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0.1.Introduction

In classical set theory, an element either belongs to a set or does not belong to a set
and there is no third possibility. This type of framework can assign only two numeric values
to describe the membership grade of a certain element i.e. 0 or 1. There are many
phenomena that cannot be described using classical set theory for instance consider the
concepts of height, intelligence and age etc. All these concepts cannot be described using
classical set theory which leads Zadeh [1] to develop the idea of fuzzy set (FS) theory in
1965. Zadeh introduced the idea of a membership grade (MG) of an element of a set which
is defined by a membership function on a unit interval [0, 1]. This idea of membership
function by Zadeh can be used to describe the uncertainty lies in human opinion hence
provides solution to many real-life problems such as decision making [2], medical
diagnosis (MD) [3] and pattern recognition [4].

Human opinion about a certain thing or phenomena is not always unidirectional
while the framework of FS only describe the MG of an uncertain event hence not providing
any information about the non-membership grade of the event. This leads Atanassov [5] to
propose the concept of intuitionistic fuzzy set (IFS) and intuitionistic fuzzy number (IFN).
Atanassov’s concept of IFS is based on a MG

and a non-membership grade (NG) denoted

by s and d' respectively with a constraint that . 0ss+d<1
their sum must not exceeds 1 i.e. sum(s,d) € \\\ /

[0,1]. Further, the term 1—sum(s, d) is A .

referred to as hesitancy degree. This concept “\

of IFS is likely to model any uncertain event
Figure 1 (Space of all possible IFNs)



with the help of MG and NG but in some cases, it has some certain limitations. For instance,
if the MG and NG are assigned the values (0.8,0.5) ie. s = 0.8 and d'= 0.5 then
sum(0.8,0.5) = 1.3 ¢ [0, 1]. This means that the duplet (0.8, 0.5) cannot be considered
as an IFN. The space of all possible IFNs is depicted in Figure 1.

As the framework of IFS has its limitations in assigning the MG and NG because
their sum exceeds from [0, 1] in many cases. To overcome this situation, Yager [6, 7]
developed the idea of Pythagorean FS (PyFS) and consequently Pythagorean fuzzy number
(PyFN) which increased the range of Atanassov’s IFS. A PyFN is also based on a MG and
non-membership grade (NG) denoted by s and d’ respectively with a constraint that the
sum of their squares must not exceeds 1

ie. sum(s? d?) €[0,1]. Further, the

term /1 — sum(s?,d’2) is referred to as
hesitancy degree. If we observe the
duplets which cannot be considered as an
IFN i.e. (0.8,0.5), then it can be a PyFN

because sum(0.8%,0.5%) = 0.89 €

[0, 1]. This shows that the range of PyFS

Figure 2 (Space of all possible IFNs and PyFNs)

is greater than that of IFS as demonstrated in Figure 2.



Figure 2 shows that Yager’s PyFS significantly improved the limitations that

occured in Atanassov’s IFS but still there exist some duplets that cannot be categorized as

IFN or PyFN. For instance, the duplet

(0.9,0.6) is neither an IFN nor a PyFN

because sum(0.9,0.6) = 1.5 & [0, 1] and sum(0.9%,0.6%) = 1.17 ¢ [0, 1]. If we observe

the geometrical position of the duplet (0.9, 0.6), its just outside the range of PyFNs which

is shown in Figure 3.

0<s?+d?<1

. (09,0.6)

0ss+ds=<1

Figure 3 (Limitation of Space of IFNs and PyFNs)

This leads Yager [8] to introduce the idea of q-rung ortho pair FS (q-ROFS) and

consequently g-rung ortho pair fuzzy number (q-ROFN) which take over any kind of duplet

with a variable parameter n where n € Z*. For instance, consider the duplet (0.9, 0.6)

which is neither an IFN nor a PyFN, but it 1

can be a q-ROFN for n=3 ie.
sum (0.93,0.63) = 0.945 € [0, 1].

Similarly, for every duplet of the form
(s,d), there exists an n € Z* such that
sum(s™,d™) € [0,1]. This clearly shows
the superiority of q-ROFS over IFS and
PyFS which is geometrically demonstrated

in Figure 4.

0<s"+d"<1forn=10

=~

S O0ss"+drsiforn=5

0<s?+d?s1

0=ss+d=<1

Figure 4 (space of g-ROFNs in comparison with space of
PyFNs and IFNs)



The concepts of IFS, PyFS and q-ROFS discussed only two aspects of the human
opinion about an uncertain event i.e. yes or no type of aspects denoted by the MG and NG.

However, human opinion cannot be Ts

restricted to yes and no type, but it has some
sort of abstinence and refusal degree also as
suggested by Cuong [9]. For example Oss+i+ds<1

consider the phenomenon of voting where

one can vote in favor of someone or vote

against someone or abstain to vote or refuse
to vote. Cuong [9, 10] proposed the concept

of picture fuzzy set (PFS) and consequently

Figure 5 (space of all PFNs)

picture fuzzy number (PFN) where three types of membership grades are utilized to model
human opinion of yes, abstain and no type. These three types of grades include MG,
abstinence grade (AG) and NG denoted by s, i and d' respectively with a restriction that
their sum must not exceeds 1 i.e. sum(s, i,d’) € [0, 1]. Further, the term 1 — sum(s, i, d’)
is termed as refusal grade (RG) denoted by r. Cuong’s concept of PFS is a generalization
of the Atanassov’s IFS and deals with uncertain and imprecise information in a2 more
flexible way than IFS, PyFS or q-ROFS does. The space of all PFNs is geometrically shown

in Figure 5.

Yager [6, 8] generalizes the framework of IFS to PyFS and q-ROFS while Cuong
[9, 10] conceived the idea of PFS from IFS and all these have significance when it comes
to their viability. There is another generalization of IFS known as single valued

neutrosophic set (SVNS) proposed by Wang et al. [11] as a generalization of neutrosophic



set (NS) proposed by Smarandache [12]. A SVNS described the imprecision of an
uncertain event with the help of a MG, neutral value and a NG denoted by s, i and d with
the restriction that 0 < sum(s, i, d’) < 3. Allowing the sum of all three membership grades
between 0 and 3, a SVNS allows the decision makers to assign the values of §,i and d'

independently from [0, 1].

In the concept of Zadeh’s FS, a MG is assigned to describe the uncertainty of an
event or object from [0, 1] interval. By doing so, there is a possibility of losing some
information which leads us to the concept of interval valued FS (IVFS) [13]. In IVFS, the
MG is in the form of closed subinterval of [0, 1] which decreases the chances of losing
information. Using the same approach, Atanassov and Gargov [14] extended the idea of
IFS to interval valued IFS (IVIFS) by describing the MG and NG in terms of closed
subintervals of [0, 1] which decreases the loss of information as compared to IFS. Due to
the significance of expressing the MG and NG in terms of interval instead of crisp number,
the concept of PyFS and q-ROFS are also extended to interval valued PyFS (IVPyFS) and
interval valued g-RSFS (IVq-ROFS) by Peng and Yang [15] and Joshi et al. [16]
respectively. This concept is adapted in forthcoming fuzzy frameworks as well and the
concept of interval valued PFS (IVPFS) is proposed by Cuong [10] where the MG, AG and
NG are described in the form of closed subintervals of [0, 1]. Similarly, describing the MG,
neutral value and NG using closed subintervals in NSs, the idea of interval valued NS

(IVNS) is proposed by Wang et al. [17].

So far, we have discussed the origin of several fuzzy extensions and their structures.
When it comes to viability, almost every fuzzy framework has been extensively used in

several practical situation including MD, multi-attribute decision making (MADM),

10



pattern recognition and clustering. The problem of MD is discussed in several fuzzy
frameworks on a wide range. Fuzzy relations and their compositions are the tools that are
used in the process of MD. Yao and Yao [18] studied the problem of MD using fuzzy
inference system where the concept of composition of fuzzy relations has been utilized.
Rakityanskaya and Rotshtein [19] modified the compositional rule proposed by Zadeh
based on fuzzy relations to deal with MD. Samuel and Balamurugan [20] extended the idea
of fuzzy MD proposed by [21] to intuitionistic fuzzy environment and used max-min
composition of IFS to deal with MD problems. De et al. [22] investigated the problem of
MD using intuitionistic fuzzy relations and compositions. Thong [23] proposed a
recommender system in intuitionistic fuzzy environment to diagnose a medical issue using
few symptoms. Kumar and Krishnan [24] discussed the MD problem using similarity
measures (SMs) of IFSs. Garg [25] studied the MD and pattern recognition problems using
correlation coefficients of PyFSs. Xiao and Ding [26] investigated the divergence measures
of PyFSs in studying MD problems. Some similarity measures of -ROFS are also utilized
in examining MD problems by Wang et al. [27]. The concept PFSs is also successfully
utilized in MD problems by Wang et al. [28] where they proposed some picture fuzzy

relations and developed their compositions for this purpose.

Another useful application of FS theory and its generalizations is handling MADM
problems where human opinion may have several aspects. The widely used tools for
handling MADM problem under uncertainty are aggregation operators (AOs) and a large
variety of such AOs have been introduced in the past few years. These AOs include
weighted averaging aggregation (WAA) operators, weighted geometric aggregation

(WGA), Einstein aggregation (EA) operators, Hamacher aggregation (HA) operators,

11



power aggregation (PA) operators etc. Theory of WAA and WGA operators of IFSs have
been developed by Xu [29] and Xu and Yager [30] which were further applied in MADM
problems. To improve the work of [29, 30], some generalized WAA, induced generalized
WAA and induced generalized WGA operators for IFSs are proposed by [31, 32, 33] and
their applications in MADM problems have been demonstrated. The concept of WAA and
WGA operators for IVIFSs are proposed by Wang [34] and Wei and Wang [35]
respectively while some generalized WAA and generalized WGA operators for IVIFSs are
developed by Yu [36] and Xu and Cai [37] respectively. Some other useful tools of
aggregation of IFSs and IVIFSs along with their applications were also constructed [38-
43]. For PyFSs, Rahman et al. [44] and Peng and Yang [45] developed the Pythagorean
fuzzy WAA and WGA operators. The WAA and WGA operators for IVPyFSs are
proposed by [46, 47] which were further applied in MADM problems. Some recent
advancement on the theory of aggregation of PyFSs and IVPYFSs and their applications in
MADM are discussed [48, 49]. Due to its enhanced and diverse structure, PFSs have gained
attention and some WAA as well as WGA operators in picture fuzzy environment are

developed by [50, 51].

