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Abstract

Abstract

Skin is considered as one of the prime structures in human body. It helps to defend our body from
the harmful rays of sun. From the last few years, there is a great rise in skin infections around the
world. This is due to the change in global warming and human behaviour towards environment.
Among these infections and diseases, skin cancer is one of the most spreading diseases; however,
it can be cured by detecting it earlier. There are various kinds of skin cancer for example,
melanoma, Basal Cell Carcinoma (BCC), Seborrheic Keratosis (SK), and more. From the last few
decades, a lot of research has been made in the development and improvement of the automated
systems for the recognition and segmentation of the lesions of skin. There are further various types
and sub-types of skin cancer such as melanocytic, malignant, and non-malignant that make a
hierarchy in a sequence. Introducing this hierarchy in our algorithm can help to develop an
explainable system that can assist a practitioner in a much better way. There are also different
dermoscopic structures or patterns present in all these types of skin cancer lesions including
pigment network, globules, and negative network etc. These structures can help to identify and
differentiate among various skin cancer types and their diagnosis. In this thesis, we have proposed
a hierarchical model by introducing some variations in the existing GoogleNet model, named H-
GoogleNet model. A three levels hierarchy of skin lesions is embedded within a single model such
as in H-GoogleNet so that it will predict and generate a hierarchy of skin lesion type and its sub-
type till three levels. Level 1 shows the origin, level 2 depicts degree of malignancy, and level 3
represents the differential or fine class. Auxiliary classifiers and inception blocks are added in the
GoogleNet model to make it work for taxonomic level classification. Various optimizers and loss
functions are used in the proposed model to get more accurate results. Along hierarchical
classification, we also proposed a ResNet50-UNet model for the structural segmentation of skin
lesions within a single image. To handle the class imbalance problem, present in skin lesion
classification datasets, we have applied data augmentation techniques. For data imbalance, present
in structural segmentation dataset of skin lesion, for five attributes, we have proposed a hybrid loss
function so that we can handle the imbalance segmentation data of skin lesion. International Skin

Imaging Collaboration (ISIC) 2018 classification dataset of skin cancer is used to evaluate our



Abstract

proposed hierarchical classification model. ISIC 2018 segmentation dataset is used for the
evaluation of proposed structural segmentation model. The results show that the proposed H-
GoogleNet model and attributes segmentation model generates a good hierarchical classification
of skin lesion and attribute level segmentation respectively. The proposed models are also
compared with the existing literature. The proposed H-GoogleNet and ResNet50-UNet models can
help the dermatologists to get an explainable sequence of skin lesion origin, degree of malignancy,

and fine class, and distinguish among various lesion structures present in skin lesions.
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Chapter 1

1 Introduction

We all know that cancer, no matter what type of it and in which body part, is a disease of cells that
are basic building blocks of the human body. These cells make up tissues and organs of our body.
Naturally, the human body keeps on making new cells to help our body to grow, replace worn-out
or dead cells, and heal injuries or any other infectious and non-infectious disease. All this happens
in an orderly way, so that the new one cell replaces the older one, and this process lasts throughout
our life. However, sometimes, this normal growth of cells can tum into abnormal growth. This
may happen due to some external effect of our surroundings or sometime due to internal effects of
our body. No matter what the cause, this abnormal growth of cells develops a specific cancer on
that part of the body. These abnormal cells have a great potential to spread and may invade the
nearby tissues, destroying normal cells and developing a cancer resultantly. This cancer can be in
any organ of the human body such as, brain, lung, blood, breast, kidney and many more. Like all
these body organs, cancer can also develop in the skin, the largest organ of our body, causing skin
cancer.

In our routine life, when we talk about the human body, we usually circle around our significant
body parts, like brain, lungs, kidney, liver, heart, eyes etc. and rarely do we do this with our skin
and its diseases. Like any other organ in our body, skin also suffers from diseases including acne,
infections, allergy, eczema and many more. Among all these diseases, the most dangerous and
fatal disease is skin cancer. It is the one causing ultimate deaths worldwide and this death rate is
increasing yearly with the passage of time [1]. It is one of the widespread cancers in USA and
Europe. World Health Organization (WHO) assess that the cancer cases will get double in the next
few decades [1]. From these cancer assessments, one of the most alarming is skin cancer.

1.1 Who is at Risks? / Risk Factors

Anyone can develop skin cancer, but the risk is higher in people with lack of skin pigmentation,
fair and freckled skin if it burns easily, very short or intense exposure to UV radiations, playing
too much outdoor games, family history, lots of irregular or uneven moles on their body and many

other causes. People who mostly work outdoors are at higher risk of skin cancer due to harmful

1
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sunrays and damaging emissions of some industrial materials. UV radiation can also be produced
from artificial sources, such as solariums (sunbeds/tanned beds). People using solariums have great
chances of skin cancer. These solariums are mostly used in European countries. It is one of the
greatest causes of intense skin cancer spread.

Skin cancer mostly develops on skin bare to the sun including, lips, ear, neck, hand, and face. It
appears rarely on parts of skin not revealed to the sunlight (see Figure 1.1). Skin cancer develops

when mutations in the skin cell’s DNA take place causing abnormal growth of cells.

Figure 1.1: Examples of Skin Cancer

1.2 Reduce Risk Factors

Skin cancer can be lowered by ensuring these precautions:

1) Limit exposure to sunlight.

2) Examine skin for irregular variations to locate skin cancer at earliest.

3) Wearing clothes that cover your arms and legs can be helpful to prevent skin cancer.

4) Applying a suitable sunscreen can also help to prevent skin cancer.

5) Regular self-examination of your skin could lower the chances of skin cancer.

6) People using sun lamps and internal tanning beds are at great risk. They should cut off these
artificial things from their life.



Chapter 1 Introduction

1.3 Worldwide Surveys of Skin Cancer

Skin cancer is among the most spreading cancers today. According to the recent facts and figures
of American Cancer Society (ACS) in an annual published report 2020 [2], around 100,350 new
cases and 6,850 deaths due to Melanoma are reported in the United States (US) till 2020. This
report also gives the probability (%) of developing invasive skin cancer during selected age
intervals by gender, in the US, 2014-2016. Its complete detail can be seen in [2]. It is assessed that
around 9,500 people are diagnosed with skin cancer every day in the U.S. [3]. The more deep
detail can be seen in [3][4][5].

1.4 Skin Cancer in Pakistan

Skin cancer is also reported in Pakistan every year. There are some survey reports [6 — 8] giving
facts and figures of melanoma and few other skin cancer types such as BCC, SCC etc. in Pakistan.
According to Shaukat Khanum Memorial Cancer Hospital (SKMCH) annual registry report of
2018 [7], skin cancer was among the top ten cancers viewed in all age groups. A total of 267 cases
of skin cancer were reported only in this hospital. Out of 267, total 163 cases of male, and 104
cases of female were reported. In all 267 cases, Basal Cell Carcinoma (BCC), Nodular BCC was
the most frequent skin cancer reported. After that, Squamous Cell Carcinoma (SCC), Malignant
Melanoma were on second and third number respectively. The deeper fact sheet for skin cancer
cases in SKMCH Pakistan, in year 2018, can be seen in {7]. There is also a collective registry
report of SKMCH from 1994 till 2018 [6] for all types of cancers. This report tells that 2,440 cases
of Melanoma and other malignant neoplasm of skin were reported from year 1994-2018. Out of
2,440 cases, 960 female cases and 1,480 were male cases. According to the statistics of WHO of
2019, about skin cancer in Pakistan [8), 428 new cases, 313 death cases and 922 5-year prevalence
cases were reported. The deeper details of all these reports can be read in [6 — 8].

1.5 Skin Cancer Diagnosis

Skin is the most important part of the human body. It performs very important functions to help
protect our body from various infections, germs, harmful rays of sun, to regulate our body
temperature etc. It has three most important layers: Epidermis, dermis and subcutis [9]. The upper
layer is epidermis. It has a basal layer containing melanocytes in it. Melanocytes release a pigment,
named melanin, giving color to the skin such as brown, tan etc. The deeper detail of skin structure

can be seen in Chapter 2. The abnormal production of melanin pigment causes the development of
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melanocytic malignant melanoma. This abnormal production of melanin may be due to the harmful
UV sun rays. This malignant melanoma is the extreme form of skin cancer causing ultimate killing
if not identified at earlier stages. There are also some other kinds of skin cancer including BCC
and SCC that are malignant. There are some types of lesions that are benign, but they can turn to
malignant if not treated seriously such as melanocytic nevus, dermatofibroma, vascular, seborrheic
keratosis, actinic keratosis etc. Some skin cancer lesions look similar in appearance that even the
experts may not be able to differentiate among them. Sometimes, it is not possible to differentiate
between various types of skin cancer lesions due to the similarity of their structures with one
another. Due to these reasons, efforts have been made in the last few decades to enhance the
clinical analysis of skin cancer lesions. All these efforts include some imaging techniques-
dermoscopy [10], and clinical diagnosis procedures including Pattern Analysis [11], ABCD rule
[12][13][14], 7-Point Checklist [15][16], Menzies method [17], CASH algorithm [18] etc. to help
diagnose the skin cancer earlier. However, there are also some computer aided methods
[19](20][21][22][23][24][25] that are in use by dermatologists. These systems are clinically
oriented Computer Aided Diagnostic (CAD) systems. These systems are fully automated. The
deeper detail of these methods is discussed in Chapter 3.

1.6 Research Challenges & Motivation

Precise identification of skin cancer type includes various challenges. There is a great need for
self-explainable diagnostic system that could provide explainable outputs to the physicians such
as it should not only provide the fine classification of skin lesion to dermatologists but also talk
about the root class or origin of a specific skin lesion. There is one more challenge in which one
type of skin lesion may mimic with the other one resulting in confusion for the dermatologist to
take final decision. The appearance of these lesions may be similar and sometimes they also have
the same structure in them. These similarities make it difficult for dermatologists to diagnose the
actual type of lesion and it may misdiagnose the skin lesion type. This misclassification may lead
to the wrong treatment of skin lesion and may cause the loss of human life.

The structures or attributes present in skin lesion may overlap with other structures in lesion. This
overlapping cause misdiagnosis of skin lesion. There is also a great need for structural
segmentation of skin lesions. From these structures, very useful information can be found. These

structures may include pigment networks, cobblestones, milia-like cysts, and many others.
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There is also a great challenge of class imbalance problem in the available skin cancer datasets.
These datasets do not have the same number of instances in each class of skin lesion.

There is one more challenge of noise present in skin lesion images. These noises may include
clinical noise, acquisition noise, and hair noise.

1.7 Challenges in Skin Lesion Classification

There are various challenges in publicly available skin lesion datasets including class imbalance,
variations in skin lesions, and structural similarities. In this section, we have discussed these
challenges in detail.

1.7.1 Imbalanced Dataset

Most of the available skin lesion datasets [26] [27] have serious imbalance in the number of
samples among various skin lesion classes. For example, one class contains large number of
samples, and the other one contains limited number of samples. The training of a CNN model with
such imbalanced dataset may results in poor performance on minority classes such as it will show
biasness toward majority class. This imbalance number of samples, in various skin cancer datasets

are shown in Table 1.1.

Table 1.1: Number of samples and class imbalance in public skin cancer datasets.

Classes Datasets
ISIC 2018 | ISIC 2049

Melanoma 1113 4522
Nevus 6705 12875
Basal Cell Carcinoma 514 3323
Actinic Keratosis 327 867
Benign Keratosis 1099 2624
Dermatofibroma 115 239
Vascular Lesion 142 253
Squamous Cell NA 628
Carcinoma

Total 10015 25,331

1.7.2 Variations in skin lesions

There are various challenges in the visual characteristics of skin lesion images, shown in Table
1.2, given as follows:

1.7.2.1 Various Shapes and Sizes

In skin lesion datasets, large variation in the shape and size of skin lesions is present in skin lesion

images that increase their complexity. These variations make the skin cancer classification a
difficult task.
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1.7.2.2 Irregular Boundaries

A lot of skin lesion images have irregular boundaries that makes them difficult to segment and
classify for segmentation and classification techniques respectively.

1.7.2.3 Noise and Artifacts

Various kinds of noise are introduced in datasets while acquiring images with acquisition devices.
The classification and segmentation processes are affected by these noise and artifacts. This noise
includes color illuminations, light reflection, blood vessels, hair artifacts, and bubbles.

1.7.2.4 Low Contrast

The low contrast present between lesion area and the background normal skin that cause the

difficulty in accurate segmentation of skin lesion.

Table 1.2: Challenges in skin lesion dataset
Various Shapes | Various Sizes Irregular Noise and | Low Contrast
Boundaries Artifacts

1.8 Problem Statement
1. There is lack of explainability in the existing CNN models to get the hierarchy of skin
lesions which makes it difficult for dermatologists to make accurate decisions about skin
lesion type and its sub-types.
2. In addition, various structures in skin lesion may appear in more than one of its types
creating hurdles for dermatologists to make accurate decision about final skin lesion type.
3. Moreover, the existing imbalance data handling techniques may not perform well while

dealing with structural level segmentation of skin lesions.
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1.9 Research Questions

Research Question 1: How can we design a self-explainable CNN model by embedding in
inherent hierarchical structure of skin lesion for its taxonomic classification?

Research Question 2: How can we perform the structure level segmentation of skin lesions?
Research Question 3: How can we resolve the existing class imbalance problem present in the
structural segmentation dataset?

Research Question 4: How can we highlight and interpret the skin lesion regions and localize

them, that contribute the most to predict an output?

1.10 Research Aim and Objectives

This thesis aims to develop Deep Learning based algorithms for the hierarchical classification and

structural segmentation of skin lesions in dermoscopic images.

The objectives of the thesis are as follows:

e Hierarchical Classification of Skin Cancer

To propose an explainable CNN model for the hierarchical classification of skin cancer lesions,

by using their inherent hierarchical structure.

¢ Structural Segmentation of Skin Lesions

To propose a CNN model for the structural level segmentation of skin lesion attributes.

e Handling Class Imbalance in Dataset

To handle class imbalance problem, present in skin cancer lesion datasets to make the hierarchical

classification and structural segmentation more robust.

¢ Structure Visualization and Interpretation

To visualize and interpret the regions of the image contributing most to make prediction at each

hierarchical level of classification through gradient class activation maps.

1.11 Research Contributions

Following are the contributions of this research thesis:

1. We have proposed an explainable CNN model for three-level hierarchical classification of skin
cancer lesions, by using their inherent hierarchical structure, to make the CAD system self-
explainable.

2. We have proposed a CNN model for structural level segmentation and localization of skin

lesions attributes.
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3. The problem of class imbalance present in ISIC skin cancer dataset has been addressed to make
the taxonomic classification and structural segmentation more robust.

4. The proposed system also provides visualization at each hierarchical level of classification,
through gradient class activation maps highlighting the image regions participating most in
output.

1.12 Dataset
The efficiency of the proposed models for hierarchical classification and structural segmentation
of skin cancer lesions is validated on dataset of International Skin Imaging Collaboration (ISIC)
archive [31][32]. This dataset contains separate individual sets for training, validation, and testing.
It is the standard benchmarked dataset for dermoscopic skin cancer images available on
international level and released yearly. ISIC is a collective effort of academic and industry aiming
to improve melanoma diagnosis and lowering melanoma death rate by aiding the application of
digital skin imaging techniques. The more detail about ISIC archive can be seen in [33]. The deeper
detail of this dataset is discussed later in Chapter 4.
1.13 Thesis Organization
Chapter 2 talks about the structure level detail of skin including its layers. The details of types of
skin cancer lesions are discussed in this chapter. A complete hierarchy of skin cancer lesion types
is given in pictorial form. This chapter also discusses the various structures or attributes that are
present in skin lesions. Medical diagnosis of skin lesion by using various imaging techniques is
also discussed. Clinical diagnosis of skin lesions including all clinical methods are also described
in this chapter.

Chapter 3 provides a summary of previous research on skin cancer segmentation and

classification using traditional Machine Learning techniques and Deep Learning based techniques.

Previous work is divided into four categories: (1) Computer Aided Diagnostic (CAD) Systems for

skin cancer diagnosis, (2) traditional skin cancer segmentation techniques, (3) CNN- based skin

segmentation and classification techniques, (4) skin cancer hierarchical classification and
structural segmentation techniques. This section provides extensive literature over the last 10 years
on representation and classification methods in all categories. Gaps or limitations in previous

research are identified and the problem is formulated at the end of this chapter.
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Chapter 4 presents a CNN method for the explainable hierarchical classification of skin lesion. In
this chapter, we proposed hierarchical classification named as Hierarchical GoogleNet (H-
GoogleNet). The proposed architecture is illustrated in detail. Experimental setups and results are
also given in detail. The proposed architecture is also compared with existing literature.

Chapter 5 presents a method for structural level segmentation of skin lesion. UNet model is
applied with ResNet-50 as backbone architecture along a hybrid loss function. Existing
architectures of UNet and ResNet are discussed in detail. The proposed ResNet50-UNet
architecture is also discussed in detail. Experimental setup and obtained results are provided at the
end of chapter. The proposed model is evaluated on ISIC dataset. A comparison of the proposed
model is also given in this chapter.

Chapter 6 concludes the thesis with a discussion of contributions that are made for hierarchical
classification of skin lesions, by proposing H-GoogleNet model, and structural segmentation
model for skin lesions. Further enhancements are also discussed in this chapter. Future work is

also described at the end of the chapter.
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Chapter 2

2 Dermoscopy Image Analysis and Medical Diagnosis of Skin cancer

In this chapter a detailed description of skin image analysis and medical diagnosis of skin cancer
lesion is given in detail.

2.1 Skin Structure

Before moving toward the more detail of skin cancer and its dermoscopic image analysis, we first
throw some light on the structure of the normal skin, in detail, to have its clear understanding.
Skin is the main part of the body. It performs very important functions such as protecting us from
microbes (germs causing diseases), helps to normalize our body temperature and allows the
sensation to touch, heat and cold. From top to bottom, the skin has three layers; Epidermis, dermis,
subcutis [9] (see Figure 2.1). Epidermis is the uppermost layer of the skin. It is composed of
connective tissue. Epidermis prevents entry of substances and organisms into the body. It has some
more sub-layers in it, named as basal cell layer, squamous cell layer, stratum granulosum, stratum
lucidum and stratum corneum (see Figure 2.2). The basal cell layer of epidermis has three main
types of cells: keratinocytes, melanocytes, and Langerhans cells. Melanocytes cells produce a skin
pigment known as melanin. Melanin gives color to the skin such as brown, dark brown or tan etc.
Melanocytes cells protect the skin from dangerous UV sun rays by enhancing melanin’s
production. The second type of cells in Basal Cell layer is keratinocytes. It produces keratin. The
second layer of the skin is dermis. It is the supportive layer of the skin. It consists of hair follicles
and sweat glands. It also consists of collagens fibers, sensors, receptors, blood vessels and nerve
ends. Dermis is further parted into two layers: papillary region and reticular region. Dermis and
epidermis are tightly connected through basement membrane. The third layer of the skin is

subcutis. It is the fat layer immediately below the dermis layer.
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Figure 2.1: Normal skin structure [9]
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Figure 2.2: Normal skin main components [9]

2.2 Types of Skin Cancer Lesions

There are various types of skin lesions that can be categorized in a hierarchical way [34]. There
exists a hierarchical classification structure of skin cancer lesions [9][34] (see Figure 2.5 & Figure
2.4). At the first step, each lesion is divided according to its origin such as according to its type of
skin cells. In this step, the lesion is divided into melanocytic and non-melanocytic lesions.
Melanocytic lesion like melanoma, develops from melanocytes cells. Non-melanocytic lesions

develop from various types of skin cells like basal cells or squamous cells. After getting the origin
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of lesion, the next step is to classify the category of lesion such as whether itis benign or malignant.
Melanocytic benign lesions are non-cancerous in nature and are not harmful. On the other side,
melanocytic malignant lesions are cancerous, and they spread rapidly, hence are life threatening.
If the melanocytic lesion is benign, it is then classified into further types of lesions such as clark
nevus, spits nevus and blue nevus as shown in Figure 2.3. If the melanocytic lesion is malignant,
then it is classified as melanoma. After that, melanoma is further divided into its sub-types such
as superficial, lentigo, acral lentiginous, nodular, mucosal, desmoplastic, lentiginous etc. The
difference among all these lesions is made based on the presence or absence of some dermoscopic
structures or attributes in the lesion. For example, these structures may be pigment network,
nodular, white streaks, globular, dots and globules, cobblestone pattern, reticular pattern,
branched streaks, structureless areas, blotches, regression, blue-white veil, milia-like cysts,
comedo-like openings, fingerprint like structures, fissure ridges, leaf-like areas, blue-grey
globules etc. [35] (see Figure 2.5). All above lesions are divided based on these dermoscopic
structures present in them.

