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ABSTRACT

The boxplot is proved to be an extremely useful device for displaying general tendencies
of the data. However, it has some weaknesses when the data is bimodal or multimodal,
and also when the data distribution is not symmetric. There are also evidences that both
boxplots and histograms can mislead researchers to understand the nature of the data.

From the literature, it seems that still there exist a huge gap which needs further
improvement among the connection of bimodality, asymmetry and existing of outliers
with the boxplot. The current study has accumulated all these issues, which is a quite
different picture from the existing research of boxplot framework. The study is aimed at
remedying these weaknesses via a new and improved approach to the boxplot. This study
allows the use of boxplot in a much wider range of situations than the previous
methodologies.

In this study, Robertson’s and Fryer's (1969) conditions were applied to check the
existence of bimodality for various values of parameters in the mixture of normal. For the
decision to assess whether the data is unimodal or bimodal, one needs the best modality
test and measure of skewness. Therefore, the modality tests are compared through Monte
Carlo simulations on the basis of size and power properties. The simulated critical values
are used and found that all the modality tests have stable sizes. From the power
comparison, it is concluded that the Silverman Bandwidth test is the best test in most
aspects. Similarly, various measures and tests of skewness are compared on different
generated data. All of these have stable sizes on simulated critical values. But in power
comparison, a newly introduced measure Pnom leads the performance and high power
than other measures and tests. The current study presents a new technique to measure the
appropriate degree or size of the bimodality through Trapezoidal and Simpson’s rule and
also identifies the factors which affect the size.

Before building bimodal boxplot, a necessary cutoff point from Fluss et al. (2005)
conditions is also modified and extended for real data. This study introduced a bimodal
boxplot, following the idea of Tukey's (1977) boxplot, which shows clear picture and
summary statistics of bimodal distribution. Outlier zone around cutoff point is introduced
for the detection of outliers in case of bimodal distribution. This study also presents some
real data examples, i.e. exchange rates and cricket data for verifying the modality and
skewness with their relevant boxplots and detection of outliers. These important results
make possible ways and directions in the literature about bimodality, skewness, and
boxplot.

Keywords: Skewness, Measures, Tests, Size, Power, Bimodality, Boxplot.

JEL Classification: C10, C12,C15,Ci6
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CHAPTER1
INTRODUCTION

1.1 Study Background

Data is the core element of research in statistics and in every field of science. For
examining data the graphic representation are more satisfactory than tables in exchanging
information along with the groups of data (Gelman, Pasarica and Dodhia, 2002).
Furthermore, the graphic presentation provides a sound base to choose more suitable and
adequate techniques for parametric inferences. It is necessary to plot and review the data
before analysis and inferences, as it describes the structure of the distribution.

Generally, graphic exhibition summarizes and interconnects patterns of the data for better
understanding (Cohen, 2006). Most of the graphs that are in common use for the
comparison of various data sets use basic measures (i.e. mean and standard deviation,
etc.). But these basic statistics are not enough to explain the differences in configuration
of the primary data which lead to misleading results (Wildenhain and Rappsilber, 2014).
A number of valuable tools such as graphs, descriptive statistics, and boxplot are used in
this connection. However, the graphic state of the boxplot describes useful properties of
dat&; in the form of graphical presentation (Cox, 1978). Boxplots handle and signify both
basic summary statistics and information about the distribution of the data. The actual
graphic design of the boxplot, such as the range-bar, was introduced in the early 1950°s
(Spear, 1952). The basic purposes of the boxplot consist of efficient extraction of
necessary facts and details of the data (figure, position, etc.) along with the existence of
outliers, which is a substantial activity for various reasons. Basically, boxplot depends
upon median and inter-quartile range ‘IQR’, which is in most cases more efficient than

1



the average and the standard deviation, and therefore it gives a more suitable summary of
any real data in the majority of cases (Dovoedo, 2011).

Tukey (1977) developed a new version of boxplot in proper shape. This boxplot is a
particular graphic procedure that describes data in five numbers that is minimum, first
quartile, median, third quartile, and a maximum of any data set. Due to these five
numbers quartiles information, Tukey’s (1977) boxplot is considered to be robust in
skewed data as compared to conventional technique which uses mean and standard
deviation. Furthermore, it shows spread and information about skewness (McGill, Tukey
and Larsen, 1978).

Similarly, Hubert and Vandervieren (2008) introduced an adjusted boxplot which
depends upon the skewness measure called med-couple to find the distance of the
whiskers. This modification is made in the whiskers of the boxplot for identifying outliers
in the skewed data. However, Schwertman, Owens, and Adnah (2004) introduced a new
boxplot which specially modifies the process of calculation of whiskers boundaries
according to the normality assumption and a large number of samples {see also Sim, Gan,
and Chang, 2005). Numerous techniques have been presented for boxplot so far, some of

which can be found in the study of Potter et al. (2006) with their extractions in detail.
1.1.1 Advantages of Boxplot

Boxplot has numerous advantages over conventional data summaries which makes it

popular and important. These advantages are given as follows:



i. Provides Basic Information

Box plot provides basic information about the shape and nature of the data distribution.
Comparatively, boxplots are more informative data summaries than the massively used of
mean and standard deviation which are applied in most cases. The popularity of boxplots
in data analysis is increasing rapidly as their virtnes become more widely known, see for
instance ‘Points of significance: Visualizing samples with boxplots’ (Krzywinski and
Altman, 2014). Consider an example; here a boxplot is compared with a numerical
summary from Exchange Rate (ER) in dollars data series (1961 to 2013) of three

countries.

Figure 1.1: Boxplots of °‘ER’ Data Series of Different Countries
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Summary statistics and basic information of the data are presented graphically in

boxplots above in Figurel.1, numerically below in Table 1.1.
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Table 1.1: Summary Statistics of Different Countries ER

. :Ge;malxsf-:— :
es S 0.155 —0.304 —0.507
Minimum 93.04 82.68 3511
Qy 102.88 93.97 52.27
Q; 126.77 100 88.34
Qs 160.39 104.74 98.63
Maximum 182.03 113.66 105.76

The above Figure 1.1 and Table 1.1 show the basic information and variation of the data
sets for different countries. The distribution of France and Germany is very similar, i.e.

negatively skewed and quite different from that of Sweden which is positively skewed.
ii. Low Space and Useful for Comparing Distributions

The boxplot is self-explanatory and easy graphic method of describing one or more data
sets. As boxplot occupies low space, it is very easy to show and compare few boxplots in
a limited area. According to Carter and Schwertman (2009), boxplot holds small area and
hence is especially good for comparing distributions among a few groups or data sets.
Boxplot is very useful than tables in exchanging information and comparisons for
different groups of data documented by Gelman, Pasarica and Dodhia (2002).

This idea of boxplot shown above in Table 1.1 is also illustrated by Razzaque (2009).
Similarly, the data series of different countries in Figure 1.1 are compared which shows

valuable information in a short space. Figure 1.1 also describes that each boxplot has low
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space with a comparison of distributions. Furthermore, it also shows the deviation of the

distributions which is helpful for comparison.
iii. Quickly Computable

The boxplot describes the distributional summary, which generally represents fewer
features than a bar chart or kernel density. Basically, boxplots use exact five-point
summary that always exists there in original data points which are quickly and easily
computable especially by hand discussed Wickham and Stryjewski (2011) in their study.

iv, Useful for Identification of OQutliers

It is the quality of boxplot which also shows outliers. Boxplot is good for indicating
outliers and the comparison of distributions as stated by M.Lane and Sandor (2009). The
boxplot also helps to show the degree of spread and skewness in the data series and

identifying the extreme values (Morely, 2014).

Figure 1.2: A Boxplot with Outliers

A *+ Qutlier e
SL -
e -3 1 .
_ s
=3 b -
=r * Outlier 1
hi- 3 =
18 — |
5L -
sk A -
Vahues Boxplot

The above Figure 1.2 represents a boxplot with two outliers denoted by plus *+’ signs.

Unlike conventional summary statistics, boxplots display outliers clearly.



1.1.2 Disadvantages of Boxplot
Despite their many virtues listed above, boxplots have certain weaknesses which have

been documented in the literature as follows;

i. Boxplot does not Work Well in Bimodal Distribution

In the existing research, there is a problem that boxplot does not adequately show
bimodality and peakedness. In these particular situations, there are evidences that both
bar graphs and boxplots can misguide the observers stated by McNeil (1990). On the
basis of its popularity, Choonpradub and McNeil (2005) stated that boxplot is less
effective for describing the shapes and properties of existing distributions, especially

bimodality.

Figure 1.3: Bimodal Distribution of Germany ‘ER’ and their Boxplot
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Figure 1.3 shows clearly a bimodal distribution of Germany exchange rate yearly data

(1961 to 2013) and right side of this figure describes as unimodal skewed boxplot of the
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same data. Tt means that the traditional boxplot cannot specify bimodality clearly and it

needs further improvements.
ii. It is Ineffective at Catching Qutliers in Skew Distributions

Boxplot is ineffective at catching outliers on the narrow side of the distribution because
the formula used for detecting is symmetric, even in skewed distributions. Hence it
detects few outliers on the long-tailed side of the asymmetric distribution. The main
problem is that it detects several outliers in the short tail and also a number of outliers in

the long tail discussed by Adil (2012) in his PhD thesis.

Consider financial data series of KSE-100 index of two years (2013 to 2014) return data.
Then two methods namely Tukey Technique and Split Sample Skewed Boxplot (SSSB)

are applied on this data for detecting outliers.

Figure 1.4: Boxplot of Return Data (2013 to 2014)
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According to Tukey Technique, left outliers are 44 and right outliers are 11. Also,

boxplot shows these numbers of outliers on either side respectively. But using SS5B



technique left outliers are 5 and right outliers are 9. It means SSSB technique performed

better than Tukey’s boxplot.
iii. Boxplot cannot Inform About Clusters of Data

Hintze and Nelson (1998) state that boxplot also fails because it cannot inform about
clusters of data. Therefore, they used ‘Violin plot’ which identifies the existence of
clusters in data series and proper shape of the distribution. However, tracking modes may
help in finding clusters because clusters are different from skewness. Clusters will be
detected well with histograms and density estimates. Using the above KSE return data

series, it clearly shows that the distribution has clusters and is negatively skewed.

Figure 1.5: Density of KSE Return Data (2013-2014) and showing Clusters
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The boxplot of the data series Figure 1.4 does not show different modes and have no
information about clusters. But stare from its density Figure 1.5, the data series shows

different modes and clusters.
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1.2 Motivation

Boxplots indicate the central point and the variation of data from their central point.
Biehler (2004) states that the explanation of variation will lead to the outcome in five
various ways, i.e. position information, relating spreads and distributions, overall
variation from the median, deviation below and above the median, and group or class

information.

Hubert and Vandervieren (2008) stated that Tukey’s boxplot provides uncertain results in
case of asymmetric distributions. They introduced VH boxplot for the detection of
outliers in the data series which was further modified by Akbar and Zaman (2013), called
modified VH. Basically, VH boxplot identifies right and left extreme values but fails to
show modality. In the existing research, there are many studies which have discussed
skewed boxplot. In some situations, boxplot performs well and sometimes it fails to
work. Mostly, it shows problems due to outliers and also fails in case of bimodality.
Throughout in the literature, no study discusses bimodal boxplot case. From historical
backgrounds, it seems that still there exist a huge gap which needs further improvement
between the connection of bimodality, asymmetry and existing of outliers with the
boxplot. The current study accumulated all these issues, which is quite different from the

existing research of boxplot framework.

However, this study is mainly focused on new methodology for making boxplots based
on different ideas and improvements (discussed briefly in the next section 1.3). This
study uses different modality tests with null hypothesis as ‘unimodality’ and tests for

skewness with a null hypothesis as ‘symmetry’, discussed later in detail chapter-4 and 6
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respectively. This study solves maximum deficiencies existing in skewness and boxplot

to fill this gap with some new directions.

1.3 Objectives of the Study

The current study proposed the following objectives and modifications:

i.

ii.

iii.

iv.

The first objective of this study is to examine the effectiveness of different
types of modality tests in this context. Therefore, this study conducts the
Monte-Carlo simulation and finds the best and worst test on the basis of size
and power criteria.

The second objective and main is to evaluate with a preliminary tests of
modality. If the data displays significant bimodality, then the current study
develops an alternative bimodal boxplot. This is intended as one of the main
contributions of this thesis.

In the third objective, when the hypothesis of modality is not rejected, then we
perform a second test for skewness and different measures of skewness. If the
datz is significantly skewed, this study plans to use an alternative to the
boxplot which adjusts for skewness.

The fourth contribution of this study is to examine these variants and propoées
some new ideas for a skewed boxplot. The current study also assesses that
how these alternatives perform well at detecting outliers in skewed
distribution and comparison of boxplots which adjusts for skewness.

A fifth contribution is to evaluate different tests and measures of skewness in

this context. This study also applies Monte-Carlo simulation and finds the

10
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performance of various tests and measures on the basis of size and power
criteria.

Vi. Finally, when the skewness test does not reject symmetry, then the current
study proposes the use of standard Tukey’s boxplot. This is also new, because
when we use Tukey’s boxplot which states that the data is unimodal and
symmetric according to tests result, so boxplot comes with a certificate of

unimodality and symmetry, unlike conventional.
1.4 Significance of the Study

In the existing research, there is a problem that boxplot does not adequately show
bimodality and peakedness. There is evidence that both boxplots and histograms can
mislead viewers. Therefore, initially, the comparison of the modality tests in this study

facilitates the researchers to decide about the best or dominant test in this context.

This study introduces a new measure of skewness, comparing it with the existing
measures and tests to clarify their priority for the practitioners. This study will aware the
researchers about new and alternate way of the modality test for finding the degree or
size of bimodality existence through numerical integrals which also explains the factors
that affect the size for generating data. Cutoff or maximum separation is necessary for
any economic or other data series before building bimodal boxplot. This study solves the
said issue to modify Fluss et al. (2005) conditions which can be easily applied by the

researchers and practitioners to find the cutoff point.

This study provides the procedure for the researchers to build bimodal boxplot, which
shows a clear picture of bimodal data and visual summary statistics. It implies that the
new bimodal boxplot is very important and represents the data in a convenient way. This

11
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study also provides the procedure to detect outliers in the case of bimodality. Lastly, the
economic applications and results provide guidelines and assessment to the researchers

about the nature of the data, i.e. skewness, modality, and their relevant boxplot.
1.5 Contributions of the Study

This study aims to remove weaknesses through a new and improved approach to the
boxplot. The methodology is to allow the use of the boxplot in a much larger range of
situations as compared to the past studies. The methodology of this study is an extension

to the existing literature and reduces the shortcomings in the subject area.

A small amount of asymmetry is handled well through boxplot. This study used two
ideas: The first one is to test for modality before building standard boxplot. The second
idea is to explore the test for modality in the context of boxplots. Imran and Zaman
(2013) compared tests for unimodality but also by many others. None of these studies

have mentioned any connection to boxplots.

The current study, conducted initial tests for modality and symmetry. If both these
conditions are satisfied, then original Tukey boxplot is used. When symmetry fails, then
the boxplot needs to be modified. There are several proposals on how to build a boxplot
for the asymmetric case. The current study examines existing proposals and introduces
new ones and it also attempt to find the best alternative for use in the asymmetric case. It
is also proposed to develop a new type of boxplot for the bimodal data series named
‘bimodal boxplot’. Thus it implies that if the unimodality assumption is tested and failed,
then this study proposed a new type of boxplot for the use of the bimodal situation. The

proper measure of skewness is also developed in this study.

12



g

This thesis is basically organized in ten chapters. Chapter-1 reviews the introductory
discussion, motivation, main objectives and significance of this study. Chapter-2 consists
of the detailed review of the literature about the boxplot, measures, and tests for
skewness, the connection of boxplot with bimodality and modality tests. Chapter-3
explains the methodology of the data generating process, Monte Carlo simulation
designs, conditions of bimodality, construction of bimodal boxplot, outliets’ detection in

a bimodal distribution and information about the usage of data.

Chapter-4 provides the usage of bimodality conditions, the comparison of size and power
of the modality tests. Similarly, chapter-5 explains the newly introduced measure of
skewness P-norm and their importance. An evaluation of the size and power of the
measures and tests for skewness is dealt with in chapter-6. Chapter-7 discusses the size of
bimodality, definite integrals and effects of parameters for the case of the mixture of
normals. Chapter-8 provides the construction of newly introduced bimodal boxplot, its
advantages, and detection of outliers in a bimodal distribution. The main applications of
this study on real data have been elaborated in chapter-9. In the last chapter, i.e. chapter-
10, conclusions, recommendations and directions for future research are documented in

detail.

13
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CHAPTER 2

LITERATURE REVIEW

In the light of existing literature, many studies were conducted to polish and modify the
boxplot. This study focuses on handling the existing deficiencies and introduces ideas
about skewed and bimodal boxplot. A literature review of this study is divided into three
sections. Section 2.1 discusses the historical background of boxplot and its modification.
Section 2.2 deals with boxplot and skewness connectivity. It also reviews the literature of
the presence and detection of outliers in the boxplot. Section 2.3 of this chapter associates
the link between boxplot and bimodality. The chapter ends with the gap analysis.

2.1 History of Boxplot and its Modifications

Boxplot was first introduced by Spear (1952), called the range bar. This plot consists of a
box within a point or line known as median and two tails (lines) spread within minimum

and maximum. Diagrammatically, it can be shown as,

Figure 2.1: Picture of Spear boxplot
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Source: Spear, (1952). Charting Statistics. McGraw-Hill, 166.
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Tukey (1977) modified the boxplot and was named as ‘whiskers and box’. The whiskers
showed lower and outer fences, the values outside this range are highlighted as the
outliers. Tukey, also developed the use of a five-point summary of data, consisting of
minimum, Q,= First quartile, Q,= second quartile (median) and Q;= the third quartile,
maximum.