The conept of Hamacher aggregation (HA) operators is also an important topic that
is widly discussed in fuzzy frameworks and utilized in MADM problems. HA operators
are based on Hamacher t-norm and t-conorm [52]. Huang [53] introduced the notion of HA
operators in intuitionistic fuzzy settings based on Hamacher t-norm and t-conorm and
investigated their applicability in MADM problems. Wu and Wei [54] proposed
Pythagorean fuzzy HA operators for MADM while Gao [55] developed prioritized

Pythagorean HA operators for MADM problems. HA operators for interval valued IFSs

12



are developed by Liu [56] and some entropy-based HA operators for IFSs are proposed by
Garg [57]. Wei [58, 59] proposed picture fuzzy HA operators and Pythagorean fuzzy
Hamacher power AOs for solving MADM problems. For some other recent work on HA

operators and their application, one is referred to [60-63].

Similarity measures (SMs) or correlation coefficients (CCs) and distance measures
(DMs) are some tools that remaiend under considerration in every fuzzy framework
especially when it comess to study pattern recognition problems, MADM problems and
cluster analysis. A SM or CC shows the similaity degree of two objects that how similar
they are based on some some attributes. Similarly, a DM is a function that is used to
compute the dissimilaity degree of two objects. Dengfeng and Chuntian [64] proposed
some novel SMs in intuitionistic fuzzy setting and examined their applicability in pattern
recognition. Huang et al. [65] used the concept of Hausdorff distance to propose some SMs
for IFS and utilized the proposed SMs in pattern recognition. Liang and Shi [66] and
Vlachos and Sergiadis [67] contributed by introducing some new SMs in the environment
of IFSs. Ye [68] developed cosine SMs for IFSs based on cosine rule and studied the
viability of new cosine SMs in pattern recognition. Szmidt and Kacprzyk [69] used the
concept of SMs of IFSs for medical diagnosis problem solving and Xu [70] utilizes the
SMs of IFSs in solving MADM problems. An overview of SMs of IFSs is carried out by
Xu and Chen [71] where they proposed some continuous similarity and distance measures.
Xu and Cai 72] proposed some DMs, SMs, and correlation of IFNs for intuitionistic fuzzy
information aggregation. The concepts of SMs and DMs is also rich in the framework of
PFSs as Wei [73] developed three kinds of SMs for PFNs and utilized them the recognition

of building materials. Son [74] proposed some picture fuzzy DMs and studied their

13



applicability in clustering. A CC in intuitionistic fuzzy setting for cluster analysis is
proposed by Gerstenkorn and Manko [75] which was extended by Sing [76] to the
environment of PFS utilizing it in cluster analysis and showing the advantages of picture
fuzzy CC over intuitionistic fuzzy CC. For a complete understanding of SMs, DMs, some
CCs, AOs and their applications in MADM. Pattern recognition and clustering, the readers

are further referred to [77-97].



0.2.Chapter Wise Study

This section aims to provide a thorough chapter wise study of our accomplished work. A

short description containing key findings of each chapter is provided as follows.
Chapter 1

In this chapter, we aim to discuss the basic definition of FS, IFS and their several
extensions including PyFS, q-ROFS, PFS and SVNS. Some basic notions and terms of
several existing fuzzy frameworks are discussed including the basic operations of sum,
product, scalar multiplications and power operations. For, ranking purpose, some score and
accuracy functions proposed in each fuzzy environment are also observed. We analyze the
importance of expressing the grades of memberships using closed subintervals and recalled
the definitions of IVIFS, IVPyFS, IVq-ROFS, IVPFS and IVNS. The rest of the related

previous study is discussed in respective chapters.

Chapter 2

In this chapter, we observe that the concept of PFS is limited in structure and that
there are many triplets of the form (s, i, d’) which cannot be considered as PFNs. To resolve
this issue, we proposed the concept of spherical fuzzy set (SFS) and consequently T-
spherical fuzzy set (TSFS) and prove their superiority over the existing ideas with the help
of some example and geometrical demonstration. The concepts of relations and their
compositions in spherical fuzzy environment are proposed and their properties are
investigated. The max-min composition of spherical fuzzy relations (SFRs) is defined to

solve a MD problem. We further developed some new arithmetic operations for SFSs and



TSFSs based on which some WGA operators of TSFSs are also developed and utilized in

MADM problems.
Chapter 3

In this chapter, we discussed the limitations of some existing SMs of IFSs and PFSs and
proposed some new SMs in T-spherical fuzzy (TSF) environment. The significance of
newly developed SMs over the existing SMs is shown using some remarks. The newly
proposed SMs are applied to a problem of building material recognition where the data
involved is of the kind that it cannot be solved by the existing SMs. A comparative study
of the proposed and existing SMs is established showing the diversity of newly proposed

SMs.
Chapter 4

In this chapter, we proposed some new CCs in TSF environment by showing the limitations
of the existing SMs of IFSs and PFSs. The validity of the proposed new CCs is examined
and some of their properties are studied. The newly developed CCs are applied in a
clustering algorithm to obtain some useful results. A MADM problem is also solved using
newly established CCs of TSFSs and a comparison of the results obtained is established.
The limitation of the existing CCs of [FSs and PFSs are stated and the advantages of new

defined CCs are demonstrated.

Chapter 5

In this chapter, some WAA and WGA operators of TSFSs are defined keeping the
limitations of the WAA and WGA operators of IFSs, PyFSs, q-ROFSs and PFSs. The

validity of newly proposed WAA and WGA operators of TSFSs is investigated using
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mathematical induction and some basic properties of aggregation are examined. The
superiority and generalization of the proposed WAA and WGA operators of TSFSs over
existing AOs is shown and a MADM problem is solved where the information provided
cannot be processed by the existing WAA and WGA operators. A comparative study of

the new and previous study is established to demonstrate any advantages or disadvantages.
Chapter 6

This chapter aims to draw attention towards the HA operators of IFS, PyFS and PFSs and
investigated their non-viability in some cases. Then some new HA operators are developed
in TSF environment that generalizes all existing HA operators. These newly developed HA
operators include TSF Hamacher weighted averaging (TSFHWA) operator, TSF Hamacher
ordered weighted averaging (TSFHOWA) operator, TSF Hamacher hybrid averaging
(TSFHHA) operator, TSF Hamacher weighted geometric (TSFHWG) operator, TSF
Hamacher ordered weighted geometric (TSFHOWG) operator and TSF Hamacher hybrid
geometric (TSFHHG) operator. The validity of newly proposed HA operators is checked
using induction method and some properties of the aggregation are studied. A MADM
problem for search and rescue robots is solved using the proposed HA operators and a

comparative study is established with existing literature.

Chapter 7

As suggested in literature review sections that expressing the membership grades in terms
of a crisp value from [0, 1] may cause some loss of information that can be covered up by
expressing the membership degrees in the form of a closed subinterval of [0, 1]. Adapting

this approach, in this chapter, the concept of interval valued TSFS (IVTSFS) is introduced
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where the MG, AG, NG and RG are expressed in terms of a closed subinterval of [0, 1].
An IVTSFS generalized the concepts of IFS, IVIFS, PYFS, IVPYFS, q-ROFS, IVq-ROFS,
PFS, IVPFS, SFS and interval valued SFS (IVSFS). Then some WAA and WGA operators
in interval valued TSF environment are developed and their properties are investigated. A
problem concerning the evaluation of investment policy is solved using a MADM
technique using WAA and WGA operators of IVTSFSs. A comparative study of new

proposed work is established with existing work.
Chapter 8

This chapter aims to provide a comparative study of two major generalizations of IFSs
known as SVNS and TSFS. We critically examined the framework of SVNS in comparison
to TSFS and looked for possible advantages and disadvantages of both SVNS and TSFS.
To do so, we take few tools that are already developed in single valued neutrosophic (SVN)
environment and TSF environment and apply them to some data of imprecise information.
The results obtained using tools of SVNS and TSFS are critically observed and some major

conclusions are drawn,



Chapter 1
Preliminaries

The aim of this chapter is to study all the relevant terms and notions of FSs, IFSs,
PyFSs, q-ROFSs, PFSs and SVNSs. We discussed the basic operations of these fuzzy
frameworks along with the sum, product, scalar multiplication and power operations in
each environment. The concept of score and accuracy functions for comparison purpose
are also discussed. Furthermore, we investigated the definitions of the IVIFS, IVPYFS,
IVq-ROFS and IVPFS. Note that in our onward work, we denote the term “precede by <,

exceed by 3, inclusion by €, max by ¥ and min by A.

1.1. Fuzzy Set

Zadeh [1] gave the concept of FS back in 1965 to discuss the fuzziness of an
element in terms of membership grades in [0, 1] interval. Before Zadeh’s work, an element
can either belongs to a set or does not belongs to a set. Zadeh’s framework of FS helps to
model several measures that could not be dealt with classical set theory such as height, age,

beauty etc. We start from the main definition of FS along with its basic operations.
1.1.1. Definition [1]

On a set X, a FS is of the shape I = {(3,§): 5: X = [0,1], % € X}. Here, § denotes the MG
of the element » € X. The larger the MG of an element, the more that element said to

satisfy the property of the FS and vice versa.

Zadeh also defined the basic operations of FSs in his historical paper [1] which are

described as:
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1.1.2. Definition [5]

Let I = (6,500). I, = (3,5,(%)) and I = (%,5,(¢)) be three fuzzy numbers. Then
1. Leliffs;<s;
2. I, = Liffl, S Landl, €Iy
3. Lul=(Y(s152)

4. 1,0l = (AG5us2)

5. I°=1-—3

1.2. Intuitionistic Fuzzy Set

The concept of IFS was proposed by Atanassov [5] in which he extended the
concept of Zadeh’s [1] FS by introducing a NG along with MG with a condition that their

sum must not exceed 1.
1.2.1. Definition [5]

On a set X, an IFS is of the shape I = {(, s, d)): 0 < sum(s00), d(»)) < 1}. Further,
r(x) = 1 — sum(s, d) represents the hesitancy degree of » € X and the pair (5,d) is

termed as an IFN.

