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ABSTRACT

During data acquisition and transmission, it may be corrupted by different types of
noises. These noises may be AWGN, Poisson, Rician or any combination of the additive
and multiplicative noises. In case of compressed sensingjthe noise caused by under
sampling is completely de-noised by the recovery techniques used for recovery of the
under sampled data. However, if the signal (or image) is also having additive or
multiplicative noise, then it cannot be recovered only by the compressed sensing recovery
techniques. In the first part of this work, Wavelet based soft, hard, garrote and
Logarithmic technique (proposed) is used for de-noising of images, corrupted by noise
during under-sampling in the transform domain. These techniques are applied to under-
sampled Shepp-Logan Phantom images. Experimental results show that the proposed
method is 7-10% better in PSNR values than the existing classical techniques. The second
part of this work recovers and de-noises the under-sampled phantom image. The phantom
image is corrupted by aliasing (Gaussian noise) and salt & pepper noise. This work is
based on the recovery and de-noising of under sampled and noisy image through the
classical and proposed thresholding techniques and compute their correlations with the
original image. By applying the thresholding techniques only, gives the correlation values
close to the noisy image. However, by applying median filter in sequence with the
thresholding techniques, gives 30-35% better results. So, the second part of this work
recovers the sparse under-sampled images by the combination of shrinkage functions and

median filtering.
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Chapter 1

INTRODUCTION

Modern research in the field of optimization has made it easy to solve the constrained
optimization and inverse problems efficiently in less time. Problems of these kinds are
discussed in image processing such as image de-noising, de-blurring and restoration of
the regularly and randomly under-sampled images etc. In most of the cases in image
processing, we have access to under-sampled noisy versions of images [1] [2]. The
inverse problem of reconstruction of signals (or images) from incomplete, faulty and
under-sampled data is the field of interest from a few years [3]. We can exactly recover
under-sampled, sparse signals using L1 optimization [4].The recent developments in the
field of compressed sensing (CS) open a window towards the area of sparse signal
processing. Signals have sparse representation in some transform domain i.e. Discrete
Cosine transform (DCT), Fourier Transform (FT) and Wavelet Transform etc [5]. CS
suggests that if the signal of interest is sparse (in some domain or in its own) it is possible
under some assumptions to reconstruct the signal exactly with high probability with many
fewer samples than the standard Shannon-Nyquist theory recommends [6]. CS has been
applied to MRI (M.Lusting, D.L.Donoho and JM.Pauly in 2007) and in particular
techniques have been developed specifically for dynamic Magnetic Resonance Imaging

(MR) [7].

This work is divided into three models, sparse one dimensional signal recovery using
the classical and new shrinkage functions. The recovery of sparse signal is an ill-posed
problem. Take a sparse signal, under sample it in Fourier domain. Regular under-
sampling leads to aliasing and random under-sampling offsets aliasing leads to noise.

Then taking inverse Fourier transform, applying the thresholding functions in the signal
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domain. We iteratively apply hard, soft, garrote and proposed thresholding functions to
recover the original signal. By random under —sampling this research turn an ill-

conditioned problem to a sparse signal recovery problem [8].

The second contribution in this thesis is on the recovery and de-noising of sparse
images having the aliasing noise due to random under-sampling. We have used Shepp-
Logan Phantom image (of size 256 x 256) for testing the accuracy of our proposed
technique. By applying the proposed, hard, and soft and garrote thresholding techniques
iteratively in transform domain for the recovery of under sampled image. We observed
that our proposed technique is better 7-10% in terms of PSNR. This suggests that the

proposed function has more flexibility for the recovery of sparse signals (or images).

The third portion of this work have focused on the recovery and de-noising of the
phantom images corrupted by under-sampling aliasing noise and impulsive noise. We
have added salt and pepper noise to the original phantom image before making it under
sampled. We apply the four thresholding techniques, which removes the noise produced
due to aliasing but the impulsive noise cannot be removed significantly by using
thresholding functions only. For that noise, it need the help of the existing de-noising and
filtering techniques such as total variation de-noising (TVD) [9], Total Variation Filtering
(TVF) [10], Filtered Variation De-noising (FVD) [11], mean filtering , Gaussian filtering
and median filtering [12]. In our case we have used median filtering for the reduction of
salt and pepper noise. It compares the results of the thresholding techniques with that of
the median filtering, based on the correlation values. The median filtering produces 30-
35% better results than that of the ordinary thresholding techniques.

1.1 Problem Statement

At its heart, signal and image processing prefers accurate processing of data. For the
storage, transmission and acquisition of data we need a simple and reliable
representations of the data. To represent the actual data with linear combinations of a few
seed samples and avoid the complex calculations, computations and measurements leads
to the field of sparse signal processing. Sparsity is used for signals and images

compression [13], de-blurring [14]and source localization [15]. It has many applications

12
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in the field of detection and estimation, because some time we are only interested not in
the full recovery of the signals but we just want sensing of the signals [16]. Sparsity and
CS save the time in conventional in MRI. MRI scanners sample lines in spatial Fourier

domain of the image and thus take the benefits of sparsity and CS [17].

However sparse signal processing is also of great importance in the field of signals (or
images) recovery and signal (or images) de-noising. With the introduction of CS, sparse
signal processing techniques are of more importance. Many researchers have use sparsity
and CS in different contest for the signals recovery and de-noising problems. The signals
that are sparse in some frequency domain such that wavelet and Fourier transform can be
efficiently recovered as compare to the ordinary compression of data which leads to
missing of information. DCT based sparsity is used for JPEG images and Wavelet for
JPEG200 [18].

