora = f = 0.5 and & =1

Absolute error
Y e Proposed Proposed HPM

t x ()
01 02 0501562 0501562 77707 6.17E-08

0.4  0.489064 0.489064 2.67E-07 1.60E-05
0.6  0.476580 0.476580 6.85E-09 2.58E-05

0.8  0.464124 0.464124 9.57E-08 3.54E-05

04 02 0543639 0.543631 7.40E-06 7.87E-05
04  0.531209 0.531205 4.69E-06 7.89E-05

06  0.518741 0.518738 2.95E-06 2.36E-04

0.8  0.506250 0.506248 1.87E-06 3.92E-04

""" 08 02  0.598688 0.598635 5.22E-05 1.24E-03
04  0.586618 0.586583 3.48E-05 6.22E-04

0.6  0.574443 0.574419 2.32E-05 2.80E-06

0.8  0.562177 0.562161 1.54E-05 6.28E-04

Table 5.23 Comparison of numerical solutions and absolute errors for @ = #=1 and 6 =2

| Absolute errors
x { Uy Proposed

i(n) Proposed ADM OHAM
0.1 0.0001 0695266 0.695267  1.08E-06 2.80E-04 1.17E-05
0.0005 0.695426 0.695427  1.08E-06 1.40E-03 5.87E-05
0.001 0.695625 0.695626  1.08E-06 2.80E-03 1.17E-04
0.5 0.0001 0.646130  0.646129  1.14E-06 2.69E-04 5.33E-05
0.0005 0.646297  0.646296  1.14E-06 1.34E-03 1.06E-05
0.001  0.646506 0.646505  1.14E-06 2.69E-03 1.06E-05
0.9 0.000] 0595310 0.595306  4.12E-06 2.55E-04 9.29E-06
0.0005 0.595481 0.595477  4.12E-06 1.27E-03 4.64E-05
0.001 0595695  0.595691  4.12E-06 2.55E-03 9.29E-04
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Example 2: With £ =0 and a =1equation (5.40) is reduced to the generalized Burgcr’s.
equation [198).

The approximate solution 1s obtained by the propos¢d scheme for three different values
of § =1,2,3 in the domain x €{0,1) and ¢ €{(0,2) foré =1,2, and ¢ €{0,5) for § =3 .

We assume the solution is expressed by Exp-function method given by equation (5.27).

The fitness function is developed for each value of é with =0 and a =1. For example

the fitness function for =3 is given as follows

£ __L 3y [(ou'(ka "‘f"‘f)"‘”s("‘x; "‘“"s}h"(kx.f "'“":)]2 +

s 121 i=| j=i —kzu"(kxj +wt*')

\2 (5.47)
: !
%g‘ u[xj,O)—(%+%tanh(%3xj)T
GA 15 used to solve the minimization problem such as given by equation (5.47) and to
obtain the optimal values of unkrown constants in (5.27). GA is executed with the
parameter settings and values as prescribed in Table 5.16.
The optimal values of unknown constants achieved by GA are given in Table 5.24 for
each value of § =1,2and3. The numerical solutions of generalized Burger’s equation are
obtained consequently by using the values of unknown constants in equation (5.27).
In Tables 5.25, Table, 5.26, Table 5.27, and Table 5.28 we provide the comparison of
numerical solutions for § =1,2and 3 obtained by the proposcd scheme with the exact
solutions, and the solutions obtained by ADM [198)] and RBF [200]. The comparisons of
numerical solutions and absolute errors reveals that the proposed scheme 1s quite
competent with other methods including ADM and RBF used in [198, 200] for solving

the generalized Burger equation. The comparison further reveals that the proposed
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scheme is capable to achieve the approximate solutions in the larger domain of time ¢
with greater accuracy. Moreover, it is observed from Table 5.27 that our scheme gives

more accurate solutions than ADM for the interval ¢ e (0.0001,0.001) and & = 3.

