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ABSTRACT
.'

During data acquisition and transmission, it may be comrpted by different tlpes of
noises. These noises may be AWGN, Poisson, Rician or any combination of the additive

and multiplicative noises. In case of compressed sensingzthe noise caused by rmdo

sampling is completely de-noised by the recovery techdques used for recovery of the

under sampled data. However, if the signal (or image) is also having additive or

multiplicative noise, then it cannot be recovered only by the compressed sensing recovery

techniques. In the first part of this work, Wavelet based soft, hard, garrote and

Logarithmic technique (proposed) is used for de-noising of images, comrpted by noise

during under-sampling in the fiansform domain. These techniques are applied to under-

sampled Shepp-logan Phantom images. Experimental results show that the proposed

method is7'10% better in PSNR values than the existing classical techniques. The second

part of this work recovers and de-noises the under-sampled phantom image. The phantom

image is comrpted by aliasing (Gaussian noise) and salt & pepper noise. This work is

based on the recovery and de-noising of under sampled and noisy image through the

classical and proposed thresholding techniques and compute their correlations with the

original image. By applyrng the thresholding techniques only, gives the correlation values

close to the noisy image. However, by applying median filter in sequence with the

thresholding techniques, gives 30-35%o belter results. So, the second part of this work

recovers the sparse under-sampled images by the combination of shrinkage functions and

median filtering.

a;l



1.1 Problem Statement



3.3.1 Stepwise Explanation of the Method ....,...,.....27

3.3.2 Restricted lsometric Property (RtP)............ ........................27

3.3.3 The Measurement Matrix..... .......29

3.3.4 CS Recovery



List of Figures

Figure l: WT & FT, Frequency and Time representations ............... .........................19
Figure 2: Image compression levels.......... .........................21
Figure 3: Image compression .........................22
Figure 4: Image compression lsshniques .,..,..2G
Figure 5: Flow chart for lossy compression .......................2G
Figure 6: Graphical representation.of LI,LZ and Ll - norrrs ............30
Figure 7:Had,shrinkage function ..................33
Figure 8: Garrote shrinkage function...... .,.,,.,.g4
Figure 9: Soft shrinkage function...... ..............35
Figure l0: Proposed shrinkage function...... .......................40
Figure 11: Flow chart of the proposed de-noising method....... ..............41
Figure 12: Original, Noisy, under-sampled and recovered signals ........45
Figure 13: Errors versui iterations..... ....,........45
Figure 14: Original Phantom, Noisy aod De-noised Images... ..,.,.,,......,47
Figure 15: PSNR curves for recovery of phantom image by the four thresholding techniques.....4g
Figure 16: original, Noisy, wavelets of the noisy and de-noised images. .................51
Figure 17: Finger prints and compression ..,,.,52



List of Tables

Table l: Under-sampling in frequency domain leads to Gaussian noise........... .......,,41

Table 2: Correlation values of the noise and recovered images with the original image...............48

10



Chapter 1

INTRODUCTION

Modern research in the field of optimization has made it easy to solve the constrained

optimization and inverse problems efficiently in less time. Problems of these kinds are

discussed in image processing such as image de-noising, de-blurring and restoration of
the regularly and randomly under-sampled images etc. In most of the cases in image

processing, we have access to under-sampted noisy versions of images tl] t2l. The

inverse problem of reconstnrction of signals (or images) from incomplete, faulty and

under-sarnpled data is the field of interest from a few years [3]. We can exactly recover

tmder-sampled, sparse signats using Ll optimization [4].The recent developments in the

field of compressed sensing (CS) open a window towards the area of sparse signal

processing. Signals have sparse representation in some fiansform domain i.e. Discrete

Cosine transform (DCT), Fourier Transform (FT) and Wavelet Transform etc [5]. CS

zuggests that if the signal of interest is sparse (in some domain or in its oum) it is possible

tmder some assumptions to reconsfiuct the signal exactly with high probability with many

fewer samples than the standard Shannon-Nyquist theory recommends t6]. CS has been

applied to MRI (M.Lusting D.L.Donoho and J.M.Pauly n 2OO7) and in parricular

techniques have been developed specifically for dpamic Magnetic Resonance Imagrng

(IvRI) t7l.

This work is divided into ttree models, sparse one dimensional signal recovery using

the classical and new shrinkage firnctions. The recovery of sparse signal is an ill-posed
problem. Take a sparse signal, under sample it in Fourier domain. Regular under-

sampling leads to aliasing and random under-sampling offsets atiasing leads to noise.

Then taking inverse Fourier transfonn, applylng the thresholding functions in the signal

LL
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domain. We iteratively apply hard, soft, garrote and proposed thresholding firnctions to

recover the original signal. By random under -sampling this research turn an ill-
conditioned problem to a sparse sigaal recovery problem [8].

The second contribution in this thesis is on the recovery and de-noising of sparsie

images having the aliasing noise due to random under-sampling. We have used Shepp-

Logan Phantom image (of size 256 x 256) for testing the accuracy of our proposed

technique. By applyng the proposed, hard, and soft and garrote thresholding techniques

iteratively in transform domain for the recovery of under sampled image. We observed

that oru proposed technique is better 7-L0% in terms of PSNR. This zuggests that the

proposed function has more flexibility for the recovery of sparse signals (or images).

The third portion of this work have focused on the recovery and de-noising of the

phantom images comrpted by under-sampling aliasing noise and impulsive noise. We

have added salt and pepper noise to the original phantom image before making it under

sampled. We apply the four thresholding techniques, which removes the noise produced

due to aliasing but the impulsive noise cannot be removed significantly by using

thresholding functions only. For that noise, it need the help of the existing de-noising and

filtering techniques zuch as total variation de-noising (TVD) [9], Total Variation Filtering

(TVF) [10], Filtered Variation De-noising (FVD) [l], mean filtering, Gaussian filtering

and median filtering [2]. In our case we have used median filtering for the reduction of
salt and pepper noise. It compares the results of the thresholding techniques with that of
the median filtering based on the correlation values. The median filtering produces 30-

3iYobetter results than that of the ordinary thresholding techniques.