1.2 Proposed Work

Our focus is on the recovery of discrete time signals and images and also on the de-
noising of images using wavelet based de-noising techniques and sparsity. This work will
recover 1D discrete time sparse signal by means of the four thresholding techniques and
also recover phantom image. In both cases this work compares the results of the four
thresholding methods (i.e. soft, hard, garrote and logarithmic). For simple one
dimensional signal recovery, it runs iterations for maximum error between the original
and recovered signal and judge which method reduces the error first. In addition this work
recovers the phantom images through the four thresholding techniques and compares their
PSNR values. The Proposed technique produces best results among the four shrinkage
functions. In the last part of this work, we de-noise phantom images through the four
wavelet thresholding techniques along with median filtering. The parameter for quality
checking is the correlation between the original and de-noised images. The images
recovered through the wavelet based thresholding functions produce low value as
compared to the median filtering used after thresholding. Only median filtering cannot
recover the sparse signal but just can remove the impulsive noise. This work uses median
filter in parallel with the wavelet based thresholding to recover and de-noise the sparse

signals and images.

13




1.3 Thesis Organization

After introduction of the thesis, problem statement and proposed work, in chapter 2,
literature review is given. In chapter 2, we simply take an overview of the classical and
new techniques applied for signal (or image) sampling, recovery, de-noising, de-blurring,
sparse signal processing, compress sensing, theoretical and mathematical description of
sparse signal processing, CS and wavelet transform. Chapter 3 is dedicated to the discrete
time sparse signal recovery problem, soft, hard, garrote and proposed thresholding
techniques. In chapter 4, this research explains the new work. Applying the four
thresholding techniques to phantom, sparse images for recovery and compare their results
based on PSNR values. In the same chapter, the four thresholding techniques are used for
de-noising of phantom image having salt and pepper noise. In chapter 5, results,

conclusions, future work is discussed followed by references.
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Chapter 2

LITERATURE REVIEW

2.1 De-noising Techniques

Noise reflects the meaning of unwanted signal in communication, signal and image
processing. Noise is an information bearing signal, which shows the property of the
system, e.g. heat from a laptop suggests that it is processing something heavy or its inner
cooling fan is not working. Noise in communication and signal processing occurs due to
different reasons such as due to the processing system and acquisition etc. Image
restoration in image processing attempts to recover a full fledge de-noised version of the

degraded, blurred and noisy images.

Images are often degraded by noise. Noise can occur during image capture,
transmission etc. Noise removal is an important task in image processing. In general the
results of the noise removal have a strong influence on the quality of the image processing
techniques. Several techniques for noise removal are well established in image
processing. The nature of the noise removal problem depends on the type of the noise
corrupting the image. In the field of image noise reduction, several linear and nonlinear
filtering methods have been proposed. De-noising of image is very important and inverse
problem of image processing which is useful in the areas of image mining, image
segmentation, pattern recognition and an important preprocessing technique to remove the
noise from the naturally corrupted image by different types of noises. The wavelet
techniques are very effective to remove the noise. This work reviews on noises like Salt
& Pepper noise, aliasing noise (Gaussian noise) etc. and various techniques available for

de-noising the image.

15




De-noising is a challenging problem for researchers from many years. Different de-
noising techniques are used. Total variation de-noising (TVD) is a classical de-noising
method is in use since 1990. It was first used by Usher and Fatemi. According to this
method, difference of the neighboring pixels is calculated and then tries to minimize the
“I1” and “I2” norms of the difference vector. The discretize Total Variation (TV)
function of x is given by

TV(x) =  (x[n] ~ x[n + 1])? (1

Where x[n] is the n™ pixel of the signal. The term x[n] — x[n + 1] is called the discrete
gradient and a closed approximation of the high pass filter.

If “x” is the observed signal, corrupted by Additive White Gaussian Noise (AWGN) “n”,
then the noisy signal is given by

y=x+n, x,y,neR" (2)
TVD recover “x” by minimizing the function

Jx)=Ily = xlI3 +A [TVl €)

Where “A” is the regularization parameter, which controls fluctuation in the signal [19].

If we filter the signal with Haar high pass filter and calculate I1 and I2 norm of the
filtered signal, it reflects the same meaning as TVD.

In the light of the last paragraph an easy version of the Total Variation is the Filtered
Variation (FV) method used for de-noising and sparse signal processing. According to
this method, if the original signal is x, take transform (D) of it. Apply filter (H) on it and
calculate the 11 or [2 norms of it or mathematically

FV,(x) = ||HDx|], p=1.2 (4)

Where “p” represents the order of norm, employed in the above equation. From simple
TVD, it is better to use FV because of its application as to provide sparsity along with less

mathematical complexity [20].
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Besides the TVD and FV, there are many other techniques for signal (or image) de-
noising including the whole family of filtering techniques, such as linear and non-linear
filtering. Linear filters are also known as convolution filters as they can be represented
using a matrix multiplication. Thresholding is an example of nonlinear operations, as is
the median filtering. The linear filtering includes mean filtering [21], averaging filtering
[22] etc. linear filtering replaces each pixel by linear combination of its neighboring
pixels.

Wavelet based de-noising is the most efficient technique for signal (or image) de-
noising due to its simplicity and sparsity applications. Most of the signal noise can be
suppressed using wavelet based de-noising. Wavelet based de-noising is used in different
forms, one of them is wavelet based thresholding. Wavelet based de-noising is easily

applicable and most of the under-sampling noise can be removed through this method.

