Design and Evaluation of Security Features in RealSpec Real
Time Executable Specification Language

Ph.D Thesis
By

Muniba Murtaza
~* 135-FBAS/PHDCS/F15

Supervisor

Dr. Amir Khwaja

LT Co-Supervisor
R ‘ Dr. Humaira Ashraf

Department of Computer Science
Faculty of Computing and IT
International Islamic University,
Islamabad
August 2024

¥

phD
po5s %
MWD

Conpw‘c& Sec wnt EJ

- : O"*o gfdu)
Pﬂﬁyam/%zfé (wﬁque <k/€C#"{oMC, ¢ “

¢ \ "f R
RQ@(- {r'we ‘3‘63‘3‘(5‘”,” v N

COW\PU.‘(C L So/('(et . ’fﬁ;{/’VS

oo far lawguaged:
CoW\tﬁu}c}; §u,§,#wa/\,¢—r Specu(, Co T 3 0

/

Fiaul Approval

DEPARTMENT OF COMPUTER S TENCE
INTERNATIONAL ISLAMIC UNIVERSI€Y [« AMABAD

FINAL APPROV AL
Dated 29" Aug 2024

It is certified that we have read the thesis titled ~“Design and Evaluation of Security Features in
RealSpec Real Time Executable Specification Language” submitted by Ms.Muniba Murtaza (1353-
FBAS/PhD (CSYF15). It is our conclusion that this thesis is of sufficient standards to warrant its
acceptance by the International Islamic University, Islamabad for the PhD Degree in Computer Science.

COMMITTEE
<

EXTERNAL EXAMINER

/7
W
Dr Hikmat Ullah Khan g - .
(
Assistant Professor COMSATS ;& = f:
Institute Wah Cantt f

Dr Basit Shanzad ¢
Assoclate Professor,
NUML University Islamabad L

I4 \J
INTERNAL EXAMINER

Dr Shireen Tahira
Assistant Professor. @ o

Department of Computer Science
FC&IT, HU, Islamabad w LA~

DEAN

N}
|
|

\

[S

Prof.Dr Asmatullah khan

Protessor,

Faculty of Computing & Information Technology
U, Islamabad

CHAIRMAN

Dr Muhammad Nadeem
Assistant Professor,

Department of Computer Science
FC&IT, 11U, Islamabad

SUPERVISOR & CO-SUPERVISOR
D Amir Khawaja
Director of Engineering Qualcomm, United State

Dr Humaira Ashraf

Assistant Professor,

Department ot Computer Science
FC&IT. 11U, Islamabad

A dissertation submitted
to the Department of
Computer Science,
International Islamic University, Islamabad
as a partial fulfillment of the requirements for the award of the
degree of Doctor of Philosophy in Computer Science.

Declaration

Declaration

[hereby declare that this thesis, neither as a whole nor as a part thereof has been copied out from any
source. It is further declared that no portion of the work presented in this report has been submitted

in support of any application for any other degree or qualification of this or any other university
or institute of learning,

@ Muniba Murtaza
- 135-FBAS/PHDCS/F15

Design and Evaluation of Secunty Features in RealSpec Real Time Executable Specification Language

iii

Dedication

Dedication
To myparents, my husband, mybrothers, and my children (Manha, Hashim,
Maryam, Haider, Gul Meena and Issa)

] iv

Design and Evaluation of Secunty Features in RealSpec Real Time Executable Specification Language

Acknowledgments

Acknowledgments
First and foremost, I express my gratitude to the ALMIGHTY ALLAH for granting me the
opportunity to successfully complete my degree.

I would like to extend my heartfelt appreciation to my supervisor, Dr. Amir Khwaja, and co-
supervisor, Dr. Humaira Ashraf, for their invaluable advice, unwavering support, patience, and
guidance throughout the thesis writing process. Their constant encouragement played a significant

role in my achievement.

I would also like to acknowledge and extend my gratitude to especially Dr. Asim Munir, Dr. Umara
Zahid, Dr. Muhammad Nadeem and Dr. Qammar Abbas whose valuable feedback and reviews

refined the research.

I extend my gratitude to the Dean of FCIT, Dr. Muhammad Asmat Ullah Khan for his continuous

motivation and support.

[am profoundly grateful to my family—my mother, father, brother, husband, and children—for
their unwavering support, understanding, and financial assistance throughout this journey. Their
presence and patience, especially during times when I couldn’t manage certain household
responsibilities, were invaluable. I am especially at a loss for words to express my gratitude to my
mother, whose encouragement was crucial in my decision to pursue higher education and who
stood by me through every challenge. My thanks also go to my father for his constant motivation
during moments when my enthusiasm waned. [sincerely appreciate my brother for his essential
support in the documentation process and ongoing guidance. Lastly, I am deeply thankful to my
husband, who not only provided financial support but also supplied me with a laptop and technical

gadgets, along with offering valuable technical guidance throughout this entire process.

I would like to acknowledge the Higher Education Commission (HEC) for providing me with
funding through the indigenous 5000 Ph.D. batch II fellowship program. This opportunity was

instrumental in enabling me to pursue my academic goals.

Lastly, 1 extend my sincere appreciation to the International Islamic University, Islamabad,
Pakistan, for providing me with a platform to realize my aspirations and accomplish my academic

objectives.

Design and Evaluation of Secunty Features in RealSpec Real Time Executable Specification Language

3

T

. @

Abstract

Abstract

The thesis investigates security vulnerabilities in web software, which arise from programming
languages underlying vulnerabilities and somehow programmers' lack of security knowledge and
the use of insecure libraries. It critiques the "penetrate-and-patch" method due to its high costs and
the risk of exploitation before patches are available. To tackle these issues, the thesis introduces
two frameworks: SEFF, which assesses the security features of programming languages like C++,
C#, Java, Ruby, and Python, and SRFS, which evaluates executable specification languages. SEFF
finds C# has the highest security coverage (69.4%) while C++ has the lowest (47.22%). SRFS
reveals Secure Descartes with the highest coverage (91.75%) and SysML-Sec with the lowest
(32.9%). Overall, SEFF and SRFS provide methods for evaluating the security of programming and
specification languages, with RealSpec performing best in terms of security coverage. Following
the SRFS, security requirements are delineated using the Real-Time Specification Language
(RealSpec), which serves as a representative case. RealSpec functions as an executable
specification language commonly utilized in the requirement specification stage of the software
development life cycle of embedded systems. Its structure closely resembles that of a high-level
programming language, reducing the learning curve for programmers and necessitating fewer
abstractions. The validation of these specified security requirements is conducted using a custom
model checking tool, followed by testing against attack specifications. This approach ensures
security measures are implemented from the initial design phase onward. Additionally, RealSpec
is compared against other executable specification languages like SysML- Sec, SecureDescartes, S-
Promela, and Ponder using SRFS and the result shows that RealSpec gives more security coverage
at 90.625%. The findings indicate that RealSpec offers the most comprehensive coverage of

security features.

Design and Evaluation of Secunty Features in RealSpec Real Time Executable Specification Language

[vi

a.

Table of Contents

Contents

1.1 REALISPEC......cuiiiee ettt sttt et et eesr e e s e 3
1.2. ReS€Arch MOtIVALIONcuuveeiicienc ettt s e 3
1.3. Statement 0f the PrOBIEMccucuiiiiiiiieecece st 4
14. ReSEArch QUESHIONScoeuieiiceii ettt eas st s e e e s eessenenons 4
1.5. Research Aims and ObJECHIVESc.vuvurivirieiieiiieeec ettt eresseee s 4
1.6. Research ContribULioN............c.ouiivieiiininii ettt eeea s 5
1.7. TRESIS OVEIVIEWcceuviuimriercirirtirinrisi sttt ettt st st es e s e 13
2.1. ReISPEC: AN OVEIVIEWcvivieieieieriteietctte ettt ee et ee et eee e e s e e seens 15
2.2. Security Challenges in Real-Time SYSEmScccccueuereviverereirieeeeeeiceeseer e 15
2.3. The Role of Security Feature Framework (SEFF) et enas 16
2.4. Abstracting SEFF into Specification Languages (SRFS)coooovvveveieiieeieeniceeeeeenen 16
2.5. The Significance of EVAIUALION........c.cc.eveeecneneririniinsiessee et 17
2.6. Selection Criteria of the Attacks in RealSPec........ovvvivvviiveieieiiiceiceeee e 17
2.7. Inclusive and EXCIUSiVe Criteriacoouviveirerireeiiiciteeeeeeteeceee ettt 27
2.8. Inclusive and Exclusive Criteria for Systematic Literature Review (SLR)..........ccc.......... 28
2.9. Security Weaknesses in Programming Languages...............c.ceveereemeviceciiiicvsrcereeeenn, 29
2.10. Literature Review on Comparative StUIiesc.ccoeeivereerieireereeerce e 39
2.11. Literature Review on Specification Languagescocuvvevieeieimieivieieeieeeeeeee e 39
2.12. Identification of Security Features from Literature.............o.coooveevevieieeiviieciececee e, 45
2.13. Security FrameWOTKc.cooieieiieriiierereeer ettt s seee 45
2.14. Security Features in Programming Languagesc.cccccooveveveveuerineeeeeenieeeieesies e 46
2.15. SUIMMATY ..ottt ettt et en e e es e bt s st sesnas 61
3.1. Proposed Framework for Real Specification (REALSPEC)..........cococovevivivveeiniericeenann. 64
3.2. Evaluation of Programming Languages Using the SEFF Frameworkccocueu.... 65
3.3. Security Features Gap Analysis for the Java Programming Language..................cc.oun..... 67
3.4. Abstraction of Security Features to Security Requirementsc.ccouevvveeveenirvenreennnnnen. 75
3.5. Evaluation of Specification Languages using Proposed Frameworkcccccccue..... 81

35,10 SYSMLASEC ettt ettt st et enens 82

3.5.2. SECUTE DIESCAITEScooveueeeeiririeciiireitriee ettt sttt et e st e sass e st se sttt sae s 83

3,530 UMLSEC....iieiuemiiniieieieereucetetseetete et e s st esass s e bttt ses et seesssms et esessaressasosesessasanas 83

3.5.4. Input Validation USing UMLc.ccoouiiiieioeieieiereee ettt snnas 84

355, AME ettt ettt eassteseen st st st sae e enn 84

35,6, S-Promela.......coooceieiiiecee bt 84

357, PONAET .ttt bttt ettt e s 84

358, SECUIESOA ...ttt ettt ere et e b e r e e er e s aneneene 85
3.6. Mathematical MOdelc.c..cocermiiiiiirectcte ettt 85
3.7. Analysis of Specification Languages using SREScoooiivveecireeee e 86
3.8. Proposed SOIULIONcuiiieieiiieiee ettt et eee 95
3.9. SUIMMATY ..ottt r et ae e eess s e et e b enss s savasereenens 96
4.1. ReaISPEC OVEIVIEW ...ttt ettt seeaeenens 98
4.2. Input Validation and SQL Injection Prevention..............c.cceeeueeeieeeneeeccieeecscee 100
4.3. Output Sanitization and XSS Preventioncceeeeevrverivieerenieeceeeeeeceeeseeeeeseeene s 106
4.4. Bound Access Prohibition and Buffer Overflows...........ccccoovivveviemeieciecccecereee, 106
4.5. Comparative Analysis of RealSpec vs Model Checking techniquesccccccucvn.ee.. 116
4.6. Evaluation of RealSpec Using Security Features Frameworkc.ccoveveeeeievevceenen. 118
4.7. SUIMIMATY ..ottt ettt ettt ettt e st e e s eeeeeeneesenmeeeeeeensnnn 121
5.1. Specification of Security Features in Real Spec: A Case Studyccovevevvvvveeeeennnneee. 124

Design and Evaluation of Secunty Features in RealSpec Real Time Executable Specification Language

(@

Table of Contents

5.2. Banking System Case StUAYcocoouuiueuiiuirieeeeeeeeeceeeee et s e e 125
5.3. Specification of Banking System Application in RealSPeccccoouvveueereereeereoeeernnnns 128
5.4. Limitation 0f Case STUAYcccrroririurinieitee ettt s e 136
5.5. Analysis of the FINAINES.......c.ccvuiveiiriieceeeece e s e 136
5.6. Comparison with similar teChNIQUEScoceeveviuiiiieieicicceeee e eee s e 138
5.7. Comparison of Proposed Frameworks with Existing Frameworksccc.coeeveuennn... 138
5.8. SUMMATY ..ottt et et sttt ee e eaene e 142
6.1. ComPilation PrOCESScceveiririemrneririnnee ittt tesc st eeee sttt ee e aeaenen 144
6.2. Model-to-Code Transformationoceeeeeeiieieueeeeeeeeeiceeee ettt e 147
6.3. SUMMATY ..ottt be s e e st st ers s e e e e s se st eseessssssnsssessenssaene 147
7.1. CONTIDULIONS.....c.covveeeienireret ettt e ettt s st st sae st e s e b sese st ssssesseseneseneses 149
T2, FULUIE WOTK ..ottt ettt s et ae sttt te s st se s bt eeeen s 150
REFERENCES ...ttt sttt ee st e st s s s b b essn s eae st nesesesreneasans 153

<

*

[viii

Design and Evaluation of Secunty Features 1n RealSpec Real Time Executable Specification Language

Table of Tables

Table of Tables

Table 2.1 attack SELECtION CIILEIIAccuevuururereirneserreererrine s ssseseest st s ss s s s s s s s esbe bbb s seste e sase o 30
Table 2.2 Security threats and mitigation teChNIQUES..........cccocvvveviiriireeeiieeeee e 36
Table 2.3 Literature Review on Programming Languages Comparative Studies..............ccoevnennn.. 41
Table 2.4 Literature Review on Existing Security Specification Languages...............ccccoevrvrunnenee... 28
Table 2.5 Literature Review on Comparative Studies Evaluating Specification Languages............ 30
Table 2.6 Security Features identification from Literature REVIEW...........coceivvevveeemeeerereeeeeeene. 47
Table 2.7 Security Features and sub-features mitigating cyber-attackscoooeevieiiveeveevreennnene, 59
Table 3.1 Proposed Security Feature FrameworK...........cccocviveeeercvieciiiceieeces e seeenas 61
Table 3.2 Evaluation of Programming Languages through SEFFc..ccccovviveiieieoneeeeeernenes 52
Table 3.3 Percentage of Security Features Coverage byProgramming Language 55
Table 3.4 Security FEature ADSIFACIONcccevevevevitceiieeeieieee et st s e s s s ereeans 57
Table 3.5 Performance MEASUIESc.ccceuririeiririririeisiessisisceeesersesese et sessssssessesessseseeeseneseesesesaees 72
Table 3.6 SFRS used to Evaluate Security Capabilityof Specification Languages 64
Table 3.7 Evaluation RESUIS........ccccriiiuriieeiicc ettt et es s 67
Table 4.1 Log File Signature............cccveerineniiinninnieinieeeetese ettt e et ees e 77
Table 4.2 Specification of Secure Error MeSSAZe.........cuvuiuevveveeeeeieeiecerereeiesesieeeeeesveeeeseseseseenen 80
Table 4.3 Specification of Data Validation RESOUICEc.cccurvverveerverececieececeece e reree e, 83
Table 4.4 specification of bound access Prohibitioncco.ccueveiirieiierieeeree et s e 86
Table 4.5 USEr FUNCLIONSc.cvocveueeriicerieiietetsicse et enes oottt se s seeesees 87
Table 4.6 Specification Of TYPE SAfEtyccccvevrireerieceeiieeeetee et seeees e 89
Table 4.7 Specification 0f AUthENtICAtIONo.veveeeceiverecreeeeeeee et e e s ereseeesese s eeo 90
Table 4.8 Specification of MemOTY Safety...........ovcuereiireeeeeieeeeeeeee ettt st ee e s enes s 91
Table 4.9 Specification of Secure Information FIoW..............c.oovuiuieimieereeeeereeeeeee s e 93
Table 4.10 Specification of Communication Security in RealSPeccooveereeereveeererereesresenn. 95
Table 4.11 Evaluation of RealSpec using SEFFcoovvivieiieieeeeicerereseeeee e eeeese e eses e 77
Table 5.1 Banking system access control roles and PoliCiesccoceereeeeeueveereeeeeeseeseesrn. 99
Table 5.2 RealSpec constructs for the banking SYStemcovevvreeeeeeeeeeeeeeeeceeeeeeeee e, 99
Table 5.3 DANK TOIESc.cuoveierieierieieres ettt et eee e s et se s s s eee e eses 107
Table 5.4 sample USETLISt dataococvueiiueieiiierite ettt ee e ese s erenaes 107
Table 5.5 sample input streams fOr POLCYLIST.......c.cvevevueveviveeceeieeeeeeeeree s e eeeeeee e eeseerevssesesas 107
Table 5.6 Input streams in AuthorizationChecKPrOCESS().....vvuveveereeeesreseseeereseerereseseeseoseseos 108
Table 5.7 Security Specification in RealSpec and Attacks Mitigatedcccvvveeereereeeerennnnn, 99
Table 5.8 Comparison of Specification Languages showing Security Feature Coverage................. 99
Table 5.9 Comparison of Existing Frameworks and SFRS with SEFF........ccocooveeveeoeoeeeeeererernn. 100
Table 5.10 Comparison of Executable Specification Languages using SREM................cccocoun...... 101
Table 6.2 Mapping of RealSpec Features t0 CH++ COe.........ouuuimimeeieeeerereeee e seseeees e 124

| ix

Destgn and Evaluation of Security Features mn RealSpec Real Time Executable Specification Language

.

«

Table of Figures

Table of Figures

Figure 1.1 Detailed Research Diagramc.co.oueeieececeeereeeeneeeeeeeeesesce oo 06
Figure 2.1 Structured Query INjection attack.............cee.cveeeeueeeeeeeeeeeeeereseneeeeeseeooee e, 20
Figure 2.2 Cross-site SCriptiNg attackocevuevuiusivieceeiesieeieeseeeeeeeseeseeeesessessee e 35
Figure 2.3 mitigation techniques on computer system layers from literature review............. 39
Figure 2.4 Security FramMEWOIKcccovuriuiuimurrrriecicecsiecsee oo s eeeee s eses s e 48
Figure 2.5 Proposed SEFFcc.oiiiniiee ettt ses s ses e 50
Figure 3.1 Proposed SOIULION...........ccoruruiriecieieiiee et 95
Figure 4.1 Specification of Input Validationco.ceuveeeeeeeneeeeeeeeeeeeeeeeeeea, 106
Figure 4.2 Specify Output Validationcuvveviecueieuiiceieeceereeeeeee e eeses s eesereve s 107
Figure 4.3 Specification Buffer Bound ACCESS............c..oeeuieemeeeeeeeeeeeeeeeeeesee oo oo 87
Figure 4.4 Single Sign On Authenticationco.eeiuveecueereeereneeseeeeeeeeeseseesees e 112
Figure 4.5 Session Management and sesSion tiMeoULoveueeeeerereereeeeeeeereseeoa, 115
Figure 4.6 Secure CONfIUIAtIONc.eeverueveereiuieieeiceeeceeieeeeeeeeee e ee e e 116
Figure 5.1 Security Features in a Web Application SyStem...........ocoveveveeuroeeeersreeeeenns 128
Figure 5.2 Banking System Web Application Sequence Diagramocooveevevvrernnn... 135
Figure 6.1 Compilation PrOCESScevirieiiieiteteeecccceet et ee et vesas e s s eens 109
Figure 7.1 CONIIDULION.couiiiiueiiieirree et s e es e e eeons 128

Design and Evaluation of Secunty Features in RealSpec Real Time Executable Specification Language

gf

List of Publications

List of Publications

* Published Articles in Wiley online

- A. Khwaja, M. Murtaza, and H. F. Ahmed, “A security feature framework for programming
languages to minimize application layer vulnerabilities.” Security andPrivacy. vol. 3, no. 1, p. 93,
2019, doi: 10.1002/spy2.95.

* Published Paper
~ Murtaza, Muniba. "S-RealSpec: A Security Extension to Detect SQLT attack and Sensitive Data
Exposure.” Kurdish Studies 12.5 (2024): 757-769.
* Accepted paper

- Muniba Murtaza and Humaira Ashraf, "A Security Requirement Framework for Secure Web
Application Development”, International Journal of Business Information Systems.June 2023.
ISSN 1746-0972-1746-0980. bitps://dor org/10.5504/1UBIS 202314058319

Xi

Design and Evaluation of Secunty Features n RealSpec Real Time Executable Specification Language

List of Acronyms

ANSI

API
ASCII
ASLR
ASP
CA
CFG
CF1
CRED
DynIMA
HTTPS
IETF
IPC
JAAS
JAR
JRE
LINQ
MDS
MDSE
MVC
NX-bit
OAuth
OpenSSL
OWASP
PRNG
RealSpec
,\ ROP
i RPC
RSA
SDLC
SecureSOA
SEFF
SFRS
SHA
SID
SQLI
SSL
SSO
SysML-Sec
TLS

(@

American National Standard Institute

Application Programming Interface

American Standard Code for Information Interchange
Address Space Location Randomization
Active Server Pages

Certificate Authority

Control Flow Graph

Control Flow Integrity

C Range Error Detector

Dynamic Integrity Management

Hyper Text Transfer Protocol

Internet Engineering Task Force

Inter Process Channel

Java Authentication and Authorization Service
Java Archive

Java Runtime Environment

Language Integrated Query

Model Driven Security

Model-Driven Security Engineering

Model View Controller

non-executable bit

Open Authorization

Open Secure Socket Layer

Open Web Application Software Program
pseudo-random number generator

Real-Time Executable Specification Language
Return Oriented Programming

Remote Procedure Call

Rivest, Shamir, and Adi's

Software Development Life Cycle

Secure Service Oriented Architecture

Security Feature Framework for Programming Language
Security Requirement Framework for Specification Language
Secure Hashing Algorithm

Session Identity

Structured Query Language Injection Attack
Secure Socket Layer

Single Sign On

System Modeling Language-Security

Transport Layer Security

TOCTOU Time-Of-Clock to Time-Of-Use attack

UML-Sec
XSS

Unified Modeling Language-Security
Cross-Site Scripting Attack

[Xii

Design and Evaluation of Secunty Features 1n RealSpec Real Time Executable Specfication Language

Chapter 1

Chapter 1 Introduction

INTRODUCTION

Research studies have revealed that vulnerabilities in software systems often stem from issues
within the programming languages themselves, such as insecure libraries or a lack of knowledge
concerning vulnerabilities present in the underlying programming languages [1], [2], [3].
Vulnerabilities can be seen as weaknesses or gaps in the software system that may appear either
unintentionally during the development process or due to mistake by the developers [1]. These
vulnerabilities are sometimes a consequence of the need to rapidly release software systems to the
market or the absence of expertise in security by the developers, causing them to overlook certain
security features [1]. Typically, security has been handled as a non-functional requirement and
often considered as an afterthought, leading to the "penetrate-and-patch” approach. In this
approach, vulnerabilities are addressed by releasing patches once they are located [4]. The
"penetrate-and-patch” approach to addressing vulnerabilities has some drawbacks. One of the
primary disadvantages is the potential exploitation of vulnerabilities before they are discovered
or before a patch is released [4]. This leaves software systems exposed to potential attacks and
can result in notable damages. Additionally, the "penetrate- and-patch" approach can lead to
elevated maintenance costs. Continuously discovering vulnerabilities, producing fixes, and
delivering them can be time-consuming and resource- intensive, which makes it difficult for
organizations to stay ahead of the continuously shifting threat landscape [4]. Another challenge
with this approach is the integration of non-functional requirements, such as security, with other
functional requirements. Treating security as a posterior can result in difficulties in effectively
integrating security measures into the overall software design and architecture. This can lead to
unstable and insecure system. Model-Driven Security Engineering (MDSE) [1]-[23] has emerged
as a subfield of model- driven engineering to address these challenges. In the early stages of
software development, MDSE focuses on determining requirements that are functional as well
as non-functional, including security and to specify security requirements in specification
languages. MDSE attempts to address issues such as poor software quality and elevated
maintenance costs by incorporating security requirements from the beginning [5]. The basic idea
behind MDSE is that if a model accurately depicts the desired system, it can be used to generate
a bug-free implementation. The model is carefully made, and different methods such as model-
based testing, theorem proving, model checking, or model validation can be used to assess and

confirm the program code's compliance to the model [6]-[9]. These strategies ensure that the

I 1 L

Destgn and Evaluation of Secunty Features in RealSpec Real Time Executable Specification Language

Chapter 1 Introduction

implemented code matches the anticipated behaviors indicated by the model, increasing the

system's stability and quality.

1.1. Real Spec

RealSpec is a real-time executable specification language for concurrent systems [24]-[29]. It
is identified as a declarative language used for formal specification. RealSpec works at analysis
and design phases of software development. The primary choice of RealSpec as a case study is to
extend security support for Real Spec. RealSpec is executable specification language and its
syntax is similar to high-level programming languages that can minimize learning curve for
developers. By using RealSpec, the model becomes executable, providing sufficient information
for verification without the need for additional resources. The semantics of RealSpec are
represented in a mathematically tractable and unambiguous manner, guaranteeing accurate and
reliable analysis. This approach can help in ensuring the accuracy and reliability of the developed
software [16].

1.2. Research Motivation

OWASP TOP 10 is a standard document for web application development [16]. The OWASP TOP
10 list is updated every three years because these attacks are still happening today despite many
mitigation techniques for preventing them. SQLI [31]-[34], XSS [34]-[37], buffer overflow
attack [38]-[40], [44], [48], TOCTOU [45], Sensitive information exposure [47] and broken

authentication [46] are among them.

The previous specification languages do not model/specify security features collected from
programming languages used to provide countermeasures against specific OWASP TOP 10
attacks [51, [7], [8], [10]-[15]. Many frameworks for evaluating specification language security
coverage provide limited security features [16]-[22]. Furthermore, past security specification
languages defined security needs that were either domain-specific or extensions to specific
specification language with syntax and semantics related to that specification language. To
convert the code from the model to a high-level programming language, these security definition
methodologies necessitate far too many transformations from one model to another and then

transformation to implantation language.

Another challenge was to identify secure programming functionalities from popular

l 2 L

Design and Evaluation of Secunty Features in RealSpec Real Time Executable Specification Language

L

;.

Chapter 1 Introduction

programming languages and prevention techniques to identity those functionalities that are
inherently provided by programming languages to secure them from above-mentioned OWASP
attacks. Combining security features into a taxonomy allows for evaluating the security
capabilities of programming languages. Traditional comparison frameworks [4], [49] used to
assess programming languages often lack a precise and comprehensive set of security features.
This framework was needed to provide implementation phase level security functionalities to
be incorporated as a security requirement starting from design phase. This all led to the

creation of a research issue.

1.3. Statement of the Problem

The following problem statement is derived by research motivation current comparative research
on programming languages for example Java, C++, Ruby, C#, and Python and specification
languages for instance UMLSec, SecureUML, AMF, and SecureSOA fail to provide sufficient
security features such as output validation, immutability and secure error message to address
certain OWASP attacks. Traditional executable specification languages including S-Promela,
SysML-Sec, Secure Descartes, and Ponder do not specify security requirements during initial

phases of software development.

14. Research Questions

Q1. Which security features are present in popular programming languages (C#, C++,
Ruby, Python, Java) to prevent OWASP attacks?

Q2. Which abstract security features exist in executable specification languages that can

counter specific OWASP attacks?

Q3. How security requirements can be defined during initial phases of software development?

Q4. How security specified in RealSpec can be evaluated?

1.5. Research Aims and Objectives

The primary objective of this research is to build a security requirement framework for
determining security coverage by specification language that effectively collects, abstracts, and

models security features.

The objectives of this research work are

* To analyze security features in programming languages including Java, C++, Ruby,C#, and

Design and Evaluation of Secunty Features in RealSpec Real Time Executable Specification Language

[3 L

Chapter 1 Introduction

Python and in prevention techniques that provide safety against XSS, SQLI, Sensitive Data
Exposure, TOCTOU, and buffer overflow attack and development of a security feature

framework to evaluate security feature coverage in programming languages.

* To develop a security requirement framework to evaluate security coverage of specification
languages such as UMLSec, SecureUML, AMF, Ponder, SysML-Sec, Secure Descartes and
SecureSOA.

* To specify security features such as output validation, immutability, and secure error

message using RealSpec.

* To develop a custom tool to transform RealSpec code to C++ code and giving attack
specifications to test the resultant code prevention against above-mentioned OWASP attacks

for evaluation.

1.6. Research Contribution

In this thesis, we extend the work on RealSpec enhancing it to provide security support. The
novel contribution of this research is as follows:

1.6.1. Contribution 1: Identifying Security Features and Designing SEFF

It is suggested that programming languages offers security features that safeguard against
OWASP TOP 10 attacks [31]-[44], including SQLI, XSS, race conditions, sensitive information
exposure, as well as buffer-overflow attacks. Additionally, SEFF assessed the extent of security
feature coverage in five well-known programming languages in academia and offered

suggestions for Java.

a) Identifying Security Features and Designing SEFF

The first step in enhancing the security of any system is to identify the relevant security features that need
to be incorporated into the design. Understanding security requirements conducting thorough analyses of
the system's operational environment and user requirements to understand the security needs. This can

include identifying threats, vulnerabilities, and regulatory

Design and Evaluanon of Secunty Features in RealSpec Real Time Executable Spectfication Language

Chapter 1 Introduction

Leads toa ﬁﬁegﬁbn How to use this knowledga 0 sup;mrt research and 1 .

! practlce e
P] o o SO :
- 1] S sty] |
: . . i tu ,
j Study 1 , identified practical y H
J Contribufion: Designa X Contribution: i ;
: . . hnowledge used in §
; Security Feature Co . Specification of Security i
Framework for Voeebeseaneeana : -~ Requirements from SRFS |
Programming Languages . ; in RealSpec
i : gt 3R T 3
i
H

:

P i security features used in

Study 2 o ~ e
Contiribition: Design a | ﬁ:@ s :‘
Security Requirement A tudy 4 !
.. Framework (SRFS)for ' | ! ;
"7 Security Speciticationin 1 . .., Contribution: Evaluation |
Reail-Time Specification . of security features 1

understaning security requirements in ~----Optimizing knowledge of security requirement specification in
MDS approaches MDS approaches
o e e I AU

To support research and pracuce on security requirement specxﬁcation in
model driven security engineering :

Figure 1.1 Detailed Research Diagram

compliance requirements. Engaging with stakeholders (e.g., end-users, system architects, and
security experts) to gather insights about the expected security attributes and potential security

risks [31][44]. Categorizing security features into distinct groups, such as [50]

* Authentication: Mechanisms for verifying user identities.

* Authorization: Control over what authenticated users can access or modify.

Confidentiality: Ensuring sensitive data is accessible only to authorized

users.

* Integrity: Protecting data from unauthorized modifications.

Non-repudiation: Ensuring that actions or transactions can be proven to have

occurred, preventing denial by involved parties.

Mapping Security Features to System Components Establishing relationships between
identified security features and specific system components or processes, facilitating targeted

security interventions.

Design and Evaluation of Secunty Features in RealSpec Real Time Executable Spectfication Language

Chapter 1 Introduction

b. Designing the Security-Enhanced Functional Framework (SEFF)

Based on the identified security features, the next step is to design a Security-Enhanced
Functional Framework (SEFF) that integrates these features into the system architecture.
Architectural Framework Developing a modular architecture that incorporates the identified
security features into different layers of the system. This allows for flexible and reusable security
solutions that can be adapted to various scenarios. Design Patterns and Best Practices
Implementing design patterns that promote security, such as the use of access control lists,
cryptographic techniques, and secure communication protocols. Documenting best practices for

implementing these security features effectively, ensuring they are robust and maintainable.

Integration with RealSpec ensuring that the SEFF aligns with the principles of Real Spec,
allowing for the specification of real-time system behaviors along with security attributes. This
could involve extending the Real Spec syntax or semantics to accommodate security features.
Verification and Validation establishing methods for verifying that the SEFF meets the specified
security requirements and for validating its effectiveness in mitigating identified risks. This may
involve the use of formal verification techniques and automated testing tools. Enhanced Security
Posture by systematically identifying and integrating security features, the contribution leads to
a stronger overall security posture for real-time systems. Guidance for Practitioners the
developed SEFF serves as a guide for system architects and developers, providing them with a
structured approach to incorporating security into their designs. Facilitating Compliance by
mapping security features to regulatory requirements, the contribution assists organizations in

achieving compliance with industry standards and regulations.

1.6.2. Contribution 2: A Security Requirement Framework for Secure Web
Application Development (SRFS)

The Security Requirement Framework for Secure Web Application Development (SRFS)
represents a significant advancement in the field of web application security. By providing a
structured approach to identifying, categorizing, and integrating security requirements into the
development process, SRFS enhances the overall security posture of web applications, reduces
vulnerabilities, and fosters a culture of security awareness among developers. This contribution
ultimately leads to the development of more secure and resilient web applications that can

withstand the evolving landscape of cyber threats.

Design and Evaluation of Secunty Features in RealSpec Real Time Executable Specification Language

N

Chapter | Introduction

The framework emphasizes the importance of gathering security requirements alongside
functional requirements. Engaging with stakeholders, including business owners, developers,
security experts, and end-users, to identify security needs based on real-world scenarios.
Employing threat modeling techniques (e.g., STRIDE, PASTA) to systematically identify
potential threats and vulnerabilities specific to the web application. SRFS categorizes security

requirements into different domains, such as:

a. Authentication: Requirements related to user identity verification mechanisms
(e.g., passwords, multi-factor authentication).

b. Authorization: Access control measures governing user permissions and roles.

c. Data Protection: Requirements for data confidentiality and integrity (e.g.,
encryption of sensitive data, secure data storage).

d. Secure Communication: Guidelines for implementing secure communication
protocols (e.g., HTTPS, secure WebSocket’s).

e. Input Validation: Requirements for validating and sanitizing user inputs to prevent

injection attacks.

SRFS is designed to integrate seamlessly with popular development methodologies, such as
Agile and DevSecOps, promoting security as a shared responsibility across teams.
Incorporating security-focused sprints within Agile development cycles to address identified
security requirements. Implementing automated security testing tools that integrate with Code
Integration/Code Development (CI/CD) pipelines to ensure ongoing compliance with security

requirements.

SRFS includes a repository of best practices and guidelines for secure coding, configuration
management, and deployment strategies, tailored to web application development. Providing
developers with established security design patterns (e.g., the use of secure session

management, the principle of least privilege) to facilitate secure application design.

Developing a framework for verifying and validating that security requirements have been met.
Encouraging regular penetration testing to identify vulnerabilities before deployment. Utilizing
static and dynamic analysis tools to detect security flaws in the code base. Establishing
training programs focused on secure coding practices and the importance of security in web

application development. This is critical for building a security-aware culture within

| 7 L

Design and Evaluation of Secunty Features in RealSpec Real Ttme Executable Specification Language

Chapter 1 Introduction

development teams.

Contribution to Secure Web Application Development

Here are the following contributions to secure web development.
a. Proactive Security Measures:

SRFS shifts the focus from reactive to proactive security, encouraging developers to

consider security at the earliest stages of application design and development.
b. Holistic Approach:

By covering all phases of the development lifecycle, from requirement gathering to
deployment, SRFS ensures that security is not an afterthought but an integral part of the

development process.
c. Standardization of Security Practices:

The framework provides a standardized approach to defining and implementing security
requirements, helping organizations achieve consistency in their security practices across

various projects.
d. Facilitation of Compliance:

SRFS assists organizations in meeting regulatory compliance requirements by ensuring that

security best practices are followed throughout the development lifecycle.

1.6.3. Contribution 3: Security features Specification in early phases of

software development using RealSpec Executable Specification Language

The contribution of specifying security features in the early phases of software development
using Real Spec is a significant advancement in securing software applications. By formalizing
and integrating security requirements into the development lifecycle, this approach not only
enhances security but also streamlines the development process across various programming
languages. This proactive methodology leads to more robust and secure software systems capable

of addressing the complex security challenges of modern applications.

Design and Evaluatton of Secunty Features m RealSpec Real Time Executable Specification Language

«

Chapter 1 Introduction

Utilizing Real Spec to formally specify security features before the coding phase begins. This
allows developers to understand and address security requirements early in the lifecycle, ensuring
they are integrated into the software design from the outset. RealSpec’s capability to incorporate
temporal logic aids in defining time-sensitive security properties, crucial for real-time systems

where security conditions may change over time.

Real Spec allows for the creation of executable specifications that can be tested and validated
against actual system behavior. This means that security requirements can be directly linked to
executable code, ensuring that they are not merely theoretical but practically applicable. The use
of RealSpec promotes model-driven development practices, allowing developers to generate
code and security features from high-level specifications automatically. Real Spec can be
integrated with various programming languages to enhance the development of secure

applications. Some of the related programming languages include:

o C/Ct+:
Often used for system-level programming and real-time applications, where
performance is critical. Security features defined in RealSpec can be translated into

C/C++ code, ensuring low-level access control and memory safety.

s Java:

Commonly used for enterprise applications. Real Spec specifications can help define
security features like authentication and authorization, which can then be implemented

using Java security libraries.

o CH:
Used in .NET applications, where Real Spec can specify security requirements that can

be implemented using built-in .NET security features, such as role-based access control.

s Python:

Widely used for web development and scripting. Security features specified in RealSpec
can guide the development of secure web applications using frameworks like Django or

Flask, with an emphasis on secure coding practices.

Design and Evaluation of Secunty Features in RealSpec Real Time Executable Specification Language

Chapter 1 Introduction

T

e JavaScript:

Critical for front-end web development. By specifying security features in Real Spec,
developers can implement secure client-side scripting practices to mitigate common

vulnerabilities like XSS (Cross-Site Scripting).
¢ Ruby:

Commonly used in web development with frameworks like Ruby on Rails. Security
specifications can help ensure the application follows best practices for data protection

and user authentication.

* Go: Increasingly popular for micro services and cloud applications. Real Spec can
help define security features for distributed systems, ensuring proper authentication

and secure communication.

Security features specified in Real Spec can be interfaced with security mechanisms in various
programming languages. For example, specifying authentication workflows in RealSpec can
lead to implementations in any supported programming language, ensuring consistency in
security practices. By providing a flexible framework for security feature specification,
RealSpec can be adapted to different programming environments, facilitating a wide adoption
across various platforms and languages. Real Spec’s executable specifications can be subjected
to automated testing, ensuring that the implemented security features behave as expected and
meet the defined specifications. Utilizing model checking techniques to verify that the security
features specified in RealSpec conform to desired security properties before actual coding takes
place. Offering training resources and workshops to developers on how to effectively use Real
Spec for security feature specification, ensuring that they understand the importance of security

in early development phases.

1.6.4. Contribution 4: Development of an evaluation tool that takes the

RealSpec program.

The development of an evaluation tool specifically designed for RealSpec programs represents a
significant advancement in the field of software engineering, particularly for real-time systems.

RealSpec, as an executable specification language, allows for the formalization of system

[0 L

Design and Evaluation of Secunty Features n RealSpec Real Time Executable Specification Language

T

Chapter 1 Introduction

behavior and security features. The evaluation tool aims to analyze and assess these RealSpec
programs, ensuring they meet defined security and performance criteria. By integrating this tool
into the software development lifecycle, developers can proactively identify and address
potential vulnerabilities and inconsistencies in their specifications before the implementation

phase.

At the heart of the evaluation tool is a modular architecture, which consists of several key
components, including a parser, analyzer, and verifier. The parser interprets the RealSpec code
and generates an abstract syntax tree (AST) that serves as the basis for further analysis. The
analyzer performs semantic checks to ensure that the program adheres to the syntax and
semantics of the Real Spec language. This semantic analysis is crucial for detecting logical errors
and potential security vulnerabilities early in the development process. The verifier component
plays a pivotal role by validating that the specified security properties align with the program's

behavior, ensuring that the implemented security features are effective and reliable.

The evaluation tool supports both static and dynamic analysis methodologies. Static analysis
allows for the examination of the Real Spec code without executing it, identifying potential
security flaws, such as improper data handling and access control issues. This can involve data
flow and control flow analyses, which help trace how data moves through the system and how
control structures operate, respectively. On the other hand, dynamic analysis involves running
simulations of Real Spec programs in a controlled environment to observe their runtime behavior.
This includes generating test cases based on specified requirements to ensure comprehensive

coverage and validating the security features under different scenarios.

A noteworthy aspect of the evaluation tool is its capability for verification of security properties
through model checking. By exploring the state space of RealSpec programs, the tool ensures
that all possible states conform to the desired security requirements. It employs temporal logic to
verify time-dependent conditions, ensuring that security measures remain effective throughout
the program'’s execution. This rigorous verification process not only enhances the confidence in
the system's security posture but also aids in identifying any lapses in compliance with specified

requirements.

To enhance user experience, the evaluation tool features an intuitive user interface that allows

developers to easily input RealSpec programs, configure analysis settings, and visualize results.

Design and Evaluation of Secunty Features in RealSpec Real Time Executable Specification Language

I 1L

Chapter 1 Introduction

This includes an integrated code editor with syntax highlighting for RealSpec, a dashboard that
presents analysis outcomes, and graphical tools for visualizing data and control flow.
Furthermore, the tool's integration with popular Integrated Development Environments (IDEs)
enables real-time feedback during the coding process, helping developers identify issues as they

arise and facilitating smoother debugging and correction.

The comprehensive nature of this evaluation tool, coupled with its robust capabilities for both
analysis and verification, significantly contributes to the assurance of software quality in real-
time applications. By allowing early detection of vulnerabilities and providing a structured
approach to evaluating security features, the tool helps developers adopt best practices in secure
coding and system design. Ultimately, this contribution not only enhances the security and
reliability of software applications developed using RealSpec but also lays the groundwork for
future research and innovations in automated verification techniques and formal methods in

software development.