1.1 Problem Statement

At its heart signal and image processing prefers accurate processing of data. For the

storage, transmission and acquisition of data we need a simple and reliable

representations of the data. To represent the actual data with linear combinations of a few

seed samples and avoid the complex calculations, computations and measurements leads

to the field of sparse signal processing. Sparsity is used for signals and images

compression [13], de-blurring fl ]and source localization tl5l. It has m?ny applications
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in the field of detection and estimation, because some time we are only interested not in

the full recovery of the signals but we just want sensing of the signals [16]. Sparsity and

CS save the time in conventional in MRI. MRI scannerc sample lines in spatial Fourier

domain of the image and thus take the benefits of sparsity and CS [17].

However sparse signal processing is also of great importance in the field of signals (or

images) recovery and signal (or images) de-noising. With the introduction of CS, sparse

signal processing techniques are of more importance. Many researchers have use sparsity

and CS in different contest for the signals recovery and de-noising problems. The siguals

that are sparse in some frequency domain such that wavelet and Fourier fiansform can be

efficiently recovered as compare to the ordinary compression of data which leads to

missing of information. DCT based sparsrty is used for JPEG images and Wavelet for

JPEG200 U8l.

1.2 Proposed Work
Our focus is on the recovery of discrete time signals and images and also on the de-

noising of images using wavelet based de-noising techniques and sparsity. This work will
recover lD discrete time sparse signal by means of the four thresholding techniques and

also recover phantom image. In both cases this work compares the results of the four

thresholding methods (i.e. soft, hard, garrote and logarithmicl. For simple one

dimensional signal recovery, it runs iterations for maximtrm error between the original

and recovered signal and judge which method reduces the error first. In addition this work

recovers the phantom images through the four thresholding techniques and compares their

PSNR values. The Proposed technique produces best results among the four shrinkage

functions. In the last part of this work, we de-noise phantom images through the four

wavelet thresholding techniques along with median filtering. The parameter for quality

checking is the correlation between the original and de-noised images. The images

recovered through the wavelet based thresholding functions produce low value as

compared to the median filtering used after thresholding. Only median filtering cannot

recover the sparse signal but just can remove the impulsive noise. This work uses median

filter in parallel with the wavelet based thresholding to recover and de-noise the sparse

signals and images.



1.3 Thesis Organization

After introduction of the thesis, problem statement and proposed work, in chapter 2,

literafure review is given. In chapter 2, we simply take an overview of the classical and

new techniques applied for signal (or image) sampling, recovery de-noising, de-blurring,

sparse sigual processing, compress sensing, theoretical and mathematical description of

sparse signal processing, CS and wavelet transform. Chapter 3 is dedicated to the discrete

time sparse signal recovery problem, soft, hard, garrote and proposed thresholding

techniques. ln chapter 4, this research explains the new work Applyrng the four

thresholding techniques to phantom, sparse images for recovery and compare their results

based on PSNR values. In the same chapter, the four thresholding techniques are used for

de-noising of phantom image having salt and pepper noise. In chapter 5, results,

conclusions, future work is discussed followed by references.

f
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Chapter 2

LITERATT]RE REVIEW

2.1 De-noising Techniques

Noise reflects the meaning of unwanted sigual in communication, sigual and image

processing. Noise is an information bearing signal, which shows the property of the

system, e.g. heat from a laptop zuggests that it is processing something heavy or its inner

sseling fan is not working. Noise in communication and sigual processing occurc due to

different reasons such as due to the processing system and acquisition etc. Image

restoration in image processing attempts to recover a full fledge de-noised version of the

degraded, blurred and noisy images.

Images are often degraded by noise. Noise can occur during image captrue,

transmission etc. Noise removal is an important task in image processing. In general the

results of the noise removal have a strong influence on the quallty of the image processing

lsshniques. Several techniques for noise removal are well established in image

processing. The naflre of the noise re,moval problem depends on the gpe of the noise

comtpting the image. In the field of image noise reduction, several linear and nonlinear

filtering methods have been proposed. De-noising of image is very important and inverse

problem of image processing which is useful in the areas of image mining, image

segmentation, pattem recognition and an important preprocessing technique to remove the

noise from the naturally comrpted image by different tlpes of noises. The wavelet

techniques are very effective to remove the noise. This work reviews on noises like Salt

& Pepper noise, aliasing noise (Gaussian noise) etc. and various techniques available for

de-noising the image.

15



De-noising is a challenging problem for researchers from many yeaxs. Different de-

noising techniques are used" Total variation de-noising (T\D) is a classical de-noising

method is in use since 1990. It was first used by Usher and Fatemi. According to this

method, dif[erence of the neighboring pixels is calculated and then tries to minimize the

"11" and "12" rrormis of the difference vector. The discretize Total Variation (TV)

function ofx is grven by

TV(x): (l)

Where r[n] is the nft pixel of the signal. The term xlnl - xln + 1l is called the discrete

gradient and a closed approximation of the high pass filter.

If '.x''is the observed signal, comrpted by Additive White Gaussian Noise (AWGN) "2",

then the noisy signal is given by

Y=x+n, xryrngRn

TVD recover "*" by minimiziag the fimction

J(x) = llv - xll| + 1, llw(x)l I
Where "1," is the regularization parameter, which confiols fluctuation in the signal [19].

If we filter the signal with Haar high pass filter and calculate 11 and 12 norm of the

filtered signal, it reflects the same meaning as TVD.