2.2 Wavelet Transform (WT)

A wavelet is a small function used to divide a given function or continuous-time signal
into different scale components. Wavelets are mathematical functions that cup up data
into different frequency components, and then study each component with a resolution
matched to its scale. Wavelet transformation decomposes a signal into a set of basis

functions. These basis functions are called wavelets.

The first wavelet related theory was given by Alfred Haar in 1909 in his dissertation “On
the Orthogonal Function Systems” for his Doctoral Degree.

Wavelet is a relatively new theory it has enjoyed a tremendous attention and success
over the last decade, and for a good reason. Almost all signals encountered in practice call
for a time-frequency analysis and wavelets provide a very simple and efficient way to
perform such an analysis. Still there is a lot to discover in this new theory, due to the
infinite variety of non-stationary signals encountered in real life [23].

Wavelets are obtained from a single prototype wavelet y (t) called mother wavelet by
dilations and shifting.

In general we use a scaling function to derive more wavelet basis i.e.

17




Yar® = (%) v (5D (5)

Where “a” is the scaling parameter and b is the shifting parameter

2.2.1 Advantages of Wavelet Transform

i)

iv)

Wavelet transform provides a way for analyzing waveforms in both frequency and

time.
Accurately represent the functions that have discontinuities and sharp peaks.

Accurately deconstructing and reconstructing finite, non-periodic and non-

stationary signals.

WT allows signal to be stored more efficiently than by Fourier transform.

2.2.2 Limitations of Fourier Transform (FT)

WT and FT are different in time but same in frequency representation.
FT only gives what frequency components exist in a signal.

FT does not tell at what time the frequency components occur.
Time-Frequency representation is needed in most cases.

WT gives both details i.. in time and in frequency.

18
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Figure 1: WT & FT, Frequency and Time representations

2.2.3 Types of WT

1) Continuous Wavelet Transform (CWT)
2) Discrete Wavelet Transform (DWT)

2.2.3.1Continuous Wavelet Transform (CWT)

We construct different wavelet basis functions from a single scaling function ¢(x). By
translating and scaling this function we construct the other wavelet basis function. i.c.
¢(cx - d). By increasing the value of “c”, shrinks the function and by giving positive value
to “d”, we shift it to right.

The prototype wavelet can be given as a linear combination of the scaling function. The

scaled and translated function ¥;,(x) can be given as

Yoa == () (6)
Where ¢ and d belongs to R, but ¢ # 0
We D] = [2, Wea f0dx = Yealfx) (7)
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Where < ¥ q4]f (x) > denotes the inner product or in other words it denotes the
projection of f(x) the scaling function “i) 4 [24].
2.2.3.2 Discrete Wavelet Transform (DWT)

The main difference in CWT and DWT is the values, we assign to “c” and “d”. In CWT
there is no bound on the values of “c” and “d” while in DWT, we select the values from

the set of integers.

1
Weq =a2 ¥ (al - k) (8)
Where j, k € Z, and a is most of the time consider as 2.

A simple unit scaling function is given by

_ {1 0<x<1
b(x) = {0 otherwise} ©)

In the discrete signal case we compute the Discrete Wavelet Transform by successive
low pass and high pass filtering of the discrete time-domain signal. This is called the
Mallat algorithm of Mallat-tree decomposition. The recently developed JPEG2000
standard is based on DWT while the first JPEG standard is based on DCT. The wavelet
transform can be used to create smaller and smaller summary images, thus resulting in a
Multi-resolution Analysis (MRA). In this type we do two things, one filtering and the
other sampling using two types of filters, high and low pass filters.

Extension to 2D is very simple. 2D discrete wavelet transform (1D DWT applied
alternatively to vertical and horizontal direction line by line) converts images into “sub-
bands” Upper left is the DC coefficient, Lower right are higher frequency sub-bands [25].

The main story of wavelet starts from the introduction of Haar wavelet transform. It is

the simplest wavelet transform for coarse to fine study of the images.

2.2.3.2.1 Haar Wavelet

The Haar wavelets are defined as:
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1 0<sx<1/2
U) =4 -1 ~<x<1 (10)
0 otherwise

The scaling function for Haar wavelet is given by

_ (1 0<x<1
$(x) = {0 otherwise} (11)

It can be give Y(x) in terms of $(x) as
¥(x) = ¢(2x) — d(2x— 1) (12)
The image decomposition process is given as
Scalel:

In this section 4 sub-bands of image are made ie. LL, , HL, , LH, and HH;. Each
coefficient has a 2x2 area in the original image. Low frequencies 0 < w < ; and high

frequencies are

m
- < T
—<w< LL, | HL,
LL, HL, HL,
LH, | HH,
LH, HH, LH, HH,

Figure 2: Image compression levels
Scale2:

Again 4 sub-bands are LL, , HL, , LH, and HH, , each coefficient take a 2x2 area in

scalel image. Low frequencies 0 < w < ; and high frequencies

37: <w< g ; the scalel and scale2 is shown in figure 2.
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The coefficients are parent, children, descendants and ancestors. Descendants are the
corresponding coefficients at finer and ancestors are the corresponding coefficients at

coarser. This is shown in figure 3.

z ’;3 HL

; \HH,

Figure 3: Image compression

2.2.3.2.2 Daubechies Wavelet
Another, type of wellknown wavelet is Daubechies wavelet. In this work we have used

Daubechies4 wavelet.

In 1985 Stephen Mallat discovered a way to compare filtered compression and
orthonormal wavelet based compression. Later Ingrid Daubechies developed a new
method for discrete representations of the continuous wavelet transform called wavelet
frames [26].