Table 5.24 Optimal values of unknown constants for different values of &

Constant &d=1 o=2 5=3
a -0.02125 -1.17068 9.75002
a; 0.09513 6.45543 -0.68817
a 433794 1.20187 5.57958
as 3.83626 5.95373 0.67409
a.p 2.79395 9.85137 -0.33117
b; 4.85151 9,54284 9,39347
by 3.33969 7.28427 1.56672
by 7.41892 -3.83427 -0.00436
by 3.65409 941931 8.97744
b2 2.81992 9,11302 -1.05417

k 0.24546 0.18000 -0.23131
o -0.12273 -0.05999 0.05784

Table 5.25 Comparison of numerical solutions for 8 =0, =1, and é =1

U, Proposed Absolute errors
f x z‘;(n) ADM RBF Proposed ADM RBF

0.5 61 0518741 0.518740 0518741  0.518739  1.14E-07 6.34E-08 2.00E-06
0.5 0468791 0.468791 0.468791  .468790 1.13E-07 5.66E-08 1.00E-06
09 0.419458 0.419459 (0.4194358 0419449  1.56E-06 4.12E-08 9 00E-06
1.0 01 0.549834  0.549833 0.549832 0.549831 1.17E-06 2.02E-06  3.00E-06
05  0.500000 G.499999 0.499998  0.499998  3.79E-08 1.84E-06  2.00E-06
09 0450166 0.450167 2.450165 0450157  1.28E-06 1.37E-06 9.00E-06
20 01 0610832 0.610638 0.610575  0.610635  8.44E-07 6.42E-05 4.00E-06
05 0362177 0562176 0.562116  0.562175  1.16E-07 6.06E-05 2.00E-06
09 0512497 0512498 0512450 0.512488 9.72E-07 4.75E-05 9.00E-06
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Table 5.26 Comparison of numerical solutions for f =0,a =1,and § =2

u Proposed Absolute errors
t x et ﬁ(,?) ADM Proposed ADM
05 0.1 0714919 0.714918  0.714919 7.43E-07 1.25E-08
0.5 0666837 0.666836 0.666837 1.16E-06  1.49E-08
0.9 0616567 0616565 0616567 238E-06 1.39E-08
1.0 01 0734037 0.734034  0.734037 2.94E-06 1.25E-08
0.5 0.687205  0.687202  0.687205 3.22E-06  4.75E-07
0.9 0.637701 0637697 0.637701 4.20E-06  4.39E-07
"""" 20 04 0770284 0770277 0770272 721E-06 1.18E-05
0.5 0726464  0.726456  0.726449 7.35B-06  1.49E-05
09 0679109 0679101  0.679095 8.03E-06  1.43E-05
Table 5.27 Comparison of numerical solutions for f =0, =1,and 6 =3
u Proposed Absolute
t x exoct l?(f?) ADM errors
Proposed ADM
0.0001 0.1 0783660  0.783659 0.784106  4.55E-07  4.46E-04
0.5 0741285  0.741285 0.743145  S5.66E-07  1.86E-03
0.9 0.696157  0.696158 0.697089  7.00E-07  9.32E-04
0.0005 0.1 0783670  0.783670 0.784115  4.57E-07  4.45E-04
05 0741296  0.741296 0.743150  5.63E-07  1.85E-03
09 0696169  0.696170 0.697089  6.98E-07  9.20E-04
0001 0.1 0783683 0.783682 0784127  4.60E-07  4.44E-04
0.5 0741309  0.741309 0.743157  5.61E-07  1.85E-03
09 0696183 0696184  0.697088  6.95E-07  9.05E-04
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Table 3,28 Comparison of numerical with RBF for # =0, =1,and 6 =3

Yyt Proposed Absolute errors

f X ii(n) RBF  Proposed RBF
0.5 0.1 0796173 0.796174  0.796176 1.00E-06  3.00E-06
0.5 075487 0754871  0.754877 1.00E-06  7.00E-06

09 0710485 0.71048  0.710486 1.00E-06  1.00E-06

10 0.1 0.808297  0.808209  0.808299 2.00E-06  2.00E-06
0.5 0768157 0.768159  0.768165 2.00E-06  8.00E-06

09 0724622 0724625 0.724623  3.00E-06  1.00E-06

20 0.1 0.831283 0831288  0.831286 - S5.00E-06  3.00E-06
0.5 0793701 0793706  0.793709 5.00E-06  $.00E-06
09 0752176 0752182 0.752177  6.00E-06 1.00E-06
50 0.1 0889248  0.88926  0.889252 1.20E-05  4.00E-06
05 0.860439 0860452  0.860452  1.30E-0S | .30E-05

0.9 0.826825  0.82683%  0.826828  1.40E-05 3.00E-06

Finally we study the effect of change in the values of p, ¢, ¢, and d in equation (5.27) on

the accuracy of approximate solution, and show reliability of the proposed scheme. We

used following test cases

Case(i): p=c=1 g=d=1
Case (i) p=c=2 g=d=2
Case(iii):p=c=3 g=d=3

Case(iviip=c=1 g=d=2

We consider the generalized B-F equation (5.40) with a = #=0.001 andd =1. The
approximate solution is obtained in the domain x,¢ € (0,1}