Figure 2.2: Picture of boxplot with a five-point summary
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Tukey’s boxplot works well when the distribution is symmetric. However, in case of
skewed distribution, it fails to detect the outliers. Past researchers (Parzen, 1982;
Matthews, 1981; Bibby, J. 1986; Clevand, W.S. 1985; and Parzen, 1979a, 1979b) tried to
modify the boxplot. Frigge et al. (1989), introduced the idea of boxplot such as extremes
are replaced with constant quantiles (minimum= 2% and maximum= 98%). The same
researchers also changed multiplier with any other value except 1.5, within the fences to
set the whiskers. For asymmetric distribution inter-quartile range was replaced with
‘Q,— Q," in the whiskers (Rousseuw et al., 1999). Carr (1994) designed boxplot with

separate colors, i.e. red for above and blue for below the median.

i5



2.2 Boxplot and Skewness

In skewed or bimodal distribution, the boxplot can mislead the readers and increase the
chances of false results. As a result, its real importance and use are decreased (Tukey,
1977). Tukey boxplot was modified by Hubert and Vandervieren (2008), later renamed as
HV, introducing the adjusted boxplot which described the process of changing Tukey’s
boxplot, for skewed distributions. Furthermore, in their technique, they combined the
med-couple (MC) into the conventional boxplot which resulted better for skewed
distributions. Modified adjusted boxplot (MAB) introduced by Dovoedo (2011)
outweighed both Tukey’s and HV techniques. MAB has whiskers which are measured
from the median and constructed for using some multiples of the upper and the lower

semi inter-quartile ranges.

Some classical tests were introduced and some were modified during research as Doane
and Seward (2011) have introduced two modified measures of skewness in the study.
They documented that modified standardized moment performed better as compared to
other measures of skewness. Adil and Zaman (2012) introduced a new measure of
skewness called Split Sample Skewness (SSS), which described that this measure of
skewness works better in detecting skewness. Ateeq and Raza (2014), in their study,
compared different measures and tests with the hypothesis of skewness. Their study
implied that first, one has to measure the skewness of the data and secondly, to test
whether the data is significantly skewed or not. If data is skewed then a boxplot can be

used to adjust for skewness.

16



1

2.2.1 Measures of Skewness

Mathematical formulas and calculating procedures of various measures of skewness
considered in this study are given in detail as below:

2.2.1.1 Pearsonian Coefficient of Skewness

Karl Pearson (1905) introduced coefficient of skewness (Si) and can be computed as,

_ (u— mode)
G

Sk
Where ‘c” shows the standard deviation of the distribution and p= mean. Since the mode
normally fails to clearly describe the data, therefore, Pearson defined the following

alternate measure,

_ 3{u— median )
g

Sk

The magnitude of the Pearsonian coefficient of skewness Sy’ commonly changes within
the interval (—3, +3). In the case of symmetrical distribution, the coefficient S,= 0. For
positively skewed distribution, S,> 0, also called right skewed and for negatively skewed
distribution, Sx< 0, also called left-skewed.
2.2.1.2 Standardized Moment of Skewness
Usually, the third moment is applied for measuring skewness known as the standardized
moment (moment ratio) which is given as follows:

1=
Where u;= Third moment.
Similarly, the magnitude of this measure of skewness coefficient ‘y" is within the interval
(-2, +2). In this measure, if coefficient ‘y” is higher than zero (y> 0), it means positively

skewed distribution or rightly skewed. If this coefficient is lower than zero, it is called
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negatively skewed or left skewed distribution. If the coefficient value is equal to zero,
then the distribution is symmetric (normal).

2.2.1.3 Med-Couple

Standardized moment measure of skewness was affected by the existing outliers in the
data. Solving this issue, G. Brys, M. Hubert, and A. Struyf (2004) developed a new
measure of skewness called ‘“Med Couple’. The study described that it was the collection
of both measures quartile and octile skewness. It uses two observations: one is before the

median; second one after the median and it examines the difference of each one from the

median.
Consider a series X1, X7, X3,......... , Xp and the same series can be arranged as x; < x; <
X3S it < x,. Med Couple is calculated as follows:

ML':medxiSmnsxj h{x; %) (2.1)
Where m,, denotes the median, and Med Couple by *M,’.
‘x;” shows the value smaller than the median and ‘x;” indicates the value higher than the

median ‘m,,’. In spite of x; # x; than Kemnel function denoted by *h’ is given below:

(xj=mn)(my—x))

xj—x[-

h'(xl" x))=

2.2)

The magnitude of this measure of skewness ‘M.’ is within the interval (=1, +1). In
Equation (2.1), the standardized difference among lengths x; and x; from the median is
measured. If M. > 0 then distribution is positively skewed and would be negatively
skewed if M. < 0. However, if ()g - mn) = (m, — x;), then M.= 0 implies that the

distribution is symmetric.
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2.2.1.4 Split Sample Skewness (SSS)

Measures of skewness in the existing literature performed well, but all those measures
failed in the presence of outliers. A med-couple measure of skewness somehow
performed better in this context but this measure also has some complications in their
procedure in case of large observations. To remove this drawback, Adil and Zaman
(2012) developed a new measure of skewness, known as Split Sample Skewness (SSS).
This measure separates the complete data series in two parts of the same size and
calculates five-point summaries, inter-quartile range (IQR) of either side (i.e. before

median and after median). Mathematically, it can be shown as:

10R
555 Ln (2t 2.3)

But, 1QR,= Q3 — Q11

And 1QRg= Qg3 — Qg1

IQR; is the IQR from the left part means before the median and /QRy, is the IQR from the
right part means after the median.

Q1= 12.5" percentile, @y 3= 37.5" percentile

Qpi= 62.5" percentile, Q3= 87.5" percentile
If fS'SS'= 0, then it is symmetric distribution. However, if (IQRg < IQR;) as $S5S <0
negatively skewed and if (/{QRp > IQR;) as §§S5 > 1, it means positively skewed.
2.2.1.5 Measures Skewness-I and Skewness-II
The concept of skewness-I and skewness-II was introduced by Tabor (2010) and found
both the measures working well in the detection of skewness. The study measured
skewness-I and skewness-11, by using the values of minimum, 50 percentile or median
and maximum and used the following formula:
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max — median
Sk —m—

median — min

Sky= %(min+ max)

median

Where Sk,= Skewness-1 and Sk,= Skewness-I1.
2.2.2 Tests of Skewness
In classical studies, various tests were used to check the skewness with different test
statistics of asymptotic distributions. Efron (1979) extended the past studies by
introducing a ‘Bootstrap Testing Procedure’. This procedure was applied to both
symmetric and asymmetric distributions to measure the skewness. Consider random
sample X= {xq, X3, X3,......... , X, } sclected from *F’ which is unspecified distribution
and with median ‘v’ also unknown as stated. When distribution ‘F’ is symmetric
then (x - v) = (v - x). Here our null hypothesis ‘Hy’ is given as,

HpF(x-v) =1—-F(v-— x)
Now the test statistics of ‘F’ is 8(xy, X2, X35...0vnn. , X, ) used for the measurement of
skewness. The test statistics gives significant result when it has a value considerably
unusual from zero. For further explanation, they computed the median. Here are some
observations which are less than the median in size and some are large than the median.
The difference between the median ‘2m’ from those values which are larger than the

median and the difference between those values from the median ‘2m’ which are less

than the median. They got a sample X'= (X1, X3, X35« o o - - . , x,} and the selection of
bootstrap sample is on the basis of standard bootstrap sampling with replacement (SWR)

from the set (X,X"). Following are the bootstrap tests procedures for checking the

skewness of a distribution with a null and alternate hypothesis as,
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Hy: No skewness exist
versus  Hj: Skewness exist

L Student’s t-test and i1. Kolmogorov-Smirnov test

2.2.2.1 Student’s t-test as a Test of Skewness
Gosset (1908) developed the Student’s t-test by considering two independent samples
drawn from normal populations, i.e. X;= {X11,X12 X13,5..-.-- ,X1n,} With parameters

(11, 62) and Xo= {X21, X33, X23, «..... , X3n,} With parameters (i1, o%).
The test statistic of this test is given as,

(= (X1-X2) —(u1—p2)

1 1
Sp ,H‘FE

Where n4 is the sample size and ¥, is sample mean from the first sample while n; is the

(2.4)

sample size and X, is sample mean from the second sample. The sﬁ is pooled or common

variance and if 62 = ¢Z then it can be estimated as,

2_ (n1—1sf+(np—1)sf

p ni{t+ny—2
i/
2 _ 1 —
Where, S1 = (nl—l)Z(xl - x1)2
$§=——3(x; — %)’
(nz—1)

In the case of vi— v, = Ay such that v;= n;—1 and v,= n,—1 are the degree of freedoms.

Then test statistics through the null hypothesis as,
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t= (£1-x2) —4g

1.1
Sp H+E
As well as v =n; +ny — 2 degrees of freedom ‘df”.

If (i, = p1), then the test statistics will be as follows,

(£1-%2)
T 1
Sp ’—+—
ny o ng

For different variances (67 # o7) then test statistics as,

t:

VE—7—">7 . (2.5)

The critical value is decided as, .

Fort< tay ) when the alternate hypothesis is (u; — t2) # ¢
Ift< tq(, when alternate hypothesis is (u; — pz) < 8¢
=ty Wwhen alternate hypothesis is (¢t; — pt2) > Ag

When ‘t’ calculated value is higher than t-table value, it gives significant result of this

test.
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2.2.2.2 Kolmogorov-Smirnov Test

A one sample test was introduced by AN Kolmogorov (1933). But this test is extended
to two samples by Smimov (1939). As both the tests have the same testing methods,
therefore, it is called a Kolmogorov-Smirnov test. This test depends on the cumulative
distribution functions (CDFs). The null hypothesis H, contains that the two samples are
selected from the populations having the same cumulative distribution functions, while
their alternative hypothesis H, is the two samples which are selected from the

populations having unequal cumulative distribution functions.

Ho: Fi(X1) = F2(X2)
Hi: Fi(X1) # F(X,)
The values of each sample are set in ascending order and cumulative relative frequencies
(CRF) are calculated at each value. Then they calculated the differences at each value
included in the list. A rejection of the null hypothesis is made if a large difference is
identified at any value. The Kolmogorov-Smirnov (KS) test depends upon the higher
difference ‘D’, which is given as,
D= max[S(X,,)— 5(X,,)], for a one-sided test.
D= max|S(Xn1) — S(Xn,) |, for the two-sided test.
Where S(X,,) and S(Xy,) are respectively cumulative relative frequency distributions of
two considerable samples selected from the two populations.
In case of two-sided test, if both of the sample sizes are less than 40 at the selected
significance level and the test statistic value of ‘D’ is larger than critical value *cv’, then
Hy is rejected. Applying one-sided test for sample more than 40, the following test

statistics is used:
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x?=4p? 2122’ 2.6)

ny+ngy

Where ¢ x2° is the chi-square distribution along with the degrees of freedom ‘df= 2’.

If x? = x%p0s52= 5.98, then the test result will be significant.

2.2.3 Outliers in the Boxplot

In the case of symmetric distribution, the Tukey (1977) boxplot is used for detection of
outliers and performs well. Kampstra (2008) has found that the identification of outliers
is usually unclear, particularly in case of skewed distributions. In the asymmetric
distribution, the amount of outliers increases if the number of observations increases.
This makes it impossible to see every single outlier. Hubert and Vandervieren (2008)
examined the performance of adjusted boxplot on real and generated skewed
distributions. A clear contrast is shown between outliers and other observations. Dovoedo
(2011) stated that the observations which are outside either the lower or upper fences in

the boxplot are called an outlier.

Adil and Zaman (2012) introduced the Split Sample Skewness Based Boxplot (SSSBB)
which shows better informative data summary and shows high accuracy in the detection
of outliers in case of skewed distributions. "[héy show that the performance of ‘SSSBB’
procedure is higher in rank to other classical procedures. In their study, Akbar and Zaman
{(2013) assumed a complete picture of loss functions and it is found that Vandervieren and
Hubert Boxplot (VH Boxplot) procedure performs well in financial returns data series as

compared to other existing techniques of detecting outliers.
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In the current section, all the above studies have no connectivity between outliers
detection and bimodal distribution. This area needs a complete setup to detect outliers in

case of bimodal distributions.

2.3 Boxplot and Bimodality Link

It is clear from the literature that in case of symmetric distribution, the median is always
located in the center of the boxplot. Wainer (1990) implies that at very small whiskered
symmetric boxplot with no outlier shown, it is illustrated that the distribution is
‘symmetric’ or ‘short-tailed” but actually such type of distribution sometimes has at least
two modes, called multimodal. Boxplot can cover some part of the shape of a distribution
making a wrong impression. It implies that by using modality tests, we can check the
distribution whether it is unimodal or bimodal. Also, different modality tests are used in

this study for the size and power comparison.

Choonpradub and Don McNeil (2005) suggested slight changes in boxplot for showing
bimodality by making the two quartiles ends of the box thicker. Such a criterion is based
on an exact measure of skewness and kurtosis that enhances the calculations to draw a
boxplot. These studies have more information but a lot of issues are still needed to
modify a boxplot which provides eminent information such as the shape of the
distribution, in case of bimodality.

According to Siva Tian (2010), it is the quality of a boxplot which shows the difference
between the shape of skewed and symmetric distribution but fails in case of bimodal
distributions. It implies that it is necessary to develop bimodal boxplot with the

connection of modality test which is a prior step before making bimodal boxplot.
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2.3.1 Detection of Bimodality

Wolfe (1970) applied likelihood ratio in favor of the null hypothesis of normal
distribution against a mixture of normal distributions in the alternate hypothesis for
different dimensions. Wolfe (1970) results showed that in unimodal distribution, the

probability of at least one mode is very high which looks like a mixture of normals.

Engelman and Hartigan (1969) maximize the likelihood ratio on the basis of dividing the
data samples into two subparts which have the same sample means selected from the
normal distribution in null hypothesis and unequal sample means in the alternate
hypothesis. This test was simple in calculation but failed in any bimodal distribution.
Silverman (1981, 1986) developed the critical values for bootstrap technique as “k’
number of the bandwidth of kernel density for ‘k’ number of modes. He found a
monotonically diminishing function for the selected bandwidth in the kernel estimate

when the number of observations is constant.

The excess mass test was used to test the multimodality by Muller and Sawitzki (1991).
They obtained that for k-modes, this test becomes equal to another modality test, i.e.
Hartigan Dip test. Bianchi (1997) applied modality tests to examine and detected k-
modes consistently by using 119 countries GDP data. Chen et al. (5001) used a Modified
Likelihood Ratio Test (MLRT) and a mixture of different models on the basis of
parameters to test modality. They concluded that it is not necessary that mixture of any
components generate modality, but it is possible only in a mixture of unimodal densities.

For this purpose, they also developed a ‘Likelihood Ratio Test’ (LRT) for bimodality.
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Daniel et al. (2008) applied two modality tests, i.e. Silverman test and Hartigan Dip test,
for different distributions. After correcting asymptotic levels, they concluded that all the
series was multimodal.

Imran and Zaman (2014) used different modality tests for comparison on the basis of size
and power in their simulation study. They used different data generating processes as
well as real data series and documented that Silverman test performs well as compared to
other tests in case of small and large sample size. This study applied the same existing
modality tests on the special case of data for the values of parameters where the
distribution is bimodal and links it with boxplot.

2.3.2 Modality Tests Comparison

For testing modality, the current study used and discussed four modality tests with their
mathematical structure. These basic modality tests are Silverman’s Bandwidth test
(1981), Hartigan Dip test (1985), Excess Mass Test (1991), and Proportional Mass Test
(2011). All of these selected modality tests are usually nonparametric tests having the
null hypothesis of unimodality against the alternative hypothesis of bimodality or
multimodality. The statistical explanation and mathematical techniques of these modality
tests are described as follows: ‘

2.3.2.1 Hartigan Dip Test

This test was introduced by Hartigan (1985), also called Dip test. This test calculates the
higher difference among empirical distribution function ‘DF’ and unimodal (mostly
uniform) distribution function for the purpose to reduce the maximum difference. Hence,
Dip test assesses the difference among the data distribution and particular theoretical

distribution of one mode existing in concerned data series. If f(x) is unimodal
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probability density function with ‘K’ number of modes, the Cumulative Distribution
Function (CDF) denoted by F(x) is curved outwards under ‘K’ and curved inwards
above ‘K. For at least two modes, the inwards curve of CDF changes its direction. For
positive dip values, Hartigan dip test shows that the distribution is bimodal. 'Hartigan and
Mrs. Hartigan documented that null hypothesis Hoy consists of uniform distribution as
asymptotically set the dip values larger for all other distributions. For this reason the
power of this test increases. Also in case of small sample size (less than or equal to 100},
Dip test works well. Dip test was used for at most two modes.

Let F shows the distribution function and D(F)=d in the case for non-reducing
functions G. But, when X; < X;;, G is the highly outwards curved minorant of (F + d}
in limit (—oo0, X; ), now in variable, G has in a variable much higher gradient of (X, X,,),
G is a very small quantity of inwards curved majorant of (F — d) in {X;, o), so the
procedure as follows as:

) Initially consider X; =X;, X, =X,,, D = 0.

(i)  Find the Greatest Convex (outwards curved) Minorant ‘g.c.m’ G and Least
Concave (inwards curved) Majorant ‘l.c.m’ L for F in [X}, X,,], consider

the values connecting with F are correspondingly g1, g2, . . . - - , g;; and

(iii) To take d = sup | G(g,)— L{g)) | > sup| G(l;)— L(;) | and also the Sup

exists atl; < g; < I, explain furthermore as xX=g;, x3=lj+1.

" The step by step test procedure explained in article “The Hartigan Dip Test of Unimodality” by J. A.
Hartigan and P. M. Hartigan (1985)
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(iv)  Taking d = sup | G{l))= L(I)| = sup | G(g:)— 14g;)| and also the Sup

exists at g; < l; < g;1¢explain as x) =g;,x0 = L.

(v) Whend < D, finishand put D(F) =D

(vi) Whend > D,
put D =sup{D, sup, <, g0 | G0 — FO) |, suppge <, 1LY = F) |3

(vii) Place x? =x,, x?=x; and go back to (ii).
This study used the same method of Hartigan Dip test for any data series and calculated

their size and power for comparison with other modality tests.
2.3.2.2 Silverman’s Bandwidth or Bump Test

Silverman bandwidth test is also called a bump test or kernel density estimation test. The
test statistics consists of kernel density of unimodal distribution estimation by using very
small window width. Silverman applied the Gaussian kernel density function in this
bump test. The significance level is described by the selection of the single mode density
estimation which is described through empirical re-arrangement of the data series.