The basic set-theoretic operations of union, intersection, inclusion and complement of I[FNs

were also proposed by Atanassov [5] which are given as follows.
1.2.2. Definition [5]
Letl = (5,d), 1, = (51, d1) and I = (55, d) be three IFNs. Then

1. 11 c 12 lff$1 < S$2, d'l 7 d'2
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2. 11 = 12 1ff11 o 12 and 12 c 11
3. Lhul= (V (51, 52)A (d1, d'z))
4. 11 n 12 = (A (511 52)'Y (dlli d,Z))

5. I°=(d.,$)
The sum, product, scalar multiplication and power operations of IFNs are given as:
1.2.3. Definition [29, 30]

Let I, = (51, d1) &I, = (52, d) be two IFNs and A > 0. Then

1. L®L =(51+52— $1.52, d'1.d'2).
2. L@l = (51.55d1 +d2 — d;.d>)
3. 4.0 =(1-(1=-9%@4).
4. = (HA1- 1 -
To rank two IFNs, a score function is usually used and in case when score function could

not differentiate between two IFNs, an accuracy function is introduced. The concept of

score and accuracy functions of IFNs are defined as:
1.2.4. Definition [29]

Let I = (5,d") be an IFN. Then the score value of I is defined as SC(I) =s—d and

sc() e [-1,1].
In view of the score function, for two INFs I; = (s1,d'y) and I = (s2,d’5), we have
o 1, is superior to I, if SC(I;) > SC(I2).

e I, isinferior to I, if SC(I;) < SC(I3).
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In case when, SC(I;) = SC(I). Then two IFNs can be distinguished from each other by

the help of accuracy function which is defined as:
1.2.5. Definition [29]

Let [ = (5,d’) be an IFN. Then the accuracy value of I is defined as AC(I) = s+ d and

Ac(D) € [0,1].
In view of the accuracy function, for two INFs [ = (51,d1) and I = (5, d2), we have

o I, is superior to I, if AC(I;) > AC(Iy).
o I, isinferior to I if AC(I;) < AC(I,).

o I, is similar to I, if AC(I;) = AC(I2).

Atanassov [14] improved the idea of IFS to IVIFS by expressing the MG and NG in terms

of closed subintervals of [0, 1] instead of crisp numbers.

1.2.6. Definition [14]

On a set X, an IVIFS is of the shape [= {(x, ([s* s%], [d’l,d'”])): 0<
sum(s“(u),d’”(x)) < 1}. Further, r(¢) =[r\r*]= [1 - sum(sl(x),d'l(x)), 1-—

sum(su(}f), d’"(x))] represents the hesitancy degree of ®€X and the pair

([s',s*], [d*, d“]) is termed as an interval valued IFN (IVIFN).

All other basics operations of IVIFSs are defined analogously and one is referred to [14,

34-37] for a better understanding of these concepts.
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The concept of Atanassov’s IFS [5] provides a lesser range for selecting the MG and NG
by a restriction. To deal with such situation, the concept of PyFS [6] was introduced which

gave relatively larger range.

1.3. Pythagorean Fuzzy Set
The concept of PyFS was proposed by Yager [6] to increase the range for selecting MG

and NG. PyFS allows the sum of squares of the MG and NG to be in [0, 1].

1.3.1. Definition [6]

On a set X, a PyFS is of the shape [ = (0. d)):0< sum(s2(»), d? (%)) < 1}. Further,

r(xn) = \F - sum(sz (), d? (}{)) represents the hesitancy degree of »# € X and the pair
(s,d) is termed as a PyFN.

The basic set-theoretic operations of union, intersection, inclusion and complement of

PyFNs were proposed by Peng and Yang [15] which are given as follows.
1.3.2. Definition [15]
Letl = (5,d), I, = (s, d1) and [ = (s,, d'2) be three PyFNs. Then

1. Iy €1, iffs; < s55,dy = d>

2. L=hLiff; S Landl; S

3. Lhul = (V (51,5204 (d'pd'z))
4. ILnl = (A (51,520Y (d'pd'z))
5. I°=(d,s)

The sum, product, scalar multiplication and power operations of PyFNs are given as:
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1.3.3. Definition [15]

Let I; = (51, d) &I, = (5, d2) be two PyFNs and A > 0. Then

L L@ = (V5T + 53— 5555, du.d2)

2. 1@l = (s0:52, /AT + 5 - 41.43)
3. A.I=( 1—(1—52)1,(&)1).

4. 1= (AJT- A -d7).

To rank two PyFNs, a score function is usually used and in case when score function could
not differentiate between two PyFNs, an accuracy function is introduced. The concept of

score and accuracy functions of PyFNs are defined as:
1.3.4. Definition [15]

Let I = (5,d) be a PyFN. Then the score value of  is defined as SC(I) = 52(x) — ()

and SC(I) € [-1,1].
In view of the score function, for two PyFNs I; = (s, d;) and I = (55, d'2), we have

o I, is superior to I, if SC(I;) > SC(I2).

o [, is inferior to I, if SC(I1) < SC(Iy).

In case when, SC(I;) = SC(I;). Then two PyFNs can be distinguished from each other by

the help of accuracy function which is defined as:
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1.3.5. Definition [15]

Let I = (5,d) be a PyFN. Then the accuracy value of I is defined as AC(I) = s2(x) +

d'2(») and AC(I) € [0,1].
In view of the accuracy function, for two PyFNs Iy = (51, d,) and I, = (5, d’;), we have

e I, is superior to I, if AC(I) > AC(ly).
o I, is inferior to I if AC(I) < AC(I3).

e I, issimilar to I, if AC(I;) = AC(I2).

Peng and Yang [15] improved the idea of PyFS to IVPyFS by expressing the MG and NG

in terms of closed subintervals of [0, 1] instead of crisp numbers and is defined as follows:
1.3.6. Definition [15]
On a set X, an IVPYFS is of the shape [= {(H, ([s4, s¥1, [d*, d'“])): 0<
u 2 U 2 — [yl u —_
sum ((5 () ,(d () ) < 1}. Further, r(x) = [rtGo), v 0G0 = |1 -
2 2
sum (($l(H)) ,(d”(u)) ), 1—sum ((su(}t))z, (d’u(x))z)] represents the hesitancy

degree of » € X and the pair ([s', 541, [d*,d¥]) is termed as an interval valued PyFN

(IVPYFN).

All other basics operations of IVPyFSs are defined analogously and one is referred to [15,

46, 47] for a better picture of these notions.

The concept of PyFS [6] provides comparatively larger range than Atanassov’s IFS [5] for

selecting the MG and NG but still it is not enough to make every pair (5,d) a PyFN. To
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improve the concept of PyFS, another concept of q-ROFS [7] is introduced which increased

the range of IFS as well as PyFS significantly.

1.4. q-Rung Orthopair Fuzzy Set
The concept of q-ROFS was proposed by Yager [8] to further increase the range for
selecting MG and NG. A g-ROFS allows the sum of gt" power of the MG and NG to be

in [0, 1] which generalizes both, the framework of IFSs and PyFSs.
1.4.1. Definition [8]

On a set X, a g-ROFS is of the shape [ = {(% (s, d’)): 0 < sum(s9(x), d? () <1lqc€

Z*}. Further, r(x) = qJ:— sum(sq (), d'9(3)) represents the hesitancy degree of % € X
and the pair (5, d) is termed as a ¢-ROFN.

The sum, product, scalar multiplication and power operations of q-ROFNs are given as:
1.4.2. Definition [85]

Let I, = (51,d1) & I, = (52,d2) be two g-ROFNs and A > 0. Then

q ’ ’

1. Ll = (Jg+ 52 —s;’-s‘z’,dl.dz).
q » 7 ’ U

2. L®l, = (51-52. \E‘1’+dg—d‘j.d‘z’)

3. 40 =(Y1-a-59% (@)*).
4. P=(AV1-0- d9)7).
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To rank two q-ROFNs, a score function is usually used and in case when score function
could not differentiate between two q-ROFNs, an accuracy function is introduced. The

concept of score and accuracy functions of ¢-ROFNss are defined as:
1.4.3. Definition [85]

Let I = (5,d) be a q-ROFN. Then the score value of I is defined as SC(I) = s9(x) —

d'9(») and SC(I) € [-1,1].
In view of the score function, for two g-ROFNs I; = (1, d;) and I; = (5,,d;), we have

o I, is superior to I, if SC(I;) > SC(I2).

e [, is inferior to I if SC(I1) < SC(I).

In case when, SC(I;) = SC(I). Then two g-ROFNs can be distinguished from each other

by the help of accuracy function which is defined as:
1.4.4. Definition [85]

Let I = (s,d) be a ¢-ROFN. Then the accuracy value of I is defined as AC(I) = §7() +

d'9(x) and AC(I) € [0, 1].

In view of the accuracy function, for two q-ROFNs /; = (s1,d) and I = (55, d72), we
have

e [, is superior to I, if AC(I;) > AC(l2).

e I, is inferior to I, if AC(I) < AC(I3).

e [, is similar to I if AC(I;) = AC().
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Joshi et al. [16] improved the idea of g-ROFS to [Vq-ROFS by expressing the MG and NG

in terms of closed subintervals of [0, 1] instead of crisp numbers and defined it as follows:

1.4.5. Definition [16]

On a set X, an IVq-ROFS is of the shape | = {(}{, ([s*Go), s* G0)], [d”(x),d'“(u)])): 0<

sum((s")%, (@)% < 1,q €Z*).  Further, 700 = [r'Ga,r(0] = [1 - sum((s")?
(@H9),1 — sum((s*)9, (d*))] represents the hesitancy degree of » € X and the pair

([s%, s*], [d*, d*]) is termed as an interval valued g-ROFN (IV@-ROFN).

All other basics operations of [IVq-ROFSs are defined analogously and one is referred to

[15, 46, 47] for a better understanding of these notions.