In the light of the last paragraph an easy version of the Total Variation is the Filtered

Variation (FV) method used for de-noising and spa$e signal processing. According to

this method, if the original signal is r, take transform @) of it. Apply filter QI) on it and

calculate the 11 or 12 norms of it or mathematically

Fvo(x) = llHDxllp P= lr2

Where "p" represents the order of norm, employed in the above equation. prs6 simple

TVD, it is better to use FV because of its application as to provide sparsity along with less

mathematical complexi ty 1201.

(2t

(3)

(4)

d

(xlnl-xln+11)2

L6



Besides the TVD and FV, there are many other techniques for slgnal (or image) de-

noising including the whole family of filtering techniques, zuch as linear and non-linear

filtering. Linear filters are also known as convolution filters as they can be represented

using a matrix multiplication. Thresholding is an example of nonlinear operations, as is

the median filtering. The linear filtering includes mean filteringl?,l), averaging filtering

l22l etc. linear filtering replaces each pixel by linear combination of its neighboring
pixels.

wavelet based de-noising is the most efficient technique for signal (or imags; 6r-
noising due to its simplicity and sparsity applications. Most of the simal noise can be

suppressed using wavelet based de-noising. Wavelet based de-noising is used in differe,nt
fotms, one of them is wavelet based thresholding. Wavelet based de-noising is easily
applicable and most of the under-sampling noise can be removed through this method.

2.2 Wavelet Transform (WT)
A wavelet is a small function used to divide a given fimction or continuous-time signal

into different scale components. Wavelets are mathematical firnctions that cup up data

into different frequency components, and then sfudy each component with a resolufion
matched to its scale. Wavelet transformation decomposes a signal into a set of basis
firnctions. These basis functiorut are calledwavelets.

The first wavelet related theory was given by Alfred Haar in 1909 in his dissertation..l)n
the orthogonal F,nction systems" for his Doctoral Degree.

Wavelet is a relatively new theory it has enjoyed a tremendous attention and success

over the last decade, and for a good reasion. Almost all signals encountered in practice call
for a time-frequency analysis and wavelets provide a very simple and efficient way to
perform such an analysis. Still there is a lot to discover in this new theory due to the
infinite variety of non-stationary signals encouotered in real life [23].

wavelets are obtained from 3 single prototlpe wavelet y (t) called mother wavelet by
dilations and shifting.

In general $,e use a scaling function to derive more wavelet basis i.e.

t



Y",u(t): (+J u(+)

Where'oa" is the scaling parameter and b is the shifting parameter

2.2.1 Advantages of \Yavelet Transform

i) Wavelet transform provides away for analyzrng waveforms in both frequency and

time.

ii) Accurately represent the firnctions that have discontinuities and sharp peaks.

iii) Acctrately deconstructing and reconstructing finite, non-periodic and non-

stationary signals.

iv) WT allows signal to be stored more efEciently than by Fourier transform.

2.2.2 Limitations of Fourier Transform (FT)

i) wr and FT are different in time but same in frequency representation.

ii) FT only gives what frequency components exist in a sigual.

iii) FT does not tell at what time the frequency components occur.

iv) Time-Frequency representation is needed in most cases.

v) WT gives both detaits i.e. in time and in frequency.

(s)

r
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Figure l: WT & FT, Frequency and Time representations

2.23 Types of WT
1) Contlnuous Wavelet Transform (CVvTl

2l Discrete Wavelet Transform (DWT)

2,2, 3. 7 Contlnuous Wavelet Transform GWf)
We constnrct different wavelet basis functions from a single scaling firnction 0(x). By

tanslating and scaling this function we construct the other wavelet basis firnction. i.e.

![(cx - d). By increasing the value of "c", shrinks the function and by giving positive value

to "d", we shift it to right.

The prototlpe wavelet can be given as a linear combination of the scaling function. The

scaled and translated function Vi,*@) can be given as

Yc,a =7fuv (sJ

Where c and d belongs to R, but c * 0

w(c,d)[f(x)] = Iirfi,a f(x)dx = U.,atf(x)

(6)

? 17l
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Where < {",alf (x) ) denotes the inner product or in other words it denotes the

projection of f (x) the scaling function "{,a" f241.

2.2.3,2 Discretc Wavelet Transform (DW
The main difference h cwT and DWT is the values, we assigu to "c" and.d". In Cwr

there is no bound on the values of "c" and "d" while in DWT, we select the values from

the set of integers.

L
Y"o=afv(a'r-t<)

Wherej, k e Z, and as is most of the time consider as 2.

4 simple unit scaling firoction is given by

,lr(-) = [J
0Sx<11
otherwise J

In the discrete signal case we compute the Discrete Wavelet Transform by successive

low pass snd high pass filtering of the discrete time-domain signal. This is called the

Mallat algorithm of Mallat-tree decomposition. The recently developed JpEG2000

standard is based on DW'I while the fnst JPEG standard is based on DCT. The wavelet

transform can be used to cteate smaller and smaller summary images, thus resulting in a
Multi-resolution Analysis (MRA). In this tlpe we do two thi.gs, one filtering and the

other sampling using two types of filters, high and low pass fiIters.

E;rtension to2D is very simFle. 2D discrete wavelet fiansform (lD DwT applied

altematively to vertical and horizontal direction line by line) converts images into *sub-

bands" Upper left is the DC coefficient, Lower right are higher frequency sub-bands [25].

The main story of wavelet starts from the inroduction of Haar wavelet transform. It is
the simplest wavelet hansform for coarse to fine study of the images.

2.2.3.2.1 HaarWavelet

The Haar wavelets are defined as:

(8)

(el
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(10)

The scaling function for Haar wavelet is given by

oc*) = [01 i*="Ir'r.']