However, the critical value ‘cv’ of this test is calculated through the Monte Carlo
Simulation method. Silverman test is used for multimodality (i.e. at least two modes) in
the alternate hypothesis. This test performs well in case of large sample sizes. For
constant observations, Silverman observed that in this computation the bandwidth on
many modes is monotonically decreasing function. Applying this terminology, Silverman
{1981) explained the k-critical smoothing parameter or bandwidth as the smallest

smoothing parameter for h;, of the kernel density computation having k number of
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modes. The Gaussian Kernel density creates several modes as the smoothing parameter
becomes higher. Smallest quantity of the smoothing parameter is necessary to develop
kernel estimation which covers a mode in the test statistics. When the test statistics is
large, then the null hypothesis of one mode is rejected. To solve the cause of this extra
mode, it is necessary to incrzase the amount of bandwidth. The main advantage of this
test is that it is used for multimodality. The method of Silverman test is described as
follows:

The sample x;, x5, . . . . .. , X, belong to kernel density estimation with unspecified

density function “f™.

fooh) = =50 k(=)
Here, smoothing parameter is denoted by ‘h’ and ‘k’ which shows the function of the
Gaussian kemnel. Silverman (1981) describes that the smoothing parameter *h’ increases
the number of modes in f(x,h) decreases. As this test applied kernel bandwidth
functions to guess the number of modes,

The test statistics of this test are as follows:

Rerie =inf{h : f(x, h)has ‘1’ mode}
This lowest quantity smoothing is necessary for the estimated kernel density which has a
single mode. For maximum kL., , the hypothesis of unimodality rejects a higher number
of smoothing which is essential to vanish extra modes in this test kernel estimation. For
every sample, the significant result of Al is assessed through smoothing bootstrap
procedure. The smallest smoothing parameter AL, is essential for single mode and the

probability P as,

P=Phgy = Aoy
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Where the role of P is to get the information about the relative level AL, . For reasonably

large L., is examined with results of bootstrap samples, so P has a low value which is
powerful evidence of a significant decision. This technique is applied to test for many
modes which are normally performed in a particular order, starts from the single mode

and begins whenever the test is unsuccessful to reject Ho of *k” number of modes.
2.3.2.3 Proportional Mass Test

Proportional Mass (PM) test was introduced by Cavallo and Ringobon (2011) who
examined modality in the area for a special number which is nearly zero at both sides.
This test calculated mass of prices which vary in the absolute number less than 1%, 2.5%,
and 5%. This test is based on the central tendency point (i.e. 0%, mode and mean) of the
distribution. The minimum number of modes shows the evidence to reject the null
hypothesis of a single mode. For the positive value of the PM test, it means that the
distribution is unimodal; and for the negative value, it shows bimodality. But when the
distribution is uniform, then this test value is equal to zero when the ranges are positive,
greater than 5 or else.
Cavallo and Ringobon (2011) documented that the PM test described the quantity of
unimodality on both sides of the main (in center) value which examines the mass of the
density around bounds. PM test is dependent on the situation such that a maximum
relationship of the mass of unimodal distributions is approximately near the mode.
However, the boundaries of both sides of the mode increase, then the overall mass also
increases with a small amount. In case of bimodality around specific value, the mass
becomes better and in large amount. For this purpose, the distance of this additional

regular increase of mass is applied to decide the amount of unimodality at both sides of a
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specific value. Further, they explained the situation of unimodal distribution middle point
at 0%. The magnitude of mass between the points (—1%, 1%) should be maximum from
the points (—5%, 5%). Therefore it is given as,
P (|Ap| = 1) = P (|ap| < 5)/5

Proportional mass when i= 1 and j= 5 as follows,

PMY5 = 1n(P (|Ap] < DV(P (1Ap] < 5) /5)
This ratio is formalized for the calculation of Proportional mass on both sides of zero as;

PMO:%EU ez PMy;
Set ‘Z’ consists of the combinations is also i< j

The similar explanation was used when they got interested in testing the amount of

unimodality at both sides of mode denoted by m, which is,

P (JAp—m] <1)
P (lap—m| <j/G /1)

1
PMm='|'z_|ZijEz In

The H, of this test is also connected with PM™ having positive value, which means the
distribution is unimodal. Applying the bootstrap method to check the significance of the
test and find the links with a number of positive PM™ . Smailer the link of bootstrap with

a number of positive PM™, leads to the significant result of PM test.
2.3.2.4 Excess Mass Test

Excess Mass ‘EM’ test was presented by Muller and Sawitzki (1991) for ‘m’ modes. This
test is commonly used for at least one mode i.e. multimodality and for clustering. This
test becomes equal to Hartigan Dip test when applied for “‘m’ modes. This test computed
the common difference of a relevant distribution to existing modal, mostly uniform

distribution. The Excess Mass Test described a function which performed well in
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estimation and can be applied for modality. The specialty of this test is to examine the
characteristics of various samples from the variables of uniform distribution. However,
they tried towards unexpected changes. An excess (extreme) mass is focused wherever a
mode is situated. The excess mass test was applied to determine the common differences
of the considerable distribution, that is uniform distribution and the function is computed
for testing modality. Muller and Sawitzki (1991) documented the excess mass (EM)
procedure which was expected as a common procedure for statistical estimations. This
test explained a particular way of analyzing and applying for the representation of
modality. The testing method of excess mass test is given as follows:
They supposed that the distribution function is represented by ‘F’, ie. same as the
sampling density which was indicated by ‘€*. The empirical (non-theoretical) distribution
function is denoted by Fand ‘n’ sample size selected from ‘F’. The mathematical
expression of empirical excess mass (EEM) for modes ‘m’ is as follows:

Enm (M) =Supey, . e, [ZT21(F(©) = MG D]
Here A= 0, the supremum (Sup) was selected from the arranged set {C;,C5, ......... , Ca}
of disjoint values, where the function F (C) is the F size of C and quantity ||C; || is the
width of C, and further explanation is,

Dum (A) = Enm (W= Enmt(A) 2 0

The null hypothesis H, contains that sampling density ‘f’ has (m — 1) modes and
alternate hypothesis H,has ‘m’ modes, then test statistics is,

Bam = Supizo {Dom (1)}
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For the higher value of Ay, mostly the test has significant results. They also introduced
empirical procedures for quantity and describe the ideas of higher Aym, which emphasizes
that mode ‘m=1".

2.4 Gap Analysis

This study applied the existing modality tests on the data (generated data for which the
values of parameters, distribution is bimodal). From the test result, when unimodality is
rejected, then this study builds bimodal boxplot, which is quite a different presentation
from unimodal boxplot. When the null hypothesis Hy of unimodality is not rejected, then
test for symmetry is applied. Also, this study compared and assessed the effectiveness of
these modality tests for the purpose of improving boxplots.

A lot of research has been conducted on the classical tests and measures of skewness. In
most cases, these measures lead to misleading results. The current study introduced a new
measure of skewness and compared with the existing tests and measure of skewness. This
study used different measures and Bootstrap tests of skewness for the purpose of
checking the symmetry, and according to their results, the most suitable and relevant

boxplot is suggested.

In the existing literature, there is a huge gap to develop a bimodal boxplot and also to
detect outliers in the bimodal distribution. This study proposed some new ideas for a
bimodal boxplot and assessed how well these alternatives perform at detecting outliers in

a bimodal distribution,
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CHAPTER 3
METHODOLOGY

The first Section 3.1of this chapter discusses the different data generating processes for
unimodal as well as for bimodal distributions. Section 3.2 presented the procedure of
Monte-Carlo simulation for modality tests and skewness tests regarding their size and
power. Section 3.3 investigated the presence of bimodality and also derived the
conditions of bimodality. The current study has also expounded the size of bimodality
with the help of numerical methods such as Trapezoidal and Simpson’s rules. Section 3.4
deals the outlier detection technique known as Split Sample Skewness Based Boxplot
(SSSBB) and its modification in case of bimodality. Lastly, section 3.5 described the
information about data used in this study. The following Figure 3.1 summarizes the
methodology of this study.

Figure 3.1: Summary of the methodology
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3.1 Planned Data Generating Processes (DGPs) for use in Simulations

It was necessary to define and discuss the different DGPs before handling the analysis of
the study. Monte Carlo simulations on the basis of these DGPs for testing modality and
skewness were performed. Various DGPs were used and the detail discussion is given in

the following section.

3.1.1 Data Generating Process-I (DGP-I)

In the subsequent sections of the study, the unimodal distributions are represented with

DGP-L. All the considerable distributions of the DGPs are detailed in the subsections.

3.1.1.1 Normal Distribution

The normal distribution is the most popular continuous distribution used in every field.
This distribution is usually applied in social and natural sciences in connection with the
random variables which have unknown distributions. For comparison, data are generated
from the standard normal distribution (which is the simplest case of Gaussian
distribution). This study used the Probability Density Function (pdf) for analyzing the
size, power and critical value of every test. Let ‘X” be the random variable of normal
distribution with parameters (i.e. mean p and variance g?) as, X~ N(u, a?) and their
Matlab code ‘X= normrnd(y, 62, n, 1), where ‘X’ is a standard normal variable with

parameters (=0, o= 1).

3.1.1.2 Log-Normal Distribution

The log-normal distribution is a continuous distribution in which logarithm of random
variable belongs to a normal distribution. The process of this distribution is

computational realization of multiplication of a lot of positive random variables. This is
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approved by the ‘central limit theorem’ in the logarithmic form. The log-normal
distribution was in order to compare the modality and skewness tests by drawing ‘n’
samples from a log-normal distribution with parameters p and o, i.e. X~ Lo-N{g, ¢?) and

their Matlab code *X= lognmd(u, 62, n, 1),

3.1.1.3 Beta Distribution

This distribution is used to model the characteristics of a random variable restricted to the
definite limits or intervals. This distribution is also applied in the Bayesian approach to
explaining the starting information regarding the probability of success of an event. The
Probability Density Function (pdf) of Beta distribution is also used for analyzing the size,

4

power and critical value of every test. Generally, ‘X’ is a variable belong to Beta
distribution for a random variable X is represented as X~ P(a, f) and their Matlab code

‘X=betarnd(a, 8, n, 1)’, where a and £ are two shape parameters of this distribution.

3.1.1.4 Chi-Square Distribution

It is the continuous distribution which is the under the root of the total of the square of
random variables, i.e. ‘X~ N(0, 1)’ or same the random variables have Euclidean distance
from the origin. The curve of this distribution is skewed positively and as sample size
increases then skewness also decreases. To examine the tests of modality and at various
alternatives of skewness, it is selected a random sample from chi-square ‘x?* distribution

with various degree of freedom ‘v’ such as X ~x(2,,) and their Matlab code ‘X= chi2md(v,

n, 1)’. The Chi-square distribution has one parameter called the degree of freedom “v°.
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3.1.1.5 The Uniform Distribution

Uniform distribution is also called ‘rectangular distribution’. All limits of equal length
and the distributional attachment have the same probability. The attachment is described
through two parameters (i.e. a, b) such that it has their smallest and largest values. If a=0
and b= 1, then this distribution is known as standard uniform distribution. This is the
important distribution used in this study for the best and the worst test in case of modality
and skewness tests. This density function is called constant or uniform because among
the two points with two small intervals of the equal length with the equal probability.
Consider ‘X’ is a random variable selected from Uniform distribution such that X~U(a,

b) and their Matlab code ‘X=unifind(a, b, n, 1)’.

3.1.2 Data Generating Process-11 (DGP-II)

For evaluating the bimodality, the current study used the DGP-II, i.e. the mixture of two

distributions given as below:

3.1.2.1 Mixture of Two Normal Distributions

In this data generating process, a mixture of two normal distributions was used (i.e. one
normal and second one is standard normal distribution) to check the bimodality on the
basis of bimodality conditions and tests about modality. The mixtures of two normal
distributions are discussed as follows: Consider X; as the random sample from the first
normal distribution with parameters (i.e. mean= y; and variance= o) and X, as the
random sample from the second normal distribution with parameters (i.e. mean= u, and

variance= o).
Z= {X, with mixing probability a, X; with mixing probability (1—a)}
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Also, it can be written as,
Z=CIX1 +(1—a)X2 (31)

Where ‘Z’ is known as a mixture of normal or bimodal distribution with mixing
proportion or probability ‘a’ of each normal density between or equal the interval (0, 1).

This study used Matlab code for this DGP as, and their Matlab code ‘Z=

dat_genr mix_norm (a, y;, a4, n, 1)

3.2 Monte-Carlo Simulation Designs

In this study, the research methodology consists of the two simulation designs separately
(i.e. simulation design for modality tests and simulation design for measure and tests of
skewness). The step by step methods are given as follows:

3.2.1 Monte-Carlo Simulation Design for Modality tests

This step by step process of simulation design is used for the comparison and evaluation
of the modality tests. To calculate the size and power of these tests, here the following

procedure is used.

i.  The data are generated by proposed DGPs mentioned above in Section 3.1.1.

ii. The test s;atistics of various modality tests (see Section 2.3.2) are calculated and
applied on the selected DGPs.

iii.  Size of each modality test are also calculated at 5% significance level fitted for

Monte Carlo sample size ‘MCSS’= 5000 as,

Size of the modality test = Probability (Reject Hy/ Hy is true)
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Null hypothesis ‘H,’ for modality test consists of any unimodal distribution (i.e.
normal, Chi-square, uniform or Beta distribution) and our alternate hypothesis

(H,) is the mixture of normal distributions from DGPs.

iv. This study also calculated the power of each modality test at 5% significance
level calculated as,
Power of the modality test= Probability (Reject Hy /Hyis false)
If our null hypothesis is rejected, then we can construct bimodal boxplot discussed in
Section 8.3. But if the null hypothesis is accepted, then measures of skewness are applied

to decide for skewed or symmetric distribution.

3.2.2 Monte Carlo Simulation Design for Measure and Test of Skewness

This study used different distributions like y?, Beta, Uniform and Log-normal
distributions to find the best measure of skewness. For any distribution, the intervals
build approximately 95% centre values left 2.5% on each side and used both methods for
fences from the simulated below and above critical values ‘cv’. To find the size and
power of measures and tests about skewness, the current study used the procedure as

follows:

i.  The data is generated using Data generating process ‘DGP’ mentioned in
section (3.1.1).
ii. In the second step, various measures and tests of skewness on these DGPs are

applied.
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iii. Size of each measure and test of skewness at 5% significance level calculated
for Monte Carlo sample size ‘MCSS'= 5000 also with various sample size n =
60, 120, 220, 350 as,
Size of the skewness test = Probability (Reject Hy/H, is true)
Here null hypothesis for DGP of this study will be normal, and our alternative hypothesis

will be anyone from DGP-1 i.e. Beta, Chi-square, Log-normal or uniform distribution.

iv. Power of each measure and skewness test at 5% significance level calculated as,
Power of the skewness test = Probability (Reject Hy/H, is false)
3.3 Presence of Bimodality
This section explains the presence of bimodality from the mixture of normals (i.e.
2N(0,1)+ Ny, 6#)). This study needs only the values of the parameters which represent
bimodality denoted by ‘1’ and ignore the values of parameters which show unimodality
denoted by ‘0’. Further, the size of the bimodality is calculated with the help of numerical

integrals, i.e. Trapezoidal and Simpson’s rules.

3.3.1 Conditions for Bimodality

This study, also applied some important properties about bimodality in the mixture of
normal, introduced by Robertson and Fryer (1969). Consider X, that comes from the
unimodal normal distribution with their parameters X; ~N(;, ¢f) and X, comes from the

unimodal normal distribution with their parameters X, ~ N(u,, 67).

Z= {X, with mixing probability a, X, with mixing probability (1—a)}

* This is the mixture of two normal densities N(0,1)= standard normal with gi;= 0, o= { and N(y,, cf)=
normal with different values of i, and o
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Or Z=aX; +(1—a}X;

Whether ‘Z’ is unimodal or bimodal, it depends upon the ratios of the parameters ‘a’, u=

— i1)/01 and 0=, /0;. As from the DGP-II in section (3.1.2), X;~ N (0,1) that is
;=0 and o= 1 so u= pu, and g= 0. In the current study, these values are plug-in in
some properties by Robertson and Fryer (1969} and got the following results.

i Z is unimodal distribution if 0 < u < u,, where

1

; 1
_ [2et-02+1)2-206-30%-302+2) |?
Ho=

ol

ii. If 4 > py then ‘2’ is a bimodal distribution also when ‘o’lies in the open
interval (ay, az)as a; < o < a;.

(0% = DY? — u(o? — DY? — 12Y; + po’ = (3.2)

Where

_ 3 Yi—
@ = 1 Tex —sr2+ (54 }frl«(l 2).

a1=[1 4 ——-—exp{““yl z(m:‘)z]]

a = [1 + exp{-—-yz : (”ﬂ“‘)z}]_l

Where ¥; and ¥; are the roots from the following equation,

With0< ¥; <Y, < p, otherwise ‘Z’ is unimodal distribution.

1ii. If 4 < 2 time minimum of (1, g), *Z’ is unimodal distribution.
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Otherwise, u = 37"@ time minimurn of *Z’ is bimodal distribution foray < a < aj.

This study needs any two real roots of (¥, Yz, ¥3) of the ‘¥;;,” cubical equation ignoring
the negative and complex roots because according to the conditions restriction 0< Y; <
Y, < u and set ‘a; < a < a«;’. Then on this way, we try to find for which values of ‘a,

Uz and o,” the distribution is bimodal.

These three conditions are used for getting different values of three parameters (a, y3, 03)
for mixture of normals of bimodal distribution. On the basis of these parameters, this
study further investigates and compares the size and power of four modality tests in

Section 2.3.2 along with the tests and measures of skewness in Section 2.2.1.

3.3.2 Determination of the Size of Bimodality

This study calculates the size of bimodality with the help of definite integrals (i.e.
Trapezoidal or Simpson’s rule). Riemann sums are used to find approximate area divided
into rectangles. But there is low accuracy and Trapezoidal or Simpson’s rule is applied

which divides the area in trapeziums.
3.3.2.1 Trapezoidal Rule

It is difficult to evaluate the integrals through analyticallmethods. For this purpose, a

numerical technique Trapezoidal rule is applied to find the approximate area.
b Ah
fao floydx=—[yo +2(y1 +y2t...... t Yo} T ¥ )] (3.3)

Where a,, by are given limits, but in this situation ay= y; and by= p,, Ah = oo
n
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‘n’ is the number of the sub-intervals or trapeziums of the same length with (n+1) points.