In wavelet transform, two types of filters are needed for a function. The high pass
corresponds to the prototype function while the low pass filter corresponds to scaling

function. The scaling function gives the resolution information of the wavelet function.

For the Daubechies4 scaling function wavelet coefficients are given by
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> (13)

The corresponding prototype function has a recursive relation with scaling function, i.e.

V() = —c3h(2x) + c2p(2x — 1) — ¢;p(2x — 2) + cop(2x — 3) (14)
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Chapter 3

COMPRESSED SENSING

3.1 Motivation

Practically in the vast majority of applications data acquisition is based on
Shannon/Nyquist sampling theorem that requires sampling rate at least twice the
messages signal bandwidth in order to achieve exact recovery and prevent aliasing [27].
This requirement is not practical for video industry since the signal bandwidth is very
wide and the technology is not féasible to achieve necessary rates in order to satisfy the
Shannon/Nyquist sampling theorem. There is a significant class of signals (pictures for
example) that are compressible, not all the data is necessary to transmit in order to get
‘good enough’ representation of the original message. Practical solution introduces lossy

compression processing at the source level.

Compressed sensing (CS), also known as compressed sensing, compressive sampling
has opened a new era of signal processing. Compressed sensing is new method to capture
and represent compressible signals at the rate well below Nyquist’s rate. It uses random
measurement matrix, preserves the signal structure (length or the sparse vectors is
conserved) and reconstruct the signal from the projections using optimization process
(11 norm) [28].

Compressed sensing is a new theory of sampling. According to the old sampling theory,
huge information is acquired by sampling, but most of it is waste. E.g. sample at pixels
(1000 x 1000 =10°), we will get raw image. According to compressed sensing, compute
wavelet coefficients. They decay fast. Retain only few largest (100) pixels and discard the

rest as waste,
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Compressed sensing is the paradigm-busting field in the field of mathematics and
engineering that reshaping the way people work with large data sets. Only nine years old,
CS has already inspired more than a thousand papers and pulled in millions of dollars in
federal grants. In 2006, Candes work on the topic was rewarded with the $ 500000
Waterman Prize, the highest honor bestowed by the national Science Foundation. It is not
hard to see why? Imagine MRI machines that take seconds to produce images that used to
take up to an hour, military software that is vastly better at intercepting an antagonist’s
communications and sensors that can analyze distant interstellar radio waves. Suddenly,

data becomes easier to gather, manipulate, and interpret.

3.1.1 Digital Image

An image is a two-dimensional function, f(x, y), where x and y are spatial coordinates.
When x, y and the amplitude values of f are all finite, discrete quantities, we call the
image a digital image.

3.1.2 Digital Image Processing
It refers to processing digital images by means of a digital computer. The digital image
is composed of finite number of elements, each of which has a particular location and

values. These elements are referred to as picture elements, image elements and pixels.

3.1.3 Image Compression

Digital images usually require a very large number of bits, this cause critical problem
for digital image data transmission and storage. It is the Art and Science of reducing the
amount of data required to represent an image. It is one of the most useful and

commercially successful technologies in the field of Digital Image Processing (DIP).

3.2 Compressed Sensing Theory
There are two types of compression
1. Lossless
This is digitally identical to the original image and only achieves a modest amount

of compression.
2. Lossy
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This type of compression only discards components of the signal that are known
to be redundant. Signal is therefore changed from input.
The graphical representation and flow chart of Image compression is given

below in figure 4 followed by Lossy compression figure 5.

Image
compression
techniques

Lossless

Huffman coding ~TFARSTOTMATIoH COUTE
Run length encoding Vector coding

LZ enodin tc 7 - Fctal coding, etc

Figure 4: Image compression techniques

Lossy compression is further extended to its components, as shown in figure 6.

LOSSY
A\ .
v — v v
_ requency .
Predictive oriented Importance Hybrid

oriented

Figure 5: Flow chart | Transform |

for lossy compression \I/

N
neT r DW I'T‘J Fractional I

{ v v i

Mallat Transversal filter Lifting Scheme Codic
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3.3 Compressed Sensing Mathematically

Let x is a signal of dimensions Nx1 is K sparse in a basis or dictionary “Wy,y", then it
is possible to fully recover the signal x by a measurement “yy,," taken by “®,n"

where M<<N under some conditions [29]; i.e.
For
X = ZN,vig (15)
Take y = dx (16)

Where y; are basis vectors of orthonormal Wyyy , and vector v; has only K non-zero

elements, K<<N and measurement matrix @ satisfies Restricted Isometric Property (RIP)

[30], where M 2 cKlog () << N

3.3.1 Stepwise Explanation of the Method
According to conventional coding method, compress/ reconstruct the signal through

discarding sufficiently small coefficients.
x=Wv= Yk largest ViYi (17)

CS theorems state that, for signals that are sparse in some domain, they can be fully
reconstructed using only few designed measurements. Number of measurements depends
on sparsity. In order to recover the sparse signal, the measurements should be taken from

a measurement matrix whose product with the basis satisfies RIP [31].

3.3.2 Restricted Isometric Property (RIP)
A matrix "A" is said to satisfy the RIP of order K with isometry constant “8,” , which is

not too close to one such that

(1= 8lIvIiZ < |lavl]; < (1 + 8|l (18)
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In other words, “4” approximately preserves the Euclidean length for K-sparse signals

and all subsets of K columns, taken from “4” are nearly orthogonal.