It can be give tl@) interms of Q(r) as

U(x)= 0(2x)-Q(2x-1)

The image decomposition process is given as

Scalel:

In this section 4 sub-bands of image are made i,e. LL1 , HLr , LHt and, HH1. Each

coef,Ecient has a Zta area in the original image. Low frequencies 0 ( a <i and high

frequencies ate

n., . n.

Figure 2:lnnge compression levels

Scale2:

Again 4 sub-bands are LL, , HLz , LH2 and HH, , each coefficient take a 2ta area in

scalel image. Low frequencies 0 < @ <| and high frequencies

I., . | ,the scalel and scale2 is shown in figure 2.

(11)

(Lzl

LL, HLt

LH, HH,

LL2 HL,
HL,

LH, HH,

LH, HH,

2t



The coefficients are parent, children, descendants and ancestors. Descendants are the

corresponding coefficients at finer and ancestors are the corresponding coefficients at

coarser. This is shown in figure 3.

Lj

-
Lj

ntr.,

HL,
'-IY,

I

IHJ

h'
I Y
I LH,

Figure 3: tmage compression

2.2.3.2.2 Daubechies Wavelet

Another, tlpe of wellknown wavelet is Daubechies wavelet. In this work we have used

Daubechies4 wavelet.

In 1985 Stephen Mallat discovered a way to compare filtered sempression and

orthonormal wavelet based compression. Later Ingnd Daubechies developed a new

method for discrete representations of the continuous wavelet transform called wavelet

frames [26].

In wavelet transforrr, two tlpes of filten are needed for a function. The high pass

corresponds to the prototype function while the low pass filter corresponds to scaling

function. The scaling function gives the resolution information of the wavelet function.

For the Daubechies4 scaling function wavelet coefficients are given by

22



1+16co=T
3+18

L{ 
--

3-1tr
L2 --

- - -(fa-r1
L2 --

The corresponding prototJpe function has a recursive relation with scaling function, i.e.

U(x) - -caQ(2x) * c2g(Zx- 1) - cre(2x - 2) + cse(Zx - 3) (14)

(13)
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Chapter 3

COMPRESSED SENSING

3.1 Motivation

Practically in the vast majority of applications data acquisition is based on

ShannonA'[yquis1 sampling theorem that requires sampling rate at least twice the

messages signal bandwidth in order to achieve exact recovery and prevent aliasing [27].
This requirement is not practical for video industry since the signal bandwidth is very

wide and the technology is not feasible to achieve necessary rates iu order to satisff the

Shannon/t'{yquisf sampling theorem. There is a significant class of signals (pictures for

example) that are compressible, not all the data is necessary to transmit in order to get

'good enough' representation of the original message. Practical solution introduces lossy

compression processing at the source level.

Compressed sensing (CS), also known as compressed sensing, compressive samFling

has opened a new era of signal processing. Compressed sensing is new method to capture

and represent compressible signals at the rate well below Nyquist's rate. It uses random

measurement matrix, preserves the signal structure (ength or the spa$e vectors is

conserved) and reconstnrct the signal from the projections using optimization process

(lLnorm) p9l.

Compressed sensing is a new theory of sampling. According to the old sampling theory,

huge information is acquired by sampling, but most of it is waste. E.g. sample at pixels
(1000 x 1000:106), we will get raw image. According to compressed sensing, compute

wavelet coefficients. They decay fast. Retain only few largest (100) pixels and discard the

rest as waste.C'

24



Compressed sensing is the paradigm-busting field in the field of mathematics and

engineering that reshaping the way people work with large data sets. Only nine years old"

CS has abeady inspired more rhan a thousand papers and pulled in millions of dollars in

federal grants. Ia 2006, Candes work on the topic was rewarded with the $ 500000

Waterrtan Piue, the highest honor bestowed by the national Science Foundation. It is not

hard to see why? Imagine MRI machines that take seconds to produce images that used to

take up to an hour, military software that is vastly better at intercepting an antagonist's

communications and sensors that can analyze distant interstellar radio waves. Suddenly,

data becomes easier to gather, manipulate, and interpret.

3.1.1 Digital Image

An image is a two-dimensional function, (x, y), where x and y are spatial coordinates.

When x, y and the amplitude values of f are all finite, discrete quantities, we call the

image a digital image.

3.1.2 Digital Image Processing

It refers to processing digital images by means of a digital computer. The digital image

is composed of finite number of elements, each of which has a particular location and

values. These elements are referred to as picture elements, image elements andpixels.

3.13 Image Compression

Digital images usually require a very large number of bits, this cause critical problem

for digital image data transmission and storage. It is the Art and Science of reducing the

amount of data required to represent an image. It is one of the most useful and

commercially successful technologies in the field of Digital Image Processing (Dp).

3.2 Compressed Sensing Theory
There are two tlpes of compression

1. Lossless

This is digitally identical to the original image and only achieves a modest arnount

of compression-

2. Lossy
{-



This tlpe of compression only discards components of the signal that are known

to be redundant. Signal is therefore changed from input.

The graphical representation and flow chart of Image compression is given

below in figure 4 followed by Lossy compression figure 5.

Figure 4: Image compression techniques

Lossy compression is firther extended to its components, as shown in figure 6.

Figure 5: Flow chart

for lossy compression

!
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3.3 Compressed SensingMathematically

Let x is a signal of dimensions Nxl is K sparse in a basis or dictionary "YN*N", then it

is possible to fully recover the signal x by a measurement "!M*L" taken by .,eM*N",

where M<<N under some conditions [29]; i.e.