The accuracy increases as the value of ‘n’ increases and *Ah’ decreases.

3.3.2.2 Simpson’s Rule

This is a Newton-Cotes formula to estimate the integral of a function f(x), applying the
second degree polynomials. It is obtained after the integration for ordering three
Lagrange polynomial set the £ (x) on three same distance points. These points are ¥4, ¥2,
y; and the same distance is denoted by ‘h’. Simpson’s rule performs better than the
trapezoidal rule because it is too close to the exact area. Then according to the Simpson's

rule,
b Ah
[ fOOdx=—Ay +4ntys+. Ay ) Y20t yat o yam) t ] (4)

Figure 3.2: Size of the Bimodality within Two Modes
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The size or degree of bimodality is found by using these two rules. The area that occurs
between the two modes was calculated in the distribution through the Simpson’s or
trapezoidal rule. Similarly, space which lies above the distribution directly links the two

modes or peaks as the size of the bimodal distribution. Combination of the area
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calculated from trapezoidal or Simpson’s Rule and size makes a trapezoid. The height of
the first mode= yo, second mode= ym and the height (¥g — ym) is the perpendicular of the
right angle triangle. However, the distance from ‘ag’ to ‘by’ is the length and yn is the
width of the rectangle. The size of bimodality is calculated as the difference between the

area through Trapezoidal or Simpson’s rule and the *area of the right angle triangle.

3.4 Split Sample Skewness Based Boxplot (SSSBB) and its Modification

in case of Bimodality

This new technique was developed by Adil and Zaman (2012) and compared with the
existing outliers detection techniques. They found that the performance of this technique
was very well. In case of outliers detection, a basic issue arises in other techmiques
including Tukey’s technique for outliers detection that increases the boundaries of critical
values ‘cv’ where the data values fall minimum and do not consider the area of the data
values which is highly skewed. This technique covers all these issues and extends

boundaries of the ‘cv’ up to the original position of the distribution.

According to ‘SSSBB’ technique, the whole data series is divided into two portions as
above median and below the median. The whole data limits are (12.5" pqrcentile, 87.5"
percentile) but the Tukey’s technique contains the limits which are restricted only from
the first quartile to third quartile (i.e. 25® 75" percentiles). The summary statistics are
calculated as, for below median Q= first quartile lower (12.5™ percentile), Q3= third
quartile (37.5™ percentile) and IQR; = interquartile range lower. In the same way, above

median Q;g= first quartile upper (62.5" percentile), Q:r= third quartile upper (87.5"

’ Area of the right angle triangle ‘A’= M
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percentile) and IQRg= interquartile range upper. Mathematically interquartile ranges of

both portions are described as,
IQR, = Qs-QuL
IQRg = Qsr— Qir
The two boundaries of the data series ‘L’= Lower ‘cv’ and ‘U’=upper ‘cv’ as,
(L, U)= (Qu— 1.5%IQR., Qs+ 1.5+IQRxr)

The values outside the two boundaries such as (L, R) are called outliers.

Adil and Zaman (2012) also modified ‘SSSBB’, incorporating in Kimber approach

(1990) and Carling (1998).

Modifying SSSBB by using Kimber’s Approach (MSSSBBy) in which,
1QMy =M - Qu,
IQMRr = Qi — Mg,

Where ‘JQM;’ is inter-quartile median on the left side and ‘IQMpg’ is inter-quartile

median on the right side.
Similarly, MSSSBBy has the boundaries (L, U) = (Qi.— 1.5*I1QM, Qir+ 1.5*I1QMg)
Modifying SSSBB by incorporating Carling technique (MSSSBB,) as,

IQRL= Q0.

[@QRr = Qr—C1r
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Here the current study divides the whole data series on cutoff point ‘C’ rather than
median. Also finding quartiles of the left side as ‘from minimum to C* and due to mixing

the quartiles of the right side as “from minimum to maximum” of a bimodal distribution.
This study used Kimber’s approach with slight changes in the fences as,
(L, 0)=(Qu— 15¥IQMr , Qort+ 1.5*IQMp)

The SSSBB technique is used for detection of outliers in case of skewed distribution and

bimodal distribution. This is quite interesting in the case of bimodality.

3.5 Data to be used

In real life, numerous fields such as economics, biological science, social sciences and
physical sciences etc., the data shows unimodality or multimodality.

The current study used the KSE-100 Index return data of Pakistan (2013-2014).
Exchange Rate (ER) annual data series (1961 to 2013) of Sweden, France, Germany, also
consumption and exchange rate quarterly data from 1981-I to 2013-IV of Pakistan, UK,
Fiji, and India. All these are taken from International Financial Statistics (IFS). This
study used sports data of Pakistani cricket players’ career, i.e. Ahmad Shehzad, Shoaib

Malik and Umer Akmal, taken from http.//www.espncricinfo.com (accessed date: 20"

November 2017).
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CHAPTER 4

EXISTENCE OF BIMODALITY AND COMPARISON OF

MODALITY TESTS

In this chapter, bimodality is detected by using bimodality conditions and different
modality tests are compared on the basis of Monte Carlo simulations, size and power.

4.1 Bimodality Conditions and the Existence of Bimodality

This section is based on the DGP-II, i.e. mixture of normal bimodal distribution. Here
Robertson and Fryer’s (1969) conditions are used for checking the bimodality existence,
and for values of the parameters the distribution is bimodal. This study used a mixture of
two distributions, i.e. standard normal X;~N(g,, o7) and normal distribution X;~N(g;,
o%). Putting ;= 0, o= 1 and different values of other parameters (a, iz, o4) thatis @ =
0.1,02,03,....... ,09), u,=(1,2,3,...... ,10) and 6 = (0.1,02,03,....... ,
0.9). For different values of these three parameters (a, 45, o%), getting the below sample
results of unimodality= 0 and bimodality= 1.

Table 4.1: Bimodality Result with Changing of Parameters in a Mixture of Normals

2 1 7 0
3 1 ) 0
4 1 9 0
3 ] 10 0
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Table 4.1 shows that when g; are 2, 3, and 4 and a= 0.1 and o= 0.6, then the
distribution from the mixture of normals is bimodal while for all other u, values with the
same value of « and 04, a unimodal distribution is detected.

After the identification of bimodality in a mixture of normals, the authors get the

following important results:

Table 4.2: Result of the Mixture of N (0, 1) + N (2, 62)

When NO. D= Np,.05)  Results
g, < 0y real and —ve 0,1
g, > 04 complex () always

When o, < ¢; in mixture of normals (i.e. N (0,1) + N (g2, ¢7)), then equation (3.2)
results negative real roots and the distributions identified either unimodal ‘@” or bimodal

“1”. On the other hand, when ¢, > ¢y, then Equation (3.2) results complex roots and ail

results are unimodal.

Tabie 4.3: Resuit of the Mixture of Two Normals

N, 70+ Ny,- 09) Results
g, < 01 Real tve a,1
g, > 04 complex 0 always

When ¢, < ¢, in a mixture of normals (i.e. N (i, 02) + N(u,, 64)), getting both positive
and negative real roots of Equation (3.2), the resultant distribution is detected either

unimodal ‘0’ or bimodal ‘I’. But when o, > gy, then Equation (3.2) results complex
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roots and all results show unimodality. Now the current study displays overall parameters
values which show a bimodal distribution.

Table 4.4: Summary of Parameters Values for Bimodality

1,01-0602 | 2-3,01-04,05 |2-9,01-0207 | 3-4,0607 |2-10,0.1-04,09

1,0.1-09,0.3 |2,05-07,05-06| 27,03,07 |2-10,0.1-0.6,038 3'- 10, 0.5-0.8, 0.9

' 1,05-09,04 | 2-3,03-04,06 | 2-604,07 |3-10,07-0808| 4-10,09,09

01-2,01-04,04 ] 2-4,0.1- 0.2,0.6 . 2-5,0.5,07 5-10,0.9,0.8

Note: 0.1- 0.6 means 0.1,0.2,0.3, ..., 0.6

Table 4.4 shows the combination of those parameters which have bimodality in case of a
mixture of normals while ignoring the values of the parameters that show unimodality.
This study uses all these parameter values to build bimodality distribution to make a
comparison of bimodality tests by using the Monte Carlo simulation method on the basis
of size and power properties of these tests.

4.2 Simulation Based Comparison of Modality Tests

In this section, various modality tests are comyared, (i.e. Dip test, Proportional mass test
(PM), Excess Mass Test (EM), and Silverman Bandwidth Test (SB)). This study
compares all these four modality tests on the basis of the null hypothesis of unimodality
versus alternative hypothesis of bimodality with different sample sizes, (i.e. n= 60, 120,
220, 350). It shows the size and power performances of these tests in different figures.
First of all, this study finding the size of the modality tests through Monte-Carlo

simulations.
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4.2.1 Size of the Modality Tests

As for modality tests the null hypothesis is based upon unimodality and alternate
hypothesis on bimodality in a distribution. Here, simulated critical values are calculated
corresponding to sample sizes in order to stabilize the size of all tests around the nominal
size of 5%.

Figure 4.1: Size of the Modality Tests
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Figure 4.1 describes the Monte Carlo simulation results of the size of modality tests
correspond to various sample sizes. At small sample size (n= 60), the size of all tests
fluctuates around the nominal size of 5% in which minimum size of 4.7% is identified
corresponding to PM test while maximum size of 5.4% is detected for EM test.

As the sample size increases from n= 60 to n= 120, then a similar variation of size for all
tests has been observed as has been shown for n= 60, in which Dip test has achieved a
minimum size of the size 4.8% while PM test has the highest size of 6.1%. Further, as the
sample size gets larger (i.e. n= 220), all four tests (i.e. Dip, EM, PM, and SB) have sizes

between 4.3% and 5.3%. For a very high sample size of n= 350, the Dip test has
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minimum size of 3.2% while the maximum size is observed 4.2% which is the size of the
PM test.
It means that all the modality tests have stable size with 5% nominal simulated critical

values. Therefore, the researchers may compare these modality tests further.
4.2.2 Power based Comparison of Modality Tests

The current study compared four modality tests on the basis of power property
corresponding to sample sizes n= 60, 120, 220 and 350, Figure 4.2 to Figure 4.9 show the
power performance of modality tests with various parameter values.

Figure 4.2: Power of Modality Tests with Parameters (u, o, o2~ (1, 0.6, 0.2)
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Figure 4.2 describes the power behavior of four modality tests with different sample sizes
and parameters values as ;- 1, a= 0.6 and o,= 0.2. At small sample size (i.e. n= 60), all
the four modality tests have gained low power in between 2.8% to 12.4%, in which PM
test has got the least power (i.e. 2.8%) while SB test with 12.4% power is identified as
the powerful test. While increasing the sample size from n= 60 to 120, the three tests (i.e.

Dip, EM, and SB) maintain the same power pattern as has been observed at n= 60. It is
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observed that the PM test has gained a little increase in its power behavior while all other
three tests have remained with the same power pattern as compared to their results at n=
60. Moreover, as the sample size increases from n= 120 to n= 220 and n= 350, Figure 4.2
indicates that PM test with a rapid increasing pattern in its power is identified as the most
powerful test as compared to other three tests. However, among these three least
powerful tests, SB test has a little increase in its power behavior while EM and Dip tests

have the same power pattern at sample size 220 and 350.

Overall, Figure 4.2 concludes that the PM test is the most powerful test as the sample size
increases as compared to all other three tests. SB test with a very little increase in its
power is identified as the second best performing test while EM and dip tests with

constant behavior for overall sample sizes are recognized as bad performing tests.

Keeping i, and o, constant and by changing the selected @ = (0.1,0.2,03, .. .., 0.6),
and also for the case where u; = 1, ;= 0.4 and a= (0.5, 0.6, . . . ., 0.9), the simulated

power results remain approximately same as shown in the above Figure 4.2.

Figure 4.3: Power of Modality Tests with Parameters (u;, @, ¢3) = (1, 0.8, 0.3)
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The above Figure 4.3 shows the power results of modality tests with parameters values
which are u,= 1 a= 0.8 and g,= 0.3. At sample size (i.e. n= 60) all the four modality
tests have gained low power in between 2.8% to 12.4%, in which PM test has got the

least power (i.e. 2.6%) while SB test with 13% power is identified as the powerful test.

When increasing the sample size as n= 120, the three tests (i.e. Dip, EM, and SB) have a
minimum increase in the power. It is notified that the PM test has increased its power
behavior (i.e. power= 57%). When the sample size increases from n=120 to n=220 and
n= 350, Figure 4.2 indicates that the PM test with a rapid increasing pattern in its power
(i.e. at n= 220 the power is 58% and at n= 350 the power moves to 100%) has been
identified as the most powerful test as compared to other three tests. However, among
these three least powerful tests, EM test has a little increase in its power behavior (i.e.
Power reaches to 20% on n= 350) while SB and Dip tests have same low power pattern at

sample size 220 and 350.

Overall, Figure 4.3 results that the PM test is the most powerful test when the sample size
increases as compared to all other three tests. EM test with a very little increase in its
power is identified as the second best performing test while SB and dip tests with
constant behavior over all sample sizes are recognized as bad performing tests. Similarly,
keeping p, and g, constant and by changing the particular a= (0.5, 0.6, 0.7, 0.9), the
simulated power results remain approximately the same as shown in the above Figure

4.3.
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Figure 4.4: Power of Modality Tests with Parameters (u; a, ¢2)= o, 0.2, 0.7)
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Figure 4.4 describes the power of all the modality tests at different sample sizes and the
parameters values (i.e. #;=9 a= 0.2 and ¢,= 0.7). When sample size (i.e. n= 60) all the
three modality tests have high powers (i.e. Dip= 80%, SB= 100%, EM= 85%), but PM
test has got the low power (i.e. 6.7%). So SB test with high power is identified as the
powerful test. At sample size n= 120, the two tests (i.e. Dip and EM) power moves to
99%. Again, SB test is identified as a high powerful test and PM test has low power (i.e.

9%).

As the sample size increases from n= 120 to n= 220 and n= 350, Figure 4.4 indicates that
PM test with a slowly increasing pattern in its power (i.e. reaches to 20%) is identified as
the lowest power test as compared to other three tests. It is observed that the other three
tests (i.e. Dip, SB and EM) maintain the same power pattern as has been detected at n=

120.
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It means Figure 4.4 implies that the SB test is the most powerful test as the sample size
increases as compared to all other three tests. Moreover, Dip and EM test with an equal
increase in its power, are identified as the second best performing tests while PM test

with low power behavior at overall sample sizes is recognized as bad performing test.

The results of the above Figure 4.4 remain the same while keeping a= 0.2 and ;= 0.7

constant and changing p;, as (7 or 8).

Figure 4.5: Power of Modality Tests with Parameters (i, a, o= (6, 0.4, 0.7)
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Figure 4.5 describes the power behavior of four modality tests with different sample sizes
and parameters values as ytp= 1 a= 0.6 and o= 0.2. At small sample size (i.e. n= 60), the
three modality tests (i.e. Dip, EM, and SB) have gained a high probability of accepting

bimodality near 100%. From this result, both SB and EM test are the most powerful tests
while the PM test has less power (i.e. 43%).

As increasing the sample size from n= 60 to 120, the three tests (i.e. Dip, EM, and SB)

have also increased their power and reached to 100% and it is observed that PM test has
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gained a little increase in its power behavior equal to 50%. Moreover, as the sample size
increases from n= 120 to n= 220 and n= 350, Figure 4.5 indicates that PM test with rapid
increasing pattern in its power is identified as 96% and moves to 100% in case of n= 350

while the other three tests (i.e. Dip, EM, and SB) have high power equal to 100%.

Overall, Figure 4.5 concludes that all the tests have high power at high sample sizes. But
at a small sample, the PM test has low power which is bad performing test. In this case,
for changing ‘a’ to 0.5 and keep the same values for other parameters, then the results

remain same as shown in the above Figure 4.5.

Figure 4.6: Power of Modality Tests with Parameters (u;, @, o2)= (8, 0.3, 0.8)
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The above Figure 4.6 shows the power result of DGP-II mixture of normal where
parameters are ;= 8, a= 0.3 and = 0.8 at various sample sizes. For small sample size
n= 60, the three modality tests (i.e. Dip, EM, and SB) have been observed high power. It
is identified from the result of this sample size that both SB and EM tests have high

power (i.e. 97.3%) while the power of Dip test is detected as 92.3% and PM test has less
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power (i.e. 57.3%). At sample size n= 120, the three tests (i.e. Dip, EM, and SB) have
high power equal to 98% but the power of EM test increases (i.e. 74.4%). As the sample
size increases from n= 120 to n= 220, Figure 4.6 indicates that PM test with increasing
pattern in its power from 74.4% to 79.9%, while the power of other three tests (i.e. Dip,
EM, and SB) reaches to 100%. At n= 350 the three tests (i.e. Dip, EM, and SB) maintain
the same power pattern as has been observed at n= 220 while it is observed that PM test

has gained a high increase in its power behavior moves to 97%.

Overall, Figure 4.6 concludes that SB and EM tests are the most powerful tests at all
samples as compared to other two tests. Similarly, PM test with a fluctuation in its power
is identified as the bad performing test in this type of situation. Keeping a and o
constant and by changing u, as (7 or 9), the results of the above Figure 4.6 remain
approximately the same. Also for the case wherea = 0.7, g;= 0.8 and p5= (5, 6, 7, 8§,

9), the simulated power results remain unchanged.