It can be explained as; the order of K(K < M), and 0 < 8y < 1, for A to obey RIP of
order K, no K-sparse signal can lie in the null space of A. (If it did then we would have

||Av| |: = 0, and that obviously does not preserve the squared magnitude of the vector v)

3.3.3 The Measurement Matrix
Key Problem:

How to design the measurement matrix & such that A = @V satisfies RIP of order
2K?

However in practice, there is no computationally feasible way to check RIP property for a
given matrix &. i.e. Require (%) checks for all non-zero K elements.
Solution:
Pick random matrices which are usually incoherent with any fix basis ¥.
Examples:

1) Random Gaussian
2) Random Bernoulli
3) Hadamard Matrix
4) Random Sparse

Hadamard Matrices are given by

_ 1 1 H, H
Hl - [1]’ H2= [1 _ 1], H4= HZ - Hz]

Hadamard Matrices exist of orders 1,2 and 4 or of a multiple of 4. Hadamard matrices

of interest, we can define codes based on the rows of the Hadamard matrix.

Jll'
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3.3.4 CS Recovery
Reconstruction or decoding Problem:

The formulation is given by
19)

y = o¥v
Where "@" is called the measurement (or sensing) matrix. "¥" is assumed to having

sparsifying basis and "v" is the target sparse representation. Such that dim(y) << dim(x),
this is an ill-posed problem in general.

3.3.5 CS Recovery Algorithms
Signal recovery algorithm aims to find signal’s sparse solution.

TH- 16439

~y

1) L, — norm (energy) minimization:
(20)

Subjectto Av=y
@1

min||v||;
v = (ATA)-1ATy

Equation (21) is called the pseudo inverse of (20). The pseudo-inverse is a closed form

but is not a sparse solution.

2) Ly — norm minimization:
Av=y (22)

min||v||e subject to
Through, L, — norm, we can exactly recover the K-sparse signal with high probability

from M = K + 1 measurements but solving it is NP-complete. It need exhaust search, all
(%) positions non-zero coefficients.
As signal reconstruction algorithm tries always to find the sparsest solution. That’s why

this work uses L, — norm minimization.

3) L, —norm minimization:
(23)

min||v||, subjectto Av=y
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Through, L, — norm, we can exactly recover K-sparse signal with high probability

using only M = cKlog ¥) « N measurements (Mild Oversampling)
K

Figure 6: Graphical representation of Lg, L; and L, — norms

L, — norm Minimization is using different techniques, such as Basis Pursuits (BP)
[32], Matching Pursuits (MP) [33] etc. This work does L; — norm minimization using
iterative wavelet based thresholding.

3.3.6 Wavelet Based Image Compression and De-noising

Wavelet based thresholding techniques consist of some classical and the recently
introduced shrinkage functions. D.L. Donoho used hard shrinkage function for the first
time. According to this rule the coefficients below the threshold level are discarded while
keep the remaining unchanged. Another form of hard shrinkage function was proposed
later by D.L. Donoho in 1995, called soft shrinkage function [34]. Later on a new
shrinkage function named garrote, was examined by Hong-Ye Gao in his work [35].
Although these all shrinkage functions produce good results but still there are some
problems which could not be handled through the classical shrinkage functions. A new
proposed shrinkage function with some modifications called logarithmic shrinkage

function, is used in this work for images recovery and de-noising.

Many researchers for de-noising and regularization use the Tychonov penalty to
estimate the signal from degraded data. Actually an attempt is made to solve the

optimization problem,
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.1 1
argmin 2 |[x -yl + A2 [Ix||Z (24)
This equation has a close form solution as under.
R= = (25)
=Y

Where “x” is the original signal, “£” is the estimated signal,"y” is the noisy signal and

“A" is the regularization parameter.

This work compares the four thresholding techniques for recovery of under-sampled
sparse images and also uses these techniques in combination with median filtering to
recover the sparse images, degraded by salt and pepper noise. In the first portion of this
work, take the wavelet transform of under-sampled Shepp-Logan Phantom image, apply
the four thresholding techniques individually and then recover the image by taking the
Inverse Wavelet Transform of the thresholded image. Proposed shrinkage function shines
with the best results and gives high PSNR values as compare to hard, garrote and soft
shrinkage functions. In the second part of this work, take Shepp-Logan Phantom image
and add salt and pepper (impulsive) noise to it. Taking the wavelet transform of the noisy
image, threshold it and then iteratively recover the sparse image through hard, soft,
garrote and proposed shrinkage functions. Through these techniques this work can
recover the sparse images but cannot satisfactorily de-noise them, when they are
corrupted by impulsive noise, that’s why this work applies median filtering in addition
with the thresholding techniques to get better results.

3.3.6.1 Wavelet Based Thresholding
Basically it solves the following optimization problem for de-noising and regularization

in the first portion of this work using L, — norm minimization.
.1 1
argmin 3 [Ix =yl + A2 ||x]l, (26)
This applies iterative hard, garrote and soft shrinkage functions.

Let Xu is the under-sampled Fourier transform of “£ ", At the start it is supposed that

X():Y.
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1. Compute the inverse Fourier Transform of X as £;= F'(X;)
2. Perform Wavelet transform to obtain sub-bands coefficients.

3. Threshold all low frequency sub-band coefficients using certain shrinkage function in

the Wavelet domain 2,= Thresh (W *%;, 1)

4. Compute the inverse Wavelet transform to recover the noisy image £;= W 7
5. Compute the Fourier transform X£; = F(2;)

6. Enforce data consistency in the transformdomain X = X (Y == 0) + Y

7. Run the iterations until ||%;,, — %;|]| < €

Where “€” is stopping criteria.