For

x = XllrviUi

Take Y=Ox (16)

Where tt are basis vectors of orthonormal Yrun , and vector al has only K non-zero

elements, K<<N and measurement matrix @ satisfies Restricted Isometric Property (RIP)

[30], where M > cKto, (#) << rv

3.3.1 Stepwise Explanation of the Method

According to conventional coding method, compress/ reconstruct the signal through

discarding suffi ciently small coefficients.

x = Vv - XierrargertviUi (l7l

CS theorems state that, for signals that are sparse in some domain, they can be fully
reconstructed using only few designed measurements. Number of measurements depends

on sparsity. In order to recover the sparse sigual, the measwements should be taken from

a measurement mahix whose product with the basis satisfies RIp [31].

3.3.2 Restricted Isometric Property (RIp)
A matrix ",/4" is said to satisff the RIP of order K with isometry constant "6k" , which is

not too close to one zuch that

(1 - 6r.)nvl3 s llaq;i= o+ op)llflll (18)

(1s)

t-
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In other words, "A" apptoximately preserves the Euclidean length for K-sparse signals

and all subsets of K columns, taken fuom "A" are nearly orthogonal.

It can be explained as; the order of K(K 
= 

M),and 0 < dp ( 1, for.4 to obey RIP of

order I! no K-sparse signal can lie in the null space of /. (If it did then we would have

11e"lli= 0 , and that obviously does not preserve the squared magnitude of the vector u)

3.3.3 The Measurement Matrix

Key Problem:

How to design the measurement mafiix @ zuch that A = @Y satisfies RIP of order

2K?

However in practice, there is no computationally feasible way to check RIP propefi for a

given matrix @. i.e. Require (fl) rn*rc for all non-zero K elements.

Solution:

Pick random mafiices which are usually incoherent with any fix basis P.

Exarnples:

l) Random Gaussian

2) Random Bernoulli

3) Hadamard Matrix

4) Random Sparse

Hadamard Matrices are given by

,r=lfr: -irl
Hadamard Matices exist of orders 1,2 and 4 or of a multiple of 4. Hadamard matrices

of interest, we cao define codes based on the rows of the Hadamard matrix.

H1= lLl, nr=ll, 
- tl,

I
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3.3.4 CS Recovery

Reconstruction or decoding Problem:

The formulation is given by

y = <DYv (19)

Where "@" is called the measurement (or sensing) mafix. "V" is assumed to having

sparsi$ing basis and "u" is the target sparse representation. Such that dim(y) << dim(r),

this is an ill-posed problem in general.

3.3.5 CS Recovery Algorithms

Signal recovery algorithm aims to find signal's sparse solution.

L) Lz - norln (energy) minimization:

minllv!12 Subject to Av = Y Q0)

y = (ArA)-1Ary Ql)

Equation (21) is called the pseudo inverse of (20). The pseudo-inverse is a closed form

but is not a sparsie solution.

2) Lo -norm minimization:

minllvllo subject to Av = y QZ)

Through, Ls - norm, we can exactly recover the K-sparse signal with high probability

from M = K * 1 measurements but solving it is M-complete. It need exhaust search, all

/lv\
(',iJ nositions non-zero coefficients.

As signal reconstruction algorithm tries always to find the sparsest solution. That's why

this work uses L1 - normminimization.

3) L1 - normminimization:

minllvllo subjectto Av = y (23)
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Through, L1- noflfl, we can exactly recover K-sparse signal with high probability

using only M 2 cKlog (I) 
" 

N measurements (Mild Oversarrpling)

Figure 6: Graphical representatioa of Ls, L2 and h - norrlls;

L1-norm ffiinimization is using different techniques, such as Basis Pursuits @P)

[32], Matching Pursuits (NP) t33] etc. This work does L1- narm minimization using

iterative wavelet based thresholding.

3.3.6 Wavelet Based Image Compression and De-noising

Wavelet based thresholding techniques consist of some classical and the recently

introduced shrinkage firnctions. D.L. Donoho used hard shrinkage ftrnction for the first

time. According to this rule the coefficients below the threshold level are discarded while

keep the remaining unchanged. Another form of hard shrinkage firnction was proposed

later by D.L. Donoho in 1995, called soft shrinkage firnction [34]. Iater on a new

shrinkage function named garrote, was examined by Hong-Ye Gao in his work [35].

Although these all shrinkage functions produce good results but still there are some

problems which could not be handled through the classical shrinkage functions. A new

proposed shrinkage function with some modifications called logarithmic shdnkage

fimction, is used in this work for images recovery and de-noising.

Many researchers for de-noising and regalaizatron use the Tychonov penalty to

estimate the sigual from degraded data. Actually an attempt is made to solve the

optimization problem,
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arsmin i il* - vlll + ttl U*ll|

This equation has a close form solution as under.

^1x=;;Y

Where "x' is the original signal, '?'is the estimated signal,"yD is the noisy signal and

'2" is the regularization parameter.

This work compares the four thresholding techniques for recovery o1,ra6e1-sampled

sPanie images and also rses these techniques in combination with median filtering to

recover the sparse images, degraded by salt and pepper noise. In the first portion of this

worlq take the wavelet transform of under-sampled Shepp-Logan Phantom image, apply

the four ttresholding techniques individually and then recover the image by taking the

lnverse Wavelet Transform of the thresholded image. Proposed shrinkage function shines

with the best results and gives high PSNR values as compare to hard, garrote and soft

shrinkage functions. In the second part of this work, take Shepp-logan Phantom image

and add salt and pepper (impulsive) noise to it. Taking the wavelet transform of the noisy

image, threshold it and then iteratively recover the sparse image through hard, soft,

garrote and proposed shrinkage functions. Through these techniques this work can

recover the sparse images but cannot satisfactorily de-noise them" when they are

comrpted by impulsive noise, that's why this work applies median filtering in addition

with the thresholding techniques to get better results.

3.3,6,7 Wavelet Based Thresholdtng

Basically it solves the following optimization proble,m for de-noising and regularization

in the first portion of this work using L1- normminimization.

argmin i lt*- ylll+ r] lHh

This applies iterative hard, garrote and soft shrinkage functions.