1.7. Thesis Overview

The initial phase involves identifying security features that mitigate vulnerabilities associated
with SQL Injection (SQLI), Cross-Site Scripting (XSS), Sensitive Data Exposure, Time-of-
Check to Time-of-Use (TOCTOU) issues, and buffer overflow attacks. Subsequently, a Security
Feature Framework (SEFF) is proposed, as discussed in Chapter 2. This framework is then
abstracted into specification languages (SRFS), as elaborated in Chapter 3. The abstraction of
SRFS from SEFF provides a clear mapping between abstract specification-level security features
and their corresponding security measures in various programming languages. This clarity is
anticipated to bridge the security feature gaps between specification and implementation, thereby
strengthening countermeasures against these threats. Following this, selected security features
from SRFS are meticulously designed using RealSpec, which is described in detail in Chapter 4.
Chapter 5 presents illustrative examples of these security features. An evaluation of the newly
integrated security features within RealSpec is provided in Chapter 6. Finally, Chapter 7

concludes the thesis and outlines potential future directions for research.

Design and Evaluation of Secunty Features in RealSpec Real Time Executable Specification Language

[2 L

Chapter 2

Chapter 2 Background

C

BACKGROUND

In today’s digital landscape, security has become a critical concern, particularly for software
systems that operate in real-time environments. As applications increasingly manage sensitive
data and perform crucial functions, they are also becoming prime targets for various cyber
threats. The need for robust security measures that can be integrated into the software
development lifecycle has led to the exploration of new methodologies and frameworks that

facilitate the early identification, specification, and validation of security features.
2.1. RealSpec: An Overview

RealSpec is a formal specification language designed for modeling and specifying real-time
systems. It allows developers to create executable specifications that can directly represent
system behavior. The advantage of using RealSpec lies in its ability to bridge the gap between
high-level specifications and executable code, enabling the validation of system requirements
before actual implementation begins. This characteristic makes Real Spec particularly suited for

applications where timing constraints and security features are paramount.

Given the increasing complexity of software systems, particularly those involving real-time
processing, ensuring the security of these applications requires a methodical approach.
Traditional software development practices often fall short in addressing security vulnerabilities
early in the design process, leading to gaps between specification and implementation. By
leveraging RealSpec, developers can specify security requirements alongside functional

requirements, allowing for a more integrated approach to system design.

2.2. Security Challenges in Real-Time Systems

Real-time systems face unique security challenges due to their inherent characteristics. These
systems often operate under strict timing constraints, where delayed responses can lead to
significant consequences, such as system failures or safety hazards. Moreover, the dynamic

nature of real-time environments makes them susceptible to various types of attacks, including:

13 L

Design and Evaluation of Secunty Features 1n RealSpec Real-Time Executable Specification Language

Chapter 2 Background

K%,

i SQL Injection (SQLI): Attackers manipulate database queries through invalidated user
inputs, potentially gaining unauthorized access to sensitive data.

ii. ~ Cross-Site Scripting (XSS): Malicious scripts are injected into web applications,
compromising user data and session integrity.

ii. Sensitive Data Exposure: Insufficient protection of sensitive information can lead to
data breaches, exposing user credentials and confidential data.

iv. Time-of-Check to Time-of-Use (TOCTOU): This vulnerability occurs when the state
of a resource changes between the time it is checked and the time it is used, allowing
attackers to exploit the race condition.

v. Buffer Overflow Attacks: Exploiting vulnerabilities in memory management can allow

attackers to execute arbitrary code, compromising system integrity.

These vulnerabilities highlight the need for a structured approach to specifying security features
in real-time systems, ensuring that they are adequately addressed throughout the software

development lifecycle.

2.3. The Role of Security Feature Framework (SEFF)

To effectively address these challenges, the development of a Security Feature Framework
(SEFF) is essential. SEFF provides a structured approach to identifying and defining security
features that are specifically tailored to counteract the identified vulnerabilities. By establishing
a set of common security features and their specifications, SEFF aims to create a comprehensive
security model that can be applied across various real-time applications. The framework focuses
on ensuring that security features are not only well-defined but also seamlessly integrated into
the development process. This integration is crucial for minimizing security gaps that often arise

when security considerations are introduced too late in the development cycle.

24. Abstracting SEFF into Specification Languages (SRFS)

The abstraction of SEFF into Specification Languages (SRFS) is another critical aspect of this
background. By mapping abstract specification-level security features to their counterparts in
programming languages, SRFS facilitates a clearer understanding of how these security features
can be implemented in practice. This mapping process is designed to eliminate discrepancies
between the security features specified during the design phase and their actual implementation

in code. The development of SRFS enables security requirements to be articulated in a language-

[s L

Design and Evaluation of Secunty Features 1n RealSpec Real-Time Executable Specification Language

L @

Chapter 2 Background

agnostic manner, allowing developers to adopt best practices for secure coding across different
programming environments. This flexibility is essential for ensuring that security measures are

uniformly applied, regardless of the specific technologies being utilized.

2.5. The Significance of Evaluation

Finally, the evaluation of security features within RealSpec is a crucial step in validating their
effectiveness. By systematically assessing the specified security features against real-world
scenarios and attack vectors, developers can ensure that the implemented measures are robust
and capable of mitigating identified risks. This evaluation process not only aids in the
identification of potential weaknesses but also provides valuable insights that can guide future

enhancements to security frameworks and methodologies.

2.6. Selection Criteria of the Attacks in RealSpec

The selection criteria for attacks in the context of RealSpec revolve around identifying
vulnerabilities that are highly relevant to contemporary web applications and real-time systems.
This criterion emphasizes the importance of focusing on attack types that are frequently exploited
in current environments, ensuring that the analysis effectively addresses actual risks faced by
organizations today. By concentrating on prevalent threats such as SQL Injection (SQLI), Cross-
Site Scripting (XSS), and Buffer Overflow attacks, the study aims to provide a comprehensive
understanding of the security landscape. This targeted approach facilitates the development of
effective security features that can be specified within RealSpec, ultimately bridging the gap
between theoretical specifications and practical implementations [6]. Moreover, prioritizing
attacks that directly impact the integrity, confidentiality, and availability of real-time systems
ensures that the security measures implemented are both practical and aligned with the

operational realities of modern software development.

2.6.1. Relevance to Modern Applications

Criteria: The selected attack types are of significant relevance to contemporary web application

environments and technologies, as supported by various studies [31][36][46].

Rationale: By focusing on attacks that are prevalent in modern applications, this analysis ensures

that it addresses real-world risks that organizations encounter. For example, vulnerabilities such

Design and Evaluation of Secunty Features 1n RealSpec Real-Time Executable Specification Language

I 15 L

Chapter 2 Background

as Injection attacks and Broken Authentication are among the most frequently exploited threats

in today’s web applications.

The relevance of attack types to modern applications is a crucial consideration in the context of
cybersecurity. As web technologies evolve, the tactics and methodologies employed by
malicious actors also adapt, making it essential to focus on vulnerabilities that pose a tangible
threat to current systems [46][47][48]. Selecting attack types that are commonly exploited
ensures that security analyses remain grounded in practical realities, enabling organizations to

effectively combat the most pressing risks.

Injection attacks, such as SQL Injection (SQLI), are particularly notable for their widespread
occurrence. These attacks exploit weaknesses in application input validation, allowing attackers
to inject malicious queries into databases, which can lead to unauthorized access, data
manipulation, or even complete system compromise. Given the prevalence of databases in
modern applications, the risk associated with SQLI is significant, necessitating robust

countermeasures that can be specified and validated within frameworks like RealSpec.

Similarly, Broken Authentication vulnerabilities represent a critical threat to web applications.
These weaknesses arise when authentication mechanisms are improperly implemented, allowing
attackers to bypass security measures and gain unauthorized access to sensitive user data. For
instance, weak password policies, failure to implement account lockout mechanisms, and
inadequate session management can all contribute to this vulnerability. By emphasizing attacks
like Broken Authentication, the analysis not only addresses a widely recognized security concern
but also encourages developers to adopt best practices in designing secure authentication

systems.

By concentrating on attack types that are directly relevant to modern applications, the analysis
aims to create a more effective and targeted approach to security. This focus helps ensure that
the proposed security features and frameworks not only meet theoretical requirements but also
withstand real-world threats. Ultimately, this relevance fosters a proactive security posture,
equipping organizations with the tools and knowledge needed to safeguard their applications

against the evolving landscape of cyber threats.

[16 L

Design and Evaluation of Secunty Features 1n RealSpec Real-Time Executable Specification Language

Chapter 2 Background

2.6.2. Impact on Security Posture

The impact of selected attack types on an organization’s security posture is a critical
consideration in the realm of cybersecurity. An organization's security posture refers to its overall
security strength and the measures it employs to protect its assets, including networks, systems,
and data. Understanding the potential impact of specific attacks is essential for effectively

prioritizing security efforts and allocating resources to mitigate risks.

When prevalent attack types, such as SQL Injection, Cross-Site Scripting (XSS), and Broken
Authentication, are effectively integrated into security analyses and frameworks, organizations
can significantly enhance their security posture. These attacks often exploit vulnerabilities that,
if left unaddressed, can lead to severe consequences, including data breaches, financial losses,
reputational damage, and regulatory penalties. For instance, a successful SQL Injection attack
can compromise entire databases, leading to unauthorized access to sensitive information, which

can have catastrophic effects on user trust and organizational integrity.

By proactively identifying and addressing these attack vectors, organizations can implement
robust security features and protocols that strengthen their defenses. This includes the adoption
of secure coding practices, regular security assessments, and the implementation of intrusion
detection systems. Furthermore, a strong security posture is characterized by a culture of security
awareness among employees, where individuals are educated about potential threats and best

practices for safeguarding information.

Incorporating the insights gained from analyzing the impact of specific attacks allows
organizations to make informed decisions about their security strategies. This, in turn, facilitates
the development of comprehensive security frameworks that not only meet regulatory
requirements but also align with the unique risk profiles of the organization. Ultimately, a robust
security posture, informed by the relevance and impact of current attack types, enables
organizations to defend against evolving cyber threats and maintain the confidentiality, integrity,

and availability of their critical assets.
2.6.3. Criteria and Rationale for Attack Selection in Real Spec

Criteria: The selected attacks possess a significant capacity to undermine the security status of

I 17 L

Destgn and Evaluation of Secunty Features 1n RealSpec Real-Time Executable Specification Language

x,

Chapter 2 Background

an application, as indicated in various studies [36][37).

Rationale: Focusing on attacks that can result in severe consequence such as data leaks,
unauthorized access, or complete system compromise helps to identify and prioritize areas of
highest risk within the application. For instance, vulnerabilities like Cross-Site Scripting (XSS)
and Sensitive Data Exposure can lead to catastrophic outcomes if not adequately addressed. The
criteria for selecting attack types based on their potential to weaken an application’s security
status underscores the importance of understanding the ramifications of various vulnerabilities.
In the context of cybersecurity, not all vulnerabilities carry the same weight; some can lead to

minor inconveniences, while others can result in devastating consequences for an organization.

i. Cross-Site Scripting (XSS) is a prime example of an attack that can have significant
implications. XSS attacks allow attackers to inject malicious scripts into web pages
viewed by other users. This can lead to various malicious outcomes, including session
hijacking, defacement of web content, or the theft of sensitive information such as login
credentials. The ability of XSS to target users directly can create a cascading effect; once
one user is compromised, the attacker can leverage that access to infiltrate deeper into
the system, potentially impacting multiple users and organizational resources. This is
especially alarming in environments where sensitive data is handled, as the repercussions
can include severe data breaches and loss of customer trust.

ii. Sensitive Data Exposure is another critical attack vector that demonstrates considerable
ability to weaken an application's security posture. When sensitive data, such as personal
information, financial records, or health data, is inadequately protected, it can be exposed
to unauthorized access. This can occur through various means, including insufficient
encryption, weak access controls, or poor data handling practices. The consequences of
such exposure are far-reaching, leading not only to legal and regulatory penalties but also
to long-lasting damage to an organization's reputation. Once sensitive data is leaked, the
trust that customers and stakeholders place in the organization can be irreparably harmed,

resulting in financial losses and the potential for extensive litigation.

By concentrating on these high-impact attack types, organizations can direct their efforts toward
areas that pose the greatest risk. This targeted approach allows for a more efficient allocation of
resources, ensuring that security measures are implemented where they will have the most

significant effect. For example, investing in robust input validation and output encoding

[18 L

Design and Evaluation of Security Features 1n RealSpec Real-Time Executable Specification Language

Chapter 2 Background

mechanisms can mitigate the risks associated with XSS, while employing strong encryption and
access controls can protect against sensitive data exposure. Moreover, recognizing the severe
consequences associated with these vulnerabilities fosters a culture of security awareness within
the organization. It emphasizes the need for proactive measures, such as regular security
assessments, penetration testing, and employee training, to equip teams with the knowledge and

skills to identify and address potential security threats before they can be exploited.

2.6.4. Ease of Exploitation

Refers to the relative simplicity with which an attacker can successfully carry out a specific
attack against a target application. This criterion is crucial in the selection of attack types for
analysis, as it directly influences the potential risk posed to an organization’s security posture.
Attacks that are easy to exploit often require minimal technical skill, limited resources, or no
specialized knowledge, making them attractive options for a wide range of malicious actors, from

amateur hackers to more sophisticated adversaries.

For instance, vulnerabilities such as Cross-Site Scripting (XSS) and SQL Injection (SQLI) are
notorious for their ease of exploitation. XSS attacks can be carried out by simply inserting
malicious scripts into user input fields or URLs, often without the need for advanced
programming skills. This simplicity allows attackers to target a broad spectrum of web
applications, resulting in a widespread impact on user data and system integrity. Similarly, SQL
Injection attacks can be executed by injecting crafted SQL statements into input fields, enabling

attackers to manipulate databases and extract sensitive information with minimal effort.

The accessibility of these attack vectors raises significant concerns for organizations, as it
increases the likelihood of successful breaches. A vulnerability that can be easily exploited poses
a higher risk, as it may be targeted by a large number of attackers, leading to potential data
breaches, financial losses, and reputational damage. Therefore, assessing the ease of exploitation
is vital for organizations to prioritize their security measures effectively. By focusing on
vulnerabilities that are not only impactful but also straightforward to exploit, organizations can

implement targeted defenses and mitigation strategies to enhance their overall security posture.

Criteria: The selected attack types exhibit a range of complexities and ease of exploitation, as

indicated in various studies [33][38].

I 19 L

Design and Evaluation of Secunty Features in RealSpec Real-Time Executable Specification Language

Chapter 2 Background

Rationale: Including a diverse array of attacks, categorized by their ease of exploitation and
complexity, provides a comprehensive understanding of the security landscape. For example,
while certain vulnerabilities, such as SQL Injection, can be easily executed with minimal
technical expertise, others, like Security Misconfiguration, may require advanced skills and a

deeper understanding of the system’s architecture.

The complexity and ease of exploitation of attack types play a significant role in determining the
threat they pose to organizations. This criterion focuses on understanding that not all
vulnerabilities are created equal; some are straightforward to exploit while others may demand

a high level of technical proficiency or an in-depth knowledge of system configurations.

i. Ease of Exploitation: Some attacks are characterized by their straightforward execution,
allowing even novice attackers to execute them with little effort. For instance, SQL
Injection attacks involve injecting malicious SQL queries into input fields, which can be
done with basic knowledge of SQL syntax. The ubiquity of web applications that fail to
properly sanitize user input makes this vulnerability particularly attractive to attackers,
as it enables them to manipulate databases easily and extract sensitive information.

ii. Complexity of Exploitation: In contrast, other vulnerabilities, such as Security
Misconfiguration, may require a more sophisticated approach. Security Misconfiguration
refers to scenarios where the security settings of an application, server, or database are
improperly configured, leaving the system vulnerable to exploitation. Identifying and
exploiting these misconfigurations often necessitates an understanding of the underlying
technologies, access to the system’s configuration files, and the ability to recognize
deviations from best practices. Attackers may need to employ more advanced techniques,
such as social engineering or reconnaissance, to gather the necessary information before

they can exploit these vulnerabilities.

The rationale for incorporating both simple and complex attack types into security analyses is to
provide a well-rounded perspective on the potential risks that organizations face. This diversity
ensures that security strategies address vulnerabilities across the spectrum of exploitability. By
understanding that some attacks require minimal effort while others demand advanced skills,
organizations can better prioritize their security measures, focusing on the most critical areas of
vulnerability. For example, while addressing easily exploitable attacks like SQL Injection is

essential, organizations must also be vigilant about complex vulnerabilities like Security

I 20 L

Design and Evaluation of Secunty Features in RealSpec Real-Time Executable Specification Language

Chapter 2 Background

i @]

Misconfiguration that may go unnoticed but can result in significant security breaches if left
unchecked. This balanced approach allows organizations to strengthen their overall security
posture by implementing layered defenses that account for both simple and complex attack

vectors.

2.6.5. Complexity and Impact on Concurrency

Complexity and its impact on concurrency refer to how the intricate nature of certain attacks can
influence the performance and behavior of systems, particularly in concurrent environments
where multiple processes or threads operate simultaneously. In the realm of cybersecurity,
understanding the interplay between complexity and concurrency is essential for accurately

assessing potential vulnerabilities and their consequences on application behavior.

The complexity of an attack can often dictates its method of execution, which in turn can affect
how a system handles concurrent processes. For instance, attacks that exploit timing issues, such
as Race Conditions, can become particularly problematic in concurrent environments. Race
Conditions occur when multiple processes access shared resources without proper
synchronization, leading to unpredictable outcomes. An attacker can exploit this complexity by
manipulating the timing of events, potentially causing system failures, data corruption, or

unauthorized access to resources.

Similarly, complex attacks, such as Denial of Service (DoS) or Distributed Denial of Service
(DDoS) attacks, can have severe implications for concurrency. These attacks flood a system with
excessive requests, overwhelming its ability to process legitimate transactions. In a concurrent
environment, this can lead to significant performance degradation, resulting in service outages
or degraded user experiences. The complexity of implementing effective mitigation strategies in
the face of such attacks further underscores the importance of understanding how these

vulnerabilities interact with concurrent processing.

Furthermore, the impact of complex attacks on concurrency can extend beyond immediate
performance issues. Security measures intended to protect against such attacks can inadvertently
affect the system's ability to handle concurrent operations effectively. For example,
implementing strict access controls or rate limiting to prevent abuse may introduce latency or

bottlenecks in system performance, particularly in high-traffic environments.

| 21 L

Design and Evaluation of Secunty Features 1n RealSpec Real-Time Executable Specification Language

Chapter 2 Background

Criteria: The selected attacks are critical in systems that manage concurrent processes or
threads. They can result in unpredictable behavior and lead to significant security issues, such as

privilege escalation or data corruption, as indicated in various studies [38][44].

Rationale: Exploiting Time-of-Check to Time-of-Use (TOCTOU) vulnerabilities allows
attackers to manipulate the timing of operations, potentially leading to unauthorized access or
modifications. This makes the understanding of race conditions crucial in systems where
concurrency is a key factor [45][47]. Given that this thesis aims to enhance security within Real

Spec, a specification.

The Time-of-Check to Time-of-Use (TOCTOU) vulnerability occurs when there is a time gap
between the checking of a condition (such as permission validation) and the subsequent use of
that condition in a system. This timing issue can be exploited, particularly in concurrent systems
where multiple processes or threads may access shared resources simultaneously. When an
attacker is able to introduce a delay or manipulate the timing of events, they can potentially alter

the state of the system, leading to unauthorized actions.

i In systems that handle concurrent processes, the potential for TOCTOU vulnerabilities is
significantly heightened. For example, consider a scenario where a process checks if a
user has permission to access a particular resource. If there is a delay between this check
and the actual usage of that resource, an attacker could exploit this window by changing
the underlying conditions—such as the permissions of the resource—between the two
operations. This could lead to privilege escalation, where the attacker gains access to
resources or capabilities that they should not have. Another significant concern is data
corruption. If multiple threads are modifying shared data simultaneously without proper
synchronization, an attacker may exploit TOCTOU vulnerabilities to manipulate the data
in transit. For example, an attacker could change a file's contents after a program checks
its integrity but before it commits any operations that rely on that integrity check. The
result can be severe, leading to inconsistencies, data loss, or system instability.

il. Given that RealSpec is designed for specifying systems that operate concurrently, the
inclusion of TOCTOU attacks in the security framework is essential. By addressing
TOCTOU vulnerabilities, the thesis aims to create robust security features that protect
against these complex attack vectors. This involves implementing strict access controls,

ensuring proper synchronization between processes, and establishing comprehensive

I 2 L

Destgn and Evaluation of Secunty Features 1n RealSpec Real-Time Executable Specification Language

Chapter 2 Background

validation checks that are consistently enforced throughout the execution of concurrent

operations.

Furthermore, by examining TOCTOU vulnerabilities within the context of Real Spec, this thesis
emphasizes the importance of security at the specification level. It highlights that addressing
vulnerabilities early in the software development lifecycle can significantly reduce the risk of

exploitation in the final system.
2.6.6. Relevance to Legacy Systems and Languages

Relevance to Legacy Systems and Languages refers to the significance of understanding how
older systems and programming languages may be more vulnerable to specific attacks,
particularly in the context of cybersecurity. Legacy systems, which often include outdated
software and hardware, can exhibit weaknesses that are not only inherent to their architecture but

also arise from the languages and frameworks used in their development.

Legacy systems typically lack the modern security features and updates found in contemporary
software. As a result, they can be particularly susceptible to various vulnerabilities, such as
buffer overflows, injection attacks, and improper authentication mechanisms. The continued
reliance on older programming languages, which may have less robust security practices, further
exacerbates this problem. For instance, languages that allow direct memory access or provide
limited error handling can create opportunities for exploitation that modern languages have

largely mitigated through better design and security controls.

The relevance of these vulnerabilities in legacy systems extends beyond mere technical issues;
they can have profound implications for organizational security. Many organizations still operate
critical functions on legacy systems due to their importance in business processes or the high
cost of migration. However, maintaining these systems without addressing their security
vulnerabilities can expose organizations to significant risks, including data breaches, regulatory

penalties, and damage to their reputation.

Furthermore, the integration of legacy systems with newer technologies can introduce additional
complexity, creating scenarios where vulnerabilities in older components can be exploited

through modern interfaces. This highlights the need for comprehensive security assessments that

[23 L

Design and Evaluation of Secunty Features in RealSpec Real-Time Executable Spectfication Language

Chapter 2 Background

consider the entire architecture, including any legacy components, to ensure that vulnerabilities

are adequately addressed

Criteria: Buffer overflows are especially pertinent in systems programmed in languages that do
not offer automatic bounds checking, such as C and C++. Many legacy systems and specific
high-performance applications continue to utilize these languages, making them vulnerable to

such attacks [27][42][43][48].

Rationale: These vulnerabilities are commonly found in major platforms and older programs,
where modern security measures may not have been fully adopted. A thorough understanding of

buffer overflows is crucial for improving system security and protecting these environments.

i. Buffer Overflow Vulnerabilities: A buffer overflow occurs when a program writes
more data to a buffer than it can hold, leading to adjacent memory being overwritten.
This can create vulnerabilities that attackers can exploit to execute arbitrary code, crash
the system, or manipulate data. The lack of automatic bounds checking in programming
languages like C and C++ allows developers to write code that does not prevent these
kinds of errors. As a result, many legacy systems developed years ago without modern
security practices remain at risk.

ii. Relevance in Legacy Systems: Legacy systems are often crucial for organizations,
handling significant transactions or sensitive data. However, these systems frequently
rely on outdated programming languages, which do not incorporate the advanced security
features present in newer languages. For example, languages like Python or Java provide
built-in bounds checking, which mitigates the risk of buffer overflows. Conversely, C
and C++ require developers to implement their own checks, leading to potential
oversights and vulnerabilities. Many legacy systems have not undergone extensive
updates or security audits, allowing these vulnerabilities to persist. Attackers can exploit
buffer overflow vulnerabilities to gain unauthorized access or execute malicious
payloads. This is particularly concerning for high-performance applications where
performance optimizations may lead to even less rigorous coding practices, further

increasing vulnerability.

[1

Destgn and Evaluation of Secunty Features in RealSpec Real-Time Executable Specification Language

Chapter 2 Background

2.7. Inclusive and Exclusive Criteria

In the context of research, project management, or security assessments, inclusive and exclusive
criteria refer to the guidelines used to determine what is considered relevant or applicable within
a particular scope or framework. These criteria help in identifying the parameters for analysis,

decision-making, and evaluation. Here's a breakdown of the two concepts:
2.7.1. Inclusive Criteria

Inclusive criteria specify the conditions or attributes that must be present for an item, entity, or
aspect to be included in a particular analysis or evaluation. The purpose of inclusive criteria is to
ensure that relevant elements are recognized and incorporated into the study or evaluation
process. This helps to create a comprehensive understanding of the subject matter. Inclusive
criteria often have a wider scope, allowing for the inclusion of various elements that may not be
immediately apparent. They focus on positive attributes or characteristics that align with the
goals of the study or project. Inclusive criteria may vary based on the context or specific

objectives of the analysis.

In the context of evaluating security features for a software application, inclusive criteria may
include:

i. The presence of user authentication mechanisms.
ii. Data encryption protocols being implemented.

iii. Input validation measures in place to prevent injection attacks.

2.7.2. Exclusive Criteria

Exclusive criteria define the conditions or characteristics that must be absent for an item, entity,
or aspect to be excluded from analysis or evaluation. The purpose of exclusive criteria is to
narrow down the focus of the study or evaluation, filtering out elements that are deemed
irrelevant or not aligned with the objectives of the research. Exclusive criteria typically have a
narrower scope, concentrating on specific elements that do not meet the defined conditions. They
focus on attributes that indicate the absence of necessary characteristics or features. Exclusive

criteria help clarify what will not be considered, ensuring that the evaluation remains precise and

focused.

I 25 L

Design and Evaluation of Secunty Features in RealSpec Real-Time Executable Specification Language

Chapter 2 Background

In the context of assessing vulnerabilities in a web application, exclusive criteria may include:

i. The absence of secure coding practices, such as input sanitization.
ii. Lack of security patches for known vulnerabilities.

iii. No implementation of security headers, such as Content Security Policy

2.8. Inclusive and Exclusive Criteria for Systematic Literature Review
(SLR)

In the context of a Systematic Literature Review (SLR), inclusive and exclusive criteria are
essential to ensure that the review process remains focused, relevant, and of high quality. These
criteria establish the boundaries for what research studies or papers are considered for inclusion
or exclusion, helping to ensure that the findings and conclusions drawn are based on the most

appropriate and reliable sources.

2.8.1. Inclusive Criteria for SLR

Inclusive criteria are used to identify which studies or research papers should be considered part
of the review. These criteria are based on the relevance of the research to the SLR’s objectives
and its ability to contribute meaningfully to answering the research questions. For instance,
studies included must directly address the core focus of the review, such as specific research
questions or themes related to the field of study. Additionally, inclusive criteria may specify that
only studies from a particular time frame are considered, ensuring that the review reflects the
most recent advancements in the field. It also often includes limitations on the type of research
accepted, such as focusing on peer-reviewed journal articles or empirical studies over opinion
pieces or gray literature. Language restrictions, for example, limiting studies to those published
in English, are also common to make the review process more feasible. Furthermore, studies
using specific research methodologies, like qualitative, quantitative, or mixed methods
approaches, may be prioritized if they align with the study's goals. The purpose of inclusive
criteria is to provide a broad yet focused selection of studies that offer a comprehensive overview
of the current state of knowledge in the field. This helps ensure the SLR covers all relevant
aspects of the topic being investigated, allowing for a thorough exploration of the literature and

a balanced synthesis of findings.

' 26 L

Design and Evaluation of Secunity Features in RealSpec Real-Time Executable Specification Language

Chapter 2 Background

2.8.2. Exclusive Criteria for SLR

Exclusive criteria, on the other hand, are used to filter out studies that are irrelevant, outdated, or
of poor quality. These criteria define what research should be excluded from the review to
maintain focus and integrity. Studies that do not directly relate to the research questions, fall
outside the designated time range, or fail to meet specific methodological standards (e.g., non-
peer-reviewed sources or studies without clear research designs) are removed from
consideration. For example, outdated studies that do not reflect current technologies or trends
may be excluded unless they provide foundational insights. Studies with significant
methodological flaws, such as lacking empirical data or using weak research designs, are also
typically filtered out to ensure the review is based on high-quality, robust research. Additionally,
duplicate studies are removed to prevent redundancy, and accessibility issues, such as studies
that are not available in full text, can be grounds for exclusion. Exclusive criteria help to sharpen
the focus of the review by filtering out studies that do not meet the required standards or do not
align with the research’s primary objectives. This ensures the review process remains efficient
and targeted, and that the resulting analysis and synthesis are based on the most relevant, high-

quality literature.

2.9. Security Weaknesses in Programming Languages

One of the main contributors to OWASP attacks, as identified in sources [31]-[44], is the inherent
vulnerabilities present in the libraries of widely used programming languages. These
vulnerabilities are frequently exploited by attackers using various methods. For instance, Cross-
Site Scripting (XSS) attacks have been documented in Ruby versions 6.1.7.3 and 7.0.4.3, as well
as Python 3.2 when used with Python [4]. Similarly, race conditions and SQL Injection (SQLi)
vulnerabilities have been observed in Java Native Interface (JNIO3) [4][43]. Additionally, buffer
overflow remains a persistent issue in C/C++ programming, especially when using unsafe

functions like strepy().

While many programming languages come equipped with built-in security features, such as
strong typing (a critical security feature that helps by enforcing type constraints on variables),
these protections often address only a subset of potential vulnerabilities. Strong typing includes
mechanisms like ensuring a variable is correctly typed and providing access permissions based

on its class, which can help mitigate certain threats [8]. Languages such as Python, Ruby, C#,

| 27 L

Design and Evaluation of Secunty Features 1n RealSpec Real-Time Executable Specification Language

Chapter 2

Background

and Java are considered strongly typed languages and offer some level of security against

common exploits [29]. However, even with these protections, many languages only safeguard

against a limited range of attacks, leaving other vulnerabilities unaddressed.

Table 2.1 attack selection criteria

Threat CWE 2003/SANS OWASP OWASP CIS Top 18* Mitre Att&ck®
sources TOP25! 20132 20173
Buffer Buffer Overflow Using Known Using Known | CISControl4 | Privilege
Overflow attacks Ranked on Vulnerable Vulnerable Secure escalation
attacks I** Out of Bound Components Components Configuration
Read Ranked 5% Ranked A9 Ranked A9 of Enterprise
Use after free Assets
Ranked 7%
XSS XSS Ranked 2™ Ranked A3 Ranked A7 - Lateral
Moveme
nt
Taint
Shared
Content
SQLI SQLI Ranked Ranked Al Ranked Al - Command
3" Improper and Injection
Input content
Validation Injection
Ranked 4®
Broken Improper Ranked A2 Ranked A2 - Credentia
Authenticatio| Authentication | Access
nand Session | Ranked 14 Steal
Management Web
Session Cookie
Race Ranked 21 Selected due to Selected due Selected due Selected due to
Condition RealSpec to RealSpec to RealSpec RealSpec
concurrent concurrent concurrent concurrent
nature nature nature nature
Sensitive Missing Ranked A6 Ranked A3 Data Privilege
Data Authorization Missing Protection CIS | escalation
Exposure Ranked 16 Function Control 3
level Access
Control A7

! https://cwe.mitre.org/top25/archive/2023/2023_top25_list.htm]
2 https://css.csail. mit.edw/6.858/2014/readings/owasp-top-10.pdf

3 https://owasp.org/www-project-top-ten/2017/T. op_10
* https://www.cisecurity.org/controls/cis-controls-list
> What is the MITRE ATT&CK Framework? | IBM

Design and Evaluation of Secunty Features 1n RealSpec Real-Time Executable Specification Language

Chapter 2 Background

/5/*25’7?6'%

A key reason for many of these security exploits is the lack of awareness among software
developers regarding the inherent flaws in the pro gramming languages they use. Despite the well-
known history of memory-related vulnerabilities in C/C++, these languages continue to be widely
used, contributing to the persistence of memory-based attacks like buffer overflows and return-

oriented programming [1].

One of the most critical issues leading to these vulnerabilities is the improper handling of not
sanitized input. User input, especially in web applications, should never be trusted outright and
should always be considered potentially dangerous. Input data must be validated for its type and
range to prevent exploitation. Failing to properly sanitize and validate input can lead to a host of
serious security issues, including SQL Injection (SQLi) [31-34], Cross-Site Scripting (XSS) [34-
36], buffer overruns, and return-oriented programming attacks [38-42, 44]. Moreover, weak input -
validation is a major cause of concurrency threats [37-45), authentication failures [46], and

sensitive data exposure [43-47].

The remainder of this section delves deeper into specific attacks that capitalize on these
programming language weaknesses. Additionally, Table 1 provides an overview of several
application-level threats along with protective strategies from the existing literature aimed at

mitigating these security issues.
2.9.1. SQL Injection

SQL injection (SQLI) attacks occur when an attacker manipulates input fields within a web
application to insert malicious SQL queries, ultimately gaining unauthorized access to a database
[31]-[34]. By crafting specific inputs, the attacker can bypass authentication, retrieve sensitive

data, or even manipulate the database. Table 2.1 attack selection criteria.

Figure 2.1 illustrates the structure of a typical SQL injection attack. This thesis focuses primarily
on two types of SQL injection attacks: tautology-based and error-based. However, with further
adjustments, other forms of SQLI can also be addressed. A tautology-based SQLI is shown in
Figure 1, where the attacker injects SQL code that results in a condition that is always true,
allowing access to the database. In contrast, error-based SQLI relies on exploiting error messages

returned by the database when invalid SQL queries are executed, providing valuable information

[29 L

Design and Evaluation of Secunty Features 1n RealSpec Real-Time Executable Specification Language

Chapter 2 Background

to the attacker. One common approach for SQL injection is to use a predefined SQL query
template, which the system expects the user to follow [36]. This involves crafting input that will

be executed by the database without proper validation.

Lbtip:tifadv.comi?customerid==123 or 1==1

Select *frome s where 123 or =1
? >
Return gata from afl customers @
Data from customers is returned to aacker wesere oy
“ Web Server - Database

| Attacker

Figure 2.1 Structured Query Injection attack

Several techniques have been developed to detect and prevent SQL injection attacks, including:

1. SQL Check [31]: A tool designed to inspect SQL queries for potential vulnerabilities. It
compares user input against query templates to detect anomalies.

2. CANDID [32]: This method generates templates dynamically by observing the legitimate
structure of queries and preventing injections by enforcing proper input validation.

3. Classification methodology by Pham and Subburaj [33]: This approach offers a
structured classification of SQL injection types, providing a method to systematically
detect and prevent them.

4. DIAVA [31]: A multi-level regular expression-based method that scans SQL queries for
attack patterns, identifying and neutralizing SQL injection attempts.

These techniques provide robust defenses against common SQLI attacks, ensuring that web

applications handle user input securely and minimize the risk of database exploitation.

2.9.2. Buffer Overrun Attack

A buffer overrun (also known as buffer overflow) is a memory-based attack in which an attacker
overwrites a buffer's boundary and redirects the execution flow to a target address chosen by the
attacker [38], [48]. For an attacker to exploit this vulnerability, they typically need to know the

starting addresses of critical memory regions like the stack, heap, or system libraries. Once a buffer

Design and Evaluation of Secunty Features in RealSpec Real-Time Executable Specification Language

0

Chapter 2 Background

overflow occurs, it can lead to severe consequences such as system crashes, unauthorized privilege

escalation, or corruption of the program's execution state.

To mitigate buffer overflow attacks, several techniques have been developed. One hardware-based
solution is the non-executable stack (NX-stack) [38], [48], which marks specific areas of memory
as non-executable. This prevents the attacker from executing arbitrary code injected into memory
regions like the stack. Another protection method is Stack Smashing Protection (SSP), often
implemented using stack canaries, which is also referred to as Stack Guard [48]. A stack canary is
arandom value inserted just before the return address in the stack by a compiler tool such as Stack
Guard. If an overflow occurs, the canary value will be altered, and the program can detect this

change, preventing execution of malicious code.

Another important mitigation technique is Address Space Layout Randomization (ASLR), which
randomizes the starting locations of key memory regions such as the stack, heap, and dynamically
loaded libraries each time the program is executed. This makes it significantly harder for attackers
to predict where to inject their malicious payload [27], [48]. By altering the memory layout at load
or link time, ASLR helps protect against buffer overflow exploits.

Modern microprocessors also incorporate hardware-based buffer overrun protection using the NX-
bit (Non-Executable bit), which is a feature of the Memory Management Unit (MMU). This bit
ensures that specific memory regions, like the heap, stack, and shared libraries, are marked as non-
executable. This means that even if an attacker manages to inject code into these areas, the system
will raise an exception when any execution attempt is made in those regions [48). With the NX-
bit, memory regions can be designated as either writable or executable, but not at the same time.

This separation helps further secure applications against buffer overflow attacks.

However, despite these defense mechanisms ASLR, NX-bit, and Stack Guard more advanced
types of attacks have emerged, such as Return-Oriented Programming (ROP) and Return-to-libc.
ROP is a sophisticated technique that bypasses these protections by reusing existing code in the
program’s memory. Instead of injecting new malicious code, ROP takes advantage of small
fragments of legitimate code, known as "gadgets." These gadgets typically end with a return (ret)
instruction and perform simple operations, such as loading a value into a register. By chaining
together, a series of gadgets, an attacker can modify the program’s control flow and perform

malicious actions without injecting new code into the system [38], [40].

Design and Evaluation of Secunty Features in RealSpec Real-Time Executable Specification Language

v

Chapter 2 Background

In a return-to-libc attack, the attacker exploits a buffer overflow vulnerability to redirect the
program’s execution to a standard function in the C library (libc), such as system (), allowing them
to execute shellcode or commands with elevated privileges [38], [40], [42].A more sophisticated
defense against ROP attacks is Dynamic Integrity Management (Dyn I MA), which monitors the
integrity of program execution at runtime to detect and prevent ROP-based exploits. DynIMA
checks the integrity of the code's control flow and ensures that it hasn't been manipulated by an

attacker [38].

OpenSSL, a widely used encryption library for web applications, is employed by major companies
such as Amazon, Yahoo, Google, Facebook, LinkedIn, Netflix, Healthcare.gov, and Dropbox [2].
Despite its broad adoption, OpenSSL has been subject to critical vulnerabilities, one of the most
notorious being Heartbleed [39]. Heartbleed is a severe security flaw in OpenSSL, specifically
stemming from a buffer overflow vulnerability. Buffer overflow vulnerabilities are often exploited

in various control flow hijacking attacks, allowing attackers to manipulate a program's execution.

The Heartbleed vulnerability, at its core, is a codin g defect within OpenSSL, particularly affecting
a Transport Layer Security (TLS) plugin, which compromises secure data transmissions. This flaw
occurs due to improper memory management in OpenSSL. Since OpenSSL’s memory handling is
built on top of the standard C/C++ libc library’s memory management functions, conventional
security mechanisms like Address Space Layout Randomization (ASLR) are ineffective in
protecting against Heartbleed. ASLR typically helps prevent buffer overflow attacks by
randomizing memory locations, but in the case of Heartbleed, the vulnerability bypasses ASLR
due to its deep integration with OpenSSL's memory structure. Consequently, the buffer overflow
in Heartbleed exposes sensitive data, such as encryption keys and personal information, making it

a critical issue in modern encryption practices.

2.9.3. Cross-Site Scripting Attack (XSS)

Web applications block scripts running as part of different domains from obtaining cookies that
have been created for these domains. However, XSS can get through this simple safeguard. The
malicious script might be placed on a trusted website and then run by a different client of the same
server. An attacker can see the authentication cookie content since the malicious code executes on
the system of the victim. The session-specific user credentials, including the session, are stored in

the authentication cookie value. Using the information stored in authentication cookies, an

Design and Evaluation of Secuntty Features 1n RealSpec Real-Time Executable Specification Language

Chapter 2 Background

attacker can simply hijack the session of the user [35]-[37].

By retrieving the content of the authentication cookies, the attacker can hijack the victim’s session,
effectively taking over their account without needing to know their login credentials. This enables
the attacker to impersonate the victim and perform unauthorized actions under their identity,
leading to serious security breaches [35]-[37]. The most prevalent threat on the OWASP ranking
is XSS. To prohibit client-side scripts against accessing cookies, web servers can utilize the secure
as well as Http Only options [34]. As a mitigation strategy, Session Shield [34] enforces Http only
and secure tags on authentication cookies. This approach, however, cannot appropriately
distinguish authentication cookies [34]. The Ruby and C# need to be examined for cross-site
scripting vulnerabilities [4]. According to a study [34], 50% of ASP websites that employ sessions
make use of the Hitp only flag, which requires putting the Http only and secure flags on
authentication cookies. However, because authentication cookies cannot correctly be detected in

order to configure the flags, this practice is not widely employed [34].

‘(‘/

1.Attacker discovers a vulnerability, stores 2. Legal user wisits the legal website but
malicious code on legal website that will malicious code is executed on chent's
‘. execute on victim's browser browser
‘W. - - " .l
Attack '
. cker ; -
Website Victim
4. Attacker gets the crededentials 3. Sends user credidentials to the attacker

Figure 2.2 Cross-site scripting attack
2.9.4. Time-of-Check to Time-of-Use Bug

TOCTOU (Time-of-Check to Time-of-Use) is a problem that occurs when synchronization is not properly
programmed [37] [45]. The Time-of-Check to Time-of-Use (TOCTOU) bug is a class of race
condition vulnerability that arises in concurrent computing environments, where multiple
processes or threads can access shared resources simultaneously. In a TOCTOU bug, the system

checks a condition (such as the validity or state of a file or resource) at one point in time ("time

[33 L

Design and Evaluation of Secunty Features 1n RealSpec Real-Tume Executable Specification Language

Chapter 2 Background

Table 2.2 Security threats and mitigation techniques

Application Possible Mitigations . Limitations
. Security Threat . .
1" SQL Injection I SQL Queries constructed from templates or using ' It requires significant restructuring at every
i ! parameterized query to avoid SQL Injection querypoint, because the coder has to define the |
Basic structure of the SQL query.