This work applies the same procedure for garrote and soft shrinkage functions. The
above method is a Projection onto Convex Sets (POCS) type algorithm. Apply twenty
iterations to force the data consistency and get the satisfactory results. Compare the

thresholding techniques by means of PSNR.

3.3.6.2 Thresholding Techniques
This chapter will discuss the classical shrinkage functions. The proposed
shrinkage function is discussed in the next chapter.

3.3.6.2.1 Hard Thresholding
Hard thresholding works on the principle of keep or kill rule. It removes the wavelet
coefficients whose absolute values are below the threshold value and keep the remaining.

It doesn’t change the values of coefficients above the threshold value [36]. It is

formulated as:
_f{0 if |x] < l}
Xnt {x if [x]> A @7
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(3.3) Hardl Shr'inkagg
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Figure 7: Hard shrinkage function

3.3.6.2.2 Garrote Thresholding

Garrote thresholding adopts a modest way between hard and soft thresholding, and is a
good compromise between hard and soft thresholding .It is more flexible than hard
threshold and continuous like soft threshold, therefore it is more stable than hard
threshold and soft threshold [37]. It is represented as:

0 if [x|]<A
"8‘"{ -2 x> x} (28)
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Figure 8: Garrote shrinkage function

3.3.6.2.3 Soft Thresholding
Actually soft threshold is an extension of hard threshold. It is continuous shrinkage

function, produces better results than hard and garrote threshold in our experiments [38].
Soft shrinkage function is formulated as:

0 if |x|<A
Xst = xlx'IT—ll if |x]> 2 29)

Equation (29) is compact form of soft shrinkage function.
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(3c)  Soft Shrinkage
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Figure 9: Soft shrinkage function
3.3.6.3 Proof of Soft Shrinkage Function
Taking the following problem
argmin ||x — b]|Z + Aljx]|, (30
As it is known that it has three unique solutions
argmin ||x — b} + A||x]|, when x> 0 3D
argmin ||x — b}|2 — A||x||, when x < 0 (32)
argmin ||x — b||3 — A}}x]|, whenx =0 (33)

Differentiating these three equations with respect to x,

Differentiating (31);
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d({lx — b|i3 + Allxll1) _
dx

S d(x? — 2bx +b? +Ax)

= =

0

0
= 2x—2b+A=0
A
= x—b—z
According to (31), x > 0, so
A

b—5>0

= b>2 (34)

Differentiating (32),
2
ddllx —bll, ~Mixll) _
P =
R d(x? — 2bx + b? — Ax) =0
= =
= 2x—2b—A=0
= x=b+-
According to (32),x < 0, so
A
b+ -2- <0
A
= b< -3 (335)
Differentiating (33),
2
ddix—bll) _
= =
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Z4+b2-2b
=>d(x+ x)=0

dx
=2x—-2b=0
= 2b = 2x
=>b=x

From (33), we have, x = 0; so
=>b=0

Soft thresholding operator becomes;

A . A

b—;, if b>;

Sa(b) = b+2, if b<—2
0 otherwise

Compact form of (37) in terms of x is given by,

0 if x| < l}

S*(")={x"‘T:l if x> A

(36)

37
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Chapter 4

PROPOSED WORK

4.1 Overview

Although the shrinkage functions discussed in chapter 3, produce good results but still
there are some problems which could not be handled through the classical shrinkage
functions. A new proposed shrinkage function with some modifications called logarithmic

shrinkage function is used in this work for images recovery and de-noising.

The first portion of this research applies the proposed shrinkage function called
logarithmic shrinkage function to the phantom image. The quality factor for checking the
performance is Peak Signal-to-Noise Ratio (PSNR). The proposed function produces
better PSNR values than the other three classical shrinkage functions.

4.2 Proposed Method

This research proposes a new shrinkage function, the Logarithmic Shrinkage Function
(LSF). Repeating the procedure in chapter two for wavelet based thresholding using LSF.
The experimental results show that the proposed method is 7-10% better in PSNR values
than the classical methods. The graphs of PSNR are given in results section.

The previous three techniques are used continuously from a few decades. This is a new
shrinkage function. It produces the best results due to the usage of “log” function. The

mathematical form of the proposed function is given by
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" o

0 - if [x]< A o '
xp:—{lxl—slog(1+§) | if|x|>‘A} (39)

The values of “s” are small positive constants. Equation (26) is, an optimization_
problem and the thresholding functions try to find the global minima. In the case of

logarithmic shrinkage function, it finds local minima instead of global minima. This is an
iterative !1-norm-approach. Due to- direct relation with [; —norm it produces better
results in recovery than soft thréshplding and is also better in performance than hard

shrinkage thfesiholding due to the discopﬁhuity of hard shrinkage function. l, —nmorm is

a pointy ﬁ]ﬁctign and having a great ability to provide the sparse solution. In case of

Iz — norm, it can find pseudo inverse but having no sparsity while in case of I, — norm,

it can recover the exact sparse signal but solving it, is NP-complete. It need exhaust

search, éll (Iig) are non-zero coefficients.

Logarithmic function is the extension of eprnmﬁﬂ function. The exponential
functions have derivatives exist at origin. That’s wﬂy the proposed function produces
better results for sparse signals recovery. For hore ﬂexibilityrin (39); it can select two
different values of threshdlding for positive and negative values of “x”. The derivative of
the eiponéntial function is given below.