Let Xu is the under-sampled Fourier transform of "f ".At the start it is supposed that

*o=Y.

(241

(2s)
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1. Compute the inverse Fourier Transform of .f as 2f F'(fr)

2. Perform Wavelet transform to obtain sub-bands coefficients.

3. Threshold alt tow frequenry sub-band coefficients using certain shrinkage function in

the Wavelet domain fr= Thresh (W *?i, 1l

4. Compute the inverse Wavelet transform to recover the noisy image 2F W' * lt

5. Compute the Fourier transform &= F(2i)

5. Enforce data consistency in the transform domain X = X (Y = - 0) + f

7. Run the iterations until Ilfi*r - fi Il < t

Where "€" is stopping criteria.

This work applies the same procedure for garrote and soft shrinkage functions. The

above method is a Projection onto Convex Sets (POCSI type algorithm. Apply twenty

iterations to force the data consistency and get the satisfactory results. Compare the

thresholding techniques by means of PSNR.

3,3,6,2 Thresholding Techniques

This chapter will discuss the classical shrinkage functions. The proposed

shrinkage function is discussed in the next chapter.

3.3.6.2.1 Hard Thresholding

Hard thresholding works on the principle of keep or kill rule. It removes the wavelet

coefficients whose absolute values are below the threshold value and keep the remaining.

It doesn't change the values of coefficients above the threshold value [36]. It is

formulated as:

Q7)*n,:[ 
'll 

"XI: 

1]
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Figure 7: Hard shrinkage firnction

3.3.6.2.2 Garrote Thresholding

Garrote thresholding adopts a modest way between hard and soft thresholding, and is a

good compromise between hard and soft tbresholding .It is more flexible than hard

threshold and continuous like soft threshol{ therefore it is more stable than hard

threshold and soft threshold [37]. It is represented as:

f 0 if lxl< 1)*o:t-Y if lxl,lJ
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0

-10

-20

(0 if lxl<1)
*" = 

t*'i'ri^ ir t xl > {

ffib) Earrute llreshold

-30
-30 -2u -10 0 10 2u 30

Figure 8: Garrote shrinkage function

3.3.6.2.3 Soft Thresholding

Actually soft threshold is an extension of hard threshold. It is continuous shrinkage

function, produces better results than hard aod garrote threshold in our experiments [38].

Soft shrinkage function is formulated as:

Qe)

Equation (29) is compact form of soft shrinkage fuirction.
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Figure 9: Soft shrinkage function

3,3.6.3 Proof of Sofrshrinkage Function

Taking the following problem

argmin llx - Ul13 + {lxll1

As it is known that it has three unique solutions

argmin llx - bl13 + lllxll,

argmin llx - bllS - lllxll,

arsnin llx - ull3 - lllxll,

(3c) Suft Slrinkage

whenx)0

whenx(0

whenx = 0

(30)

(3 t)

(32)

(33)

Differentiating these three equations with respect to r,
Differentiating (31);F
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dflx-bll:z+lllxllr)
=Q

d(x'-2bx*b2+tu9
=Q

= 2x-2b+1.= 0

.1+ x= b_i

According to (31), x > 0, so

o-lro

* brl

Differentiating (32),

aCln-utll-illxlt,l

(34)

=()

t!'

d(x'-2bx*b'-fu|
=[

+ 2x-2b-1,=0

= *=b+1

According to (32), x ( 0, so

1b+r<o

+ u<-1 (3s)
z

Differentiating (33),
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d(xz+b2-zbx1
dx

+2x-2b=0
+2b=2x
+b=x

From (33), we have, x = 0; so

+ b=0

Soft thresholding operator becomes;

(o-), ir u>|)
sr&)=10*1, ir u._if

\ O otherwise,/

=()

(36)

(37)

Compact form of (37) in terms of x is given by,

(0 iflxlsl)
sr(x): t,.qf ir lxl > { (38)
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Chapter 4

PROPOSEDWORK

4.1 Overview

Although the shrinkage functions discussed in chapter 3, produce good results but still

there are some problems which could not be handled through the classical shrinkage

functions. A new proposed shrinkage function with some modifications called logarithmic

shrinkage function is used in this work for images recovery and de-noising.

The first portion of this research applies the proposed shrinkage function called

logarithmic shrinkage firnction to the phantom image. The quality factor for checking the

performance is Peak Signal+o-Noise Ratio (PSNR). The proposed function produces

better PSNR values than the other three classical shrinkage fuoctions.

4.2 Proposed Method

This research proposes a new shrinkage firnction, the Logarithmic Shrinkage Frmction

(LSF). Repeating the procedtre in chapter two for wavelet based thresholrling using LSF.

The experimental results show that the proposed method is7-10% better in PSNR values

than the classical methods. The graphs of PSNR are given in results section.

The previous three techniques are used continuously from a few decades. This is a new

shrinkage function. It produces the best results due to the usage of "log" function. The

mathematical form of the proposed firnction is grven by
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(3e)

The values of "s" are s'nal! positive constanE. Equation (25) is, an optimization

problem and the threholding firnc,tions try to find the global minima In &e case sf
logarithmic shrinkage function, it finds local minima instead of global minim4. This is ao

iterative t1-notm approach. Due to direct relation with It -rwrrn it produces bett€r

results in rOeovery than soft thresholding and is also better in puformance than hard

shdnkage thesholding due to the ttiscontinuity of hard shdnkage fimction. \-rwrtn is

a Poitrty fitnction and having a gfelril abi[B to provide the sparse solutiou In case of
12 - tlBtttt,it can fi.d pseudo inverse but having no sparsity while in case of !q - nonn,
it cau recover the exact spa$e signal but solving ig is M-complete. It need exhaust

search, ,, (fl) are non-zero ooefficiens.