After that, the second major category of skin lesion is non-melanocytic lesions. Non-melanocytic
lesions are also segregated into benign and malignant. Benign lesions are further categorized as
vascular lesions, dermatofibroma, seborrheic keratosis, neurofibroma and actinic keratosis as
shown in Figure 2.3. Non-melanocytic malignant lesions are categorized as BCC and SCC. BCC
is the most frequent form of skin cancer. It develops very slowly so it is less dangerous as compared
to malignant melanoma. There are more sub-types of BCC such as nodular, superficial,
morphoeic, basosquamous and pigmented etc. Similarly, SCC can be further sub-divided as
adenoid, intraepidermal, lymphoepithelial, papillary, spindle cell and verrucous etc. (see Figure
2.3). There are some example images of various kinds of skin lesions and their structures [35] (see
Figure 2.4 & Figure 2.5). All this categorization is based on the structural information of skin
lesion. There can be similar structures present in different lesions such as they can be overlapped
or have same characteristics. This similarity makes it difficult to differentiate among various types
of skin lesions, especially; melanocytic from non-melanocytic lesions [36]. It is very challenging
to diagnose skin cancer type due to these similarities. This is because sometimes melanocytic
malignant melanoma impersonates the look of other skin lesions i.e. of non-melanocytic lesions

[36] creating difficulties for practitioner in accurate diagnosis of origin of lesion. That is why there

12



Chapter 2 Dermoscopy Image Analysis and Medical Diagnosis of Skin Cancer

is need to model an automated system that can accurately identify the origin of lesion, level of
malignancy, till diagnosis of its fine class. This will help the practitioner in accurate decision
making and to get rid of confusions that occur due to structure’s similarities among various lesions

during skin cancer analysis.
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Figure 2.3: Skin lesions hierarchical classification [9]
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Figure 2.4: Examples of various types of dermoscopic skin lesions.
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Figure 2.5: Examples of various dermoscopic structures present in different skin cancer types [35]

To deal with the above discussed issues, dermoscopy lets the visualization of attributes and
patterns that are not noticeable by naked eye, enabling dermatologists to make more accurate

assessments. Analyzing these structures plays a crucial role in the accurate classification of skin

cancer types.

14



Chapter 2 Dermoscopy Image Analysis and Medical Diagnosis of Skin Cancer

Here we will discuss the key dermoscopic structures commonly observed in skin cancer lesions

and their significance in clinical practice:

1)

2)

3)

Pigment Network: The pigment network is a fundamental dermoscopic structure observed in
skin cancer lesions [35]. It refers to the regular or irregular distribution of pigmented lines and
grids within the lesion. The evaluation of the pigment network can provide insights into the
organization and pattern of pigmented cells, which aids in distinguishing benign lesions from
malignant ones. Irregular or disrupted pigment network patterns are often indicative of
malignancy. It is a key feature in the diagnosis of melanoma. The analysis of the pigment
network involves evaluating its distribution, thickness, regularity, and overall arrangement.
Deviations from a regular, symmetrical pattern may indicate malignancy.

Globules: Globules are round or ovoid structures observed within the skin lesion [35]. They
can vary in size, color, and distribution. The analysis of globules helps in differentiating
between benign and malignant lesions. In benign lesions, globules are usually regular,
symmetric, and evenly distributed. Malignant lesions, on the other hand, may exhibit irregular,
asymmetrical, or clustered globules, which can be indicative of malignancy. Globules are
round or ovoid structures observed within the lesion. They can vary in size, color, and
distribution. Globules can be pigmented or non-pigmented and may provide valuable
information for differentiating melanoma from benign lesions. The analysis of globules
includes assessing their size, shape, color uniformity, and arrangement.

Streaks and Lines: Streaks and lines refer to linear structures observed within the lesion [35].
These structures can provide valuable diagnostic information. In benign lesions, streaks and
lines are often uniform, thin, and evenly distributed. In contrast, malignant lesions may exhibit
thick, irregular, and asymmetric streaks or lines, which can indicate malignancy. Additionally,
the presence of a radial streaking pattern, extending outward from the centre of the lesion, can
be indicative of invasive melanoma. Streaks are linear or irregular pigmented structures
observed within the lesion. They can be thin or thick and may have various colors, including
brown, black, or even blue gray. The presence of streaks can be associated with melanoma,
particularly if they are asymmetric, irregular, or demonstrate abrupt changes in color or

thickness.
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4) Negative Network: The negative network, also known as the hypopigmented or depigmented
network [35], appears as lighter or colorless lines or areas within the lesion. It represents the
absence of pigmentation in certain areas. The presence of a negative network can be suggestive
of certain types of melanoma or other non-melanocytic skin cancers.

5) Milia-like Cysts: Milia-like cysts are small, white, and yellowish cystic structures [35]
observed within the skin lesion. These structures resemble milia, which are tiny epidermal
cysts commonly seen in healthy skin. In the context of skin cancer, the presence of milia-like
cysts can be indicative of specific subtypes or serve as a diagnostic clue for differentiating
benign and malignant lesions.

2.3 Medical Diagnosis of Skin Lesion

In this section, we discuss the medical diagnosis of skin lesions by using skin lesion imaging

techniques, clinical diagnosis and by using automated procedures.

2.3.1 Skin Lesion Imaging Technique - Dermoscopy

Numerous image acquisition methods have been developed for the deep examination of skin

lesions. The most common technique used for lesion analysis and its regular follow up is clinical

imaging. These clinical images are attained by using digital cameras. Though, this common
method does not extract images with good resolution, resulting no deeper inspection of skin lesion
such as its structural level details. The deeper inspection of lesion allows to measure its growth

[37][38]. Other imaging techniques such as Computerize Tomography (CT), Positron Emission

Tomography (PET), Magnetic Resonance Imaging (MRI) are also used to analyze skin lesions,

but these approaches are not useful to diagnose the lesion at earlier (in-situ) stage. It is necessary

to diagnose any type of skin lesion at an in-situ stage. To achieve this goal, dermoscopy [10] or
microscopy is used to extract the deeper detail of skin lesion. Macroscopy is another device to
capture deeper details of skin lesions.

Dermoscopy [10] is a non-invasive imaging technique to capture the deep structure level detail of

skin lesion by going deeper into epidermis and dermis. It is also known as dermatoscopy. It was

first introduced in 1987. Dermoscopy can clearly visualize the morphological structures of skin
lesion that are not clearly observable by naked eye. To capture an image of skin lesion, first gel or
oil is applied on skin specific area to analyze the pigmented structures of lesion by using

dermatoscope, a clinical device to capture skin lesion image (see Figure 2.6). The gel or oil is
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applied to minimize the reflection of dermatoscope light and get the transparent epidermis and
dermis. By doing this, the underlying structures of skin lesion become more visible. These visible
structures are further utilized for the first step diagnosis (i.e., discriminate between melanocytic
and non-melanocytic lesions) and the second step diagnosis as well, such as benign and malignant.
Dermatoscope is used by the expert dermatologists and trained practitioners to examine the skin
lesion structures and patterns in detail. There are few examples of digitally acquired images of skin

lesions by dermoscopy (see Figure 2.7).
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Figure 2.6: Examples of dermatoscope.
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Figure 2.7: Examples of dermoscopic images of skin lesions.
2.4 Clinical Diagnosis of Skin Cancer
From last few decades, a lot of effort has been made in the clinical diagnosis of skin cancer such
as, melanoma, BCC, SCC by using some clinical manual techniques. These major techniques

include, pattern analysis technique [11], ABCD (4symmetry, Border, Color, Diameter) rule of
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dermoscopy for self-screening [12][13][14], 7-Point Checklist [12] [15][16], Menzies method
[17], CASH algorithm [18] etc. These methods are used by trained general practitioners for the
accurate diagnosis of melanoma, BCC, and other types of skin cancer, and to differentiate among
melanocytic and non-melanocytic lesion. These clinical techniques have given an acceptable
accuracy rate in skin cancer diagnosis but in expert hands, as every dermatologist is not enough
trained in use of these manual methods. The lack of trained practitioners to use manual clinical
methods is the main reason to meet the need of some automated systems such as CAD systems to
achieve better diagnosis and accurate second opinion. There is also a need to reduce the
dependency on practitioners or to train them enough so that they can diagnose the disease easily
without putting much effort.

Following are some major clinical diagnosis techniques that are used by dermatologists in routine:
2.4.1 Pattern Analysis

In dermoscopy, the lesion’s broad category or origin is identified first to determine whether the
lesion is melanocytic or non-melanocytic. Pattern analysis[11] method is preferably used by expert
dermatologists to diagnose melanocytic lesion and to differentiate among benign melanocytic
lesions and malignant melanoma by analyzing their morphological features within the lesion. This
method supposes that there are various patterns, also called global features, present in all types of
skin lesion. A definite pattern is described by one or more dermoscopic attributes (see Figure 2.5
in Section 2.2 ), covering some parts or the whole lesion. These morphological features and
dermoscopic structures may include some reticular patterns, globular patterns, cobblestone
patterns, starburst patterns, homogenous patterns, parallel pattern and other than that colors,
regularity or irregularity of the lesion boundary, pigmentation intensity and the surface of the
lesion [35]. The detail of these specific dermoscopic structures [11][34][35] is as follows:

1) Reticular Pattern:

This reticular pattern is described by pigment network present in various parts of the lesion. This
pattern is most commonly present in melanocytic lesions developed from melanocytes.

2) Parallel Pattern:

It is defined by pigmented lines. These lines are organized parallelly.

3) Homogenous Pattern:

These patterns appear as diffuse pigmentation that are typically brown, blue-grey, or grey black.
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4) Starburst Pattern:

These patterns are described by pigmented streaks that are present in lesions in radial arrangement.
These streaks are localized at the border of the lesion.

5) Globular Pattern

These patterns are present in the form of several oval structures. These oval structures are known
as dots and globules. They have different colors and sizes.

6) Cobblestone Pattern

These are alike globular patterns except in this, the globules are strictly combined.

Pattern analysis method evaluates the dermoscopic criteria qualitatively and exhibit the maximum
diagnostic accuracy as compared to other clinical methods such as ABCD rule [12][13], 7-Point
Checklist [16], Menzies [17] and CASH algorithm [18] when used by experienced dermatologists.
By using pattern analysis method, both melanocytic and non-melanocytic (first step diagnosis)
skin lesions can be recognized and diagnosed. The second step decision such as benign or
malignant also depends on various dermoscopic structures along its shapes that form a pattern.
Pattern analysis led to a precise decision achieved by dermatologists. Though, the valuation of the
local dermoscopic attributes and its pattern description is specific and lacks reproducibility. To
handle these issues, more constrained procedures have been developed. This is achieved using

Table 2.1, describing melanocytic algorithm [39].

Table 2.1: Melanocytic algorithm [39]

Step Dermoscopic Criteria Type of Lesion
I Streaks Melanocytic
Pigment Network
Homogenous Blue Pigmentation
Brown to black dots
I Milia-like cysts Seborrheic Keratosis
Comedo-like openings
1l Arborizing vessels Basal Cell Carcinoma

Leaf-like areas
Irregular grey-blue globules

v Red lacunas Vascular
Red bluish to red-black homogenous areas

v Central white patch surrounded by pigment | Dermatofibroma
network

VI None of the above criteria Melanocytic
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2.4.2 ABCD Rule

ABCD rule of dermoscopy [12][13][14] is an algorithm that evaluate four various types of features
such as Asymmetry (A), Border (B), Color (C) and Dermoscopic structure (D) over lesion (see
Figure 2.8). This method can classify the lesion into benign and malignant. It is a semi-quantitative
scoring system. There are some specific criteria based on which these ABCD features are scored
quantitatively. These criteria are given in Table 2.1. Scores are weighted depending on the values

given in Table 2.2. Total dermoscopy score (TDS) is calculated using equation (2.1).

TDS = Agepre X 1.5 4 Bygore X 0.4 + Cseore X 0.6 4 Dycore X 0.7 2.1)
Asymmetry Border Color Diameter
Benign
Malignant

Asymmetrical Uneven Edges More Shades More than 6mm

Figure 2.8: ABCD rule for malignant melanoma and benign nevi [12][13]

After that, the final diagnosis is based on the TDS value.

Table 2.2: ABCD rule of dermoscopy [12]

Criterion Description Score Weight

Asymmetry Axis is drawn to measures | 0-2 1.5
contour, colors, and structures.

Border Sudden or random ending of | 0-8 04
pigment pattern at the border.

Color Presence of 6 colors 1 — 6 (white, | 1-6 0.6
red, light brown, dark brown, blue
grey and black)

Dermoscopic Presence of network, streaks, dots, [ 1 -5 0.7

structure and globules.
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The detail of Table 2.2 is given as follows:

1) Asymmetry:

To calculate asymmetry, the lesion is segmented by two perpendicular axes. The asymmetry score
is computed depending on the shape, color sharing, and lesion structure on either side of axis.

2) Border:

The score of borders is calculated by examining the intensity of lesion border. For this, the lesion
is parted into eight segments. In each segment, an abrupt cut-off of pigment pattern at the boundary
of the lesion gets a score 1, while a steady, unclear cut-off gets a score 0. The maximum border
score is 8 and the minimum score is 0.

3) Color:

A broader color range of melanocytic lesions can be easily detected with the help of a
dermatoscope. In this, a total of six discriminant colors namely: black, blue-grey, light-brown, dark
brown, white, and red are counted. The maximum score is 6 if all colors are present and minimum
score is 0.

4) Dermoscopic Structures:

Various dermoscopic structures namely, pigment network, dots, streaks, globules, cobblestone are

present in skin lesions. The maximum and minimum score for D is 5 and 1 respectively.

2.4.3 3-Point Checklist

3-Point Checklist [40] is a manual clinical method used to distinguish malignant lesions
(melanoma or BCC, SCC) from benign pigmented lesion. This method was developed in 2004.
This method relies upon three specific criteria, namely, Asymmetry in structure, Atypical pigment
network and blue-white structures. A 3-point checklist is used for early detection of skin lesions.
This method allows non-experts not to miss the detection of melanoma. These three criteria are as
follows:

1) Asymmetry in Structure

Asymmetry of color and structure in one or two perpendicular axes.

2) Auypical Network

In this, irregular pigment network with thick lines is present.
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3) Blue-White Structure

In this, blue or white color is present on the lesion. A combination of blue-white veil and regression
structures may also be there.

The major purpose of the 3-Point Checklist method is to identify whether the examined lesion
should go for biopsy or not. In this method, the exceptional attributes of lesion are not assessed.
2,4.4 7-Point Checklist

7-Point Checklist [12][15][16] is another manual technique that is used by dermatologists for skin
cancer diagnosis. It is used for the dermoscopic difference between benign melanocytic lesions
and malignant melanoma. In this, seven different criteria are used for the diagnosis of skin lesion
type. These criteria are basically dermoscopic structures, separated into two classes namely: major

and minor criteria as shown in Table 2.3.
Table 2.3: 7-Point Checklist [16]

Local Features chore
Major Criteria
1 Atypical Vascular Pattern 2
2 Blue-White Veil 2
3 Atypical Pigment Network 2
Minor Criteria
1 Irregular dots or globules i
2 | Imregular streaks 1
3 Regression structures 1
4 | Iregular pigmentation 1

The major criteria contain atypical vascular pattern, blue-white veil, and atypical pigment network.
On the other side, minor criteria include irregular dots/globules, irregular streaks, regression
structures and irregular pigmentation. If anyone criterion is present in skin lesion, it will get a score
1 or 2 depending on the criteria, as shown in Table 2.3. After getting separate scores, they are
summed up to compute the entire score for the lesson. If the total score is greater than 3 the lesion
is diagnosed as malignant melanoma, otherwise benign.

2.4.5 Menzies Method

Menzies method [17] is another clinical technique used by dermatologists to discriminate the
dermoscopic features of malignant melanoma and benign melanocytic lesion. In this, two groups
of features are defined: one group for positive features and the second group for negative features.
Negative features are present in benign lesions and positive features are present in malignant

melanoma. Negative group of features include single color and symmetrical pattern, such as of
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color and structure, about any axis over the center of the lesion. On the other hand, group of
positive features include nine features: blue-white veil, multiple brown dots, pseudopods, radial
streaming, scar-like depigmentation, peripheral black dots/globules, several colors (5 to 6), various
blue/grey dots, and broad-end network. For melanocytic lesion to be identified as malignant
melanoma, at least one positive feature should be present in the lesion and no negative feature
should be there. In this method, 5 to 6 multiple colors include grey, red, tan, black, dark brown
and blue.

2.4.6 CASH Method

CASH [18] is one more clinical method for skin lesion diagnosis. This method is appropriate for
less skilled practitioners. It is a scoring system just like ABCD rule. CASH stands for Color,
Architecture, Symmetry and Homogeneity. 1t is particularly used for the difference between benign
melanocytic lesion and malignant melanoma. In this method, the colors include light brown, dark

brown, black, red, white, and blue.
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3 Literature Review

In this chapter, a thorough study of previous approaches for skin cancer segmentation and
classification is provided. Since a large amount of literature about skin cancer segmentation and
classification is available, this chapter will focus on the research that is closely linked to the work
presented in this thesis. This chapter provides a review of the existing methods such as Machine
Leaming and Deep Learning based skin cancer segmentation and classification techniques.
Section 3.1 covers existing Computer Aided Diagnostic (CAD) systems. Traditional skin cancer
segmentation techniques are reviewed in Section 3.2. In Section 3.3, CNN based skin cancer
segmentation and classification techniques are reviewed. Finally, existing techniques for
hierarchical based skin cancer classification and structural based skin lesion segmentation are
explored in Section 3.4. After an extensive review, research gaps are presented in Section 3.5 and
problems are formulated in Section 3.6.

Literature review is divided into four categories as follows:

3.1 Computer Aided Diagnostic (CAD) systems for skin cancer

3.2 Traditional skin cancer segmentation techniques.

3.3 CNN-based skin cancer segmentation and classification techniques.

3.4 Skin Cancer hierarchical classification and structural segmentation techniques.

3.1 Computer Aided Diagnosis (CAD) Systems for Skin Cancer

It is a great challenge to diagnose the skin cancer lesion at an earlier stage, using dermoscopy
images. Even using clinical methods, discussed in Chapter 2, such as ABCD rule [12][13], Pattern
Analysis [11], 3-Point Checklist [39], 7-Point Checklist [16], Menzies method [17] and CASH
algorithm [18], it is still not easy to discriminate melanocytic lesions from non-melanocytic lesions
and to further differentiate among their sub-types. This is because some lesions appear alike one
another and may also have overlapped structures in them. This challenge may cause an increase in
the number of unwanted or useless histological inspections. The lack of clinical experience of
some practitioners, when working with dermoscopic images, may also be the reason for incorrect

diagnosis of skin lesion. Moreover, many dermatologists may conflict in their analysis of skin
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lesions. This is because the valuation of the various dermoscopic standards is based on the
understanding of dermatologists.

All these factors encouraged the need of computer-aided systems for the accurate diagnosis and
assessment of skin cancer lesions. Computer Aided Diagnostic (CAD) systems are one of the
examples of that kind of system. CAD systems have various strengths and advantages that can be
very cooperative for experts and dermatologists. One of these advantages is that the diagnosis of
skin lesion is not dependent on the person who is using it. Another advantage is that this CAD
system can be applied for the follow-up of a particular lesion. The CAD system can be operated
by both skilled and non-skilled dermatologists, such as it works as a second judgment tool for
dermatologists.

In literature, there exist various CAD systems [19 - 25], [41] that have been proposed for early
detection and classification of skin lesions. These automated systems perform pre-defined phases
involving skin image acquisition, image pre-processing, skin lesion segmentation, feature
extraction, feature selection and finally the classification steps successfully. Following is given a
review of some of these CAD systems in detail for skin lesions. One major limitation of these
systems is that they can diagnose and differentiate only melanocytic benign and malignant
melanoma but not among any other type of lesion.

One of these kind of systems is designed by J. Lopez-Labraca et al [19]. They proposed a CAD
system founded on dermoscopic structures of melanoma to diagnose it. Skin lesion is segmented
into dermoscopic structures by applying the combination of Latent Topic Modelling (LTM) and
Kernel Logistic Regression (KLR). Soft segmentation maps are used to segment the skin lesion
instead of using the hard segmentation. They performed category-based segmentation using
supervised and unsupervised methods. They also have extracted structure-specific features along
with generic features. In this, for each individual structural pattern, an individual classifier is
constructed. To construct these individual classifiers or experts, they proposed a wide set of
clinical features that are used by dermatologists for skin lesion diagnosis. They have also designed
one more approach to choose those specific features that are more related to describe each of the
dermoscopic structures. At the end, decisions of all classifiers are fused together by means of

Bayesian method to provide the doctor useful information. However, this method only considered
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the structures of melanoma and did not consider the dermoscopic structures of any other type of
skin lesions.

Another CAD tool for the classification of melanocytic lesions into benign and malignant is
~ presented by S. Pathan [20]. She has developed a hair detection method that detects and removes
both light and dark hair to pre-process the image. The hair is removed by extracting the blue
channel of the RGB image. For boundary segmentation, fuzzy C-Mean clustering is used to
localize the lesions by choosing the number of clusters as 2. After boundary segmentation of
foreground image, an optimal feature set including color, shape and texture based on ABCD rule
was developed to extract color and shape features. For classification, Artificial Neural Network
(ANN) is used. Experiments were accomplished using PH2 dataset of skin lesions. The accuracy
of 82% was achieved by the proposed system along with sensitivity 85.71% and specificity
81.25%. This method also only focused on the classification of melanocytic lesion by considering
only benign nevus and malignant melanoma.

S. Jain et al [21] presented a CAD tool to analyse the size, texture and shape features for
segmentation and classification stage of skin lesion. This method was also only proposed for
melanoma detection by applying image processing techniques. The input image was first pre-
processed for contrast enhancement. To segment the image lesion, edge detection is used after
applying Otsu’s automated threshold. The segmented image is further used to extract features
including geometrical features (area, irregularity index, circularity index and greatest diameter)
and ABCD features too. After that, these features are passed to the classifier that classifies the skin
lesion into benign or malignant by comparing them with the pre-defined threshold.

One more similar method for automated segmentation and classification of skin lesions was
designed in [22]. Skin lesion images were enhanced by applying image enhancement techniques.
To filter the noise, present in skin lesion images, Gaussian smoothing filter was used of size 3x3.
After that, morphological operations such as erosion and dilation are applied for further image
enhancement. Region growing method was used for image segmentation, by determining initial
seed points. To characterize the lesion part, color histogram and texture features are used by the
authors. Two classifiers namely, Support Vector Machine (SVM) and k-Nearest Neighbor k-NN

for the classification purpose are used individually and their ensemble too. 46.71% F-measure
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score is obtained using SVM classifier and 34% F-measure score with k-NN classifier is obtained.
F-measure score of 61% was achieved by fusing SVM and k-NN together.