SQLCheck [34] verify that all input connected with It gives false positives in certain cases [48].
aSQL query adheres to a correct syntactic structure

produced through a parse tree, employ context- free

. grammar in addition to compiler parsing methods.

Partitioning program symbols in code and non-code Difficulty to define the code, treating benign
values, where non-code values are "closed values” inputs as tainted and false inputs as trustworthy
that have been thoroughly evaluated and do not " [48].

" require dynamic adjustments, while open values need
dynamic assessment at run-time [48]

Buffer Overrun " No execute bit also known as NX-bit[44][38] It cannot prevent other forms of buffer over flow
Attack attacks

Stack Smashing Protection (SSP) / StackGuard It cannot prevent other forms of buffer over

has stack canaries [44]{38] flow attacks.

. Address Space Location Randomizer It cannot prevent other forms of buffer
oo (ASIR)A4Y38) o overflowattacks
ROP or return-to- Dynamic Integrity Management (DynIMA) [38] ¢ Performance of the system can be
. libc threat affected significantly while

monitoring for taints [38].

¢ Must identify meaningful values to
go along with the present integrity
measurement [38].

o The process image is altered by
code rewriting, which may

impede
the execution and assessment of certified
R , programs(38]
XSS * SessionShield [34] uses the HttpOnly flag and It is difficult to correctly
secure tags Detect authentication cookies
[34].
TOCTOU . Taint tracing Unsafe unless variable checking and use
are made atomic [45].
Sensitive Data * TaintEraser [47] Users must specifically identify
Exposure sensitive information ahead oftime
[47].
Broken Single Sign-on (SSO) [46] o Allows usage to all assets when a client
Authentication gets authorized, hence enhanced security,

for example smart cards as well as one-
time credential, is needed.

¢ It may cause third-party websites
inaccessible by utilizing social
networking services within the firewall
of the organizations.

. HITPS[46]

 Exploiting as well as breaching into any
certificate 1ssuer can endanger HTTPS.
Encryptiori/hashmg [46] e Encr};ption of information 1s costly,

Demands IT administration, and can
lead to issues with current
_ applications.

of check"), but by the time the s»}}stéhiréz:fual—li' acts on that condition ("time of use"), the state of

the resource may have changed, potentially allowing malicious exploitation. This gap between
the check and the subsequent use introduces a window of opportunity for an attacker to intervene

and manipulate the resource.

[31 1

Design and Evaluation of Secunty Features 1n RealSpec Real-Time Executable Specification Language

Chapter 2 Background

For instance, in a file access scenario, the system might verify that a user has the necessary
permissions to access a file (time of check). However, if the attacker can quickly replace or
modify the file before the system actually opens it (time of use), they can exploit the gap to gain
unauthorized access or perform malicious actions, such as escalating privileges or corrupting
data. TOCTOU vulnerabilities are particularly concerning in systems that handle sensitive

operations like authentication, file management, or database transactions, where timing is critical
[45].

TOCTOU bugs are especially prevalent in concurrent systems where multiple processes are
executed simultaneously, as they increase the likelihood of timing discrepancies. Attackers can
exploit these timing differences to intercept processes, replace files, or modify system states,

leading to privilege escalation, data corruption, or unauthorized access.

Mitigating TOCTOU vulnerabilities requires ensuring that the check and the use of a resource
happen atomically, meaning they are executed as a single, uninterruptible action. Techniques
like locking mechanisms (to ensure exclusive access to resources during critical operations),
using secure APIs that check and use resources in a single step, and minimizing the time window
between the check and the use are common strategies to protect against these types of race

conditions.
29.5. Sensitive Data Exposure

Sensitive data exposure occurs when confidential and private user information, such as location
data, photos, login credentials, or documents stored on a website or mobile device, is
unintentionally or deliberately exposed. This issue is one of the top ten vulnerabilities identified
by OWASP, as poorly designed applications can inadvertently leak sensitive information [43]. For
instance, Tom-Skype [47], a text editor, creates temporary copies of data, which can

unintentionally expose sensitive information.

A notable prevention method is Taint Eraser [47], which aims to prevent the disclosure of private
data by tracking sensitive information through dynamic taint analysis at the application level.
Taint Eraser monitors and overwrites tainted data information deemed sensitive with arbitrary

bytes before it is sent to the network or written to the local file system. It keeps a hidden list of

Design and Evaluatton of Secunty Features in RealSpec Real-Time Executable Specification Language

' 35 L

Chapter 2 Background

kernel-level tainted elements in user space to track open files. However, a key limitation of this
approach is that the user must manually identify confidential data at the beginning of the

process, limiting its effectiveness in fully automated systems.
2.9.6. Broken Authentication and Session Management

Broken Authentication and Session Management occurs when an attacker impersonates a
legitimate user by exploiting weaknesses in the authentication process [46]. These vulnerabilities
can arise from both technological and human errors in authentication modules. Remembering
complex, random passwords is a common challenge in systems that rely on traditional username
and password authentication methods. Single Sign-On (SSO) solutions can simplify this process

by reducing the need to memorize multiple passwords across various applications [46].

Maintaining secure user sessions and effectively managing user credentials are also crucial for
protecting authentication data [46]. One effective solution is to replace custom authentication
mechanisms with pre-built modules that have been thoroughly tested by large user communities.
This offers a more reliable and secure alternative. Additionally, employing HTTPS and
encrypting or hashing login information are essential practices for securing web applications

against authentication failures [46].

Table 2.1 highlights various preventative measures for OWASP attacks, such as compiler-based
approaches, operating system-level enhancements, hardware fixes, taint tracking, and binary
rewriting or instrumentation techniques. Figure 2.4 presents potential mitigations across different
tiers of a computer system, demonstrating how these strategies can minimize attack vectors.
However, despite these preventive measures, vulnerabilities persist because attackers constantly
find new ways to exploit weaknesses, especially in legacy code that lacks modern security

mechanisms.

Effectively preventing such attacks requires identifying the specific features of programming
languages that contribute to vulnerabilities. Furthermore, keeping developers informed about
language-specific risks and secure coding practices plays a critical role in mitigating these
security concerns. The next section will focus on essential security features in programming

languages that can help combat various vulnerabilities.

36 L

Design and Evaluation of Secunty Features 1n RealSpec Real-Time Executable Specification Language

Chapter 2 Background

2.10. Literature Review on Comparative Studies

There are comparative studies to compare programming languages including Garcia et al. [165]
evaluation research compared C++, Java, Lisp, and Perl to check the level of support each language
offer for generic. Aldrawiesh et al [163] evaluate programming languages like Java, C++, ANSI
C++, as well as C# for creating Web services and distributed systems. Al-Qahtani et al. [49]
compared popular programming languages for selecting an appropriate programming language

when selecting multi-paradigm language.

Buffer
QVerflow
aftack

Broken
Authentication

LEL]

SQLI ISensmve Data I ToCTOU '

StackGuard, SafeGuard, Control Flow Integrity, ’ * v
Tempiate Query, SessionShield, TaintEraser o Appticaton e e e T Sp— - -
Comrpiler
Address Space Location Randomization, Data v
Execution PRevention, Dynamic integrity | Operating SyStem he m m m wn = o= - = - -——-— = - - E
Management
Hardware Fine Grained Contral Flow integuity, L
Non-execute Data Regions in Stack, DEP bl Hardware o e e

Figure 2.3 mitigation techniques on computer system layers from literature review

2.11. Literature Review on Specification Languages

In both industry and academia, numerous specification languages have been developed to
incorporate security requirements into software development processes. Some notable
specification languages include: UMLSec [7] extends UML (Unified Modeling Language) profiles
to incorporate security concerns and provides modeling techniques for specifying and analyzing
security properties. Hayati, et al. [5] utilizes graphical models along with constraints expressed
using Object Constraint Language (OCL) to capture and enforce security requirements.
UWESecurity [6] employs a custom-made grammar to specify security requirements and

integrates them into UML models. SysML-Sec [10] aims on security specify in the context of

Design and Evaluation of Secunty Features in RealSpec Real-Time Executable Specification Language

37

(\

Chapter 2 Background

Systems Modeling Language (SysML) and provides mechanisms for specifying security
requirements in system-level models. Secure Descartes [11] is a declarative specification language
is specifically designed for defining web access control policies. Ponder [3] [12] utilizes a custom-
made grammar and formal methods to capture and enforce security policies in software systems. It
is non-semantic based object-oriented. Declarative specification language models access control
and authorization for distributed systems and networks. S- Promela [4] is an executable
specification language that specifies access control mechanisms in embedded systems. AMF [5]
is a formal specification language that specifies access control for authorization systems. Kong, et
al. [15] proposes a technique for secure software development that integrates security requirements
such as confidentiality, integrity, availability, and security threats into UML models. SysML-Sec
[10], a real-time executable specification language, specifies confidentiality, integrity, and
authentication for real-time embedded systems. Another model-driven security framework
proposed by Deveci and Caglayan [23] specifies authentication, authorization, availability, and
fair exchange. These approaches utilize various techniques, such as extending UML, using
graphical models with constraints, utilizing formal specification languages, or developing custom-
made grammars, to specify security requirements into the software development process. They
choose different security requirements, including access control in distributed systems, input
validation in web applications, and security specification for embedded systems. However, a quick
evaluation of these specification languages shows that only a portion of security features are

specified, lacking a toolchain for complete security requirements.

There are numerous comparison frameworks to evaluate the security coverage of specification
languages such as Kasal et al. [16] proposed an evaluation framework that compares the
specification languages with the following dimensions: paradigm, artifacts, formality,
distribution, granularity, executability, verification, tool support, applicability, and security
mechanism. There are no details on the dimensions of the security mechanism given bythe
framework itself. Villarroel et al. [17] compare eleven methodologies incorporating security in
their development phase. However, security requirements are not defined for comparison. The
work proposed by Khan and Zulkernain [18] is comprehensive in comparing SSDLC, SSRE,
secure software designs, and secure software guidelines. However, the security features proposed
do not mitigate the afore-mentioned attacks. Karapati et al. [19] framework is a collection of
orthogonal dimensions from previous studies. Moreover, the security requirements are not detajled

and lack empirical validation. Lucio et al. [20] presented a comparison framework to evaluate the

Destgn and Evaluation of Secunty Features in RealSpec Real-Time Executable Spectfication Language

I 38 L

Chapter 2

Background

practical specification languages. Their comparison framework is based on Khwaja and Urban [9]

[7] and Kasal et al. [16] frameworks. The dimensions of their framework include application

domain, security concerns, specify approach, separation of concerns, model transformation,

verification, validation, tool support, and traceability. The only aspect the framework offers is a

list of security specifications written in a particular specification language that can be used for
comparison. To analyze state-of-the-art specification languages. Nguyen et al. [22] recommended
a systematic literature review (SLR). Security issues, model-to-model and model-to-text
translation tools are some of the assessment criteria. Security concerns include confidentiality,
Table2.3 Literature Review on Programming Languages Comparative Studies
Programming . Type | Methodology Criteria for Limitations i
Languages , i comparison |
Comparative Studies : | ;
Croft. R. 1157} Empirical study Compares 15 * Type safety, Security features are
programmers’ security * type checking, not precise
discussion on Stack over * memory management
flow and GitHub. Derived
Taxonomy of 18 security
challenges 6 categories ‘
Al-Qahtani ct al. [49) Evaluation study Compares programming secure programming Security
to select an languages for multi- practices is one criterion programmng
. appropriate paradigm so that best among other criteria features offered by
language for decisions can be made for ¢ web applications programming
V , multi paradigm programming language development, languages is
language suitability. e web services design and discussed but it did
oomposuion’ not mention a
* objectoriented-based single criterion for 1
abstraction, each programming -
» reflection, aspect- language used for
orientation, comparison. And
o functional programming a}l]so, tlae fpcus of
e declarative ;eleezzubeysés to
progr & language for
mutli-paradigm
K. Aldrawiesh[162] Evaluation offer an overview of the The evaluation criteria Security features
of Programming languages used for include criteria is not
Languages for programming such as Java, ¢ high integrity, discussed in detail
Building Remote ¢« C++, ANSI C++, and C# e decentralized system,
Systems in the for creating Web services e simplicity
Web and distributed systems. e usability,
Environment e concurrency,
e platform,
¢ maintenance, and
o dependability.
R. Garcia[163] Evaluation the author compared C++, Reusability, mobulity, Security features
research Java, Lisp, and Perl dependability, readabrlity, criteria are not
efficacy, existence of discussed in detail
u compilers and tools,

familianty, and
expressiveness are the
critena for evaluation.

Design and Evaluation of Secunty Features 1n RealSpec Real-Time Executable Specification Language

9

Chapter 2 Background
Table 2.4 Literature Review on Existing Security Specification Languages
| Author and reference Type Domain | Methodology: Security ! Reason for ‘
| j : Features " selection
| ! ' Coverage '
Sceure Descartes declarative . Embedded f Specifies © access control - Executable
[11] specification systems security policy for web specification
| language i features " applications ~ language
| ' using secure " - Embedded system
< + Descartes ' specification
‘]) i syntax ‘ Ps
S-Promela [13] executable embedded = Specifies Security features - Executable
' specification systems . security * covered are spectfication
; language . features . = access control language
, using - Embedded system
security specifications
; " pragmas
such as
integrity
pragma,
: authentication
SysML-Sec |10] the real-time Real-tme Specifies Security features - Executable
executable embedded . security covered are spectfication
specification systems. . features - Confidentiality, language
language using - Integrity - Security
SysML - Authentication features
syntax specifications for
concurrent systems
Devecr, E., & Caglaya Modet Driven Informatio ' Defines Security features Security features such as
" 122) Security n Systems security covered are immutability is missing.
framework requirement . - Authentication :
s, models - Authonization
usmg UML - Secrecy
* profile - Validation
' extension, Security features
OCL, and, covered are
, Promela - Integrity
and model - Audit
checking for - Fair exchange
. i e o VA
Damianou Non-semantic- Distribute Specifies Security features - Declarative
N2 based object- dsystem . access covered are specification
oriented and control using - - Access control - Security
declarative networks. Ponder and specification
specification syntax - authorization
Al-Mekhlal and Synthesis Bigdata , Developa Security is not . aframework that offers
. A AllKhwaya [164) modeling , framework major concern in dimensions for big data
characteris - for this paper modeling
tics + characteristic
" srelated to
big data
modeling.
Hayati. Petal. [3] Extension of Web Specifies Input Validation Security feature
UML profile, application input modeling
gaphlca[validation
models using
activity
diagram

Design and Evaluation of Secunty Features in RealSpec Real-Time Executable Specification Language

[40 L

Chapter 2 Background
Table 2.4 Literature Review on Existing Security Specification Languages
Type Domain Methodology Security Features Reason for
Auth Coverage selection
or
and
refer
ence

Busch [6] Extension of UML Web application Specifies session Security features Security feature
profile, graphical management and specified are modeling
models authorization usig| Session timeout Web application

UML diagram , access control,
authorization

Jiirjens | 7] Extension of UML Dustributed Systems | Specifies security Secunty features Security featureg
profile, graphical tags specification specified are are not defined irf
models and extension of - Refinement, detail

UML profile - Secrecy,
- Secure
Information
Flow,
- Integrity,
- Authenticity,
Freshness [27]

Secure IML[8]|Extension of UML Distributed Systems | Specifies access Security features It specifies only
profile, graphical control and specified are access control
models ownership using - Access control

UML diagram and
OCL
constraints
1u and formal specification Authorization Specifies security Security features Model to code
Ahn|14] language system. features using spectfied are transformations.
RCL2000 - access control Model checking
specification Security features
and the specification
transformation to
alloy
specification
language

authenticity, authorization, availability, and integrity. However, the framework does not model

significant security concerns such as input validation. Another SLR conducted by Van den

Berghe et al. [21] compares specification languages based on security dimensions such as

confidentiality, auditability, privacy, access control, availability, cryptography, and integrity.

However, the security dimensions mentioned are comprehensive, but still, there are some of the

security features not covered, such as input validation, type safety, and others. A quick review of

comparison frameworks to evaluate overall security requirements coverage by various

specification languages [16]-[23] show a lack of comprehensive security dimensions for

comparison frameworks. The identified security features are not based on the security features

Design and Evaluation of Secunty Features in RealSpec Real-Time Executable Specification Language

[al

T

Chapter 2

Background

collected from programming languages security functionalities that avert the above- mention

attacks. We previously created a security feature framework (SEF F) to analyze security features

in programming languages in our earlier work [50]. SEFF offers a precise set of programming

language security features for preventing certain OWASP attacks. A similar methodology, but at

a higher level, is required to evaluate specification languages for security feature coverage.

Table 2.5 Literature Review on Comparative Studies Evaluating Specification Languages

Comparison
Frameworks

i

type | methodology
|

* coverage

! Limitations

Villarroel, et al.[17]

Kasal et al. {16]

Khan & Zulkernine [18]

Karpati et al. [19]

Lucdo 20

Comparison
Framework

’ Comparison

Framework

" SLR

Comparison
Framework

Comparison

Framework

Compared 11
methodologies
incorporating
security in
development phase
Compares MDS
usingdimensions

* paradigm,

* artifacts,

* formality,

* distribution,
* granularity,
* executability,
* venfication,
* tool support,
* applicability,
security
mechanism.
evaluate SDLC,
SSRE, secure
software designs,
and secure software
guidelines

Compares MDS
using a collection
of orthogonal
dimensions from
Previous studies

" ComparesMDS

using

* application
domain,

* security
concems,

* specification
approach,

* separation of

concerns, model

transformation,

verification,

validation,

tool support,

traceability

a o e o

security dimensions
for the database are
compared

access control

Securitymechanism
access control
Security Protocol
Intrusion Detection
Mechanism

are taken from
Jugyens (2002)

* access control
* Confidentiality
* Integrity

* Constraints

* Confidentiality
* Integrity

* Availability

specification
languages' security
coverage using
securitydimensions
as

* Authorization,

* confidentiality,

* Integrity,

* availability

Security features are not
precise for comparison

‘ Security features for

securitydimensions

{(; 1dentii;); o

comparison are only
those supported by
specification languages
used for companison

f

i

Secunty features are not |
precise

Security features are not
precise

Secﬁﬁfy rei]uﬁenieﬂté are
not precise

Design and Evaluation of Secunty Features 1n RealSpec Real-Time Executable Specification Language

a2l

Chapter 2

Background

Table 2.5 Literature Review on Comparative Studies Evaluating Specification Languages

Comparison type methodology Security feature Limitations
Frameworks coverage
Van den Berghe [22] SLR Security features are Security Security needs are not
compared in Features precise such as to
specification compared are mitigate certain
languages * confidentiality OWASP attack features
* auditability such as immutabulity,
* privacy output validation,
* access control secure error message is
+ availability not specified.
* cryptography
Integrity
Nguyen {21] SLR security concerns, Security Security needs are not
model-to-model and Features precise
model-to-code compared are
transformation * Confidentiality
tools. * Authenticity
* Authorization
* Availability
integrity

2.6. Identification of Security Features from Literature

This section has identified security features from the existing comparison frameworks where
security dimensions are given. Table 2.5 has laid the basis of selection of security features for this
thesis. However, there are many sub-features or main features for these security features and these
features are not sufficient and comprehensive to mitigate OWASP TOP 10 attacks. Some
organization consider access control in functional requirement [14]. Security is difficult to quantify
as there is no common agreed metrics for this purpose according to [41]. In [41], multi dimension
verification aspects are taken and security is taken as extra functional requirement. The key targeted
security services commonly represented as extra-functional aspects for verification are
confidentiality, integrity, and authentication. Verification of security feature is highly dependent

upon the types of the attacks and attacker model.

2.7. Security Framework

A security framework outlines the policies and procedures necessary for implementing and
maintaining security controls. It clarifies the processes used to safeguard an organization against
cybersecurity risks. These frameworks assist IT security professionals and teams in ensuring
compliance and protecting their organization from cyber threats. Figure 2.4 show the proposed

framework to detect, prevent, recover from mentioned cyber-attacks.

Design and Evaluation of Secunity Features in RealSpec Real-Time Executable Specification Language

[4l

o

Chapter 2 Background

2.8. Security Features in Programming Languages

This section highlights important programming language features that can be leveraged for
minimizing the above-mention attacks. These security features together make a Security Feature
Framework to evaluate programming languages for security coverage. The process of creation of
these features was first the features that are mitigating attacks are collected from mitigation
techniques and the guidelines provided by languages manual. Then those features were given a
name-based on their nature of similarity for example error message control prevents SQLI as verbose
error message gives extra information to the unintended user. However, error message control is
placed under error handling and log file protection due to their similar nature with logging. In SEFF,
each sub-feature is placed under main feature because each sub-feature is relevant to the main

feature and help provide the main feature functionality.

2.8.1. Error Handling and Logging Protection

Exceptions or errors are considered unusual incidents since they show that the internal states of the
system have been damaged, and either the application program must be restored before the system
can continue functioning normally, or an appropriate notification must be presented to the user prior
to the system returns to normal operation [51] [52]. Handling Exceptions in programming languages
eliminates data loss, which could jeopardize application security. Security sub-features of error
handling include log file protection, log Information level, as well as error message control. Since
these sub-features are related to logging and error handling that is the reason they are selected to be

categorized under error handling and log file protection.

2.8.1.1. Log File Protection

The management of errors is frequently combined with the logging method. Logging is a tool for
troubleshooting and diagnosis [51]. Failure of input validation, access control, authentication,
system events, backend TLS connection, cryptography, along with improper session token usage as
[54]-[56]. Keeping logs in simple text is a vulnerability that can provide intruders valuable details
that can be used in OWASP attacks. The log must not contain any executable code [52].

2.8.1.2. Log Information Level

Logs capture data pertaining to runtime of the application that can be utilized for debugging and

Design and Evaluation of Secunty Features in RealSpec Real-Time Executable Specification Language

[a1

Chapter 2 Background

Table 2.6 Security Features identification from literature review

Schemes Security Features
- Z = g =
= k= =
£ 2 E|3 |2 ElE|
] sfl 23| 5|2 | B g | B 6| 8.
7 |BE|E8| &% (2|2 |E|F|Z|2|zBls8
= 2% H - k1 [S &
$§ |ER|3E|S|E | £z | 2|E|%|5 3548
Villarro el Yes No No No No No No No| No No No No| No
et al.
[7]
Yes Yes Yes No No No No No No No No No No
Kasal ¢t
al. [16]
Khan & Yes No No Yes Yes No No No No No No No[No
Zulkeminef
18]
Karpati et No No No Yes Yes Yes No No No No No No No
al. [19]
Nguyen No No No Yes Yes Yes Yes Yes| No No Noj No| No
[21]
Van den Yes No No Yes Yes Yes Yes Yes; Yes Yes~ Yeds No No
Q Berghe{22]
Juirjens[7] Yes No Yes | No Yes | Yes| Yes | Yes| Yes|{ Yes| Yes| Yes| No
Secure Yes No No No No No Neo No { No | No No | No | No
Descartes [11]
Lucio [20} No No No Yes | Yes | Yes| Yes | No| No| No| No| No| No
Secure Yes No No No No No No No | No | No No | No | No
Descartes {11]
S-Promela [13] Yes No No No No No No No [No | No No | No | No

diagnosis later on. A lot of logging takes up space, yet not enough logging makes troubleshooting
difficult. However, correct logging procedures are not always followed. The log level functionality
enables programmers to customize the amount of information recorded. Apache contains the
logging library logdj [56] to regulate logging, and a log statement can use logging levels such as
© trace, debug, info, warn, error, along with fatal. Trace signifies the most verbosity, while fatal
indicates the least amount of verbosity. Given the section in which logging comments are written,

developers must identify the appropriate logging level [56]. The level of logging in the exception

[a5 L

Design and Evaluation of Secunty Features 1n RealSpec Real-Time Executable Specification Language

Chapter 2 Background

section becomes more verbose, and in the handler section it becomes less verbose, according to [56].
The logging module in Python is set to "warning" by default [57). Logdcpp [55] is a logging library
for C++, similar to Python. Log4r, a Ruby logging package that allows the developer to choose
the severity of the data to be recorded [54] [55] [59]. LogdNet is a C# logging utility that use
"debug" as the default logging level and allows the developer to modify it [52].

Waterfall Software
Development Life Cycle

oftware
Development
for Real-Time
Systeins

functional and

Extra-functional
SRFM Requirement Analysis requirements
r\ ‘ are defined

System Design

’ '
SEFF implementation
1
attack
Pattern

Testing

No

Deployment { OUtpUt;

Notify User about
Maintenance attack and throw
exception

(Stop }

Figure 2.4 Security Framework

T

Destgn and Evaluation of Secunty Features in RealSpec Real-Time Executable Specification Language

Chapter 2 Background

2.8.1.3. Error Message Control

Attackers can take advantage of error message details, especially facts about incorrect usernames
along with credentials [60], or the Stacktrace attribute, which reveals the sequence of calling
functions [60].

2.8.2. Input Validation

Input-related vulnerabilities caused by flawed database queries, unverified user inputs, input buffer
limit overflow, as well as a lack of output validation can all be avoided with effective data validation.
This security feature includes sub-features that consist of database query security, user input
security, input buffer size, along with encoded output. Since, these sub-features are related to inputs

that is the reason these cares categorized under input validation,

2.8.2.1. Database Query Security

Almost all software programs require databases to store organizational facts, rules, configuration
settings, and authorizations. The corporate logic is typically performed in the database layer.
Database code problems can lead to severe weaknesses that can be leveraged by SQLI or simply other
input validation exploits [52]. Although programmers can build stored functions, this does not ensure
SQLI defense [1]. Almost all software programs require databases to store organizational facts,

rules, configuration settings, and authorizations. The corporate logic is typically performed in the

database layer. Earlier versions of the .Net framework might be more susceptible to SQLI, but
newer versions of the .Net framework prevent the SQLI attack by data annotation library embedded
in ASP.NetModel View Controller (MVC). The data annotation library is made up of regular
expressions for data inspection [61]. C# support language-level query abstraction including queries
over relational database and LINQ has removes possibility of SQLI [166]. A developer may want to
employ SQL queries explicitly in code in some instances. Parameter collection in the .Net
framework allows developers to impose type and length verification [63]. SQL Injection is difficult
since the SQL server perceives input as a literal value instead of executable code [63]. Java, C++,
Ruby, and Python all support the structuring approach that avoids SQLI. Developers can securely
add borders to their query strings utilizing the templating capability, which is then filled by an
application programming interface (API). This method is used by both Python's MySQLdb

component as well as Java's java.sql component [61]. For constructing a SQL query, Ruby has SQLI

[l

Design and Evaluation of Secunty Features 1n RealSpec Real-Time Executable Spectfication Language

(@

Chapter 2

Background

helper functions and a prepared method [49]. Ruby has a taint tracking support [166). In contrast,

template strings remain strings and can be modified by combining unsafe invalidating input [61].

SQLI is possible in Java if input validation is inadequate [4]. As well as private data are all stored

in log files [52]. Ruby logs each request submitted to a website by default, that can provide a

significant security concern [53] [54] since the logs may contain passwords. Ruby provides a

filtering function for deleting passwords and other sensitive data, but it requires the intervention of

a coder [54]. Logs are kept in simple text in the Java, Python, and C#

. .] - .
¢ ! Secure :
ng Daa | Type Memory Access Session Communication '
andieg vadidation § System % Management . Control Management Security
- LT
i LogFie Quary Type safety User i Management Authorizaition Secure Support
" Protection Security Authentication ' Control Types Cookles '@ - -
S e e s ¢ T « Cryptographic
K —eeeme o Userlopit Type i Mamory capauiation ~ T v Aortthe
: ¢+ Secusity Casting Arithemetie g o e
Information R T Access SessioniD | Key Length
Level Input Butter e Array Out of Cantrel : _—
—-— SheCheck intisliration i Bound o e e ; Random Number
Error OV __ -)
¢ Mesaage Encodad ! cabilt ! N ¢ Su ¢ H Cartificats
| ot vt e % Flexibility oot m I Validy
i .
Figure 2.5 Proposed SEFF

2.8.2.2. User Input Security

User input safety deals with the validation of input submitted to an application. Most programs
depend on user input [49] that can be dubious. SQLI, XSS, along with buffer overflow exploits are
all a result of poor input checks [1]. Checking for illegal input is inadequate since adversaries can
circumvent it. Programming languages should have ways for defining and limiting acceptable
input data. To validate numbers and strings, regular expressions should be employed. Entering
huge numbers, for instance, could end in a negative value if the application is not thoroughly
validated, providing a security risk. Java contains a package termed as regular expressions for input
validation. You can use this package to handle input using an advanced pattern-matching strategy
[64]. C++, on the other hand, includes a standard library known as regex which allows regular
expressions. However, because to the complexities of the regex library [65], handling input in C++

is problematic. For regular expressions, C# has a regex class. The programmer has to check the user

Design and Evaluation of Secunty Features tn RealSpec Real-Time Executable Specification Language

[4 1

Chapter 2 Background

input before generating the query. Otherwise, the query string cannot be verified once that been
created [43]. Ruby supports taint monitoring but has several input validation problems [49]. Python
solves input validation by creating three Web server modules: SafeString, SafeServer, along with
SafeSql [43]. Standard string input is accepted by the SafeString class. SafeString class objects
maintain track of the elements used to create unsafe strings. SafeServer bridges the developer's and
server's code by altering its built-in method to receive and post user input in SafeString. SafeSql is
a database communication tool for SQL. Python modules are language plugins, not built-in
features, which can be avoided by changing private variables of objects or supplying some default
settings [43]. Python treats user-defined strings in the same way that it treats built-in strings [43].
Ruby includes a method for escaping vulnerable SQL characters by default. This default technique,
however, continues to support SQLI attacks. Ruby includes the ActiveRecord::Sanitize
method[66] to sanitize potentially dangerous input strings. In computer languages, each input item
must be checked against the permissible input buffer size, allowable symbols, along with input
data types. [4], [63].

2.8.2.3. Input Buffer Size Check

The most prevalent source of buffer overflow attacks is failing to check the size of the buffer while
copying data to buffers. Java offers bytecode checks for input buffer limit validation. C# has an
in-built input buffer limit verification technique; for instance, arrays in C# start at zero index, and
C# checks the input size to the maximum capacity of the buffer [65]. There is absence of boundary
verification in C/C++, and vulnerable methods like gets as well as strepy facilitate buffer overrun
attacks [67]. Boundary validation is also supported at runtime in Ruby as well as Python [68],
[69]. Array bound checking is provided by Java, that minimizes the bulk of buffer overflow
vulnerabilities. On the other hand, Native Java programs can circumvent memory protection [4],

[701, [71].
2.8.2.4. Encoded Output

Output encoding is a critical component for preventing XSS attacks. If the work includes any user
input displayed to the Web browser, the output must be encoded [72] Net has a technique for
converting a string to an HTML-encoded value [72]. The Python programming language has
functions for ASCII encoding [73].

[l

Design and Evaluation of Secunty Features tn RealSpec Real-Time Executable Specification Language

Chapter 2 Background

' ¢

2.8.3. Memory Management

Intruders may exploit memory management of an underlying language; therefore, it must be
resilient. Memory-related attacks may occur as a result of improper memory management.
Memory management sub-features may include memory management control, memory address
arithmetic, array out-of-bounds check, as well as memory management flexibility. Since, these
sub-features are related to memory management and that is the reason these are categorized under
memory management feature. Moreover, Array out of bound is also a sub-feature as it can cause
buffer overflow attack if the memory is not properly released or arrays are accessed past the bounds

and that is the reason it is categorized under memory management.
2.8.3.1. Memory Management Control

Memory management is in responsible for memory assignment and cleanup. Object creation is not
a problem, but object disposal is. C++ supports manual memory management. Garbage collection
and automatic memory management are both provided by Ruby and Python [73]. Some problems
related to manual memory management are removed by automated memory management, like
dangling pointers along with double-freeing bugs [68] [74] [75]. Despite the fact that Java provides
garbage collector, memory loss is common. If an exception mechanism fails to delete a registered
object from the queue, the garbage collector has no way to clear its memory, causing servlet
memory loss [51]. C# provides garbage collection through a generational technique. The garbage
collection approach assumes that handling a portion of the heap is cheaper than handling the entire
heap [75]. The garbage collector's timetable, on the other hand, is unpredictable, making it

unsuitable for real-time applications.

2.8.3.2. Memory Address Arithmetic

Pointers in C/C++ enable unauthorized possession of memory segments. Any adversary with
access to the pointer data can utilize arithmetic to jump to the exact location of the fraudulent
payload triggering ROP. Pointers are no longer utilized in Java; hence pointer arithmetic is
forbidden {65] [76]. In C#, pointer arithmetic is permitted, but only in the unsafe block. Pointers,

on the other hand, are still used for connectivity as well as performance-critical hotspots [74].

I 50 L

Design and Evaluation of Secunty Features 1n RealSpec Real-Time Executable Specification Language

Chapter 2 Background

2.8.3.3. Array Out of Bound Check

The size of an array must be verified to ensure that a buffer overrun does not occur. Because C/C++
lacks array bound checks, they are vulnerable to buffer overflow and ROP exploits. [65] [67] Byte
code verification in Java verifies array boundaries. In C#, arrays begin with zero indexes, thus
accessing an array beyond its boundaries raises the Index Out Of Range error [65]. Python and Ruby

both have runtime checks for array out of bounds [49].

2.8.3.4. Memory Management Flexibility

Performance-oriented developers typically utilize custom memory allocation. C++ allows for
customized memory allocation through the use of new along with remove overloaded operators.
The C language includes malloc and free for custom memory allocation. Regions are used by
several custom allocators to offer performance. Regions are currently gaining attention as a
possible substitute to garbage collection. Although regions provide tremendous efficiency, they
need a developer keeping all memory associated with a region until the final item of the region is
deleted [49]. Unlike Java and C#, C++ utilizes both the stack and the heap for pointers; all instances
are references and created on the heap. In Java, Python, Ruby, plus C#, garbage collector deallocates
references [64] [77] [78]. Python offers developers to customize memory acquisition and deletion
[74]. Ruby additionally offers this sub-feature by manually deleting files or network variables to
ensure that the block is linked to the begin block [75].

2.8.4. Access Control

Limiting access privileges and purpose of activities can assist in avoiding application-level flaws
that include TOCTOU, buffer overrun, along with sensitive information disclosure attacks.
Authorization types, encapsulation-based access control, even sandbox support may be combined
as sub-features. Since these sub-features are related to access control and provide somehow access

to the objects based on some privileges that is the reason these are categorized under access control.

2.8.4.1. Authorization Types

The type of procedures that certain individuals can perform is determined by authorization rules.
Access control refers to the policy or capability that allows, denies, as well as limits access to a

system. Every individual trying to get entry to a system must initially be authorized so that

Design and Evaluation of Secunty Features 1n ReaiSpec Real-Time Executable Specification Language

Chapter 2 Background

particular rights can be assigned [12] [43] [79]. A developer should remember the concept of
minimal privilege while assigning responsibilities within a database application. An attacker cannot
access the remaining software in this manner. File access, network access, user interface access,
and platform-specific access are all examples of Java language permissions [80]. In Java, the least
privileges can be achieved statically through policy files and dynamically using the Java security
access controller method [71]. Java annotations are an alternative method of restricting permission
in Java [63]. C++ and C# support restricted access to system assets [81] [82]. Ruby allows for
controlled access to system resources; nevertheless, this is reliant on how the programmer
implements it [80]. Python has no way for controlling resource access because the rexec() module

was removed in Python 2.3 [59]. Python includes a method for controlling file access [73].

2.8.4.2. Encapsulation-Based Access Control

Encapsulation-based access control governs the accessible scope of an item that might be public,
protected, or private. A programming language defines a resource as a private data and access to
these private data is provided through public methods. In Ruby, Java, C++, as well as C#, classes
are utilized for achieving procedural encapsulation [84]. Python prohibits private, protected, as
well as public visibility scopes. By default, all objects are public, but they can be kept private by
adding an initial underscore prior to the variable name, like _var [84]. A different method to
describe an asset is through type-based encapsulation. The untrusted code is given a resource
pointer; however, the pointer type is abstracted, making direct access to the resource impossible.
The code is able to use the asset by triggering one of the methods given in the abstract type
signature [67]. Polymorphism is a characteristic of the Python, C++, C#, along with Java [64] [77]
[78] [84].

2.8.4.3. Sandbox Support

It is a security method that evaluates unverified or untrusted code for viruses or malicious code
without exposing the whole system in danger [85] [86]. Sandboxing grants privileges to program
code at the language level [80]. The Java sandbox runs unsafe code with the lowest level of
privilege feasible, and if the sandboxed code tries to enter security-sensitive program, the Java
Runtime Environment (JRE) returns an exception. Java [80] supports file, socket, user interface,
as well as platform-specific access controls. C++, C¥#, Ruby, and Python, include a sandbox for
testing untrusted code. The disadvantage of this sub-feature is that it can abuse the user's privileges.

It has the capacity to run any program inside the controlled code runtime environment [85].

I 52 |

Design and Evaluation of Secunty Features 1n RealSpec Real-Time Executable Specification Language

Chapter 2 Background

2.8.5. Type System

A programming language with strong type support may resist buffer overrun, ROP, and TOCTOU
exploits. Sub-features are type safety, type casting, and type initialization, along with immutability.
These sub-features are related to type system and every programming languages provide these
however, immutability is choosen to be the type due to functional programming languages provide

this type system and imperative programming languages provide weaker immutability [88] [90].

2.8.5.1. Type Safety

A data type is a programming resource limit that describes the set of valid values that conform to
the type [87] [65]. Strong typing reduces the possibility of buffer overruns and ROP exploits [87].
Assume Employee is the base class, from which the subclasses Manager, Clerk, as well as
Salesman descends. Understanding the type of identification is crucial in this case in order for
employees to be permitted access permissions [12]. Programming languages are categorized as
statically or dynamically typed [87]. Java and C# are examples of statically typed safe, meaning
that data type verification occurs at the time of compilation. Pointer mathematics is only permitted
in unsafe blocks in C#. C++ is a computer language that is unsafe and statically typed, and it enables
pointer arithmetic. Python and Ruby are object-oriented programming languages with duck typing
(dynamic typing). The type of the object is checked during runtime. Duck typing is additionally
referred to as "soft typing" [87].

2.8.5.2. Type Casting

Particular conversions among types, including double to Boolean, are either automatically or
explicitly allowed. Implicit type casting or automatic is a potentially dangerous casting approach. It
is not supported by Python, Java, or C#; however, it is supported by Ruby [65],[87]. C/C++ are
likewise weakly typed and permit implicit type casting [65]. Implicit casting relieves programmers
of the need to write redundant type conversion code. The same functionality, however, can result

in data loss and security risks [87].

2.8.5.3. Type Initialization

It means that a variable should be initialized after it is declared. According to the language
description. Variables in C# are immediately set to zero and references to NULL, however in C++,

a variable created without a start value contains garbage. The system behavior is undefined if the

Design and Evaluation of Secunty Features in ReaiSpec Real-Time Executable Specification Language

I 53 L

Chapter 2 Background

language does not provide any default initialization. To safeguard against buffer overflow, set the

variables to their original values and pad the over-read value with zero.

2.8.5.4. Immutability

The item is then referred to be an unchanging or unchangeable object. In an application program, its
content cannot be changed [88]. Mutable objects, on the other hand, may alter after or while a
method or constructor call is running. Immutable objects in concurrent programming languages
ensure thread safety [80] [89]. The final keyword in Java can be utilized to make a class immutable.
If the mutable input is stored in a field of an object, a malicious user may exploit a race condition
in the outer class. In Java, for example, a TOCTOU inconsistency can be exploited if a mutable input
contains one value through a Security Manager inspection and a different value when the input is
later used. In C++, the const keyword declares immutable fields. A different reference to the same
object fails to offer a guarantee for an object declared with const [88]. In Java, the final keyword
offers reference immutability that is less powerful for the reason that a reference cannot be
transferred to refer to another object. The value of the mentioned item, on the other hand, may vary
[89]. In C#, immutability is provided by read-only keywords. Declare read-only variables in the
constructor or as part of object setup. A read-only reference prevents an item from being altered
through a single reference however not necessarily by all of its references [89]. C# also has a const
feature, which differs from C++. In C#, const must be statically defined; alternatively, it causes a
compile-time error [88]. Ruby uses freeze method to make an object immutable, and there is no
way to modify it [69], whereas Python provides both immutable and mutable objects for standard
as well as user-defined types [90]. Strong or weak immutability can be provided by programming
languages. If an object has single immutable field and the rest are changeable, it is regarded weakly
immutable; if an object contains all immutable fields, it is regarded as strongly immutable.
Immutability is lower in imperative programming languages that include Java, C++, Ruby, and C#

than in functional programming languages [38] [90].
2.8.6. User Authentication Support

User authentication refers to the process of verifying that an individual or organization is who they
pretend to be [52] [79] [91]. It can take several forms, including username/password, biometric
authorization, SMS single-use passwords, and security frameworks such as Single Sign-on (SSO)

as well as Open Authorization (OAuth) [63]. Almost all secure applications use a common

[sa L

Design and Evaluation of Secunty Features 1n RealSpec Real-Time Executable Specification Language

Chapter 2 Background

authentication approach that involves a user ID and a secret code. Extra credentials or multiple-
step authentication is necessary in security-critical applications including online banking.
CAPTCHA technology has the potential to be used to stop spam along with automated OWASP
attacks. Java Authentication and Authorization Service (JAAS) component is included in the Java
platform version 1.4. JAAS takes administrator and user credentials. JAAS also supports form
authentication, which uses the HTTP POST method to deliver the login credential sand password for
verification [92], [93]. Ruby includes a plug-in for Restful-Authentication [63].C# uses predefined
authentication modules and allows for the registration of custom modules [94]. Python and C++
authentication components are available [95], [96]. The primary goal of an attacker is to
compromise authentication mechanism. Any defect in the design architecture may end in

authentication bypass, granting application access.