4.2.1 Derivative of Exponential Function

Let f(x) = a* - - (40

From the basics of derivative,

f'(x) = umh_’oi(_’”_h;“ﬂ!l‘ , 1)
F100 = limy o 22 | | “2)
() = limpp 22 “3)
PO =limp TG (44)
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f'(x) = a*limy,_,, %_—1 such that a* is constant w.r.t “h” 45)
If x = 0 then f(0) = a® = 1, So '(0) = limy_o(a"® — 1)/h
or f'(x)=f(0)a* (46)
The original shape of the log thresholding function is given below,

(3d) Proposed Shrinkage Function

10F -

40 1 1 1 1 1
-30 -20 -10 0 10 20 30

Figure 10: Proposed shrinkage function

4.3 Proposed Model for Noisy Images

In addition with the sparse images recovery (section 3.3.6, section 4.2), in this section,
we de-noise phantom image by means of wavelet based thresholding and median filtering
having salt and pepper noise. Because only thresholding is very less effective in case of
impulsive noise and give the correlation values of the recovered images closed to the

noisy image. In signal and image processing median filter is frequently used for de-
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noising of signals and images because of its edge preserving properties. But in this work
uses thresholding technique in addition with median filter to recover and de-noised sparse
images. It applies wavelet based thresholding techniques, by means of which it recovers
the sparse images and then apply median filter to eliminate the salt and pepper noise from
the images. Flow chart of the technique for sparse and noisy images recovery and de-

noising is given in Figure12.

T
v
Degraded Image

Under-sampling +salt & pepper noise
\

Wavelet Transform

Shrinkage Functions

Inverse Wavelet Transform
v

( Recovered Image >

Qoised using Median D

Figure 11: Flow chart of the proposed de-noising method
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4.4 Basic Terms

4.4.1 Peak Signal-to-Noise Ratio (PSNR)
Mathematically PSNR is given by;

PSNR = 10log;, Max/MSE (47)
And MSE is defined as
MSE = Ymn[l; (m, n) ~ I (m, n)]? (48)

Where M, N are the number of rows and columns in the input images.

4.4.2 Correlation

It is the statistical measure that indicates the extent to which two or more images
fluctuate together. A positive correlation indicates the extent to which those variables
increase or decrease in parallel, a negative correlation indicates the extent to which one

variable increase as the other decreases.
Mathematically
Fol(x) = ZiL_yF@Ix+1) 49)
For this notation, index F from —N to N.
Fol(xy) =X _yZiL_nFOI(x + 1) (50)

4.4.3 Median Filtering

The average filtering leads to blur edges and details in an image and are not effective in
case of salt & pepper (impulsive) noise. It is type of non-linear filtering. The gray level of
each pixel is replaced by the median of its neighbor. It produces good results at de-
noising (salt & pepper noise / impulsive noise). It takes the median value instead of the

average or weighted average of pixels in the window.

Median sort all the pixels in an increasing order, take the middle one. The window
structure for median filtering does not need to be a square. Special shapes can preserve
line structures.
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Chapter S
" DISCUSSIONS

5.1 Results ; ,

This work presents four thmsholding,trechniqﬁes for signal and image de-noising using
wavelet transform. In case of one dimensional signal, take a discrete time sparse signal
having five non-zero samplgs out of 128. The magnitude of the samples is 1,2,3,4 and 5.
Normalize it. In the next step add Gaussian noise of density 0.05 to the original signal.
Under-sample the signal as uniform and random individually. Apply the soft shrinkage
function to uniform and randori under-sampled signal,

Repeat above procedure for hard aﬁd garrote. Draw the iteration versus max (Jx — x,|).
The garrote shrinkage function decays very fast. The graphical results are shown in
figurel3 and 14. -

Next, take Shepp-Logan Phantom image of size 256 x 256. Individually apply the four
shrinkage functions on Shepp-Logan Phantom. Performance of the techniques is judged
by the PSNR values and correlation values. -

PSNR of the noisy Shepp-Logan Phantom image is 68dB. The PSNR value achieved by
hard, garrote and soft shrinkage functions are 81.5dB, 83.4dB, and 85.5dB respectively,
while the PSNR value achieved by the proposed technique is 87.0dB, which is greater
than the other three techniques. 7 -

For phantom image, hard threshold gives satisfactory results at “A = 0.35”, garrote
thro;shold is comparatively better at A = 0.20 from hard while soft threshold shows the -
best results at "A = 0.070”. The proposed shrinkage function gives 87.0 dB, which is the

| @




best of all. The values of PSNR and A for hard, garrote, soft and proposed methods are
given in table.1.

From the behavior of shrinkage functions it is clear that the proposed shrinkage function
is the best among the other shrinkage functions, followed by soft, garrote and hard.
Different values of “s” can be selected as 0 < s < 1. This is the additional parameter
along with the “log function” which makes the proposed technique more flexible among
the others. The justification is as; | ‘

The original and recovered images through the thresholding techniques are given in
Figurel5. Table.1 shows the PSNR values of the four shrinkage functions. The PSNR

curves are given in Figurel6.