The enhancement of skin lesion image using sigmoidal function and then the segmentation of
melanoma and nevus is performed by combining morphological operations and thresholding [23].
The system involves three main steps namely, hair detection along with inpainting, contrast
enhancement and lesion area segmentation. The pixels containing hair information are enhanced
by Gabor wavelet-based directional filters. After that, these pixels are in-painted by proposed
neighbourhood-based region filling algorithm. Experiments were performed on the European
database of dermoscopic images. This system is also focused only on the boundary segmentation
of melanocytic melanoma and nevus lesion. There is no structural level detail segmentation of skin
lesion is performed. Their focus is on the hair enhancement and their removal and finally the lesion
boundary segmentation from the background.

Along with the classification of melanocytic lesions there is also intense need for non-melanocytic
lesions classification [24] while designing a CAD system. A computer aided system was designed
by R. Suganya [24] to classify melanocytic lesion from non-melanocytic lesion along with second
step decision to differentiate among benign nevus and melanoma (melanocytic) and malignant
BCC and benign SK (non-melanocytic). First, hair artifacts are removed by applying median filter.
For lesion boundary segmentation, K-mean clustering was used. After color and texture features
extraction, the two-step classification of lesion is performed by using SVM classifier. Experiments
are performed on Dermweb dataset of skin lesion. This method achieved 96.8%, 89.3% and 95.4%
of accuracy, specificity, and sensitivity respectively. However, this method lacks how structural
level detail of each type of lesion was extracted. The summary of all the above discussed CAD
systems is given in Table 3.1.

3.1.1 Commercial CAD System Devices

There are also some commercial CAD system devices [42 - 46] have also been developed and
practically installed in hospitals and dermatology centers to provide accurate second opinion to the
experts or dermatologists.

3.1.1.1 SolarScan
One of these CAD system devices is SolarScan [42] (see Figure 3.1), that is developed by Polar-

technics Ltd in Australia in 2004. This device can detect warning signs of skin cancer at an early
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stage. Unnecessary surgical procedures are reduced using this device. This device is in use in
medical centers in Australia, US, and Europe from several years. The developers of this device
claim that this device can determine melanoma even before it reveals its features. There is also an
image analysis software that is installed along with SolarScan device. First, SolarScan captures
the image of a patient’s skin spot. The image analysis software removes artifacts from skin lesion
images such as hair, bubbles, gel etc. and then analyzes the features of lesion such as shape, color,
and texture etc. After that, SolarScan compares these features with the images of melanoma and
non-melanoma in database and then finally return the results.

3.1.1.2 DermoGenius-Ultra

DermoGenius-Ultra [43] (see Figure 3.1), was developed by LINOS Photonics Inc. Germany, as
shown in Figure. It is an image capturing device with a 5 mega-pixel attached camera. This device
is easily moveable from one place to another. It has two image acquisition modes: live mode and
standard mode. Live mode is employed for immediate mole inspection without predefining a
localization typically done with an optical dermoscope. In standard mode, the lesion localization
is defined first and then the pictures are taken one after the other. The device stores all captured
images of one patient in a database.

3.1.1.3 DBDermo-MIPS

DBDermo-MIPS [44] (see Figure 3.1), was developed at the university of Siena in Italy. It is a
digital dermoscopy analyzer. This device does clinical examination of lesion in three major steps:
In step 1, the clinician captures the skin lesion area by using camera attached with DBDermo-
MIPS. A series of images is taken of one patient and then stored in a database. This device is also
used to acquire, frame, and analyze the digital images of skin lesions. It calculates various features
related to the geometry, color distribution and intemal pattern of the lesion.

3.1.1.4 Diagnosis and Neural Analysis of Skin cancer (DANAOS)

Diagnosis and Neural Analysis Of Skin cancer (DANAOS) expert system [45] (see Figure 3.1),
developed by Center of Neuroinformatic. This device performs image processing steps, feature
extraction and then pattern classification. This system can assist in the analysis of melanoma, non-
melanoma, vascular changes in lesion and before and afterwards documentation of skin treatment.
The device was developed for the computer-aided diagnosis of pigmented skin lesions using neural

networks.
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3.1.1.5 Melafind

Melafind [46] (see Figure 3.1), was developed by Electro-Optical Sciences Inc., Irvington etc. The
device is only used for the diagnosis of melanoma. It is not used for all akin lesions. It uses an
imaging system to capture images of skin lesions. It simply uses comparison of the captured image
with the images stored in database. It purely results in yes or no. It intends to provide additional
information on melanocytic lesions such as melanoma.

Though, there is still a great need to adopt more accurate computer-based algorithms in routine

diagnostic process.

THAC6! 68

- DANAOS Melafin
Figure 3.1: CAD system devices.
All these CAD systems have been developed to assist the practitioners or dermatologists for the
detection and diagnosis of skin cancer including melanoma, SCC, BCC etc. There has been a great
boost in interest in computer-aided diagnosis of skin cancer and its types. The aim of this increase

is to eliminate bias and ambiguity from the diagnostic procedure and offer a trustworthy second

Jjudgement to dermatologists.
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Table 3.1: Summary of CAD systems

Sr Reference | Technique/ Tool Dataset used Implementation | Evaluation Research findings

No. proposed tool performed

1 (19] 1. Dermoscopic EDRA MATLAB AUC System  provides

structure-based Interactive additional
CAD system for | Atlas of information to
melanoma Dermoscopy dermatologists
detection. 47}
2. Individual
classifier for each
individual
structural pattem.

2 [20} Hair detection and { PH2 MATLAB Accuracy, FCM clustering
removal, boundary sensitivity, gave better results
segmentation using specificity, for lesion’s
fuzzy C-Mean localization,
clustering, ANN Weighting exponent
based classification. gave better

segmentation.

3 21 CAD tool to analyse | PH2 MATLAB Masks Tool is useful for
the size, texture and rural areas where
shape features for experts may not be
segmentation  and available.

classification stage
of skin lesion

4 22} Developed method | Own  private | MATLAB Measure of | System performed
for Preprocessing, | data Overlap, Measure | well for
segmentation, and of under | segmentation  and
classification segmentation, classification.

Dice  similarity,
Precision, Recall,

F-Measure,
Accuracy

5 23] Hair removal and | European MATLAB TDR, FPR, ER System handles the
boundary database problem of
segmentation of unwanted artifacts.
melanoma and nevus Boundary

segmentation
performed well.

6 [24) Classification of | Dermweb MATLAB Sensitivity, The system
melanocytic and | dataset Specificity, distinguishes ~ well
non-melanocytic and Accuracy among various skin
further classification lesions using SVM
of benign and classifier.

malignant.

3.2 Traditional Skin Cancer Segmentation Techniques

The most useful and informative skin lesion features have their great impact in the classification
of skin lesions. These features are obtained by the accurate segmentation of skin lesion from its
surrounding tissue. Various approaches have been proposed in literature [48 - 55] for skin lesion

segmentation. These methods are based on traditional Machine Learning techniques. All these
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methods are limited to only boundary segmentation of skin lesions but not their structural
segmentation.

One of these segmentation methods is proposed by S. Garg and B. Jindal [48]. The method is
composed of pre-processing and segmentation steps. The proposed method used threshold and
morphological operations to reduce artifacts. A hybrid of K-Mean and firefly algorithm (FFA) is
used to perform segmentation of skin lesion. During segmentation, K-Mean identify the exact
lesion region. After that, FFA is applied to optimize the clustering and to get high accuracy. The
experiments are performed on ISIC 2017 [27] and PH2 dataset. The model achieved the accuracy
rate of 99.1% on ISIC dataset and 98.9% on PH2 dataset.

N. Durgarao et al. [49] proposed a technique for skin lesion segmentation based on three steps
including: segmentation, feature extraction, and classification. For segmentation they have used
fuzzy C-Mean (FCM) clustering and features are extracted by a hybrid of local vector pattern
(LVP) and local binary pattern (LBP) that are used as an input to fuzzy classifier. Their major
contribution is the optimization of member function in fuzzy classifier by introducing DOROA
algorithm.

A combination of CNN model, named as YOLO, and grabcut algorithm [50] was proposad by H.
M Unver et al. for skin leison segmentation. The proposed algorithm works in four steps: removal
of hairs on the lesion, location of lesion detection, lesion segmentation, and post processing of
lesion. The model was assessed on PH2 dataset and ISIC 2017 [27]. The model performed well on
ISIC dataset.

Another model [51] for skin lesion segmentation proposed by N. Fulgencio et al. was proposed
based on novel adaption of superpixels techniques. It gave suitable results on ISIC 2017 dataset.
They have also introduced a modified image registration approach to measure the progress of
features depicting the skin lesion, taking two images of the same lesion to capture different stages
of the same lesion.

A threefold method [52] for the detection and classification of skin lesion using segmentation and
feature selection methods was proposed by Talha ef al. They used three color spaces to separate
foreground image from background. They introduced a weighting criteria to choose the best

solution based on extensive feature analysis, using associated labels, and central distance. Further,
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an improved form of feature extraction and dimensionality reduction was introduced. The method
performs well and give better results as compared to existing techniques.

R. Kaur et al. introduced fifteen thresholding methods for the segmentation of Basal Cell
Carcinoma (BCC) [53] along with two error metrics: relative XOR error and lesion capture ratio.
Lesion segmentation is also performed by using geodesic active contour technique [54] to get
accurate contours of lesion by initializing them automatically. This strategy overcome the sticking
produced by the noise such as hair. The techniques perform well in the presence of various artifacts
and also in the presence of variation in structure, weak boundary strength, color, and structure. The
borders are recreated by following bordor smoothing, calculation of spectral difference
modification in otsu threshold and inlet removal.

Chun-yan yu et al [55] proposed an active contour model that is based on level set method. To get
image contour, it uses region information. They applied distance regularization so that the level
set deviation from signed distance function can be penalized. They have used synthetic and real
image data for the experiment purpose. The results shows the usefulness of the proposed model.

The summary of these skin lesion traditional segmentation techniques is given in Table 3.2.

Table 3.2: Traditionsl skin cancer segmentation techniques

Sr. Reference Method Dataset Results
No.
1] [48] hybrid of K-Mean and ISIC 2017, Accuracy =99.1% on ISIC dataset
firefly algorithm (FFA) PH2 and 98.9% on PH2 dataset.
2} [49] Fuzzy C-Mean for | PH2 Acc=087
segmentation. Features SE = 0.43, SP = 0.99, PR = 0.99,
extracted by LVP and LBP. FI-Score = 0.60
For classification, used
DOROA algorithm.
3] [50] YOLO and Grabcut ISIC2017, | PH2: Acc=94.4,IoU=90
PH2 ISIC 2017: Acc =96, IoU = 86
41 151] Image registration approach | {SIC 2017 IoU =076, Acc =095
5 [52] Threefold method: PH2, ISIC | PH2: Acc =92.54, ISIC 2016: Acc
introduced a weighting 2016 =91.53
criteria to choose the best
solution based on extended
feature analysis
6| [53] Fifteen thresholding Clinical Error rates calculated
methods dataset
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Sr. | Reference Method Dataset Results
No.
71 [54] Used geodesic active Clinical Median XOR border error = 6.7%
contour dataset
8] (S5) Active contour model based | Synthetic IoU=94.45%
on level set method. dataset

3.3 CNN based Skin Cancer Segmentation and Classification Techniques

Skin cancer classification involves Machine Learning as well as Deep Learning techniques
[29][47][55 - 69]. Deep Learning has become much more popular in the last few years with the
evolution of increasing computational power (GPU) and the availability of large image datasets.
They have made their own attractive place and almost replaced the traditional Machine Learning
techniques for the classification tasks. Now, Deep Leaming techniques have numerous
applications in the medical imaging especially in skin lesions or skin cancer classification tasks.
In this section, we review the application of standard CNN architectures for the classification of
skin lesion types such as how these pre-trained models have been utilized to improve the
classification of skin lesion types. In typical CAD systems, classification is the last step for skin
lesion diagnosis. To fulfill the task of skin lesion classification, several deep learning methods
have been proposed in literature [29][47] [55 - 69]. In the following, we have given a brief review
of the existing deep learning methods for skin lesions classification. The summary of these
techniques is given in Table 3.3.

One of the earliest work that used deep learning method for skin lesion classification was given by
Masood et al. [56]. They first applied the threshold-based algorithm to detect the skin lesions.
After that, the features were extracted by applying some machine learning techniques. Deep Belief
Networks (DBNs) and Support Vector Machine (SVM) are combined in the model to classify the
skin lesions using extracted features. A hybrid CNN ensemble method [57] was developed by
Mahbod et al. in literature. In this, for the classification of skin lesions, inter-architecture and intra-
architecture networks fusions were combined. Networks of different architectures were fine-tuned
multiple times by using their different settings. After that, from various sets of fine-tuned networks
the results were combined. By doing so, their proposed method got better results on the ISIC 2017
dataset for classification task. The advantage of this fusion method was that it does not need

general pre-processing, lesion area segmentation or any kind of additional training data. Fabio
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Perez et al [58] evaluated 9 CNN standard architectures for the classification of melanoma. All
these nine architectures were applied on five set of splits created on ISIC 2017 dataset. From this
work it was found that, ensemble of more than one or two CNN models could perform well as
compared to the individual one for the classification of melanoma. Four distinct CNN architectures
such as VGG 16, VGG 19, Inception V3 and MobileNet were applied with transfer learning using
dilated convolution by Ratul et al in [59] to classify malignant skin lesions. From these four
architectures, Inception V3 gave higher classification accuracy along with precision, recall and F-
1 score. They used HAM10000 skin cancer dataset for training, validation, and testing of the
architectures. Codella N et al [60] proposed a method for melanoma classification in dermoscopy
images by a combination of sparse coding, deep learning, and SVM. This method reduces the need
of labelled data. They have used ISIC dataset to evaluate the performance of proposed method.
The CNN was trained on natural photographs to get lesions feature descriptors, and then combined
with the representation of sparse coding. An ensemble of CNN models such as ResNext, SENet
and EfficientNet was used by Gessert ef al [61] by applying search strategy. They combine meta
data for example age, gender etc. using dense neural network. After that, their features are fused
together with the CNN. At the end, all these models were combined utilizing some ensembling
approach to get optimal models’ subset. Due to the limited availability of skin cancer datasets,
transfer learning approach adopted in various existing works for skin lesions classification task.
One of that kind of works was proposed by Liao [62]. They employed three pretrained networks
including VGG 16, VGG 19 and GoogleNet using transfer learning approach. These network
models trained on dermnet dataset. There is one more approach proposed by the same author Liao
et al in [63]. They employed pretrained AlexNet model using transfer learning approach for the
lesion targeted and disease targeted classification. For lesion targeted classification, they utilized
multi-label image classifier. Similarly, for the disease targeted classification, multi-class image
classifier was trained. Codella, N er al/ [64] combined deep residual networks, CNN, U-Net
architecture along with sparse coding and hand coded feature representation for melanoma
classification. A pretrained AlexNet architecture using transfer learning approach was also
employed by Hosny et al {65]. The authors have applied data augmentation on the dataset using
transformations, fine-tuned the architectural weights, and replaced classification layer with soft-

max layer. To assess the performance of AlexNet model, the authors have utilized three datasets
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including DermQuest, ISIC, and MED-NODE. Similarly, M.A. Kassem ef al. [30] also applied a
pretrained GoogleNet (Inception V1) by using transfer learning. ISIC 2019 dataset was used for
the model evaluation. Their proposed method can classify eight different classes of skin lesions.
For evaluation of the proposed model, sensitivity, accuracy, specificity, and precision are used as
performance measures. GoogleNet and AlexNet architectures using transfer learning have also
been used by various other authors [66]. Alqudah et al in [66] employed AlexNet and GoogleNet
architectures along with transfer learning and (Adaptive Momentum Learning Rate) ADAM as an
optimizer, for the skin lesions images classification. Their proposed model was tested on ISIC
dataset having three classes such as seborrheic keratosis, melanoma and benign. A pretrained
Inception V3 (GoogleNet) model was applied using transfer learning approach by Zhang et al [41]
for dermoscopic image classification of skin lesions into four classes. For model evaluation, they
used a private dataset collected from hospital. Their results showed that the model performed very
well on skin lesions diagnosis. Similarly, Inception V3 model was also used by De Vries T et al
[67] by fine-tuning it for skin lesions classification utilizing two distinct scales of resolution of
input images. These two scales are coarse scale and finer scale. In this, the coarse scale represents
the general shape and context of the skin lesion. On the other side at the finer scale, textural detail
and low-level properties of lesions are exposed that played their important role to distinguish
between skin lesion classes. To evaluate model performance, ISIC 2017 dataset was used. Akram
et al [68] introduced a deep learning framework to integrate deep features information in order to
get discriminant feature vector to differentiate among skin lesion classes. Entropy controlled
neighbourhood component analysis was used to choose discriminant features and dimensionality
reduction. The authors have used Inception-ResNet V2, DenseNet-201, and Inception V3 models
and their selected layers as classifiers. The proposed technique was assessed using four different
skin cancer datasets including ISBI 2017, ISIC MSK, ISIC UDA and PH2 datasets. There are also
some more applications of deep learning techniques exist in literature. One of these approach is
based on VGG-16 architecture for melanoma classification [69]. In this, the model was trained in
three diverse ways: First, the model was trained from scratch. Second, the transfer leaming
approach was applied to get features from VGG-16 model. At the last, transfer leaming and fine-
tuning both are applied on the network. The proposed model performed well on skin cancer

classification task.
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Table 3.3: Summary of CNN-based skin cancer classification techniques
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In literature, there have been proposed various deep learning-based skin lesion segmentation

methods. A method proposed in [70] optimize the initial contour using genetic algorithm without
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the edge detection for detection of the skin lesion boundary. To perform segmentation in
dermoscopic samples, a fully convolutional encoder-decoder model was optimized using
exponential neighbourhood grey wolf optimization algorithm [71]. The researcher proposed a
novel CNN-based architecture [72] using end-to-end atrous spatial pyramid pooling for
segmentation of the lesion.

One more system is proposed to segments skin lesions using Retina-DeepLab, graph-based
techniques, and Mask R-CNN [73]. A dense encoder-decoder-based framework is proposed in
which the combination of ResNet and DenseNet is utilized for segmentation improvement.
Further, ASPP is employed to get multiscale contextual information and skip connections are used
to recover the information [74]. An automated lesion segmentation using an adaptive dual attention
component with three characteristics is proposed in [75]. Its first property is two global context
modelling schemes that are integrated with ADAM. The second property is to support the multi-
scale fusion for good segmentation. The third useful property is to use spatial information weighted
technique to lower redundancies [75].

One more effective approach [76] based on enhanced fully convolutional network (iFCN)
segments the skin lesion without pre-processing or post-processing the skin lesion image. It
contributes to the identification of the centre location of the lesion and clear the details on the
edges by eliminating the unwanted effects [76]. Another technique is proposed that automatically
segments the skin lesion and introduces a novel segmentation approach named FC-DPN made with
the combination of a fully convolutional and dual path network [77]. In literature, an attentive
border-aware system is proposed [78] for segmentation of multi-scale lesions through adversarial
schooling. It consist of various sections, including ResNet34 as the encoding, and decoder, skip
connection based on Scale Att-ASPP and PPM at the peak of the last convolutional layer in the
encoding path [78]. The Mask R-CNN-based technique was proposed in [79] for skin lesion
segmentation. This technique consists of two parts, creating the bounding boxes of candidate
object with RPN and Fast R-CNN classifier and a branch of binary mask prediction [80]. The
authors in [81] proposed a novel method of lesion segmentation by proposing the fusion of
YOLOvV3 and the GrabCut algorithm [81]. Another lesion segmentation approach such as encoder-
decoder model is proposed based on Pyramid Scene Parsing Network. It makes use of pyramid

pooling blocks, and a skip connection which can look for lost spatial details and accumulate the
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global context [82]. A combination of DeepLabv3+ and Mask R-CNN was proposed to enhance
the performance of segmentation model to locate the skin lesion accurately [83]. In literature, the
authors in [84] also described the relevancy of deep learning models by employing a pre-trained
VGG 16 model as an encoder and combined it with DeeplabV3, Seg- Net decoder, and TernausNet
to perform the segmentation of skin lesion [84].

A deep learning technique to improve the major task of skin lesion segmentation is applied by
using 46 layered U-net model to get a good lesion segmentation performance [85]. An approach
based on dense deconvolutional framework was proposed to deal with the challenges of different
sizes and the appearance of skin lesions [86]. In this, the deconvolutional layers are utilized to
unchanged the dimension of input/output. The chained residual pooling extracts the contextual
information and then fuses multi-level features. To improve the prediction masks and reduce the
auxiliary loss, a hierarchical supervision is added [86].

In Table 3.4, a summary of the segmentation models, as discussed above, is provided. It consists
of models, datasets, and the result of the experiment based on accuracy and Jaccard.

3.4 Skin Cancer Hierarchical Classification and Structural Segmentation Techniques

The method for hierarchical classification using deep leaming technique is proposed in the
Hierarchical Deep CNN (HD-CNN) [87]. In this, Deep Neural Network (DNN) is trained as an n-
way classifiers, by assuming that classes have flat relations to each other. Although, few of the
classes are much confusing as compared to other classes. For example, it is very easy to
differentiate apple from bus as compared to apple from orange. It first uses CNN to distinguish

easily distinguishable classes. After that, it separated the fine classes.

Table 3.4: CNN based skin cancer segmentation techniques.