Figure 4.7: Power of Modality Tests with Parameters (n:, a, oz)= (7, 0.9, 0.8)
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Figure 4.7 describes the power results of four modality tests while changing the
parameters g, = 10, = 0.7 and g,= 0.8 in DGP-H for various sample sizes. When sample
size is small (i.e. n= 60), the three tests (i.e. Dip, PM and EM) have low power ‘between
10.7% and 25% while SB is observed as a most powerful test with the power of 97.5%.
At sample size n= 120, the three tests (i.e. Dip, PM, and EM) have power increased and
power of PM test is identified as 63.8%. Again, SB is the most powerful test with power
98.3% while EM test with low power at 48.3%. As the sample size increases from n= 120
to n= 220 and 350, Figure 4.7 indicates that SB test maintains its supremacy and its
power reaches to 100% while the power of all other three tests also increases (i.e. PM=
63%, Dip and EM= 94% each). Hence, PM test is detected as the least powerful test.
Result of Figure 4.7 implies that SB test is the most powerful test at all sample sizes as
compared to other three tests while PM is bad performing test in most sample sizes. The
results remain same of the above Figure 4.7 while keeping the parameters values a= 0.9,
g,= 0.8 constant and changing p.= (8, 9, 10). Also, the results remain unchanged when

the parameters values are a= 0.9, g,= 0.9 fixed and changing u,=(7, 8, 9).
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Figure 4.8: Power of Modality Tests with Parameters (n;, a, a2)= (10, 0.2, 0.9)
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Figure 4.8 describes the power of all the modality tests at different sample sizes and the
parameters values (i.e. g,= 10 a= 0.2 and g,= 0.9). With sample size n= 60 all the three
modality tests have high powers (i.e. Dip= 86%, SB= 97.1%, EM= 85.8%), but PM test
has got the low power (i.e. 20.4%). So SB test with high power is identified as the
powerful test with the power 96%. At sample size n= 120, the two tests (i.e. Dip and EM)
power move to 98%. Again SB test is identified as a high powerful test and PM test has
low power (i.e. 24.8%). As the sample size increases from n= 120 to n= 220 and n= 350,
Figure 4.8 indicates that PM test with a siowly increasing pattern in its power (i.e.
reaches to 35%) is identified as the lowest power test as compared to other three tests. It
is observed that the other three tests (i.e. Dip, SB and EM) maintain the same power

pattern (i.e.100%) as have been detected at n= 120,

Overall, Figure 4.8 concludes that the SB test is the most powerful test as the sample size
increases as compared to all other three tests. Moreover, Dip, and EM test with an equal

increase in its power, are identified as the second best performing tests while PM test
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with low power behavior at overall sample sizes is recognized as bad performing test.
Keeping = 0.2 and o,= 0.7 constant and changing i, as (8 or 9), the results of the above

Figure 4.8 remain the same.

Figure 4.9: Power of Modality Tests with Parameters (2, a, o2)= (7, 0.6, 0.9)
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Figure 4.9 shows the power behavior of four modality tests with different sample sizes
and parameters values as y,="7 a= 0.6 and ;= 0.9. At small sample size (i.e. n= 60}, the
three modality tests (i.e. Dip, EM, and SB) have gained a high probability of accepting
bimodality near 100%. From this result, SB test is the most powerful test while the PM
test has less power (i.e. 33.2%). As increasing the sample size from n= 60 to 120, the
three tests (i.e. Dip, EM, and $B) have also maintained their power and it is observed that
PM test has gained an increase in its power behavior equal to 53.3%. Moreover, as the
sample size increases from n= 120 to n= 220 and n= 350, Figure 4.9 indicates that all the

modality tests (i.e. Dip, EM, and SB) have high power equal to 100%.
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Overall, Figure 4.9 concludes that the SB test has high power at various sample sizes. But
at a small sample, the PM test has low power which is bad performing test. Keeping a=
0.6 and g,= 0.9 constant and changing y, as (5, 6, 8, 9 or 10), the results of the above
Figure 4.9 remain approximately the same.

4.3 Chapter Summary

Using Robertson’s and Fryer's (1969) bimodality conditions for the detection of
bimodality framework is presented in this chapter. The mixture of two normal
distributions such as standard normal X;~N(u,, of) and normal distribution X ~N(yz,
o#) with mixing propottion ‘a’ was used as a DGP.

From the above analysis of Section 4.1, it is concluded that when o, < o7 in the mixture
(one standard normal and second normal), then the result becomes negative real roots of
Equation (3.2) and the distributions detected either unimodal ‘0’ or bimodal ‘1’. In the
situation when g, > o, then Equation (3.2) results as complex roots and all other results
show that the mixture is unimodal. When o < oy in a mixture of two normal
distributions, then Equation (3.2) results both positive and negative real roots where the
distributions are identified either unimodal ‘0’ or bimodal ‘1°. But when o, > ¢y, then
Equation (3.2) results complex roots and all results show unimodality. However, to get a
bimodal distribution the detailed combinations of the parameters are shown in Table 4.4.
Using these parameter values, the size and power of modality tests are calculated.
According to the 5% nominal simulated critical values, all the selected modality tests
have stable sizes.

In power comparison, keeping the mean fixed pp= 1 and increasing the other two

parameters of the mixture, the PM test has comparatively high power. As increasing the
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mean and different values of the other two parameters, all the tests performed well,
except PM test which has low power. For further changes in these parameters values, the
power of Silverman test is very high which states that this is the robust and powerful test

while the PM test is recognized as bad performing test.
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CHAPTER 3

NEWLY INTRODUCED MEASURE OF SKEWNESS ON

THE BASIS OF P-NORM

Any measure which is equal to zero for a skewed distribution is not considered as a good
measure. All of the existing standard measures have this property. There are skew
distributions for which the skewness measure is zero. Therefore the measure says there is
no skewness when the distribution is, in fact, a skewed distribution. By symmetrizing the
data set around the median, then measure the distance between the symmetrized
distribution and the original distribution, we get a measure of skewness. Based on this

idea, this study introduced and used this new proposed measure.

This chapter explains the procedure of newly introduced measure and its preference over
existing measures about the detection of skewness. This chapter also discusses the
advantages of measure P-norm (P,m) and highlights the comparison on real data sets of

this measure with other measures of skewness.

5.1 Procedure of New Measure of Skewness P-norm

This measure is based on P-norms or ‘L’ and cumulative distribution function *F (x)’ of
a distribution. First of all, a data series have to be symmetrized around the median and
then measuring the distance between the symmetric cumulative distribution ‘CDF= F(x)’
and the original data ‘CDF= F(x;)’. After calculating the absolute difference of these
two CDFs the P-norms (Lo, L; and L, while p= 0, 1, 2) can be found in the following
way;

Lo=1IF (x) = F(x1)|lo = SupiL, |F (x) — F (x1)] (5.2)
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Li= | F(x) = F)ll= Eiey [F () = F (x| (53)

Ly =IF () = F(x)= (St [FG0) — PG IPTE 5.4)

Figure 5.1: CDFs of a Data Series
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Figure 5.1 shows the two CDFs as the CDF for original data and CDF for symmetrized
data. The distance between two CDFs displays the measure of skewness which is
measured through Pgom. Furthermore, when a line of original CDF is above the
symmetrized CDF, this shows the negatively skewed property. But when the line of
original CDF is below the symmetrized CDF this means that the distribution is positively

skewed. In case of a small or negligible difference, there is no skewness.

There are so many forms of norm and different names such as Euclidean distances and
also Ly, L, are natural norms and L; is called standard norm. These are three measures
through which we decide whether the distribution is skewed or not. If all of these or at

least two of them will equal to zero then the distribution is symmetric otherwise skewed.
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This study introduced and used a new measure, and this is the only measure for which all

skewed distributions have non-zero measures.

5.2 Advantages of Measure P-norm over Existing Techniques

This new measure P-norm has several advantages over the existing measures of skewness

which are given below:

i. Exact/Correct Measurement in each Case

This measure shows the exact measurement in case of skewed and symmetric

distributions. But the existing measures sometimes give a false alarm about the skewness.

ii. Based on each Observation

Most measures have used some specific values of data set to find skewness. This new

measure includes all of the observations 1o detect skewness.

iii. New way/approach with Graphical Manipulation

Along with a numerical measure, this new technique also describes a clear picture on the
graphical representation. According to this measure, the difference between the two

CDFs shows the skewness of a distribution.

iv. The Efficient Result in the Presence of Outliers

Most measures of skewness divert their result opposite with the addition of outliers in a
data. But the advantage of this new measure Ppom results separately in original format

with or without outliers.
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5.3 Highlighting New Measure with the Existing Technique
With the help of some real data sets, the properties of newly introduced measure are

highlighted with other classical measures of skewness.
Figure 5.2: Skewness Measure of Akmal ODI Scores
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For cricket data of Umer Akmal ODI scores, the measures skewness-1, skewness-2,
SSSB and standardized moment show that the series is highly positively skewed. But
according to the Pearsonian coefficient and med-couple, the data series is nearly
symmetric. This new measure P, describes that the data series is highly positively
skewed. The above Figure 5.2 clearly shows the high difference between the two CDFs,
which is calculated through Po,m. Therefore, the new measure is also useful to elaborate

the skewness graphically.
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Figure 5.3: Skewness Measure of Shafiq T20I Scores
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In this example of Asad Shafiq T20I scores, the measures of skewness-1, skewness-II and
SSSB show that the series is highly positively skewed. But according to the Pearsonian
coefficient, standardized moment and med-couple results, the data series is nearly
symmetric. The measure P,om describes that this data series is highly positively skewed.
The above Figure 5.3 also shows the high difference between the two CDFs, which is
calculated through Ppom. It means that the existing measures describe various results in

different situations as compared to the proposed measure, 1.€. Prom.
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Figure 5.4: Skewness Measure of Numbers from (—25 to 25)
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The above Figure 5.4 describes the CDFs difference which is approximately zero. It
means that the series of 51 observations from (—25 to 25) is symmetric. According to all

other measures, the result remains same.

Figure 5.5: Skewness Measure of Numbers with the Addition of Outlier from (—25

to 60)
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When replaced a number i.e. ‘0" with an outlier ‘60, we get various results in Figure 5.5.
The measures SSSB and SM still show the same result that the data is symmetric while
Skewness-1 and Skewness-2 show asymmetric. But the measures Pearsonian and Med-
couple result that this series is negatively skewed. Actually, the series shifted to the
positively skewed with the addition of outliers. When replacing the outlier as *— 60’, then
only the three measures i.e. standardized moment, Pearsonian and P,y results show that
this series is negatively skewed. It means that the new measure Poorm perform well in the

presence of outliers as compared to other measures.
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CHAPTER 6

COMPARISON OF VARIOUS MEASURES AND TESTS
FOR SKEWNESS

In this chapter, the study compared different measures of skewness (i.e. Pearsonian
Coefficient (Prs), Standardized Moment (SM), Med-Couple (MC}, Spilt sample
Skewness Boxplot (SSSB), Skewness-1 (Skwl), Skewness-2 (Skw2) and newly
introduced measure P-Norm (Ppom)) and skewness tests (i.e. Kolmogorov-Smirnov (KS)
test, Student’s t-test, Wilcoxon (WC) test). The comparison is based on the testing
hypothesis of symmetry and asymmetry with different sample sizes as (i.e. n= 60, 120,
220, 350).

6.1 Size of the Measures and Tests for Skewness

Here, simulated critical values are used to check the size of all considerable measures,
and tests of skewness have stable sizes around 5%.

Figure 6.1: Size of Measures and Tests for Skewness
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Figure 6.1 describes the Monte Carlo simulation results of the size of measures and tests

for skewness corresponding to various sample sizes. At small sample size (n= 60), the
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size of all measures and tests fluctuates around the nominal size of 5% in which
minimum size of 3.7% is identified corresponding to measure Skw| while maximum size
of 6.1% is detected for measure Prs. As the sample size increases from n= 60 to n= 120,
then a similar variation of size for all tests has been observed as has been shown for n=
60 in which measure Skw, has achieved a minimum size of the size 3.1% while t-test has
the highest size of 6.3%. Further, as the sample size gets larger (i.e. n= 220), all the
measures (i.e. Prs, SM, MC, Pyom, SSSB, Skw and Skw;) and tests (i.e. KS, WC, t-test)
have sizes in between 3.8% to 5.7%. For a very high sample size of n= 350, the measure
SSSB has minimum size of 4.1% while the maximum size is observed 6.1% which is the
size of the KS test.

Overall, Figure 6.1 concludes that all the measures and tests for skewness have stable size
with 5% nominal simulated critical values. Therefore, these measures and tests can be
compared further on power behavior.

6.2 Power of the Measures and Tests for Skewness

This section contains the power comparison of the various measures and tests for
skewness. The comparison is made on the basis of Monte Carlo simulations with their
size MCSS= 5000 times. The skewness test consists of the null hypothesis that there is no
skewness. In the following Figure 6.2 to Figure 6.11 the power of the tests is plotted on

the y-axis and the sample size is adjusted on the x-axis.
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Figure 6.2: Power of Log-Normal Distribution with Mean= 0 and SD=0.5
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The above Figure 6.2 shows the power of various measures and tests of skewness using
the DGP-I of log-normal distribution with parameters (0, 0.5). At sample size n= 60, the
power of measures (i.e. MC, Prs, SSSB) and tests (i.e. WC, KS) are low and below 50%.
But other measures (i.e. Skw, Skwz, SM, Pnom) and t-test have high power nearly 100%.
Also, it is observed that the WC test is detected as the least powerful test while Skws is
the most powerful measure among all measures and tests. Moreover, measures Py, and

SM with power over 90% are also very close to the power of Skw. measure.

‘As the sample size increases from n= 60 to n= 120, then again WC with 62% power is

detected as the least powerful test; while at the same sample size, all measures and tests
behave very similarly. Now measure Skw, has achieved high power along with Pyom and
Skw;. Also, at sample size n= 120, KS test has achieved much better power then these
two measures (i.e. Prs and SSSB), because at sample size n= 60, its power was less as
compared to these two measures. As the sample size further increases from n= 120 to

220, the majority of the measures and tests achieve maximum power (i.e. 100%) while
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WC with increasing pattern again remains the lowest powerful test. At sample size n=
350, all measures and tests achieve approximately 100% power while WC has achieved
maximum power (i.e. 96%). But again, WC test remains the least powerful test even
though its power is very close to 100%. In ali cases for which the sample size is greater
than 120, the performance of measures (i.e. Skwy, Skwa, SM and Pyom) have power
approximately 100% on this DGP.

Figure 6.3: Power of Log-Nermal Distribution with Mean= 6, SD=3
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Figure 6.3 describes the power of different measures and tests of skewness using the
DGP-1 of log-normal distribution with parameters (6, 3). At sample size equal to 60, the
measures (i.e. Skw|, Skwz, SM, Ppom) and tests (i.e. KS, WC) have high power which is
100%, while it is observed that t-test is detected as the least powerful test with 48.1%
POWET.

As the sample size increases from n= 60 to n= 120, then the power of MC increases up to

100%. So again the measures (i.c. Skw;, Skwa, SM, MC, P,m) and tests (i.e. KS, WC)
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have high power. In this case, the power of t-test also increases to 63.1% but remains the
worst test. At sample sizes (i.¢. n= 220 and 350), the measures (i.e. Skwy, Skwa, SM, MC
Poorm) and tests (i.e. KS, WC) have maintained the same results and identified as most
powerful tests. But t-test with increasing power pattern reaches to 80.6% is still a low
power of the test.

Overall, Figure 6.3 concludes that at various sample sizes, it is observed that the
measures (i.e. Skwy, Skw;, SM, MC, Pyom) and tests (i.e. KS, WC) have high power
while t-test is identified the least powerful test. Furthermore, for changing the parameters
mean and SD that is (2, 1) and (4, 1.5), the result approximately remains the same. It
means that in case of log-normal distribution, most measures and tests show that the
distribution is skewed with higher frequencies.

Figure 6.4: Power of Chi-Square Distribution with Parameter v=1
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Results of the above Figure 6.4 describe the power of DGP-I wsing Chi-square
distribution with degree of freedom as a parameter (i.e. v= 1). At small sample size n=

60, the measures (i.e. Prs, Skwi, Skwz, SM, SSSB, Puom) and tests (i.e. KS, t) have high
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power round about 100% while WC test is the least powerful test with 90% power. As
sample size increases, all the measures and tests perform well with the highpower of
approximately 100%.

Figure 6.5: Power of Chi-Square Distribution ‘df’ v=8
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Figure 6.5 shows the power of different measures and tests of skewness using the DGP-I
of Chi-square distribution with ‘df” v= 8. At small sample size as n= 60, the measure
Puorm has high power as compared to other measures and tests of skewness while KS test
has low power ie. 25.2%. Also measures Skw; and Skw> have high powers close to
Puorm. It is observed that the KS test is detected as the least powerful test while Pnom is the
most powerful measure among all measures and tests.

As the sample size increase from n= 60 to n= 120, then WC with 41.7% power is
detected as the least powerful test; while at the same sample size, all measures and tests
have increased power. Now measures Skw; and Skw; have achieved high power along

with Poom. Also, at sample size n= 120 KS test has achieved much better power than
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these two measures MC and WC test, because at sample size n= 60, its power was less as
compared to these two tests.

As the sample size further increases from n= 120 to 220, the majority of the measures
(i.e. SM, Poorm, Skwy, and Skw2) achieve maximum power (i.e. 100%), while WC with
increasing pattern again remains the Jowest powerful test. At sample size n= 350, the
measures (i.e. Prs, SM, Pyom, Skw; and Skw2) and tests (KS, t-test) have power
approximately 100% while WC has achieved maximum power (i.e. 82.2%). But again
WC test remains a least powerful test even though its power is increased. In all cases of
sample size, the measure Py has power equal to 100% on this DGP.

Figure 6.6: Power of Chi-Square Distribution with ‘df’ v= 16
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Results of the Figure 6.6 show that for increasing the degree of freedom of Chi-Square
distribution in DGP-I, then the power of some measures and tests decreases. When
sample size is n= 60, the measures (i.¢. SSSB, MC) and tests (i.e. WC, KS) have very

low power around 15%, also measure Prs and t-test has power around 30%. Further, it is

77



q

observed that the KS test is detected as the least powerful test while Prom is the most
powerful measure among all measures and tests.

At sample size n= 120, KS test has achieved much better power than measure MC and
WC test, because at sample size n= 60, its power was less as compared to these two tests.
Again, measure Py is detected as the most powerful measure while MC is observed as
the least powerful measure. As the sample size further increases from n= 120 to 220, the
majority of the measures (i.e. SM, Skw; and Skw) achieve maximum power nearly
100% while WC with increasing pattern remains the lowest powerful test and both Prom
and Skw,; are most powerful measures. At sample size n= 350, the measures (i.e. SM,
Skw; and Skw.) achieve high power equal to 100% while WC has achieved maximum
power (i.e. 55.2%) and again this test remains the least powerful test.

Overall, it seems from Figure 6.6 that the measure Ppom is most powerful measure while
WC is the least powerful test as compared to other measures and tests.