2.8.7. Session Management Support

Support for this feature could aid in the fight against XSS as well as broken authentication
vulnerabilities. Sub-features that involve secure session ID, secure cookies, along with session

timeout could be included because these sub-features help in secure session management.

2.8.7.1. Secure Session ID

It handles the authenticated session of the user after successfully logging into a Web application. In
a Web application, a user can ask for multiple Web pages, while the web itself might get several
requests from unidentified users. A legal individual provides an authentication token or a session
id to a Web application to initiate a session. SIDs are used to maintain the status of a stateless
HTTP protocol that connects to the internet. SID is an alphanumeric code generated by a website
and sent to its user via cookies. ALL modern web languages like PHP, ASP, and JSP, facilitate
session management [34] [66]. JSESSIONID (J2EE) and ASP.NET_SESSIONID(ASP.NET) are
language-specific terms for the session ID. SID is the primary exploitation vector since precise SID
acquisition and replay enables an intruder to instantly log into a vulnerable website. The most
common method of getting SID is through an XSS attempt [34]. SID must be16 bytes (128 bits)
long to prevent against brute force attacks [97]. In Ruby, SID is a 32-byte long MD5 hashing value
[63]. The default name of the framework must be changed by the developer to something more
generic. Cryptographic hashing algorithms including SHA1 (160 bits) should be used to build
strong SIDs [53]. C++ also provides the default session name for SID [98].

| 55 L

Design and Evaluation of Secunity Features in RealSpec Real-Time Executable Specification Language

Chapter 2 Background

":1

2.8.7.2. Session Cookies

To protect against sesston attacks, processes including tagging cookies with a secure flag are in
place. The secure cookie attribute stops this cookie from being attached to HTTP requests, so
minimizing eavesdropping. Yet another protection is by marking the authentication cookie with
the HttpOnly attribute, which prohibits scripts written on the client side from accessing it and
therefore preventing XSS attacks. [97]. The default status of HttpOnly cookies in Java, Python,
C++, and also C# is false, and it must be explicitly changed to true [59] [100]-{103]. The Httponly
flag is enabled by default in current Ruby versions [100].

2.8.7.3. Session Timeout

Session handling code must give a session timeout. Failure to set the session timeout leads to XSS
attack since SID can be reused [53]. A cookie can be used multiple times before it expires. If no
expiration date is selected, the cookies will be deleted when the Internet Explorer is closed{53].

The typical session timeout in Java and C# is 30 minutes [53] [59] [99].
2.8.8. Communication Security

It may protect sensitive data from being exposed. Sub-features include SSL/TLS version support,
cryptographic algorithms, key length, random number method, along with certificate validity
because these sub-features are relevant to communication security and these are put together

because these aid in providing data integrity.

2.8.8.1. SSL/TLS Version Support

Transport layer protocols include Secure Socket Layer (SSL) and Transport Layer Security (TLS).
The industry standard for secure client-server communication is presently SSL [3]. The TLS
protocol is the SSL standard created by the Internet Engineering Task Force (IETF). It is SSL [39]
[91]'s replacement. A web page that starts with "HTTPS://" in its Uniform Resource Locator (URL)
has SSL/TLS encryption. There are five versions of the SSL/TLS protocol that are regularly used:
SSLv2, SSLv3, TLSv1, TLSv1.1, along with TLSv1.2. The latest and safe version is TLSv1.2. Both
SSLv2 along with SSLv3 are insecure. Installing the most recent software version is typically
preferred. Sometimes, the server only supports TLSv1.2. The server must also handle older versions

of SSL/TLS in order to prevent blocking clients who use them [41]. The developer must develop

| 56'.“

Design and Evaluation of Secunty Features 1n RealSpec Real-Time Executable Specification Language

' @]

Chapter 2 Background

code in C to manually block SSLv2 and SSLv3, and to support higher versions [41]. Net supports
SSL v 2.0 and 3.0 in backward compatibility, as well as TLS v 1.0, 1.1, 1.2, and 1.3 [105]. There is
no default version supported by .Net. TLSv1.2 is supported as a default version in JDK8 [106].

Table 2.7 Security Features and sub-features mitigating cyber-attacks

CFeature 77 7' SubFeature 1 Attacks Mitigated }
Error Handling and . Error Handling and Logging Protection Sensitive Data Exposure ;
Logging Protection Log Information Level Sensitive Data Exposure T

o . Error Message Control " SQLL)
Input Validation : Database Query Security B10) 5 I T
* User Input Security XSS Attack, i
, SQLI
. Input Buffer Size Check Buffer Overflow Attack, SQLI
Encoded Output XSS)
Memory Management ~ Memory Management Control Buffer Overflow Attack,
ROP Attack
. Memory Address Arithmetic Buffer Overflow Attack, i .
ROP Attack
Array Out of Bound Check Buffer Overflow Attack
Memory Management Flexibility " Buffer Overflow Attack,
, ROP Attack
Access Control Authorization Types TOCTOU Attack
. Encapsulation-Based Access Control _ Sensitive Data Exposure
+ Sandbox Support Buffer Overflow Attack,)
Sensitive Data Exposure
Type System Type Safety Buffer Overflow Attack,
, ROP Attack
Type Casting B " Buffer Overflow Attack
Type Initialization Buffer Overflow Attack
Immutability) " TOCTOU Attack T
User Authentication . 77 XSS T
Support ;
Web Session Secure Session ID XSS Attack,
Management Support .) _ Broken Authentication) .
Secure Cookies XSS Attack
Session Timeout XSS Attack
Communication Security ~ SSL/TLS Backward Compatibility Sensitive Data Exposure,
" Cryptographic Algorithms Sensitive Data Exposure
Key Length Sensitive Data Exposure
Random Number Method Sensitive Data Exposure
" Certificate Validity Sensitive Data Exposure

2.8.8.2. Cryptographic Algorithm

Data exchanged between two different entities is continually vulnerable to disclosure.
Cryptographic techniques play an important role in keeping sensitive information from being
leaked. Asymmetric and symmetric algorithms are the two types of cryptographic algorithms. The
X.509Certificate class in C# contains methods for supporting X509Certificates [107]. CryptoAPI
or DPAPI are common C++ encryption APIs for Win32, and OpenSSL or CSS are popular Linux
cryptography APIs [81]. The Java Cryptography Extension (JCE) extends Java with a number of
encryption algorithms [81] [92]. The Ruby enables asymmetric as well as symmetric encryption
through the OpenSSL library [4]. Cryptographic modules in Python include cryptographic.io,

[57 L

Design and Evaluation of Secunty Features in RealSpec Real-Time Executable Specification Language

7(/

Chapter 2 Background

M2crypto, PyCrypto, PyNaCl, along with Keyczar, however they all suffer from security problems

such as certificate trustworthiness, secure key preservation, and simple text key storage [108].

2.8.8.3. KeyLength

Symmetrical cryptography techniques necessitate the use of the same key by both the sending and
receiving parties. In contrast, asymmetric cryptography algorithms require the usage of both public
and private keys. The key length of a symmetric encryption scheme must be at least 128 bits in order
for it to be difficult to predict by brute force. Rivest, Shamir, and Adi's (RSA) 512-bit key size was
once thought to be safe, however it is now easily guessable by brute force. The following goal is
1024 bits. As a result, the asymmetric key should be at least 2048 |bits long [41]. The key sizes in
JCE are big [92]. Long key lengths are also supported by Ruby, C#, along with C++ for both
asymmetric as well as symmetric encryption [81] [107]. The Python 1024-bit key size is weak for
the RSA algorithm in M2Crypto as well as PyCrypto [108].

2.8.8.4. Random Number Method

High entropy (randomness) achieved by a pseudo-random number generator (PRNG) is a crucial
aspect of the cryptographic technique. A PRNG is necessary to produce random, difficult to estimate
keys, C++ provides the CryptoAPl. A suggested PRNG for CryptoAPI is
RNGCryptoServiceProvider [81]. The PRNG in Java must be SecureRandom ([81]. The
SecureRandom.hex module [41] is used by Ruby to produce a random integer. Python contains a
random class that produces arbitrary numbers; however, it lacks entropy. Although the os.random

component produces genuine random numbers, it is hard to use [109].

2.8.8.5. Certificate Validity

The SSL certificate concept secures key exchange in asymmetric encryption. An SSL certificate is
an open key for the host machine that has been verified by the Certificate Authority's (CA) secret
key. The server transmits an SSL certificate to the client, but the user must use public keys to validate
it. There are several clients and Internet Explorer to choose from. Because any CA can sign a
certificate for any computer, special software detects whether a certificate of the device is
unusual. For instance, Firefox has a Cert Patrol component [41]. Certified certificates will not
disclose critical information. Programmers frequently omit SSL implementation and prefer to

depend on standard SSL libraries for example OpenSSL, JSSE, GnuTLS, as well as CryptoAPI [3].

Design and Evaluation of Secunty Features in RealSpec Real-Time Executable Specification Language

[58 L

Chapter 2 Background

(.l

The SSL/TLS language libraries OpenSSL, cURL, JSSE, GnuTLS, as well as CryptoAPI contain a
check for verifying the organization that issued the certificate authority. To validate the chain of
trust, the server gives a certificate authority identity as well as the higher level up to the root
certificate authority. Each certificate is signed by the CA directly above it. The client must check the
certificate of the server for deadline, and the CA in the "basic constraint" field has the CA bit set.
After confirming the chain of trust, the user must certify the server's identity. Upon creating a
collection of server identities, the user compares full DN'S name with each of the server names using

the string comparison function.

Certificate revocation is required for appropriate certificate verification. OpenSSL supports
certificate revocation; however, a certificate revocation list (CRL) must be supplied by the user. The
JSSE validates its own CRL. SSL of Python does not support checking CRLs. Several X.509
extensions include security-critical information including name restrictions, key usage, and
certificate policy. A list of CA names that the sub-CA can validate is included in the name
restrictions. The vital usage is the key that permits the CA to sign certificates. OpenSSL validates the
name constraint erroneously. There is no mechanism in cURL for setting the certificate strategy.
The JSSE library cannot verify the hostname and has a problem in certificate validity [3]. Certain
Python modules fail to verify the hostname as well; therefore, the application must verify hostname
[105]. OpenSSL offers chain-of-trust validation but not hostname validation [3]. In Ruby OpenSSL
[66], verification of certificates is disabled by default. Almost all of Python cryptography APIs fail
to perform effective certificate validation [108]. Table 2.5 highlights the security features and their
sub-features, as well as the attacks that these features/sub-features prevent. The features and sub-
features are listed in Columns 1 and 2, respectively. Column 3 lists threats that may be prevented

by the security features/sub-features.

2.9. Summary

This chapter had defined various OWASP attacks brought on by coding errors. To lessen the security
load on the developer and security programming deficiencies in order safeguard against various
security threats, specific security features have been defined. A SEFF is suggested in the study. Five
well-known programming languages in academia were evaluated using the SEFF. C++ had the least
security feature coverage that is 47.22%, according to the recommended feature coverage percent.
The Java security feature loopholes assessment were used as a case study, and a few suggested

solutions from the literature were used to close the loopholes.

| 59 L

Destgn and Evaluation of Secunty Features 1n RealSpec Real-Time Executable Specification Language

Chapter 3 Proposed Framework

Chapter 3

Chapter 3 Proposed Framework

PROPOSED FRAMEWORK

3.1. Proposed Framework for Real Specification (REALSPEC)

The Proposed Framework for Real Specification (REALSPEC) aims to provide a structured
approach to evaluating and ensuring the security features of programming languages. This
framework emphasizes the importance of robust security measures in software development,
particularly given the increasing sophistication of cyber threats. Below are key aspects of the
REALSPEC framework:

The REALSPEC framework outlines specific criteria that programming languages should meet to
ensure adequate security support. Ensuring that user inputs are properly checked to prevent attacks
such as SQL Injection (SQLI) and Cross-Site Scripting (XSS). Implementing reliable user
authentication methods, including multi-factor authentication and secure password storage. Proper
handling of user sessions to prevent session hijacking and replay attacks. Minimizing information
leakage through careful management of error messages and logs. The framework integrates the
Security Features Framework (SEFF) to provide a benchmark for assessing the security
capabilities of programming languages. High-level security attributes that programming languages
should support, such as type safety, memory management, and encryption. Specific aspects within
the primary features that further define the security capabilities. For example, under type safety,

sub-features may include type casting and immutability.

The REALSPEC framework serves as a guide for both software developers and language
designers. Developers can use it to assess the security posture of their chosen programming
language and identify areas that require improvement. Language designers can reference the
framework to ensure that newly developed languages include necessary security features from the
outset. The framework is designed to be dynamic, allowing for updates and enhancements as new
security threats emerge. By incorporating feedback from real-world applications and security
incidents, REALSPEC remains relevant and effective in addressing the evolving landscape of

cybersecurity.

To facilitate practical implementation, the REALSPEC framework includes: Examples of

successful implementation of the framework in various programming languages.

Recommendations for tools and resources that can help developers assess and improve security

—

60

Design and Evaluation of Secunty Features in RealSpec Real Time Executable Specification Language

Chapter 3 Proposed Framework

i@l

features in their applications. Ultimately, the implementation of the REALSPEC framework aims
to strengthen the overall security of software applications, reducing vulnerabilities and protecting
against potential attacks. By providing clear guidelines and benchmarks, the framework

contributes to a culture of security awareness in software development.

3.2. Evaluation of Programming Languages Using the SEFF Framework

The Security Features Framework (SEFF) is a systematic approach designed to evaluate the
security features of programming languages. With the rapid evolution of technology and the
increasing frequency of cyber threats, assessing the security capabilities of programming
languages has become critical for software development. This note delves into the evaluation
process of programming languages using the SEFF framework, exploring its significance,

methodology, and implications for developers and organizations.

The SEFF framework serves as a benchmark for evaluating the security features provided by
programming languages. The framework allows developers and organizations to identify the
security capabilities and limitations of various programming languages. By pinpointing potential
vulnerabilities, the SEFF framework facilitates the enhancement of an application’s security
posture. Language designers can leverage SEFF to ensure that their programming languages

incorporate essential security features from the outset.

The SEFF framework is structured into several key components. High-level security attributes that
are essential for programming languages.

i. ~ Type Safety: Ensures that variables are used in a manner consistent with their

declared types, reducing risks such as buffer overflows and type-related

vulnerabilities.

i. ~Memory Management: Addresses how memory is allocated, used, and

deallocated, helping to prevent memory leaks and buffer overflow attacks.

ii. Input Validation: Validates user inputs to protect against common vulnerabilities

like SQL Injection and Cross-Site Scripting (XSS).

These are specific aspects that further define the primary features. For example:

Under Type Safety, sub-features may include type casting and immutability. Under Input

I 61 l_\

Design and Evaluation of Secunty Features in RealSpec Real Time Executable Specification Language ‘[

Chapter 3

Proposed Framework

Table 3.1 Proposed Security Feature Framework

! Security Sob-Feature Possible Values :
i Feature . .
; Log File Protection - Fully Supported: Encrypted;
5 - Partial Support: partially encrypted
! - No Support, Non-encrypted
’ Log Information - Fully Supported The language sets appropnate log message level/type
| Level control by default;
) - Partial Supported, the language provides the library, but the
‘Error Handling and developer has to choose the appropriate level,
'Logging Protection - No Support, the language does not permt to set log message
: i vt oo Jevelfypecontrol
i Error Message - Fully Supported; The language less verbose error message level by default;
: Control - Partial Support; The language provides library but depends upon the
developer to choose appropriate level;
' _ - Not Supported;
Database Query - Fully Supported: safe SQLQuery;,
Security - Partially Supported: safe SQLQuery;
- No Support: No safety
User Input - Fully Supported: The language itself fully keep tract of user inputs;
Secunty - Partial Supported: The language provides all possible user input
validation but depends on the developer knowledge;
] - No Support: The language does not provide any data validation support
Input Vatidation Input Buffer Size - Fully supported mput buffer size check is prov1ded by the language
Check - Partially Supported: checks for input buffer size are written by the developer
- No Support The language does not provide checks for input
buffer size neither the developer applied this check
Encoded Output - Fully Supported: the language encodes the output by default;
- Partially Supported;
- Not Supported;
" Memory - Fully Supported: garbage collection;
Management - Partially Supported: programmer manually write code;
Control - No Support;
; Memory Address - Fully Support: Allow memory calculations;
Arithmetic - Partially allow this though language library
- Not Supported: Does
Memory Management not allow memory
arithmetic;
Array Out of - Fully check for array bounds:
Bound Check - Partially check for array bounds
- Does not check for array bounds
Memory - Fully Supported: gives complete memory management versatility;
Management - Partially Support:
Flexibllity - NoSupport; - o
Authorization - Fully Supported: minumal access control privilege;
Types - Partial Supported: developer has to write code;
- No Support;
Encapsulation- - Fully Supported: Strong encapsulation;
Access based Access - Partially Supported: Weak encapsulation;
control Control - Not Supported: No encapsulation
Sandbox Support - Fully Supported: Least access are given to unverified code:
- Partially Supported: User access are provided to unverified code,
- No Support; System access are provided to unvalidated code
Type Safety T Fully Supported: Static type safe
- Partially Support: Dynamically typed (duck typed);
Type System - No Support: Static type unsafe

Type Casting " - Fully Supported: Explicit
- Partially Supported: Implicit,
- Not Supported; No type casting permitted

Design and Evaluation of Secunty Features in RealSpec Real Time Executable Specification Language

| 62 L

Chapter 3 Proposed Framework
Security Feature Sub-Feature Possible Values
Type System Type Initialization - Fully Supported: ifthe language provides initial values for variables
- Partial Supported: ifthe language does not intialize objects and
developers has to set it;
Not supported: 1f the language set garbage value for the variables
Immutability - Fully Supported: Strong immutability;
- Weakly Supported: Weak immutability
- Partial Supported: read-only, mutex, const or final variables;
No Supported: no immutability variables
User - Fully Supported: language provides all types of authentication features;
Authentication - Partial Support: Language gives some of the user authentication methods;
Support Not Supported:

Secure Session

Secure Session ID

- Fully Supported: cookies that have authentication data are stored by

- Partial Supported: developer has to change the name of authentication

arbitrary name;

cookie;

- Language-specific name for the

Management authentication cookies;
Support Secure cookies - Fully supported: HttpOnly flag default status? True,
- Partially supported: HitpOnly flag default status? False, but can be turned
on;
Not supported: HttpOnly flag cannot be altered
Session timeout - Fully Supported- Default timeout of session set by the language,
- Parnally Supported,
Not Supported; No developer must set the expiry time
SSL/TLS - Fully Supported
backward - Partially Supported;
compatibulity - Not Supported
Cryptographic - Fully Supported: there is a library of standard algorithms and
algorithms custom algorithms are permitted
- Partially Supported: some algonthms are supported:;
-_Not Supported: the language does not have any strong algorithms
I Key length - Fully Supported: Secure key length is supported;
;znu?t;]m cation - Parnially Supported: secure key length is supported;
- Not Supported: Secure key length is not supported
Randomnumber - Fully Supported: gives strong entropy;
method - Partially Supported: Supports strong entropy but hard to use it;
- Not Supported: Does not help
- strong entropy
Certificate validity - Fully Supported: Comprehensive checks are supplied:

- Partially Supported: some checks are given:
- Not Supported: certificate venification is grven

Validation, sub-features may encompass database query security, user input security, and output

encoding. Value Assessment: Each primary and sub-feature is assessed against a set of predefined
values or criteria, providing a clear understanding of the programming language's security

capabilities.
3.3. Security Features Gap Analysis for the Java Programming Language

As an example, this section examines the security feature problems in the Java programming
language through the security feature evaluation resuits in Table 3.3. Although Java is regarded as a
secure programming language, it nevertheless has several security flaws, as seen in Tables 3.3. This
section discusses the shortcomings in the security aspects of the Java programming language, as

well as any potential remedies to fix these loopholes.

[63 L

Design and Evaluation of Secunty Features 1n RealSpec Real Time Executable Specification Language

I{}

&

Chapter 3 Proposed Framework

3.3.1. Log File Protection

Gap Analysis: Because log files include vital event data, they might be a major target for an attacker.
Storing log files in plain text can lead to the disclosure of sensitive information [52]. Table 4

indicates that log messages in Java are stored in plain text.

Review of Possible Solutions: Log file encryption is a great way to protect confidential data.

Intruders will be unable to access or change the log files without a secret key for encryption. Logfiles
should be protected prior to being written to storage. Java logging procedures must include the ability
to secure log files. It is possible for the program to generate decryption keys for logfiles. One
approach includes first processing the data that needs to be stored in a log file to determine its level
of sensitivity according to some established standards, and then protecting only those parts of the
information that meet the criteria while keeping the remainder of the logfile unencrypted [110]. The
data must subsequently be decrypted to be able to be examined by the log file viewers [110]. Using
JAR programmable characteristics, Sundareswaran et al. [111] provide an object-centered approach
to cloud data security. Their logging method is protected by regulations and user data to ensure that
obtaining user data starts authentication along with automated logging within the JARs [111]. As a
cheap option to maintaining log records, Ray et al. [112] advise using the cloud, highlighting the
need for the log service must be able to store data in an ordered manner, offer effective data retrieval,
and additionally to safe log management. Ray et al. [112] emphasized correctness, tamper resistance,
verifiability, secrecy, along with privacy as essential characteristics of a secure logging service.
They emphasized using cryptographic techniques for all aspects of log management, such as log
collecting, transportation, storage, as well as retrieval. On the other hand, if cryptography is carried
out on a computer that is available to intruders, they might be able to recover the data [113]. Schneier
and Kelsey [114] suggested using a reliable machine or a network of unfriendly machines for
collaborating on the encryption keys. As a consequence, the log files can be protected by the

unauthorized system without being able to retrieve them.

3.3.2. Input Buffer Size Checks

Gap Analysis: Java allows native code, involving C code, to be run for performance benefits like
using cryptography packages or running system calls that are not permitted in pure Java programs.
The Java native code interface was designed with inadequate consideration for security. As

indicated earlier in Section 2.3 and Table 3.3 Java native code fails to verify buffer length, which

Design and Evaluation of Secunty Features in RealSpec Real Time Executable Specification Language

[64 L

Chapter 3 Proposed Framework

could end up in a buffer overrun attack [70]. Java programs are susceptible to SQLI attacks if user

inputs are entered without verification [5].

Review of Possible Solutions: Another solution is to isolate Java as well as native code execution into

separate processes that interact through remote process calls (RPC) as well as inter-process channels
(IPC) [115] [116]. The Java process may function with complete Java application safety rights using
this strategy, the native code executes with restricted privileges. However, as NativeGuard [116]
illustrated, this strategy could lead to in process management and information duplication costs.
Another viable approach is sandboxing with Java security-manager inspections into system call
access for sandboxed programs [115] [116]. The suggested way of running native code is the same
as executing untrusted programs in a sandbox, however with appropriate access constraints.
Alternatively, the sandbox may be vulnerable to runtime privileged elevation attacks by illegal
programs [70] [117]. This approach limits native code inside a secure environment. However, it
severely limits the execution of certain instructions and prevents various types of code from running
in the sandbox, such as Just-in-Time (JIT) compilers as well as stack unwinders [70]. To deal with
the buffer overrun issue in Java native programs, David et al. [70] suggested CHERI JNI, a
hardware-oriented Java Native Interface (JNI). It enabled to offer a security approach to native

programming, such as Java. The technique offers safe immediate access to the Java Virtual

Machine's (JVM) buffers.

There are additionally a few more generic, language-independent solutions provided. Cowan et
al.[44] introduced the StackGuard compiler extension approach, which is transparent to regular
program function but defends against buffer overflow attacks by preventing changes to the return
address while a method continues to be running. In order jump to the attack payload, attackers
commonly overflow the buffer of the stack and alter the return address. StackGuard aims to find
modifications to the return address prior to the procedure returns and prevents writes to the return
address. Ruwase and Lam [118] presented the "C Range Error Detector" (CRED), a dynamic
buffer overrun detection system that replaces all out-of-bounds pointer data with the location of a
special out-of-bounds (OOB) object that preserves the original pointer data and referent object
information. Prior to getting dereferenced, pointers obtained from addresses are bounds verified,
and they can safeguard against all buffer overruns. In [119], it is given a control-flow integrity
(CFI) prevention approach that demands program execution to follow a predefined control-flow

graph (CFG) architecture. CFGs can be pre-defined using source code examination,

I 65 L

Design and Evaluation of Secunty Features 1n RealSpec Real Time Executable Specification Language

"

&

Chapter 3 Proposed Framework

binary assessment, and runtime profiling. Static validation, binary-code instrumentation, as well as
run-time checks are used in the CFI. In real time, these runtime inspections check and preserve the
Control stream within a given CFG. This method can detect any unusual control flow alterations,

even a return address modification triggered by a buffer overflow attack.
333. Encapsulation-Based Access Control

Gap Analysis: The keyword private allows for encapsulation-based access restriction. In Java,
however, private objects can be made public by carrying out a public function. As a consequence,
encapsulation access control in Java is inefficient and potentially harmful [120]. A "reliable" Java
class having private variables and procedures can be typecast to a "hacker" class, which can
duplicate the layout of these attributes and methods and retrieve these "private" objects during

runtime.

Review of Possible Solutions: One feasible method is to use object ownership concepts to correctly

conceal internal, stateful elements within an external owner object [120] [121]. Ownership
demands that an item possesses its representation, and its internal state has no duplicates [120]
[121]. Nesting and encapsulation of representation objects within other objects is required. Each
type in the program is marked with its own object in that method, and only the owner object is
entitled to the enclosed object, assuring that other individuals are unable to use the owned objects
[122]. Object ownership can be accomplished through implementing code practices with checkers
to guarantee conformance, or by including language level support by significantly modifying a
programming language with the option to add ownership parameterization to the grammar and
explicitly defining inside the type system of programming language [123]. Potanin et al. extended
the ownership idea to "generic ownership" by combining object ownership and universal by
keeping both type and ownership information in a single parameter space so non-this calls on
owned objects are forbidden and owners are preserved as component of the type [124]. Object
pointers can be augmented with transitive access restrictions to reduce the effects of aliasing

whereas permitting entire referential object sharing [125].

3.34. Type System

Gap Analysis: TOCTOU attacks may be possible due to lack of immutability of Java [92]. Methods

may also provide a reference to genuine internal structures, including arrays, which can be mutable,

Design and Evaluation of Secunty Features n RealSpec Real Time Executable Specification Language

I 66 L

Chapter 3 Proposed Framework

permitting malicious code to change system states [125].

Review of Possible Solutions: Strong immutability benefits from easy state management, thread

safety, safe and efficient resource sharing, and increased security [47] [71]. The concept of
ownership types can be used to limit object modifications to object contexts where an object can
only edit objects it owns, including aliases to owned objects [89] [120]. Ownership contributes to
the threaded safety of changeable resources by forcing locks to be placed in the correct order
depending on ownership structures. For the prevention of data races and deadlocks in J ava, a type
system based on ownership types with related protections is proposed [121]. The protection
mechanism is a variable type that can show that an item can be accessed by many threads and can
refer to the lock that is used to protect the object referred by this variable [121].To prohibit altering
items accessed via immutable objects, transitive immutability is required. To force transitive
immutability, immutability annotations are proposed [89]. All class fields must be transitively
immutable if a class constructor delivers a firm annotated result [89]. With Java generics and
annotations, Zibin et al. [120] presented a Java extension that incorporates a type system for
defining and enforcing reference and object immutability. Pechtchanski and Sarkar [126]
presented an annotation-based approach for increased immutability expressiveness and code
optimization evaluation. It does not, however, address concurrency concerns or guarantee that
shared data stays consistent [128]. This feature should be statically verified by the language system,
and these immutability properties should be included in the static type system[130]. [129] Haack
et al. outline numerous rules for achieving immutability, the majority of which should be statically
enforced. Enforcing these constraints should aid in the prevention of race problems in multi-
threaded Java and limit exposure to changing states of internal structures and objects [129]. A Java
language addition has been proposed. It has an immutable attribute that may be used with classes
that can be constructed as immutable objects, as well as constraining objects and methods that its

immutable objects can utilize [129].
33.5. Communication Encryption

Gap Analysis: If the algorithm property in the SSL client is an empty string or NULL, the JSSE
library method SSLSocketFactory can bypass hostname verification [3]. As a result, rather than
being caused by a flaw in the Java language, this flaw is produced by a flaw in the SSL modules,
and it is transferred to the software application through these modules. Another likely explanation

for this flaw is that intermediary levels of the application program stack block the validation of

I 67 L

Design and Evaluation of Secunty Features in RealSpec Real Time Executable Specification Language

Chapter 3 Proposed Framework

VR

certificates unknowingly, or that programmers deactivate certificate verification for testing reasons
[3]1[122].

Review of Possible Solutions: By default, JSSE avoids hostname verification, leaving it to the

other program. Programmers that are unaware of these tiny aspects may skip this phase as well.
The recommended solution is to change the SSL module so that the SSL library handles hostname
identification [3]. a few of prevention strategies identified in [3] include programmers performing
black-box and hostile checking for unusual SSL certificates, license verification, which must be
turned on afterwards if turned off by the programmer for evaluation reasons, and at all times clearly
setting the options for secure SSL connections rather than relying on the default settings. It was
demonstrated how to use the Flash player plugin to give socket functionality not naturally available
in newer browsers in order to simulate an incomplete SSL handshake to capture fraudulent

certificates [133].

I 68

Design and Evaluation of Secunty Features in RealSpec Real Time Executable Specification Language

agendue | uoneaiyioadg aiqeIndaxy sun g [eay dadgieay Ul saimea AILNIAG Jo uonBNEAT pue uSisa]

1

[oo1] enuy, smyess ainquye [z01] 2s[ed (snies anquue lov1]asiey ; [65) asreg [eo1]osreg
dpr ¢ . (Sels anqume Aquodnyy (Snels amnqune Qquodnry (Snels apnquue quodnry $3INj60)) AINNG M
A.NRQ e Uuﬁanzm%::m \Q:O&nm _uu.toﬁ_&:m b-m-ﬁm& ﬁuﬁOQ&:m %:m:‘_dm “ ._uotaaﬁm %:&-5& .UQEOQQJW b—w_tdn— WW M m
. .) 58 2 o
[£9] pouroddng Ajmg [€] pavoddng Ajjenreq [€] pauoddng Ajenreq i {es] pauoddng Ajrenreg [¥€] pavioddng Ajrenreg druosssgamyg § °
[€9] pauoddng Afn [v6] pauoddng Ajn g [96]1 panoddng £jin " [s6] peuoddng Afng {961[06] panoddng Ajng 2 ~
! 1=
{ev1106] powoddng Apjeam [06][88] pauoddng Apjeapm ls1]os] pauoddng Ajyeops | [06] povoddns Apyeap Ecm%_m%w__% " Anpqepnumg
__1g9!l pauoddng £jng . lgolpeuoddng Ang [6¥] pauoddng JoN lcglpauoddng &g * [64] pawoddng Ay uonezyeniu adAy, =
[e9] wondxy Leg] wordxg (28] porfdu w [£8] wondxg [£81l6p] wondxg Bupse) adAy, .w
[8w orumudp ” -
[£8] pad&) srwreuAcy Aq 2d£) orureuAp s1ago (ayes [£ 8] ayesun pad A sneig [£8] pad& onwreuAg [8]l6t) o.wu% _uumb A1ayeg adA Y, 7
padfy ners) padA) ABuong ! n\s papoddng Afmyg 3
[$8] pauoddns Ajing [s8] pauoddng Ay [6t] pauoddng Ajing * [s8]pauoddng Aqng [£8}{08] pauoddng Ajng woddng xoqpueg
lozt] loctllze] loz1lisL] i Lellortl [+9] 10905 o 5
. i SSIIY pIseq &
uonepnsdesus yeapy uone[nsdesus yeap uonensdeous yeap . uone[nsdesus yeop [9] uonensdesus yeap 2 2
! -uopensdesuy w m
} sadAy, =
o @mm,ﬂm&&m enEg Ws lev nwwma:m Afng] tsl ms:aﬂ_mm e s,m uw.wom%m,_sw& [€81los] Ezw&,:m b_ﬁ O —
Anpqrory
(s£] paoddng Ajng [o] pauroddng Afng {6+] ponoddng jony v log1] papoddng A1ng [6t] pouroddng Ajpn,g yuR3ETe] =
! Arowdpy 2
N 1
: : A punog e
o mm E:o&:m z_ﬁf o [s9l _,vu:&.%m b__,i [6¥] pauoddng 1oN i [86] pauoddng Ang fs9] paprrosd4jenseq Jo MO Arary um
- [N D T opeunpury
[6+] pauioddng Ay £} ponioddng Arenreq f6v] pauoddng 10N _ [9£11[86] pawoddng £ing {£9]ls9] pauoddng Ajmy SSUPPY Atounpy E
| [onuo) m
[6¥1[1.] panioddng Ang 1+) pauoddng Ajing [8.] pauoddng Ajrenreq _ [9¢1]fs 2] papoddng Ajing [+9]l6+] pavoddng Ajng ...M_Eua.i 3
. QWA -
{89] a8en3ue [££)z2]93enTuey [8€1] 23en3ue; * [69]23endue| (9] 28en3uey mding papooug
ay) Aq papiaoad Ajjenreg ay) Aq papiaoid Ajjenreg a1 Aq papisoad Ajented | ay) Aq pai1ajjo Ajenteq ay1 Aq papiaoad Ajjenreq
[Lo] !
uo.uzrww__aw_u%u___.“”“ Ang ._o.tsm_mmaw__o%n““\'uw__w Ang az1s Joynq ndut Jog sxoayd | :ramam:v“ﬂoﬁo_\“__w Ang mw_ouw_:wﬂwuwwﬁ_wﬁ Qc—“\.__“d uﬂ”_mu.o.“_w:m nduy W
1 opiaoid jou soop afenduey | et P {renred ! p
i) s
(89] pauoddng Alng (59} parioddng Afrenreq [sollev] pauoddngioN | [69] ponioddng 10N [$9) pauoddng Affenreq m_.._..”..uww: E
. [zp1} ’ [£9] DA 01 onp [8e1) \ [ep] Landy 108 Levlbe] AanDTOS Aanxg g
£31900)10S parajond Ajng) Aondy10S payeajond Ajng £ 10S pawarord Ang | pardaloidAjrenreg pararold Ajjerued And) aseqereq
: [onpuo)
[+01] pouoddng Ajjenreq [££] pavoddng Ajrenreq [e1] pouoddng Ayrenrey § [se1] ponoddng Afrenreq [09] pauoddng Aenreq desopiony § F
; PAYT Fs & 3
[clomodtsfimnd | belpwdnsdieng | (rlpwedsAmusg | (slpoddns g (oslpaeddns Amund ygpilonze; ER 5 3
[egllg] pardAous 10N [9s] pardAsous 1oN ‘Tov] pardirous 1oN W .. [ss] parddrousjon . [601] pawdAsous JoN uonIN0] AL 30
L . # ‘ ++0 - nomAg : vAvp i
“ S3. BIJ-qn sr
- eneAq 0) SSenJuey HIBIE-qUS meA
AJAS ysnoayy soSendue] Suimweidorg yo uoyenjeay T°¢ IqeL
YIoM3uWel] pasodold € mdey)
9)

»

-

I R

s3endue uonesyadg sjqeInasxg slury [eay sadgesy w1 samiea} AILngag Jo uonenieas pue uisac

[99]paagyo
STUONRIRLIA [1v1} le] [8o1lle] pasaggo (€] paptaoxd
[enred P3I31JO ST UONBOY LA [RILR] PA13JJO ST UONBIYUSA [eTle] ST UONBIIJLISA 2RI IISD ON ST UOLJBDIJLISA [BTR] ANpiieA Nedyna)
[£9] Adonua [601] 2sn o1 prey
Suans s1op0 [€5] Adonua Suons sisyO [€5] Ado1jua Suons s1a50 s1nq Adonus uons PO [€5] Adonus Suons siago POQRIALIRqUINY Wopuwy ©
[99] pouoddns [01] (iv1] feo1] [cel E
3zIsAayaIndag payoddns azis Aoy amoag papoddns 5zis £y a1ndag pauoddns azis Ao [eireq pauoddns azis A3y a1osg 8037 L3y £
B
[99] panuned g
areswyjiode g
wosnd se [[om 5
se‘suniog[e [1+1) ponuwiad [zp]lgs] panruniad g
Paisa) [£o1][gs] panuuad are are swyIuog e woisnd [801] are suriuode woisno m
Jo a3eyoed e si SUNpUO3[E WOoISNO Se [[om Se Se [[oM Sk ‘supuod[e 3IN33S 3q jJ0u WS s12Yyj0 SE [[om se ‘swiyiiod[e &
a1 ‘pauoddng ‘suyjuode paisa) Jo adexoed Ppa1say jo aexyoude st SE3IAYM 3JBS are sumjiuogpe Pa1sa) jo s8exyoede si
Alng e s1 2581y ‘payoddng Ajng s ‘pavoddng Ajpng awos ‘papoddng Ajenieq asay ‘papoddng Ajng suyosryagdesdondi)
[99] pouoddns Amqueduwod presyaeq
Alrenseq {s01] pauoddng Ajmyg [1#] pauioddns Ajjenreq [801] pauoddng Afing [£ot] pauoddns Afing STL/ISS
[€9]
paytoddng Ay [es] pauoddng Anyg {€] psuoddng £jng [6$ pauoddng Ajing {£5] pauioddng Ajmy IN03WL] U0
Aqny o) ++D noqiig vARp .
eI 6 SFenRaE S2.IMyEIg-qng SUMEIY
JIomauwel,{ pasodoid ¢ Jadey)’
¥ 2

Chapter 3 Proposed Framework

According to Fah et al. [134], relying on engineers to build safer programming processes or
simplify SSL components is not a viable approach. They advocated for a significant shift in the
SSL module approach, in which nearly all of SSL utilization should be provided by the operating
system itself as utilities that may be included in applications by setting rather than development.
This would allow the platform to provide customizable SSL service alternatives to programmers

avoiding the need to work around security limits at the level of the software [134].

Table 3.3 Percentage of Security Features Coverage by Programming Language

l’m“gr‘tmmirhig'i.ﬂguage” ’ ‘ " Security Feature Coverage Percentage "
’ |
Java 63 88% f
C# 69.4%
Ruby B o O 65.74% -
Python ' 52 75%
C++ 47.22%

3.4. Abstraction of Security Features to Security Requirements

Traditional specification languages comparison framework as discussed in Table 2.4 to evaluate
specification languages do not specify security requirements in detail. In our previous work [50],
we defined a SEFF to evaluate security features in programming languages. SEFF provides a
comprehensive set of security features for programming languages. A similar framework is needed
to evaluate specification languages for security feature coverage, albeit at an abstract level. The
impact of a language of programming choice on the security of software created in that language
is what we wish to gauge. If there is such a factor, software developers or their managers could
consider it when deciding which programming system to utilize for a certain task. This knowledge
might facilitate risk mitigation and better resource allocation [166]. We have several grounds for
thinking that a programming language’s features could affect how secure applications created with
that language are [167]. The investigation has demonstrated that type systems, for instance, can
statically discover (and hence prevent, by stopping the compilation of specific sorts of defects.
Generally speaking, static typing can reveal defects that might be vulnerabilities not discovered
until they were exploited in a dynamically typed language. Additionally, standard frameworks of

one language may be more accessible than another, making them less error-prone [168].

Developers may be able to recognize risky situations and get away from them with the aid of an

up- to-date exception resolution framework [169]. The differences between languages used for

[71 L

Design and Evaluatton of Secunty Features n RealSpec Real-Time Executable Specification Language

Chapter 3 Proposed Framework

programming go far beyond the scripts themselves, though. Every language has a unique community;
these communities frequently have different beliefs and values. Hence, we want to see if selecting
alanguage has a measurable impact on the security of the entire application. If so, it might be helpful
to know if any particular class of weakness is better handled by one language than another [1]. If
it is the case, writers might concentrate their efforts on the classes in that their programming style
does not provide adequate support and lessen their concern for the ones for that data that indicate

their dialect is strong [2].

This section proposes a security requirement framework for specification languages (SRFS) to
evaluate the security capability of specification languages. A specification language with
comprehensive security requirement coverage can help formulate correct, complete, and consistent
security requirements early in development and influence better software design and
implementation [24]. Using the SEFF framework for programming languages as a baseline provides
a comprehensive set of security features that are abstracted to the specification language
framework and helps remove gaps from the transformation of abstracted specification features
into some platform-specific programming language [50]. Hence, there can be a direct correlation

established between the two frameworks.

To define an abstract modelling-level features framework, each feature and sub-feature in Table
2.4 from chapter 2 is evaluated with justification to determine if it can or should be considered at
the modelling level. Table 3.5 has four columns; column 1 and column 2 are the security features
and sub-features from Table 2.4. Column 3 identifies whether a feature can be abstracted or not.
Column 4 justifies column 3. Column 4 maps a security feature to a security requirement. The

framework is also shown in Figure 3.1.
3.4.1. Error Handling and Log File Protection

Error Handling and Log file protection has following sub-features that are abstracted based on
literature review. Sub-features log file protection, log message control and error message control

can be abstracted based on following reasons.

3.4.1.1. Log File Protection

Logging is for record-keeping and accountability [145]. Specify audit requirements not only

[72 L

Design and Evaluation of Secunty Features in RealSpec Real-Time Executable Specification Language

Chapter 3 Proposed Framework

abides by the organization's rules but also ensures that the intended software system will follow
auditing rules demanded by law-making organizations [147]. Moreover, specifying Secure
Auditing is vital to check that all the objects in the system are honest [145]. It can be specified as:
Graphical notation using class diagrams [150] or state charts [145]. Audit constraints as [148] or
custom-made grammar [147] [149].

3.4.1.2. Log Message Control

Log message control is to store information in logs based on the severity level, such as information,
debug, trace, warning, and error [57]. To abstract logs, message control is essential, as studies have
shown that developers do not log with appropriate severity levels [57]. It can be specified as: Log
message control using a graphical notation, such as using the log method of logger class [150].

Constraints limiting information to be stored in the logs [149].