Reference Year Methods Datasets Results
[70] 2021 GA, Initial contour optimization, and ISIC 2016 0.83 JACC
Dull razor,
[71] 2022 EN-GWO, FCEDN ISIC 2016 0.96 JACC
17 0.87 JACC
[72] 2021 Downsampling, augmentation, Atrous ISIC 2016 09 JACC
dilation CNN 17 082 JACC
18 0.89 JACC
[73] 2021 R-CNN, Retina-DeepLab, ISBI 2017 094 JACC
graph-related approach PH2 0.90 ACC
DermQuest 099 ACC
[74] 2021 Data augmentation, ISIC 2018 0.97 ACC
encoder-decoder framework
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Reference Year | Methods Datasets Results
[75] 2020 Bicubic interpolation, Adaptive dual ISBI1 2017 0.96 ACC
attention Module, data ISIC 2018 0.95 ACC
augmentation
[76}) 2020 | IFCN PH2 097 ACC
ISBI 2017 0.95 ACC
[77] 2020 | Augmentation, FC-DPN ISB12017 080JACC
PH2 0.84 JACC
[78] 2020 | augmentation, PPM, GAN, ResNet34, ISBI 2016 0.96 ACC
Scale-Att-ASPP ISB12017 0.93 ACC
PH2 0.11 DV
[80] 2020 R-CNN ISIC 0.91 recall
[81] 2019 morphological operations, PH2 0.93ACC
YOLO, Dull razor, GrabCut ISB12017 0.93 ACC
[82] 2019 | encoder-decoder model with ISIC 2018 0.84 JACC
multi-resolution skip connections
[83] 2019 | DeeplabV3+, and Mask R-CNN, ISIC 2017 0.79 JACC
Morphological operations. PH2 0.84 JACC
[84] 2019 | Data augmentation, DeeplabV3, ISIC 2018 0.88 JACC
SegNet, VGG 16 encoder
[85]) 2019 Lunear filter, U-Net 46 layered, U-Net ISIC 2018 0.93 JACC
32 layered
[86] 2018 Dense CNN ISBI 2016 0.96 ACC
ISBI 2017 0.94 ACC

Component-wise pretraining is performed in it. After that, global fine-tuning is performed along
multinomial logistic loss regularized by coarse category consistency. The extended version [88]
of HD-CNN creates three different HD-CNN models. Different combinations of layers are used in
these three HD-CNN to compare their performance. This model has the hierarchical structure in
CNN achieving desirable results. Firstly, the model pays attention to classifying the coarse
categories and then focuses on categorizing the fine classes falling in the same coarse categories.
The training complexity of the model was not increased to implement this model. Two training
steps are involved in it including pre-training of coarse and fine categories and then fine-tuning of
the model. This model has some limitations such as it cannot perform multiple hierarchy levels.
This limitation leads to the development of Branch-CNN (B-CNN) [89]. Its concept is based on
the fact that the initial layers in CNN learn the low-level features of an image and last (higher)
layers learn high-level features. This B-CNN architecture produces various predictions such as
from origin level to fine level, which correspond to the hierarchical structure of the class. In this,
the authors have proposed Branch Training Strategy (BTS) for B-CNN training. This strategy is
helpful to reduce the loss by adjusting parameters at the output layers. By following the proposed

42



Chapter 3 Literature Review

structure of the model and training strategy, it will first learn at coarse level and then to fine level
features along layer’s blocks. In B-CNN, the errors are bounded to sub-category, either of first
level, second level, or the fine level classes. The method hierarchical CNN (H-CNN) [90] is
proposed in literature for the fashion image data classification. The H-CNN structure is applied on
VGG-16 and VGG-19 both. This model produces hierarchical level detail of input image by
creating the model in a way so that it can produce labels sequentially from low level to higher
level.

There are two methods [28][29] exist in literature for explainable classification of skin lesions.
These methods solve the problem for two levels of hierarchical classification. They have used
encoders such as DenseNet-161, VGG-16, and ResNet-50 separately with decoder LSTM to
perform two level classification. They have not dealt with the problem of class imbalance present
in ISIC dataset. They have used ISIC 2017 and ISIC 2018 dataset having two classes and seven
classes in them respectively. Further, they have not shown the results in the form of evaluation
measures such as sensitivity, precision, specificity, and F1-score for the hierarchical level-1 and
level-2 classification [28][29]. The resuits are reported only for fine-level classification. For
hierarchy, they have reported the results by using gradient class activation maps (grad-CAMs).
One more method is introduced by Benyahia et al. [91] for hierarchical classification of skin lesion
using CNN models. In this method, they have used five independent CNN models arranged in a
hierarchical way. Each CNN performs individually to decide a specific type of skin lesion.
Experiments are performed on ISIC 2019 dataset to assess the function of their suggested
algorithm.

It is to honestly state that there does not exist any further method in literature for hierarchical
classification of skin cancer lesions. The above discussed techniques [87 - 90] have not been used
for skin cancer datasets. There is a great need to do explainable classification of skin lesions to

make the system self-explainable. The summary of these techniques is given in Table 3.5.

Table 3.5: Summary of existing hierarchical classification techniques

Sr. No. | Reference Methods Datasets Results
1 87} HD-CNN CIFAR100, Top-1 error: 2.65%, 3.1%,
ImageNet
2 [88] Extended version of HD- | CIFARI100, Top-1 error: 1.1%
CNN ImageNet
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Sr. No. | Reference Methods Datasets Results
3 [89] Branch (B-CNN) MNIST, CIFARIO, MNIST: 99.4%
CIFAR 100 CIFARI10: 84.4%
CIFAR100: 64.42%
4 {90] Hierarchical (HCNN) MNIST image dataset | VGG-16:93.5
using VGG-16, VGG-19 VGG19:93.3
5 [28] DenseNet151, ResNet- ISIC 2017, ISIC 2018 | 2017 SE=71.9, SP=86.5,
inception, Attention AUC=879
module, LSTM 2018: SE=78, SP=97,
AUC=80.2
6 [29} VGG16, DenseNet161, ISIC 2018 SE=69.0, SP=96.8,
ResNet50, Attention AUC=95.2
module, LSTM
7 91} Hierarchy of five ISIC 2019 ResNet50: Acc=77.6
independent CNN models SE=76.6,SP=958,
(using DenseNet201, PR =66.3
ResNet50 ) DenseNet201, Acc =794,
SE=76.3, SP=95.8, 69.1

As came under discussion in Section 3.2 and 3.3 boundary level segmentation of skin lesions has
been explored extensively, nevertheless the literature for the structural segmentation of skin lesions
is comparatively limited. Nguyen D et al [92] suggested TATL a novel transfer learning approach
for skin detecting traits and through extensive experiments conducted on the ISIC 2018 and ISIC
2017 datasets, after which the effectiveness of TATL was validated. It is noteworthy that their
suggested model overtook the prevailing methods while applying merely 1/30" of parameters
compared to the ISIC 2018 competition champion. The TATL approach came up with remarkable
improvements in diagnosing methods of skin lesion, already pre-trained on ImageNet making it
specifically efficient for structures with limited training samples. TATL (Task Agnostic Transfer
Learning) is stimulated by the dermatologists’ behavior in the skincare perspectives, employing
an attribute-agnostic segmenter for detection of skin lesion regions. The gained intelligence is then
transferred to the classifiers qualified for specific attribute detection for enhancement of the
diagnostic process. The approach of attribute-agnostic segmenter of TATL by exclusively
concentrating on the identification of skin attribute regions allows it to collect abundant data from
all structures, facilitating data transfer among various features and mitigating the issue of limited

training data existing for rare attributes.
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The other approach suggested by Kadir M. et al [93] for structural segmentation of skin lesions
that involves fine-tuning CNN provides user feedback on two grounds simultaneously: the
classification of lesion and visual explanation which accompanies the classification. In their
research they introduced a new CNN architecture that integrates the Grad-CAM technique which
provides visual description of the models’ results during the process. In their approach they
examined the way of response of CNN's to this dual feed mechanism and found that this method
brought about improvement both in interpretability and accuracy of the model, hence providing
better understanding of the decision-making process of the network.

By using feedback of the user, the authors came up with the finding that fine-tuning their model
based on both classification and visual description heads to ameliorate visual explanations without
compromising accuracy of classification. Such an advancement has the potential to enhance the
user confidence in CNN-based lesion classifiers, as it enables the user to better understand and
interpretation of the model’s decision through the provided visual explanations.

In Task 2 of the ISIC 2018 Challenge, Nguyen D et al [94], introduced another innovative approach
for automated prediction of dermoscopic structures. This approach brings in use the Attention U-
Net model and multi-scale images as input. For enhancement of the model’ performance, the
authors have implemented a transfer learning strategy by undertaking the adjustment of the weights
of a pre-trained network utilized for segmentation to train the deep neural network for attributes’
extraction. Their suggested algorithm resulted in better performance than that of LeHealth [95]
and NMN [101].

In the series of developments of attribute level segmentation algorithms, Jahanifar M et al [96]
proposed a segmentation model which by using convolutional neutral networks (CNNs) integrated
transfer learning to segment lesions and their structures. The model dealt with an architecture of
encoder-decoder supporting different pre-trained models in the encoding process, hence created
projected maps by blending wide-scale information in decoding process via pyramid pooling
approach. To resolve the issue of limited training data and to increase the model’ generalization, a
complete package of innovative domain-centered augmentation techniques was introduced. These
algorithms identify the real differences surfaced in dermoscopy images. The mentioned algorithms
enjoyed top of the list position on the leaderboard for ISIC 2018 attribute detection task. Another

significant deep learning technique named as the superpixel attention network (SANet) was
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introduced [97] in this domain in which the input images are classified into small sections, then
reordered by applying the random shuffle mechanism (RSM) and finally, the SANet is employed
to collect discrete features and recreate the input images. The given model is composed of two
different units called as superpixel average pooling module and superpixel attention module in
such a way that the first one employed to restructure the issue of superpixel classification as a
problem of superpixel segmentation.

The first one is employed to reframe the issue of superpixel classification to make it as superpixel
segmentation problem. To get discriminative superpixel regions and feature channels, the
superpixel attention module (SAM) is used. The authors developed global balancing loss as a loss
function to resolve the issue of class imbalance in ISIC 2018 Task 2 dataset. their method shows
better performance on the said dataset.

Additionally, a new technique [98] was suggested by utilizing collection of deep learning models
for segmentation of skin lesion attributes. The researchers [99] developed a complete solution for
detection of dermoscopic attributes by using the ISIC competition dataset. They discovered the
ability to enhance performance by integrating the descriptions/labels of different modalities to be
segmentation masks. To do so, a suggestion was presented regarding the leveraging of the task of
segmentation to be conducive and the sharing of information between the two tasks. The task was
accomplished by training a Y-Net neutral network algorithm which proved helpful in facilitating
wight sharing between segmentation and classification. Moreover, many techniques were
employed for combination of the training of Y-Net applying labels of segmentation and
classification.

In Kawahara J et al. [100] approach, the classification of clinical dermoscopic structures within
the super-pixels is performed by dealing it as a segmentation problem. They applied an extensive
convolutional neural network especially framed to detect dermoscopic structures in dermoscopy
images. The design of their neural network was integrated maps of interceded features derived
from different intermediate layers of the network. Fixing the problem of the imbalanced labels,
they introduce a negative multilabel Dice-F1 score as a loss function, made for estimating and
minimizing the score for each label throughout the minibatch.

Koohbanani N et al. [101] suggested an architecture to embody transfer learning into skin cancer

lesions’ segmentation and their attributes by applying CNNs. This structure draws insight from the
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well-known and worldly recognized UNet architecture. Different pre-trained networks are
leveraged in the encoding process, while pyramid pooling process is employed in decoding path
to collect multi-scale knowledge and project the prediction map. To resolve the issue of inadequate
availability of training data and boost the generalization of their model, various innovative
augmentation techniques were applied while training the network. To deal with the challenges that
appeared in the training phase the authors framed a loss function.

Nunnari F et al. [102] studied to examine the relationship between the graphic characteristics and
regions documented by CNNs cultured for classification. By conducting tryouts of two varying
neural network architectures with changing depth and resolution of the final convolutional layer,
they measured the efficacy of thresholded Grad-CAM saliency maps in identifying graphical
features related to skin cancer. Gonzalez Ivan [103] incorporated the skills of dermatologists into
the commonly used structure of CNNs. Their technique focuses on framing multiple networks that
includes recognition of lesion area, and segmentation of lesions into attribute structures. Moreover,
the author has established novel blocks of CNNs to seamlessly link this data into the administering
of diagnosis.

Another multi-task U-Net model was proposed in [104] for auto-detection of attributes of
melanoma lesion. One of the two tasks it is designed for is classification for determination of the
existence of lesion attributes, and the other is segmentation for identification and demarcation of
attributes within the images. Using this multi-task model, the Jaccard index score gained was 0.43
on the dataset of the ISIC 2018 task 2, and the method got st position in last leaderboard of ISIC
2018. Another approach proposed by Labraca J et al. [105] form improvement of diagnostic
procedure for doctors. The approach supports soft segmentation of based on dermoscopic structure
to raise a combination of classifiers specific to different dermoscopic structures in such a way that
each classifier is focused on differentiating between benign lesions and melanomas grounded on a
specific dermoscopic structure. Then by applying Bayesian method the results of all the individual
classifiers are combined which not only extends the ultimate diagnosis but also provides
supplementary knowledge to the doctor. The experts of skin lesions’ specific attributes give their
opinions and talk about their doubts. The model combined these opinions of experts, and their
doubts related to diagnosis to further improve the diagnosis process. The summary of all these

discussed techniques is elaborated in Table 3.6.
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To summarize the series of developments in the structure segmentation of skin lesions in the light
of the literature studied, it can be concluded that the available literature does not meet satisfaction
by virtue of many unresolved challenges and issues. These challenges include insufficient
annotated data, imbalanced datasets and presence of complicated structures exhibiting diverse
appearances within each lesion.

To tackle the given challenges, several previous techniques have relied upon standard deep
learning techniques and transfer learning algorithms which showed efficacy in alleviating data
shortage problems. Still there are some explorable techniques like one-shot learning and zero-shot

learning, which are not extensively accessed for structure segmentation in skin lesions.

Table 3.6: Summary of attribute level segmentation techniques for skin lesions

Sr. No. | Reference Methods Datasets Results
1 [92] Task Agnostic Transfer Learning | ISIC 2018 Mean IoU (U-Shape with b0-EfficientNet)
(TATL) using U-Shape with b0- Task 2 Pigment network: 0.565
EfficientNet L-Shape with b0- Globules: 0373
EfficientNet Milia: 0.157
Negative Network: 0.268
Streaks: 0.243
Mean IoU (L-Shape with b0-EfficientNet)
Pigment network: 0.562
Globules: 0.356
Milia: 0.168
Negative Network: 0292
Streaks: 0.252
2 93] User feedback based CNN model ISIC 2018 loU=0.13
Task 2
3 {94} Attention-UNet model using ISIC 2018 Mean IoU
. Pigment network: 0.535
transfer learning Task 2 Globules: 0312
Milia: 0.162
Negative Network: 0 187
Streaks: 0.197
4 196] Transfer leaming based UNet ISIC 2018 | Mean loU
; . . Pigment network: 0.563
model with multi-scale convolution | Task 2 Globules: 0341
(MSC) block, pyramid pooling Milia: 0.171
aradi Negative Network: 0 228
paradigm Streaks: 0.156
5 {97} Super pixel attention network ISIC 2018 | Mean loU
including (superpixel average Task 2 21%?3& tsfxgt\év:gk: 0576
pooling and super pixel attention Milia: 0251
module) Negative Network: 0 286
Streaks: 0.248
6 98] Ensemble of deep learning models ISIC 2018 | Not reported
Task 2
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Sr. No. | Reference Methods Datasets Results
7 99} Leveraged the task of segmentation | ISIC 2018 | F1-Score: 0.502
and enabled sharing of knowledge | Task 2
between two tasks using Y-Net
8 [101] UNet with pyramid pooling ISIC 2018 | Mean IoU
. Pigment network: 0.544
paradigm Task 2 Globules: 0252
Milia: 0.165
Negative Network: 0.285
Streaks; 0.123
9 [102] CNNs and Grad-CAMs ISIC 2018 | IoU: 0.143
Task 2
10 [103] Multiple CNNs with novel blocks ISIC 2017 Not reported
11 [104) Multi-task UNet model ISIC 2018 | Mean [oU: 0 433
Task 2

3.5 Existing Research Limitations

In this chapter, the existing techniques for skin cancer segmentation and classification are
discussed in detail. Existing methods have shown promising results in various skin cancer
segmentation and classification tasks. However, there are several open issues and problems that
need to be solved.

In existing literature, there is less attention on inherent hierarchical structure of skin lesion [47][55
- 68]. There is a lack of self-explainable CNN models in existing literature. Much more focus is
given on binary classification and fine level classification. Skin lesions are divided into various
types. These divisions are based on their origin, degree of malignancy and final diagnosis type.
Existing research has paid less attention to structural or attribute level segmentation of skin
lesion[70 - 86]. Mostly work is done on the segmentation of boundaries of skin lesion but there is
lack of work on the identification or localization of structures or features present in skin lesions.
Existing methods for skin lesion traditional segmentation and classification have shown promising
results in the presence of class imbalance problems, exist in skin lesion dataset. These techniques
handled class imbalance issues very well. However, these class imbalance handling techniques are
giving unpleasant results when working in the scenario of structural segmentation of skin lesions.
The focus of this research is to propose self-explainable CNN based diagnostic model that can
embed inherent hierarchical structure of skin lesion in it to self-explain its taxonomy. Besides, we
have also focused on interpreting the structural segmentation of skin lesion in the presence of

imbalanced dataset.
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3.6 Problem Formulation
1) Hierarchical Classification: Let D(X,Y) be a labeled skin image dataset where X =
{x1, %5, X3 ....... X} is a dataset containing n samples, and Y = {y;, ¥, ¥3, ... .... ¥ip } contains
label information of corresponding sample in X. A sample image x; is represented by
[H x W x Ch] where H is height, W is width, and Ch is 3-channel RGB. From each class
J.wherej = 0,12, ..... 6, aspecific ratio is selected as train set, validation set, and test set. Let
Xtrain, Xvalig,and X;esr  represents  training, validation, and test sets. Let
HL;,,HL;,, and HL;5 represents the hierarchical labels of skin lesion classes at level-1, level-
2, and level-3 respectively, where HL;; = {melanocytic, nonmelanocytic}, and
HL,, = {benign, malignant, nbenign, nmalignant}
HL,3 = {nevus, melanoma, vascular, dermatofibroma, benign keratosis,
actinic keratosis, basal cell, squamous call}. Let the hierarchical labels mapping is as
HLyj3 » HLj; ={0:0,1:1,2:2,3: 2,4:2,5:2,6:3,7: 3}
HL;; - HLyy = {0:0,1: 0,2: 1,3: 1}. After that, the objective is to find the hierarchical labels or
accurate taxonomy of the lesion such as
melanocytic - benign - nevus, and
nonmelanocytic - nmalignant - squamous cell, where — represents the relationship
between the origin of the lesion, degree of malignancy, until a differential diagnosis is reached.
The problem is broken into the following parts:

Let the function for feature extraction of individual class be denoted by W and defined as

(Ca

.m C
= ‘P[x.’ ] . Here, ¥ represent the feature extraction model i.e., H-
]:1 =

bi=iljog

GoogleNet. For the recognition of origin, degree, and fine-level class, a classification function

. . 1 C j m
g(.) is applied on extracted features as g: [{Oi’ } ] - [{l{ }i= 1]. It returns a discrete value

m
=1 j=1
{ll.j }Zl consist of individual class labels of origin, degree, and fine-level class predicted by g(.).

A sequence of predicted taxonomic class labels is generated to see the predicted explainability
of the model.

2) Attribute Segmentation: Let D(X,Y) be a labeled skin image segmentation dataset where

X = {x1,X3, X3 ... ... X, } is a dataset containing n samples, and Y = {y,,y,, y3, ¥4, y5} contains

label information of corresponding sample in X. Each image in dataset has five labeled masks
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against it for the presence or absence of five attributes (represented by masks) in an image. A
sample image x; is represented by [H X W x Ch] where H is height, W is width, and Ch is 3-
channel RGB. Each attribute is taken as a class. So, there are five labeled classes i.e., pigment,
negative, globules, streaks, and milia in dataset. Each class has several samples in it. The label
of each class is given by mask. Each mask has the foreground as white pixels and background

as black pixels. The segmentation will be performed on this mask of the image.
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Chapter 4

4 Explainable H-GoogleNet Model for Skin Cancer Hierarchical

Classification
In this chapter a detailed description of proposed hierarchical deep learning-based model is
provided.
4.1 Introduction
Classification of skin cancer lesions has always been a challenging and difficult step due to the
presence of various dermoscopic structures as well as various categories of skin lesions.
Particularly, the hierarchical levels of skin cancer types are challenging for clinical
practitioners when they need to identify types and sub-types of the lesions. Numerous skin
cancer classical classification techniques have been proposed in existing works. Literature in
Chapter 3 revealed that traditional classification techniques cannot handle the challenges of
hierarchical levels classification of skin lesions.
In this chapter, an explainable hierarchical H-GoogleNet model has been proposed for
hierarchical level classification of skin lesions (see Figure 4.4). Three hierarchical levels of
skin cancer types are classified using this model. Three more inception blocks are added before
level-1 classification. Further, two modified auxiliary classifiers are added at two levels to get
two outputs from a single model at level 1 and level 2. The model is trained using training data
from ISIC 2018 dataset. After that, the experiments are performed on test dataset and the results
of proposed model are also compared with the existing methodologies.
4.2 Motivation
This chapter presents the hierarchical H-GoogleNet classification model for classification of
skin lesion at three levels. It is proposed to represent the multi levels of classification by adding
multiple layers at two different levels to get three outputs from a single model. This proposed
model, for three levels skin lesion classification, is different from explainable skin lesion
diagnosis using taxonomies [29]. They used LSTM along with various CNN models (VGG-
16, DenseNet-161, ResNet-50). CNN based models are used for feature extraction and LSTM
used for sequential diagnosis of skin lesion using those features. This method is limited to two
levels of classification. Further, there are no results shown for two-level classification using
evaluation measures such as sensitivity, specificity, precision, AUC-ROC. The results are

shown only for the fine (last) level classification that do not give support for hierarchical level
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classification. Moreover, they have used multiple models for this purpose. On the other side,
the strategy to introduce multiple levels of classification within a single model has been proved
to show better results for hierarchical classification [90]. This thesis proposed to use GoogleNet
model to embed three levels of classification in it. The three inception blocks and more layers
are added to perform hierarchical level classification. The proposed model is not affected by
any kind of noise present in the image.