The frameworks of IFSs, PyFSs and q-ROFSs proposed by Atanassov [5], and Yager [6,
8] respectively and their generalized versions where MG and NG are expressed in interval
as defined in [14-16] can deal with only two aspects of human opinion i.e. yes and no or
favor and disfavor. In real life problems, such as decision making, pattern recognition and
clustering, a human opinion have more than two aspects and along with a MG and a NG
there is an AG and a RG as well. To face such problems, Cuong introduced the notion of
PFSs which takes four types of functions denoting MG, AG, NG and RG to model an

uncertain situation. We discussed some aspects of PFSs in the following section.

1.5. Picture Fuzzy Set

The concept of PFS was proposed by Cuong [9] in which he extended the concept of
Atanassov’s IFS [5] by introducing an AG grade along with a MG and a NG with a

condition that their sum must not exceeds 1.
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1.5.1. Definition [9]

On a set X, a PFS is of the shape I = {(»,(5,i,d)): 0 < sum(s(x), i(x),d () < 1}.
Further, r(»#) =1 — §um(§(u), i(»), d'(%)) represents the RG of »# € X and the triplet

(s, i,d) is termed as a PFN,

The basic set-theoretic operations of union, intersection, inclusion and complement of

PFN's were also proposed by Cuong [9] which are given as follows.
1.5.2. Definition [9]

LetI = (5,i,d), I = (51,i1,d1) and [ = (52, {2, d’,) be three PFNs. Then

[y

. 11 c 12 lff$1 < $2,i1 < iz,d'l 7 dlz.

2. 11 = 12 lffIl c 12 and 12 c 11.

w

LUL = (V (51,524 (i, i),A (dq, dlz))-

e

Lnl= (A (51,520 (i3, i2),Y (d'g, dlz))-

w

Ic=(d,i,s).

The sum, product, scalar multiplication and power operations of PFNs are investigated
by three different groups. Wang et al. [51] proposed the product and power operations for
PFNs while Garg [50] defined the sum, product, scalar multiplication and power operations
of PFNs in a different way than Wang et al. [S1]. However, Wei [83] also investigated

these basic operations and applied them in MADM problems.

The picture fuzzy operations proposed by Wang et al. [51] are given by:
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1.5.3. Definition [51]
Let I, = (51,1, d'1) &I = (52, i, d'2) be two PFNs and A > 0. Then
1. [ ®L = ((51 +i1). (52 +iz) — g iz iseiz 1 - 1-d)a- d'z))-
2. M= (G+Dr-ihit1-(1- ).
The basic operations of PFNs proposed by Garg [50] and Wei [83] are defined as:
1.5.4. Definition [50, 83]

Let I, = (1,01, d1) & I = (§2, i, d'2) be two PFNs and A > 0. Then

1. L®l, = (51 + 52 — $1.52 1. 12, d1. d2).
2. Li®I, = (51.52, 0y +ip — iz ipdr + d, —d;.d3)
3. 4.0 =(1-1 -4 O4 @),
4. P=(A1-0-d% 1-1-d)).
To rank two PFNss, a score function is usually used and in case when score function could

not differentiate between two PFNs, an accuracy function is introduced. The concept of

score function of a PFN defined by Wang et al. [51] and Wei [83] is given by:
1.5.5. Definition [51, 83]

Let I = (5,i,d) be a PFN. Then the score value of I is defined as SC(I) = s(¢) — d'(3)

and SC(I) € [-1,1].

The score function for PFNs proposed by Garg [50] is given as:
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1.5.6. Definition [50]

Let I = (s, i,d) be a PFN. Then the score value of I is defined as SC(I) = s(3) —i() —

d'(») and SC(I) € [-1,1].

In view of these score functions, for two PNFs Iy = (s1, i1, d,) and I, = (52,12, d7), we
have

e I, is superior to I, if SC(I;) > SC(I2).

o I, is inferior to I, if SC(Iy) < SC(I3).

In case when, SC(I;) = SC(I;). Then two PFNs can be distinguished from each other by

the help of accuracy function which is defined as:
1.5.7. Definition [50, 51, 83]

Let I = (s,i,d) be a PFN. Then the accuracy value of I is defined as AC(I) = s(x) +

i(x) + d(¢) and AC(I) € [0, 1].

In view of the accuracy function, for two PNFs I} = (51,61, dy) and I = (52, iz, d2), we

have
e I, is superior to I, if AC(l;) > AC(1y).
o I, is inferior to I if AC(I;) < AC(I2).

o I, is similar to I, if AC(I;) = AC(I2).

Keeping in mind the significance of IVIFS [14], IVPyFS [15] and IVg-ROFS [16], Cuong
[9] also improved the idea of PFS to develop IVPFS by expressing the MG, AG and NG

in terms of closed subintervals of [0, 1] instead of crisp numbers.
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1.5.8. Definition [14]

On a set X, an IVPFS is of the shape I={(K, ([s4, s¥1, [i% i [d'l,d'”])):OS
sum(s¥, %, d*) < 1}. Further, r(¢) =[r}, r¥] = [1 - sum(sl(u), il(x),d'l(u)),l -
$um($u(x), iu(;{),d’“(x))] represents the RG of x € X and the triplet

([st, 541, [i i), [d*, d™]) is termed as an interval valued PFN (IVPFN).

All other basics operations of IVPFSs are defined analogously and one is referred to [14]

for a better understanding of these concepts.

Another interesting and widely used framework that generalizes the framework of IFS is
NS theory proposed by Smarandache [12] which is further extended to propose the idea of
SVNS by Wangetal. [17]. ASVNS also consider the neutral membership degree of human
opinion and did not restrict the MG, neutral MG and NG at all. According to SVNS, the
sum of MG, neutral MG and NG must be less than or equal to 3 hence providing a smooth
platform to assign MG, neutral MG and NG without fear of exceeding from 1 like in IFS

and PFS. Some basic notions of SVNSs are discussed the following section.

1.6. Single Valued Neutrosophic Set

The concept of SVNS was proposed by Wang et al. [17] in which he extended the concept
of Atanassov’s TFS [5] by introducing a neutral MG along with a MG and a NG with a

condition that their sum must not exceeds 3.
1.6.1. Definition [17]

On a set X, an SVNS is of the shape [ = {(, G, d)):0 < sum(s(»), i(0), d(0)) <3}
Further, the triplet (s, i, d’) is termed as a SVNN.
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The sum, product, scalar multiplication and power operations of SVNNs are investigated
by Ye [77]. Operations proposed by Ye have some shortcoming suggested by Zhang et al.

[91] in interval neutrosophic settings and are defined as follows:
1.6.2. Definition [91]

Let I, = (51,11, d'1) & I, = (52,12, d2) be two SVNNs and A > 0. Then

1. L®l = (51 +$2 — $1.52 1. 12 d1.d72).

2. I,®I, = (51.52, i1 + iz — lg.ipdq +d2 — d;.d3)

3. A0 = (1= =% O @),

4. P=(*1-1-D% 1-1-d)*).
To rank two SVNNs, a score function is usually used and in case when score function could
not differentiate between two PFNs, an accuracy function is introduced. The concept of

score function of a SVNN defined by Sahin [89] which was further improved by Nancy

and Garg [90] and is described as:
1.6.3. Definition [90]
Let I = (5,i,d) be a SVNN. Then the score value of I is defined as

1+s-2i—d

sc) = >

and SC(D) € [-1,1].

The score function for SVNNs proposed by Garg [90] is given as:
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1.6.4. Definition [90]
Let I = (s,i,d) be a SVNN. Then the score value of I is defined as

SC(I)=1+($—2i—2d')(2—$—d')

and SC(I) € [-1,1].
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Chapter 2

An Approach Towards Decision Making Using the Concept of

Spherical and T-Spherical Fuzzy Sets'

Human opinion cannot be restricted to yes or no as depicted by conventional FS [1]
and IFS [5], PyFS [6] and q-ROFS [8] but it can be yes, abstain, no and refusal as explained
by PFS [9]. In this chapter, the concept of spherical fuzzy set (SFS) and T-spherical fuzzy
set (TSFS) is introduced as a generalization of FS, IFS, PyFS, q-ROFS and PFS. The
novelty of SFS and TSFS is shown by examples and graphical comparison with early
established concepts. Some operations of SFSs and TSFSs along with spherical fuzzy
relations (SFRs) are defined and related results are conferred. Medical diagnosis and
decision-making problems are discussed in the environment of SFSs and TSFSs as

practical applications.
2.1.Spherical Fuzzy Set

This section is based on the description of the novel concept of SFSs such as the definition
of SFS, its importance and novelty and its graphical comparison with early established

concepts.

I Work of this chapter has been published in the following paper:

Mahmood T., Ullah K., Khan Q. and Jan N. An Approach Towards Decision Making and Medical Diagnosis
Problems Using the Concept of Spherical Fuzzy Sets. Neural Computing and Applications. 2018, 31 (11),
7041-7053. https://doi.org/10.1007/$00521-018-3521-2
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2.1.1. Definition

For any universal set X, a SFS is of the form 1={(t (i, d))vxe X}. Here s, i and d

are mappings from X — [0, 1] denoting the MG, AG and NG respectively provided that

0 < sum (52(0),i200),d2()) <1 and 7(x) = \F— sum (52 (), i2(x),d2(x)) s

known as the RD of x in I. The triplet (5,1, d) is considered as a spherical fuzzy number

(SFN).

SFSs have its importance in a situation where opinion is not only restricted to yes or no,
but some sort of abstinence or refusal aspects are involved. A good example of SFS could
be decision making where human opinion about a candidate could possibly be in the form
of yes, abstain, no or refusal. Another example could be of voting where vote could be of

four types i.e. vote in favor or vote against or refuse to vote or abstain.

A question arises that why we need SFS or what are the limitations of PFS that leads us to

the concept of SFS?