The approximate solution is expressed in view of the Exp-function method by choosing
the values of p,g, ¢ and d in (5.27), we get following trial functions for case (i} — case

(iv) respectively.,
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_ v aexpln)+ay +a expl-n)
ily) = b exp{n)+ b, +b_, exp{-n) (48)

H a, exp(2n)+ a, exp(i7) + a, +a_, exp{- )+ a_, exp(- 277)
ii{n) = (5.49)
b, exp(Zn)+ b, exp{2n)+ b, +a_ exp(— :q)+ b, exp{- 27;)

a, exp(?;r;) +a, exp(Zn)-{- aq, exp(q)+ a,
+a expl-n)+a, expl-27)+a, expl-37)

i) = b, exp(Bn) +b, exp(237) +b, expln)+ b, (5:50)
+b_, exp(-n)+ b_, exp(-2n)+ b_; exp(-3n)
)= exp(7)+ a, + a_ expl=7)+a_, exp(-217) (5.51)

- b, exp(n) +b, +b, exp(— n) +b_, expl- 2?3)

The GA has been used to solve the FF given by (5.46) with same settings for all the four
cases (i) - (iv) as prescribed in Table 5.16 for example 1, except with a change in
chromosome size for each case which s 8, 12, 16, and 10 for case (1), case (1i), case (iii),
and case (iv) respectively. The optimal values of unknown constants acquired by GA are
provided in Table 5.29.

The numerical solutions have been obtained for each case and absolute errors have been
computed. In Table 5.30 we present a comparison of numerical solutions obtained by the
proposed scheme with each case at time ¢ = 0, also exact solutions are shown for the
comparison. To further evaluate the inﬂuencg of the parameters p, g, ¢, and d average
absolute errors obtained by the proposed scheme for each case (i) - (iv) in the solution
domain [0, 1] have been computed and presented in Table 5.31. Moreover, computational
time and number of generations utilized are also given for the sake of comparison in
Table 5.31. From the comparison of Table 5.31, it 1s observed that the average absolute
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error corresponding to case (i) withp = ¢ = [ and d = ¢ = ] is relatively high compared

to other cases (ii) — (iv). It is also observed that the accuracy is fairly equal for the

remaining cases (ii) - (iv), however the computational time is quite different. It can be

seen from Table 5.31 that for case (iv) we get the average absolute error quite comparable

to cases (ii) and (iii), but with lesser number generations and smaller computational time.

Therefore it can be concluded on the basis of the simulation results that the choice of p, g,

¢, and d have influence on the accuracy of numerical solutions and computational time.

Nonetheless the comparison clearly demonstrates the accuracy and reliability of the

proposed scheme.

Table 5.29 Optimal values of unknown constants with different values of p, g, ¢, and d

Constant Case (i) Case (i) Case (iii) Case (iv)
az - - 0.289132 -
a; - 0.355869 -0.27761 -
aj 0.318111 0.233491 0.40672 0.759563
ap 0.19323 0.889993 0.193522 0.071117
a. 0.266052 0.526815 1.221299 0.574267
a.; - 0.148751 -0.01553 0.557091
a.; - - 0.683148 -
b3 - - -0.19988 -
b, - 0.831958 0.483044 -
bi -0.43654 (.85859 0.736614 0.802849
by 0.715427 0.746341 0.683434 0.602095
b 1.275903 0,762522 0.576841 1.076806
b. - 1.110428 1.404318 1.442326
b_; - - 1.31645 -
k 0.000214 -0.00153 -0.00105 -0.00075
w 0.006147 0.003067 0.002102 0.00151
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Table 5.30 Comparison of numerical solutions for B-F equation

Proposed Scheme, #(77)

X By et Case (i) Case (ii) Case (iii) Case (iv)
0 0.500025 0.499641 0.500025 0.500025 0.500025

0.1 0.500013 0.499629 0.500012 0.500013 0.500013
0.2 0.500000 0.499616 0.500000 0.500000 0.500000
0.3 0.499988 0499604 0499988 0.499988 0.499988
0.4 0.499975 0.499591 0.499975 0.499975 0.499975
0.5 0.499963 0.499579 0.499963 0.499962 0.499963
0.6 0.499950 0.499566 0.499950 0.499950 0.49%950
0.7 0.499938 0.499554 0.499938 0.499937 0.499938
0.8 0.499925 0.499541 0499925 0.499925 0.499925
0.9 0499913 0.499529 0.499913 0.499912 0.499913