4.3 The Architecture of CNN

CNN is a basic model in deep learning. In this, every layer is interconnected to produce
feedback. Its architecture has several layers to extract both local and global information from
every image. A traditional CNN architecture has various layers including convolution,
activation, pooling, fully connected, and softmax layer. Batch normalization and dropout layers
are also there to resolve the issue of overfitting and generalization. The CNN architecture takes
an input image in the input layer (first layer). This layer takes input as H x W x ch where ch
represents the number of channels. The convolutional layer is the second layer in which the
features are extracted from the given input image by using the operation of convolution using

dot product. This layer is calculated as given in equation (4.1).
Ory = Xizo Lj=o Wi,jZij @.1)

Where O ,, represents the output of the convolutional layer and w; ; represents the weights and
z; ; denotes the input pixel. This layer outputs many positive and negative values of pixels. To
fix the handling of negative values, an activation layer is added to the network. This layer may
use any activation functions including sigmoid, ReLU, and tanh. After convolution layer, there
is a pooling layer to reduce the spatial dimension of the image. The size of the filter and its
stride are the two key parameters in a pooling layer. Mathematically, the output of pooling
layer is calculated as given in equation (4.2).

I _ (’input_size'Kkernels,-_ze+2Ppadding)
output_size —

+1 4.2)

Sstride

Where Loyepue size is the size (width and height) of the output image, Kyerner,,, is the size of

the filter, and Ss¢-i4, is the number of strides. In the fully connected FC layer, the processed

features are transformed to a 1-dimensional array. This layer extracts features for classification.
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4.4 Techniques used in Proposed Model

The following techniques are used in the proposed H-GoogleNet model.

44.1 GoogleNet Architecture '

A simple way of producing powerful deep learning models is to add more layers and neurons
to make it deep. The deeper the model the more powerful the architecture, but it has its own
problems. In VGG-19 and various other CNN models, deeper layers demand more resources
and are prone to overfitting in the case of hierarchical level classification. The architecture of
GoogleNet [106] is different in a way that it is composed of ‘sparsely connected neural
network’ instead of ‘fully connected neural network’. The sparsely connected neural network
architecture is different in a way it works efficiently in limited computational resources as the
network width and depth increases. The architecture of GoogleNet is described in Table 4.1.

The architecture of inception block in GoogleNet model is shown in Figure 4.1.
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Figure 4.1: Architecture of inception block in GoogleNet model [106]

Table 4.1: Details of layers in GoogleNet architecture [106]

type patch | output size depth | #1x1 | #3x3 #3x3 | #5x5 #5x5 | pool | params | ops
size / reduce reduce proj
stride

convolution 7x7/2 112 )t(;4112 X 1 27K 34M
max pool 3x3/2 | 56x56x64 0

convolution 3x3/1 | 56 x 56 x192 2 64 192 112K | 360M
max pool 3x3/2 | 28 x 28 x 192 0

inception (3a 28 x 28 x 256 2 64 96 128 16 32 32 159K 128M
inception (3b) 28 x 28 x 480 2 128 128 192 32 96 64 380K 304M
max pool 3x3/2 | 14 x 14 x 480 0

inception (4a) 14 x 14 x 512 2 192 96 208 16 48 64 364K 73M
inception (4b) 14 x 14 x 512 2 160 112 224 24 64 64 437K 88M
inception (4c) 14 x 14 x 512 2 128 128 256 24 64 64 463K 100M
inception (4d) 14 x 14 x 528 2 112 144 288 32 64 64 580K 119M
inception (4e) 14 x 14 x 832 2 256 160 320 32 128 | 128 840K 170M
max pool 3x3/2 7x7x832 0

inception (5a) 7x7x832 2 256 160 320 32 128 | 128 1072K 54M
inception (5b) 7 x7x1024 2 384 192 384 438 128 | 128 1388K | 71M
avg pool 7x7/1 1x1x1024 0

dropout (40% 1x1x1024 0

linear 1x1x1000 1 1000K M
softmax 1 x 1 x 1000 0
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The input shape given to the GoogleNet is (224, 224). In Table 4.1, the patch size is the
rectangular sweeping window that is used by convolutional layers and pooling layers. Stride
refers to the size by which pixels shift over input image. In this, the output size is the output
shape that is generated after the input is passed from a layer. Depth of the network defines the
levels in the architectural component. 1x1, 3x3 and 5x5 are the convolutional filters utilized in
inception module of architecture. On the other side, ‘3x3 reduce’ and ‘5x5 reduce’ represent
the filters of 1x1 size used in network before convolutional layers. In Table 4.1, ‘Pool proj’
represents the number of filters of size 1x1 that are used after the pooling layers inside the
inception module of network. ‘Params’ are the number of weights that are used in architecture
components. ‘Ops’ represents the number of mathematical operations conducted in a
component of architecture. Googlenet architecture is designed to decrease the input image size
but to retain the ‘spatial’ information.

The first layer in the network uses patch size of 7x7. The key purpose of this layer is to reduce
the image size by retaining spatial information. The max pooling layer is added after one
convolutional layer. At the second convolutional layer, the image size is reduced by the factor
of four. After passing from the second maxpooling layer, the input size is reduced by the factor
of eight. Several feature maps are produced by this time. The second convolutional layer
leverages the depth of 2 and has a 1x1 convolutional block. This 1x1 convolutional block
reduces the dimensions. This dimensionality reduction reduces the computational load as the
number of operations of layers are reduced. There are nine inceptions modules that are
introduced in GoogleNet architecture as shown in Figure 4.2. The two maxpooling layers are
also added in between the inception module. The purpose of adding maxpooling layers is to
reduce the input size. This also contributes to reducing the computational load. An inception
module constitutes the following components:

Input layer — 1x1 Conv — 3x3 Conv — 5x5 Conv — 1Maxpool — concatenation layer

The 1x1 convolutional layer reduces the dimensions of input. It calculates the element-wise
product of all values in the image. This layer does not learn spatial features of the input image,
but it learns the channel pattemn. So, this layer fulfils our two objectives: first, it reduces the
computational load and second, it learns pattern across depth or channel. The 3x3 and 5xS filter
sizes of the convolutional layer learn ‘spatial’ patterns across depth, height, and width. The
concatenation layer concatenates the feature maps with outputs and produces the single output
of inception module. A fter the inception modules, average pooling layers and final dense layers

are added. A dropout of 40% is also added to avoid overfitting.
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Inception Inception Maxpool Inception inception
3a 3b 43 4b
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5a e 4d A

Figure 4.2: Inception modules introduced in GoogleNet architecture [106]

Another major contribution GoogleNet architecture made is to include auxiliary classifiers.
Auxiliary classifiers are added to overcome vanishing gradient problem. This problem arises
when the network is extensive, there are chances that the gradient value produced is very small
and thus the weights are not updated. It means that the network is not learning during training,
4.4.2 Data Augmentation

In the ISIC 2018 datasets, the fewest examples are from the vascular class, and these are 100
in total. The training of a deep leamning model with 100 examples is not an appropriate
approach. In our proposed work, data augmentation technique is applied to up-sample the low
class and down-sample the high class. We have applied reflection, translation, rotate to
augment our dataset, as shown in Figure <3, to do oversampling of minority class and under-
sampling of majority class. By doing so, we can achieve an equal number of instances for each
class to get the generalized performance of proposed model. The proposed model generates
three level outputs, so the size of model becomes huge. Due to resource limitations, we are not
able to explore the complete ISIC 2018 dataset. The ISIC 2018 dataset contains 10,015 samples

and seven classes. We have only sampled 7000 examples from each due to resource limitations

in hand and multiple hierarchical levels.

Original Augmentation: Rotate
Rotate 90° Rotate 180° Rotate 270°

» . e «
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¢ 10N
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’ Translate: right #l
. !

Figure 4.3; Data augmentation of skin lesion images.
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4.4.3 Gradient Class Activation Maps

In machine learning as well as deep leaming based models, the reliability is questioned because
of the interpretability issues. Machine learning models are considered as black box so, nobody
can tell why a model has reached to such a problem. This explainability issue get more serious
in medical imaging. Physicians or practitioners are clueless over the model decisions. Due to
this, it is significant to enhance the reliability of the deep learning models to gain the confidence
of the practitioners in finding the accurate results with details along with visualization.

We cannot tell how a decision is made by a specific model, but we are able to answer “why” a
certain decision is made by that model. For this purpose, visualization methods have been
introduced that plot values computed by the model on the image to localize a certain region.
This highlighted region explains the reason of making a certain decision. To enhance the model
reliability, we have used the gradient class activation maps in our proposed work to increase
the explainability of the model. It highlights a particular region to explain the reason of a
particular decision. This is very helpful in terms of reliability in a way that a physician now

will know that why the model has predicted a certain class.

4.5 Proposed Model Overview
In this section we have given an overview of the proposed H-GoogleNet architecture for three

level hierarchical classification of skin lesion. The proposed model uses GoogleNet model
which is modified to work for the hierarchical level classification purpose. The proposed
architecture uses auxiliary classifiers to get the output at multiple levels.

The proposed model is shown in Figure 4.4. The complete detail of newly added layers is
shown in Annex-L. In our proposed architecture, we have added multiple layers to the standard
architecture of GoogleNet. Our proposed model takes Imagenpy, = Heightyyq X Widthy,, X
Channely in the input layer, There are no changes made to the standard inception block of
original Googlenet. The details of the inception module are given in section 4.4, After input
layer, there is a convolutional layer, Maxpooling layer, 2 more Conv2D layers, maxpooling
layer, inception 3a block, inception 3b block, maxpooling layer, and inception 4a block. All
these layers are the same as in the standard GoogleNet architecture.

After inception 4a block, we have added three more inception blocks (inception 4al, inception
4a2, inception 4a3) in our proposed model as shown in Figure 4.4. All these three newly added
tnception blocks have input layer, number of filters = 192 of [x! conv layer in the first path,

number of filters=96 of 1x1 conv layer in the second path, number of filters=208 of 3x3 conv
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layer in the second path, number of filters= 16 corresponding to 1x1 conv layer in the third
path, number of filters= 48 corresponding to 5x5 conv layer in the third path, number of filters=
64 corresponding to 1x1 conv layer in the fourth path. These three newly added inception
blocks are added to get binary classification label at hierarchical level 1. After adding three
inception blocks, an Average pooling AVGPOOL layer is added of pool size 5x5 and stride=3.
A convolutional Conv2D layer is added after Avgpool layer. This Conv2D layer has filters=128
with kemnel size = 1x1. ReLU activation function is used in this Conv2D layer. This newly
added Conv2D layer takes input from Avgpool layer. Further, the output of this Conv2D layer
is flattened by adding Flatten layer. The flattened output is then passed to the newly added
Dense layer. The Dense layer takes 1024 features that are flattened. ReLU function is used as
an activation function. After that Dropout [ayer is added which dropped 50% of the neurons.
The benefit of using a dropout layer is that it prevents the model from overfitting. By doing so,
some of neurons (filters) and their connections are disabled so preventing model to rely too
much on a single neuron, The computation cost of the model also gets reduced by adding this
dropout layer. One more Dense layer is added which uses sigmoid function as a classifier to do
binary classification at level 1. The output of inception 4a is passed to inception 4b which
already exists in original Googlenet model. After inception blocks 4¢ and 4d, an Avgpool layer,
Conv2D layer, flatten layer, Dense layer, Dropout layer, and Dense layer are added. The
parameters of these newly added layers are the same as of previously added Avgpool, Conv2D,
flatten, Dense, and Dropout layer. The only difference is in the Dense layer in which softmax
activation is applied as classifier to perform muiti-classification at level 2 of hierarchical
classification.

The good point of any CNN based architecture is that the features extracted at various layers
give different types of information. This information is useful and can be used to do
classification. Less deep features give less information and more deep features give extra detail
of information. The three more inception blocks are added to extract the deep detailed features
for level 1 binary classification and level 2 multiclassification. All the layers from the start to
the end are responsible for making the classification decisions at all three levels. The first
classification fevel uses sigmoid activation function and binary crossentropy loss function. The
second and third level uses softmax classifier and categorical crossentropy loss function. For
every image, the model predicts its class at three levels such as major class, sub-class, and fine-
grained class, by producing a hierarchy. The H-GoogleNet model was executed on Kaggle’s
GPU. The model is too heavy resulting in crash of RAM on Kaggle platform. To decrease the
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model size, during execution, maxpooling layers are introduced at multiple levels. The
selection and sequence of these extra added layers was decided after performing several trials
to get the best performance results. The level one and level two outputs are generated from
modified auxiliary classifiers.
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Figure 4.4: Proposed Hierarchical GoogleNet Model

4.6 Proposed H-GoogleNet Model for Skin Lesions Hierarchical Classification
In this section we have discussed the steps involved in the proposed H-GoogleNet model for
skin lesions hierarchical classification. The mode! consists of the following steps:
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4.6.1 Data Preparation
Let D = (X,Y) be an augmented labeled dataset where X = {xy,x,, X4, ..., X, } is a dataset
containing » samples and Y = {y;,¥,, ¥3, ..., ¥n, } have the labels detail of related samples in

X. An instance x; in a dataset D is denoted by a t-dimensional feature vector x; =

{fu far far oos ftr }. Let x;‘ represents the samples belonging to class j wherej =0,1,2,..6.
From each class j, 80% of samples are selected for the training dataset. The remaining 20%
instances from each class are taken as test dataset. Let X, signifies the training dataset and
Xteor Tepresents the test set. Similarly, Y;.q;, represents the labels of training data and Y.

represents the labels of test data.

Mapping Class Labels Hierarchy
The process of mapping the hierarchy of class labels, at each level, is comprised of following
steps:
1) Let indices = {} represents the list of classes with indices as

indices = { AKIEC:0, BCC:1, BKL:2, DF:3, MEL:4, NV:5, VASC:6} 4.3)

where 0,1,...,6 represents the labels for mentioned classes.
2) Let the classes at level 1, level 2, and {evel 3 represented as
Classes), o1 = {Melanocytic, Non_Melanocytic} 4.4)

Classes;eye , = {Malignant, Benign, NMalignant, NBenign} 4.5)

Classes;gye;3 = {AKIEC, BCC, BKL, DF, MEL, NV, VASC} {4.6)
3) Afier defining the classes, the mapping for hierarchy is formulated as
level; — level; ={0:3,1:2,2:3,3:3,4:0,5: 1,6: 3} 4.7)

where '0” in {0: 3} represents AK/EC from Classes;gye; 5, and *3’ represents corresponding
NBenign from Classes,,,, ;. The remaining mapping is mapped in the same way.
4) Similarly, the mapping of hierarchy from level 2 to leve! 1 is formulated as
level, — level; = {0:0,1:0,2:1,3: 1} (4.8)
5) Afier that, the mapped labels for level, are extracted separately, by using formulated

mapping, for all training and test sets as

level2di i iapers = T V¥ € Yerain and i =12,...,5ize0, (4.9)
where T(.) represents the transformation function, transforming / mapping the labei,";‘vet 3 to
the corresponding Classfine ;. defined as:

T(y;) = levely - level,[y;] (4.10)
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and level2,yqin apets 15 the obtained mapped labels ¥ y; in Yypqp,.

6) Similarly, for level,

ieveutram labels = T(Ievefzrmm labels VY € Ytll:’;sltz andi=1.2,. ) SiZ€train (4'1 1)
where T(leveizrmm [abe!s) level, — level,[y;] 4.12)

7) Similarly, the mapped labels of X, for level, and level, are extracted and the following
test set labels are obtained as

IEe":,e'ezré.'::r labels

leve“:’;st_mbels
4.6.2 H-GoogleNet Architecture
Once we have prepared the X, 4in, Xiese and their corresponding labels for all three levels

levell! level1?

train_labels train_labels? and YteSt * Ieveizrest labels’ test_labels*

Verains level2)t

and the defined model architecture, we use them to train our proposed H-GoogleNet model and
then test it respectively. The proposed H-GoogleNet model consists of the following steps:

1) The proposed model takes an input image x;(h X w X ch) in its input layer,

2) Input feature maps of the input layer are convolved with the convolutional layer CONV_1
as

= YIRS xiwij+ b (4.13)

where x; ; is the pixel location of input image, and w; ; is the weight value of the filter or
kernel at (i, f). The # of filters = 64 and filter size = 7 X 7 with stride = 2. This
layer is followed by an activation function to add non-linearity. ReLU activation function
is used in several layers of this architecture,

f@={)

fora <0

a0 (4.14)

max{(0, x) 4.15)
3} Maxpooling layer is further added after CONV layer to lessen the size of feature maps. The
size of the maxpooling window is maxpool size = 3 x3 with stride =2. The

mathematical form of maxpooling is given in equation 4.2.
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4)

5)

6)

7)

Two more CONV layers CONV_2 and CONV_3 are added after maxpool layer. The
CONV_2 layer has # of filters = 64 and filtersize =1x 1 with stride = 1.
CONV_3 layer has # of filters = 192 and kernel size = 3 x 3 with stride = 1.

Similarly, further maxpooling layer, inception blocks 3a and 3b, maxpooling layer, and
more inception blocks are added. The formulation of inception block is given in Figure 4.1.
Three more inception blocks 4al, 4a2, and 4a3 are added in our H-GoogleNet model before
adding modified auxiliary classifier for level-1 classification as shown in Figure 4.4.

A modified auxiliary classifier is added after inception block 4a3. This auxiliary classifier

has average pooling layer as
2 = 5 Exexx (4.16)

where f;f“) is the output average pooled map, X, is the size of the input feature map, and x
is the individual feature value in the feature map. After Avgpool layer in modified auxiliary
classifier, CONV2D layer is added having # of filters = 128 and kernel size =1 x 1
with RelLU activation. After that the output feature maps are flattened and a dense fully
connected (FC) layer is added as

y(x) = fFEL wisy) (4.17)

where f(.) is the activation function ReLU. w; is the weight multiplied with input s;.
¥(x;) is the obtained feature vector. After that, dropout layer is added as

g=1l-p (4.18)

Where p is the dropout rate which is p = 0.5 in our proposed model. The dropout layer is
added to reduce the computations of the model and to get rid of overfitting. After getting
reduced feature vector, the classification at level-1 is performed by applying sigmoid

activation function at this layer as

S(x) =

1
1+e~%

4.19)

Up till now, the classification at level-1 is performed and a class label is predicted for

binary classification using this modified auxiliary classifier.

B) After that, binary cross-entropy loss function is applied to calculate the loss at classification

level-1 as

CrosSERtTopYpinary = — = Ltk Lilog¥, + (1 — yYlog (1 - %) (4.20)
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9) Ifalarge loss is obtained, then optimization is applied to update the wights of the model as

aL
Owora

Whew = Wgig — D 4.21)

10) Repeat steps 2-9 for all samples in X4, for level 1 binary classification until the
optimized weights are obtained.

11) Along above, in parallel, after inception 4a3 block, inception 4b, 4c, and 4d are there as in
the original GoogleNet model.

12) After inception block 4d, another modified auxiliary classifier is added, the same as given
in step 7 above, for level-2 multi-class classification.

13) For level-2 multi-class classification, softmax activation function is used as

_explyp
softmax(y;} = I, exp (7

forj=012,....n (4.22)
14) For this level-2 multi-class classification, categorical cross-entropy loss function is applied
as

CrossEntropy.ategoricat = — Z?xl yilog () (4.23)
Weights are optimized as discussed in step 9.

15) Repeat steps 2-7 and 11-14 for all samples in Xipq4 for level 2 multiclass classification
and until the optimized weights are obtained.

16) Along above, in parallel, after inception 4d, there are inception 4e, maxpool, inception 5a
and 5b blocks. The layers detail of these blocks is given in Table 4.1.

17) Finally, the level-3 multi-class classification is carried out to determine the fine-level class.

18) Loss function and optimizer are applied to reduce the loss and update the weights
respectively.

19) Repeat steps 2-6, t1, and 16-18 for all samples in X, for fevel 3 multiclass

classification and until the optimized weights are obtained.