In the second portion of our work median filtering is applied in parallel with the
thresholding. First apply the shrinkage functions on the sparse noisy images through
which the images are recovered but still having the impulsive “salt and pepper” noise.
Then apply median filtering to eliminate the salt and pepper noise. This hybrid technique

- is very effective in case of proposed thrésholding, and gives high correlation values as

compared to the other three thresholding techniques. The noisy and de-noised images are
given in Figurel7. Evaluated the images based on the correlation values. The correlations
values of images, de-noised through these techniques and through median filtering are
given in Table.2
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(@)  Original Image
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)

De-noised Image. Satt Thresholding

®  De-noised lmage. Proposed Method

Figure 14: Original Phantom, Noisy and De-noised Images

Table 1: Under-sampling in frequency domain leads to Gaussian noise

Shepp-Logan Phantom Image
Shrinkage Functions A PSNR values
Hard 0.35 81.6
Garrote 0.20 834
Soft 0.07 85.5
Proposed 0.10 87.0
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Table 2: Correlation values of the noise and recovered images with the original image

Salt & Pepper Noise Noise Density 0.10
Correlations of the Noisy and Noisy 0.6884
De-noised Images with the Soft 0.6966
Original Image. Soft+Median 0.9761
Hard 0.6865
Hard+Median 0.9681
Garrote 0.6786
Grrote+tMedian 0.9551
Proposed 0.7046
Proposed+Median 0.9853

PSNR Curves for Four Denosing Methods
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Figure 15: PSNR curves for recovery of phantom image by the four thresholding techniques
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(a) Original Image (b) Noisy lmage

(c) Wavelets of the Noisy Image (d) Recovered Image, Soft Thrasholding
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(o) De-noised Image, Median fiter+Soft

(g} De-noised Image, Mediar+Hard

(i) De-noised Image, Median+Garrate

(f) Recovered Image, Hard threshelding

(h) Recoverad Image, Garrote Thrasholding

(j) Recaovered Image, Proposed Shrinkage
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(k) De-noised Image, Median+Proposed

Figure 16: Original, Noisy, wavelets of the noisy and de-noised images.

5.2 Conclusions

This work addresses the signal and image de-noising problem and compares the
performance of the three existing shrinkage functions with that of the proposed
logarithmic shrinkage function. Apply the four shrinkage functions for recovery to the
noisy under-sampled (uniformly and randomly) signal. Draw the curves of max |x — xe|
versus iterations. The graph of logarithmic shrinkage function decays very quickly and
closed to 0.1 followed by the soft (closed to 0.2), garrote (closed to 0.45) and hard (closed
0.55) shrinkage functions.

The four shrinkage functions are then applied for recovery of images having under-
sampling noise (in transform domain). Test the Shepp-Logan Phantom (256 x 256)
images in the experiments. The proposed threshold technique removes the under-
sampling (aliasing and Gaussian) noise significantly and shows the best results as
compared to hard, garrote and soft threshold functions. The proposed technique produces
7 to 10% better results than the existing classical shrinkage functions.

In the second part of this work, the de-noising results of the four thresholding
techniques are compared with that of the median filtering. Use median filtering for de-

noising of sparse and noisy images, recovered through soft, hard, garrote and proposed
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shrinkage functions. These four thresholding techniques remove the under-sampling noise
from the images but are not significant in the case of impulsive noise, that’s why the use
median filtering in sequence with the thresholding techniques for sparse images corrupted
by salt and pepper noise is proposed. The thresholding techniques in sequence with the
median filtering produce 30 to 35% better results than produced by ordinary thresholding
techniques.

5.3 Applications
1)  FBIFingerprint Compression

A single fingerprint is about 700,000 pixels, and requires about 0.6Mbytes.

Figure 17: Finger prints and compression

2) Pattern Recognition

Wavelets are widely used in the field of pattern recognition (especially fractal
patterns) due to their ability to zoom on finer patterns as well as view the entire global

trend.

3) Edge recognition
Wavelets can be used to separate out the edge of images and the greatest
application of this property is in the field of finger print recognition.

4) Scientific data analysis
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Not only can wavelets de-ﬁoise and eompress data sets but it can also predict the

time varying patterns in a data set; It is ’greatly used now a day in scientific data
analysis. The apphcatlons of Wavelet transform in the field of science andr

engmeermg are many and. may are rapldly evolvmg These small waves have u-

shared a tsunami of change in’ vanous ﬁelds
5) CS is used for signal and images re,covery.r
6) CS is used for signal and images de-noising,
7) CS 1susedmmaehmelearmng R
8) CSis used in statistical signal processmg
9) CSisusedin hlstogram maintenance.

10)CS is used in dimension reduction and embeddmg.
“11)CS is used for medical i 1magmg

12) CS is used for video processing.

13) CS s used for video sampling,

14) CS is used analog to information conversion. :
15)CS is used in computational Biolog’y. -
16)CS is used in geophysical data analysis.

17)CS is used in hyper-spectral i 1magmg

18)CS is used in compressive radar. - '
19)CS is used in astronomy

20)CS is used in compressrve system 1dent1ﬁcat10n and dynamical systems.

21)CS is used in communication. -
22)CS is used in detection and estimation. -
23)CS is used in surface metrology.

24)CS is used in acoustrcs, audio and speech processmg

25)CS is used in remote sensing. -

26) CS isused in computer englneering;
27)CSisused in computer,graplrics. o
28)CS is used in robotics and control.

29) CS is used in optics and holography. -
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5.4 Future Work

1)
2)

3)

4)
5)
6)
7
8)

9

Face recognition through sparse representations.

Low-rank matrix recovery through convex optimization.

The method used in this work can be applied to noisy image having salt and

pepper noise, Gaussian noise, pink noise etc.
This work can be extended for video de-noising.

This work can be applied to real signal and images.

Satellite images can also be recovered and de-noised through this method.

These methods are also applicable to hand writing.
Apply the techniques to CT, Ultrasound and range data etc.

Cognitive Radio can use CS to utilize efficient utilization of channel.
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