3.4.1.3. Error Message Control

Error message control means controlling the verbosity of an error message. Some error message
details can guide the attacker to exploit the possible values for the wrong entry. Error message
control specify can help identify and specify these controls as constraints, like the log message
control feature. It can be specified as: a low verbose error message constraint for a specific role and

a verbose error message for a developer or authorized user.

3.4.2. Data Validation

Data validation feature has sub-features such as database query security, user input security, input
buffer size security, encode output. Each of the sub-feature is abstracted based on the reasons

defined in each feature sub-section.
3.4.2.1. Database Query Security

Database query security is essential because tainted user input in the query can lead to SQLI.
Database query security specification can prevent SQLI from properly constructing database

queries using specification language construct for the query, along with rules for correct query

formation [150]. It can be specified as: Prevention of XSS and SQLI tags [150]. Constraints
defining deny lists features of SQLI XSS attacks, or safelists of acceptable inputs.

l73

Design and Eva]
valuation of Secunty Features i RealSpec Real-Time Executable Specification Language

Chapter 3 Propqsed Framework
abides by the organization's rules but also ensures that the intended software system will follow
auditing rules demanded by law-making organizations [147]. Moreover, specifying Secure
Auditing is vital to check that all the objects in the system are honest [145]. It can be specified as:
Graphical notation using class diagrams [150] or state charts [145]. Audit constraints as [148] or
custom-made grammar [147] [149].

3.4.1.2. Log Message Control

Log message control is to store information in logs based on the severity level, such as information,
debug, trace, warning, and error [57]. To abstract logs, message control is essential, as studies have
shown that developers do not log with appropriate severity levels [57]. It can be specified as: Log
message control using a graphical notation, such as using the log method of logger class [150].

Constraints limiting information to be stored in the logs [149].

3.4.1.3. Error Message Control

Error message control means controlling the verbosity of an error message. Some error message
details can guide the attacker to exploit the possible values for the wrong entry. Error message
control specify can help identify and specify these controls as constraints, like the log message
control feature. It can be specified as: a low verbose error message constraint for a specific role and

a verbose error message for a developer or authorized user.

3.4.2. Data Validation

Data validation feature has sub-features such as database query security, user input security, input
buffer size security, encode output. Each of the sub-feature is abstracted based on the reasons

defined in each feature sub-section.
3.4.2.1. Database Query Security

Database query security is essential because tainted user input in the query can lead to SQLI.
Database query security specification can prevent SQLI from properly constructing database
queries using specification language construct for the query, along with rules for correct query
formation [150]. It can be specified as: Prevention of XSS and SQLI tags [150]. Constraints
defining deny lists features of SQLI, XSS attacks, or safelists of acceptable inputs.

[73 L

Design and Evaluation of Secunty Features in RealSpec Real-Time Executable Specification Language

Chapter 3 Proposed Framework

3.4.2.2. User Input Security

Specify input validation ensures the system operates on correct and meaningful input [5]. It can

be specified as safelist and deny list constraints for user input [5], [152].
3.4.2.3. Input Buffer Size Check

Checking buffer boundary limits before taking input from the user is a must. It can be specified

as attack prevention mechanism as [153] Constraint to check bounds and then throw an exception.
3.4.2.4. Encode Output

Encoding output prevents vulnerabilities when the invalidated input flows towards the output, such
as stored XSS. In stored XSS, the illegitimate user stores maliciously crafted inputs in a legal
website which executes for all other users of that Website. Encoding output will prevent invalidated
inputs, resulting in vulnerable outputs achieved on the client machine. It can be specified as similar
to input validation [5]. Secure information flow [146], such as defining outputs on particular inputs.
Attack steps of XSS in graphical notation and model solutions as steps to prevent XSS [34]-[37].

Blocklist and allow list constraints.
3.43. Memory Management Control

Memory management control has sub-features such as memory address arithmetic, array out of
bound check, memory management flexibility. Some of the sub-features cannot be abstracted as
they are high-level features such as memory address arithmetic and memory management

flexibility.
3.4.3.1. Memory Management

Specify memory management as thread-safe system resource constructs with specific methods to
manipulate these resources [25]. Release of resources as needed using predefined specification

language methods or keywords [30]. Secure information flow [146].

[74 L

Design and Evaluation of Secunty Features in RealSpec Real-Time Executable Specification Language

Chapter 3 Proposed Framework

3.43.2. Array Out of Bound Check

Checking of buffer boundary before copying data into the buffer can prevent vulnerabilities. Specify
input buffers as array resources [25]. It can be specified as constraints to ensure array boundary

limitations, and further takes these requirements to other phases.

3.4.3.3. User Authentication Support

The least privileged access to the system resources should be given to legal users. Hence, user
authentication support must model at the requirement specification level. It can be specified as
constraints validating username and password. Attack specification and prevention mechanism in
the form of constraints [154].

3.4.5. Access Control

Access control has sub-features such as authorization types, encapsulation-based access control,
sandbox support. Here too some of the sub-features cannot be abstracted such as cannot be specified
at a high level because the sandbox is a low-level security environmental feature. It is an execution

environment to test untrusted code for malicious activity.

3.45.1. Authorization Types

It is essential to specify authorization types because the confidentiality of information requires
controlled and least privileged access given to system resources [144]. It can be specified as
authorization types using graphical notation for each role in the organization [6] [12]. Specify
Permissions for each role using specification language constraints [149]. Role-based access control

specification [S] [7] [14] [144].
3.4.5.2. Encapsulation- Based Access Control

Encapsulation-based access control states that access to private variables must be through public
methods of that class. Specify encapsulation-based access control is essential to ensure controlled
access to objects and resources. It can be specified as access level scopes by specification language
constructs, such as mutex, immutable, private, and so [145]. Constraints similar to the case of
authorization types. Graphically by system resources, objects, and permissions as in SecureUML

[144].

[75 l_

Design and Evaluatton of Secunty Features mn RealSpec Real-Time Executable Specification Language

Chapter 3 Proposed Framework

3.4.6. Type Safety

Specification language supporting type declaration serves as assertions about the meaning of the

variable [25]. It can be specified as appropriate types of variables for a specification language [25].

3.4.6.1. Type Casting

Unsafe type casting or implicit type casting can cause a loss of useful information. It is a low-level
programming security feature that requires built-in functions for every data type and its
corresponding data type, such as integer to float. Implementation of this feature in a programming

language and specification is impossible.

3.4.6.2. Type Initialization

Specification of type initialization is vital to resolve the fact that the values are undefined [25]. This
security feature is specified by giving default values to the variables [150].

3.4.6.3. Immutability

Immutability prevents race conditions in a multithread application a role assignment before
performing permission is a must. Specify immutability by an immutable variable for multi- process.
Changes to the shared variable must be made atomic using mutex or semaphore to model thread
safety as in RealSpec specification Language [25].

3.4.7. Secure Session Management

Secure Session management has sub-features secure session id, secure cookies, session timeout are

abstracted based on the following reasons defined.

3.4.7.1. Secure Session Id

Session ID names depict language details [34]. It can be specified as Session ID tag [6]. Preventive
solutions in graphical notation [154].

34.7.2. Secure Cookies

The secure or HTTP-only flag should protect the authentication cookies holding session information
[34]. Secure information flow states that critical information should not flow to a less secure level
[6]. It can be specified as constraints similar to secure session id and XSS attack and prevention
[154]. HTTPS tag instead of HTTP.

[76 L

Design and Evaluation of Secunty Features in RealSpec Real-Time Executable Specification Language

Chapter 3 Proposed Framework

3.4.73. Session Timeout

Client-server communication is done through sessions to ensure a secure connection. One of the
requirements is to log out after a specified session idle time [154]. It can be specified as. Session

timeout constraint [6].
34.8. Communication Security

The sub-features of communication security are TLS/SSL version support, cryptography algorithm,
key length, random number generator and certificated validation are abstracted based on the

following reason defined such as key length and random number generator are low-level features.
3.4.8.1. TLS/SSL version Support

For secure communication use of an SSL/TLS secure version is essential. Specify as Secure
Configuration as KAoS goal-based language [150]. Denylist and safelist of software version as a
protocol [155].

3.4.8.2. Cryptographical Algorithm

To ensure developers use well-known well- vetted cryptographic algorithms. Specify as Secure

Configuration [150] Confidentiality [155].

3.48.3. Certificate Validation

Data origin authentication refers to the security of information at the message's origin. Using X.509
certificates is one solution. X.509 is a public key infrastructure (PKI) standard, and a website

belongs to a recognized domain. [155]. Specify as entity authentication [155].

3.5. Evaluation of Specification Languages using Proposed Framework

Section 2 gives an overview of SRFM. Table 3.6 is used in this section to evaluate state-of-the-art
specification languages to cover security requirements. These specification languages capture and
validate security requirements early in software development. The reason for selecting them is either
security requirement specification due to the application domain or the executable nature of

specification language.

[77 |

Design and Evaluation of Security Features in RealSpec Real-Time Executable Specification Language

Chapter 3 Proposed Framework

&,

Table 3.4 Security Feature Abstraction

Sécurity Festure Security Abstractedfor Security
Sub-feature Specification? Reqjuirement abstract name
Log File Yes Secure Auditing
Protection
Error Handling and Iéx()f1 i\r/f)efssage Yes Secure Auditing
. "
Logging Protection Error Message Yes Secure Error Message
Control
Database Query Yes Input Validation
Security
User Input Yes Input Validation
L Security
DataValidation Input Buffer Size Yes, Buffer Limut access prohibition
Check
Encode Output Yes Output Validation
Memory Yes Memory Safety
Management
Control
Memory Address No Nil
Arithmetic
Memory Management Array Outof Yes Buffer Boundary Limit Access Prohibition
Bound Check
Memory Manageme No Nil
nt Flexibility
Y Al icati
User Authentication o uthentication
Support
Authorization Types | Yes Authonzation
Encapsulation- Yes Ownership
Access Control Based Access
Control
SandboxSupport No Nit
Type Safety Yes Type safety
Type Casting No Nil
Type System Type Initialization Yes Type Initialization
Immutability Yes Immutability
Secure Session ID Yes Authorization
Secure Session Management Secure Cgokles Yes Secure mformation flow
Session Timeout Yes time-based accesscontrol
SSL/TLS Yes Secure Configuration
versionsupport
Communication Security Cryptographic Yes Confidentiality
Algorithms
Key Length No nil
RandomNumber No Nil
Method
Certificate Yes Integnty
Validation

3.5.1. SysML-sec

SysML-sec is a specification language for concurrent systems. Security requirements, along with

other functional requirements. Blocks define tasks and nodes; the "allocate" relationship defines

78 L

Design and Evaluation of Secunty Features in RealSpec Real-Time Executable Specification Language

Chapter 3 Proposed Framework

allocation. It specifies requirements using SysML blocks and a state machine, and pi-calculus. The
solution is given as pragma, for example, confidentiality, Integrity, and authentication. SysML-
sec is a goal-based technique. It uses encrypt() to define cryptographic algorithms. The
transformation of specifications is done in TTool and Proverif for verification. Moreover, it notes a

40% delay when describing security properties in SysML-sec and safety properties.
3.5.2. Secure Descartes

Secure Descartes [11] is an extension to Descartes executable specification language. It provides
a policy framework for web applications by extending Descartes language constructs to specify
policy entities and policy rules to be used in the policy application. A secure policy framework has
policy entities, policy rules, policy applications, a policy knowledge database, and a policy
2manager. The basic building blocks of a security policy framework are entities or components that
include: subjects, objects, constraints, and actions. Policy entities define policy rules. Policy
Knowledge Database (PKD) stores policy priority, policy conflicts, and policy history. The policy
manager resolves conflicts in the policies by assigning priorities to the policies [11]. Secure

Descartes handles security concerns provided by the SANS institute [11].

3.5.3. UMLsec

UMLsec [7][146] was the first to introduce security notations into software specifications and
designs in 2001 by extending the standard UML profile, and it also provides a baseline for
comparison with other notations [17]. UMLsec uses UML diagrams, stereotypes, tags, and
constraints in specification security requirements such as user authentication support, input
validation, access control, database query security, type system, and partial support of log message
control. In addition, UMLsec represents secure communication through stereotypes and tags [155].
UMLsec models secure auditing using a state chart diagram, providing log entry accountability
[12]. Certificate Validity is demonstrated by a client and server model with a previously shared
key from the certificate authority for mutual authentication [155]. However, it requires
transforming the model into a .xml file and then into platform-specific language [7].Even though
UMLsec provides comprehensive security feature coverage, there are security features not covered

by UMLsec, such as output prohibition, Immutability, and secure error message.

Design and Evaluation of Security Features i RealSpec Real-Time Executable Specification Language

' 79 |

Chapter 3 Proposed Framework

3.5.4. Input Validation Using UML

The approach offered by Hayati et al. [5] extends the UML profile to express input validation using
OCL constraints as well as UML activity, use case, sequence, as well as class diagrams. This
approach validated each input against five attributes. The right type, format, size, character set,
along with reasonableness of user input are all checked. For example, the suitable character set is
any combination of [0-9], the appropriate input age type is an integer, the appropriate length is two
or three characters, and so on. A valid format is two or three integers without spaces or dashes,

and valid reasonableness is greater than zero.

3.5.5. AMF

Assurance Management Framework (AMF) [7] models authorization types and access control for
authorization systems. It is a framework with four-tiered process for sofiware development. First,
business policies, actors, as well as authorization needs are defined. The requirements are then
mapped to RCL2000 constraints and transformed to Alloy formal specification language. Finally,
specification of requirements through UML using OCL for constraint specification. Furthermore,
Alloy Analyzer verifies Alloy policies and conformance checks the resulting implementation. The

drawback of this scheme is that it requires too many transformations from one model to another.

3.5.6. S-Promela

S-Promela [13] is a security extension to Promela executable specification language for embedded
systems. The proposed work models role-based access control depending upon the ideas of
processes, channels, constraints, events, as well as actions. It has five concepts and three rules.
Concepts include subject, object, action, constraints, and event, whereas rules are authorization,
obligation, and prohibition. The entities such as subject and object interact with each other using
communication means known as a security policy (SP). It uses four half-duplex channels to show
the flow direction between the entities. Each channel is accessible for either insertion or extraction:
It inserts data using the write mode and extracts data using the read mode. It absorbs all refused
requests through the Out channel. Promela is a specification language that is type-safe [13]. As a

result, S-Promela was born. S-Promela semantics employs an operational model [13].

3.5.7. Ponder

Ponder [145] is an object-oriented and declarative specification language for business security

I 80 L

Design and Evaluatton of Secunty Features in RealSpec Real-Time Executable Specification Language

Chapter 3 Proposed Framework

[o

specification. Authorization, obligation, refrain policy, information filtering, object policies, as
well as delegation policies are all used in ponder policies [145]. However, there is no explicit
semantics for ponder [12]. Ponder can help with identity, auditing, and access control [12]. Ponder

is a specification language that is type-safe [12].
3.5.8. SecureSOA

Vahid and Ramin [156] proposed a security framework for Service-Oriented Software
Architecture (SOA). It specifies security features such as Authentication, Confidentiality, and
Access Control [22] at the early design phase in Alloy. The Alloy has a set of atoms and their
respective restrictions. Signatures define atoms, and facts describe restrictions. Atoms or
signatures are the objects and relationships. A model must satisfy facts (logical statements) or
constraints. Signatures define access control entities such as roles, trusted roles, participants,
permission, resource type, action type, authorization constraint, and collaboration session. The
alloy meta-model defines access control specifications. The security analysis is performed by
defining some properties and applying assertions to prove them in the Alloy analyzer [156]. Alloy
analyzer solves constraints, which is why it is suitable for performing detailed security analysis on
the protocol level and not used to model whole software applications [15]. Alloy is reasonable to
model transport layer security. Table 3.2 evaluates the above specification languages by SFRS for
security feature coverage. Based on the result of Table 3.2, analysis of language feature/sub-feature
coverage, an approximate estimate of security percentage coverage for above-mentioned
specification languages is generated. Ponder [12] offers the highest security coverage percentage
whereas Secure Descartes [11] provides the second highest coverage among the evaluated
specification languages proving to be the safest executable specification language for secure web

application development.

3.6. Mathematical Model

The mathematical model is designed to evaluate the security feature coverage of various
specification languages by calculating the Security Percentage Coverage (SCP). The model
assesses how well a particular specification language supports both partially and fully supported
security features, relative to the total number of sub-security features. Here’s a detailed breakdown

of the formula and its components:

[T

Design and Evaluation of Secunty Features n RealSpec Real-Time Executable Specification Language

Chapter 3 Proposed Framework

K\

o SCP: Security Percentage Coverage. This is the overall percentage that represents how well

a specification language covers the required security features.

e« TNPS: Total Number of Partially Supported Features. These are features that the
specification language supports but not completely or optimally. A partial solution to a

security requirement may exist, but it lacks full implementation.

o TNFS: Total Number of Fully Supported Features. These are the security features that the

specification language completely supports with no gaps or compromises.

o TNSSF: Total Number of Sub-Security Features. This represents the total count of all the
specific security features that need to be evaluated (for example, authentication,

confidentiality, access control, etc.).

The mathematical model used to evaluate above-mentioned specification languages is as follows:

SCP=[(INPS x0.5) + TNFS] *100%
(TNSSF))

Table 3.5 Performance Measures

Features Supported Values Symbol
Not Supported 0 NS
Partially Supported 0.5 PS
Fully Supported 1 FS

3.7. Analysis of Specification Languages using SRFS

The previous section identified several security features gaps in the evaluated modeling languages.
This section provides a detailed analysis of the gaps along with some recommendations and related
research for addressing potential coverage for each gap. According to Table 3.2, it can be devised
that the security features can be abstracted either using graphical notation such as extending UML
profile, structured text using some constraint language, modeling language constructs such as graph
transformation, or by modeling attack steps using misuse case and defining its countermeasures

using some notation.

[82 l

Design and Evaluation of Secunty Features in RealSpec Real-Time Executable Specification Language

Chapter 3 Proposed Framework

Error Handling and Logging Protection

Gap Analysis

Evaluation from Table 3.6 shows that secure auditing is fully covered by UMLSec, partially covered
by Secure Descartes as it provides support for maintenance, monitoring and analysis of logs yet no
encryption for log statements is provided, this sub-feature is not offered by AMF, Hayati et al.,

SysML-Sec, S-Promela. Secure error message is not covered by any specification language.

Possible Recommendations

Log file protection by secure logging is a mandatory mechanism which can be specified by storing
log messages in encrypted form and decrypted when privileged users need to access logfiles. The
log file message is controlled by modeling language constraints specifying the information to be
stored in the logs such as date, time, log type, log info, and log condition. Hochreiner et al. [11] uses
graphical notation of UMLsec to show auditing by calling log method of the logger class to store
database query in log file. Error message control can be specified by creating attacker as a role and
model his actions step by step using misuse case notations and then also modeling preventive
actions. Log files can also be specified by UML profile extension approach proposed by Deveci and
Caglayan [22]. Their approach defines stereotype asset with its associated tag, showing read or write
protection during communication, and the level of importance of the asset. The approach also
provides design level stereotypes and associated tags used to embed security properties into analysis
and design phase. The model is then exported to Extensible Markup Language (XML) Metadata
Interchange (XMI) which is later verified using SPIN model checking [22].

Hoisl and Strembeck [146] extended UML for the specification of audit rules, audit events and
relevant actions. The proposed scheme consists of event-based modeling of audit properties where
the software can produce and consume events. The approach first extends metaclasses of UML
metamodel to specify audit requirements such as audit rules, audit events and relevant actions,
taking care of the consistency of the semantics of extended metaclasses with existing metaclasses.
Security audit pack-age is then defined, which extends the UML metamodel [146]. Graphical
notation of modeling elements with context free grammar using Backus Naur Form (BNF) of event-
based auditing are first defined with OCL constraints. In addition, the modeling of audit system from
different perspective is shown using activity diagram, state chart diagram, sequence diagram, and

textual based modeling [146]. However, this approach models event- based auditing, which can be

[83 [

Design and Evaluation of Secunty Features m RealSpec Real-Time Executable Specification Language

Chapter 3 Proposed Framework

.

extended to model secure auditing. Another approach known as process-centric modeling language
based on Secure Business Process Modeling Language (SecBPML) is proposed in [158]. In this
approach, set of security rules are specified using security annotations and textual structure that are
given in the form of River template for River Definition Language (RDL) [158] used to implement
business logic layer. Furthermore, whenever the system changes, a revised version of new artifacts is
introduced and then checked for compliance. The proposed approach specifies only auditing and
accountability [158]. However, this approach can be modified to include encryption and decryption
while modeling secure logging. The verbosity of log messages can be controlled by specifying
attributes for logging. Error message control can be modelled by controlling and customizing error
messages and explicitly checking any verbosity in error messages or limiting verbosity level in error

messages.
Input Validation

Gap Analysis

Specification of input validation is fully supported by UMLsec [7] and Hayat et al. [5] and it is not
supported by the other evaluated specification languages. Bound access prohibition is only fully
supported by Secure Descartes [10] because it handles boundary defense and Hayati et al.[5]
supported this using OCL constraints for length verification. Encode output is not supported by any

of the evaluated modeling languages.

Possible Recommendations

Hayati et al. scheme [5] can be extended to provide validation of suspected variable that copies
unvalidated input and then use that variable in the code and then to the output. Activity diagram
along with OCL constraints can be used to model suspected variable copying unvalidated inputs.
Enhancement of [5] can also be performed to track an unvalidated input that moved towards output,
such as file or network socket, where the input must be escaped or encoded before being exposed to
file or network socket. Encode output sub-feature can be graphically modelled using activity diagram
to validate the output as the case of input validation in [5] along with encoded output. Kong et al.

[15] proposed an approach that can be extended to model input validation threats such as buffer
overflow [38], SQLI [31], XSS [34], and its countermeasures where graph transformations may be

performed for the verification of security threats [15].

[84 I

Design and Evaluanon of Secunty Features in RealSpec Real-Time Executable Specification Language

Chapter 3 Proposed Framework

.

Memory Management

Gap Analysis
Buffer boundary limit access prohibition and memory safety is only fully offered by Secure

Descartes [10].

Possible Recommendations

RealSpec [29] uses resource construct to model abstract data structures such as arrays, queue, and
stack as well as various hardware resources such as memory. These resources are internally modelled
using the list data type. Since the internal representation is using a list data type, trying to access data
structure elements beyond their size will result in ‘nil’ value and, hence, will not expose memory
leaks. Furthermore, the resources such as queue and stack are protected against out of bounds by
using special semaphores. All resources in RealSpec are thread safe using semaphores and mutex.
Users can define new resources by using the resource construct. Memory and other data structure
resources may be allocated and released by calling resource methods or defining keywords for these

controls [6].

Type System

Gap Analysis

Type safety is not supported by SecureSOA and SysML-Sec and all other evaluated modeling
languages support this sub-feature. Type initialization is only fully supported by Secure Descartes,
S-Promela and Ponder. Immutability is not supported by any of the evaluated modeling language.

Possible Recommendations

UMLpac [152] security package can be defined for race condition and its mitigation. Immutability
can be specified using mutex and semaphore resource to provide atomicity in a multithread

environment thereby preventing race condition.

Access Control and User Authentication

These features are fully specified by all the evaluated specification languages.

Possible Recommendations

Ownership can also prevent race condition as unnecessary aliasing to a variable is prohibited and

[85 L

Design and Evaluation of Secunty Features i RealSpec Real-Time Executable Specification Language

Chapter 3 Proposed Framework

x

only legal owners can access their objects. This concept can be defined using graphical approach
used by SecureUML [8] by defining resources of the system as well as roles, permissions and
constraints for the authorization to access those resources. Secure guards can also be used to define
secure resources and to check permissions for resources [7, 150]. However, since the model is only
used to define resources and their access but not the order of access, there is no assurance of

synchronization necessary to avoid race conditions.

Immutability can be modelled by adding synchronization to the event-based scheme proposed by
Basin et al. [156] that models RBAC and ownership, extending SecureUML. KAoS [144] is a policy
specification language and is used to specify obligation policies, refrain policies, and conflict
resolution. Policies in KAoS are represented in structured text using semantic Web language known
as OWL (Ontology Web Language). KAoS policy ontology defines actors and policies for these
actors. KAoS policy constraints that allow or refrain from performing an action are called positive
and negative authorizations. Positive and negative obligations are constraints required to represent
some action for event or state triggering. RBAC policy is built from the above four constraints. The

priority of RBAC policy can be used to model synchronization, thereby avoiding race conditions.

Secure Session Management

Gap Analysis

Secure information flow and time-based access control are fully specified by secure Descartes and
ponder whereas S-Promela fully offers time-based access control while partially offers support for

secure information flow.

[86 L

Design and Evaluation of Secunity Features in RealSpec Real-Time Executable Specification Language

— 8

afendue uonwoltoadg sjqeINcaxg owiy jeay vadgrey] W samieny AILmoag Jo uonenjeag pue udisaq

P

[b1}12powt ¢
oveayjou H »
onesydads a 3
[zlu feutog ¢ =S @
[st11 onesnuayINYy sjutensuo)) §5990Yy ewsely uo Q
uoIRIYNUAP] [i1] 100 Ag los1] ssa00e pafionuo) neonuUANY =
popoddng pauoddng | [£1] pauoddng papren3 3urspy S 1#pauoddng pouoddng =3
Alng Aing | pevoddng Ay [$]pauoddng 10N Alng | payoddng Apng Ay Ang
[v1] (1] [11l
[11] pauoddng pauoddng [11] panoddng [11] papoddng panoddng
Alng 10N_| pavioddng Ajrenred) [gjpsuoddng toN 1N | peuoddng Ang Aling Ay
$S900Y 4 WM W W
pafjonuo) 2B 2 m g
pauoddng pavoddng S lypauoddng pauoddng <2 3 m 3
popoddng joN 10N | poroddng joN pauoddng joN 10N pauoddng joN A 10N
[z
panoddng [s1 vu:oaa:Nm_ pauoddng pauoddng W M .m m
pouoddng 10N 10N | peuoddng joN pauoddng 10N 10N pauoddng joN 10N 10N = -
asuajag nom > g
[e1] [s]swiensuoo [z2) Arepunog s m 85
[11)pouoddng pauoddng pauoddng 100 3uisny panoddng € 1#pauoddng pauoddng mm ¢ 8 M
Alng 10N Afrenseq pauoddng Amg 10N pauioddng joN Alng 10N pl
S[qeLIeA Ioyjoue 2
01 pardos uaym SSE[O UOTEpIRA) W
ndur indur sjeredas .m g
SIEPITEA JOU $30(] pue [o51] s
[s] swrensuoo sauanb 199301d 3
100 pue [zzl 01 s3e) pue Y
panoddng wres3erp Kianoe pauoddng SSB[O aseqele(] pauoddng pauoddng 5
povoddng 10N 10N | pouoddng joN Buisn S 4 10N pauoddng Ajng JON JON
(1] mu (<]
panoddng pauoddng pauoddng pauoddng b w] 2 w
pauoddng joN 10N | papoddng joN pouoddng joN 10N pauoddng joN 1oN 10N T Qm. w
s30; m =2
s3e) <<adh1ouass Jo siskpeue pue aFF
[s¥1] [c2] [9¥1] s3o 10) ‘Buuoytuow 25 [%
woy Funpny Ayder3oid4o fzzl s3e) uonsejoud ‘douRUR) UIRW pe & * 3 2
pauoddng panoddng [en {s] pauoddng Aq pauoddng y1#pouoddng panoddng
A[rented Aning pouoddng jo0N pauoddng 10N 10N Aning Apenreq JON
Iss [sstllan]
fsyilizr) fos1} ferl lorilil SUeIsg umw) [ameay
Japuog VOSMRRG FPUNLY-S [sTepesey ¥1l anv RPN ANRG | [grldes-TNsAs ~qng | Aumdag
sagengue] uopedRRdg Jo Anpiqede) A)Indag djeneAy 0) pasn SUAS 9¢ Jqe],
I0MIUIeT] posodoi] ¢ ™idey)
v’ ¥y

afendue] uonesl0adg a|qEINIaXg Sy, [ray oadg|Eay W saInjea] AJLMIag JO UoNEMPALT pitt uisag]

—1 "

[e1]
Aunoag Aunodoeg Wlw mu m M MV mv
[111Kunoseg aremyjog [z2) aremyog m 8 nm g5
aremyogs uonedrjddy papoddng uonesddy [s] panoddng pauoddng uonesnddy 5 g =
ggpsuoddng Ajjng 10N 9% 'Sd pouoddng 10N 1oN 10N 9#84 pauoddng 10N =
$SO[=
uonuasaxd < m.
fen] [ez] wlec L1411 £
payoddng pauoddng [s] pauoddng pauoddng pavoddng =
[11]pevioddng joN 10N 10N papoddng 10N 10N 19N 10N panoddng 10N
ssof = =
[e1] [z2] vonusaaid F W.. g o
[11] pauoddng pavoddng [s] pauoddng pauoddng vleq gE m
papoddng Ajjng 10N Anyg pauoddng JoN 10N 10N L1l sd pauoddng 10N o7
ost] = 2
uresderp “m 2
ssejoatp
[6] wreiderp ut sadAy SSO[M
sse[o s w [p1l 119y pue uonuaaaid .m,
sadf) noy pue SIUTERnsuod B1ep JWIOS [31:7q]
[g1] Jpqerrea Juisn) ursn) Buisn L1#
[111 pauoddng pauoddng [s1 pauoddng papoddng [11]panoddng
popoddng Afn.t 10N Ay popioddng Ajjn.g Ay Aling Almyg popoddng 10N
a3en3ue|)
@2 > =
uoneagioadg [+1] 1spowr s £ 8
rewttoj Aoffe ove o 2
ut paipaads uonesioadg i s
[onuod JeuLIOf m
$5990Y ‘SUTRIISUOD $S200Y ewdely m.
44| [e1} 10049 pajjonuo) uonEInUAPNY
[st1] woneainuapy pauoddng panoddng [s] papoddng panoddng S1#pauoddng pauoddng
pauoddng Afng Ajng Anng payoddng JoN Almng 10N Anng Ay
asuajeg
(]l =]
{¢1] [zT Krepunog S5 4 m g
[11] pauoddng papoddng 9] Ipswoddng pauoddng € 1#pauoddng I~ &3
papoddng A[ing 10N Ajerueg pauoddng JoN 10N 10N A pododdng joN [T
a3en3ue| »
uoneayoads [¥1] £
[euuoy Aoje [epow Ve g
w poysads Jo uonedyiseds lost] 5
10nu0d [euLroy s$a00e =
$5300y ‘SIUTR1ISUOD papiend ewideld 5
[F44] [er] 10044 Suisp | $SI09V pejjonuo) uonEINUAINY
[S¥1] uoneaynuspy pauoddng pavoddng 9] pauoddng pepoddng s1#papoddng pauoddng
papoddng Afjng Alng Ay peuoddng JoN Amg Almg Almg AIng
Iss [ssilnrl
los1l fexl 1241172} SIS samey | aangsay
[sy1ilzr] xopuoy VOS5 PuIeAg-§ [slewoeden {¥1] oy RFTAN MG | [o1]o9s-TINSAS -qng | Amnxg
JIomaurer,] pasodold € Ia1dey)

—1 % r

a3enSueT uonearyivadg s|qeInoaxy aun ey sadg[Eay Ul saIMEa] AUNdag Jo UoIENEAY pue uissq

adesan0)
LENILEE |
%90 LY %S0'L6 %CSEL %67 S¢ %671 9¢ %9L19 %SL'16 %l16'T¢ Apanaag
agen3ue|
a8en3ue| uonedyoads a8endue]
pajuduo JeuLIof a8en3ue uory
a8enSuey -109{qo a8en8ue + 98en3ue| uoneognadg a8endue| s8enSue| eogIoadg
uoneagoads “OATIRIZ[OD uoneoyIoadg Surpepowr [eULIO] + UOISUIIX Furjopowu uoIRoyads |
JeuLIO v 21qeINOAXF 1earydern argoxd AN Eeomdeln 31gBINdaXY QeInoaxy adAg
A
noog suonestddy SwaNsAs pap
AINMOIANYOIY ssau woIsAS wNsAS QN /WINSAS woshg suoreordde paquua/awn
PIJUSLIQ) 201AISG Isngf pappsquiy uorezuoyny panqLusI(y PamgIsi(y VETYY ooy urewo(q
saffenBuey u
VOSNIG 13puog ¥PUION Y-S TNV WIS Te P uAry RSTNN SAIBISHL ARG G- TINSAS oneagraadg
S)nsay uonenieAy °L°¢ dqelL
[ss1]
[11] sso00e uoneoyidads [r1] [p$1] sweSerp 5
pajjonuo) Audaug §S30J€ pI[[ONuU0) 3suanbas [11}ssa00e rwifelg em
91# fz7l OL# [s] [zzl Buis) pajjonuo) | Augayuy 2
pauoddng papoddng pauoddng papoddng pauoddng ponoddng 91 #pouoddng pauoddng -
Alng Anng Amg 10N 10N Alng Ann.g A
(1]
SOUINIMS
pUe ‘SI9)n0L [11] sayonms [zt] sayoums W W
‘S[{emauj se pue ‘s1anox pue ‘S191n01 a m
yons S01Ap ‘SeMmaly se yans ‘S[[emal se] A
JI0MIBU S3DIAIP YIoMmioU 4ons Sa0IAP om. m
10J 10§ suonem3yuod NIoMmIoU 10 § e 3
uonem3guoo amoag o1 # uoneIngyuoo w m.
amoag o1 # sd [s] [zz] amasg O14 g g
pauoddng pauoddng pauoddng pauoddng pauoddng pauoddng pauoddng g
A1 10N Afrenred 10N 10N psuoddng 10N Afng 10N =
UONUIASL]
UOUIALJ UONUIAAI] §807] o m
$SO] IR SSO| ele(] Li# eurdely .m W
cr#lnl [e2] BlR(l L1 [s] [zzl {111 |fnenuspyuos g
papoddng pauoddng [e1] pautoddng papoddng [21pavoddng pauoddng pauoddng
10N Amng papoddng joN 10N 10N Ajing _Afevyed Almng
[g1] ssa00® le1] {11l
~ T
pafjonuo) $S3998 Paj[O[u0) $59908 Pajo1Iu0)) oz & E
9T# 9T# (s} [zZ] 91# 2227
pauoddng panoddng pauoddng pavoddng pouoddng pauoddng panoddng W
A1na 10N Ang 10N 10N payoddng joN AIn.g 10N
[sstilrn}
fsyuilen lostl Ist IsstliorrLl g fo1l saanyuy amyeag
HIpuog VOS3ang I¢1] vpworg-§ TeR pedey [p1] AV ITINN 3M¥Rg 305 TINSAS -qng Aynsag
Jromauwel | @omOQO.-nm [3 .EHQMEU

/]

Chapter 3 Proposed Framework

Security Capability

T Sacunty

Possible Recommendations

Web sessions are often combined with authentication. The duration of an active session is an
important attribute of session security [6]. Secure information flow and time-based access control
can be specified using modeling language constraints similar to session timeout in UWESecurity
[6]. Busch [6] modelled secure session management through tags, and stereotypes such as
tag{session data} with <<session>> stereotype. It allows the modeler to specify session class
variables to be modelled graphically [6]. Session information flow can be specified as secure
information flow or no-down flow [7]. For example, not exposing high privilege to low privilege
using stereotypes and tag.

Kong et al. [15] suggested modeling broken authentication and session management threat by state
chart and class diagram with security threat verification performed via graph transformation. Kong
et al.’s [15] approach may be extended to include session ID modeling as well.

Communication Security

Gap Analysis
Confidentiality and integrity are fully supported by SysML-Sec using confidentiality and integrity

pragma. Secure Descartes fully supports secure configuration and integrity while partially
supporting confidentiality. UMLSec and SecureSOA fully offers support for confidentiality and
integrity. S-Promela partially supports secure configuration whereas fully offers integrity yet no
support for confidentiality.

Possible Recommendations

This feature may be fully modelled by extending UWESecurity [6] to provide addition tags and
enumerated values which can list vulnerable and safe versions. These lists may be used later to
verify a secure SSL/TLS connection. Another possible way to specify secure configuration is
through modeling language constructs, such as configuration settings package [152], which can

90 L

Design and Evaluation of Secunty Features in RealSpec Real-Time Executable Specification Language

Chapter 3

Proposed Framework

provide a blacklist of vulnerable versions and whitelist of safe versions.

Ownership Confidentiality Integrity

RS e s LS S s it T Sy £ s v e 1 4 A

! 1§

tmmutabiity ¢ onfiguration ACCESS . initiaiization
Contral

ISR e s A £ 7 g sy s 1Sl SN

Secure Software Palicy Apphcanon to Pfevent atlacks web Appﬁcamon
Development for Security Policy
Real-Time of ReaISpec
: systems it e
Rpm——— oty - m cnss
Sensitive g yen Session Buffer
Data Authenhcauon Management' Overfiow ocTou L XSS
E’,‘Pﬁ& e e s+ st et + .ﬂg‘aﬁk ct s o 30 o s s s o1 et vems oo

ReaiSpec Policy Constructs
Resourcex l Process Qperator Net
Security Error
Actors Actions Constraints Obligations e Handling
Security Policy Objectives
‘ |) Bound
Secure SecureError Output Input Secure e
information Authentication Type safety Access
o o e omon
Secure time-based Type

Figure 3.1 Proposed Solution

3.8. Proposed Solution

Table 3.6 identifies that all evaluated specification languages do not support secure error message,

output validation, and immutability. Therefore, a solution is proposed to construct a security policy

[11]-[13] in RealSpec to extend security support for it. RealSpec has been chosen because it is a type-

safe language and it is an executable specification language where specifications are mathematically

tractable [24]-[29]. RealSpec processes are used to describe actions. In F igure 3.1, it is shown that

the security requirements from proposed SRFS is specified in RealSpec using the language constructs

such as user-defined resources, processes, and operator nets. Here, RealSpec resources are used to

specify actors, processes are used to define actions whereas operator nets are used to define security

constraints and obligations. This security policy can be used to specify web application security

[9 L

Design and Evaluation of Secunty Features n RealSpec Real-Time Executable Specification Language

Chapter 3 Proposed Framework

t

policy as well as secure software development. The proposed solution is going to specify secure error
message, output validation and immutability along with other security requirements and system

functional requirements.

3.9. Summary

Chapter 3 introduced several key frameworks aimed at enhancing security in software development.
Section 3.1 presented a Security Feature Framework (SEFF) tailored for programming languages,
evaluating five popular languages. Section 3.2 identified gaps in Java using SEFF and proposed
potential solutions. Section 3.3 introduced the Security Requirement Framework for Specification
Languages (SRFS), adapting SEFF's implementation-level features to the specification level to
evaluate specification languages for security coverage in web applications. In Section 3.4, SRFS
evaluated various security specification languages, revealing minimal security requirement
coverage across most languages, with Secure Descartes achieving the highest coverage at 91.75%.
This gap between specification and implementation was identified as a critical factor in current web
application security vulnerabilities. Section 3.5 analyzed gaps in specification languages and
suggests remedies, while Section 3.6 introduced a mathematical model to quantify security coverage
percentages. Section 3.8 proposed integrating security features identified by SRFS into RealSpec,
and Section 3.9 provided a comprehensive summary of the entire chapter's findings and

contributions.

[92 L

Design and Evaluation of Secunty Features 1n RealSpec Real-Time Executable Specification Language

Chapter 4

Chapter 4 Design

DESIGN

RealSpec Overview

RealSpec [24]-[29] is a specification language for embedded systems. RealSpec statements are
declarative and also executable. RealSpec is built on the concept of a functional dataflow.
RealSpec specifications, unlike typical imperative programming languages, include equations
which includes sequence and filters rather than methods for changing memory locations.Because
the statements in RealSpec act as theorems based on which further claims can be deduced, it is
referred to as a definitional language. These claims define the behavior of the system in
consideration,

4.1.1. RealSpec Data and Iterative Statements Specification

The RealSpec statement claims x to be an endlessly distinct set of data series <1, 2,3,4,5,..>at
time indicator <t0, t1, t2, t3, t4,...>:
a
where {
a =1 fby a+1;

}
Where clause is a statement in the aforementioned RealSpec statements, and it is also used to
specify a group of instances utilized in the statement. RealSpec variables may be referred to as
operator nets. Abstract iteration over sequences is offered by the Boolean operator fby (followed
by). The first variable to fby represents the initial value, whereas the subsequent parameters
represent ordered future values.

4.1.2. RealSpec Objects Specification

Complex types of data and objects in RealSpec are represented using customized algebras.
RealSpec instance parameters may referred to as operator nets or functions. These instance
variables define the object's state, or the inner workings of an object can be viewed and modified by
the object's operator nets. A data object's instance variables must be fully functional. RealSpec
streams that advance in data object streams are likely going to be followed by an symbol of stream.

4.1.3. System, Processes, and Threads Specification

The RealSpec code starts from a system construct which offers perspective for the entire
specification. System resources, statically declared procedures, processes along with thread
building sequence, and global system-level methods are all defined in system structure.