4.6.3 Learning Rate

Learning rate is one of the important parameters in any CNN based model. In the training of a
deep learning based model, initially the learning rate is very significant. The too large learning
rate led to poor results. On the other side, too small learning rate make it difficult for the model
to converge during training process. In the proposed H-GoogleNet model, a learning rate
schedular is used to schedule the learning rate for the model after various number of epochs.
Initially the learning rate is set to 0.0001. After that, we have kept it on changing after 42
epochs and then 52 epochs.
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4.6.4 Optimizer
In any deep learning model, an optimizer is used to alter weights during CNN based model
training during backpropagation. After getting the loss value from the loss function, the weights
are modified again using an optimizer function. We do this to optimize the performance of
CNN model to get better convergence effect. From this we can observe that, the selection of a
good optimizer is of great concern. The training of the model will be difficult to converge if a
bad optimizer is selected. In the proposed H-GoogleNet model, after performing multiple
experiments, we have sclected Adaptive Moment Estimation (ADAM) based on its
performance on our ISIC datasets, The ADAM optimizer is the second-order moment function.
It is an adaptive learning rate method such as for various parameters, it calculates individual
leamning rates. The equation for ADAM optimizer is as
Wi = Wy — amy 4.24)

where,

me = fmq.1 + (1= B) [ (3.25)
In this, m, is the aggregate of gradients at time t (current) and initially m,= 0. m,_, represent
the aggregate of gradients at time #-/ (previous). w, is the weight at time t. 5L is the derivative

of loss function. §w, is the derivative of weight at time t. § is the moving average parameter

and its constant default value 0.9 is used in the proposed work.

4.6.5 Procedure Steps
In this section, we have discussed about the stages of the proposed procedure.
i. Load Data
At first place, the ISIC dataset of skin cancer is loaded. The dataset is separated into 80%
training dataset and 20% test dataset.
ii. Customized Layers of GoogleNet
In the second place, the customized layers of CNN are used to introduced variations in
GoogleNet model to include the three-level hierarchy in the model.
iti. Activation Function
Rectifted Linear Unit (ReLU) and sigmoid are used as an activation function in the H-
GoogleNet model.
iv. Loss Functions
Various loss functions are used in the proposed model. They work well in the presence of

imbalance data.
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v. Gradient Class Activation Map
The gradient class activation maps are used for the visualization of locations in a lesion that
participate more in the identification of the class of skin lesion.
vi. Optimizer
ADAM is used as an optimizer.
vii. Network Evaluation using Test Data
In this step, the classification is performed by using test dataset to assess the performance of

the model. Softmax classifier is used at the third level classification of skin lesions.

4.7 Experiments and Results

In this section, the experiments are performed to assess the performance of the proposed H-
GoogleNet model on ISIC 2018 dataset. The detailed description is given in the succeeding
sections.

4.7.1 Dataset

To assess deep learning models for automated segmentation and classification of skin cancer
lesions, various standard databases are openly accessible. The basic intent of these openly
available databases is to assess the strength of automated skin cancer screening as well as to
compare the obtained results of proposed models with existing techniques. One of these skin
imaging databases is International Skin Imaging Collaboratton (ISIC) datasets {26][27]. The
ISIC [26][27] is a platform for skin imaging, specifically for skin cancer diagnosis. It provides
a centralized platform for data sharing and analysis. The ISIC has published various datasets
from year 2016 to 2020 named ISIC 2016, ISIC 2017, ISIC 2018, ISIC 2019, and ISIC 2020.
These databases include separate datasets for segmentation and classification tasks. The ISIC
2016 dataset contains 900 instances for classification task and two classes (malignant and
benign). ISIC 2017 has 4000 instances for three classes including melanoma, nevus, and
seborrheic keratosis. On the other side, ISIC 2018 dataset has 10,015 images for classification
task and has seven classes. ISIC 2019 dataset has 25,331 images with eight classes. In our
proposed work we have used 2018 dataset of seven classes. The complete details of the ISIC
2018 datasets used for the training and evaluation of the proposed Network is described in
Table 4.2.
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Table 4.2: A brief overview of experimental ISIC datasets [26][27]

Class Class Name Number of [Instances
No {2018)
{ MEL 1113
2 NV 6705
3 BCC 514
4 AKIEC 327
5 BKL 1099
[ DF 115
7 VASC 142
Total 16015

The classification task of these datasets is available in the form of train set, validation set, and
the test set. The ground truth data is only available for training data but not for validation and
test set. Due to this reason, we have splitted our ISIC 2018 training data into further training
data, validation data, and test data along with their ground truths. All these instances belong to
seven classes named as: Actinic keratosis (AKIEC), melanoma (MEL), benign keratosis
(BKL), melanocytic nevus (NV), dermatofibroma (DF), vascular lesion (VASC), and basal cell
carcinoma (BCC). The total data is divided into 80% train and 20% test data from each eight
classes. All available [SIC dataset versions are highly imbalanced. In our used [SIC 2018
dataset, all seven classes are highly imbalanced as shown in Table 4.2. Vascular and
dermatofibroma classes have almost ignorable number of samples that could lead the model
toward biasness, Actinic keratosis and basal cell carcinoma also have a smaller number of
samples. Nevus is the majority class as it has many samples as compared to the other classes
in the dataset. The reason why this dataset is highly imbalanced is that there are a smaller
number of patients with BCC, AKIEC, DF, and VASC in Europe. Due to this many samples
are not available. On the other side, there is a large growth of patients having nevus, and
melanoma. To prepare this dataset for hierarchical classification, a mapping of hierarchy is
formulated as given in section 3.6. We have applied data augmentation techniques to get the
balanced dataset. By doing so, we have equalized the number of samples in each class, such as
1000 in each class as shown in Table 4.3, so the model may not show biasness toward any
class, and it witl show generalized performance.

Table 4.3: Balanced dataset after applying data augmentation on [SIC 2018 dataset.

Class Class Name Number of
No lnstances
1 MEL [LHEL

2 NV 1060

3 BCC 1600

4 AKIEC 1000

5 BKL 1004

] DF 1000
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Class Class Name Number of

No [nstances

7 VASC 1000
Taotal 7000

4.7.2 Performance Evaluation Metrics
The performance evaluation measures accuracy, sensitivity, specificity, precision, F-score, and

AUC-ROC are selected for validation of the designed model on [SIC 2018 dataset. These
measures are calculated by using the following equations.

1) Accuracy

Accuracy is used to measure how correctly a classification test recognizes a condition. It is the

fraction of accurate results to the entire number of instances.

TN+TP

T (4.20)
TN+TP+FN+FP

Accuracy =

2) Sensitivity / Recall
Sensitivity measures the capability of the developed method to properly detect the patients with
disease who do have the condition. It is the fraction of those whose test result is positive for

the disease, among those who have the illness.

TP
TP+FN

Sensitivity(Recall) = (4.27)

3) Precision

Precision (positive predicted value) is proportion of related examples among the retrieved ones.

(4.28)

TP
TP+FP

Precision =

4) F1-Score
It summarizes predictive performance of a model by integrating precision and recall. It is a

harmonic mean of precision and recall.

recisionxrecail
e (4.29)

F1—Score =2 X e
precisiontrecall

3) ROC-AUC Score

The ROC curve depicts the performance of a model at various classification threshold. ROC-
AUC is a graph between true positive rate {TPR) (recall / sensitivity) and false positive rate.
4.7.3 Experimental Setup

Experiments of proposed H-GoogleNet model are performed on ISIC 2018 dataset. The
proposed model is executed on Kaggle and Colab with 12GB available RAM of GPU.
Experiments are performed by using the ADAM optimizer with binary cross entropy and multi-
class crossentropy loss functions. The images of training set and test set are resized to [224 x

224 x 3] resolution to be acceptable for H-GoogleNet architecture. The original GoogleNet
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model is pre-trained on ImageNet dataset (ILSVRC) having 1000 classes. in this work, we
have not used pre-trained weights of ImageNet dataset by using transfer learning. The reason
for not using pre-trained weights using transfer learning is that when we add more layers in the
original architecture of GoogleNet, the learned weights do not remain the same. Their sequence
got disturbed, and they do not remain available for processing. That’s why we need to train the
model from scratch and learn new weights. Due to this, all new weights are leamned from scratch
in the model. The weights are initialized randomly using a random function. After that, we set
training options of the H-GoogleNet architecture. After several iterations and running the
experiment several times, we selected the mini-batch size=32 and maximum epochs = 60. For
ADAM, the initial leaming rate is set to 0.0001, as it gives good results on this leaming rate.
The parameters setting of H-GoogleNet model is given in Table 4.4. From this table, it can be
observed that the learning rates are set after reaching a certain number of epochs such as after
reaching epoch 20, the leamning rate is set to 0.0002, and 0.00005 after reaching epoch 40 for
ADAM optimizer. All these optimized learning rates are obtained after performing several
experiments several times for various fine-tuned parameters and hyperparameters of the model.
The function of Loss Weight Modifier is introduced to modify the weights if a certain number
of epochs are reached before reaching stopping criteria such as if epoch reaches 15, 25, and 35
then modify the alpha, beta, and gamma values accordingly. The dataset is shufiled in every
epoch during training so that every instance had a chance of being part of training data from
validation set but the batch size = 32 in every epoch remains the same. The proposed model
is trained by using an early stopping criterion such as patience = 10, and verbose = 1.1In
our dataset, there are two classes at level 1, four classes at level 2, and seven classes at level 3

such as level 1 has binary classification and level 2, and tevel 3 have multi-class classification.

Table 4.4; Experimental parameters setting for H-GoogleNet Model training.

Optimizer | Initial LR LR No.  of | Batch Early  Stopping
Learn Rate | after after Epochs size Criteria
epoch epoch
20 40
ADAM 0.001 0.0002 | 0.00005 60 32 patience | verbose
10 H

4.7.4 Experimental Results
In this section, we have discussed the experimental results of our proposed H-GoogleNet model
on ISIC 2018 in detail. The results are given in tabular form along with various plots in the

following sections.
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Results and Evaluation with ADAM Optimizer

In this section, the experiments are performed using ADAM optimizer while using binary cross
entropy and multiclass cross entropy as loss functions. Average experimental results of
accuracy, precision, recall, F1-score, and ROC-AUC score for three hierarchical levels are
shown in Table 4.5. Optimizer plays its role during backpropagation to optimize the model
training and reduce the value of loss function to improve the model performance.

From Table 4.5 we observed that H-GoogleNet is giving better performance with ADAM. The
termination epoch is set by introducing early stopping criteria. The training is stopped at epochs
=351 for ADAM optimizer which shows that the model is not showing any improvement after
epochs = 51. The accuracy, precision, recall, F1-score, and ROC-AUC score show acceptable
results. From Table 4.5 we can observe that, at level 2 (L_2) the performance of model is going
down as compared to level 1 and level 3. This is because the complexity of classes increases at
level 3 due to the similarity among classes as they all are benign and malignant. The model
faces difficulties in classification due to these huge similarities.

Further, the evaluation measures at individual classes of each level are also shown in Table 4.6,
4.7, & 4.8. From these individual results, it is observed that our proposed model performed
very well for each individual class at all three levels, The confusion matrices results are shown
in Figure 4.5 (a, b, & c). The training and validation losses curves of the H-GoogleNet model
with ADAM optimizer are shown in Figure 4.6 for all three levels. In this, the number of epochs
is given on x-axis and loss values on y-axis.

From Figure 4.6, we can observe that training loss of the model is continuously decreasing
even after epoch 50 for level 3 classification using ADAM optimizer. This is also the same for
level 1 and level 2 classification. On the other side, validation loss of the model for level 2 and
level 3 is fluctuating continuously such as the validation loss is kept on increasing and

decreasing till the last epoch.
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Figure 4.5: Confusion matrices preduced at (a) level-1 (b) level-2 (c) level-3 of classification.

Table 4.5: Average evaluation measures of proposed model for classification of test dataset at three levels.

Optimizer ADAM
Imitial Learn Rate 0.001
Termination epoch # 51

L1 L2 L3
Accuracy 0.875 0.703 0.911
Precision 0.85 0.73 0.91
Recall 0.84 0.55 091
Specificity 0.84 0.86 098
F1-Score 035 0.54 050
ROC-AUC Scere 0.80 0.70 0.965

It is observed that training and validation loss at level 1 and level 2 classification is less as
compared to level 3 classification. It shows that features extracted till level 1 and level 2 give
better performance. Furthermore, features extracted at level-1 are less complex as compared to
level-2. Training and validation loss at level 1 (binary level) is very less as compared to

remaining two levels. Further, ROC-AUC plots of H-GoogleNet for all three levels are
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depicted in Figure 4.7 (a, b, ¢) with ADAM optimizer. These ROC-AUC plots give a clear
picture of the performance of the model. The predicted probabilities of the model are shown in
Figure 4.8 (a, b, c) for all three-level classifications. The results shown here are produced
randomly. The Gradient Class Activation Maps (Grad-CAMs) of predicted hierarchy of skin
lesion types, with focus on locations participating more in the prediction of skin lesion types,
are shown in Figure 4.9. From these activation maps, the visualization of spatial location of
actual lesion’s structure become clearer. From these activation maps, we become more able to
get knowledge about which area of the lesion is participating more at any level of classification
of skin lesion. To elaborate on it, in Figure 4.9, the regions highlighted in red are the ones
participating more in the classification of lesion at three levels. It is also observed from Figure
4.9 that the model may aiso focus on that area of skin that does not have the lesion. This is
because the model faces some structural complexities in the skin lesion image, and it may
confuse the foreground with the background in some images. The structure present at the

boundary of skin lesion may resemble the background skin structure creating complexities for

the model.
Table 4.6: Evaluation measures of individual classes at class level 1oftest set
Class Precision Recall Specificity F1-Seore AUC-ROC
Scare
Melanocytic 0.79 0.77 0.92 0.78 0.84
Non-Melanocytic 0.91 0.92 0.77 .91 075
Average 0.85 0.84 .84 0.35 0.80

Table 4.7; Evaluation measures of individual classes at ¢l

ass tevel 2 of test set

Class Precision Recall Specificity F1-Score AlIC-ROC
Score
Malignant 0.62 .55 0.9] 0.58 0.75
Benign 0.80 0.59 0.98 .68 0.78
NMalignant 0.78 0.05 1.0 0.10 .33
NBenign 0.73 0.91 .55 0.81 0.73
Average 0,73 0.55 .86 .54 0.70

Table 4.8: Evaluation measures of individual classes at class level 3 of test set

Class Precision Recall Specificity F1-Score AUC-ROC

Score
Actinic 0.92 .91 0.99 .91 0.94
BCC .89 0.92 G.98 .91 (L95
Keratosis .94 0.87 .99 .99 .93
Dermatofibroma (.89 0.91 (.98 .50 (.94
Melanoma 0.89 0.90 0.98 0.89 0.94
Nevug .94 .93 0.99 0.93 .96
Yascular 0.92 0.94 0.99 (.93 0.96

[ Average 0.91 0.91 0.98 0.91 .95
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Figure 4.9: Grad-CAMs of predicied hierarchy of skin lesion types with focus on locations participating more in the prediction

of skin lesion types, with proposed H-GoogleNet model.

4.8 Comparison and Discussion

In this section, we have shown the comparison of our proposed model with the competitor

and given the discussion.

4.8.1 Comparison of H-GoogleNet with Existing CNN Based Explainable Model

In this section, we have given a comparison between our proposed H-GoogleNet model and
existing explainable model [29]. This comparison is performed for the taxonomic classification
and explanation of skin lesion by locating the regions participating the more in the diagnosis
of accurate skin lesion type. The average results of the comparison are shown in Table 4.9. The
evaluation results for individual classes at each level are shown in Table 4.10. For comparison,
we have shown results using specificity, sensitivity, and AUC values, as our competitor has
used only these measures to evaluate their model. From Table 4.9, it can be observed that our
proposed model depicts better average results as compared to existing model in terms of
specificity, sensitivity, and AUC, Our model gives 98.0% average specificity for level 3
classification. The existing model [29] shows 96.8% specificity for fine level classification

which is much less than our obtained specificity. Similarly, the proposed model shows
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acceptable average specificity results for level 1 and level 2 classification such as 84% and
86% respectively. The competitor has not shown the evaluation results at level 1 and level 2 in
their work, so we are not able to compare the gained results for level 1 and level 2 classification.
Further, the proposed model shows 91% average sensitivity for level 3 classification which is
much better than existing model [29] giving only 69% average sensitivity. For level 1 and fevel
2 classification, our obtained average sensitivity is 84% and 55% respectively. The obtained
AUC score of our proposed model is 95% which is a little bit less than the AUC score of
existing models [29]. The existing model is showing 95.2% AUC score which is 0.2% more
than our obtained AUC score. As far as the performance of the proposed model for ali
individual seven classes at fine level is concerned, the results are shown in Table 4.10. From
this table it can be observed that our proposed model shows better sensitivity results for all
classes at level 3 (fine level) as compared to competitor [29]. The proposed model shows
sensitivity scores as 90%, 93%, 92%, 91%, 87%, 91%, and 94% for melanoma, nevus, BCC,
actinic, keratosis, dermatofibroma, and vascular respectively. The specificity of the proposed
model is fluctuating or showing less scores for few classes at fine level as compared to existing
model [29]. The individual results for specificity at level 3 are shown in Table 4.10. Qur
proposed model shows better specificity scores for melanoma, nevus, and keratosis as 98%,
99%, and 99% respectively. For our proposed model , the specificity score is going down for
BCC, actinic, dermatofibroma, and vascular as compared to competitor [29] but the overall
average specificity score of our proposed model is better than the competitor {29]. This increase
in average is because our model is showing good specificity score for melanoma such as 98%
that is 8% more than the competitor’s specificity score for melanomaand it is a huge difference.
Similarly, the same is the case for nevus with a difference of 6% in specificity score of both
models. The AUC score of our proposed model for melanoma is 94% at level 3 classification
that is much better than the competitor [29]. Overall, the performance of the proposed model
is better than the competitor when we analyze the obtained results. The results for sequence of
hierarchy generated by the proposed model with predicted probabilities is given in section
4.6.4.

Table 4.9: Comparison of proposed model with existing CNN model for three level hierarchical classification.

Attention LSTM {29] Proposed H-GoogleNet

L1 L2 L} L_1 L2 L3
Avg. Specificity (SP) NA | NA_ | 968 840 | 860 | 980
Ave, Recall/ SE NA NA | 69.0 84.0 35.0 21.0
Avg. ROC-AUC NA | NA [95.2 80.0 70.0 95.0
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Table 4,10: Comparison of proposed model with existing CNN model for three level hierarchical classification
(individual classes at each level).

Attention-LSTM {29] Proposed H-GoogleNet

SE SP AUC SE el o AUC
Melanoma 67.8 90.1 86.1 90.0 98.0 94.0
Nevus 82.0 93.7 96.1 93.0 99.0 96.0
BCC 4.2 98.4 98.5 92.0 98.0 250
Actinic 60.5 99,5 95.5 1.0 990 4.0
Keratosis 72.8 96.6 94.4 87.0 4.99 240
Dermatofibroma | 68.2 99.8 97.2 919 98.0 340
Vascular 371 99.7 98.5 944 99.0 96.0

4.8.2 Discussion

The above given experiments and their comparison show that the proposed H-GoogleNet
performed better than existing work [29].

From the above given experiments, it can be observed that, H-GoogleNet model gives good
results with ADAM optimizer. In proposed H-GoogleNet, the auxiliary classifiers are used to
classify the first two levels of classification, From experiments, it is observed that classification
level 3 accuracy is better than level 1 and level 2 accuracy. This model stopped after completing
55 training epochs. The model ran for the fongest time on 12 GB RAM of GPU on Kaggle.
Moreover, H-GoogleNet is light weight on computational resources.

For visualization of structures, present in skin lesions, Grad-CAM s are plotted to comprehend
the specific decision of the proposed model. From experiments, it is observed that the proposed
H-GoogleNet model localizes different regions for all three individual levels of same skin
lesion, to take accurate decision. It implies that the model looks at different regions to predict

the sequence of hierarchy.
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Chapter 5

§ Skin Cancer’s Structure Segmentation using ResNet50-UNet Model with
Hybrid Loss Function

5.1 Introduction

The most common use of CNN based models is for the feature extraction and classification
tasks, to get the output of an image as a single class label. In the previous chapter, we proposed
a hierarchical based CNN model named H-GoogleNet for explainable classification of skin
lesion, where till the last layer we get a hierarchy of classes produced by the model. Along with
the above, however, for many visual tasks of biomedical image processing, there is a great need
that the output should include localization. We should be able to find structures and spatial
location (with name) within an image that are participating more in the identification and
classification of skin lesion type and its structure.

In this chapter, we have addressed this problem and proposed a solution to deal with the
attribute or structure level segmentation of skin lesion. We have applied segmentation model
named UNet [107] with a backbone model such as ResNet-50 [108], for the attribute or
structure segmentation and localization of skin lesion attribute inside an image. By doing this,
we will be more able to get the presence of structure. By knowing the presence of numerous
structures such as pigment network, streaks, milia, globules etc. in a lesion, we would be more
able to get knowledge about the lesion type. Resultantly, the explainability of the model will
increase. This structural level information will help the practitioner to know about the accurate
class of skin lesion.

In this work, we have worked with some limitations due to the absence of skin lesion type
information and its structure type of information, present in them, at one place. The ISIC
dataset does not have these types of information at one place, such as in one dataset.

5.2 U-Net Architecture

In this section, we have discussed the U-Net based model extist in literature. UNet architecture
[107] is based on fully convolutional networks. The intent of the U-Net is to extract both the
context features as well as the localization. U-Net [107] consist of two parts: encoder and
decoder. Encoder and decoder are the first and second half of the model respectively. The

encoder is also called the contracting path and decoder as expansive path. The encoder part of
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the U-Net model is a pre-trained network which uses any CNN based architecture as a
backbone, such as ResNet and VGG etc. In U-Net architecture, at expansion side, two 3x3
unpadded convolutional blocks are applied that are followed by rectified linear unit (ReL.U),
maxpooling operation of 2x2 and a stride of 2 for downsampling. This downsampling is used
to encode the input image into feature maps at various levels. The number of features is doubled
at each downsampling step.