The main drawback of PFS is the constraint on it i.e. 0 < sum (s(x), i(xn), d’(H)) <1las
this condition does not allow the decision makers to assign membership values of their own
choice. The decision makers are somehow bounded in a specific range. For example, if we
choose s = 0.8,i = 0.2 and d = 0.4. Then in this case 0 < sum (s5,i,d) = 1.4 £ 1. But
by squaring §,i andd and the sum becomes less than or equal to one ie. 0=
sum ((0.8)?,(0.2)?,(0.4)?) =< 1. This shows that SFS generalizes FS, IFS, PyFS and

PFS.
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To understand why this new structure is named as SFS, consider s, i and d' represent the
MG, AG and NG of a SFS respectively such that 0 < sum (s2,i%,d%) < 1. Now if we
observe the given condition, we may get the equation 0 < sum (s%,i%,d%) < 1 which

represents the space occupied by a part of unit sphere as shown in Figure 6.

If we look at the condition of PFSi.e. 0 < sum (5,i,d) < 1. This represents a space under
the curve s = 1 — (i + d) where the values of s,i and d are taken from [0, 1]. For

comparison purpose, the space of all PFNGs it is depicted in Figure 7.

0 <sum(stild) <1

0 < sumf(s,id)=<1

Figure 6 (Space of all SFNs)
Figure 7 ((Space of all PFNs))

This comparison is similar to that of IFSs and PyFSs as shown in Figure 2 but in that cases
their planes are 2-dimensional while here we have 3-dimensional space due to the number

of components in SFS.

The following theorem explained the generalization SFS over PFS more clearly.
2.1.2. Theorem

The space of SFSs is greater than that of space of PFSs.

Proof: This result can be proved in two parts.
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1. Every PFN is also a SFN. For example, let (5,i,d) be a PFN with s,iand' d’ €
[0,1] such that 0 < sum(s,i,d) < 1. Then it is obvious that sum(s?, i%,d?) €
[0,1] as§? < 5,2 <iandd? < d.

2. A SFN may not necessarily be a PFN. For example, if § = 0.8,i =03andd = 0.6

then obviously sum(s2, i, d2) € [0,1] but 0 < sum(s,i,d) =17 £ 1.

Thus, the space of SFSs is larger than space of PFSs. While working in spherical fuzzy
environment, one may have much more choices of assigning values to s, i and d from [0, 1]

due to which ground of SFNs is of more value than PFNs.
2.2. Operations on Spherical Fuzzy Sets

This section is about some operations on SFSs such as inclusion, union, intersection,
complement and their properties. We also defined the concept of relations in spherical
fuzzy environment and studied their composition. In our further discussion X plays the role
of universal set and I = (s,i,d),I; = (51,i,d1) and [ = (52, i, d'5) shall denote three

SFNs.
2.2.1. Definition
Let I,1; and I, be three SFNs. Then

I I, C 1, iffsy < §2.0y < iy dy = dy
2. 11 = 12 1ff11 c 12 and 12 c 11.
3. Il U 12 = (V ($1u SZ):A (i1: iZ)IA (d'1; d'Z))-

4. Ihnlh = (A (51, 520A (i1, i), (dq, d'z))-

5. 1°=(d,i,s).
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2.2.2. Proposition
Let 1,1 and I, be three SFNs. Then

1. I, €1, &I, € Iz impliesthat I; € I5.

2. LUL=LUL&hLnh=LNnl.

3. Ilu(12u13)=(llulz)u13&lln(12nl3)=(Ilnlz)nl3.

4. Lu(nly)=U0vR)Nn{ U L)Y&LNnU,ul) =NV (LN 13).

5. De-Morgan’s laws hold for I; and I,.
Proof:
(1). I; € I, implies $; < §2, 13 < i, dy = d; forallx €X and
I, € I; implies 5, < §3,i2 < i3, d5 = d'3 forall € X. Now
51 < 52 and 5, < 53 implies §, < $3.
i; < iy and iy < iz implies iy < i3.
d, » dyand d; > d3 implies d'; = d3.
Hence I; € I.
The remaining parts of the proposition holds i.e. parts 2, 3, 4, 5 holds trivially.

Now, we defined the distance function for SFNs followed by an example for illustration

purpose.
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2.2.3. Definition

For two SFNs I; = (sq,i1,d1) and I = (52, iz, d',), the normalized hamming distance is

denoted and defined as:
1 m
HD s 1) = — 3 (I5306) = 30| + 1706 = 001 + 1430 = 400D
i=1

2.2.4. Example

Let I; and I, be two SFNs in X = {nq, 15,13} i€ I, = {3,(0.7,0.4,0.2), %,
(0.5,0.3,0.7), x5, (0.2,0.8,03)} & I = {1,(0.7,0.6,0.0), %2, (02, 0.4, 0.5), %5, (0.6,

0.2,0.3)}.
Then HD(A, B) = 0.1666667.

Comparison rules in FS theory have always importance especially in decision making and
some other practical problems. The comparison rules enable us to differentiate between
two fuzzy number or sometime tells us the strength between a pair of relation i.e. how
strongly two variables are related. Here, we define the score and accuracy function for

SFNs.
2.2.5. Definition

Let I be a SFN. Then the score value of I is defined as SC (1) = s2(%) — d*(x) where
sc(l) € [-1,1]. In case, when score function could not differentiate between two SFNs,

the concept of accuracy function is used. The accuracy function of a SFN [ is defined as

AC(D) = s2() + i2(¢) + d*(») and AC() € [0,1].

Based on above definition, for two SFNs I; and I, we have
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e I, is superior to I, if SC(I;) > SC(I2).

o [, isinferior to I, if SC(I}) < SC(I).
If SC(I,) = SC(I,) for two SFNs. Then

o I, is superior to I, if AC(I) > AC(I2).
o I, is inferior to I if AC(I;) < AC(I2).
o [, issimilarto I, if AC(Iy) = AC(LY).

2.3. Relations on Spherical Fuzzy Sets

A quality work is done in [19-22, 28] so far on theory of relations. These ideas are
extensively used in practical work such as in the process of medical diagnosis etc. This
section deals with SFRs, their properties and compositions of the defined relations. The
defined composition is then applied to a problem of medical diagnosis using spherical

fuzzy information.

To proceed with our study of SFRs and their compositions, first we define the concept of

Cartesian product for two SFSs Iy and .
2.3.1. Definition

Let X, and X, be two universal sets. Then the Cartesian product of two SFSs I, and I, is

of the form:
Iy %, I = {(06 ), (5100-52, 1200 20), 42060 d,()))ix € X0,y € Xz}

Iy x5 I = {690, (5100520, 1 0CON ), &, 6OV, ())) 1% € X,y € Xa}.
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These two definitions are the direct extensions of the Cartesian product of FSs, IFSs and

PFSs.
2.3.2. Definition

A SFR R on X X Y is a spherical fuzzy subset of X X ¥ i.e. R = {((J{, y), (s, i, d')):}f €
X &y € Y} provided that the values of s(#,¥),i(%,y), d(x,y) are form [0, 1] and 0 <
sum(52 (6, y), i206,y), d%(,y)) £ 1 for all (1, y) EXXY. Moreover, the set of all

spherical fuzzy relations on X X Y is denoted by SFR(X x Y).
The inverse of a SFR can be obtained using the following definition.
2.3.3. Definition

For any SFR R on X XY, we defined R~! on Y x X (an inverse relation of R) as
sp-1 (7, %) = 5r06Y), ig-1 (3, %0) = ig(t,y) and dg=1(y,2) = dr(x,y) for all (,y) €

XxY.

The SFRs preserve some basic properties of the relations which are described in following

definition.
2.3.4. Definition
Let R, & R, be two SFRson X X Y. Then for all (»,y) € X XY

1. Ry<R, if s$g00y)= sr, (0, YD), ir, (0, ¥) < ig, (2, y) and dp (ny) =
d'Rz(H' y).

2. RyV Ry = {(G6,7). 52,067 V 58,070, 1o, (6. Y) A, (1Y), d, (YD A
d'Rz(u,y)) x€EX,yE Y}.
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3. Ry ARy = {((09),57,069) Ak, (7). i, 0. Y) Ay (), d, (. Y) V

d'Rz(x,y)) HE€X,y€ Y}.

4. RS ={(,9),d06y),i(xy)s(ty)n€X,y €Y}

2.3.5. Proposition
For three SFRs R, Ry, R, the following properties holds:

1. Ry <R,=>R{*<R;".

2. R"H1=R.

3. (RyARy))™* =R{*AR;.

4. RA(R,VR)=(RAR)V(RARy).
5. RV(R,AR)) =(RVR)AN(RVRy).
6. RyAR, <R;.

7. Ry <R VR,.

8. R,<R&R, <R = R, VR, <R.

9. RER, &R <R; > RZR;AR;.
Proof: Trivial.

In our next study, different types of compositions of SFRs are discussed. Work on the
composition of fuzzy relations, intuitionistic fuzzy relations and picture fuzzy relations

have been of great importance [20-22, 28].
2.3.6. Definition

Let Ry, R, € SFR(X X Y) be two SFRs. Then max-min composed relation R,CR; €

SFR(X x Z) is defined as:
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R,CR, = {(x, 2),Sr,cRr, (0 2), irycR, (#,2),dg,cr, (. 2):H €EX,Z E Z} where
Sr,cr, (% 2) =\}{ {($R1(H' ¥) Asg, (¥, Z))}
iracr, 062) =7 { (10,009 M i, 022))}

d'g,cr, (4, 2) -—-;’\ {(d'Rl(Kw y)Vdg,(, Z))}

2.3.7. Definition

The affiliation degree or score value of two components (3, y) ofa SFR R;: X = Y can be

defined as: SC*(x,y) = 54, 0t.y) —d3,(x, y).r8 (#,y). Where 1% (6y) =1~

(52,Gey) + i3,003) + d3,067)),
2.4. T-Spherical Fuzzy Set

In this chapter, the idea of SFS is successfully presented and its comparison with PFS
is established. The aim of introducing SFS is to enlarge the space PFS as it has its
limitations in assigning MG, AG and NG to elements of a set. It is described geometrically

that how SFS increased the range for assigning MG, AG and NG.