Design and Evaluation of Secunty Features in RealSpec Real-Time Executable Specification Language

|95 L

Chapter 4 Design

system sys {

resources { .. }
processes { .. }

functions { .. }
}
A process construct [24]-[29] defines a process object. The keyword process is used in process
construct, accompanied by the process name then the process body surrounded in curly brackets. A
primitive data variable declaration, multiple passive or active objects, or an array of process
functions may be found in the body of a process specifications. A process's functions are
declarative assertions which describe the process's operator nets. Every process method or operator
net executes continually and simultaneously. A process includes one execution thread by default.
Yet, a process can include numerous threads as it chooses. For example, when the running thread
is th0, as determined by the attribute pid, a has the value a+1; otherwise, a gets the value a*2. As
a consequence, the result for thread thO will be 1, 2, 3, 4,..>, since the result of thread th1 will be
<1, 2, 4, 8,.>:
Process processl() threads th0, thl {
a
where |
a =1 fby if pid == 0 then a+l
else a*2;

}
4.1.4. Resource Specification
RealSpec provides an overview of system assets using objects for data [24]-[29]. The pre-
configured resources in RealSpec comprise (a) hardware resources like signal and analogue 10
and (b) abstract data structure resources like arrays, semaphores, mutex, queue, along with stack.
The resource objects that have already been set up are multi-thread secure; which means that they
may be accessed by several threads at once using internal semaphores and a mutual exclusion
strategy. The resource statement construct template listed below can be used by users to define new
unique resource objects:
resource <name> (<arguments>) {
<resource data>
<resource methods>

}
Prior to use, resource instances must first be created after being declared. As an illustration, a
system sys defines two resource objects: a four-element queue data structure and an signal input
resource for obtaining a switch condition:

system sysname {

[96 L

Design and Evaluatton of Secunity Features in RealSpec Real-Time Executable Specification Language

Chapter 4 Design

resources {
signalin switchl;
queue qul (4);
}

4.2. Input Validation and SQL Injection Prevention:

The process Input Validation () checks the input provided by users for potential SQL injection
attempts. If the input contains malicious patterns, such as "1==1- ana OR", it will be detected as a
SQL injection attempt, and the system will return an error message like "Invalid input: SQL
injection tautology detected”. However, when a legitimate query such as select ename from
employees where id==001 is executed, it passes validation, and the message "No SQLI detected” is

shown. This safeguards the system from injection attacks by filtering out malicious inputs.

Input validation is a critical security measure in Real Spec, where incoming data is verified to ensure
it adheres to expected formats and values. Real Spec includes built-in functions known as prefix
operators to validate different types of data, helping to protect against common vulnerabilities such
as SQL injection, buffer overflows, and data corruption. These prefix operators include functions
like is number to check if the input is numeric, is word to validate if the input is a valid word, is null
to verify null values, is string to ensure the input is a string, length to measure the input's length,
and is of to check if the input has reached the end of a file or data stream. These basic functions help
block invalid or malicious inputs, such as using is number to prevent non-numeric values in fields

expecting numbers.

However, Real Spec can benefit from additional input validation functions that are currently
missing. These would enhance its ability to detect more complex types of malicious inputs. For
example, is email could validate email addresses by checking for proper formatting, is date could
ensure correct date formats, is phone could verify the validity of phone numbers, and is pattern
could enable regular expression-based validation for more flexible and precise input checks. These
new functions would provide further protection against various types of malformed or potentially
harmful data.

4.2.1. Specification of Error Handling and Log File Protection in RealSpec

RealSpec defines Log File as aresource as a shown in Table 4.1, The first of the three inputs for the

[97 L

Design and Evaluation of Secunity Features 1n RealSpec Real-Time Executable Specification Language

Chapter 4 Design

logfile are encryptionStatus, which is followed by pol and severityLevel. For instance, to ensure
thread safety in a concurrent environment, pol is a policy specified for mutex resources,
severityLevel of the log is used to select the level of information to be stored in log files, and
encryptionStatus is required to figure out whether the log file is encrypted. Currently, two policies
are supported: the default policy, which uses first come, first served (FCFS), and the priority system,
that uses the thread's priority. ERROR, WARNING, TRACE, DEBUG, INFO,ALL, and OFF are
only some of the severity levels of logs that the log4Net and Log4j programming language libraries
provide. Internally, a logfile is described as a list resource. Moreover, there is an index which is
used to hold a curser point where a file can be read from and in case of write mode the index is set
to 0 that means index is set at starting position of the file. Algorithm1 and Algorithm 2 show secure

auditing write and read function respectively.

Table 4.1 Log File Signature

Signature Logfile (bool encrypiedStatus, int pol, int severityLevel)
System variables
Private variables list Idisk=[];

bool status= encryptedStatus;
int index; mutex

file(pol); list glist;

generic input; generic
buffer;

User variables
User functions int open (int mode);

generic operator << (generic input, generic p);
generic operator>> (generic buffer);

bool isEncrpted();

bool fileSize(),

generic loglevel (int severity);

Algorithm 1 Secure Auditing Write function

Require: Idisk is log file, Idisk is a mutex file to check mutual exclusion while write operation

to disk, encryption status checks encrypted text or plain text, index variable to check current
location to read a file, eof to show end of file

Ensure: mutual exclusion while write operation, encrypt the log statement if the log is stored in

encrypted form.

Start
Initialize Idisk to logfile
While index !=eof do
For each Idisk open in write mode do
Lock Idisk
If ldisk is encrypted
Write Idisk in encrypted form

[98 L

Design and Evaluation of Secunty Features 1n RealSpec Real-Time Executable Specification Language

Chapter 4 Design

Else
Write ldisk
End if
Unlock Idisk
End While

In Appendix 1, Read(>>) and write (<<) operators are overloaded for the logfile. The open function
accepts the mode, such as read or write mode, and performs the function based on the defined
mode. Whena logfile is opened, the open function mode parameter is passed to the open function
to check if the file is opened for read or write. Mode variable takes constant values such as
WRITE ONLY and READ. Function open(int mode, int severityLevel) checks if the mode is
WRITE ONLY, then the logfile contents are wiped, and the index pointer is set to 0. The
severityLevel shows which logging level should be applied as logging everything can exhaust

system resources, and logging too less can complicate debugging. Thus, the recommended level

Algorithm 2 Secure Auditing Read function

Require: Idisk is log file, encryption status checks encrypted text or plain text, index variable to
check current location to read a file while read operation to 1disk, eof to show end of file.

- Ensure: decrypt the log statement if the log is stored in encrypted form,

Start

Initialize ldisk to logfile
While index !=eof do
For each ldisk open in read mode do
If Idisk is encrypted
Decrypt Idisk
read ldisk
Else
Read Idisk
End if
End While

of logging is information. The multithread-safe logfile write() and read(>>) methods are provided

by employing the mutex resource. The logfile is overloaded for both << and >>. When a thread
locks the logfile while writing to the disc, the write () operator writes a string to the logfile. The
logfile Idisk is also unlocked soon after the thread finishes writing to it. The operator first finds
whether the logfile, Idisk, is encrypted. Subsequently it encrypts the input string using keysize.
Lastly, it upgrades the logfile, Idisk, by converting the input variable into a list using the list operator

[%%] and appending to the end of the ldisk using the append operator. <>. Lastly, the index

[99 L

Design and Evaluation of Secunty Features in RealSpec Real-Time Executable Specification Language

Chapter 4

Design

pointer is updated by 1. The highlighted area shows the immutability feature preventing race

conditions, thereby preventing TOCTOU. Function CheckSeverity(int initLevel) checks the severity

of a message to be stored in a log file. The variable initLevel is assigned with an allowed number of

characters to be stored in a log file. This specifies the log severity level.

4.2.2. Specification of Secure Error Message

Table 4.2 Specification of Secure Error Message

Signature SecureErrorMessage ()
System variables
Private variables List Policyl
User variables String role
int username
int actions
generic object
User functions Bool isAuthonizedUser()
generic CheckMessageVerbosity()

Algorithm 3 Secure Error Message

Require: List policyto store organization policy, r is role, level is number of words to control
message wordiness, m is the error message, E is the total number of epochs.

Ensure: each role is assigned with a specific message wordiness level to control message

verbosity

Start

Initialize policyto OrganizationPolicy

For each epoche=1to E

If r is authorized user for level on m
Show level number of words frommto r

Else
Show error message
End if
End for

Testing

In Appendix 2, a list of roles is given with their names, roles, permission and resource. If the user is

developer or tester then he has full access to view the stacktrace of error message. Otherwise if the

user is a visitor he cannot view stacktrace. The following output is given on different intevals of time

from t0,t1,t2 etc.

Design and Evaluation of Security Features in RealSpec Real-Time Executable Specification Language

100

Chapter 4 Design

- N N 1
0 St Q2 j
H
: i ! !
! : i :
! j g r
i i | <

@ =] =) o 2 0 [=] =

g I s Q g = s 3 g = 5 2

= g £ 2 g E= 2 g = =

é 153 Qo =] é Q Q £ é Q Q o

< < O < < ; O < < o
— — - e - e e e e

g %

£ & |

g @] v .oa 2

8.. 9 UE’ 2 2 = » 2

= 3
T 2 8 5 g £ g =2 5 85 =
a 5 3 8 £ g @ 3 g g g 7 5 E]
[S 5 o -
- A # 8 & @ = & 8 o A S > %8 3
Ben Authorized User can see verbose Beth Authorized User can see . .
Invalid Action
error messages verbose error messages

4.2.3. Specification of Data Validation in RealSpec

RealSpec defines data validation as a resource as a shown in Table 4.3. There are two user variables and
two processes one input validation and one is output validation. Process InputValidation() has one
operator net dataSanitization() that detects SQLI pattern such as 1==1 in the input and if found it throws
error message. Pattern(), encode() and decode() user functions are added as a library function in
RealSpec. In OutputValidation() process the output is taken from the user or the data receive from
server is check against the patterns <, >, (,), script, alert, if the pattern is found then that data is
encoded so that the client machine is prevented from any executable code. The equivalent decode
function is also provided as a user function and added to RealSpec. EncodeData(string s) takes the
ith value of the string s using ith(i,s) and store it in val variable encode that value and then again store
that encoded value on the ith place and move to next value using iterative statement i= 1 fby i+1.
In Figure 4.1, user gives an input the web application checks for the input and finds out if there is
some pattern that matches with SQLI attack pattern then if the pattern is found then the web browser
throws an exception otherwise the request is processed. Similarly, In Figure 4.2, the user sends request
to web browser the web browser checks if there is XSS attack pattern then if there is pattern then the
request is not processed and also the user is notified and then the output received from the user is

encoded so to avoid any executable code.

101

Design and Evaluation of Secunty Features in RealSpec Real-Time Executable Specification Language

Chapter 4 Design

Table 4.3 Specification of Input Validation

Signature DataValidation ()

System variables

Private variables

User variables String input;
String output

User functions generic dataSanitization(generic query) generic
EncodeData(string DataFromServer) generic Decode(string s)

Algorithm 4 Input Validation

Require: Iis user input, p is the pattern to find in the input, E is the total number of epochs, q is
a query
Ensure: regrex find P in

Start
Initialize [with user input q
For each Epoch e=1 to E do
For each where clause do
Find P in user input
If found then attack print attack message
Else print output
End if
End for
End for

Algorithm § Output Validation

Require: O is user output, p is the pattern to find in the output, E is the total number of epochs,
Ensure: regrex find pin O

Start
Initialize O with user output
For each Epoch e=1 to E do
For each user input do
Find P in user Output
If found then attack encode output
Else print output
End if
End for
End for

102

Design and Evaluation of Secunty Features in RealSpec Real-Time Executable Specification Language

Chapter 4 Design

(4

4.3. Output Sanitization and XSS Prevention:

The process Output Sanitization () addresses XSS attacks. If the server sends data containing
malicious script elements, such as "<script> alert () </script> + document. Cookie", it can trigger
an XSS attack. The function Encode Data (data from server) prevents this by converting the
executable code into a safe format, ensuring that sensitive data like cookies are not exposed to
malicious actors. This step ensures that any user-facing output is sanitized to prevent code

execution on the client side.

: check SQLI attack -
4 : pattern

ae — , 3
removethat i gpyt.. . +——valid input———»
pattern and | :)E
throw error | jattack pattern detected ;

message b §<‘ """"""""""""""""""" " , f
. -Process request k.

H

1
'
|
i
i

H
i
i
H

Figured.1 Specification of Input Validation

In Appendix 3, the process InputValidation(), if input is given by illegitimate user as “1==1-- ana
OR” thenthe output will be displayed as Invalid input: SQL injection tautology detected if select
ename from employees where id==001 is given then no SQLI detected is shown. In the process
OutputSanitization(), if dataFromServer is “<script> alert()</script> + document.cookie” then it
can launch an XSS attack. EncodeData(string dataFromServer) can convert executable code to

prevent the user from sensitive data exposure thereby preventing XSS.

4.4. Bound Access Prohibition and Buffer Overflows:

This step focuses on preventing buffer overflow vulnerabilities. In Real Spec, both input and

103

Design and Evaluation of Secunty Features in RealSpec Real-Time Executable Specification Language

Chapter 4 Design

output buffers are represented as lists, and when an attempt is made to access elements beyond the
buffer's bounds, the system returns nil. This behavior is outlined in Table 4.4 and where Bound

Check List serves as the resource for managing buffer boundaries.

4.4.1. Bound Access Prohibition

The input buffer or output buffer can be represented by a list in RealSpec and If accessing passes
the bounds it will result in nil. This is shown in table 4.4. BoundCheckList is a list resource. The
system Buffer BoundCheck has one private variable and one user variable input. It has two operator
nets BoundCheck() and addToList(). The addToList() adds items to the list as soon as asa the buffer
reaches to nil. The operator asa will evaluate the right-hand side first. This means the buffer bound
is check first for its limit and then items are added to the list. This operator <> appends the input to
the Buffer CheckList by first converting input to the list item using /% %] and if the list reaches its
limit then exception BufferOutOfBoundCheckException()is thrown. This whole function iterates
for n number of times using i=/ fby i+ in which i is initialized with 1 and then fby stands for

followed by gives the subsequent values of i.

. . checkxss =
attack pattern

request.____.. —valid request—__-_..

by 4
; ‘encode’ attack pattern detected
L oUtpUL |

i

F
U
q
Q-
L2
0
7]
wn
-
(1]
2
o
(1"
(724
-

Figure 4.2 Specification of Output Validation

104

Design and Evaluation of Secunty Features in RealSpec Real-Time Executable Specification Language

a

Chapter 4 Design
Table 4.4 specification of bound access prohibition
Signature BufferBoundCheck()
System variables
Private variables list BoundCheckL ist
User variables String input
User functions generic BoundCheck()
generic addToList()
list==nil
SEEE—
data
data
data

Figure 4.3 Specification Buffer Bound Access

Similar to Java programming language where writing past the length of the buffer throws an
exception preventing buffer overflow attack. BoundCheckList has three data elements and
addToList() will always check if the buffer size has reached maximum by checking for nil

otherwiswe continue to append data in the list.

Testing

t0 tl t2
do 2 4 Nil
d2 3 6 Nil
d3 4 8 Nil

4.4.2. User Functions

RealSpec has some of the built-in input validation functions or prefix operators such as <prefix

Design and Evaluation of Secunty Features in RealSpec Real-Time Executable Specification Language

105

Chapter 4

Design

operator>:: = isnumber lisword, isnulljisstring|lengthliseof. However, some prefix operators or

validation methods are still missing that can improve the input validation in RealSpec. Data

validation has sub-features as input validation, bound access prohibition, output validation

RealSpec has some built-in prefix operator as defined below. Some of the functions are identified

which are not present in RealSpec, and the addition of these functions in RealSpeccan enhance its

security.
Table 4.5 User Functions
Functions Uses
Pattern ([a-z, special characters, A-Z] RealSpec has
+« = I=
e Length,

o [sstring, Isnumber

Strncpy(s1, s2,n)

When the s2 string is copied to another one, s1 and s2 must be validated and
then copied to s1 N 1s an integer that tells several
characters to be copied to prevent buffer overflow

Encode String

Malicious code can contain JavaScript and executable code. So, the input
must be checked against (,), <,>, & special characters and replaced with
ASCII value. When a client visits this web page, the output will be
encoded and not in the form of

executable code.

Range (int min, int max)

To check the data 1s within the valid range.

4.4.3. String copy method

Strnepy (s1, s2, n) mathematically, the S2 string should be checked for string type and length, and

then the S1 length is checked to determine whether it is equal to or greater than the length of the n.
Only then is the copy of S1 is allowed. S11, S12,....SIN and S21, S22,.....82N are two string

constants streams n is the number of characters to be copied to prevent buffer overflow. For instance,

the strcpy (S1, S2) function in C has a flaw and leads to a buffer overflow. As shown in RealSpec

specification below

S11=521
S12=822

S1IN=S2N

Here, the Realspec code is using CopyString() operater net to check the length of S1 to be greater

than S2, if this condition is true then another operator net checkString is called that checks the

datatype of S2 to be string and then it copies S2 to S1. If S2 is not a string type then an exception

is thrown which tells the user that the input is not valid to be copied.

106

Design and Evaluation of Secunty Features in RealSpec Real-Time Executable Specification Language

Chapter 4 Design

uw

String s1,s2;
bool strncpy(sl, s2, 2)= CopyString
where{
CopyString = iflength S1>=length S2 then checkString else throw
InvalidDataException()
where{
CheckString= if isstring S2 then SI1=52 else
throw InvalidDataException()
/
Exception InvalidDataException() = PrintError
where{
printError= “Invalid input”

/
4.4.3. Specification of Type System

Real Spec is a strongly typed system that ensures proper handling and safety of data types. This
means that each variable or resource in Real Spec must adhere strictly to a predefined type,
enhancing reliability and minimizing errors. [t supports both type of initialization and
immutability, ensuring that once a type is set or an immutable object is created, it cannot be
modified. However, type casting, or converting one data type to another, is not built into the core
specification of Real Spec but rather is left as an implementation-specific feature, allowing for
some flexibility based on use case needs. Real Spec emphasizes thread safety and immutability,
which are crucial for preventing issues in multi-threaded environments. By using synchronization
primitives like mutex (mutual exclusion) and semaphore, Real Spec ensures that only one thread
can access shared resources at a time, avoiding data corruption and race conditions.

The system provides a range of built-in types, including:

¢ Primitive types: int, long, Boolean, string, float, reals
* Special types: time and generic (a flexible type for broader data handling)

However, the date type is currently missing in Real Spec. To address this, the function Now () is
specified to return the current date and time. The date type is defined as a resource that takes three
parameters: day, month, and year. The specification for type safety related to the date type is
detailed in Table 4.6 and Appendix 5. This specification includes several operator nets:

e Check Date (): Verifies whether the date input is valid.

107

Design and Evaluation of Secunty Features in RealSpec Real-Time Executable Specification Language

Chapter 4 Design

u

¢ Validate Date (): Ensures the date corresponds with the correct number of days in

the month and checks for leap years.
e Format (): Takes a generic date and formats it into a standard dd/mm/yyyy format.

Additionally, the Now(d, m, y) function returns the current date using the day, month, and year
parameters. VerifyDays() checks the validity of the number of days in a given month, accounting
for leap years, to ensure accuracy.

RealSpec also supports immutability, which ensures that certain data, once set, cannot be altered.
This immutability is particularly useful in multi-threaded environments to avoid unintended
modifications. The handling of immutable resources is illustrated in Appendix 1, where an
example of a user resource named logfile is provided. In this example, a file can be opened either
in read or write mode. For writing operations, the operator << is used to direct data to the file.

To guarantee thread safety during file writing, Real Spec employs synchronization mechanisms
such as write (), file. Lock(p), and file. Unlock (), ensuring mutual exclusion when accessing the
file in a critical section. These operations prevent race conditions, ensuring that processes are
executed in a specific order based on their priority and mutual exclusion protocols. This also
prevents TOCTOU (Time of Check to Time of Use) vulnerabilities, where the state of a resource
might change between the time it is checked and the time it is used.

Through the use of mutex, semaphores, and immutability, Real Spec ensures that operations within
critical sections are performed in a controlled and synchronized manner, preventing conflicts and

preserving the integrity of the data.
year. Format(generic date) will return the date in dd/mm/yyyy format.

In write mode, operator << is used, and by write() asa file.lock(p) asa file unlock() ensures mutual
exclusion in a critical section (see [24]-[29]) thereby preventing race conditions and also order of
the statements and synchronization of process using process priority and mutual exclusion prevents
TOCTOU.

Table 4.6 Specification of Type Safety
Signature date(int d, generic m, int y)

System variables

Private variables

User variables

User functions generic CheckDate()

generic VerifyDate(int d, int m, int y)
generic Format(generic date)

generic now(int d, generic m, int y)

108

Design and Evaluation of Secunty Features in RealSpec Real-Time Executable Specification Language

Tda

Chapter 4 Design

4.4.4. Specification of User Authentication

In figure 4.4, if the username and password are correct then the user is authenticated. Error message
showing either username or password invalid prevents information loss by making an attacker
wonder if the username or password is incorrect preventing sensitive information loss. Table 4.7
outlines system user variables and user functions. There is one process Authentication() that has
one user function that validates username and password with the saved credentials if matches then
ValidUserMsg() is printed.

LIi
il

Nainion ™ Authenticator Resource
Uses Icon Web Applicatlon : Seiver

I
2. ;red:rect for authenuctlpn
I R e ST |
d.request login !
L4 give access tc#tene

r1 reguest service—a

— resolve security tokpns
|

SR A

|-
Au’honzed User(permlsssod resourceObj)

|
ponse service to authonzed (1377 £ S,

- - - «-;_

[3

re

- - -

w----w—unAuthorizequer
]

1
3
]
r

- v b e e e e

-_____._.___-__..!

Figure 4.4 Single Sign On Authentication

Table 4.7 Specification of Authentication
Signature UserAuth ()

System vanables

Private variables

User variables string nare, string pass

User functions bool isAuthenticated(role r)

4.4.6. Specification of Memory Management

User-defined resources are created in RealSpec. However, release of resources is not shown. In

109

Design and Evaluation of Secunity Features in RealSpec Real-Time Executable Specification Language

Chapter 4 Design

]

Table 4.8 the specification of memory safety is given. Here, there is only one user variable and
this resource has two operator nets allocate() and deallocate(). A resource int obj is created after
performing some tasks the resource is released if the object is equal to eof using deallocate operator
net. The operator eof is added as a keyword in RealSpec.

Table 4.8 Specification of Memory Safety
Signature memorySafety ()

System variables

Private variables

User variables int obj
User functions Allocate() deallocate()
Testing

In the specification given in Appendix 7, a global resource tl is declared and after some
manipulation, the resource is released to prevent memory exploits. A special symbol eof checks
the end of data forthe timer and then nil is assigned to release it. The output of the tI resource
given on different time intervals such as t0 to t5 and at t5 the resource is released and assigned to
eof/nil to prevent any memory leaks.

t0 tl 2 t3 4 t5
12:00:2 12:01:2 12:02:2 12:03:02 12:04:02 eof/nil

In Table 4.9, specification of secure information flow is shown. Here, there are two user variables
string username and timer t, and process session manager is responsible for creating a session using
operator net creafeSession() creates a user session it has variables to store current time and session
expiration time. Process AuthenticationCheck() checks the authentication using operator net
Authenticate() to check if the wuser session is still available by checking

currentTime<=expirationTime (see Appendix §8).

In secure information flow specification, a user is assigned with a commlID after the user is an
authorized user and can perform desired operation if the session timeout is not over by @
expirationtime. After the desired operation is performed by the user on the resource the session is

terminated. This prevents a broken authentication and session management attack, as well as

110

Design and Evaluation of Secunty Features in ReaiSpec Real-Time Executable Specification Language

Chapter 4 Design

Z

establishing a timeout for an idle online session.

4.4.7. Specification of Communication Security

Communication Security is modeled here by specifying the blacklisted version and whitelisted
version of SLS/TLS. Certificate validity can be replaced by user authentication. In the following
code snippet, TLS/SLS security is taken as a resource and it has a default version set as TLSv1.2.If
the default version is SSLv3 or SSIv2 then ExceptionVulnerable Version() is thrown. Using secure
versions can prevent sensitive information exposure. Note: the RealSpec Specification is a formal
specification language and it is at design and analysis phase, implementation to many functions
are not provided as it is a specification language and the implementation is provided in
implementation phase using a specific programming language.

Table 4.9 Specification of Secure Information Flow

Signature SecurelnformationFlow ()
System variables
Private variables
User variables String username
Timertl
User functions generic CreateSession()
Table 4.10 Specification of Communication Security in RealSpec
Signature CommunicationSecurity ()
System
variables
Private variables
User variables generic certificate
User functions generic Integrity()
generic Confidentiality()

Design and Evaluation of Secunty Features in RealSpec Real-Time Executable Specification Language

111 ’

oy

Use:l icon

i
rl.request service—a!

P
-

1
E 3.request login :

Web Appljcation
|

|
2

2.redirect for authentictipn
{ I

n'_—4‘ give access tqkens
| f
{]
{ 1
i '
| I
) 1
| 1
(
]
-— re%

- —-UnAuthorizedUser

- ——— — o - ——

P - -

.
o

Authorized User(permissior, resourceQbij)
$ |

—— Yo ——

I'f

Authenticator
i

time out

@20 minutes

Resource
Server

- resolve security tokpns
| i

i

|
i
1
i
f
]
!
L]

. -
ponse service to auth?nzed (VLYY (- S——

) o]

a2 o o

Figure 4.5 Session Management and session timeout

Figure 4.6 Secure Configuration

get certificate

v

check validity

valid certificate

3

it

g

3

resultes!

"l‘\
[
|
'

Design and Evaluation of Secunty Features 1n RealSpec Real-Time Executable Specification Language

112

Chapter 4 Design

('(\

4.5. Comparative Analysis of RealSpec vs Model Checking techniques

This section evaluates the RealSpec approach in comparison to various model checking
techniques. It provides an overview of major model checking methods and contrasts their general

methodologies with the executable model approach of RealSpec.

S-Promela: S-PROMELA (a Secure Process Meta Language) is used for modeling, specifying,
and validating Security Policies (SP), drawing inspiration from software engineering practices.
The approach is based on Executable Specification Policy (ESP) and reachability graph concepts,
introduces S-Promela as a new executable language for SP specification. This language is
structured around channels, processes, and operations like read and write using Labelled Transition
Systems semantics. Validation proceeds through three key steps: detecting inconsistencies in SP
rules, proving completeness using reachability graphs, and verifying the preservation of safety and

liveness properties.

SecureSOA is secure specification language for service-oriented architecture. It employees
Alloy[156] to specify authentication, confidentiality and integrity. Alloy [156] is a declarative
specification language designed for expressing complex structural constraints and behavior in
software systems. Drawing upon first-order logic principles with influences from the Z language
and syntax resemblant of the Object Constraint Language (OCL), Alloy excels in creating concise
micro-models that undergo automated correctness verification. At the heart of Alloy is its analyzer,
inspired by model checkers, which functions as a "model finder" powered by a Boolean
satisfiability (SAT) solver. This tool generates instances of model invariants, simulates model
operations, and verifies user-specified properties. Notably, Alloy supports incremental model
analysis, allowing developers to refine and validate models step-by-step, providing immediate
feedback. To maintain computational feasibility, Alloy's analyzer imposes constraints on model
complexity by limiting the scope to a finite number of defined objects, ensuring the decidability

of the model finding process while potentially constraining the generality of its results.

Model Checking Methods vs. RealSpec Execution Model: Model checking may be a
complementary approach to the RealSpec executable approach. Model checking may provide the

following advantages over RealSpec:

Verification Scope — Model checking methods verify the correctness of the entire specification

by exhaustively searching the system's state space. In contrast, RealSpec's execution model

113

Design and Evaluaton of Security Features in RealSpec Real-Time Executable Specification Language

Chapter 4 Design

restricts validation to the current context of inputs and user interactions, providing a narrower

scope for verifying correctness based on specific scenarios and behaviors.

RealSpec may provide the following benefits over model checking methods:

* Usability — Model checking typically involves substantial preparatory work before verification

N can commence, including translating the specification into a formalism compatible with a
modeling tool and formulating system properties using logical formalisms. In contrast,

RealSpec’s execution model is more straightforward and resembles programming languages,

making it easier to directly simulate and observe system behaviors without the upfront

formalism conversion required by model checking methods.

* Completeness — Model checking faces challenges regarding the completeness of system
properties specification. While it verifies if a model satisfies a specified set of properties, it
cannot confirm whether these properties encompass all requirements the system should meet
[170]. Similarly, the RealSpec execution model may encounter similar issues where it's
difficult to ascertain if the specification covers all system properties comprehensively.
However, RealSpec's advantage lies in its ability to execute and observe the specification in a
defined context of inputs and expected outputs, which can help highlight any missing

properties during testing and simulation.

* Debugging — While model checking methods offer automated verification, in practice, human
intervention is often necessary to interpret verification results and debug errors, especially
when a negative result occurs and an error trace needs to be analyzed. Similarly, RealSpec's
execution model also requires human analysis in case of failures. However, debugging formal
system models with an exhaustive state space and property axioms expressed in another
language adds considerable complexity compared to debugging RealSpec specifications.
RealSpec's debugging process is simpler because it is based on a straightforward functional
input/output model, making it more intuitive and less intricate than dealing with the

complexities of formal model checking methodologies.

* Applicability to Software — Model checking has proven effective in verifying hardware
systems and communication protocols but faces challenges with software due to its less
structured nature compared to hardware [170]. Software systems often involve dynamic and
complex interactions that are harder to formalize and verify exhaustively using model checking
techniques. In contrast, RealSpec is specifically designed as an executable specification

language tailored for modeling software systems. It closely resembles programming languages,

114

Design and Evaluation of Secunity Features in RealSpec Real-Time Executable Specification Language

Chapter 4 Design

making it more suitable for capturing and validating the behaviors and interactions typical of
software applications. Therefore, RealSpec does not encounter the same difficulties with
software verification that model checking may face, leveraging its approach to simulate and
validate software behaviors directly.
o Complexity Control — Model checking faces the significant challenge of state space
explosion in systems with numerous interacting components or complex data structures, leading
to an impractically large number of potential global states to explore. Despite advancements in
methods like symbolic model checking and state space reduction techniques, these solutions
often introduce additional complexity to the already intricate modeling and verification
processes. In contrast, the RealSpec execution model sidesteps the state space explosion problem
altogether by focusing on the direct execution and simulation of specified system behaviors
within a defined input-output framework. This approach simplifies verification efforts by
avoiding the exhaustive exploration of all possible system states, making it a more
straightforward and efficient method for validating software systems compared to traditional

model checking approaches.

4.6. Evaluation of RealSpec Using Security Features Framework

The evaluation of Real Spec using the established Security Features Framework, as outlined in
Table 4.11, provides a comprehensive assessment of the system's security capabilities. This
framework serves as a benchmark against which the various security features and sub-features

of Real Spec can be systematically analyzed.

In Table 4.11, the first column lists the specific security features or sub-features relevant to Real
Spec, while the second column details their respective implementations or characteristics within
the system. The third column offers an analysis or evaluation of how effectively each feature
addresses security concerns, focusing on the robustness and reliability of the mechanisms in
place.

The evaluation process considers several key aspects, including:

Input Validation: The framework assesses the built-in input validation functions available in
Real Spec, such as prefix operators like is number, is string, and others. The effectiveness of
these functions in preventing invalid inputs and potential security vulnerabilities, like SQL

injection, is evaluated is a critical consideration.

115

Design and Evaluation of Secunty Features in RealSpec Real-Time Executable Speaification Language

[

w

Chapter 4 Design
Table 4.11 Evaluation of RealSpec using SEFF
Security Security Supported by How?
Feature | Sub-feature RealSpec?
Log File Yes Secure Auditing is supported by RealSpec using lock and unlock to
o & | Protection read and write file Providing mutual exclusion and thread safety.
= .2 : . .
=g Log Message Yes Log Message control is supported by using severity level of the log
ap &
2] Control such as debug, info, warning, information, and error message
. Error Message Yes Error message is specified by defining a role as a resource, its
Control permission on error message verbosity level."
Datab.ase Query Yes By specifying database as a resource and passing input to the
Security database but that input 15 checked against XSS and SQLI attack
pattern.
.g User Input Yes Providing checks when the input is taken from the user.
g Security
3 Input Buffer Size Yes, It is specified using operator net to check bounds and then
i Check throw an exception in case the access is past the bounds of the limit
a8 Encode Output Yes This feature is specified by using operator net that checks if XSS
attack pattern mput is detected in the output then the output is
encoded before being displayed to the user.
Memory Yes This feature is specified by defining a resource 1n RealSpec and then
Management released after it is no longer needed it uses eod or nil to release the
Control resource.
g Memory Address No It cannot be specified at the specification level because it is 2 lqw-
2 | Arithmetic level security featurg unplemer_lted In a programming language using
8 functions or operations on pointers 1f the underlying programming
g language supports this.
e Array Out of Yes Same as input buffer bound size check
E Bound Check
Y
= Memory No Same reason as Memory Address Arithmetic
Management
Flexibility
Yes This 15 specified by defining a role, 1ts permission on the resources.
s Then giving username
User Authentication ..
i and password and an OTP to perform user authentication.
. Yes This is specified by defining roles as resource and the defining
Authorization Types organization policy. RealSpec employees RBAC.
T Encapsulation- Yes This constraint 1s defined by defining System variables that are
s Based Access accessible to only using user-functions/operator nets.
5 Control
? N It cannot be specified at ahigh level because the sandbox is
< 0 .
< Sandbox a low-level security
Support environmental feature. It is an execution environment to test
untrusted code for malicious activity.
Type Safety Yes It is specified by defining date type for RealSpec.
No Unsafe type casting or implicit type casting can cause a loss of
useful information It is a low-level programming security feature
Type Castin that requires built-in functions for every data type and its
g ype J corresponding data type, such as integer to float. Implementation
~ of this feature
> in a programming language and specification is impossible,
:% Type Initialization Yes This feature is specified by giving default values to the variables.
Tmmutability Yes This feature 1s specified by defining lock and unlock feature same as
log file protection.

Design and Evaluation of Secunty Features in RealSpec Real-Time Executable Specification Language

116

Chapter 4 Design

q

Security | Security Supp| How?
Feature | Sub-feature orted
by
Real
Spec
?
H = IS];“"" Session | yes | This feature is specified by assigming sessID for each role when 1t is authorized.
2 ®
% E S?ssion Yes | This security feature is defined by using a @timeout constraint for each sessionID
£ §° Timeout as 30 seconds
(2 g Secure Cookies | yes | This s partially specified as it is a flag which is to be set for HTTPOnly
SSL/TLS Yes | This feature is partially specified as it 1s a network level feature which has some

version support implementation requirement to be implemented in design and implementation

phase. It is defined as an operator net where older versions of SSL/TLS checked
and an exception is thrown if the client is using an older version of SSL/TLS.

2 Cryptf)graphic Yes | This feature is specified by providing encryption and decryption on a file if it
5 Algorithms contains sensitive information.

2 K - .

- ey Length No | Itis alow-level security feature

2 Random No It is alow-level security feature

8 Number

g Method

S Cer.tiﬂc_ate Yes | This feature is partially specified as the path of the CA is requured. Here 1t

S Validation specified in RealSpec as an operator net that checks for certificate authority and

certificate expiry and throws an exception 1f the certificate 1s expired or the
certificate authonty is not valid.

Memory Management: The evaluation examines how Real Spec manages memory through
user-defined resources, focusing on the proper allocation and deallocation of memory to prevent
leaks and exploits. The presence of mechanisms for resource release is scrutinized to ensure

effective memory safety.

Session Management: The framework evaluates the secure session management features,
including user authentication and session timeout mechanisms. The effectiveness of these
features in preventing broken authentication and ensuring that sessions are terminated

appropriately

Communication Security: This aspect focuses on the use of secure protocols, such as TLS and
SSL, and the specification of blacklisted and whitelisted versions. The evaluation assesses
whether the implementation safeguards against known vulnerabilities and protects sensitive data

during transmission.

User Authentication: The evaluation includes the processes for verifying user identities and
assigning unique identifiers (comm IDs) for authorized operations. The effectiveness of these

measures in preventing unauthorized access is critically assessed.

117

Design and Evaluation of Secunty Features 1n RealSpec Real-Time Executable Specification Language

Chapter 4 Design

4(-

Overall, the evaluation of Real Spec using the Security Features Framework offers a structured
analysis of its security features, identifying strengths and potential areas for improvement. By
systematically reviewing each feature against established security standards, this evaluation helps
to ensure that Real Spec is robust against common vulnerabilities and threats, ultimately

enhancing its overall security posture.

4.7. Summary

In Chapter 4, introduction of RealSpec is given such as its syntax and semantics. In Section 4.1,
input validation and SQLI prevention is given, moreover, security features such as log file
protection, input validation, are specified in RealSpec using its syntax and semantics. This
section also provided a testing of each feature which show correctness of the proposed scheme.
Section 4.2 discussed about output validation and type safety, user authentication, memory
management, secure session management, and communication security. In Section 4.4, bound
access prohibition and buffer overflows prevention is showed. Section 4.4 was the comparative
analysis of the proposed method with model checking. Section 4.5 gave a comparative analysis
of RealSpec vs model checking methods. Section 4.6 evaluated RealSpec using SEFF. Section 4.7

summarized the chapter.

T

Design and Evaluation of Secunty Features in RealSpec Real-Time Executable Specification Language

Chapter 35

r(,

Chapter 5 Case Study

Case Study

Web application security is a critical concern in today's web-based environment, primarily due
to the increasing number of cyber threats and vulnerabilities that target online systems. Among
these threats are broken authentication and session management, SQL injection attacks (SQLIA),
cross-site scripting (XSS), race conditions, and buffer overruns, which are some of the key
vulnerabilities identified by the Open Web Application Security Project (OWASP). These
vulnerabilities can lead to significant security breaches, compromising sensitive data and

undermining user trust.

To effectively address security issues—considered a non-functional requirement—it's essential
to incorporate security measures throughout the various phases of the web application
development lifecycle. By doing so, developers can improve the overall quality of web
applications and enhance their stability against security threats. This proactive approach helps in
identifying and mitigating risks early in the development process, ensuring that security is not an

afterthought but an integral part of application design and implementation.

Access control is a vital component of web application security, allowing information system
authorities to grant appropriate access to various system resources. There are several types of
access control mechanisms, including Discretionary Access Control (DAC), Mandatory Access
Control (MAC), and Task-Based Access Control (TBAC). However, Role-Based Access Control
(RBAC) has emerged as a particularly popular framework. In RBAC, roles, permissions, and
resources are the key entities. Users are assigned specific roles within an organization, and each
role is granted access to system resources based on its permissions. This model streamlines access
management by aligning user privileges with organizational roles, thereby minimizing the risk

of unauthorized access.

Real Spec, as a formal specification language, outlines various banking obligations and policies
relevant to security in financial applications. It defines user resources and their interactions,
ensuring that security measures align with regulatory requirements and industry best practices.

By specifying these elements, Real Spec aims to provide a structured approach to security,

119

Design and Evaluation of Secunty Features in RealSpec Real Time Executable Specification Language

of

T

Chapter 5 Case Study

Facilitating the development of secure web applications that can withstand prevalent threats

while maintaining user trust and data integrity.

S3.1. Specification of Security Features in Real Spec: A Case Study

This section presents a case study of a banking system to illustrate the specification of security
features within the Real Spec framework. The case study is derived from sources identified in
[14] and serves as a practical example for detailing various security measures, including access
control, data validation, secure error messaging, immutability, secure auditing, bound access
prohibition, integrity, confidentiality, and secure information flow.In this context, the proposed
work aligns with the Role-Based Access Control (RBAC) standard developed by the American
National Standards Institute (ANSI), as referenced in [160]. The RBAC model provides a
structured way to manage user permissions and roles within the banking system, ensuring that

only authorized individuals have access to sensitive information and critical functionalities.
5.1.1. Access Control:

The specification emphasizes the importance of robust access control mechanisms, allowing for
the assignment of user roles that dictate access levels to various system resources. By
implementing RBAC, the banking system can effectively manage user permissions based on their

roles, thereby minimizing the risk of unauthorized access.
5.1.2. Data Validation:

The case study highlights the necessity of rigorous data validation processes to prevent common
vulnerabilities such as SQL injection and cross-site scripting. Real Spec facilitates the
specification of input validation methods that ensure only legitimate data is processed, thereby

safeguarding the integrity of the banking system.
5.1.3. Secure Error Messaging:

Secure error messages are crucial for maintaining confidentiality and preventing information
leakage. The specification in Real Spec details how to implement error handling that does not

expose sensitive system information, thus enhancing overall security.

Design and Evaluation of Secunty Features in RealSpec Real Time Executable Specification Language

Chapter 5 Case Study

S5.1.4. Immutability:

Immutability is emphasized in the specification to ensure that once data is created, it cannot be
altered, thereby preventing unauthorized changes. This characteristic is vital for maintaining the
integrity of financial transactions and user information within the banking system.

5.1.5. Secure Auditing:

The case study also discusses the implementation of secure auditing features that log user actions
and system events. This audit trail is essential for tracking access and changes, facilitating
compliance with regulatory standards, and enabling forensic analysis in the event of a security

breach.
5.1.6. Bound Access Prohibition:

The specification addresses bound access prohibition to prevent buffer overflows and

unauthorized memory access, ensuring that user actions remain within defined limits.
S.1.7. Integrity and Confidentiality:

Maintaining the integrity and confidentiality of data is paramount in a banking system. The
specification details measures to protect sensitive information from unauthorized access or

modification, ensuring that customer data remains secure.
5.1.8. Secure Information Flow:

Finally, the specification outlines how secure information flow is maintained throughout the
system, ensuring that data is transmitted securely and is only accessible by authorized users.
Overall, this case study demonstrates how Real Spec can be used to specify and implement a
comprehensive security framework within a banking system. By addressing these critical security
features, the system is better equipped to withstand potential threats and vulnerabilities,

ultimately enhancing its resilience and reliability in a digital environment.

5.2. Banking System Case Study

In this banking system case study, various roles such as tellers, customer service representatives,
loan officers, accounting managers, internal auditors, and branch managers are identified as key

participants in the operational structure. These roles interact with different system resources or

121

Design and Evaluation of Secunity Features in RealSpec Real Time Executable Specification Language

Chapter 5 Case Study

objects, including deposit accounts, loan accounts, ledger accounts, ledger posting rules, and
general ledger reports. User authentication is facilitated through query submissions, ensuring that
only verified individuals can access specific functionalities.The case study outlines the
permissions, also referred to as actions or business tasks that each actor may perform on system

resources:

a) Create, delete, and modify customer deposit accounts.
b) Set up a ledger report.

¢) Establish, remove, and change customer loan accounts.
d) Modify or verify the ledger posting rules.