After that, decoder, also called expansive path, is the second part of the UNet architecture. In
this part, discriminative features learnt by encoder are projected onto the pixel space (higher
resolution) to get segmentation. Each step of the decoder comprises of upsampling of the
feature map. This upsampling is further followed by the 2x2 convolution, also known as up-
convolution. This upsampling is half the number of feature channels. There is a concatenation
with the cropped feature map from the concatenating path, and 3x3 convolutions, followed by
ReLU. This network has 23 convolutional layers. UNet model was introduced in 2014 for
semantic segmentation of biomedical images. Semantic segmentation is basically classification
per pixel of an image. This concept is employed in medical imaging to localize a certain part
of an image usually where the abnormality exists. In semantic segmentation unlike

classification, the input and output hold the same shape. The architecture of UNet is shown in

Figure 5.1.
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Figure 5.1: UNET Architecture[107]

The final layer in the architecture is 1x1 convolution which is utilized to map feature vector of
64 components to given number of classes. In the proposed technique, the encoder layers of

UNet were replaced with ResNet architecture (used as backbone).
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5.3 ResNet Architecture

ResNet [108] was first introduced in solving the degradation or vanishing gradient problem of
the deeper networks. After converging, the deeper networks start to degrade. This degradation
is not because of overfitting. Instead, the training accuracy of the model is degraded. The
ResNet architecture solved this degradation problem. In the architecture, the stacked layers are
explicitly mapped to residual mapping. In preceding architectures, the stacked layers were
mapped directly to the required primary mapping. In the mathematical notation, tet H(x) be
the desired undertying mapping. [n ResNet architecture, another mapping G(x):=H (x) — x is
defined, and stacked nonlinear layers are mapped to this mapping. The original mapping is re-
expressed in the form G(x) + x. The hypothesis is that optimization of residual mapping is
easier than optimization of unreferenced mapping. The G(x) + x formulation can be executed
in the feed forward network with ‘shortcut connections’. The basic building block of residual

learning is shown in Figure 5.2.
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Figure 5.2: Building block of residuat learning [108]

In the ResNet architecture, shortcut connections enable "identity mappings". Further, the
outputs of these shortcut connections are combined with the outputs of the stacked layers.
Notably, these identity mappings do not lead to extra computational overhead. The models like
ResNet in Deep residual networks, reveal amended outcomes as the model goes deeper and
deeper, as compared to the models that face deprivation in their results as the depth increases.
Various versions of ResNet are introduced in literature based on different layer counts such as
18-layer, 34-layer, 50-layer, 101-layer, and 152-layer as shown in Table 5.1. In our proposed
model, for the structure segmentation task, ResNet-30 architecture is used as backbone in U-
Net model.
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Table 5.1: ResNet model versions {108]
Layer | Output 18-layer 34-layer 50-layer 101-tayer 152-layer
name size
convl 112x112 7x 7, 64,stride 2
3 x 3 max pool, stride 2
x 1x1,64 1x«1,64 1x1.64
convZ_x | 56x36 3":": [;"gfgixs [3x3.64]x3 [3x3.64 x3 [3x3,64]x3
3x 3.4 3, 1x1,256 1% 1,256 1% 1,256/
1% 1,128 1x 1,128 1x1,128
3 x 3, 123 Ix3 iz
Conv3 x 28 x 28 o4 [3x3,1za X 4 [3x3,1za 4 [3x3,123]x32
= 3x 31280 3x3.128 1% 1,512 1x1,512 1%1.512
1x1.256 1x1,256 1x1,256
3 x 3,256] 3% 3,256
Convd x { 14x14 ' %6 [st.zsa]xa lzxa,zss x 23 lsxa,zsalxso
- 3x 3,256 3x3.256 1x1,1024 11,1024 1xt,1024
11,512 1x 1,512 1%1,512
3% 3,512 3% 3,512 . . :
Convs_x Ix7 ’ 2 ' %3 [3x3.51z]x3 laxa.sizlxs {3x3,512]x3
- 3x 3'5121 3% 3'5“] 1x 1,2048 11,2048 1%1.2048
1xl Average paol, 100-d fc, softmax
FLOPs 18x10° | 36x10° | 38x10° | 76x10° | 113x10°

5.4 Structure Segmentation Model
In this section, we have detailed our proposed hybrid model for structural segmentation of skin

lesion. The proposed model is named ResNet50-UNet.
5.4.1 Model Overview

An overview of our proposed ResNet50-UNet model is given in detail in this section. Due to
the presence of similar or sometime overlapped structures, in skin lesions, their segmentation
at semantic level becomes an extremely challenging task. To address this challenge, we
proposed a novel attribute’s level segmentation model using hybrid loss function. This
proposed model is used to perform pixel level classification or semantic segmentation of
structures present in skin lesion’s images. An overview of the proposed model is given in
Figure 5.3. The proposed modet comprises two parts including an encoder and decoder like the
original UNet [94]. In this, the section of encoder is swapped by ResNet-50 model [95]. The
ResNet-50 is used as a backbone in the proposed UNet model. This encoder-decoder is shown
in Figure 3.4 and Figure 5.6. The ResNet50 encoder part down-sample the input image of skin
lesion to extract the high level details of akin lesion attributes. Till the last layer, the ResNet50
encoder extracts the feature maps having very high level information but with low resolution.
This high level information is then upsampled in the decoder section ofthe UNet model. During
up-sampling, these low Jevel feature maps are also concatenated with high level feature maps

(in encoder), via skip connections. By doing so, the decoder will be more able to up-sample
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the low level feature maps by combining them with extra information from skip connections.
At the end, there is a convolutional layer that convolves the final up-sampled feature maps and
apply activation function to predict the class of pixels. The encoder (ResNet50) uses the leamed
weights of the model by transfer learning. The weights of the decoder are initialized and then
updated during backpropagation. There are five attributes in skin lesion segmentation task, so
this proposed model is leamed individually for each attribute. In total, five ResNet50-UNet

models are there.
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Figure 5.3: Attributc scgmentation modet overview

5.4.2 ResNet50-1UNet Model

In our proposed work, we swapped the encoder block of UNet with ResNet50 model to make
use of residual mapping. The architecture of the encoder is shown in Figure 5.4. In this, the BN
represents Batch Normalization, MP indicates Maxpooling, while BN_ACT is Baich
Normalization and ReLU activation. Furthermore, the CONV_BLOCK represents the

convolution layer, baich normalization and activation layer as shown in Figure 5.5.
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In Figure 5.4, the zero-padding layer is represented by the double arrow. Figure 5.4 shows half
part of the ResNet50 architecture. Altogether, 33 CONV_BLOCKS are there. Unfortunately,
due to space limitation they are restricted to CONV_BLOCK 16 over here. The remaining
CONV_BLOCKS follow the same arrangement. In this, zero padding is used to connect two
CONV_BLOCKS. A part of addition comes after every two CONV_BLOCKS. For this, a layer
for addition is included to the existing layer as shown in Figure 5.4. Furthermore, after
activation layer there are two CONV2D layers at various places. To concatenate part of the
upsampling layers these activation layers are connected. A final batch normalization layer and
activatton layer is there after CONV_BLOCK 33. Finally, the upsampling section starts after
that. An entire architecture of the upsampling portion is given in Figure 5.6. A concatenate
layer and two CONV_BLOCKS are there after upsampling the layer. From the encoder part,
the activation functions are concatenating to the upsampling layer of decoder part through all
the four concatenation layers. The altribute segmentation is performed in the decoder part of

the model while upsampling the feature maps.
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Figure 5.6: The decoder block in ResNet50-UNet architecturc.
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5.4.3 Hybrid Loss Function

Even though the data imbalance issue is resolved by downsampling the maximum class, the
ratio of the positive class is still very low. Segmentation is applied as per pixel classification.
This task is binary segmentation such as the positive and negative class. The negative class
represents black color and positive class represents white color. The negative class is still
dominating over the positive class. It is because the attributes occupy a very less area, for
example, here is attribute image of milia-like cyst. The sample mask of the presence of

attribuate, like milia, in skin lesion image is shown in Figure 5.7.

Figure 5.7: Mask of Lhe presence of milia like cyst in skin lesion image.

The positive class is occupying very little space as shown in Figure 5.7. Most of the space is
captured by the negative class in this image. This is the image with positive class in it. One
more issue is the presence of blank images in the given dataset. Resultantly, after
downsampling the images to positive class, the data imbalance issue remains there. To resolve
this issue, specific loss functions are used to handle imbalance. For the given problem in hand,
we have used hybrid loss function, a combination of focal Tversky loss and IoU segmentation

loss as given in equation (5.1).
Hybrid loss = focal Tversky loss + iou segmentation (3.1}

5.4.3.1 Focal Tversky Loss
The focal Tversky loss was proposed [4] to handle the issue of class imbalance. The
mathematical formulation of the focal Tversky loss is given in equation (5.2)

FTL = ¥.(1—TI)YY (5.2)

where the value of y is within the range [1,3] and TI is Tversky index. TI is the generalization
of the dice loss function. By using this, the balance between False positive and false negative

can be made flexible. The mathematical representation of TI is given in equation (5.3).
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Tl’c ENE‘x_pic Gict € (5.3)

TN PicBiet® B ppBict BEL Picgint €

Here, py. is the probabolity that pixel { belongs to lesion class ¢, and p;- is the probability that
pixel i belongs to non lesion calss €. Same is case for g;. and g;; . a and £ are hyperparameters
that should be tuned according to the ratio of class.

In Focal tversky loss, if a particular pixel is misclassified and the value of TI is greater, the loss
remains unchanged, On the other side, if the TI is small and the pixel is misclassified by model,
the value of focal tversky will decrease as a result. If the value of y is greater then 1, it shows
that the less accurate predictions are more focused by FTL. The work presented in [4]
experimented numerous values of y and concluded that 4/3 peformed best. In our proposed
work, we have used the same concluded value,

5.4.3.2 TOU Segmentation Loss

To evaluate the performance of segmentation models, the loU score is used as an evatuation
measure. It calculates the similarity of actual pixels with predicted ones. Mathematically, ToU

can be defined as given in equation (5.4).
TP

ol = ———— 5.4)

FP+TP+FN

where, TP indicates true positive, FP is false positive, and FN as false negative. Although the
loU score is a count-based metric, the output of the model is typically the computed
probabilities of the pixels about their belonging to various classes. Therefore, the ToU count is

given that approximated over the probabilities. The loU count is defined in equation (5.5).

_I®
Ioll = 7 (5.5)

Where /(X) can be approximated as given in equation (5.6)
X)) = Zoev Xu* 1y (5.6)

X represents the output of the model for a set of pixels ¥ of the images. Y represents the actual

pixels and Y € {0,1}". The mathematical form of approximating I/(X) is given in equation
(5.7).

UX) = Zver(Xy + ¥ — Xy + 1)) (5.7)

The IoU loss is as given in equation (5.8).
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Ligy=1—1loU=1 —-% (5.8)

The objective function is given in equation (5.9).
argmui’n Loy =1—1IolU (5.9)

This equation (5.9) is solved by using stochastic gradient descent. The final output is computed

as given in equation {(5.10).
-1

Aoy uixy iy =1
ax, 1 A% . (5.10)
Tt otherwise

After calculating the gradients, the derivatives can be computed by applying the chain rule.
These two different loss functions are combined to achieve a hybrid loss function. Both loss
functions are good at dealing with class imbalance, so their hybnd is applied in our proposed
work.,

5.5 Experiments and Results

In this section, the experiments are performed to assess the performance of our proposed
structural segmentation model. These experiments were conducted on [SIC 2018 segmentation
dataset.

5.5.1 Dataset

To perform our experiments, we have used ISIC 2018 dataset available for the attribute
segmentation task. The available dataset is highly imbalanced. There is a total of 2594 images.
For each image, five labels are there representing the names of attributes or structures given in
ISIC 2018 segmentation dataset. These five attributes are not equally present in each image.
Table 3.2 shows the distribution of attributes in lesion image. From this table, it can be seen
that there are 3098 images in total. This is because, in one image there could be more than one
structures present. The ground truth masks for these images are available separately for each

attribute. Due to this, the number of images increases against each individual attributes.

Table 5.2: Distribution of attributes in ISIC 2018 skin lesion image dataset of segmentation

Attributes Number of Images Percentage of
Present images

Streaks 100 3.2%

Pigment Network 1523 49.2%

Gilobules 603 19.5%

MNegative Network 190 6.1%

Milia-like cysts 682 22.0%

Total 3098 100%
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To achieve our proposed objective, each structure is segmented separately in our proposed
model. Resultantly, five segmentation models are trained for five structures in skin lesion
images independently. Moreover, as the data is highly imbalanced, the down-sampling

technique is used to resolve the data imbalance problem along with hybrid loss function.

5.5.2 Evaluation Measures

5.5.3 Experimental Setup

To evaluate the performance of our proposed model, all experiments are conducted on Kaggle
and Colab platforms using Jupyter Notebook. Firstly, the ISIC dataset was prepared to rescale
the input images to a resolution of 512x512. This rescaling is performed to make images
compatible with the model during training. After that, the whole dataset was split into training,
validation, and test sets with a ratio of 80:20. In the UNet architecture, we have used ResNet-
50 model as a backbone. While performing experiments, we set the batch size = 8 due to the
limitations of available RAM on Kaggle, as exceeding this value caused memory crash. The
parameters’ settings for the proposed model are given in Table 3.3. To train our proposed
model, we executed # of epochs = 60 by setting carly stopping criteria. The ADAM
optimizer is utilized along learning rate = 0.001. The loss function that we have employed
in our proposed model is given in equation (5.1). To assess the performance of our proposed
model, we used the Mean Jaccard index or foU as an evaluation measure. The weights in the
encoder part, in our proposed model, are learned from the Imagenet dataset as they are the best
learned weights showing excellent performance. The parameters and hyperparameters of our
proposed model are fine-tuned to optimize its performance and to achieve the best possible
scores. During {ine-tuning of the proposed model, various specific layers were intentionally
removed or added to ResNet-50 encoder, depending on the specific requirements of our

proposed model.

Table 5.3: Proposed model training parameters settings

[ Model Training Parameters Yalues
| Image Resolstion 512x512x3
Batch size ]
No. of epochs 60
Early Stopping at
Globules 36
Pigment Network 49
]1egntive Network 1 59 J
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Model Training Parameters Values
Streaks 30
Milia 30
Learning Rate 0.001
Optimizer Adam
Loss function Hybrid

5.5.4 Experimental Results and Discussion

To assess the performance of our proposed model, we have used the mean Intersection over
Union (IoU) as an evaluation measure. To get mean IoU, we calculated the intersection over
union for each class and then took the average of these computed [oU values. The obtained

results of the mean 1oU scores are shown in Table 5.4.

Table 5.4; Mean [olJ test dala results of structural segtmentation of skin lesion using proposed model.

Class / Attribute Mean IOU
Pigment Network 0.67
Nepgative Network 0.58
Mitia like cysis 0.53
Globules 0.66
Streaks 053

By considering the obtained mean [OU scores for various attributes or classes, the performance
of structure segmentation model can be summarized as follows:

One of the attributes named pigment network is successfully segmented by our proposed mode!
by achieving the mean loU score 0.67. The obtained result shows that the proposed model has
successfully identified the patterns of pigment network present in the skin lesion and its
boundaries as well. The negative network attribute is segmented with a mean 10U score of
0.58. Even though the acquired score is lower than the IoU score of pigment network, the model
shows better performance to segment the presence of network patterns in the lesions. Another
attribute named milia-like cysts segmented well by achieving mean IQOU score 0.53. The
proposed model showed an average score to identify and segment that pattern accurately in the
skin lesion. While evaluating the performance of proposed segmentation model, we observed
that it faced various challenges while capturing the boundaries of structures and the patterns
itself accurately that are associated with them. Furthermore, the proposed ResNet-UNet model
obtained a mean IOU score of 0.66 while segmenting the attribute of globules in the lesions.
Globule’s structure plays its vital role to determine various types of skin lesion. Fortunately,

the proposed model has shown better performance for the identification and segmentation of
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this pattern within the skin lesion. The streaks attribute also achieved a mean IOU score of 0.53
showing the good model’s performance to segment streak like structures.

The experimental results of proposed Res-UNet model for structural segmentation of attributes
such as pigment network, negative network, milia like cyst, globules, and streaks, present in
skin lesion image are shown in Figures 5.8, 5.9, 5.10, 5.11, 5.12 . The results show the original
attribute masks and predicted mask by the proposed model. These results show that the
proposed framework has performed well, and it gives acceptable results for attribute level
segmentation. Presence of pigment network alone or with milia-like cyst in one lesion leads
toward the presence of malignant lesion [109]. On the other side, absence of pigment and the
presence of milia in one lesion leads toward benign lesion [109]. Pigment Network is a primary
attribute which plays an important role in the diagnosis of malignant melanoma and other
pigmented skin lesions. Identification and segmentation of this structure accurately, by a
diagnostic system, ean assist a dermatologist to distinguish benign lesions from potentially
malignant ones.

Negative networks are very challenging and scarce to detect. These are thin hair-like structures
having low contrast against the texture of skin lesion [110]. They are normally light as
compared to the main color of lesion. Due to this, they may be easily skipped as white colored
hairs in the image. This negative network attribute may be present in nevus as well as in
melanoma type of skin lesion. [t is very difficult to separate nevus from melanoma but the
existence of negative network always gave indication of melanoma [110). The negative
network attribute is frequently observed in melanoma skin lesion type. Our proposed model
performed well to detect this complex negative network attribute even in the presence of these
hurdles that are discussed above. Our model gives IoU = 0.58 for negative network attribute
segmentation. In Figure 5.9, the predicted masks of negative network are given which leads
towards the presence of melanoma skin lesion type.

Similarly, it is also very difficult to distinguish between basal cell carcinoma and melanoma if
globules attribute is present in both. Streaks attribute may appear at the exterior edge of a skin
tesion [110]. Its presence can possibly reveal different skin lesions, forcing stronger association
towards melanoma. However, it is important to observe that the presence of streaks attribute
alone does not provide a sufficient diagnosis for melanoma or any other specific skin lesion.
To achieve a more accurate diagnosis, it is necessary to consider the presence of other attributes

in conjunction with streaks.
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a)  Original skin leston | by Image mask label ¢} Predicted mask of pigment
fmage |
|

Figure 5.8: Structural sepmentation of “pigrment network™ attribute with proposed model.

nenwark
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a}  Original skin lesion b} Image mask label ¢} Predicted mask Gf‘nega.tivc_
mage network
Figure 5.9: Structural segrmentation of “negative network” attribute with propoesed model.
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g

a) Original skin lesion mage

b) Image mask label

¢} Predicted mask of milia
like cyst

Figure 5.10; Structural segmentation of "milia like cyst” atiribute with propesed model.

a) Original skin Jesion mage

b) Image mask label

¢} Predicted mask of
globules atiribute

Figure 5.11: Structural segmentation of “globules” attribute with proposed model.
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a) Original skin tesion image | b) Image mask Inbel of ¢} Predicted mask of streaks
streaks attribute atiribute

Figure 5.12: Structural segmentation of “streaks™ attribute with proposed model,

The accurate identification and segmentation of dermoscopic structures by a segmentation
model has a direct impact on the diagnostic accuracy of skin lesion type. The mean 10U values
acquired for various structures give an assessment of how good the model has aligned with the
ground truth segmentations. Greater mean IOU values indicate a better similarity between
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predlcted and true segmentations, representing improved diagnostic accuracy. It is particularly
important in differentiating between benign and malignant lesions, as well as distinguishing
between various other types of skin cancer. The training and validation loss curves for
individual five learned models for each attribute (five attributes) are shown in Figure 5.13. The

computational efficiency of our proposed model is shown in Table 5.5.
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Figure 5.13: Training and validation loss curves of (a) Globules (b) pigment network (c) milia like cysts {d) Streaks (e)
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Table 5.5: Computational efficiency of proposed model

Factors Values
Execution Time 02 brs 490 minutes
Total No. of parameters 32,561,114
Trainable parameters 9,058,644
Non-Lrainable paramelers 23,502,470
Space required 12 GB RAM

5.6 Comparison of Proposed model with Existing Techniques

A detailed comparison of the obtained results of our proposed ResNet50-UNet mode!l with the
existing state-of-the-art techniques is given in this section. We have also compared our
proposed model with the winner of ISIC 2018 [101][95]. The performance of various backbone
architectures, used with U-Net, is compared for skin lesion attribute segmentation with our
proposed ResNet50-UNet by using our hybrid loss function. The results of comparison of loU
{Jaccard Index) are shown in Table 5.6. Additicnally, Table 5.6 shows a comparison of our
proposed structural segmentation model for skin lesions with existing state-of-the-art
approaches. We analyzed the performance of various backbone architectures used with U-Net
for skin lesion attribute segmentation. The Mean IoU is used as an evaluation measure, and the
results are shown in Table 5.4. Our proposed model shows vigorous performance as compared
to existing state-of-the-art techniques for attribute level segmentation of skin lesions.

The ResNet50-UNet model shows better performance as compared to the approach presented
in [96] for the segmentation of negative network attribute. They applied various pre-processing
techniques such as contrast reduction, hair occlusion, and sharpness improvement to enhance
the performance of their segmentation. It is important to note that, our proposed model scored
Jaccard similarity or loU of 0.58 against negative network attribute segmentation, while [96]
reported IoU values of 0.149, 0.189, 0.213, and 0.228 with base networks ResNetl51,
ResNetv2, DenseNet169, and their proposed ensemble, respectively. Unlike [96], we did not
apply any dataset augmentation or pre-processing techniques, yet our proposed method yielded
better results in comparison.

Moreover, our method presented significantly better results for attribute segmentation
compared to the findings in [92]. In [92], they employed b0O-EfficientNet as the backbone in
conjunction with UNet and LinkNet architectures. Our proposed model also performed well
when compared to the attention UNet model presented in [94]. Similarly, our proposed model

exhibited competitive performance against the second-ranked winner of the ISIC 2018
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challenge [97] and NMN's method [96], which come forward as the winner of the ISIC 2018

challenge.