Iogarithmic finction is the oxteision of exponential ftrnction The erpone,lrtial

functions have derivatives exist at orign That's why the proposed firoction produces

bstter results for sprse signals recovery. For more flexibility in (39), it can select two

diffetent value.s of thresholding for positive and negative values of */'. The derivative of
the exponential firnction is gven below.

4.2.1 Derivative of Exponential Funcfion

L€t f(x) = a*

From the basics of derivativg

f'(x) = tirno*S{s

f'(x) =linrn-o#

(0 tf lxl< 11
x,t=[1{ 

-stog(, *Y) ir tut > rJ

(40)

t'
,t

f'G) = tiulo-043

f'(x) = limn-os,

(41)

(42)

(43)

(44)
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f'(x) = a*limh-s f such that ax is constant w.r.t "h"

Ifx = 0 then f(0) - a0 = 1, So f'(0) = limn-o(ah - L)/h

0r f'(x) - f'(0)a'

The original shape of the log thresholding function is given below,

(8d) Proposed Shrinkage Function

(45)

(46)

-40 L
-30

Figure l0: Proposed shrinkage function

4.3 Proposed Model for Noisy Images

In addition with the sparse images recovery (section 3.3.6, section 4.2), nthis section,

we de-noise phantom image by means of wavelet based thresholding and median filtering
having salt aud pepper noise. Because only thresholding is very less effective in case of
impulsive noise and give the correlation values of the recovered images closed to the

noisy image. ln signal and image processing median filter is frequently used for de-
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noising of signals and im4ges because of its edge preserrring properties. But in this work

uses thresholding technique in addition with median filter to recover and de-noised sparse

images. It applies wavelet based thresholding techniques, by means of which it recovers

the sparse images and then apply median filter to eliminals the salt and peppo noise from

the images. Flow chart of the technique for sparse and noisy images recovery and de-

noising is given in Figurel2.

Figure 11: Flow chart of the proposed de-noising method

4L

Original Image

Degraded Image

Under-sampling +salt & pepper noise

Wavelet Transform

Shrinkage Functions

Inverse Wavelet Transform

Recovered Image

De-noised using Median filter



4.4 Basic Terms

4.4.1 Peak Signal-to-Noise Ratio (PSNR)

Mathematically PSNR is given by;

PSNR = 10log1s Max/MSE

And MSE is defined as

MSE = Xrrl,u[Ir(m,n) - I2(m,n)]2 (49)

Where M, N are the number of rows and columns in the input images.

4.4.2 Correlation

It is the statistical measure that indicates the extent to which two or more images

fluctuate together. A positive correlation indicates the extent to which those variables

increase or decrease in paraltel, a negative correlation indicates the extent to which one

variable increase as the other decreases.

Mathematically

F " r(x) = XI!-* F(i)r(x + i) gs)

For this notation" index F from -N to N.

r. t(xy) = Xi!_*XlI_sF(i)r(x+ i)

4.43 Median Filtering

The average filtering leads to blur edges and details in an image and are not effective in
case of salt & pepper (impulsive) noise. It is tpe of non-linear filtering. The gay level of
each pixel is replaced by the median of its neighbor. It produces good results at de-

noising (salt & pepper noise / impulsive noise). It takes the median value instead of the

average or weighted average ofpixels in the window.

Median sort all the pixels in an increasing order, take the middle one. The window
i structure for median filtering does not need to be a square. Special shapes can preserve

line structtres.

(47l-
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Chapter 5

DISCUSSIONS

5.1 Results

This work presents four thresholding teohniques for signal and image de-noising using

wavelet hansform" In case of oue dimensional sipal, take a dissete time sparse signal

hating five non-zero samples out of 128. The magnitude of the sauples ts 1,2,3A and 5.

Normalize it. In the next step add Gaussian noise of d€nsity 0.05 to the originat signal.

Under-sample the sipal as uniform and random individrully. Appty the soft shrinkage

fimction to uniform md random under-sampled signat.

Repeat above procedure for hard and garrote. Draw the iteration versus max (lr - r"D.
The grrnote shinkage firnction decays very fast. The graphical results are shovm in

figurel3 and 14.

Next, take Shepptogan?hantom image of size 256x256. Individualty apply the four

shrinkage functions oo Shepp-Iogau Phantom. Performance of the techniques is judged

by the PSNR values and oorrelatioo values.

PSNR of the noisy Shepp-Ioptr Phautom image is 68d8. The PSNR value achieved by

hard, garrote and soft shrinkage firnctions are El.SdB, 83.4d8, and 85.5dB respectively,

while the PSNR value achieved by the proposed technique is 87.OdB, which is greater

than the other three techniques.

For phantom image, hard threshold gives satisfactory resuls at "tr = 0.35', garrote

threshold is comparatively beter at L= A.20 ftom hard while soft threshold shows the

best results at 'l : 0.070". The proposed shrinkage function gives 87.0 dB, which is the



best of all. The values of PSNRand l for har{ garrote, soft and proposed methods are

given in table.l.

From the behavior of shrinkage ftrnctions it is clear that the proposed shdnkage function

is the best among the other shinkage fimctions, followed by soft, garrote and hard-

Different values of "s" can be selected as o < s ( 1. This is the additional parameter

along with the "log ftmctiod'which makes the proposed technique more flexible among

the others. Thejustification is as;

The original and recov€red images through the thresholding twhniques are given in

Figurel5. Table.l shows the PSNR values of the four shrinkage functions. The PSNR

curyes are give,n in Figurel6.

In the spcond portion of our work median filtering is applied in parallel with the

thresholding. First apply the shrinkage functions on the sparse noisy inages through

which the images are recovered but still having the impulsive "salt and peppet''noise.