Each actor in the banking system has designated responsibilities:

a) Tellers are responsible for entering or updating customer deposit details.
b) Customer Service Representatives can set up or alter deposit accounts.
¢) Loan Officers have the authority to establish loan accounts.
d) Accounting Managers may alter the ledger reports.
¢) Internal Auditors can set up ledger posting rules.

f) Branch Managers possess the capability to perform all tasks inherited from other roles,

reflecting a high level of authority and responsibility.

To maintain security and ensure proper operational integrity, several authorization rules are

implemented in the banking system, focusing on separation of duties and the principle of least

privilege. These rules include:
Rule 1: Certain duties, such as those of a customer service representative and an account
manager, cannot be assigned to the same user, preventing potential conflicts of interest.
Rule 2: Users cannot activate certain bank roles, such as customer service representatives
and loan officers, within the same session, which helps to prevent unauthorized actions.
Rule 3: Certain bank actors are restricted from assuming multiple bank roles
simultaneously, ensuring that no individual holds excessive power within the system.
Rule 4: A bank actor may only play role A if they have been assigned a different role B,
establishing clear role definitions and boundaries.

Rule 5: A banking actor may conduct a banking task only if they are also permitted to

122

Design and Evaluation of Secunty Features in RealSpec Real Time Executable Specificatron Language

Chapter 5 Case Study

perform another banking role, reinforcing the principle of least privilege.

Rule 6: The number of users that a banking position can accommodate should be limited,

helping to prevent any single point of failure or overloading of authority.
Overall, this case study illustrates the careful design of access control within the banking
system, ensuring that security measures are effectively implemented to protect sensitive
information and maintain operational integrity. By clearly defining roles, responsibilities, and
associated permissions, the banking system can mitigate risks associated with unauthorized

access and potentially fraudulent activities.

Secure Information Flow
Secure Erfor Message * h
authentication immutability
Ownership sali
Access control conﬁdenuahfy‘
input Validation Secure Auditing

Bank Role banﬁngApp ot
Type safety Website policyDB
Secure Errur Message
Bound Access Prohobition
Type Initialization
Output Validation

| - by]

Secure Configuration

integrity

Figure 5.1 Security Features in a Web Application System

_Table 5.1 Banking system access control roles and policies

RolelD BankRoleslSub]eet Bank ¢ BankResources/Object
Permissions/Permission

1 CustomerServiceRep createDepositAccount DepositAccount

2 CustomerServiceRep ' modifyDepositAccount DepositAccount

3 Teller ’ inputDepositAccount. DepositAccount

4 Teller ’ modifyDepositAccount DeposttAccount

5 LoanOfficer createLoanAccount LoanAccount

6 Accountant ‘ CreateLedgerAccount LedgerAccount

7 AccountingManager ModifyLedgerReport General Ledger Report

8 Internal Auditor CreateLedgerPositingRule LedgerPostingRule

9 BranchManager VerifyLedgerReport LedgerPostingRule

10 Client ' modifyDepositAccount DepositAccount

123

Design and Evaluation of Secunty Features in RealSpec Real Time Executable Specification Language

Chapter 5 Case Study

__ Table 5.2 RealSpec constructs for the banking system

RealSpec Processes and Resources Type Description
__ PolicyDatabase o Global Resource - Specifies database object
DepositAccount, LoanAccount, Global Resources Specifies account type
LedgerAccount, .
GeneralLedgerReport,
LedgerPostingRule,
_ PolicySetupProcess Process Defines policy, stores in database
AuthonzatlonCheckProcess Process Validates users and permits resources
" Role’ " h " 7 7 Local Resource Definesroles
Policy 7" " LocalResource = Definespocy 777
~ dataValidaion =~~~ GlobalResource Validatesuser input and user output
LogFile Global Resource Logs user data
Authentication Global Resource Authenticates auser
“SecureCommunication Global Resource ~ Provides integnty and confidentiality
SecurelnformationFlow Global Resource checks bound limit prohibition

5.3. Specification of Banking System Application in RealSpec

In the Real Spec specification for a banking system application, the foundation is established
with a system construct that outlines the overall structure and framework for defining the
banking system. This structure is composed of declarations for global resources and processes

integral to the application's functionality.

The global resources identified within this case study include Policy Database, Deposit
Account, Loan Account, Ledger Account, General Ledger Report, and Ledger Posting Rules.
These resources serve as essential components for managing various aspects of the banking

operations and ensuring compliance with organizational policies.

Within the banking system application, there are two synchronous processes: Policy Setup
Process and Authorization Check Process. The execution of these processes follows a specific
order, with Policy Setup Process initiating first, setting the stage for subsequent activities, and
then followed by Authorization Check Process, which plays a critical role in validating user

permissions and access.

The Policy Setup Process is responsible for defining roles, establishing policies, and storing
these organizational policies in the Policy Database. This process comprises two user functions:

set Policy Definition and add User Roles.

1. Set Policy Definition takes two integer arguments, namely operation and bank Role,

which are utilized to check and store the permissions and roles associated with various banking

Design and Evaluation of Secunty Features in RealSpec Real Time Executable Specification Language

Chapter 5 Case Study

i(

T

activities. The function ensures that the relevant policies are stored within the Policy Database

resource using the set Policy function.

2. The implementation of set Policy Definition incorporates a case statement to manage
the different roles and permissions efficiently. As illustrated in Table 22, there are two specific
permissions—create and update—assigned to the CUSTOMERSERVICEREP bank role. To
effectively demonstrate the relationship between roles and permissions, nested case statements
are employed, highlighting multiple permissions available for both
CUSTOMERSERVICEREP and TELLER roles. It is important to note that the default case is

optional, allowing for flexibility in handling undefined cases.

The second user function, add User Roles, plays a crucial role in assigning user roles to the
Policy Database through the db Policy Storage instance. This function ensures that all users are
appropriately categorized according to their roles, reinforcing the security and operational
integrity of the banking system. Overall, the specification of the banking system application in
Real Spec provides a comprehensive framework for establishing a secure and efficient
operational environment. By clearly defining global resources, processes, and user functions,
the banking system can effectively manage permissions, enforce policies, and maintain the
necessary safeguards against unauthorized access, thereby enhancing its resilience against
potential security threats.
Listi : in em Appli
System Banking System Web Application{
Resources {

Policy Database db.

Policy Storage ;

Deposit Account deposit Account;

Loan Account loan Account;

Ledger Account ledger Account;

GeneralLedgerReport

generalledgerReport; LedgerPostingRule
ledgerPostingRule;
/
Processes {
Policy Setup Process,

Authorization Check Process;

Y

Design and Evaluation of Secunty Features in RealSpec Real Time Executable Specification Language

Chapter 5 Case Study

(¢

i

Local Resources: Role and Policy

In the context of the banking system application as specified in Real Spec, local resources Role
and Policy are defined to manage user roles and access permissions effectively. These resources
encompass specific variables that facilitate the tracking and control of user access within the
banking system.

The Role resource consists of four key variables:

i. Username: This variable stores the name of the user associated with a specific role.
ii. ~ Role Name: This variable represents the primary bank role assigned to the user.

iii. Role2: This variable signifies a prerequisite role that may be required for certain

functions within the banking system.

iv. num: This variable is used to store the number of clients that a particular role can

attend, thereby helping to manage workload and access efficiently.

Similarly, the Policy resource is defined with three critical variables:

i. Name: This variable captures the name of the user role.

ii. permission: This variable specifies the access permissions granted to the user

based on their role.

iii. obj: This variable identifies the banking object to which access permissions

apply, ensuring that users can only interact with authorized resources.

Global Resource: Policy Database
The global resource policy database is essential for managing and storing role and policy
information within the banking system. It is structured to contain two main lists:

i. User List: This list is utilized to store the various roles assigned to users within

the organization.

ii. Policy List: This list contains the policies that govern access and operations

within the banking system.

iii. The Policy Database resource is equipped with four user functions that faciljtate
the management of policies and roles:
iv. set Policy (): This function is responsible for adding new policies to the policy

List. It first checks for the existence of a policy using the check Policy Exist ()

126

Design and Evaluation of Secunty Features in RealSpec Real Time Executable Specification Language

i

Chapter 5 Case Study

function, which traverses the policy List to determine if the policy is already

present.

v. Check Policy Exist (): This function scans through the policy List to verify
whether a specified policy exists. It returns a Boolean indicating the presence or

absence of the policy.

vi. Add User Role (): This function is used to add roles to the user List, ensuring

that all user roles are properly documented and tracked.

vii. Check Role Exist (): This function checks if a specific user role is present within

the user List, enabling the system to validate user roles effectively.

Functionality of set Policy ()

When the set Policy () function is invoked, it first utilizes the check Policy Exist () function to
ascertain whether the desired policy is already recorded in the policy List. If the policy is not
found, indicated by policy List == nil, the policy List is then updated. This update process
involves converting the data elements of the new policy into a suitable format for storage,

ensuring that the policy is accurately recorded in the system.

This structured approach to defining local resources and managing global resources like Policy
Database establishes a robust framework for access control within the banking system. It
enhances security by clearly delineating user roles, permissions, and policies, thereby minimizing
the risks associated with unauthorized access and ensuring compliance with organizational

standards.

In the Real Spec specification for the banking system, policies are defined using the structure
Policy (name, permission, resource Obj), which outlines essential components, including name
as the unique identifier for the policy, permission that specifies the access rights granted by the
policy, and resource Obj identifying the specific banking resource to which the policy applies.
When a new policy is created, it is appended to the policy List using a combination of the list
conversion operator and the append operator. The process begins with the list conversion
operator which converts the policy data into a format compatible for storage within the policy
List. Following this, the append operator (<>) is utilized to add the newly formatted policy to the
end of the policy List, ensuring its integration into the existing collection of policies within the

system.

Design and Evaluation of Secunity Features in RealSpec Real Time Executabie Specification Language

127

q

Chapter 5 Case Study

Before a new policy can be added to the policy List, the system performs a check to confirm
whether the policy already exists, thereby preventing duplication. If the check Policy Exist ()
function determines that a policy with the same name is already present, a message is printed to
indicate this, notifying the user that the attempted addition was unnecessary. If the policy does
not exist, it is converted and appended to the policy List. This structured approach to policy
management enhances the security framework of the banking system by ensuring that policies
are defined clearly, stored systematically, and checked for duplication. This, in turn, supports

effective access control and compliance with regulatory standards.

EIYCEQEOT BUE R CERNK 005N 25 B if S

Bool checkPolicyExist (int bankRoleld, int permission, generic resourceObj) = findPolicyExist () asa L==nil
where {

L is current policyList;

findPolicyExist 0 =if (temp. roleName==bankRoleld &&
temp. permission==permission &<& temp.obj== resourceObj then true else Jalse
where {

if LI=nil then temp = hd(L) fby tI(L) else throw outQfBoundAccess();
/
/

The check Policy Exist () function in Real Spec is designed to verify the existence of a specific
policy within the banking system's policy list. It takes three arguments: two integer variables,
bank Role and permission, and one generic variable, resource. The function begins by initializing
a local list variable L with a frozen version of the policy List, ensuring that the values of L remain
constant during the computation. Additionally, a variable named temp is initialized with hd(L),

which refers to the head element of the list L.

As the function executes, the temp variable is updated at each iteration using the (followed by)
operator, which allows the function to traverse the list. Specifically, temp takes the value of the
tail of L, effectively removing the first element of the previous list from consideration. This
process continues until the list L becomes nil, at which point the function returns either true or
false based on whether the specified policy was found. If the function successfully identifies a
match for the given bank Role and permission, it returns true; otherwise, it continues iterating
until the end of the list, ultimately returning false if no match is found. This systematic approach

to checking policy existence enhances the overall integrity and security of the banking system's

Design and Evaluation of Secunty Features in RealSpec Real Time Executable Specification Language

128

V4

Chapter 5 Case Study

policy management process.

\dd User Role () Li

// operator net to set roles in database
addUserRole (string userName, int roleName, int PRRole, int num) =

if checkRoleExist(userName, roleName, PRRole) then PrintMsg else CheckRules()

where {

printMsg= “Role Already Present in DB”;

checkRules()= if HasSOD(roleName, PRRole)||hasDSOCD(roleName, PRRole)
then conflictMsg else addRole()

Where {

conflictMsg = “cannot add roles as conflicting Role”’;

addRole () = userlList <> [%role (userName, roleName, PRRole, num) %],
/

/

The add User Role() function plays a crucial role in managing user roles within the banking
system by ensuring that roles are appropriately assigned and comply with security protocols.
Initially, it checks if the specified role is already associated with a particular user by utilizing the
check Role Exist () function. Furthermore, the function addresses the separation of duties (SoD)
concern and the dynamic separation of duties (DSoD) rules. The SoD constraint ensures that a
bank actor cannot be assigned two conflicting roles, which helps prevent potential fraud or
misuse of authority. In contrast, the DSoD constraint verifies that a bank actor cannot assume
two conflicting roles within the same session. Both constraints are outlined in Table 23. However,
a banking actor is permitted to perform each role in separate sessions. If the checks for both SoD
and Dos’d are satisfied, the role is added to the user’s profile in the database using the add Role
(O user function. This function operates similarly to the set Policy () function, effectively

integrating the new role into the existing user roles (see Appendix 10).

Following the role management, the banking system includes an access control process known
as Authorization Check Process (), which verifies whether a user is authorized to access specific
elements within the banking system. This process relies on the policy database established during

the earlier Policy Setup Process, which outlines valid users and their respective access rights.

In the Banking System Check Process, user inputs such as name, role 1d, permission, and obj are

received to assess access permissions. A timing constraint is specified to ensure that the

Design and Evaluation of Secunty Features in RealSpec Real Time Executable Specification Language

129

Chapter 5 Case Study

authorization checks are executed within a defined timeframe. The Authorized User() user
function is employed to determine if the user’s role grants them access to the specified banking
elements. This check must be performed within a duration of 1 minute; if it exceeds this
timeframe, an exception is thrown, and a message is displayed stating, “login failed - user is not
allowed to operate on the required object!” This structured approach to user role management
and access control not only enhances the security of the banking system but also ensures

compliance with regulatory standards and best practices in secure application design.

Execution of the Real Spec Banking System Specification Table 5.4 outlines various bank roles
assigned to usernames within the Real Spec banking system. It provides examples of input
variables utilized in the Banking System Check Process (), including name, ruled, permission,
and obj. The execution begins with the Sanitize Input () function, which checks for SQL Injection
Attacks (SQLIA) by calling the input Validation method of the data Validation resource accessed
via its object, input. If the input passes this validation and is free of SQLIA, the next step is the

execution of the Authorized User () function.

Figure 5.2 illustrates a sequence diagram of the banking system application, detailing the flow
of input from the user for authentication and access to system resources. The user-provided input
undergoes validation for SQLIA patterns. If the user is deemed valid, the authorization system
checks the existence of the role and associated policies. If the user is not authorized, a concise

error message is displayed, indicating that they are not permitted access.

Once authenticated, a session is created, and a log file is generated to save user information,

including an encrypted session ID. If the role and policy are confirmed to allow access to the 6

Design and Evaluation of Security Features in RealSpec Real Time Executable Specification Language

130

Case Study

\ .
:Authorization Protected OGFiL
Server R’”“’“iJ | L e
B '”*i;’:"_J_
% validatios) 1 log L
user request to access a syqem resource wius penTig ion 3 } 565;!0"
. P
EncOodefa oo ; checkRole and Policy Exist ; . ;
output, ~invaiid data T uthorize— Y S policy and role exists .ienc"ypted
bt sessnomd , timeout i :
B : f
i ‘L > 5 Access user protected resourd |
, . ,
; 4 User protected . User protested |
| 3 resource + "950"’?(User protected resource- - :
! R R e TP SN TTTTEE T e H '
i ; N { s
| i |
P S !
notify user less L ; .
verboseegror 4:
message not authorized user
- resource not available . |
3 bty g |
1 : f
s i
.] ! i
Figure 5.2 Banking System Web Application Sequence Diagram
Table 5 3 bank roles
e e e e e e e T . . ;
Rules) bankRole bankRole2 ’
SoD CUSTOMERSERREP ACCOUNTMANAGER
SoD ~ CUSTOMERSERVREP INTERNALAUDITOR
"SoD ~ LOANOFFICER - ACCOUNTMANAGER
SoD " ~ LOANOFFICER " INTERNALAUDITOR
SoD ' ACCOUNTMANAGER 'INTERNALAUDITOR
SoD - TELLER 7 ACCOUNTANT
SoD TELLER LOANOFFICER
SoD ACCOUNTANT LOANOFFICER
SoD ACCOUNTMANAGER INTERNALAUDITOR
DSoD CUSTOMERSERVICEREP LOANOFFICER

Destgn and Evaluation of Secunty Features in RealSpec Real Time Executable Specification Language

131

Chapter 5 Case Study

Table 5.4 sample userList data
e e T ST BT TOCTLL TR,

; i Username | benkRole | bankRole2

time Pdo poodl Podz

t0 7" Hashim ! CUSTOMERSERVREP | TELLER

tl " Ammna ! TELLER | CUSTOMERSERREP
12 ., Saad ' LOANOFFICER | ACCOUNTANT

3 * Manha ACCOUNTANT INTERNALAUDITOR
t4 " Beth . ACCOUNTMANAGER ACCOUNTANT

t5 . Wagar INTERNALAUDITOR ACCOUNTANT
6 O Adil BRANCHMANAGER CUSTOMERSERREP

Table 5.5 sample input streams for policyList

roleld ‘ permission Obj i
time do dl dz
7 TTUCUSTOMERSERVREP ~ CREATE ~ 7 DepositAccount”
tt CUSTOMERSERVREP MODIFY DepositAccount
2 TELLER DELETE DepositAccount
B3 - TELLER ~_ MODIFY DepositAccount ,

_ Table 5.6 Input streams in AuthorizationCl[gckPrpcess()

Name roleld : permission . Obj
time do di a2 d3
0 Hashim CUSTOMERSERVREP ~ ~CREATE =~ DepositAccount
tl ' Amina TELLER DELETE DepositAccount
© Amina TELLER MODIFY DepositAccount

At tl, inputs to the isduthorizedUser()function are as follows: name is Amina, permission is
DELETE, and obj is DepositAccount. However, this set of values will result in the specification
throwing an exception and displaying “Amina is not allowed to perform DELETE on the
DepositAccount”. The reason is Amina is not permitted to perform a delete operation on the
deposit account (see Table 5.4, Table 5.5 and Table 5.6).

3.4. Limitation of Case Study

The case study employee role-based access control. The limitation with this type of access control
is that for each organization the database and access control policy have to updated according to

its own rules causing maintenance overhead.

5.5. Analysis of the Findings

The case study discussed above undergoes analysis and design phases where security features,
including those specified in Table 2.5 along with other functional requirements of the system, are

132

Design and Evaluation of Secunty Features in RealSpec Real Time Executable Specification Language

Chapter 5

Case Study

detailed. Table 2.5 is revised by adding an additional column to verify the specification of security

features and identify the attacks these specifications can mitigate as shown in Table 5.7. By

Table 5.7 Security Specification in RealSpec and attacks mitigated

5

" Feature | Sub-Feature ;S;lc‘lgity Requirements Mapped in the case Attacks Mitigated I
» ;s s !
Error Error Handling and , This feature is specified using logfile resource . Sensitive Data Exposure '
Handling _ Logging Protection | i : ;
andLogging Log Information . This feature is specified using log file severity Sensitive Data Exposure i
Protection Level | level , ,) v '
Error Message , 'This feature is specified by verbosity control of . SQLI,
Control . error message using roles and privileges for error ‘
i . ' messages J
Input Validation Database Query ' This feature is specified using database resource - SQLI .
Security + and validating user input against XSS and SQLI X
. attack pattern. k
User Input Security : " XSS Attack,SQLI
Input Buffer Size This feature 1s specified by verifymg buffer it~ Buffer Overflow Attack, |
Check and an exception is thrown in case buffer limit ~ SQLI
has been crossed.
Encoded Output * This feature is specified by encoding output if XSS
. there is any XSS attack pattem found in the data
* before it 1s being displayed to user
Memory Memory - This is specified by specifying resource and then ~ Buffer Overflow Attack,
Management Management - release it when it is out of scope ROP Attack ’
Control)
Memory Address | - " Buffer Overflow Attack,
Arithmetic ; ROP Attack
Array Out of i Same as Input Buffer Size Check Buffer Overflow Attack
BoundCheck = . ‘ R
Memory . Buffer Overflow Attack, '
Management ROP Attack '
Flexibility :
Access Control Authorization " Ttis defined by specifying RBAC for banking TOCTOU Attack
~ Types ~ : application] ;
Encapsulation- ' It is specified by defining private variables. Sensitive Data Exposure
Based Access i
Control e) o o e
Sandbox Support - Buffer Overflow Attack, |
L . . - Sensitive Data Exposure
Type System Type Safety . Itis specified by defining date type for Buffer Overflow Attack,
" RealSpec ROP Attack
Type Casting - Buffer Overflow Attack -
Type Initialization - Itis specified by giving mnitial values for Buffer Overflow Attack
variables
Immutabihity It is specified using lock and unlock on logfile to TOCTOU Attack
* preserve mutual exclusion
User It is specified by username and password and XSS
Authentication OTP
Support 3 o o - L ~
Web Session Secure Session ID , Itis specified by defining SessID for the session . XSS Attack, o ’
Management established when the user is authenticated Broken Authentication
Support Secure Cookies Itis partially specified by defining XSS attack ' XSS Attack
;_pattem on the input o e
Session Timeout - It is specified using @timeout constraint when XSS Attack
. B . the sesston remains idle for 20 s '
Communication SSL/TLS - Itis specified by attack pattern on the input Sensitive Data Exposure,
Security Backward validation
Compatibility
Cryptographic " Itis specified by encryption and decryption of Sensitive Data Exposure
Algorithms , thelog file.
Key Length - Sensitive Data Exposure |
Random Number - Sensitive Data Exposure :
Method

Certificate Validity ' It is specified by integrity

Sensitive Data Exposure

incorporating these security features during the analysis and design phases, the goal is to

Design and Evaluation of Secunty Features in RealSpec Real Trme Executable Specification Language

1

2

3

(g

Chapter 5 Case Study

proactively address vulnerabilities such as Sensitive Data Exposure, SQL Injection (SQLI), XSS,
Buffer Overflow attacks, Return-Oriented Programming (ROP), and broken authentication early
in the Software Development Life Cycle (SDLC).

5.6. Comparison with similar techniques

Table 5.8 provides a comparison of existing executable specification languages with the proposed
method across various dimensions, including domain, type, and security requirements. This
comparison highlights gaps identified in Table 3.6 of Chapter 3. Notably, existing specification
languages have not adequately addressed critical security requirements such as secure error
messaging, output validation, and immutability. The proposed method explicitly incorporates
these specific security features to effectively mitigate potential threats, including Time-of-Check
to Time-of-Use (TOCTOU) attacks, exposure of sensitive information, and Cross-Site Scripting
(XSS) attacks. By integrating these elements, the proposed specification language aims to enhance
the overall security posture of systems developed using it, thereby providing a more robust
framework for secure application development.

__ Table 5.8 Comparison of Specification languages showing security feature coverage _

‘Specification i SysML- Secure : S-Promels © SecureSOA Ponder[12] Propes '
Languages | sec Descartes [13} 5 [156] . ed
! 10} iy ‘ : metho
: : d
Domain Real- Web Embedded Business Service Real
| time/embedd applications System Security Oriented Time
i ed systems Architecture system
i
! s
Type ‘ Executable Executable Executable Declarative, Formal Executable
. Specificatio specification Specification object-ortented specification specificat
; n Language language Language language language on
o o B B o language
Secure Error : No No No No No Yes
Message i
Output validation ? No No No ‘ No No Yes
. S e e i
Immutability 1 No No No No No Yes

5.7. Comparison of Proposed Frameworks with Existing Frameworks

The proposed Security Framework for Real Spec (SFRS) has been compared with various existing
security specification frameworks to evaluate the extent of security coverage they provide. The
frameworks included in this comparison are those developed by Kasal et al. [16], Villarroel et al.
[17], Khan and Zulkarnaen [18], Karamat et al. [19], Lusio et al. [20], Van den Berghe et al. [22],
Nguyen et al. [21], Al-Mekhela and Khwaja [165], and Laborde et al. [161]. As illustrated in Table

5.9, the SFRS stands out by incorporating a comprehensive set of security features.

134

Design and Evaluation of Secunty Features in RealSpec Real Time Executable Specification Language

agenBue] uoneoyads J[qeInoexg suny, [eay oadgeay w samjea Aunoag jo uonenfeAsq pue udisa(y

LEL

|
Jomourey

Sax SOX S8X Sox SOK S9A Sax LN SN SOA $2A S2A S3A SaA SaA pasodoid

[ccd

12
=) ¢ - SOx S9A S9X - - - SIX SO - - S9x - SO aydng
uap uep

Sax - SOA SAX Sax - - - SaA $aA - - - - - ﬂw_?ﬁm

- j . [ocTe
- - SOx SIA SOX " - - P oisn|

- - R . . R . R R j j . l61] @10
PA i oA nedesey

[81]u
- - S9X - - - - - SaX Sax - - - - - reunynz

pue ueyy

- - - - - . . - . . .) ; [91) e
SaL SaX P ey

[L1]
839
Q0LIB[IA

[so1
rleayy

v
- 'V opuw
[EUPIN

-V N

[291] 1w
apioqe]

3
>
1

g
uNNg
uopIqIgoLg
ss300Y punog

uogein3guo)
1030655300y
passq-amny,
adessopy
JOLIH NN

Apagapug
Lnpeyuspgue)
MOl uogemLIojuy
Anpiqunurg

uoyezeyuy 34§,
Ay adiy,
dissoumg

TOnRZLIOYNY
uoyspysA jnding
uonepie ynduy
Sumpny aindg

jusnradvurypy M..M:uﬂw
noissag woysig sdA] [043u0)) 55300 uonEpIEA HEQ puesunpuery
ER1 BTN Joxrq

nogeam3guo)) smaeg

AATS YWIM SYAS PuE SHI0MIWE] SUNISIXY Jo uosHeduio) 6 AGEL

Apmg 9se) < _ideq)
» 3

Chapter 5 Case Study
5 Ponder Secure SysML-
RealSpec 8 P[r;);r]lela [12] Descartes Sec[10]
[241{30] [t1]
Yes Yes Yes Yes No Secure Auditing Bf:‘;;;g
No Secure Error "‘;;’g
- No - - -
Yes No 0 No Message Control
No No
Yes -No N -No Input Validation
- No No Bound Access =
es 0ae
- Prohibition =2
Yes Yes Data &
Validation o
No =)
Yes -No No- -No Output Validation o
N 2
0
Yes Yes Yes -No Authorization i
174
No N Access §
o
ves Yes Yes - Ownership Control =
Mem a
Yes Yes No No Array Bound ory £
Yes AccessProhibition Manage =
&
No »
No =
Yes Yes - Yes Type Safety 8,
g
N =
o =
No sk . =
Yes Yes - Yes Type Initialization ;
Type 5
System q%
No No . g
Yes -No - “No Immutability (,é
g
v Secure Secure 7
Yes Yes -No Yes es Information Sosaic? _%)
Yes Time-based Managem =
Yes -No Yes Yes AccessControl ent
Partially No
-No i Yes Yes Confidentiality
Partrall Secure
artially Configurati
Secure
Y
Yes ves Yes e Configuration on
Partially .
Yes Yes Yes Yes Integrity
90.625% 68.75% 31.25% 62.5% 31.25%
Percentage

Design and Evaluation of Secunity Features in RealSpec Real Time Executable Specification Language

Chapter 5

Case Study

100.00%
80.00%
60.00%
40.00%
20.00%

0.00%

¥ Secure Auditing

a SecureError Message
; Input Validation

1 Output Validation

Authorization

Bound Access Prohibition

O‘J;weréhip o

Security Features Coverage

Security Requirement Coverage

Array Bound Access Piohibition

Type Safety

Type Initialization

Immurabdity

CLUTCTITUTITIGUONT FIOW

Time-hased access control

‘Conﬁdentlality

Secure Confidentiality

Integrrty

0
SysML-Sec Seculr'fe[_‘;sesca “onder S-Promela RealSpec

o 1 1 1 1
0 0 0 0 i
0 0 0 n 1
0 1 0 1 1
0 0 0 0 1
0 0 1 i 1

S 0 0 1 1 1
0 1 0 1 1
0 1 0 1 1
0 1 0 1 1
0 0 o 0 1
1 i V) i 4
1 1 0 0 1
1 1 0 0 .5
1 1 1 1
1 1 1 1

1

9 Secure Auditing
-« input Validation
% Output Validation

A Secure Error Message
8 Bound Access Prohibition
: Authonzation

& Ownership | Array Bound Access Prohibition
u Type Safety = Type Initialization
& Immutability n Secure Information Flow

-4 Time-based access control

4 Confidentiality

Further analysis in Table 5.10 reveals the percentage of security features covered by each

framework. SysML-Sec covers 31.25% of the necessary security features, while Secure

Descartes achieves 62.5% coverage, and S-Promela follows closely with 68.25%. Ponder, on

Design and Evaluation of Secunty Features in RealSpec Real Time Executable Specification Language

Chapter 5 Case Study

the other hand, covers only 31.25%. In contrast, RealSpec excels significantly, boasting a

remarkable 90.625% coverage of security features.

These results indicate that the RealSpec framework provides the highest level of security
feature coverage among the compared frameworks, suggesting its effectiveness and reliability
in ensuring security in system specifications. This positions RealSpec as a leading choice for

practitioners and researchers seeking robust security measures in their applications.
5.8. Summary

This chapter provided a detailed case study to specify functional and non-functional requirement
in RealSpec. Security features specified in chapter 4 have been applied to the case study. Security
features communication security, input validation, access control, user-authentication, secure
session management, log file protection was tested in the inputs given in Table 5.7. In Section 5.1,
banking system website case study is stated. Section 5.2 executed some inputs on t0,t1,t2. Each
role has its own permission policy defined. Section 5.3 is the limitation of the case study, Section

5.4 was the analytical discussion of the findings. Section 5.5 compared RealSpec with similar
techniques and also quantified the performance in terms of security levels. Table 5.11 compared
RealSpec with similar techniques and this percentage was calculated using similar formulae
defined in Chapter 3 Section 3.6. these percentages indicate promising results, suggesting that
RealSpec achieves the highest coverage of security features at 90.625% compared to the SRFS

framework. Section 5.7 summarized the chapter.

139

Design and Evaluation of Secunty Features in RealSpec Real Time Executable Specification Language

Chapter 6

(A

Chapter 6 Evaluation

Evaluation of Security Features

The evaluation of the specifications outlined in Chapters 4 and 5 is carried out using a prototype
compiler developed for Real Spec, which consists of three main components: the lexical analyzer,
parser, and code generator. The lexical analyzer breaks down the input specifications into
manageable tokens by scanning the source code for defined patterns, such as keywords and
operators, which simplifies the parsing stage. The parser then takes these tokens and organizes
them into a syntax tree, ensuring that the specifications adhere to the grammatical rules of the Real
Spec language. This step is crucial for detecting any structural errors before moving on to code
generation. Finally, the code generator translates the parsed structure into executable code,
enabling practical testing and validation of the defined security features and functionalities within
Real Spec. The entire compiler is implemented in CH#, utilizing various packages, including System
for fundamental classes and data types, System. Collections. Generic for type-safe collections,
System.1O for input and output operations, and System. Text for string manipulation and encoding.
By integrating these components and packages, the Real Spec compiler effectively evaluates the
specifications, ensuring their syntactic correctness and executable functionality, which is essential
for validating the proposed security measures and enhancing the overall quality of the Real Spec

framework.

6.1. Compilation Process

The compilation process of the Real Spec compiler, as depicted in Figure 6.1, begins with the
specification written in Real Spec, which is first passed to the lexical analyzer. The primary role
of the lexical analyzer is to tokenize the input statements, breaking them down into individual
components such as keywords, operators, and identifiers that can be easily processed. Once
tokenization is complete, the parser takes these tokens along with the defined language grammar
to ensure they conform to the syntactical rules of Real Spec. This validation step is crucial for
identifying any structural errors before proceeding further.

After parsing, the valid tokens are mapped to corresponding C++ code, which acts as an
intermediary representation of the Real Spec specifications. This C++ code is then compiled using
a C++ compiler, allowing it to be executed within a standard programming environment. To
evaluate the effectiveness of the specifications, the generated C++ code is subjected to a series of
test cases designed to simulate potential attack patterns. If an attack pattern is detected during this

testing phase, an exception is thrown, signaling a security issue. Conversely, if no threats are

Design and Evaluation of Secunty Features in RealSpec Real Time Executable Specification Language

[140

Chapter 6 Evaluation

((1

identified, the code produces a normal output, indicating successful execution. The detailed
implementation of this compilation process, including the compiler's code, is provided in GitHub,
further illustrating the mechanics of how Real Spec specifications are transformed into executable

code while ensuring security measures are in place.

6.1.1. Lexical Analyzer

The lexical analyzer serves as the initial component in the compilation process, responsible for
processing the input specifications written in Real Spec. It takes the entire input code and breaks
it down into manageable pieces known as tokens. This tokenization is achieved using regular
expressions, which match specific patterns within the input. Each pattern corresponds to different
elements of the code, such as keywords, identifiers, operators, and symbols. When a pattern is
matched, the lexical analyzer performs an associated action, which may include categorizing the
token or storing it in a data structure for further processing. By converting the raw input into

tokens, the lexical analyzer simplifies the code and prepares it for the next stages of compilation.

6.1.2. Parser

Following the lexical analysis, the parser takes the generated tokens and constructs an Abstract
Syntax Tree (AST). The AST is a hierarchical representation of the input code that reflects its
logical structure and relationships among the various components. During this stage, the parser
checks the tokens against the grammar rules defined for Real Spec, as outlined in the reference
provided in [29]. This grammar validation ensures that the input code adheres to the syntactical
requirements of the Real Spec language. If the code violates any grammar rules, the parser will
flag errors, providing essential feedback for debugging. The AST serves as a foundation for further

processing in the compilation pipeline, allowing for more complex operations and analyses.
6.1.3. Code Generator

The final component of the compilation process is the code generator, which takes the validated
AST and transforms it into executable code. In this phase, each process and resource defined in
the Real Spec specification is converted into a corresponding class in the target programming
language (C++ in this case). These classes encapsulate all predefined and user-defined types, along
with methods that represent the operators and actions specified in the Real Spec. The operator net
in the Real Spec is mapped to method names, complete with appropriate parameter lists. This
transformation from high-level specifications to executable classes is critical for enabling the
practical execution of the Real Spec code, ensuring that all defined functionalities and security

measures are implemented correctly in the resulting C++ application.

|l4l

Destgn and Evaluation of Secunty Features in RealSpec Real Time Executable Specification Language

a

Chapter 6

Evaluation

(St
/ n=1 fby n+1 /
v

patterng —| Lexical Analyzer

v

/ n,=,fby,n,+,1]

grammar l

rules > L.Ea;s.er_]

code
generator

v

C++ equivalent
code

fed into
C++
compiler

test
input

Output

yes
¥

throw error
message

\

s { stop

Figure 6.1 Compilation Process

'142

Design and Evaluation of Secunty Features m RealSpec Real Time Executable Specification Language

«

Chapter 6 Evaluation

6.2. Model-to-Code Transformation

Model-to-code transformation is a critical step in the Software Development Life Cycle (SDLC),
particularly when transitioning from the analysis and design phases to implementation. In the
context of Real Spec, the specifications, which are primarily focused on defining security features
and system behaviors, need to be converted into an executable programming language for practical
application. This chapter outlines the transformation process where the Real Spec specifications
are systematically converted into C++ code.

The Real Spec compiler facilitates this transformation by taking the specifications outlined in
Chapters 4 and 5 and generating equivalent C++ code. The generated code reflects the structural
and behavioral definitions laid out in the Real Spec specifications. For instance, the generated C++
code starts with necessary header files such as <iostream>, <stream>, <string>, and <mutex>,
which provide essential functionalities for input/output operations, file handling, string
manipulation, and multithreading, respectively.

By utilizing these header files, the C++ equivalent code not only adheres to standard practices but
also ensures that all features specified in Real Spec can be effectively implemented in C++. The
transformed code is then ready for manual execution in a C++ compiler, allowing developers to
test and validate the functionalities defined in the Real Spec specification. This model-to-code
transformation is pivotal in bridging the gap between high-level design specifications and practical
implementation, ultimately enabling the development of robust and secure software systems. The
code for compiler is uploaded in the Github PhDThesisCode/Appendix at main - MunibaMurtaza-
phd/PhDThesisCode (github.com).

6.3. Summary

Section 6.1 outlined the compilation process designed to validate RealSpec specifications
comprehensively. This process introduced a custom compiler that operated in two key phases.
Initially, the RealSpec code was processed through a lexical analyzer to tokenize inputs, followed
by parsing using pattern matching techniques to generate equivalent C++ code. Subsequently, the
translated C++ code underwent compilation using a standard C-++ compiler and was subjected to
rigorous testing against predefined attack patterns. Section 6.2, outlined the process of model to

code transformation. Section 6.3, summarizes the chapter.

Design and Evaluation of Secunity Features mn RealSpec Real Time Executable Specification Language

[143

Chapter 7

Chapter 7 Future Work

Future Work

7.1. Contributions

This thesis set four goals and also made following contributions such as

7.1.1. Identification of Security Features which can provide

* Authentication: Mechanisms for verifying user identities.

* Authorization: Control over what authenticated users can access or modify.

* Confidentiality: Ensuring sensitive data is accessible only to authorized users.

* Integrity: Protecting data from unauthorized modifications,

* Non-repudiation: Ensuring that actions or transactions can be proven to have occurred,

preventing denial by involved parties.

This thesis successfully identified security features which can provide above goals. The above
goal not only provide security features but also laid a guidance for practitioners. The developed
SEFF serves as a guide for system architects and developers, providing them with a structured

approach to incorporating security into their designs.

7.1.2. Designing a Security Requirement Framework for Secure Web

Application Development (SRFS)

A framework has been developed for verifying and validating that security requirements have
been met. Implementing automated security testing tools that integrate with Code
Integration/Code Development pipelines to ensure ongoing compliance with security
requirements. SRFS included a repository of best practices and guidelines for secure coding,
configuration management, and deployment strategies, tailored to web application
development. It provided the developers with established security design patterns (e.g., the use
of secure session management, the principle of least privilege) to facilitate secure application

design.

7.1.3. Specification of Security features in early phases of software

development using RealSpec Executable Specification Language.

Specification of security features in the early phases of software development using Real Spec

is a significant advancement in securing software applications. By formalizing and integrating

[144

Design and Evaluation of Secunty Features in RealSpec Real Time Executable Specification Language

Chapter 7 Future Work

r

security requirements into the development lifecycle, this approach not only enhances security
but also streamlines the development process across various programming languages. This
proactive methodology leaded to more robust and secure software systems capable of

addressing the complex security challenges of modern applications.

7.14. Development of an evaluation tool that takes the RealSpec program.

An evaluation tool solely designed for RealSpec programs gives a significant advancement in
the field of software engineering, particularly for real-time systems. RealSpec, as an executable
specification language, aids the formalization of system behavior and security features. The
goal of the evaluation tool is to analyze and assess these RealSpec programs. It also ensured
that they meet defined security and performance criteria. By integrating this tool into the
software development lifecycle, developers can proactively identify and address potential
vulnerabilities and inconsistencies in their specifications before the implementation phase.

This thesis answered all of the above goals as shown in Figure 7.1.

RQI ' RQ2

Contribution; Contribution

Designa : Mapped SEFF
Securi to Security
Y Requirement
Feature nework
Framework REM)
(SEFF) ontribution:
S— Specification
Contribution: atio
—=— Evaluation of Kf glfg:urlty in
‘ Security calSpec
|- RQ4 * RQ3
J {

Figure 7.1 Contributions

7.2. Future Work

The design and evaluation of security features in Real Spec, a real-time executable specification
language, has laid a strong foundation for ensuring that systems built using Real Spec maintain
a high level of security. However, there are several avenues for future work to extend and
improve the security mechanisms within the language. One important area is the enhancement
of Real Spec’s type system to include support for fine-grained access control and security

policies. This would allow developers to define security rules at the type of level, enabling Real

[145

Design and Evaluation of Secunty Features in RealSpec Real Time Executable Spectfication Language

Chapter 7 Future Work

i

Spec to enforce confidentiality and integrity constraints on data flows and system interactions.
In addition, future work should explore the integration of formal verification tools that can
automatically check Real Spec programs for security vulnerabilities such as buffer overflows,
injection attacks, and race conditions. This would help in verifying security properties of real-

time systems more rigorously.

Another promising direction involves the incorporation of cryptographic protocols into Real
Spec to protect communication channels between distributed components in real-time systems.
Future iterations could integrate a cryptographic framework to ensure secure communication
with strong encryption, authentication, and integrity guarantees. Additionally, runtime
monitoring tools could be developed for Real Spec that dynamically checks for security
violations, allowing systems to detect and respond to malicious activities in real time. Secure
code generation is another potential area of development. As Real Spec is an executable
specification language, future work should focus on generating secure, optimized, and verified

code that not only meets performance constraints but also adheres to strict security requirements.

Furthermore, future research could examine how RealSpec can be adapted to emerging
paradigms like quantum computing and blockchain-based systems. These technologies introduce
new security challenges and ensuring that Real Spec can handle the cryptographic requirements
and potential vulnerabilities in these contexts would make it more versatile and future-proof.
Finally, Real Spec’s security features could benefit from community-driven extensions, where
developers can contribute new security modules and patches, creating a more adaptive and
collaborative environment for maintaining the security of the language. In sum, the future work
for Real Spec should focus on enhancing its security model through formal verification,
cryptography, runtime monitoring, and secure code generation, while preparing it for integration
with future technologies. This work focused on only two types of SQLI attacks such as tautology
and error-based and only DOM based XSS attack. Future work is to focus on other types of
SQLL XSS attacks and other OWASP attacks. Review their mitigation techniques and identify
security features that prevent these attacks and update the SEFF and SFRS and then specify those

features in RealSpec.