Figure 6.7: Power of Chi-Square Distribution with ‘df’ v=24
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Results of the Figure 6.7 show that for increasing the degree of freedom (i.e. V=24) of
Chi-Square distribution in DGP-1, then the power of some measures and tests decreases
as compare to Figure (6.6). At sample size n= 60, the measures (i.e. 855B, MC) and tests
(i.e. WC, KS) have very low power around 13%, also measure Prs and t-test has power
around 25%. Also, it is observed that measure MC is detected as the least powerful
measure while Ppom is the most powerful measure among all measures and tests.

At sample size n= 120, power of most measures and tests increases and again measure
Poom is detected as the most powerful measure while MC is observed as the least
powerful measure. As the sample size further increases from n= 120 to 220, the majority
of the measures (i.e. SM, Skw; and Skw:) achieve maximum power around 90% while
WC with increasing pattern remains the lowest powerful test and both Pyomy is identified
as the most powerful measure. At sample size n= 350 the measures (i.e. SM, Skw, and
Skw,) achieve high power equal to 99% while MC has achieved maximum power (i.e.
38.3 %) and again this measure remains the least powerful measure.

Overall, Figure 6.7 concludes that the measure Pyom, is the most powerful measure while

MC is the least powerful test as compared to other measures and tests.
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Figure 6.8: Power of Beta Distribution with Parameters (a, b)= (2, 15)
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Above Figure 6.8 shows the simulation results of DGP-I Beta distribution with
parameters (a, b) = (2, 15) for various sample sizes. Clearly looking at the figure that
some measures (i.e. Skwy, Skw;) and tests (i.e. WC, t, KS) have very small powers as 5%
to 10% but the power of measures Puom and SM are so high which is approximately
100% in all cases of sample sizes. At small sample n= 60, it is observed that WC test is
detected as the least powerful test while Pyom is the most powerful measure among all
measures and tests.

As the sample size increases from n= 60 to n= 120, then again WC test is detected as the
least powerful test while measures (i.e. SM and Pyom) are the most powerful measures. At
sample size n= 220, the majority of the measures and tests achicve maximum power (Le.
nearly 100%) while WC test remains the lowest powerful test, and measures (i.e. SM and
Poos) have high power as compared to other measures and tests. As the sample size
further increases from n= 220 to 350, then measures (i.e. SM, Prs, SSSB and Puorm)

achieve high power and WC test has low power.
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Overall, from Figure 6.8, it is observed that measures SM and P.,m have high power
while WC test has low power at various sample sizes. Furthermore, the results remain the
same as Figure 6.8 by changing the values of parameters (2, 30) and (4, 30) for the same
distribution.

Figure 6.9: Power of Beta Distribution with Parameters (a, b)= (4, 15)
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Figure 6.9 describes the simulation result of DGP-I (i.e. Beta distribution with parameters
(a, b) = (4, 15)) for various sample sizes. At small sample size (i.e. o= 60), most measures
and tests have gained low power in between 5% to 20%, in which WC test has got the
least power (ie. 2.7%), while measure Pyom with 100% power is ‘identiﬁecl as the
powerful test.

As increasing the sample size from n= 60 to 120 and 220, the measures (i.e. SM, Prs, MC
and SSSB) have increasing power pattern as compared to at n= 60. Again, new measure
P.om is Observed as a high powerful measure while WC test has low power. Moreover, as
the sample size increases from n= 220 to n= 350, Figure 6.9 indicates that measures (i.e.
SM, Prs, MC and SSSB) have gained an increase in their power behavior while it is
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observed that SM and P, are more powerful measures and again WC is the least
powerful test.

It seems from the Figure 6.9 that power of all the measures increases while all the tests
maintain the same power for various sample sizes. Similarly, the simulated power results
remain the same approximately as shown in the above Figure 6.9 by changing the
parameters (a, b) = (6, 30).

Figure 6.10: Power of Beta Distribution with Parameters (a, b)= (8, 15)
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The above Figure 6.10 shows the simulations result that as we increase the parameter ‘a’
the power of measure Ppom remains high as compared to other measures and test;s while
all other measures and tests have low power between 10% to 40% for various sample
sizes. It means that in Figure 6.10, measure Ppomm is the most powerful measure while WC

test is the least powerful test.
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Figure 6.11: Power of Beta Distribution with Parameters (a, b)= (6, 15)
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Figure 6.11 describes the simulation results of DGP-I of Beta distribution with
parameters (a, b) = (6, 15) for different sample sizes. At small sample size n= 60, all the
measures and tests have low powers between 5% and 12.3% except the power of measure
Poorm Which is equal to 100%. It is identified that measure P, is most powerful measure
while WC is the least powerful test. At increasing sample size n= 120 and 220, the power
of measures (i.e. SM, MC, SSSB and Prs) have increasing power pattern while other
measures and tests maintain the same power as compare to their results at n= 60. At
sample size n= 350, the measure Prs has the power 43% and measure SM power is
observed as 82%. But again, Pyom has high power while WC has low power as compared
to all measures and tests of skewness.

Overall, Figure 6.11 concludes that Py, is the most powerful test while WC is the least
powerful test. Moreover, Figure 6.11simulated power results remain approximately the

same by changing the parameters (a, b) = (4, 30) or (8, 30).
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6.3 Chapter Summary

In this chapter, various measures and tests for skewness are compared on the basis of
simulation results of size and power. First, to make power comparison logically possible,
this study stabilized the size around the nominal size of 5% of all measures and tests by
using simulated critical values. Figure 6.1 has concluded that all the measures and tests
for skewness including the new measure of skewness Pporm have stable sizes. Therefore,
these measures and tests for skewness are compared on the basis of power.

It is concluded that when DGP-I of log-normal distribution with parameters mean= 0 and
SD= 0.5 is used, and then the measures (i.e. Skw,, Skw; and Pp,m) have high power as
compared to other measures and tests. Similarly, as the parameter values increase in the
same DGP, then the power of all the measures and tests of skewness also increases.
Figure 6.2 to Figure 6.3 conclude that measures (i.c. Skw;, Skw2 and Prom) have high
power while WC test has low power.

When DGP-I of Chi-square distribution with parameters v= 1 is used then all the
measures and tests of skewness have high power. Similarly, as the parameter values
increase (i.e. v= 8) in the same DGP, then the power of the measures (i.e. Skw,, Skwa,
SM and Ppom) also increases. Moreover, if the parameter values increase from v=1 to 16
and 24, all the measures and tests have low power while the measure P, has high
power approximately 100%.

1t is also concluded that when DGP-I of the beta distribution with parameters (a, b)= (2,
15), then the measures Prs, SM and P, have high power. As parameter value increases
from (a, b= (2, 15) to (a, b)= (4, 15), then only measure P, has high power as

compared to all other measures and tests. Further, as the values of parameter *a’ increase
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to 6 or 8, then all the measures and tests have low power but the measure Prom has high
power (approximately 100%). Similarly, for increasing the second parameter °b’, the
result remains same which has been observed for the change of value corresponding to
the parameter ‘a’.

Overall, Figure 6.2 to Figure 6.11results show that the performance of the new measure
(i.e. Paorm) is Obviously very well. Therefore, this measure is best as compare to all other

measures and tests of skewness.
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CHAPTER 7

SIZE OF BIMODALITY

This chapter has discussed the size of the bimodality. The size of bimodality shows the
distance between the two modes or two peaks of a bimodal distribution. This distance 1s
calculated through analytical integrals, i.e. Trapezoidal and Simpson’s rules (see details
in Section 3.4.2). For this purpose, Table 4.4, the mixture of normal distributions is used
with those values of parameters which show bimodality. Here, this chapter checks that on
which parameter values the size of bimodality increases or decreases.

Figure 7.1: Modes in a Bimodal Distribution

Probabality
P

o3} ]

.29

G2

O. 18

o
&

- -3 -z -0 1 2 3 4 5 F3
Chservations i intervals

The above Figure 7.1 describes the two modes or peaks of a bimodal distribution where
the distance between these modes is called the size of the bimodality. The size is affected

by the values of the three parameters of bimodal distribution which are explained below:
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7.1 Size of Bimodality w.r.t Changing Parameters of Bimodal

Distribution

This study used mixture of normals with the changing of the values of three parameters to

check the variation in size of bimodal distribution.
7.1.1 Changing Mean ‘n,’ in a Mixture of Normals

In this case, mean ‘g’ is changed while keeping the other parameters (i.e. &, g2) constant
in DGP-II. The following results of Figure 7.2 to Figure 7.5 show the size of the
bimodality.

Figure 7.2: Size of the Bimodality with Various Values of ‘p,’ and Fix ¢=90.1, 6,= 0.7

0.8
0.7
0.6
0.5
04

0.3

Size of bimodality

0.2

0.1

Mean

Figure 7.2 describes the size of the bimodality by using Trapezoidal rule for various
values of u,=(2,3,. . . ., 7)and a=0.1, 6, = 0.7. From Figure 7.2, it is observed that
at it,= 2 the size of the bimodality is 0.04, which is the lowest size. However, as y, value
increases to 3, then the size of the bimodality increases to 0.11. Further, as u,= 4, then

the size of the bimodality moves to 0.27, which is the higher value of the size of
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bimodality as compared to the previous two values. At i,= 5, the size of the bimodality
also increases to 0.43. Moreover, as i, value increase to 6 and 7, then from Figure 7.2, it
is observed that the size of the bimodality moves to its highest values (i.c. at it,= 6 the
value is 0.59 while g,= 7 the value is 0.75). Hence, it is observed that as the mean value
increases, the size of the bimodality also increases if the vaiues of the other parameters
remain the same (i.e. a=0.1, 5, = 0.7).

Figure 7.3: Size of Bimodality with Different values of ‘p;’ and Constant a= 04, 0=
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The above Figure 7.3 represents the size of the bimodality by using Trapezoidal rule for
the values of parameters a= 0.4, ¢, = 0.7 and different values of = (2,3, .. .., 6).
From Figure 7.3, it is observed that at u;= 2, the size of the bimodality is 0.29, which is
the highest size. However, as p, value increases to 3, then the size of the bimodality
drops to 0.8. Further, as u, value increases to 4, then the size of the bimodality moves to
0.25. This is the lower value of the size of bimodality as compared to the previous two

values. Moreover, as p, value increases to 5 and 6, then from Figure 7.3, it is observed
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Size of birhodality

that the size of the bimodality drops to its lowest values (i.e. at u;= 5 the value is 0.21
while y,= 6 the value is 0.15). Hence, it is observed that as the mean value increases, the
size of the bimodality decreases if the values of the other parameters remain the same
(ie.a=04,0;, = 0.7).

Figure 7.4: Size of Bimodality with Different values of ‘p,’ and IVix a= 0.4, ;= 0.8
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Figure 7.4 describes the size of the bimodality by using various values of u,=(2,3,. . .,
9) and a= 0.4, g, = 0.8 It is detected that at u,= 2, the size of the bimodality is 0.33,
which is the highest size. As y, value increases to 3, then size of the bimodality decrease
to 0.31. However, as u,= 4, then the size of the bimodality drops to .28. At u,= 35, the
size of the bimodality also decreases to 0.24. Further, as u, value increases to 6 and 7,
then from Figure 7.4, it is observed that the size of the bimodality drops (i.e. at p,= 6 the
value is 0.2 while y,= 7 the value is 0.16). Similarly, as u, value increases to 8 and 9,
then it is identified that the size of the bimodality moves to its lowest values (i.e. at g,= 8

the value is 0.12 while u,= 6 the value is 0.08). Hence, it is observed that as the mean
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value increases, the size of the bimodality decreases if the values of the other parameters
remain the same (i.e. a= 0.4, 0, = 0.8).

Figure 7.5: Size of Bimodality with Different Values of ‘n,’ and Fix a= 0.3, 6= 0.9
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The above Figure 7.5 shows the size of the bimodality for different values of the
parameter (,= (3, 4, . . . . ,9) and constant parameters a=10.3, 5, = 0.9. It is observed that
at u,= 3, the size of the bimodality is 0.02, which is the lowest size. However, as u;
value increases to 4, then the size of the bimodality increases to 0.18. Further, as ¢, value
increases to 5, then the size of the bimodality moves to 0.34. This is the higher value of
the size of bimodality as compared to the previous two values. At u,= 6, the size of the
bimodality increases to (.5 while p,= 7 the size of the bimodality reaches to 0.66.
Moreover, as y, value increases to 8 and 9, then from Figure 7.5, it is observed that the
size of the bimodality moves to its highest values (i.e. at pp= 8 the value is 0.82 while
t>=9 the value is 0.98). Hence, it is observed that as the mean value increases, the size of

the bimodality also increases if the values of the other parameters remain the same (i.e.

a=03,0; =0.9).
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It implies that by using Trapezoidal rule for finding the size of bimodality, as a parameter
15 increases, the size of the bimodality also increases except at a= 0.4,

7.1.2 Changing Mixing Proportion Alpha ‘a’ in a Mixture of Normals

In this situation, the mixing proportion ‘@’ is changed and keeping the other
parameters y,, 0, fixed to check the size of the mixture of normal, i.e. bimodal
distribution.

Figure 7.6: Size of Bimodality with Different Values of ‘a’ and Fix p,=1, ;= 0.3
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Figure 7.6 shows the size of bimodality where changing the parameter o= (0.1, 0.2, 0.3, .
...,0.9) and fix the other parameters y,= 1, g,= 0.3, it is identified that at a= 0.1, the
size of the bimodality is 0.04, which is the lowest size. However, as a= 0.2, then the size
of the bimodality increases to 0.08. Further, as @ value increases to 0.3, then the size of
the bimodality moves to 0.12. This is the higher value of the size of bimodality as
compared to the previous two values. At a= 4, the size of the bimodality increases to 0.16

while o= 0.5 the size of the bimodality reaches to 0.2. Moreover, as a value increases to
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0.6 and 0.7, then from Figure 7.6, it is observed that the size of the bimodality moves to
its highest values (i.e. at a= 0.8 the value is 0.32 while a= 0.9 the value is (.36}. Hence,
it is observed that as the mixing probability increases the size of the bimodality also
increases if the values of the other parameters remain the same (i.e. ;= 1, a;= 0.3).
Similarty, as y,= 0.1, 6= 0.2 and a= (0.1, 0.2, 0.3, . . . .. , 0.6), the result remains
approximately same as the size against ‘@’ is shown in Figure 7.6. It is concluded that
when mixing proportion ‘@’ increases, the size of bimodality also increases.

Figure 7.7: Size of Bimodality with Different Values of ‘a’ and fix p,= 3, 6,=0.7
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The above Figure 7.7 represents the size of bimodality where changing the parameter a=
(0.2,0.3,. . ., 0.6) by fixing the other parameters u,= 3, g,= 0.7, it is observed that at a=
0.2, the size of the bimodality is 0.01 which is the lowest size. However, as d value
increases to 0.3, then the size of the bimodality increases to 0.16. Further, as a= 0.4, then
the size of the bimodality moves to 0.29, which is the higher value of the size of

bimodality as compared to the previous two values. Moreover, as a value increases to 0.5
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and 0.6, then from Figure 7.7, it is observed that the size of the bimodality moves to its
highest values (i.e. at a= 0.5 the value is 0.42 while a= 0.6 the value is 0.55). Hence, it is
identified that as the mixing probability increases, the size of the bimodality also
increases if the values of the other parameters remain the same (i.e. u2=3, 0,= 0.7).

Figure 7.8: Size of Bimodality with Different Values of ‘e’ and fix p;= 6, 6,=0.8

0.6
0.5
0.4

0.3

Size of bimodality

0.2

0.1

0.1 0.2 0.3 04 05
Mixing Probability

Figure 7.8 describes the size of the bimodality where changing the parameter a= (0.1,
0.2,03,...... . 0.5) and fix the other parameters p;= 6, o,= 0.8, it is identified that at
a= 0.1, the size of the bimodality is 0.54 which is the highest size. However, as a value
increases to 0.2, Ithen the size of the bimodality decreases to 0.29. Further, as a value
increases to 0.3, then the size of the bimodality moves to 0.04. This is the lower value of
the size of bimodality as compared to the previous two values. Moreover, as a value
increases to 0.4 and 0.5, then from Figure 7.8, it is observed that the size of the
bimodality again increases (i.e. at a= 0.4 the value is 0.2 while a= 0.5 the value is 0.45).

Hence, it is observed that as the mixing probability increases, the size of the bimodality
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fluctuate, (i.e. first decreases then increases) if the values of the other parameters remains
the same (i.e. gp= 6, 0,=10.8).

Figure 7.9: Size of Bimodality with Different Values of ‘a’ and fixed p,= 4, ¢;= 0.9
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The above Figure 7.9 shows the size of bimodality of the mixture of normal where
varying the parameter a= (0.1, 0.2, 0.3, 0.4, 0.5) while fixing the other parameters u,=
0.4, 0,= 0.9, it is observed that at mixing proportion a= 0.1, the size of bimodality is
0.01. At a= 0.2, the size slightly increases to 0.02 while as a= 0.3, then the size of the
bimodality moves to 0.14. Moreover, as & value increases to 0.4 and 0.5, then from
Figure 7.9, it is observed that the size of the bimodality again increases (i.e. at @= 0.4 the
value is 0.31 while a= 0.5 the value is 0.47). Hence, it is identified that as the mixing
probability increases, the size of the bimodality also increases if the values of the other

parameters remain the same (i.e. ;= 4, 0,=0.9).
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7.1.3 Changing standard deviation ‘c,’ in a mixture of normals

In the third case, changing the standard deviation ‘g, and keep the other parameters u;
and ‘@’ fixed to judge the size of DGP-II i.e. bimodal distribution.

Figure 7.10: Size of Bimodality with Different Values of ‘s’ and fix p,=2, 0= 0.2
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The above Figure 7.10 shows the size of bimodality where changing the parameter o3>
(04,05,..... ,0.9) and fixing the other parameters u,= 2, a= 0.2, it is identified that at
o,= 0.4, the size of the bimodality is 0.01 which is the lowest size. However, as o, value
increases to 0.5, then the size of the bimodality increases to 0.04. Further, as g, value
increases to 0.6 then the size of the bimodality moves to 0.08. This is the higher value of
the size of bimodality as compared to the previous two values. At o= 0.7, the size of the
bimodality increases to 0.12. Moreover, as o, value increases to 0.8 and 0.9, then from
Figure 7.10, it is detected that the size of the bimodality moves to its highest values (i.e.

at g,= 0.8 the value is 0.17 while a,= 0.9 the value is 0.21). Hence, it is observed that as
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the standard deviation value increases, the size of the bimodality also increases with little

margin if the values of the other parameters remain the same (i.e. @= 0.2, y; = 2).