Then apply median filtering to eliminate the salt and pepper noise. This hybrid technique

. is very effective in case of proposed thresholding, and gives high correlation values as

compared to the other tbree thresholding techniques. The noisy and de-noised images are

given in Figrrel7. Evaluated the images based oa the corrolation values. The correlations

values of images, de-noised through these techniques and through median filtering are

given in Table.2
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G) 0s-noird l*gu,Sd llrEshldiq 0 llerroisd hqB. Propmd }ldhod

Figure 14: Original Phantorq Noisy and De-noised Images

Table 1: Under-sampling in frequency domain leads to Gaussian noise

Shepp-Logan Phantom Image

Shrinkage Functions I PSNRvalues

Hard 0.35 81.6

Garrote 0.20 83.4

Soft 0.07 85.5

Proposed 0.10 87.0
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Table2: Correlation values of the noise and recovered images with the original image

Salt & PepperNoise Noise Density 0.10

Correlations of the Noisy and

De-noised lmages with the

Original Image.

Noisy 0.6884

Soft 0.6966

Soft+Median 0.976t

Hard 0.6865

Hard+Median 0.9681

Garrote 0.6786

GrrotqFMedian 0.9551

Proposed 0.7046

Proposed*Median 0.9853
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Figure 15: PSNR curves for recovery of phantom image by the four thresholding techniques
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(a) 0riginallmage (h) Noisy lmage

(c)Wauelets of the Noisy lrnage (d) Recouered lmage Soft lhresholding
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(e) 0e-noised lmage, Median ffherrSoft (0 Recouerad lmage. Hard thresholding

(g) [e-noissd lrnaga tlledian+Hard [h) Recwersd lmage. Eanote lhrasholding

(i) [e-noised lmage llledian*Eanote (j) llecovered lmaga Proposed Shrinkage

d
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(k) [e-noised lnraga l,ledian+Proposed

\:

Figure 16: Original, Noisy, wavelets of the noisy and de-noised images.

5.2 Conclusions

This work addresses the signal and image de-noising problem and compares the

performance of the three existing shrinkage functions with that of the proposed

logarithmic shrinkage function. Apply the four shrinkage firnctions for recovery to the

noisy under-sampled (uniformly and randomly) signal. Draw the curves of max lx - xel

versus iterations. The graph of logarithmic shrinkage function decays very quickly and

closed to 0.1 followed by the soft (closed to O.2),ganote (closed to 0.45) and hard (closed

0.55) shrinkage functions.

The four shrinkage functions are then applied for recovery of images having under-

sampling noise (in transform domain). Test the Shepp-Logan Phantom (256 x 256)

images in the experiments. The proposed threshold technique removes the under-

sampling (aliasing and Gaussian) noise significantly and shows the best results as

compared to hard, garrote and soft threshold functions. The propos"6lsshnique produces

7 to l0Yo better results than the existing classical shrinkage functions.

ln the second part of this worlg the de-noising results of the four thresholding

techniques are compared with that of the median filtering. Use median filtering for de-

noising of sparse and noisy images, recovered through soft, hard, garrote and proposed



shdnkage functions. These four thresholding techniques remove the under-sampling noise

from the images but are not significant in the case of impulsive noise, that's why the use

median filtering in sequence with the thresholding techniques for sparse images comrpted

by salt and pepper noise is proposed. The thresholding techniques in sequence with the

median filtering produce 30 to 35% better results than produced by ordinary thresholding

techniques.

5.3 AppHcations

l) FBI Fingerprint Compression

A single fingerprint is about 700,000 pixels, and requires about 0.6Mbytes.

Figure 17: Finger prins and compression

2) Pattem Recognition

Wavelets are widely used in the field of pattern recognition (especially fractal

pattems) due to their ability to zoom on finer patterns as well as view the entire global

frend.

Edge recognition

wavelets can be used to separate out the edge of images and the gteatest

application of this properfy is in the field of finger print recognition.

Scientific data analysis

3)

4)
3
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No! only can wavelets de-noise and compress data seb bu it cao also predict the

time varying pafferns in a data sel It is gteatly used now a day in scientific data

analysis. The qpplications of wivelet fiausform in the field of science and

engineering are many and may are rapidly evolving. Itese small waves have u-

shared a bunami of change in variousfields.

5) CS is used for signal and images recovery.

O CS is rsed for signal and images de-noising.

7) CS is usedinmachine learning.

8) CS is used in statistical signal processing. l

9) CS is used inhistogram maintenance. 
-

l0) CS is used in dimension reduction and e,mHding.

I l) CS is used for medical imaoing.

12) CS is usedfor video processing.

13) CS is used for video T-pling.
14) CS is used analog to infoniration conversion

15) CS is used in computatioual biology.

16) CS is used in gmphysical daa analysis.

17) CS is used in hfer-qpecfral im^g'g.

l8)CS is used in compressive radar.

19) CS is used in astronomy.

20)CS is used in compressivesystem identification and dpamical spte,ms

21) CS is used in communication

22)CS is used in detectiotr md estimation

23) CS is used in sur&ce metology.

24) CS is used iu acoustics, audio and speech processing

25) CS is used in remote sensing.

20 CS is used in computer engineering.

28)CS isirsedinrobotic.s and coatrol. '

29)CS is usedinoptics andholography. -
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5.4 Future Work
l) Face recognition through sparse representations.

2) Low-rank matrix recovery through convex optimization.

3) The method used in this work can be applied to noisy image having salt and

pepper noise, Gaussian noise, pink noise etc.

4) This work can be extended for video de-noising.

5) This work can be applied to real signal and images.

6) Satellite images can also be recovered and de-noised through this method.

7) These methods are also applicable to hand uniting.

8) Apply the techniques to CT, Ultrasound and range data etc.

9) Cognitive Radio can use CS to utilize efficient utilization of channel.
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