The proposed framework SEFF can be improved by a literature review on new programming
languages security features and security features to mitigate attacks other than OWASP attacks can

be added to the current framework. Next, the enhanced SEFF is abstracted to generate an

] 146

Design and Evaluation of Secunty Features n RealSpec Real Time Executable Specification Language

Chapter 7 Future Work

enhanced version of SFRS. SEFF can be used to evaluate other programming languages. In
future, the security requirements from updated SRFS can be specified in RealSpec or other
executable specification languages. RealSpec, as an executable specification language rooted in
the Lucid dataflow programming language, ensures correctness through operational models. To
Introduce a mathematical proof system for RealSpec would enhance user confidence in the
validity of specifications, enabling the application of theorem provers and proof checkers to
verify consistency and completeness. This formal proof system would bolster the reliability and
rigor of RealSpec specifications, aligning them more closely with formal verification standards.

Enhancement of compiler with updated features in RealSpec can be done.

147

Design and Evaluation of Secunty Features in RealSpec Real Time Executable Specification Language

References

REFERENCES

1.

10.

11

A. Ruefand C. Rohlf, “Programming Language Theoretic Security in the Real World: AMir
or the Future?” ddvances in Information Security. vol. 2. no. 3, pp. 307-321, 2015.d
10.1007/978-3-319-14039-1_15.

M. Athanasakis, E. Athanasopoulos, M. Polychronakis, G. Portokalidis, and S. loannidis."T
Devil is in the Constants: Bypassing Defenses in Browser JIT Engines.” Proceedings 20
Network and Distributed Svstem Security Svmposium. vol. 3, no. 2, pp. 211-225. 2015, d
10.14722/ndss.2015.23209.

M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and V. Shmatikov, ~The m
dangerous code in the world.” Proceedings of the 2012 ACM conference on Computer a
communications security. vol. 2, no. 1, pp. 38-49. 2012, doi: 10.1145/2382196.2382204.

S. Turner, “Security vulnerabilities of the top ten programming languages: C, Java, C
objective-C, C#, PHP, visual basic, Python, Perl, and ruby.” Journal of Technology Resear
vol. 5, pp.1-17, 2014, doi: 10.3403/30383974.

P. Hayati. N. Jafari. S. M. Rezaei, S. Sarenche, and V. Potdar, “*Modeling Input Validatio
UML.” 19th Australian Conference on Sofiware Engineering (aswec 2008), vol. 4, no.2,
663-672, 2008, doi: 10.1109/aswec.2008.4483260.

M. Busch, “Integration of Security Aspects in Web Engineering,” master’s thesis, Inst.fur
Informatik, Ludwig-Maximilians-Univ., 2011

J. Jiirjens, “UMLsec: Extending UML for Secure Systems Development.™ << UML>> 2002
-— The Unified Modeling Language, vol. 3, no. 5, pp. 412-425, 2002, doi: 10.1007/3-540-
45800-x_32.

T. Lodderstedt. D. Basin, and J. Doser, “SecuretUML: A UML-Based Modeling Language
for Model-Driven Security.” <KUML> 2002 — The Unified Modeling Luanguage. pp. 426-
441, 2002. doi: 10.1007/3-540-45800-x 33,

A. A. Khwaja and J. E. Urban. “A Synthesis of Evaluation Criteria for Software
Specitications and Specification Techniques.” International Journal of Software
Engineering and Knowledge Engineering. vol. 12, no. 3. pp. 581-599, 2002, doi:
10.1142/s0218194002001062.

Y. Roudier, L. Apvrille. “*SysML-Sec - A Model Driven Approach for Designing Safe and
Secure Systems.” Proceedings of the 3rd International (‘onference on Model-Driven
Engineering und Software Development, pp. 655-664, 2015, doi:
10.5220/0005402006550664.

V. N. Inukoliu and J. E. Urban. “Sccure Descartes: A Security Extension to Descartes
Specification Language.” International Journal of Software Engineering & Applications,
vol. 11, no. 5. pp. 1-11.2020. doi: 10.5121/ijsea.2020.11501.

147

Design and Evaluation of Secunty Features in RealSpec Real Time Executable Specification Language

{4

References

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

N. Damianou, N. Dulay. E. Lupu, and M. Sloman. “The Ponder Policy Specification
Language.” Proceedings of the International Workshop on Policies for Distributed Systems
and Networks. pp. 18-38. 2001, doi: 10.1007/3-540- 44569-2 2.

R. Abbassi and S. G. El Fatmi, “S-Promela: An executable specification security policies
language.” 2009 First International Conference on Communications and Networking, pp.1-
8. Nov. 2009, doi: 10.1109/comnet.2009.5373568.

H. Hu and G. Ahn, “Constructing Authorization Systems Using Assurance Management
Framework.” IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews), vol. 40, no. 4. pp. 396-405. 2010. doi: 10.1 109/tsmec.2010.2047856.

J. Kong. D. Xu, and X. Zeng, “UML-Based Modeling and Analysis Of Security Threats.”
International Journal of Software Engineering and Knowledge Engineering. vol. 20, no. 6,
pp. 875-897, 2010, doi: 10.1142/s0218194010004980.

K. Kasal, J. Heurix, and T. Neubauer. “Model-Driven Development Meets Security: An
Evaluation of Current Approaches.” 2011 44th Hawaii [nternational Conference on System
Sciences, pp. 1-9. Jan. 2011, doi: 10.1109/hicss.2011.310.

R. Villarroel, E. Fernandez-Medina. and M. Piattini, “Secure information systems
development — a survey and comparison.” C ompuiers & Security, vol. 24, no. 4, pp. 308-
321, 2003, doi: 10.1016/j.cose.2004.09.011.

M. U. A. Khan and M. Zulkernine, “A Survey on Requirements and Design Methods for

Secure Software Development,” School of Computing, Queen’s University, Canada, pp. 1—
22,2009, doi: 10.1109/ssd.2009.11.

P. Karpati, G. Sindre, and A. L. Opdahl. “C haracterizing and Analyzing Security
Requirements Modelling Initiatives.” 2017 Sixth International C. onference on Availability.
Reliability and Security. pp. 710-715, 2011, doi: 10.1109/ares.2011.113.

L. Lucio, “Advances in Model-Driven Security.” Addvances in Computers, vol. 93, pp. 103-
152, 2014, doi: 10.1016/b978-0-12-800162-2.00003-8.

P. H. Nguyen, M. Kramer, J. Klein, and Y. L. Traon, “An extensive systematic review on
the Model-Driven Development of secure systems.” Information and Software Technology.
vol. 68. pp. 62-81, 2015, doi: 10.1016/j.infsof.2015.08.006.

A. Van den Berghe, R. Scandariato. K. Yskout, and W. Joosen, “Design notations for secure
software: a systematic literature review.” Soffwure & Systems Modeling, vol. 16, no. 3. pp.
809-831, 2015, doi: 10.1007/s10270-015-0486-9.

E. Deveci and M. U. Caglayan. “Model driven security framework for software design and
verification.” Security and Communication Networks. vol, 8, no. 16, pp. 2768-2792.2015.
doi: 10.1002/sec.1200.

A. A. Khwaja and J. E. Urban, “RealSpec: An Executable Specification Language for
Modeling ~ Control Systems.” 2009 IEEE International Svmposium on
Object:Component/Service-Oriented Real-Time Distributed Computing, vol. 4, no. 1, pp.
219-227, 2009, doi: 10.1109/isorc.2009.36.

Design and Evaluation of Secunty Features in RealSpec Real Time Executable Specification Language

[148

]

References

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

A. A. Khwaja and J. E. Urban, “RealSpec: An Executable Specification Language for
Prototyping Concurrent Systems.” 2008 The 19th IEEE/IFIP International Svmposium on
Rapid System Prototyping, pp. 3-9, 2008, doi: 10.1 109/rsp.2008.9.

A. A. Khwaja and J. E. Urban, “RealSpec: An Executable Specification Language for
Prototyping Concurrent Systems.™ 2008 The 19th [EEE/IFIP International Svmposium on
Rapid System Prototyping, pp. 97-102, 2008. doi: 10.1 109/rsp.2008.9.

A. A. Khwaja and J. E. Urban, "Timing Precedence and Resource Constraints in the
RealSpec Real-Time Specification Language". Proceedings of the 2008 I4STED
International Conference on Software Engineering and Applications. November 1618,
2008.

A. A. Khwaja and J. E. Urban. “Preciseness for predictability with the RealSpec real-time
executable specification language.” 2010 IEEE Aerospace Conference, pp. 1-9, 2010, doi:
10.1109/aer0.2010.5446788.

A.A. Khwaja, Doctoral thesis, “RealSpec: An executable real-time specification
fanguage.” Arizona StateUniversity, 2009.

A. A. Khwaja, “Modeling Big Data Analytics with a Real-Time Executable Specification
Language.” Handbook of Research on Trends and Future Directions in Big Datua und Web
Intelligence, pp. 289-312, 2015. doi: 10.4018/978-1-4666-8505-5.ch014.

H. Gu, “DIAVA: A Traffic-Based Framework for Detection of SQL Injection Attacks and
Vulnerability Analysis of Leaked Data.” [EEE Transactions on Reliability, vol. 69, no. 1,
pp. 188-202, 2020, doi: 10.1109/tr.2019.2925415.

P. Bisht, P. Madhusudan, and V. N. Venkatakrishnan, "CANDID.” 4CM Transactions on
Information and Svstem Security, vol. 13, no. 2, pp. 1-39. 2010, doi:
10.1145/1698750.1698754.

B. A. Pham and V. H. Subburaj, "An experimental setup for detecting sqli attacks using
machine learning algorithms”, Jowrnal of The C olloquium for Informution Systems
Security Education, vol. 8, 2020.

N. Nikiforakis, W. Meert, Y. Younan, M. Johns. and W. Joosen. “SessionShield: Lightweight
Protection against Session Hijacking.” Engineering Secure Software and Svstems Third
International Symposium. pp. 87-100. 2011. doi: 10.1007/978-3-642-19125-1 7.

S. Goswami, N. Hoque, D. K. Bhattacharyya and J. Kalita, "An unsupervised method for

detection of XSS attack”. Juternational Journal of Network Security. vol. 19, no. 5. pp.
761-775, 2017.

S. Shalini and S. Usha, “Prevention of cross-site scripting attacks (xss) on web
applications in the client side,” IJCSI International Journal of Computer Science Issues,
vol. 8, no. 4, 2011.

S. Rathore, P. K. Sharma, and J. H. Park. “XSSClassifier: An Efficient XSS Attack

Detection Approach Based on Machine Learning Classifier on SNSs.” Journal of

Information Processing Systems, vol. 13. no. 4. 2017. doi: 10.3 745/jips.03.0079.

P. Wang. K. LLu, G. Li, and X. Zhou, “DFTracker: detecting double-fetch bugs by multi-
taint parallel tracking.™ Frontiers of Computer Science. vol. 13, no. 2. pp. 247-263, 2019,

[149

Design and Evaluation of Secunty Features in RealSpec Real Time Executable Spectfication Language

References

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51

52.

doi: 10.1007/s11704-016-6383-8.

S. Gujrathi, “Heartbleed bug: An openss! heartbeat vulnerability,” International Journal
Computer Sciences and Engineering, vol. 2, no. 5, pp. 61-64, 2014,

L. Davi. P. Koeberl, and A.-R. Sadeghi. “Hardware-assisted fine-grained control-flow
integrity: Towards efficient protection of embedded systems against software
exploitation.” 2014 515t ACM/EDAC/IEEE Design Automation Conference (DAC). pp. 1-
6, Jun. 2014, doi: 10.1109/dac.2014.6881460.

X., Lai. A. Balakrishnan, T. Lange, M. Jenihhin. T. Ghasempouri, J. Raik, and D.
Alexandrescu. ~“Understanding multidimensional verification: Where functional meets
non-functional.” Microprocessors and microsystems. 71, p.102867. 2019.

M. Athanasakis, E. Athanasopoulos, M. Polychronakis, G. Portokalidis. and S. [oannidis.
“The Devil is in the Constants: Bypassing Defenses in Browser JIT Engines.” Proceedings
2015 Network and Distributed Svstem Security Symposium, pp. 3-17. Feb. 2015, doi:
10.14722/ndss.2015.23209.

C. B. Hamilton, "Security in Programming Languages," 15 December 2015. [Online].
Available: http://www.cs.tufts.edu/comp/1 16/archive/fall2015/chamilton.pdf . [Accessed
July, 16, 2023]

S. Sondarva, D. P. Sharma. and P. D. Dholariya. “Prevention to Sensitive Information
Disclosure via OSINT.” International Journal of Scientific Research in Science,
kngineering and Techmology, pp. 109-114. 2021, doi: 10.32628/ijsrset218317.

J. Yang, A. Cui, S. Stolfo, and S. Sethumadhavan. Concurrency attacks. In HotPar, pages
15-15, 2012.

D. Huluka and O. Popov, “Root cause analysis of session management and broken
authentication vulnerabilities.” World Congress on Internet Security (WorldCIS-201 2),
pp. 82-86, Jun. 2012.

D. Zhu, J. Jung, D. Song, T. Kohno. and D. Wetherall. “TaintEraser.” ACM SIGOPS
Operating ~ Systems ~ Review. vol. 45, no. |, pp. 142-154. 2011, doi:
10.1145/1945023.1945039.

D. Ray and J. Ligatti, “Defining Injection Attacks.” ACM-SIGACT Svmposium on
Principles of Programming Languages. 2014, doi: 10.1007/978-3-3 19-13257-0 26.

S. Al-Qahtani, P. Pietrzynski, L. Guzman, R. Arif. and A. Tevoedjre, “Comparing sclected
criteria of programming languages java, php, c¢++, perl, hashell. aspectj, ruby, cobol. bash
scripts and scheme revision 1.0-a team cplgroup comp6411-si0 term report. . arXiv
preprint arXiv:1008.3434., 2010.

A. A. Khwaja. M. Murtaza. and H. F. Ahmed. “A security feature framework for
programming languages to minimize application layer vulnerabilities.” Security and
Privacy, vol. 3, no. 1, pp. 95-125, 2019, doi: 10. 1002/spy2.95.

E. A. Barbosa, A. Garcia, and S. D. J. Barbosa. “Categorizing Faults in Exception
Handling: A Study of Open-Source Projects.™ 2014 Brazilian Symposium on Sofbyare
Enginecring, vol. 5, no. 6. pp. 11-20, 2014, doi: 10.1109/sbes.2014.19.

D. Stuttard and M. Pinto. The Web Application Hacker. John Wiley & Sons, 2011.

[150

Design and Evaluation of Secunity Features in RealSpec Real Time Executable Specification Language

References

53.

54.

55.

56.

57.

58.

59.

60.
6l.

63.

64.

63.

66.

67.

68.
69.

“OWASP Secure Coding Practices - Quick Reference Guide.” https:// owasp.org/ www-
pdf-archive/OWASP_SCP_Quick_Reference Guide v2.pdf (accessed: Aug. 05.2023).

“Addison-Wesley Professional Ruby Series.” https:// www.amazon.com/ Addison-
Wesley-Professional-Ruby-Series-20-book-series/ dp/ BOSBTXWBHN (accessed: Aug.
05.2023).

“Python Language Tutorial => Introduction to Python Logging.” https:// riptutorial.com/
python/ example/ 14214/ introduction-to-python-logging (accessed: Aug. 05, 2023).

B. Chen. J. Song, P. Xu, X. Hu, and Z. M. (Jack) Jiang, “An automated approach to
estimating code coverage measures via execution logs.” Proceedings of the 33rd

ACM/IEEE International Conference on Automated Software Engineering. pp. 305-316.

2018, doi: 10.1145/3238147.3238214.

H. Li, W. Shang, and A. E. Hassan. “Which log level should developers choose for a new
logging statement? (Joumal-first abstract).” 2018 IEEE 25th International Conference on
Software Analysis. Evolution and Reengineering (SANER). pp. 468-490. Mar. 2018, doi:
10.1109/saner.2018.8330234.

“Logging in Python — Real Python.” https:// realpython.com/ python-logging/ (accessed:
Aug. 05, 2023).

“Django Tutorial Part 8: User authentication and permissions - Learn . https://
developer.mozilla.org/ en-US/ docs/ Learn/Server-side/ Django/ Authentication
(accessed: Aug. 03, 2023).

M. Press and M. Howard, Writing Secure Code. Irwin/McGraw-Hill. 2002.

“System.ComponentModel. DataAnnotations Namespace | Microsoft ..” https://
learn.microsoft.com/ en-us/ dotnet/ api/ system. componentmodel. dataannotations?
view=net-7.0 (accessed: Aug. 05, 2023).

W. G. Halfond, J. Viegas, and A. Orso, “A classification of SQL injection attacks and
countermeasures.” Proceeding IEEE International Symposium Secure Software
Engineering. vol. 1, pp. 13-15, 2006.

“Ruby on Rails - OWASP Cheat Sheet Series.” https:/ cheatshectseries.owasp.org/
cheatsheets/ Ruby_on_Rails_Cheat_Sheet.html (accessed: Aug. 03, 2023).

H. Schildt, Java: The Complete Reference, Twelfth Edition. McGraw Hill Professional,
2021.

R. Naim, M. Nizam, S. Hanamasagar, J. Noureddine, and M. Miladinova. “Comparative
Studies of 10 Programming Languages within 10 Diverse Criteria-a Team 10 COMP641 1 -
S10 Term Report.” 2010. arXiv preprint arXiv: 1008.3561.

“Securing Rails Applications — Ruby on Rails Guides.” https:/ guides.rubyonrails.org/
sccurity.html (accessed: Aug. 05. 2023).

X. Leroy. “Computer Security from a Programming Language and Static Analysis
Perspective.” Programming Languages and Systems. vol. 2618, pp. 1-9, 2003, doi:
10.1007/3-540-36575-3 1.

H. Collingbourne and C. Takemura, The Book of Ruby. No Starch Press, 2011

R. L. Halterman. “Learning to Program with Python.” htips:// prognoztech.com/

Design and Evaluation of Secunty Features m RealSpec Real Time Executable Specification Language

I 151

References

resources/ content/Learn-to-Program-with-Python.pdf (accessed: Aug. 05, 2023).

70. D. Chisnall, "CHERIINL™ ACM SIGARCH Computer Architecture News, vol. 45, no. 1.
pp. 569-583. 2017, doi: 10.1145/3093337.3037725.

71. “Secure Coding Guidelines for Java SE.™ https:// www.oracle.com/ Java/ technologies/
Javase/ seccodeguide.html (accessed: Aug. 05. 2023).

72. “Server HTMLEncode Method | Microsoft Learn.” https://learn.microsoft.com/en-
us/previous-versions/iis/6.0-sdk/ms3525347(v=vs.90) (accessed: Aug. 05, 2023),

73. *“Python Tutorial.” https://bugs.python.org/file47781/Tutorial EDIT.pdf (accessed: Aug.
05.2023).

74. J. Albahar and J. Albahari. “C# 4.0 in a Nutshell: The Definitive Reterence,” O’Reilly
Media. Inc., 2010.

75. "PHP vs. Python vs. Ruby {The web scripting language shootout.” hittps://
www .semanticscholar.org/ paper/ PHP-vs.- Python- vs.- Ruby- %7B- The- web-
scripting-Purer/la6de8aae72d 187da194c39dbf584025d1922849 (accessed: Aug. 05,
2023).

76. S. Nagarakatte. M. M. K. Martin. and S. Zdancewic. “Watchdog: Hardware for safe and
secure manual memory management and full memory safety.” 2012 39th Annual
International — Symposium on Computer Architecture (ISCA), 2012, doi:

10.1109/isca.2012.6237017.

77. K. Watson. J. Hammer, D. Reid, M. Skinner, D. Kemper, and C. Nagel, Beginning visual
C# 2012 programming. John Wiley & Sons. 2012.
78. R. Lafore. Object-Oriented Programming in C++. Pearson Education, 1997.

79. W. Stallings and L. Brown, Computer Security: Principles and Practice PDF ebook,
Global Edition. Pearson Higher Ed. 2015.

80. A. Chaudhuri and J. S. Foster. “Symbolic security analysis of ruby-on-rails web
applications.” Proceedings of the [7th ACM conference on Computer and
communications security, pp. 585-595, 2010, doi: 10.1145/1866307.1866373.

81. “chmod | Microsoft Learn.” https:/ learn.microsoft.com/ en-us/ cpp/ c-runtime-
library/reference/chmod?view=msvc-170 (accessed: Aug. 06, 2023).

82. “File.GetAccessControl ~ Method (System.IO) | Microsoft Learn.” https://
learn.microsott.com/ en-us/ dotnet/ api/ system.io.file.getaccesscontrol?
view=netframework-4.8.1 (accessed: Aug. 06, 2023).

83. B. Cannon and B. Wohlstadter. “Controlling access to resources within the python
interpreter.” Proceedings of the Second EECE. vol. 512. pp. 1-8. 2010.

84. D. Kuhlman. 4 python book: Beginning python, advanced python, and pvthon exercises.

2009.

85. ~Fundamental Practices for Secure Software Development.”
https://safecode.org/publication/SAFECode Dev Practices021 1.pdt (accessed: Aug. 06.
2023).

86. “Detecting Malware and Sandbox Evasion Techniques | SANS Institute.”

I 152

Design and Evaluation of Secunity Features in ReaiSpec Real Time Executable Specification Language

References

https://www .sans.org/white-papers/36667/ (accessed: Aug. 06, 2023).

87. “Laurence Tratt: Dynamically Typed Languages.” https:// tratt.net/ laurie/ research/ pubs/
htmV/ tragt dynamically_ typed_ languages/ (accessed: Aug. 06, 2023).

88. J. Elford. “Generic Immutability and Nullity Types for an imperative object-oriented
programming language with flexible initialization.” 2012. http://
www.doc.ic.ac.uk/teaching/distinguished-projects/2012/j.elf0rd.pdf.

89. “Exploring language support for immutability | Proceedings of the.™ https:// dl.acm.org/
doi/ 10.1145/2884781.2884798 (accessed: Aug. 06, 2023).

90. Y. Motara. “Functional programming and security.” arXiv preprint (arXiv:1201.5728).
2012. vailable at https:/arxiv.org/pdf/1201.5728.pdf.

91. A.N. Kataria, D. M. Adhyaru. A. K. Sharma, and T. H. Zaveri, “A survey of automated
biometric authentication techniques.” 2013 Nirma (niversity International Conference on
Engineering (NUiCONE). pp. 1-6. Nov. 2013, doi: 10.1109/nuicone.2013.6780190.

92. B. Rubin, “Crypto Basics.” Information Security, pp. 17-49, 2011, doi:
10.1002/9781118027974.ch2. [Online]. Available: https:// www.ibm.com
/developerworks /java /.

93. “Java Authentication and Authorization Service (JAAS) Reference.” https:/
docs.oracle.com/ javase/ 8/ docs/technotes/ guides/ security/ jaas/ JAASRefGuide.html
(accessed: Aug. 06, 2023).

94. “AuthenticationService Class (System.Web.ApplicationServices ..” https://
learn.microsoft.com/ en-us/ dotnet/ ap/ system. web. applicationservices.
authenticationservice?view=netframework-4.8.1 (accessed: Aug. 06, 2023).

95. R. V. Chandra and V. B. S., Pvthon requests essentials. . Birmingham, UK: Packet
Publishing. 2015.

96. A. Petrov, C. Schumann, and S. Gysin, “User Authentication for Role-Based Access
Conwrol.” In Proceedings of ICALEPCS, Oct. 2007.

97. 8. Calzavara. G. Tolomei, M. Bugliesi, and S. Orlando, “Quite a mess in my cookie jar!”
Procecdings of the 23rd international conference on World wide web. pp. 189-200. Apr.
2014, doi: 10.1143/2566486.2568047.

98. L.M.and K. V., “Teaching Algorithmization and Programming using Python
Language.” Information Technologies in Education, vo). 20, pp. 013-023, 2014, doi;
10.14308/ite000493.

99. ~C+~Web Programming | Tutorialspoint.” https:/ www.tutorialspoint.com/
cplusplus/cpp_ web_ programming.htm (accessed: Aug. 05, 2023).
100. Y. Zhou, and D. Evans. “Why aren't HT TP-onlv cookies more widely deployed. >
Proceedings of 4th Web. 2, 2010.
101. *Class Poco:Net::HTTPCookie.” https:// docs.pocoproject.org/ current/ Poco Net
HTTPCookie .html (accessed: Aug. 05.2023).

102. “HttpCookie.HttpOnly ~ Property (System.Web) | Microsoft Learn.” https://
learn.microsoft.com/ en-us/ dotnet/ api/ system. web. httpcookie. httponly? view=
nettramework -4.8.] (accessed: Aug. 05, 2023),

[153

Design and Evaluation of Secunty Features in RealSpec Real Time Executable Specification Language

References

103.

104.

105.

106.

107.

108.

109.

110.

L1

112.

113.

114

I15.

116.

117.

118.

119.

W. D.Kou, L. Mirlas, & Y.C. Zhao. US. Patent No. 7,.216.236. Washington, DC: U.S.
Patent and Trademark Office, 2007.

“Ruby | Exception handling - GeeksforGeeks.™ https:// www.geeksforgeeks.org/ ruby-
exception-handling/ (accessed: Aug. 05, 2023).

“SslProtocols Enum (System.Security. Authentication) | Microsoft Learn.” https:/
learn.microsoft.com/ en-us/ dotnet/ api/ system. security. authentication. sslprotocols?
view=net-7.0 (accessed: Aug. 05, 2023).

“JDK 8 will use TLS 1.2 as default.” hitps://blogs.oracle.com/java/post/jdk-8-will-use-
tls-12-as-default (accessed: Aug. 05, 2023).

~r

“RijndaelManaged Class (System.Security.Cryptography) | Microsoft
https://learn.microsoft.com/en-us/ dotnet/ api/ system. security. cryptography.
rijndaelmanaged? view=net-7.0 (accessed: Aug. 05, 2023).

Y. Acar. “Comparing the Usability of Cryptographic APIs." 2017 IEEE Symposiunm on
Security and Privacy (SP). 2017, doi: 10.1109/sp.2017.52.

A. Sweigart. “Hacking Secret Ciphers with Python.”
https://inventwithpython.com/hackingciphers.pdf (accessed: Aug. 05. 2023).

B. A. Curtis, U.S. Patent No. 7,475.260. Washington, DC: U.S. Patent and Trademark
Office., 2009,

S. Sundareswaran, A. Squicciarini, and D. Lin, “Ensuring Distributed Accountability for
Data Sharing in the Cloud.” JEEE Transactions on Dependable and Secure Computing,
vol. 9. no. 4, pp. 556-568, 2012, doi: 10.1109/tdsc.2012.26.

I. Ray. K. Belyaev, M. Strizhov, D. Mulamba, and M. Rajaram, “Secure Logging as a
Service—Delegating Log Management to the Cloud.” IEEE Svstems Jowrnal, vol. 7, no.
2, pp. 323-334, 2013, doi: 10.1109/jsyst.2012.2221958.

“Locking Down Log Files: Enhancing Network Security by Protecting Log Files.” Issues
In Information Systems, vol. 7. no. 2. pp. 43-47, 2006. doi: 10.48009/2_iis_2006 43-47.
B. Schneier and J. Kelsey, “Secure audit logs to support computer forensics.” ACM
Transactions on Information and System Security. vol. 2. no. 2. pp. 159-176, 1999, doi:
10.1145/317087.317089.

J. Siefers. G. Tan. and G. Morrisett, “Robusta.” Proceedings of the 17th ACM conference
on Computer and communications secwritv, pp. 201-211, 2010. doi:
10.1145/1866307.1866331.

M. Sun and G. Tan, “NativeGuard.” Proceedings of the 2014 ACM conference on Securit y
and privacy in wireless & mobile networks, pp. 165-176, 2014, doi:
10.1145/2627393.2627396.

L. Davi. A. Dmitrienko. A.-R. Sadeghi. and M. Winandy, “Privilege Escalation Attacks
on Android.” Information Security Conference, pp. 346-360, 2011. doi: 10.1007/978- 3-
642-18178-8 30.

O. Ruwase and M. S. Lam, “A Practical Dynamic Butfer Overtlow Detector.™ Nenwork
and Distributed System Security Svmposium, vol.2004, pp. 15-169, Feb. 2004.

M. Abadi, M. Budiu. Ulfar Erlingsson, and J. Ligatti, “Control-flow integrity principles,

[154

Design and Evaluation of Secunty Features in RealSpec Real Time Executable Specification Language

References

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

implementations, and applications.” ACM Transactions on Informution and System
Security, vol. 13, no. 1, pp. 1-40, 2009, doi: 10.1145/1609956.1609960.

Y. Zibin, A. Potanin, P. Li, M. Ali, and M. D. Emnst, “Ownership and immutability in
generic Java.” ACM SIGPLAN Notices. vol. 45, no. 10, pp. 598-617, 2010, doi:
10.1145/1932682.1869509.

C. Boyapati, R. Lee. and M. Rinard, “Ownership types for safe programming.”
Proceedings of the 17th ACM SIGPLAN conference on Object-oriented programming.
systems, languages, and applications - OOPSLA . pp. 211-230, 2002, doi:
10.1145/582419.582440.

N. Krishnaswami and J. Aldrich. “Permission-based ownership.™ ACM SIGPLAN Notices,
vol. 40, no. 6, pp. 96-106. 2005. doi: 10.1145/1064978.1065023.

A. Potanin, J. Noble, D. Clarke, and R. Biddle. “Generic ownership for generic Java.”

ACM SIGPLAN Notices, vol. 41. no. 10, pp. 311-324. 2006, doi:

10.1145/1167515.1167500.

G. Kniescl and D. Theisen. “JAC?Access right based encapsulation for Java.” Software:
Practice and Experience, vol. 31, no. 6. pp. 555-576. 2001. doi: 10.1002/spe.372.

S. Weber, M. Coblenz. B. Myers, J. Aldrich. and J. Sunshine, “Empirical Studics on the
Security and Usability Impact of Immutability.” 2017 IEEE Cybersecurity Development
(SecDev). vol. 3, no. 1, pp. 50-63. 2017. doi: 10.1109/secdev.2017.21.

[Pechrchanski and V. Sarkar, “Immutability specification and its applications.”
Proceedings of the 2002 joint ACM-ISCOPE conference on Java Grande, vol. 6. no. 2,
pp. 202-211. 2002, doi: 10.1145/583810.583833.

A. Skyrme, N. Rodriguez, and R. lerusalimschy, “A survey of support for structured
communication in concurrency control models.” Journul of Purallel and Distributed
Computing, vol. 74, no. 4, pp. 2266-2285. 2014. doi: 10.1016/j.jpdc.2013.11.005.

C. Maack. E. Poll, and A. Schubert. “Immutable Objects in Java | Baeldung.”
https://www.baeldung.com/java-immutable-object (accessed: Aug. 05, 2023).

C. Haack, E. Poll, J. Schifer, and A. Schubert. “lmmutable Objects for a Java-Like
Language.” Programming Languages and Systems. vol. 2, no. 4. pp. 347-362, 2007, doi:
10.1007/978-3-540-71316-6_24.

A. Mettler, D. Wagner, and T. Close. “Joe-E - Wikipedia.”
https://en.wikipedia.org/wiki/Joe-E (accessed: Aug. 05, 2023).

S. Nadi, S. Kriiger. M. Mezini, and E. Bodden, “Jumping through hoops.” Proceedings of
the 38th International Conference on Software Engineering, vol. 3, no. 1, pp. 935-946,
2016. doi: 10.1145/2884781.2884790.

C. Reis, S. Gribble. T. Kohno. and N. Weaver. “Detecting In-Flight Page Changes with
Web Tripwires.” vol. 8. [Online]. Available: https:// www.usenix.org / legacy /events
/nsdi08 /tech/ full_papers /reis /reis.pdf.

L. S. [uang, A. Rice, E. Ellingsen, and C. Jackson, “Analyzing Forged SSL Certificates
in the Wild.” 2014 I[EEE Svmposium on Security and Privacy. 2014. doi:
10.1109/5p.2014.13,

[155

Design and Evaluation of Secunty Features in RealSpec Real Time Executable Specification Language

References

134.

135.

136.

137.

138.

139.

140.

141.
142.

143.

144.

145.

146.

147.

148.

149.

S. Fahl, M. Harbach, H. Perl, M. Koetter, and M. Smith, “Rethinking SSL development
in an amplified world.” Proceedings of the 2013 ACM SIGSAC conference on Computer
& communications security - CCS, vol. 8, no. 5, pp. 49-60, 2013, doi:
10.1145/2508859.2516655.

“Errors and Debugging | Python Data Science Handbook.”
https://jakevdp.github.io/PythonDataScienceHandbook/01.06-errors-and-
debugging.html (accessed: Aug. 05, 2023).

“GDC 2002: Game Scripting in Python.”
https://www.gamedeveloper.com/programming/gdc-2002-game-scripting-in-python
(accessed: Aug. 05, 2023).

“C++ standard exceptions.” https://cplusplus.com/doc/tutorial/exceptions/ (accessed:
Aug. 05.2023).

“UTF8-CPP: UTF-8 with C++ in a Portable Way.” https://utfcpp.sourceforge.net/
(accessed: Aug. 05. 2023).

*“Ownership and Immutability in Generic Java.”
https://palez.github.io/papers/ownership-immutability-oopsla2010.pdf (accessed: Aug.
05.2023).

“POCO C++ Libraries Release Notes.™ https:// docs. pocoproject. org/current/99100-
ReleaseNotes. html (accessed: Aug. 05, 2023).

M. Welschenbach. Cryptography in C and C+~. Apress, 2001,

“Ruby/ DBI Database Access Tutorials point.” https:// www.tutorialspoint.com /ruby /
ruby_ database_ access. htm(accessed: Aug. 05. 2023).

G. Noack and M. S. Y. Welsch. “TIFI+: A Type Checker for Object Immutability with
Flexible Initialization.” 2010. https://www_cs.ru.nl/E.Poll/papers/javimu(9.pdf.

A. D. Brucker, 1. Doser, and B. Wolff, “A Model Transformation Semantics and Analysis
Methodology for SecureUML.” Model Driven Engineering Languages and Svstems, pp.
306-320, 2006, doi: 10.1007/11880240 22.

S. Naqvi, A. E. Arenas. and P. Massonet, “Deriving Policies from Grid Security
Requirements Model.” Achievements in European Research on Grid Svstems, pp. 151-
163, doi: 10.1007/978-0-387-72812-4_12.

J. Jiirjens, “Modelling Audit Security for Smart-Card Payment Schemes with UML- Sec.”
[FIP Advances in Information and Communication Technology, vol. 3, no. 4, pp. 93-107.
2001, doi: 10.1007/0-306-46998-7 7.

B. Hoisl and M. Strembeck. “A UML Extension for the Model-Driven Specification of
Audit Rules.” Proceedings of the 2nd International Workshop on Information Svstems
Security Engineering (WISSE), vol. 2, no. 3. pp. 16-30,2012. doi: 10.1007/978-3-642-
31069-0 2.

M. Memon. M. Hafner. and R. Breu, “SECTISSIMO: A Platform-Independent
Framework for Security Services.” In MODSEC(@ MoDELS., Sep. 2008.

E. Fernandez-Medina, J. Trujillo. R. Villarroel, and M. Piattini, ~Access control and audit
model for the multidimensional modeling of data warehouses.” Decision Support Systems.

[156

Design and Evaluation of Secunty Features in RealSpec Real Time Executable Specification Language

-y

References

)

150.

152.

160.
161.

162,

163.

vol. 42, no. 3, pp. 1270-1289. 2006, doi: 10.1016/j.dss.2005.10.008.

C. Hochreiner, Z. Ma, P. Kieseberg, S. Schrittwieser, and E. Weippl, “Using Model
Driven Security Approaches in Web Application Development.” Information and
Communication Technology, vol. 5, no. 3. pp. 419-431, 2014. doi: 10.1007/978-3-642-
55032-4 42,

M. Johnson, “Kaos Semantic Policy and Domain Services.” Multiagent Systems,
Artificial Societies, and Simulated Organizations, vol. 2, no. 3, pp. 119-138, 2004. doi:
10.1007/0- 387-23344-x_6.

A. Rutle, A. Rossini, Y. Lamo, and U. Wolter, “A formal approach 1o the specification
and transformation of constraints in MDE." The Journal of Logic and Algebraic
Programming. vol. 81, no. 4, pp. 422-457, 2012, doi: 10. 1016/).jlap.2012.03.006.

M. Peterson. J. Bowles, and C. Eastman. “UMLpac: An Approach for Integrating Security
into UML Class Design.” Proceedings of the IEEE SoutheastCon 2006. pp. 267-272. doi:
10.1109/second.2006.1629362.

T. Sommestad. M. Ekstedt, and H. Holm, “The Cyber Security Modeling Language: A
Tool for Assessing the Vulnerability of Enterprise System Architectures.” [EEE Systems
Journal, vol. 7. no. 3, pp. 363-373, 2013, doi: 10.1109/jsyst.2012.2221853.

.). Juirjens and P. Shabalin, “Tools for Secure Systems Development with UML: Security

Analysis with ATPs.” Fundamental Approaches to Software Engineering, pp. 305-309,
2005, doi: 10.1007/978-3-540-31984-9 23.

. V. Rafe and R. Hosseinpouri, “A security framework for developing service-oriented

software architectures.” Security and Communication Networks, vol. 8, no. 17, pp. 2957-
2972, 2015, doi: 10.1002/sec.1222.

- D. Basin, M. Clavel, and M. Egea, “A decade of model-driven security.” Proceedings of

the 16th ACM symposium on Access control models and technologies, 2011. doi:
10.1145/1998441.1998443.

- R Croft. Y. Xie, M. Zahedi, M. A. Babar, and C. Treude, “An empirical study of

developers® discussions about security challenges of different programming languages.™
Empirical Software Engineering. vol. 27. no. 1, pp. 1-52, 2021, doi: 10.1007/s10664-021-
10054-w

. M. Sahnitri. A. D. Brucker, and P. Giorgini. “From Secure Business Process Models to

Secure Artifact-Centric Specifications.” Enterprise, Business-Process and Information
Systems Modeling. vol. 2. no. 3, pp. 246-262. 2015, doi: 10.1007/978-3-319-19237-6_16.

“American National Standards Institute (ANSI).” Van Nostrand. 2005.

R. Laborde. S. T. Bulusu, A. S. Wazan, A. Oglaza. and A. Benzekri, “A Methodological
Approach to Evaluate Security Requirements Engineering Methodologies: Application to
the IREHDO?2 Project Context.”” Journal of Cybersecurity and Privacy, vol. 1. no. 3. pp.
422-452,2021. doi: 10.3390/jcp1030022

Y. Zuo, “Big data and big risk: a four-factor framework for big data security and privacy.”
International Journal of Business Information Systems. vol. 42, no. 2, pp. 224-242. 2023.
doi: 10.1504/ijbis.2023.128648.

K. Aldrawiesh. A. Al-Ajlan, Y. Al-Saawy, and A. Bajahzar, “A comparative study

Design and Evaluation of Secunty Features in RealSpec Real Time Executable Spectfication Language

References

[64.

165.

166.

167.

[68.

169.

170.

171.

172.

between computer programming languages for developing distributed systems in web
environment.” Proceedings of the 2nd International Conference on Interaction Sciences:
Information Technology, Culture and Human, pp. 457-461, 2009, doi:
10.1145/1655925.1656009.

R. Garcia, J. Jarvi, A. Lumsdaine, J. G. Siek, and J. Willcock. “A comparative study of
language support for generic programming.” ACM SIGPLAN Notices. vol. 38, no. 11,
pp. 115-134. 2003, doi: 10.1145/949343.949317.

M. Al-Mekhlal and A. Ali Khwaja, “A Synthesis of Big Data Definition and
Characteristics.” 2019 IEEE International Conference on Computational Science and

Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous
Computing (EUC). pp. 314-322. 2019, doi: 10.1109/cse/euc.2019.0006.

F. Khan, A. Abubakar. M. Mahmoud, M. Al-Khasawnch. and A. Alarood, “Cotton crop
cultivation oriented semantic framework based on IoT smart farming application.™
International Journal of Engineering and Advanced Technology, vol. 8, no.3. pp. 480-
484.2019.

M. L Uddin, S. A. Ali Shah, M. A. Al-Khasawnch. A. A. Alarood. and E. Alsolami.
“Optimal policy learning for COVID-19 prevention using reinforcementlearning.” Journal
of Information Science, vol. 48. no. 3. pp. 336-348., 2020, doi
10.1177/0165551520959798.

A. A. Alarood. E. Alsolami, M. A. Al-Khasawneh. N. Ababneh, and W. Elmedany, “[ES:
Hyper-chaotic plain image encryption scheme using improved shuffled confusion-
diffusion.” Ain Shams Engincering Journ

al. vol. 13, no. 3. p. 101583. 2022, doi: 10.1016/j.as¢j.2021.09.010.

R. Rani. “Towards Green Computing Oriented Security: A Lightweight Postquantum
Signature for [0E.” Sensors, vol. 21. no. 3. p. 1883, 2021, doi: 10.3390/s21051883.

E. M. Clarke. O. Grumberg, and D. A. Peled, Model Checking, MIT Press, Cambridge,
Massachusetts, 2000.

R. May, C. Biermann. X.M. Zerweck. K. Ludwig. J. Kriiger, and T. Leich. “Vulnerably
(mis) configured? Lxploring 10 years of developers' Q&As on Stack Overflow,”
Proceedings of the 13th International Working Conference on Variability Modelling of
Sottware-Intensive Systems, 2024, pp. 112-122.

3. M. Murtaza, "S-RealSpec: A Security Extension to Detect SQLI attack and Sensitive Data

Exposure." Kurdish Studies. vol.12(5), 2024, pp. 757-769.

\\\\\\\\

Design and Evaluation of Secunity Features in RealSpec Real Time Executable Specification Language

| 158