Our theory is not limited to SFSs despite it provides a better range for assigning MG, AG
and NG but it has its limitations too. If a situation is considered where the triplet (s, i,d)
has values from [0,1] such as 5 = 0.99,i = 0.57 &d' = 0.49. In such case, the sum of
components i.e. sum(s,i,d) exceeds [0, 1] while if SFSs are considered then
sum (52,2, d?) = 1.5259 which exceeds [0, 1] too. So, our claim is that the framework

of PFSs and SFSs are not enough to deal with such situations. However, if the power on
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constraints is raised to n where n € Z* then we can assign any value of our choice to s, i, d
in the interval [0,1]. In the current example if n is taken as 6. Then sum(s®,i% d®) =
0.986556 € [0, 1]. The choice of n is up to decision makers and it may affect the results
in aggregation process. In view of this example, we propose the concept of TSFS as

follows:
2.4.1. Definition

For any universal set X, a TSFS is of the form [ = {(J{, (s, d')) Vi€ X}. Here s, i and d’
are mappings from X — [0, 1] denoting the MG, AG and NG respectively provided that

for some least n€Z', 0<sum (s”(x),i“(u),d’"(x)) <1 and r()=

n\/l —sum (sn(;{), in(x), d'"(x)) is known as the RD of x in I. The triplet (s,i,d) is
considered as a T-spherical fuzzy number (TSFN).

Obviously, this concept of TSFS provided the decision makers with an opportunity to get

values for s, i, d from anywhere in the interval [0, 1] with no fear of limitation. A graphical

0 < sum (s°(). (). d5G)) = 1 0 < sum (s*9G0), 0 (). d ()} < 1

) Figure 8 (Space of all TSFNs for n=10)
Figure 9 (Space of all TSFNs for n=5)
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representation of the range space of TSFSs is depicted in Figure 8 and Figure 9 which
clearly shows the superiority of TSFSs over existing fuzzy frameworks for assigning

grades of memberships.

The graphs in in Figure 8 and Figure 9 represent space of TSFNs forn=10andn =5
which is larger than that of the space of PFNs and SFNs depicted in in Figure 5 and Figure

6.

The following theorem support our claim of generalizations of TSFSs over PFSs and SFSs.
2.4.2. Theorem

The space of TSFNs is greater than that of space of SFNs.

Proof: This result can be proved similarly as Theorem 2.1.2.

2.4.3. Theorem

The space of TSFNs is greater than that of PFNG.

Proof: This is straightforward by transitivity of statements of Theorem 2.1.2 and Theorem

2.4.2.
2.4.4, Remark

The results stated in Section 2.2 and Section 2.3 can be extended to TSF environment

trivially.

From now onward throughout our thesis, we’ll establish results for TSFSs and the same

could be obtained for SFSs by placing n = 2.
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2.5. Aggregation Operators for TSFSs

The aim of this section is to introduce some AOs for TSFSs can consequently for SFSs.
For this purpose, we first observe that the existing AOs proposed for PFS has some
limitations as these cannot be applied to any kind of information and are restricted for a
certain range of triplets. For this purpose, we study the WGA operators proposed Wang et

al. [51] as follows:
2.5.1. Definition [51]

For some PFNs [; = (j =1,2,3, ...m), the picture fuzzy weighted geometric (PFWG)

operator is defined as

m
PFWG (I, Iy, - Iy) = n I

j=1
m m m m

- H(jﬂj) Hi]“”,nijwf,1—ﬂ(1—d',)w’
Jj=1 j=1 j=1 j=1

The WGA operator proposed in Definition 2.5.12.5.1 cannot be applied to triplets for which
sum(s, i, d’) exceeds 1 hence providing a lesser range for assigning values to s, i, and d.
Therefore, in this section, we propose new operations which leads us to setup new WGA

operators for TSFSs.
2.5.2. Definition

For three TSFNs 1,1, and I, and for 2 > 0. We define

Loddy = (G50 + G2 + &) = il .12, YT = (=D = D).
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2 1 = (G + i) - 3 YT- - dD%)

2.5.3. Remark

The operations defined in Definition 2.5.2 reduces to spherical fuzzy environment by

taking n = 2.

The above operations are generalizations of the operations of PFSs defined in [51]. Also,
if we assume i; = i, = 0. Then the above operations become operations of IFS as

explained in [30].

In order to rank two TSFNs, we extended the definition of score and accuracy function of

SFSs discussed in Definition 2.2.5 to TSF environment and is given by:
2.5.4. Definition

Let = (s,i,d") bea TSFN. Then the score value of I is defined as SC(I) = s"(3) — d™ ()
and SC(I) € [-1,1]. The accuracy value of I is defined as AC(I) = s"(x) +i"(x) +

d™(x) and AC(I) € [0, 1]. Based on these two rules, for two TSFNs I; and [;:

e 1, is superior to I, if SC(I;) > SC(I2).

e [ is inferior to I, if SC(I;) < SC(I3)-
If SC(I,) = SC(B) for two TSFNs. Then

e [, is superior to I, if AC(I;) > AC(I3).
e [ is inferior to I, if AC(I;) < AC(I3).

e I, issimilar to I, if AC(I;) = AC(I3).

48



Now we propose WGA operator for TSFNs and investigate its validity using mathematical

induction.
2.5.5. Definition
For TSFNs I; = (j =1,2,3, ...m), the T-spherical fuzzy weighted geometric (TSFWG)

operator is defined as

m
TSFWG(y, Ly, o Iy) = I—[ I

J=1

where w = (Wy, Wy, ... W) tbe the weighted vector of [; = (j=123,.m)and w; >0

and Y72, w; = 1.
Based on Definition 2.5.2, the following result can be obtained.
2.5.6. Theorem

The aggregated value of a collection of TSFNs L(G=123..m) using TSFWG operator

is also a T-SFN and

m m n m
TSFWG(ls, Ip, ) = 1—[(5, iy =g ] [e - [[a-ap™
j=1 j=1 j=1 j=1

Proof: We prove this result using mathematical induction. For m = 2, consider

L= ((51 +i)W =iy iy \/7— (1- T)Wl)

W2 = ((52 + lZ)WZ - lz , 12 , \/7_ (1 d,n)wz)
Then
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w1 W2 ((sp+ i) + i) (52 + i) + iy?) =iy i
[1 '12 = w W d
v T (= dp (L= a2

Thus, result holds true for m = 2. Further, assume that the result holds form = k i.e.

k k
TSFWG(4, 15, .. I) = 1—[(51 + l]) 1—[ l}wl 1_[ lJW‘, 1- l—[(l - d'}l)wi
j=1

k
j=1 j=1

Now we prove the result form =k + 1

k+1 k
TSFWG Iy Iy, v les1) = nl}”" = nlj.w" ® Ik
j=1 j=1

(((51 i =i, V1= - d";)wi))

k+1 k+1 k+1 k+1

TSFWG Iy Iy o Ipes) = ﬂ(;,- +i)" - 1—[ i, n i, - ﬂ(1 — ™
j=1 j=1 j=1

j=1

2.6. Applications

In this section, some real-life problems in spherical and TSF environments are discussed

including medical diagnosis and decision-making problems.
2.6.1. Applications in Medical Diagnosis

Theory on fuzzy relations is of great importance when it comes to their practical

applications [19-22, 28]. Before, the problem of medical diagnosis is investigated using
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intuitionistic fuzzy relations [22] and picture fuzzy relations [28]. An application of SFRs
in medical diagnosis is discussed in this section. A “spherical medical knowledge” is
defined as spherical fuzzy relation R: P = D which described the affiliation of a patient to
a diagnosis where P represents the set of patients and D is the set of numerous diagnosis.
Moreover Q is the set of symptoms that a patient may suffer from. An algorithm for the
process of medical diagnosis based on spherical fuzzy information, followed by a flowchart

in Figure 10, is described as follows:

2.6.1.1. Algorithm:
1. Determination of symptoms.
2. Establish a relation R, (P — Q).
3. Establish a relation R, (@ = D).
4. Find a composed relation R (P — D).

5. Find the affiliation of a patient P; to a diagnosis D; using Definition 2.3.7.
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Determine R;: P — @

Setup P, D and Q

Determine R.:Q = D

Compute R3: P = D

Compute affihatton degree

Analyze the results

Figure 10 (Flow chart of spherical medical knowledge)

An example to illustrate the above algorithm is solved as follow:

2.6.1.2. Example

Let the set of patients be P = {Py, P, P3, P4}, to be diagnosed with respect to set of

symptoms Q = {Qy,Q2,Q3,Q4, Qs }and D = {Dy, D,, D3, Dy, D5} is the set of diagnosis.

o A hypothetical relation R, (P — Q) is given in Table 1. This information described

the relationship of symptoms and patients in the form of SFN.

Ry @ Q2 @ Q4 Qs

2, | (0.7,0.1,04) | (0.50.1,08) | (04,0605 | (080.04) (0,0.8,0.5)
p. | (0.9,0.1,0) (0.5,0,0.2) (0,06,08) | (0.3,03,03) | (05,0507
P, | (0.4,04,04) | (02,01,02) | (07,0402) | (0,0804) | (07,03,03)
2, | (0.0.1,0.6) (05,0.5,0.5) | {0.9,0.4,0.1) (1,0,0) (0.2,0.5,0.7)

Table 1 (R, from P to Q)
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e A hypothetical relation R, (Q — D) is given in Table 2. This relation described that up

to how much extent the symptoms Q needs the diagnosis D.

Ro D, D, D, D, D.
0. | (04,03,04) | (05,0503) | (06001 | (040307 | (03,03.06)
0, | (0.7,0.1,0.2) (0,0,0.5) (0.5,0.1,0.6) | (0.4,0.6,0.6) | (0.1,0.3,0.7)
Qs | (0.4,0.2,0.7) (0.2,0,08) | (0.5,0.2,0.4) (1,0,0) (0.1,0.4,0.6)
04 (0,0,1) (0.45,0.4,0) (09,0,0.1) | (0.1,0.6,0.7) | (0.7,0.2.0.1)
0- | (0.7,0.1,04) | (0.41,0.3,0.6) | (0.5,0.5,0.5) [ (0.76,03.02) | (0.2,0,0.81)

Table 2 (R, from Q to D)

e The max — min composed relation R (P - D) is given in Table 3. For this purpose,

we used Definition 2.3.6.