Table 5.6: Comparison of proposed madel with state-of-the-art methods measuring 10U score.
Sr. Method Pigment | Globules | Milia-Like | Negative | Streaks
No. Network Cysts Network

1 ResNet-151 {96] 0.527 0.304 0.144 0.149 0.125
2 ResNet-v2 [98] 0.539 0.310 0.159 0.189 0.121
3 DenseNet-169 [98] 0.538 0.324 0.158 0.213 0.134
4 bO-EfficientNet [92] 0.554 0.324 0.157 0.213 0.139
5 U-Eff {TATL) [99] 0.565 0.373 0.157 0.268 0.243
] L-Eff{TATL) [99] 0.562 0.356 0.168 0.292 0252
7 Ensemble [98] 0.563 0.341 0171 0228 0.156
8 Attention UNet [94] 0535 0312 0.162 0.187 0.197
9 LeHealth method (Second 0.482 0.239 0.132 0.225 0.145

ranked ISIC 2018 challenge)

[97]
10 NMN's method [96] 0.544 0.252 0.165 0.285 0.123
11 SANet [97] 0.576 0.346 0251 0.286 0.248
12 Proposed ResNet-50 with U- 0.67 0.66 0.53 0.58 0.53

Net

5.7 Discussion

In this chapter, we have discussed the issue of dermoscopic segmentation of skin lesions at
attribute level. A novel ResNet50-UNet framework is presented that uses ResNet-50
architecture as backbone in UNet model. ADAM optimizer is used to update the weights of the
network. To handle the class imbalance problem, present in ISIC 2018 task 2 attribute
segmentation dataset, we have proposed a hybrid of two loss functions named focal Tversky
loss and ToU loss functions. By using this proposed loss function, the data imbalance problem
is handled to some extent.

Experiments are conducted to compare the performance of proposed attribute segmentation
model with existing state-of-the-art approaches such as U-Eff(TATL), L-Eff (TATL), attention
UNet, LeHealth, NMN, and SANet. It has been shown that the proposed attribute segmentation
model gives better segmentation results as compared to the competitors, in the presence of all
five attributes of skin lesion. In discussion, we have shown that the analysis of dermoscopic
structures present in skin cancer lesions provides valuable information for the diagnosis and
management of skin cancer. By carefully examining the pigment network, negative network,

milia-like cysts, globules, and streaks, dermatologists can make informed decisions and
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differentiate between benign and malignant lesions. The analysis of our obtained results for
dermoscopic structures in skin cancer lesions from a medical perspective highlights the
importance of accurate identification and segmentation of these structures for diagnostic
accuracy and patient care. The obtained results provide insights into the model's performance
for different structures, indicating areas of strength and potential improvement.
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Chapter 6

6 Conclusion and Future Work

6.1 Conclusion
This thesis has set to propose CNN based classification models for the hierarchical
classification of skin lesions and a UNet based segmentation model for the dermoscopic
structure segmentation of skin lesion. Mainly, the thesis is geared towards solving the
challenges in classification of skin lesions at taxonomic levels to embed the explainability in a
CNN model. Further, the thesis is concerned to deal with the challenge of complex attribute
level skin lesion segmentation that are present as structures in skin lesion. There is a great
challenge to segment the skin lesion attribute as they have similar and overlap structures among
them and there is a low contrast present in some of them. These challenges lead towards
creating hurdles for the practitioners during the diagnosis process of skin lesion and their
attributes.
Comprehensive literature survey (Chapter 3) concluded that although many approaches have
been proposed for traditional skin lesion fine level classification and for the boundary level
segmentation of skin lesion including a few approaches for attribute level segmentation of skin
lesions. There is still a great need to introduce the explainability in the deep leaming based
models for skin lesion classification and structural level segmentation. This thesis is a small
step toward this effort.
6.2 Contribution
1. The problem of three-level hierarchical classification of skin cancer lesions, by localizing
and visualizing their structural tevel features is resolved to make the CAD system self-
explainable. The proposed method achieved 91% sensitivity, specificity score 98% and
AUC score 95%. Our experimental results proved that the proposed method performs well

as compared to competitor.

2. We have proposed a model for the structural level segmentation and localization of skin
lesion’s features. The proposed model works well in the presence of imbalance dataset.
This attribute segmentation model has shown promising results. Promising mean loU

scores are obtained for all five attributes segmentation.
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3. The problem of class imbalance present in ISIC skin cancer dataset has been addressed to
make the hierarchical classification and structural segmentation more robust. To resolve
the class imbalance issue present in ISIC Task 2 attribute segmentation dataset, we
proposed a hybrid loss function that performs well for imbalance dataset.

4. The proposed system also provides visualization at each hierarchical level of classification,
through gradient class activation maps, which highlight the image regions that contribute

the most to predict output and that are interpretable.

6.3 Limitations
Our proposed work has certain limitations.

1. The available standard ISIC 2018 has separate datasets for classification and segmentation
tasks. It does not provide comprehensive and combined information about both the skin
lesion type and its specific structural / attributes level detail within one dataset.

2. Due to the above reason, we are not able to know about the specific names or labels of the
attributes present in the skin lesion after determining its hierarchy.

3. We have produced GradCAMSs visualizations, but these visualizations do not talk about
label of that specific attribute identified in that region. It only captures the region, and we
visualize it through GradCAMs and gelting only the knowledge about participated region
in decision making.

4. We have not determined the skin lesion type after performing attribute level segmentation
as we do not have the class labels in hand about that specific skin lesion type.

5. Due to resource limitations in hand, we are not able to train our proposed modeis on large
dataset. The performance of the proposed model could be enhanced by increasing the

hardware resources as we will be more able to load large datasets and process it.

6.4 Future Enhancements

This study is focused on three levels hierarchical classification of skin lesions by predicting a
sequence of hierarchy and complex attribute level segmentation of skin lesions. Although
acceptable results are obtained in all proposed modules , however, there are still future

directions that need to be considered.

1. We are intending to work more on embedding further hierarchical levels in deep learning
based models to make them self-explainable.
2. In future, we are planning to embed further deep hierarchy of skin lesions in other various

deep learning based models.
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3. There is need to work on more attributes of skin lesions and to handle the overlapping of
these structures present in lesions that leads towards creating confusions during the decision
of skin lesion types.

4. There is still needed to further improve the explainability of the CNN models as it can be
seen from our proposed models obtained results that it is not performing well on some
images especially in structural segmentation of skin lesions.,
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8 Annexures

Anpex-I: Detail of the layers in proposed H-GoogleNet model

Model: “GooglLenet”

Layer (iype) Qutput Shape Param # Connected to
=;r-rput_1_5;;;tLayer) o [{vione, 224, 224, 3 @ ;; o T
)
canv2d {ConviD) {Mone, 189, 109, 61 9472 {'irput_1[@}[0]"]
)
max¥_poaling2d (MaxPooling20}  {Mone, 54, 54, 64} © ["convadlolf{o]"]
convzd_2 {ConvzD) (None, 54, 54, 64)  41pe [ "max_pooling2d{eifal’]
comvzd 2 (Conv2D) (Hone, 54, 54, 192) 119734 ["cenvad_1[e][e]"]
max_poolirg2d_1 {MaxPooling2D) (Hone, 26, 26, 192) 0 [ 'convad_2[e}fei’]
convad_4 {ConyaD) (flore, 26, 26, 56) 18520 [*max_pooling2d_t{oile] "}
comv2d_6 {Conv2D) (Hone, 25, 26, 16) 2088 {'max_pooling2d_1{ojfe}"]
max_pooling2d 2 (MaxPoolingZD) {Mone, 26, 26, 192} © [ 'max_pooling2d_ifol{e]’}
conv2d_3 (Convan) (Mone, 268, 28, 64) 12352 ['max_pooling2d_1[0][9]"]
convdd 5 (ConvaD) {ilone, 26, 26, 128) 110728 {'conv2d_afo][a])"]
conv2d_7? (Convad) {tione, 26, 26, 32) 12832 ['convad_s[0}{a}"]
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convad_8 {Conv2D)

concatenate {Concatenate}

conv2d_i2 (ConvaD)

convad_12 (ConvlD)}
max_pooling2d_3 (MaxPooling2D)
conv2d_9 (Conv2D)

conv2d_il {Conv2D)

convad_12 {ConviD}

conv2d_14 {ConvaD)

concatenate 1 {Concatenate)

max_pooling2d_4 {MaxPcoling2p)
conv2d_16 {Canv2D}
convd_i9 {ConvaD)
max_pooling2d_5 {HaxPoolinzaD}
conv2d_13 {Conv2D)
conv2d_17 {Conv2D}
convad_19 {ConvD)
canv2d 23 (ConviD)

ccncatenate 2 (Concatenate}

canv2d_22 {Conv2D)
convad_2a {Conv2D)
max_pooling2d_6 {MaxPcoling20}
conv2d_21 {Conv2D)}
cenv2d_23 {Conv2D)

conv2d_25 (ConviD)

{None, 26, 25, 32)

(Nore, 26, 26, 256)

(none, 15, 26, 128)

{Hone, 26, 26, 32)
{Mone, 26, 25, 256}
{Hone, 26, 26, 128)
(tione, 26, 26, 192)
{Hone, 26, 25, 96)
{Mone, 26, 26, &4

{Mone, 26, 26, 4B2)

{None, 12, 12, 488}
(Hone, 12, 12, 96)
(Mone, 12, 12, 18}
{Hone, 12, 12, 480}
(Mone, 12, 12, 192)
{Hone, 12, 12, 208}
{Mone, 12, 12, 4B}
{Mone, 12, 12, 54)

(Hone, 12, 12, 512)

{hone, 12, 12, 96)
{None, 12, 12, 16}
{tona, 12, 12, 512}
{hone, 12, 12, 192)
{Hone, 12, 12, 208)

(Hopme, 12, 12, 4a)

6176

32894

3224

2

32896

221376

76896

15248

G

s}

46176

7696

8

92352

179920

19248

32784

2

49248

8208

9

98495

179520

19248

['max_poolingad_2{e]i{e]"']
['convzd_3[@}[e]",
‘ronvad_S[el[el’,
‘convid 7[alfel",
‘conv2d_B[e}{e}']
[‘concatenate[@][@]'}
[*concatenate[@lle]"]
[“concatenatefa]ie] ']
[*concatenatefa]fe]']
["convzd_1a8la][0}']
['convad_12{e}[e]’]
[*max_pooling2d_3[01[e]"]
{’convid_9{o]{e]",
‘convzd_11fel}{o]’,
“convzd_13fol{e)’,
‘convad_14fpj[2]’]
['concatenate_1[@]{8}']
['max_pocling2d_4{ai[e}']
[ *maxu_pooling2d_afel[o]’]
['max_pooling2d_a[6][0]"]
[ ‘max_pooling2d_afe]le]")
[conv2d_16[0]{e]"]
['corv2d_18[8][0]"}
['max_pcoling2d 5{6][e]"]
{'conv2d_15{e][e]’,
‘conv2d_17{el{e]",
‘convad_15[0}{e]",
‘conrvad_20[8]{8]"]
{"concatenate _2{0}[0]"]
[ ‘concatepate_2[0}[0]"]
[ 'concatepate_2[2]{0}"}
frconcatenate_2[a}{a}’]
['eonvad_22{8]{0]"]

['comv2d_2afe}ia]’]
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conv2d 24 {Conv2D}

concatenate_3 {Concatenate)

convad_28 (ConviD}
canv2d_3e (ConvaD})
max_pooling2d_7 (MaxPooling2)
conv2d_27 (ConviD)
convzd_29 {Conwv2D)
conv2d_31 (Conv2D)
conv2d_32 (Conv2D)

concatenate_a (Concatenate)

convid_34 {Conv2D)
canv2d_36 (Conv2D)
max_pooling2d B (MaxPuoling2D)
comvid 33 {ConvaD)
conv2d_35 (Conv2d)
convad _37 (ConviD)
conv2d_28 {ConvD}

first_level layer {Concatenate

)

convad_a1 (ConviD}
conv2d_43 (ConvaD)
max_pooling2d 3 {MaxPuoling20D}
convzd_a@ {ConvaD)}
conv2d_43 {(ConvlD)
conv2d_44 (Conv2D}

conv2d_45 (Conv2D}

(Hone, 12, 12, 64}

(tone, 12, 12, 512)

(tone, 12, 12, 96)

{Hone, 12, 12, 16}

None, 12, 121, 512
r

(Mone, 12, 12, 192)
{(flene, 12, 12, 208)
(None, 12, 12, 48)
(Mone, 12, 12, 64)

{(Mone, 12, 12, 512)

{Hone, 12, 12, 96)
(toone, 12, 12, i6)
{¥one, 12, 12, 512}
(None, 12, 12, 192)
(tlone, 12, 12, 2¢8)
(Mone, 12, 12, 48)
{Hone, 12, 12, B4}

{Hona, 2, 12, 512)

(Mone, 12, 12, 112)
{Hone, 12, 12, 24}
{Hone, 12, 12, 512)
(tone, 12, 12, 163)
(Hane, 12, 12, 224)
(Mone, 12, 12, 84}

{Hone, 12, 12, &4}

32932

e

49248

82928

2]

98496

179920

15248

32832

<]

49244

8208

9]

98496

179520

19249

32832

5]

57456

12312

a

82080

228815

38454

32832

[ 'max_poolingad_s[2}{0]"}
[*convzd_21[e][e]’,
‘convad_23{e][a] ",
‘conv2d_25[0){e]’,
*comv2d_26{elie]’}
[ "concatenate_3{ei{o}'}
['concatenate_3[0}{e]'}
['concatenate_3[0}{#]']
{'concatenate_3[01[2]"]
{*convad 28fel{0]']
{"convad_3e[e][e]"]
[ "max_pooling2d_7{e][e}"]
[’convzd_27{e]e]",
‘convzd_29{0}{e]’,
‘convad 3ife]fe]",
‘convad_32{el{e]"]
{'concatenate_s{0}[a] "}
[‘concatenate_afei[e]'}
['concatenate 3a[0][a]'}
[ cancatenate_4[o][@]']
freanvad_safa]fe] "]
{’conv2d_36[a}{0]"]
i 'max_pooling2d_sfeilel"]
['convad_33{e]{e]",
‘conv2d_35{0]'8}]",
‘conv2d _37fR](0)’.
‘convad_sgloj{e]’]
['first_level layer{e]{e]’]
[first_level layer[e]{0}"]
{'First_level layer[0][0]’]
{'first_lavel layerio]fe]’}
['convad_ail[ojie]"]
["conv2d_23{pi{o]"]

f'max_pooling2d_s[ej[ej"]
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concatenate_5 {Concatenate)} {None, 12, 12, 512) ® ['convad_aolelle]’,
‘convad_42{e]}fe]"’,
‘convad_d4le]fe]’,
"convzd_4a5[0]{e]"]

conv2d_47 (Conv2D) (Hone, 12, 12, 128) 65664 {‘concatenate_s[0}{e}']
conv2d_49 {ConvaD) (none, 12, 12, 24} 12312 {"concatenate_Sfe]{e]’}]
max_pcoling2d_10 (MaxPooling2l {Hone, L2, 12, 512} @ ['concatenate 5{0}{0}")

}

conv2d_as {Conv2D} {Hone, 12, 12, 128) 65664 ["concatenate_5[0jfa}’]
conv2d_48 {Conv2D) {None, 12, 12, 256) 295168 {conv2d_a7{e][e]"]
conv2d_50 (Conw2D) (Hone, 12, 12, 64} 38464 {'convad_49i8][9]"]
convad_51 {ConvaD) (None, 12, 12, 64) 32832 [ 'max_pooling2d 10{aijfo]'}
cancatenate_s {Concatenate} (None, 12, 12, 512) @ ['convad_as{@}fo]’,

‘convad_as[e}{e]",
“convad_se{e][e]",
‘convad sife]ie]’}

convad_53 (ConvaD} {None, 12, 12, 144, 73872 [ 'concatenate_s{ej[e]']
conv2d_55 {Conv2D) (None, 12, 12, 32} 16416 [’ concatenate 6[03[0]']
max_pooling2d_11 (MaxPooling2D {wone, 12, 12, 512: & [’concatenate_6[2][0] ]
convad_52 (Conv2D) (None, 12, 12, 112) 57456 ["concatenate_6[01[0]']
convad_54 (Convid) (Hone, 12, 12, 288) 373536 [conv2d_s3afal[e]’}
convzd_56 {Conv2D) {(tone, 12, 12, 64} 51264 {comvad_s5{0][0]']
conv2d_57 {ConviD) {Hone, 12, 12, &4} 32832 {"max_pooling2d i1[6}[0}']
sacond_level laver {Concatenat {done, 12, 12, 528) o ["zonvad_52{e®][]",

@3 ‘conv2d_54{pl[e]",

‘convad_se[@]f[e]’,
"convzd 57[0]{e]']

cunv2d_64 {Conv2D) {Hcre, 12, 12, 168) 84549 ['second level layer[@}[0]"}]
conv2d_s62 (ConvD} {Mone, 12, 12, 32) 16928 [ 'second_level layer[8]{a}']
max_pooling2d 12 (MaxPooling2D ({hHone, 12, 12, 528) 0 ['secord level layer[a][p]’]
)

convad_59 {Conv2D} (Hone, 12, 12, 256) 135424 {"second_level layer{ojfo]'}
conv2d 61 {Conv2D) {Hone, 12, 12, 320) 451120 ["zonv2d_sajel[e]"]
conv2d_63 (Conval) {Mone, 12, 12, 128) 102528 f'convad 6200}{e]"]
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convld_64 (Conv2D}

concatenate_7 (Concatenate)

max_pocling2d 13 (MaxPooling20

)
convad 66 {ConvaD}

convad_68 {ConviD)

max_pooling2d_14 {HaxPooling2D

)

conved_65 {(ConvaD}
conv2d_67 {ConviD}
conv2d_69 {Conv2D}

conv2d_7a {€onvaD}

concatenate B {Concatenate}

avarage pooling2d (AveragePool

ing2D)

average pooling2d 1 {AveragePo

0ling2D}
convad_?2 {Conv2D)

convad_74 {ConvaD})

max_pooling2d_15 (MaxPoolingZd (Mone, 5, 5, 832}

conv2d_39 {Convil}
convad 58 (ConviD}
canvy2d 71 {Conv2D)
canv2d_73 (Conv2D}
cameld 75 {{onv2D}
conv2d_76 (Conw2D)
flatten {Flatten)

flatten_1 (Flaiten)

(Hone, 12, 12, 128)

(Mone, 12, 12, 832)

{None, 5, S, 832)

(None, 5, 5, 160}
(tione, 5, 5, 32}

{None, S, 5, 632)

(Mone, 5, 5, 256}
(None, 5, 5, 320)
(tone, 5, 5, 128)
(Hone, 5, 5, 128)

(None, 5, 5, 832)

{tone, 3, 2, 512)

{Hone, 3, 3, 528}

(tione,

(tione,

{tlane,
{tore,
{Hone,
{zlona,
{Hone,
{Hone,
{hone,

{Mone,

5, 5, 192)

s, 5, 48)

3, 3, 128)
3, 3, 128)
5, 5, 3B4)
5, 3, 3B4)
5, 5, 128)
5, 5, 128)
1152)

1152}

67712

2

133280

26656

a

2132438

461120

102528

186624

2

@

a

159336

28954

4

65664

67712

3219872

663936

153728

la6a24

o]

o]

{"max_pooling2d_12{0j{e}"}

['conva2d_sefe]fe]’,
‘convad_61{8}fe]’,
‘conv2d_63[e]fe]",
*tonvad_s4fe]fe]"]

{'concatenate_7{e}{e]")

{ "max_pcolirgad_13[0]{0]"}

f'max_pcoling2d 13[81{0]"}1

{"max_poolirg2d_13[0n]f0]"]

{ ‘max_pooling2d_13[0][8]"}

{'convad_se[ae]fe]"]

{’canv2d_68{e][0]"]

[ 'max_poolirg2d_i4f[a]{e]’]

["convad_65{0)f0]",
‘convad_s7[e}{o]’,
‘convad 69[el{e}",
‘convad_7efeifel"}

{*first_level layerf{e][e]’]

{"second_level layer[onl[a]']

["concatenate_a{oi[6]"]
['concatenate_Bfol[a]']

[ ‘concatenate_sfo][e}’]

['average poolingadfajfe}’]
{"average poolingad_1{a]{e]'}
[“concatenate_g[o]{e]"]
[convad_72{0]{0]"]
{'convad_7a{e]lo]"]

[ 'max_poolingzd_i5[o}[a]’]
{*convad_39{0}[0]"]

freonvad 58{e}lo]’]
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third_level Taver (Concetznate (llune, 5, 5, 2924) @ ["convid 7L{e]la] ",
: ‘convad_737e]08]
Toomyzd_73(e)09]
“conv2d_7570]10]

hd
ki

dense {Darse) Jome, 12243 LIBOB7Z ["Flatzenin}[2i"]

cersa | (Densa} Hace, 1024) 1160672 [“Flattan_170][0]']

garl (GlobaliveragePoclirg2Dd)  ime, 1728 ] Prrbira tavel layeri®liol’)
dropodt (Dropout} Clora, 180243 3 Pdensaaifel:

dropout 1 {Drcpout} e, 1224 & Dldenss 1i2][21]

erosout 2 (Dropoat) Loye, 10248% 0 "canL™802]7]

lev2ll {Dansg} coare, 13 1235 ['dropaatialfat']

level? {Dense) e, 4) 2120 [ Paropout 1{e]in]"]

sutoiut {Dense) Nowe, 73 7175 Preropouz_2ie][e]" ]
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