1 0.499900 0.499516 0.499900 0.499900 0.499900

Table 5.31 Effect of change in p, ¢, ¢, and d on the performance of the scheme

Values of  Average absolute  No. of generations Computational
P, g, ¢ d error time in se¢
Case (1) 1.91E-03 196 80
Case(ii) 1.97E-07 457 177
Case (iti) 1.42E-07 279 97
Case (iv) 1.76E-7 51 40

5.5.3 GENERALIZED BURGER-HUXLEY EQUATION
In this section, we consider the generalized Burger-Huxley (B-H) equation as a final
NPDE problem and obtain its numerical selution using the proposed scheme. To prove

the efficacy and viability of the proposed scheme generalized B-H equation is
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numerically solved for various values of the parameters governing the equation, besides
the numericat solutions of the generalized Huxley equation are obtained for various
choices of the parameters,

We consider the generalized B-H equation as follows [205], [206], [207]

u, +ouu, —uy = pull-u® Ju’ -y} Osx<Lr20 (5.52)

subject to the initial condition
1

u(x,0) = [% + %tanh(o?x)]g (5.53)

with the exact solution given by

(1) = [% +% tanh{ay(x - {1?"?“5 (e 526 i)(;; - a)}r]}r (5.54)

where o =8(p—a)/41+5) and p=Ja’ +48{1+5). The generalized B-H equation

(5.39) describes the prototype models of interaction between reaction mechanisms,
convection effects, and diffusion transports [205], [206], [207]). When a =0, equation
(5.39) reduces to the generalized Huxley equation, which describes wall motion in liquid
crystals {2071, [208], [209], [210]. B-H equation has been paid much attention and many

methods have been proposed so far, but no one yet has tried the method proposed here.
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Example 1: We consider the generatized B-H equation (5.52) and obtain its approximate
solution in the domainx, ¢ (0,1}, with following values of the parameters for a direct
comparison with other methods reported in [205], [206].

Casel: a=f8=6=1Ly=0.001

Case2: a=f=1Ly=001,5=24,6

To apply the proposed scheme we first convert the given NPDE into corresponding
NODE by applying the wave the transformation variable n to the generalized Burgers-

Huxley equation to get the following equation.

o'+ ki =k = pull - u® Sl —y) (5.55)

The unknown constants {ay,..., a_3;8y....6_,; kK and o) in (5.27) are achieved using GA

and PSO by formulating the FF for each case. For instance the FF for case 1 that is

a=pf=06=1y=0001is given by

- ( ol + ot Y+ ks, + o, Y ke, +ax)—k2u”(kx,+frf,)Jz
ullor, + o, N1 - ulker, +ox, Yulke, + at, )~ 0.001) (5.56

+~1—“][rwr(x;,()){%ql g@m[OOOI JDZ

2 2 4

The FF given by (5.56) is minimized by applying GA and PSO for obtaining the optimal
values of unknown parameters.
The parameter settings and values used for the implementation of the algorithms GA and

PSO are given in Table 5.32,
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The number of unknown constants (a,,..,a_,:b,,....b_,, k ande ) which need to be
tailored is 12, therefore the size of chromosome and the size of particle each is chosen as
12 respectively for GA and PSO.

The values of these unknown constants are restricted between -20 and +20. The GA and
PSO are executed to achieve the minimum fitness, with the prescribed parameter settings
and values given in Table 5.32.

Table 5.32 Parameter values and settings of GA and PSO for B-H equation

GA PSO

Parameter Name Setting/Value Parameter Name  Value
Population size [310 310] Population size 620
Chromosome size 12 Particle size 12
Scaling function Rank Cognitive constant 0.5
Selection function Stochastic uniform | Social constant 1.0
Mutation function Adaptive feasible | No. of generations 1000
Crossover function Heuristic Function tolerance le-18
Crossover fraction 0.8 Bounds -20, +20
No. of generations 1000 - -
Function tolerance le-18 - -
Bounds =20, +20 - -

The optimal chromosome corresponding to the minimum fitness achieved by GA and
PSO are given in Table 5.33 and Table 5.34 for case 1 and case 2 respectively.