Figure 7.11: Size of Bimodality with Different Values of ‘c;’ and fix p,= 2, a= 0.4
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The above Figure 7.11 describes the size of bimodality where changing the parameter
g,=(04,0.5,....,0.9) and fixing the other parameters u,= 2, a= 0.4, it is observed that
at a5= 0.4, the size of the bimodality is 0.21 which is the lowest size. However, as 0;=
0.5, then the size of the bimodality increases to 0.23. Further, as o,= 0.6, then the size of
the bimodality moves to 0.26 which is the higher value of the size of bimodality as
compared to the previous two values. At g;= 0.7, the size of the bimodality increases to
0.29. Moreover, as g, value increases to 0.8 and 0.9, then from Figure 7.11, it is observed
that the size of the bimodality moves to its highest values (i.e. at o,= 0.8, the value is
0.33 while o,= 0.9, the value is 0.36). Hence, it is observed that as the standard deviation
value increases, the size of the bimodality also increases gradually if the values of the

other parameters remain the same (i.e. a= 0.4, g, = 2).
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Similarly, for other combination of parameter values i.e. (¢, @)= {(1,0.1), (2, 0.1), (1,
0.3), (3,0.3), (3, 0.4), (1, 0.5), (1, 0.6) etc.} and for various considerable values of g,, the
size of bimodality changes slightly.

7.4 Chapter Summary

This chapter discussed the size of bimodality which shows the distance between the two
modes or two peaks of a bimodal distribution. For this purpose, Trapezoidal or Simpson’s
rules are used on the mixture of normal with the parameter values from Table 4.4. The
size of bimodality depends upon the three parameters (i3, @, ;) in this mixture. From
the result of Section 7.1.1, it is concluded that as by increasing mean ‘i, while keeping
(a, 07) fixed, then the size of the bimodality increases and it can be easily visible that the
distribution is bimodal. But, only at a= 0.4, in this case, it is identified that the size is in
decreasing order. On the other hand, changing the mixing proportion *a’ and keeping
constant the other parameters yi,, 05 in Section 7.1.2, it is concluded that for increasing
‘a’, the size of bimodality also increases. If changing the parameter standard deviation o,
and keeping fixed the other parameters in Section 7.1.3, then the size remains slightly
changed. It implies that for different values of o3, the size of bimodality is affected

fractionally.
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CHAPTER 8

CONSTRUCTION OF BIMODAL BOXPLOT AND
DETECTION OF OUTLIERS

In the case of bimodal distribution, there are two peaks or modes of any distribution.
Before building bimodal boxplot, it is necessary to find out the maximum separation of
the two peaks or joining point of the two distributions called cutoff point. This chapter
discusses the mathematical procedure to calculate the cutoff point in bimodal distribution,
the technique to detect outliers and the construction of newly introduced bimodal

boxplot.

8.1 Procedure of Cutoff Point in Bimodal Distribution

The cutoff is the joining point of two densities or mixing the two tails of the distribution.
In other words, it occurs at the maximum separation of a bimodal distribution. For
finding the cutoff point, there are several formulas in the literature for the generated data.

But the researchers fail to apply and get appropriate results in case of real data.

This study formulated some conditions from the study of 4Flu§s et al. (2005) on the basis
of median and IQR (for real case) rather than mean and SD (for DGP case). Because it is
difficult to find the mixing probability in real bimodal data series. Formally, the data are
split in percentiles (12.5, 25, 37.5, . . . .. , 87.5) in eight parts. Mathematical

mnterpretation of finding a cutoff point is as follows:

¥ See for detail Fluss, Faraggi and Reiser (2005) computational formula of C* for generated data used in
their study
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Figure 8.1: Cutoff Point in the Bimodal Distribution
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Note: The cutoff point is denoted by ‘C’=(C, or C,)

(Q140RE — Q3JQRE) — IQRR.IQRy, J{Qa—ol)2+(!QR§ - IQR?).Log (IQR} /IQR?)
- IQRZ — IQR?

1

Where IQR= Inter Quartile Range of whole data series= @3 — Q;

IQRg= Inter Quartile Range on the right side of a Cutoff point = Q35 — Qr

IQR; = Inter Quartile Range on the left side of a Cutoff point = @5, — Q4;

Also, the second procedure can be used for finding a cutoff point on the basis of quartile

deviation.

(01.0D% — 03.Q0}) ~ 0D5.QD [(03-01)2+(2DF ~ @D7) Log (0D /0D})

QD% — 0D}

Cr=

Quartile Deviation (QD) of whole data series = —(QHZ'Q:')

Quartile Deviation on the Right side of Cutoff point (QDg)= Q1r+03r) ;‘73’? )

(Q1L+Qz1)

Quartile Deviation on left side of Cutoff point (QDy)= >
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C;=0.08%xC; and C4=0.125xC;

The cutoff point ‘C” is estimated from the choice of any one of four cases that is C= {Cy,
Cs, °Cs, *C4} with the comparison of the bimodal graph (ignoring the negative sign and
setting with decimal points). After finding cutoff point, it is easy to build boxplot for a

bimodal distribution.

8.2 Detection of Qutliers in Bimodal Distribution on the Basis of Cutoff

Point

In the literature, a lot of techniques for detection of outliers are found but none can
specify the mixing outliers in bimodality. To detect these outliers on either side of the
cutoff point, the current study introduced a method for detecting outliers in a bimodal
distribution. However, the tails of two densities in bimodal distribution mixed together on
cutoff peint ‘C’. In this area (around ‘C’) the outliers lie at both densities called outliers
zone {(OZ). The procedure is mentioned as, first of all, to find percentile rank of each
observation. Now checking the percentile rank of ‘C’ and consider the half quartile
(12.5% area) as ‘OZ’ in which *C’ lies. Also, considering the area around cutoff point i.e.

left side (Ls) and right side (Rs),

(Ly, Up) = [ML— L5xIQM , Mg+ L5xIQMg]

% Multiplication with 8% means to divided the data in eight equal parts
® Multiplication with 12.5% means because each part is equal 12.5%
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Figure 8.2: Outliers in a Bimodal Distribution
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Lg= Number of ‘L < X< C’ and Rg= Number of ‘U > X;> C’

Figure 7.2 shows the tails around cutoff point ‘C’ where outliers lie. Consider ‘X’ is the
set of observations, L; is lower limit of half quartile and Uy is the upper limit of half
quartile. Outlier Zone is any pair of (12.5, 25, 37.5, 50, 62.5, 75 and 87.5) that means half
quartile selection depends upon the cutoff point. Outliers set is equal to the combination
of Ls and Rg or it can be written as outliers= {Lg, Rs}. In this way, the outliers are

calculated in a bimodal distribution.

8.3 Construction of Bimodal Boxplot

After measuring bimodality and their cutoff point, next goal is to build bimodal boxplot.
First, consider the main point of bimodal boxplot which is a cutoff point ‘C’. Then build
bimodal boxplot on Excel sheet as calculating five-point summary statistics on each side
of cutoff point separately. Also, we got two *five-point summaries’ with two medians that
separate the median of each part. In the desired boxplot, cutoff point and quartiles are

shown clearly.
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Figure 8.3: Bimodal Boxplot
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The same technique has been followed in this study for boxplot of bimodality as given
below:
i. First, to find the main point of bimodal boxplot, i.e. cutoff point ‘C’. This is
discussed above in Secton 8.1.
ii. To calculate summary statistics on each side of cutoff point separately, which
have two medians (i.e. separate median of each part).
iit. Then, construct the desired bimodal boxplot on Excel sheet which shows
cutoff point and quartiles easily.

8.4 Examples of Various Bimodal Distributions

8$.4.1 Bimodal Distributions with their Boxplots

Figures 8.4 to Figure 8.8 contain the bimodal distribution of three countries Pakistan,
UK, and India against quarterly data from 1981-1 to 2013-IV of various data series with

their relevant boxplots.
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Figure 8.4: Bimodal Distribution and Bimodal Boxplot of Pakistan Exchange Rate
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Figure 8.4 shows the bimodal distribution of Pakistan exchange rate. In this distribution,
the cutoff point is C=57.69, and on the right side, its bimodal boxplot clearly displays the
summary statistics of each part with a cutoff point.

According to the given bimodal boxplot, the lower part has the summary statistics as, the
first quartile of the lower part is 15.86 (i.e. Qi.= 15.86), the median of the lower part 1s
Qu=26.3, and the third quartile of the lower part Qx.=39.74. Similarly, the upper part of
the bimodal boxplot has the first quartile of upper part Q= 75.13, the median of the

upper part is Qxy= 83.9, and the third quartile of upper part Qsu= 91.67.
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Figure 8.5: Bimodality and Bimodal Boxplot of UK Consumption
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The above Figure 8.5 illustrates the bimodal distribution of UK consumption. In this
distribution, the cutoff point is C= 63.63 where the two distributions have mixed, and on
the right side, a bimodal boxplot is mentioned of this bimodal distribution. Clearly, it
describes the summary statistics of each part with a cutoff point.

A bimodal boxplot is the combination of two distribution and the lower part has the
summary siatistics as, the first quartile of the lower part is Qq = 20, the median of the
lower part is Qar= 33, and third quartile of the lower part Q= 39. Similarly, the upper
part of the bimodal boxplot has the first quartile of upper part Qiu= 70, the median of the

upper patt is Q= 73, and the third quartile of upper part Q= 78.
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Figure 8.6: Bimodality and Bimodal Boxplot of India Exchange Rate
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The above Figure 8.6 describes the bimodal distribution of India exchange rate. In this
distribution, the cutoff point is C= 35.24 and on the right side, its bimodal boxplot clearly
shows the summary statistics of each part with a catoff point.

According to bimodal boxplot, the lower part has the summary statistics as, the first
quartile of the lower part is Q;.= 10, the median of the lower part is Qz.= 14, and the
third quartile of the lower part is Q3= 20. In the same way, the upper part of the bimodal
boxplot has the first quartile of upper part Q;y= 50, the median of the upper part 1s Q=
59, and the third quartile of upper part Q3= 05.

8.4.2 Detection of OQutliers in Binomial Distributions

This study also detected outliers in a mixture of two distributions of both sides around
cutoff point “C’. First, percentiles are found (i.e. 12.5, 25 and 37.5) of the left side as
“from minimum to C” and due to a mixture of the two distributions then percentiles of the
right side as ‘from minimum to maximum’ are (i.e. 62.5, 75 and 87.5). Here, the data of

the above Section §.4.1 are used for detection of outliers.
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Figure 8.7: Outlier in a Bimodal Distribution of UK Consumption
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For UK consumption data series in Figure 8.7, the cutoff point C= 63.63 lies on 31
percent rank. Here, outliers Zone ‘OZ’ is the pair of (75™ to 87.5™) percentiles. It means
that half quartile selection depends upon the cutoff point. From *C’ on the left side (Ls) in
‘07’ the numbers of detected outliers are ‘4, and on the right side (Rs) in ‘OZ’ detected
outliers are ‘5.

Figure 8.8: Outliers in a Bimodal Distribution of India Exchange Rate

o pox - Dwency

ilndia Exchange Rate |
fticn. g o
S
o o1sf .,
— -
. - ’
- o %
- ' 5
£ o - N
LD 3 b o 1
F . -
/ - 5
/ T =~ p
K, - —_— N
4 - —
o wca b s -~ —
4 - -— X
- -~ ﬂ-‘-
- —
— -~ —
= . \ . X " M L e a
BT H 19 2o 3 - ) 3] —& 3¢ = ro

Observations in mtervals

106



f

The above Figure 8.8 shows the India Exchange Rate data series, in which cutoff point is
C= 3524, outliers Zone ‘OZ’ is the pair of (25" to 37.5") percentiles. [t means that half
quartile selection depends upon the cutoff point. It is observed from the left side of *C’
that the number of detected outliers is “2’, and on the right side detected outliers are *7°.
In this way, outliers around a cutc ff point are detected in different bimodal distributions.

8.5 Advantages of the Bimodal Boxplot

Due to its importance and necessity, following are the several main advantages of the

newly introduced bimodal boxplot.

i. A clear Picture of the Bimodal Distribution

Conventional boxplot does not describe the bimodality and its properties. Our newly
introduced bimodal boxplot shows the features and clear picture of a bimodal

distribution.
ii. Summary Statistics of each Side

It is also the main advantage of birodal boxplot that it evidently shows the information
about summary statistics of a bimodal distribution, unlike conventional boxplot. Too

many points describe the significant behavior of a data series.
iii. Helpful in the Detection of Qutliers

Though bimodal boxplot shows the cutoff point of a distribution which is helpful in the
detection of outliers, those outliers are detected on both sides of mixing or cutoff point in

outlier zone.
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8.6 Chapter Summary

Before building the bimodal boxplot, it is necessary to find out the cutoff point of any
bimodal distribution. Fluss et al. (2005) conditions applied on bimodal distribution for
cutoff are modified and used for this purpose on real data. The detection of outliers in
bimodal distribution is discussed around cutoff point. The newly introduced bimodal
boxplot can be constructed to calculate five-point summary statistics on each side of
cutoff point separately by using Excel sheet. Figure 8.4 displays the quarterly data (1981-
I to 2013-IV) of Pakistan exchange rate, in which first the cutoff point (ie. C= 57.69) is
calculated which is mentioned in the bimodal distribution. Bimodal boxplot has been
drawn according to the cutoff point and it observed both of the boxplot (i.e. upper and
lower) with summary statistics.

Figure 8.5 shows the quarterly data (1981-I to 2013-IV) of UK consumption with the
bimodal boxplot in which cutoff point C= 63.3 also clearly describes the summary
statistics. Similarly, India exchange rate of the same period has cutoff point C= 35.24
with the bimodal boxplot which is easy to see the summary statistics in Figure 8.7.

For the same data of UK consumption the outliers zone ‘OZ’ is the pair of (75™ to 87.5™)
percentiles. From left side (Ls} on ‘C’ in ‘OZ’, the number of detected outliers are ‘4’,
and on the right side (Rs) in ‘OZ’ detected outliers are *5°. In the same way for Indian
Exchange Rate, outliers Zone ‘OZ’ is the pair of (25" to 37.5™) percentiles. It that means
that half quartile selection depends upon the cutoff point. From left side on ‘C’, the
number of detected outliers is ‘2°, and on the right side, detected outliers are “7°. On this

technique, the outliers are detected in case of bimodal distribution.
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CHAPTER Y

APPLICATIONS OF THE STUDY ON REAL DATA

This chapter deals with the real data set of various countries and cricket players’ scores
while applying the tools on the basis of the Figure 3.1.

9.1 Presentation of Real Data

This study included the countries i.e. Canada, France, Germany, and Ireland with annual
data of exchange rate for (1961 to 2013). Also, carcer score data of two Pakistani cricket
players namely, Shoaib Malik and Ahmad Shehzad have been taken. First, the SB
modality test has been used which is identified as the best test in this study. If data is
unimodal, then skewness test is applied to observe the skewness of the data. Those data
series which are detected as bimodal, then bimodal boxplots have been drawn for this
distribution, According to SB test, Canada and France's data are unimodal while
Germany and Ireland's data are bimodal distribution. These results have also been
observed in the following Figure 9.1.

Figure 9.1: Specification of Various Distributions for Exchange Rate
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For the unimodal distribution, it may check whether the distribution is skewed or not.
Here, measure Po,m has been applied because this measure performs well as compared to
other measures and tests mentioned in Section 6.3.

Figure 9.2: CDFs and Boxplot of Canada Exchange Rate
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In the above Figure 9.2, the difference between the two CDFs discrepancy shows the
skewness of the data. Overall, this picture shows to some extent skewness in the data.
Therefore, according to the measure Puom, the exchange rate series of Canada is slightly
skewed. This result has also been verified through Tukey’s boxplot as shown in the right

side of Figure 9.2.
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Figure 9.3: CDFs and Boxplot of France Exchange Rate

0.8
0.7
0.6

04
0.3
0.2
0.1

FRANCE EXCHANGE RATE

—t— Cdf5

—a—CdiS1

1 2 3 45 & 7 8 % 1011

18

L

|
1

In the above Figure 9.3, the difference between two CDFs (i.e. CDF of actual data and

symmetries CDF) has a very low discrepancy which shows that there exists no skewness.

According to measure Puom, the second exchange rate series of France is symmetric.

Further, this resuit has also been verified through Tukey's boxplot as shown in the nght

side of Figare 9.3.

Figure 9.4: Bimodality and Bimodal Boxplot of Germany Exchange Rate
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The above Figure 9.4 shows the Germany exchange rate which is a bimodal distribution
and its cutoff point is 55.695. It looks like positively skewed because of a lot of data found
on the right side of the cutoff point with a high peak. On the right side of the Figure 94,
bimodal boxplot of the Germany exchange rate data series is drawn. The point lying on
the joining line of the two boxes is actually the cutoff point which is also calied the med-
whisker with minimum= 3841, maximum= 106.95 of this data series. Other summary
statistics of lower part (before cutoff point) are, first quartile= 38.753, median= 39.49,
third quartile= 45 47 and for upper part (after cutoff point) first quartile= 76.95, median—
94 43, third quartile= 100. It means that bimodal boxplot cleaily shows the picture of the
bimodal data and its summary statistics.

Figure 9.5: Bimodality and Bimodal Boxplet of Ireland Exchange Rate
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Figare 9.5 describes the Ireland exchange rate which is a bimodal distribution and its
cutoff point is 141.3. It looks like positively skewed becaase a lot of data is found on the
Left side of the cutoff point with a high peak. On the right side of the Figure 9.5, bimodal

boxplot of the Ireland exchange rate data series is drawn. In this data series the cutoff
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point or the med-whisker is shown between the two boxes and minimum= 87.91,
maximum= 181.36. Summary statistics of lower part (before cutoff point) are, first
quartile= 97.84, median= 100.26, third quartile= 104.18, and for upper part (after cutoff
point) first quartile= 161.70, median= 170.38, third quartile= 179.67.