R Dy D, Dy Dy Dg

P, | (05,0,0.4) (0.5,0,0.4) (0.8,0,04) | (04,0,0.5) (0.7,0,0.4)
P, | (0.5,0,0.2) (0.5,0,0.3) (0.6,0,0.1) | (0.5,0,0.6) (0.3,0,0.3)
P; | (04,0,02) (0.41,0,0.4) (0.5,0,01) | (0.7,0,0.2) (0.3,0,0.4)
P, | (0.5,0,0.4) (0.45,0,0) (0.9,0,0.1) | (0.9,0,0.1) (0.7,0,0.1)

Table 3 (R = R,CR;)

e The degree of affiliation (using Definition 2.3.6) between patient P; with a diagnosis

D; is calculated in Table 4.

R D, D, Dy D, Dg

P, 0.194304 0.194304 0.6336 0.072975 0.4704
P. 0.229836 0.210796 0.356031 0.195244 0.029484
Py 0.1344 0.095868 0.244524 0.481164 0

P, 0.194304 0.2025 0.809676 0.809676 0.4875

Table 4 (Affiliation strength of patents and diagnosis)

The analysis of Table 4 shows that the affiliation degree of (P, D3) and (P,, D,) are equal
and highest among all other score values which indicates that P, is a patient of D3 & D,
both strongly. Further, P; is considerably a patient of D3 or Ds. P;’s position is uncertain
to diagnose but to some extent P; has some germs of D,. In this analysis, usually if score

values are greater than S then there are more chances that a patient is suffering from a
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specific diagnosis. A score value of less than 5 mean the chances of patient P suffering

from diagnosis D is relatively less.

Now, the limitations of previous study and advantages of the studying the medical
diagnosis problem in spherical fuzzy environment over previous models are stated as

follows.

e In FS theory, there exist only membership grades and in IFS theory only membership
and non-membership grades exist. Therefore, those fuzzy frameworks cannot deal with
the information where abstinence and refusal degrees are involved.

e The space PFSs is limited and due to this reason decision makers are restricted in a
certain range and are unable to assign values to three components by their own choice.

o The medical diagnosis models proposed inn spherical fuzzy environment produce
better results as the chance of information loss is reduced by taking abstinence and

refusal degrees into account,

Hence our proposed framework of SFSs has an advantage over FS, IFS and PFS as it is
closer to human nature and is more flexible in assigning values to its membership
components. The results could be more improved if we use TSFSs instead SFSs. Further,

these results are valid in space of TSFSs also.
2.6.2. Application in Multi-Attribute Decision Making

In this subsection, we aim to use TSFNs and their AOs in MADM process. As TSFSisa
generalization of FS, IFS, PyFS, q-ROFS, PFS and SFS and could deal with real life

problems more effectively than the existing concepts. A medical diagnosis problem is
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effectively solved by using SFRs. Now to show the effectiveness of TSFNs, a MADM

problem is solved using aggregation of TSFNG.
2.6.2.1. Algorithm:

Let A = {A;,A;, A3, ... A} be a finite set of alternatives and let £ = {E\, E5.E3, ... E} be
the set of evaluations based on given attributes and E; = e(4;),i = 1,2,3,..n. Each E; is
a TSFN ie. e(4;) = (s(4)),i(4;), d(4;)) provided that s™(A) + i"(A) + d™(4)
where n € Z*. The decision-making problem involves the ranking of alternatives and
selection of best alternative against given attributes. The decision-making method has the

following steps.

1. Formation of decision matrix i.e. decision makers assigned some values to each
alternative under given attributes in the form of TSFNs.

2. The aggregation of information provided by decision makers in decision matrix.

3. Comparison of aggregated data based on score and accuracy values.

4. Arrangement of aggregated data for the selection of best alternative.

2.6.2.2. Example

A firm needs a manager for their sale/purchase department. The firm advertised the vacant
post and several candidates have applied. After initial screening, three candidates have
been selected. To find the best of them, the firm needs to evaluate the candidates based on
some attributes. The governing board of the firm have the task to evaluate the three selected
candidates based on the attributes set E and the weight vector w of each attribute is given

below.
E = {Communication skills, Responsibility, Creativity}.
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The wright vector of attributes is w = (0.2, 0.35, 0.45)"

The decision makers anonymously gave their opinion in the form of TSFNs which are

given in Table 5.

Step 1: Information provided by decision makers is provided in Table 5.

Ey E, E;
(0.8,0.5,0.4) (0.7,0.4,0.4) (0.3,0.5,0.4)
M (0.9,0.2,04) (0.6,0.3,0.2) (0.4,0.1,0.7)

yr® (0.5,0.5, 0.5) (0.8,0.2,0.3) (0.6,0.4, 0.3)
Table 5 {Decision Matrix)

It is clear from given data that all values of Table 5 are purely TSFNs for n = 3. This
indicates that this type data cannot be handled by using SFSs or PFSs which shows the

significance of using TSFSs over the existing concepts.

Step 2: 2 To aggregate the information provided in Table 5, TSFWG operator is used and

the aggregated data is given below.

A, = TSFWG(Aq1, A1z, Ar3) = (0.523087, 0.46243586,0.4).

A, = TSFWG (A3, Azz, Azz) = (0.550385, 0.16873238,0.5702233).
Az = TSFWG(A3q, A3z, Az3) = (0.671843, 0.32815687,0.3620078).

Step 3: The score values of aggregated data are given as:

2 We are thankful to Mr. Buoying Zhu (from Shandong University of Finance and Economics, China) for
pointing out towards some errors (which are now corrected) in the published version of this paper' .
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SC(A;) = (0.523087)3 — (0.4)* = 0.079127.

SC(4,) = (0.550385)3 — (0.5702233)° = —0.01869.
SC(A3) = (0.671843)> — (0.3620078)3 = 0.255811.

Step 4: Based on the score values obtained in step 3, we have

SC(A3) > SC(A;) > SC(A;) which shows that candidate A3 is the best among the three

candidates based on mentioned attributes.

The results of MADM using T-spherical fuzzy WGA operators are better than that of
produced by WGA operators of IFSs, PyFSs, g-ROFSs and PFSs because of the diverse
structure of TSFSs and its close affiliation to human nature. Furthermore, the data

aggregated by using TSFWG operators cannot be aggregated by existing operators.
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Chapter 3

Some Similarity Measures for T-Spherical Fuzzy Sets with

Applications in Pattern Recognition’

In this chapter, some new improved SMs are developed that can deal with information
involving human opinion based on MG, AG, NG and RG. First, in this chapter, some SMs
in the frameworks of IFSs and PFSs are discussed. It is discussed that existing SMs have
some limitations and could not be applied to problems where information involved opinion
having MG, AG, NG and RG. Therefore, some SMs in the framework of TSFSs and
consequently SFSs are proposed including cosine SMs, grey SMs, and set theoretic SMs.
With the help of some results, it is proved that the proposed SMs are the generalizations of
existing SMs. The newly defined SMs are subjected to a well-known problem of pattern
recognition and the results are discussed. A comparative study of new and existing SMs

are established and some advantages of the proposed work are discussed.
3.1.Some Similarity Measures and Their Drawbacks

In this section, we aim to provide some SMs developed in the environment of IFSs, PyFSs
and PFSs. In view of some examples, we show the drawbacks of these SMs which leads us

to develop some new SMs. In our next theory, X shall denote a universe of discourse.

3 Work of this chapter has been published in the following paper.

Ullah K., Mahmood T. and Jan N. Similarity Measures for T-Spherical Fuzzy Sets with Applications in
Pattern Recognition. Symmetry. 2018, 10(6), 193-207. https://doi.org/10.3390/sym 10060193
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Cosine SM (CSM) for IFSs was proposed by Ye [68] which is given by:
3.1.1. Definition [68]

For two IFNs P = (sp,dp) and Q = (5o d’Q), a CSM is defined as:

l m sp(;) - 5o (s) + dp () - do(ey)

me Vs2(0e) + d501,) \[S,é () + d50t)

C}FS(Pr Q) =

Xu and Cai [72] proposed some set-theoretic SMs for IFSs as follows:
3.1.2. Definition [72]

Fortwo IFNs P = (sp,dp)and Q = (sQ, d'Q) with hesitancy degree rp and 1 respectively,

a set-theoretic SM is defined as:

c2.<(P,Q) = li sp(24) - 5005) + dp(ry) - dle) + 1p (3) - ro(4)
5 O L e (5B.0xa) + A0 + 706, 53060) + d306) + 78 (1)

Xu and Cai [72] also proposed grey SM in intuitionistic fuzzy settings which is defined as:
3.1.3. Definition [72]

For two IFNs P = (sp,dp) and Q@ = (so/ d'Q), the grey SM is defined as:

m

3 _ 1 ASmin + BSmax | Admin + Ad'ax
CIFS(P' Q) - o ) ]
3m : ASAL + Asman Ad'i + Adman

i=1
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where As; = |$p(1q) - S0 (H,;)I and Ad,; = |d'p(x¢) - dy (K¢)|. Further Aspin =
min{l:;p(ui) —So (H¢)|} and Adpin = min{|d'p(x,;) - dy (xi)l} also  ASpma =
ma}f{|$P (%) — 5q (”4)” and Ad'yqy = ma"f“d'P(”a;) —dy (Hi)l}-

The concept of SMs proposed by Ye [68] and Xu and Cai [72] in intuitionistic fuzzy

environment was extended to picture fuzzy settings by Wei [73] and are defined as:
3.1.4. Definition [73]

For two PFNs P = (sp,ip,dp) and Q = (sQ, ig d’Q) on X, a CSM is defined as:

sp () - 5o(n) + ip(3y) < g () + dp(ry) - dg(e)
= J520e) + 306) + d30ey) - [s500) +i5(0e) + d3 ()

Crrs(P.Q) =

3.1.5. Definition [73]

For two PFNs P = (sp, ip,dp) and @ = (sQ, ig, d'Q) on X, a set-theoretic SM is defined

as!:

CErs(P, Q)

— _Z sP(H1) SQ (H¢) + lP (”4,) lQ (H'L) + d’P (Kq,) dQ(K1)
t mae (55060) + 130e) + d300), 5306 + 50e) +45060)