The approximate solution of the generalized B-H equation (5.52) is consequently
obtained by using the values of unknown parameters from Table 5.33 and Table 5.34 in

(5.27).
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Table 5.33 Optimal values of unknown-constants for ¢ = =96 =1,y =0.001

~Value
Constant GA PSO

a; 0.072043 1.046513
aj -0.143229 1357303
ap -0.107314 4.013094
a.; 0.528938 -2.355655
a.; -0.345736  -1.334002
bs 2.886257 7.220108
by 0.278548 2.643407
by 0.601896 6.631879
b 3.129988 8.380038
b., 2.508507 0.419568

k 0.000007 0.000001
® -0.000014  -0.000001

Table 5.34 Optimal values of unknown constants fora = =1,y =0.01,and § = 2,4, and 6

Yalue
5=2 5=4 5=6
Constant GA PSO GA PSO GA PSO
a; 2.6333 -0.5878 4.6845 -1,1357 56753 -3.5955
a; -1.1713 -1.1993 -6.2895 7.1417 6.7001 1.2889
ap -7.4537 1.9339 11.3438 0.7822 1.8124 -1.0281
a. 13.7534 -0.6767 02318 2.7754 8.1234 -1.1954
a; -3.2001 -0.6929 6.5612 4.325] 53674 -3.3303
b, 12.0289 -7.0723 16,3038 4.0919 18.3226 -13.3246
b 9.5465 -0.0046 7.4003 3.6792 47712 3.8662
by 13.3712 -4.2442 1.1396 16.2994 18.6110 -2.1033
b, 9.8656 -2.0549 17.7174 -7.3819 11.5079 3.8682
b, 19.6997 39111 17.8647 14.6671 13.7217 -11.3150
k -0.0046 -0.0402 -0.0046 0.0091 -0.0237 -0.0034
@ 5.0000 1.9649 1.9455 -0.0248 0.0757 0.0109
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Table 5.35 Numerical solutions by proposed scheme for # = =58 =1 and y =0.001

Proposed scheme Absolute errors
i) e = 21)
/ x Hecaer GA PSO GA PSO

02 02 0.0005001 0.0005000 0.0005000 7.61E-08  7.50E-08
04 0.0005001  0.0005000  0.0005000 7.48E-08  7.50E-08
0.6 0.0005001  0.0005000 00005000 7.36E-08  7.50E-08
0.8  0.0005001  0.0005001 00005001  7.24E-08  7.50E-08
1.0 0.0005002  0.0005001  0.0005001  7.12B-08  7.50E-08
04 02 0.0005001  0.0004999  0.000499%  1.51E-07  1.50E-07
0.4 0.0005001 0.0005000 0.0005000 1.50E-07 1.50E-G7
0.6 0.0005001  0.0005000 00005000  1.49E-07  1.50E-07
0.8 0.0005001  0.0005000  0.0005000 147E-07  1.50E-07
1.0 0.0005002  0.0005000  0.0005000 1.46E-07  1.50E-07
06 02 00005001 00004999  0.0004999 226E-07  2.25E-07
04 00005001 0.0004999 0.0004999 2.25E-07 2.25E-07
06 00005001  0.000499  0.0004999 224E-07  225E-07
0.8  0.0005002  0.0005000  0.0005000 222E-07  2.25E-07
1.0 0.0005002  0.0005000  0.0005000 221E-07  2.25E-07
0.8 02 00005001 00004998 00004998 3.01E-07  3.00E-07
04 00005001 00004999  0.0004999  3.00E-07  3.00E-07
0.6 00005002 00004999  0.0004999 298507  3.00E-07
0.8  0.0005002  0.0004999  0.0004990  2.97E-07  3.00E-07
1.0 0.0005002  0.0004999  0.0004999  2.96E-07  3.00E-07

In Table 5.35 and Table 5.36 we present numerical solutions obtained by the proposed
scheme for case 1 at different values of x and ¢, also the exact solution and absolute errors
obtained by classical methods ADM [205] and VIM [206] are provided for the
comparison purpose. From the comparison of absolute errors approximate solutions are -
found in good agreement with the exact solution with an average absolute error of

1.874E-07 in the solution domain x, 7  (0,1).
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Table 5.36 Comparison of numerical solutions for @ = # =6 =1 and y = 0.001

Proposed

u(r}') Absclute Ervors
X 1 Moot GA PSO GA PSO ADM YiM

0.1 005  0.00050002  0.00050000  0.00050000 2.05E-08 (.87E-08 1.87E-08 |.87E-08
0.1 0.00050003  0.00049999  0.00049999 3.92E-08 3.75E-08 3.74E-08 1.T4E-08
1.0 0.00050014  0.00049976  0.00049976  3.76E-07 3.73E-07 