Figure 9.6; Detection of Outliers in Bimodal Distributions of Exchange Rates
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Figure 9.6 describes the detection of outliers in bimodal distribution of Germany and
Treland exchange rates (1961 to 2013). Both, positively and negatively skewed
distributions in bimodality form are mixed together to make this bimodal distribution. On
the left side, the Germany exchange rate bimodal distribution with the positively skewed
distribution has 5 outliers (103.09, 103.17, 103.9, 104.05 and 106.95) while the
negatively skewed distribution of Germany exchange rates has 2 outliers (38.41, 38.75).
On the right side, the Ireland exchange rate bimodal distribution with the positively
skewed distribution has no outlier while negatively skewed distribution has 4 outliers

(87.91, 88.55, 90.59 and 92.1).
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Figure 9.7: Specification of Two Distributions for Pakistani Cricketer’s Scores
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The above Figure 9.7 describes the distributions of two cricket players’ data. When SB
test is applied, it results that Shoaib Malik’s ODI (One Day International) career score
(1999 to 2017) data is unimodal and Ahmad Shehzad’s ODI career (2009 to 2017) score
is bimodal. Now Ppor is applied on unimodal distribution to check their skewness and
also to construct bimodal boxplot for a bimodal distribution.

Figure 9.8: CDFs and Boxplot of Malik ODI Score
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The above Figure 9.8 shows the difference between the two CDFs which is very high so
it means that high skewness exists. Also, according to the numerical values of measure
Pooem, Malik ODI score data series is more skewed. This result is also verified through the
boxplot shown in the right side of Figure 9.8 which means that this distribution is
positively skewed and plus sign represents the outliers.

Figure 9.9: Bimodality and Bimodal Bexplot of Shehzad OD] Score
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Figure 9.9 shows that the Shehzad’s ODIs score is bimodal and its cutoff point is 81.
Overall, it looks like it is negatively skewed because of a lot of data found on the left side
of the cutoff point with a high peak in the same side. On the right side of the Figure 9.9, a
bimedal boxplot of the Shehzad’s ODIs score data is mentioned.

The cutoff point or the med-whisker is shown between the two boxes and the minimum
and maximum values of this data are 0 and 124 (i.c. minimum= 0, maximum— 124).
Other summary statistics are, in the lower part (before cutoff point), first quartile= 6,

median= 17, third quartile= 42, and in the upper part (after cutoff point), first quartile=
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95, median= 102, third quartile= 113. It means that the bimodal boxplot clearly shows the
picture of the bimodal data and its summary statistics.

Figure 9.10: Detection of Outliers in a Bimodal Distribution of Shehzad ODI Score
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Figure 9.10 describes the detection of outliers in the bimodal distribution of Shehzad’s
ODI score. In this bimodal distribution, the positively skewed distribution has 9 outliers
(81, 93, 95, 102, 103, 113, 115 and 124) while on the right side of the Figure 9.10, small
peak skewed distribution has no outlier.

9.2 Chapter Summary

This chapter has demonstrated the existing and newly introduced statistical tool on real
data set. Two types of real data sets have been taken here, i.e. exchange rates and cricket
players score data. These analyses are extended step by step on the basis of the flowchart
in Figure 3.1. First of all, SB test has been used to see whether the data is bimodal or
unimodal. According to this test and graph result, the exchange rates of Canada and
France are unimodal while Germany and Ireland exchange rates are bimodal. Similarly,
for cricket data, Shoaib Malik’s ODIs score is detected as unimodal while Ahmad

Shehzad’s ODIs score is identified as bimodal. For unimodal distributions, measure Pnom
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has been used to check the symmetry or skewness in the distribution. According to this
measure, the exchange rate of France is symmetric while the exchange rate of Canada
and Shoaib Malik’s ODIs score are skewed distributions. Further, their respective
boxplots have been constructed.

Cutoff point or the joining point of a bimodal distribution is necessary before making the
bimodal boxplot. Therefore, the Germany exchange rate cutoff point is detected as 55.69,
Ireland exchange rate cutoff detected point is 141.3, and for Shehzad’s ODIs score C=
81. Their respective bimodal boxplots are shown in above Figures (9.2, 9.4, 9.5, 9.8 and
9.9). From these bimodal boxplots, the cutoff point has been observed and different
descriptive statistics which clearly indicate the bimodality nature of these data. Hence, it
is observed that this new bimodal boxplot provides useful and accurate information of

bimodal distribution.
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CHAPTER 10

CONCLUSIONS, RECOMMENDATIONS, AND DIRECTIONS FOR

FUTURE RESEARCH

This chapter discusses the main conclusions and results of this study. Also, the
recommendations are proposed on the basis of main conclusions. At the end of this
chapter, several particular ideas and directions have been suggested for future research
work.

10.1 Conclusions

The existence of bimodality and comparison of modality tests have been discussed in
chapter-4. Robertson’s and Fryet’s (1969) conditions have been used for the detection of
bimodality in DGP-11, i.e. mixture of normals. The mixture of normals contains one
standard normal and the second normal distribution. This study has kept the fix y;= 0,
a#=1 and various values of other parameters (o, gz, 0;) i.e. @ =(0.1,02,03,. ... ... ,
09), u=(1,2,3,...... JOand o, =(0.1,02,03,....... , 0.9). When o, < gy in
DGP-11, then Equation (3.2) has results negative real roots in which existence of
unimodality is denoted by ‘0’ while the existence of “bimodality is denoted by ‘1°. When
g, > gy, then Equation (3.2) results of complex roots and all the results show that the
mixture is unimodal. Similarly, in the mixture of two normal distributions when o, < 07,
then Equation (3.2) results as both positive and negative real roots and results are either
unimodal or bimodal. In the case of oy > ¢y, then Equation (3.2) complex roots and all
results show unimodality (see details Table 4.1 to 4.3). These important results and
choice of parameters values have shown the bimodality in Table 4.4. Moreover, this

study has planned for checking the size and power properties of four modality tests.

118



This study used simulated critical values around the nominal size of 5% to stabilize all
the modality tests. After the simulations result in Figure 4.1, all the four modality tests
have stabilized size around the nominal size of 5%. Therefore, the powers of these
modality tests have been further investigated.

The simulation results of Figures 4.2 to 4.3 on parameter values ;= 1, a=(0.5,0.6, . . ..
, 0.9) and g>= (0.2, 0.3, 0.4) show that the PM test has high power for high sample sizes
as compared to the other three tests which have very low power. Also, keeping py= 1,
g,=0.2 fixand @ = (0.1, 0.2, ...., 0.6), then the result remains same as has been observed
from Figure {4.2). The power of the PM test increases as the sample size increases
against parameter values p,= 1, a = (0.5, 0.6, 0.7, 0.8) and 0,= 0.3. In this situation, the
power of Dip test, EM test and SB test is low, i.e. below 20% (see Figure 4.3). According
to Figure 4.3, it is observed that the power of the PM test increases as the sample size
increases and PM test is the most powerful test as compared to all other three tests.
Figure 4.4 with parameters values {i.e. u,=9 a= 0.2 and ¢,= 0.7) has identified that SB
test is the most powerful test while PM test with low power behavior at overall sample
sizes is recognized as bad performing test.

Results of Figure 4.5 with parameters combinations u,= (5, 6 8, 9, 10), & = (0.4, 0.5, 0.6)
and g,= (0.7, 0.9) conclude that all the tests have high power at high sample sizes; while
at small sample, the PM test has low power which is bad performing test. For the
combination of the parameters ;= (8, 9, 10), a = (0.7, 0.9) and ¢,= (0.8, 0.9) in DGP-II
Figure 4.7 to Figure 4.9 indicate that SB test is the most powerful test in all sample sizes.

However, the power of the EM test and Dip test also increases as the sample size
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increases where the PM test has worse performance. Overall, it is observed that SB test is
the robust and best test among ail the modality tests.

This study has also introduced a new measure of skewness ‘Ppom’ based on CDFs which
has been discussed in Chapter-5. This measure has many advantages over existing
measures of skewness. Section 5.2 highlights the contrast of results among other
measures of skewness and Ppom. These results appreciate the performance of Py in
Various cases.

In chapter-6, various measures and tests about skewness are compared on the basis of the
Monte Carlo simulation results of size and power. All of the measures, that is, Prs, SM,
MC, SSSB, Skw;, Skw;, and new measure Pyom, and tests, that is, KS test, t-test, and WC
test have stable sizes on simulated critical values approximately 5% nominal size (see
Figure 6.1). Due to the stable size, all these measures and tests for skewness are further
compafcd on the basis of their power. In Section 6.2, Figure 6.2 to Figure 6.11 explains
the power performance of all the measures and tests.

The simulations results of DGP-I lognormal distribution with parameters (mean=0, SD=
(0.5) in Figure 6.2 describe that at small sample size (i.e. n= 60) the power of Prs, SSSB,
MC and tests KS, WC are very low. But when the sample size increases, the power of all
these measures and tests also increases. Changing the parameter values (u= 6, o= 3) for
the same DGP, the simulation results in Figure 6.3 show that all the measures and tests
have high power between 70%to 100%. But for this DGP with various parameter values,
the new skewness measure, Pyom, has high power, approximately 100%, as compared to
other measures and tests. Similarly, when the parameter values are changed, then results

approximately remain same.
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In the DGP-1, if Chi-square distribution with parameter v=1 is used, then all the measures
and tests for skewness have high power according to Figure 6.4. As the parameter value
increases to 8 (i.e. v= 8), then the measures Skw,, Skw,, SM, and P, have high power
as compared to other measures and tests. Further, increase in the parameter value (v= 16
or 24, it is observed that all the measures and tests have low power except the measure
Poorm which has high power, nearly equal to 100%, for all considerable sample sizes (See
Figures 6.5 to Figure 6.7).

For more clarification, another skewed beta distribution has also been included for
comparison, based on power. Figure 6.8 represents the simulations results for DGP-I of
the beta distribution with parameter values (a, b)= (2, 15), where it is identified that the
measures Prs, SM and Py, have high powers. As parameter values increase to (a, b)= (4,
15), then only measure P, has high power as compared to all other measures and tests.
When changing a= 6 or 8, then all the measures and tests have low powers but Py, has a
high probability of asymmetry, approximately 100%. Similarly, increasing the second
parameter ‘b’, in the results the same variations and changes have been observed with the
parameter ‘a’ (See Figure 6.9 to Figure 6.11). So, it is concluded that a new measure
Prom 18 & robust measure of skewness in the choice of symmetry and asymmetry. .
Chapter-7 has discussed the size of bimodality in detail. For the size of bimodality,
Trapezoidal and Simpson’s rules have been used on the DGP-II with different values of
three parameters (i.e. i;, @ and g5), (see details in Table 4.4). It is found that the size of
bimodality is affected due to change in parameters values. In case of DGP-II, it is
identified that by increasing mean value (i.e. u;) and keeping ‘@’, o, constant, the size of

the bimodality increases, while a= 0.4 is the only case where the size is in decreasing
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order (See Figures 7.2 to Figure 7.5). For changing mixing proportion, when alpha ‘a’ is
increased and keeping y, and o; values constant, then the size of bimodality also
increases (See Figures 7.6 to Figure 7.9). But, as the value of the standard deviation ‘o’
changes, the size of bimodality also changes with very little margin (see Figure 7.10 to
Figure7.11). Sy, it is concluded that the size of bimodality affected more when changes
the values of parameters ‘@’ and g;.

In Chapter-8, newly introduced bimodal boxplot have been constructed which need cutoff
point taken from Fluss et al. (2005) conditions which are then modified and used in this
study for real data. Figure 8.5 describes the UK consumption of quarterly data from
1981-I to 2009-1V having cutoff point C= 63.63 and it has observed a clear picture of
bimodal boxplot, where summary statistics are easily shown. Also, India quarterly
exchange rate data from 1981-1 to 2009-IV has detected cutoff point C= 35.24 with
bimodal boxplot (see Figure 8.6), which clearly indicates a true picture of the data with
five-point summary statistics on each side of cutoff point separately.

For the similar bimodal data of UK consumption and India exchange rate, outliers have
been detected through selecting the specific outlier areas. Figure 8.7 sketches the UK
consumption data, in which outliers Zone *OZ’ is the pair of (75™ to 87.5") percentiles
showing that the mean half quartile selection depends upon the cutoff point. From ‘C’ to
the left side (Ls) in ‘OZ’ where the number of detected outliers are ‘4’ while on the right
side (Rs) in ‘OZ’ number of detected outliers are ‘5.

For India Exchange Rate data in Figure 8.8, outliers Zone ‘OZ’ is the pair of (25™ to

37.5™ percentiles around cutoff point. From the left side on *C’, the number of detected
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outliers are *2°, and on the right side detected outliers are ‘7°. In this way, outliers are
detected around a cutoff point in bimodal distributions.

In Chapter-9, this study used our methodology and applications on different real data
series which are also explained through flowchart in Figure 3.1. The selected data is
divided into two different categories, that is, exchange rate annual data (1961 to 2013) of
Capada, France, Germany and Ireland, and cricket data of three Pakistani players of
Shoaib Malik, Umer Akmal and Ahmad Shehzad’s career score. According to Silverman
modality test, the data of Canada and France are identified as unimodal while Germany
and Ireland data are detected as bimodal (see Figure 9.1).

For a measure of skewness through P,,m, the exchange rate series of Canada is slightly
skewed while exchange rate series of France is symmetric. The CDFs and Tukey's
boxplots are shown in Figures 9.2 to Figure 9.3. Also, the Germany exchange rate is a
bimodal distribution with cutoff point 55.69 while its respective bimodal boxplot is
shown in Figure 9.4. Similarly, Figure 9.5 describes that the Ireland exchange rate is a
bimodal distribution with cutoff point 141.3 and its bimodal boxplot. The Germany
exchange rate and Ireland exchange rate have a number of outliers, i.e. 7 and 4,
respectively (see Figure 9.6).

For Shoaib Malik’s cricket data of ODI career scores (1999 to 2017) shows unimodality
while Ahmad Shehzad’s ODI career (2009 to 2017) scores is bimodal, observed in Figure
9.7. According to the numerical values of measure Ppom, Malik’s ODI scores data series
is highly skewed. The CDFs difference and its boxplot are shown in Figure 9.8.
Shehzad’s ODI scores is a bimodal distribution having cutoff point 81 along with its

bimodal boxplot shown in Figure 9.9. This distribution has ‘9” outliers (see Figure 9.10).
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As a result, it can be said that for both unimodal and bimodal distributions, the

researchers may draw boxplot and summary statistics.
10.2 Recommendations

In this study, Robertson and Fryer's (1969) conditions have been used for checking the
existence of bimodality, and for which values of the parameters the distribution is
bimodal. In this aspect, it is recommended that for o5 < gy in DGP-II, the result remains
unimodality or bimodality and, for ; > oy the result states that the mixture is unimodal
by using these conditions. Similarly, for &, < ¢y in a mixture of two normal distributions,
the results have unimodality or bimodality, and forg, > &y, all the results show
unimodality. From our analysis, it is concluded that using analytical critical values, the
size of several tests is not good and facing over rejection problems.

However, if simulated critical values are used, then the sizes of all tests are stable, So, it
is suggested that using 5% nominal simulated critical values ‘cv’ rather than analytical
critical values to avoid over-rejection problem. From power comparison analysis in case
of mixture of normals, it is recommended to use Silverman bandwidth test as it performs
well as compared to other modality tests. Also, according to simulations results for
measures and tests of skewness in this study, it is recommended that the newly
introduced measure of skewness, Poom, performs well as compared to other measures and
tests for skewness. This is the correct measure based on the difference between
cumulative distribution functions. Further, when parameter in DGP of Chi-square
distribution increases then the power of mostly measures and tests decreased. Also for

DGP of Beta distribution as the values of first parameter ‘a’ increases the power of most
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of the measures and tests decreased but the powers has ineffective mostly when changed
the values of second parameter ‘b’

A new technique is introduced in this study to find out the size of the bimodality (the
distance between the two modes or two peaks of a bimodal distribution) through
Trapezoidal and Simpson’s rules. It is also recommended from this technique that the size
of bimodality depends upon the parameter values of mean ‘u’ and mixing probability ‘o’
in bimodal data generating process.

For building bimodal boxplot in bimodal distribution, it is necessary to diagnose the
cutoff point or the maximum separation point. The construction of newly introduced
bimodal boxplot is recommended along with modification and extension of the Fluss et
al. (2005) conditions for real data. In the last, ‘OZ’ (outlier detection area) around cutoff
point is recommended for the detection of outliers in case of bimodal distribution.

The analysis of this study clearly shows the direction and behaviors of the data which
will help the economists to improve their analysis. Our finding suggests, checking the
bimodality and skewness of the data and then detecting the outliers to fit any modatl
which will give valid inferences about the data under consideration.

10.3 Directions for Future Research

This study is limited only for bimodal distributions and data is generated through
unimodal and a mixture of two distributions. This study can be extended for
multimodality and data can also be generated through a mixture of three or more
distributions. Similarly, bimodal boxplot can be modified for multimodal boxplot through
multiple cutoff points in the multimodal distribution. Detection of outliers for bimodality

around a cutoff point can be extended to various ‘OZ’ for multimodal distributions.
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Different outlier detection techniques can also be analyzed in this context. Analytical
integrals can also be compared on the basis of the size of bimodality and extended to

multimodality.
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APPENDIX
A.1 Mixture of a Normal and Two Uniform Distributions

The mixture of one uniform and one normal distribution is designed as. Let X is
uniformly distributed with parameters ‘a’ and ‘b’, X,is uniformly distributed with

parameters a, and by and X3is normally distributed with parameters ¢ and ol
Let X; ~ U(a, b), X~ U(ay, b)) and X3 ~N(x, 0'2)
Then the mixture of two uniforms and normal is,

Z=aX;+ pX;+(1— a— B)X;

Where a+ = 1, these are the probabilities of a mixture of two uniforms and normal

distribution.

Figure A.1: Bimodal Distribution with Parameters (W3, @, 63)= (3, 0.6, 0.7) aunid C=
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Figure A.2: Bimodal Distribution with Parameters (W, a, 03)= (2, 0.5, 0.6) and C=

0.75
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Figure A.4: Bimodal Distribution with Parameters (3, a, 02)= (4, 0.6, 0.7) and C=

2.22
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Figure A.S: Bimodal Distribution and Bimodal Boxplot of Belgium Export Rate

with C= 26513
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Figure A.6: Bimodal Distribution and Bimodal Boxplet of Philippine Export Rate

with C=378.11
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Figure A.7: Bimodal distribution and Bimodal Boxplot of Fiji Exchange Rate with

C=148.19
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