3.1.6. Definition [73]

For two PFNs P = (sp,ip, d’p) and Q = (s¢. o, do) on X, the grey SM is defined as:

(Asmm + ASinax . Aimin + Blmax Ad i + Ad’max)

P,
Cors(P,Q) = DS, + DSmane | Dig + Bimgy Ay + Ad gy
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where As; = |sp(t;) — SQ(”i)I, Ai; = |iP(H~;) =iy (%;)I and Ad'; = |d'P () —dyg (’f«;)l-
Further A min = min{|$P (%) — so (”4;)'}’ Aipyin = min“iP (n;) — g (”¢)I} and Ad'pin =
min{ld,P () — d'Q (”4)” also BSmax = ma”{ISP () — $o (Hi)l}, Alay =

max{lip () — ig (Jq)]} and Ad g = ma}t{ld'p () —dy (k¢)|}

The SMs [68, 72] and [73], discussed in this section, are limited and can handle the data
provided in the framework of IFSs or PFSs respectively. The SMs proposed in [68, 72]
does not take into account the abstinence and refusal degree while the SMs proposed in
[73] are limited and can process PFNs from a certain range Therefore, in this chapter, some
new SMs in the environment of TSFSs are proposed as a generalization of SMs defined in

[68, 72] and [73].
3.2.T-Spherical Fuzzy Cosine Similarity Measures

In this section, some CSMs are developed in the environment of TSFSs keeping in mind
the limitations of the SMs proposed by [68, 72] and [73]. It is proved that the SMs
developed here are the generalizations of the existing SMs (See Definitions 3.1.1 and 3.1 4)

and can be applied in situations where existing SMs fails.
3.2.1. Definition

For two TSFNs P = (sp,ip,dp) and @ = (sQ, igs d’Q), a CSM is defined as:

C}['SFS (P' Q)

1% SEGe) - R0 + 180 - i3 0es) + dB0r) - 45 0e)

" J(sp0e0) + (30e0) + (@30e)” - J(5500) + (30e0) + (a30e)’
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The following properties hold true for the CSM of three TSFNs P = (sp,ip,dp), @ =
(SQ' lQ, d’Q) and R = (SR, iR! d'R)'

0 < Crsrs(P,Q) S 1.

. C}['SFS(P'Q) = C%‘SFS(Q!P)-

. C'lrSFs(P'Q) =1ifP=4Q.

If P € Q S R.Then C'lrSFS(PuR) < C%"SFS(P:Q):GTSFS(P:R) = C%‘SFS(Q'R)-

& W -

Proof: The proofs of first and second are obvious. To prove the third part, take P = Q i.e.

sp () = 5002, ip(3:) =i (3;), dp(x;) = dg(5¢;). Hence

C%‘SFS(P' Q)

m

1 SR0e) - 5806) + ip0n) - P () + d50) - dF ()

= J (530))” + (i20c))’ + (d30x))” -J@;(m))z +(i30e) + (@30))”

_1 i (520e0))” + (B 0e))’ + (d30e)”
m L (s30x))” + (i0e)” + (d30e))”

=1
The fourth part is obvious as, geometrically, the angle of P, R is greater than that of P, Q

and Q,R.
3.2.2. Definition
The DM of the angle between two TSFNs P and @ is defined as:

d(P,Q) = arccos(Chsrs(P. Q)

The following properties hold true for the DM of three TSFNs P = (sp, ip,dp), @ =

($Q' lQ, d'Q) and R = (SR, iR! d'R)'
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1. If0 < Chers(P,Q) < 1. Thend'(P,Q) = 0.
2. If Crsps(P, Q) = Crsrs(Q, P). Then d'(P,Q) = d'(Q, P).
3. IfCheps(P,Q) =1forP =Q.Thend(P,Q) =0.

4. IfP< Q< R.Thend(P,R) <d(P,Q)+d(Q,R).

Proof: The proofs of Part (1) — (3) are obvious. To prove Part (4), let P < @ S R. Then the

DMs of P, Q and R are:
d'(P(”n;)u Q(”4)) = arccos (C%‘SFS(P(}Q): Q(”a;)))
d(Q(x,). R(4,)) = arccos (Chors(Qr) R(x))

d(P(,), R(x)) = arccos (Ghors(P(), R(x))
where 4 =1,2,3,...mand

Clrsps (P(%;)' Q (”4;))

m

_1 sp(t) - 50(ne) + ip(ny) - ig(e) + d'"(%i) - ()

M 52000 + (300) + (@300)” - |(5300) + (i30e0) + (€5060)

If P =[sp(x;),ip(x,),dp ()] Q= [$Q(}f¢): iQ(Hi):d'Q(K'i,)] and R =
[sQ CARPICAN. P (Jq)] are considered as three vectors in a plane such that P(3,;) S
Q(x;) € R(x;) and using triangular inequality, we have d(P(x;).R (1) <
d'(P(J-{,i), Q(;{i)) + d'(Q(in), R(Jq)) and hence (4) holds true.
In the following, w = (wy, wo, Ws ... Wy, )* represents a weight vector such that w; €

[0,1]and Y2 w; =1
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3.2.3. Definition

For two TSFNs P = (sp,ip,dp) and Q@ = (50 i d’Q), a weighted CSM is defined as:

WC}I'SFS(Pf Q)

1% . SBOt) - sB06) + (R0t - 18(0e) + dp0x) - dg0e)
i

i J@(m)z + (30e0) + (@200) - J(50e0) + (1360) + (36e)”

By taking w; = ﬁ, Definition 3.2.3 reduced to Definition 3.2.1.

The following properties hold true for the weighted cosine similarity measures of three

TSENs P = (sp,ip, dp), @ = (50,1, d) and R = (5g, ig, d'r)-

1. 0<WCkees(P,Q) <1

2. WChsrs(P.Q) = WCFsrs(Q, P)-

3. WChers(P,Q) = 1iffP = Q.

4. IfP c QS R. Then WCigrs(P,R) < WCisrs(P, Q), WCrses(P,R) <

W(;%'SFS(Q' R)

Proof: Proofs are straightforward.

3.3.T-spherical Fuzzy Set-Theoretic Similarity Measures

In this section, some set-theoretic SMs are developed in the environment of TSFSs
keeping in mind the limitations of the set-theoretic SMs proposed by [72] and [73]. It is
observed that for computing similarity index using set theoretic SM, Xu and Cai [72]
include hesitancy degree. However, for the set-theoretic SMs of PFSs proposed by Sing

[73], the refusal degree is being ignored. In this section, it is proved that the SMs developed
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here are the generalizations of the existing SMs (See Definitions 3.1.2 and 3.1.5) and can

be applied in situations where the existing SMs fails.
3.3.1. Definition

For two TSFNs P = ($p,ip,dp) and Q = (sq, i, d'Q), a set-theoretic SM is defined as:

Casrs(P, Q)

1 X sp(;) - 5p0r) + ip () - ig(e) + dpey) - dg0e)

M max ((s;;(m))2 +(i20e))" + (30’ (s (;q))2 + (ig(m))2 + (d7 (m))z)

3.3.2. Definition

For two TSFNs P = (sp, ip,dp) and Q = (5q,iq.do), a weighted set-theoretic SM is

defined as:

WC%SFS (P, Q)

m

1N, B0t - sp00) + B0 150e) + dR0e) - dg6e)
i 2 2 2
M e (500" + (B00)" + (@30e0)" (5500 + (1500) + (@30 )

Definition 3.3.2 reduces to Definition 3.3.1 if we place w; = %

The following properties hold true for the set-theoretic SMs oftwo TSFNs P = (sp, ip, dp)
and Q = (SQ' lQ, d'Q)

1 0<Cieprs(PQ) <L
2. G5ps(P,Q) = Cisrs(Q, P).

3. C%‘SFS(P:Q) =1ifP =Q.
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The following three properties hold true for the weighted set-theoretic SM of two TSFNs
P = (sp,ip,dp)and Q = (sq,iQ,d'Q).

1. 0<WCiers(P,Q) <1

2. WCisrs(P,Q) = WCHsrs(Q, P).

3. WC2s(P,Q)=1ifP=Q.

If we include the refusal degree for computing set-theoretic SMs, the Definition 3.3.2
would take the following form:

3.3.3. Definition

For two TSFNs P = (sp,ip,dp) and Q = (sQ,iQ,d'Q) with refusal degrees 7p and 1y
respectively, a weighted set-theoretic SM is defined as:

WCEses(P, Q)

1 iw.s"“”” B0 + 06 - B0 + dB0c) - dF0e) + 1P () g ()
miy (530e)” + (20e)” + (@30))” + (76e)
2 2 2 2
(s200) + (130 + (430e)” + (13(x0)

max

3.4. T-Spherical Fuzzy Grey Similarity Measures

In this section, some grey SMs are developed in the environment of TSFSs keeping in mind
the limitations of the grey SMs proposed by [72] and [73]. It is proved that the SMs
developed here are the generalizations of the existing SMs (See Definitions 3.1.3 and 3.1.6)

and can be applied in situations where existing SMs fails.
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3.4.1. Definition

For two TSFNs P = (sp, ip,dp) and Q = (sq, ig d'Q), the grey SM is defined as:

m . . ) ’
3 _ 1 ASmin + ASmax  Bimin + Bimay | Ad'min + Ad'max
CTSFS(P' Q) =5 + . . dv dn
3m = As; + ASmax Ay + Al Ad'; + Ad'pax

where As; = |sB(e,) — sa ()|, Aiy = |iF0e) — i%(x;)| and Ad’; = |dE () — dG Ge))-
Further  Aspmin = min{|sp(e,) — 5o ()|} Bimin = min{|i%(¢;) — i%(x;)|}  and
Ad' i = min{ld’;’l(”fi) - d'g (”4)'} also Aspay = ma%ﬂ#(ﬂi) - S'é (Ki.)l}a Aias =

max{|ig(x¢) - l'S(JQ)I} and Ad' g5 = max{|d’2(k¢) —d7j (}{i)”.

The following properties hold true for the Grey SM of two TSFNs P = ($p,ip,dp), Q@ =
(50 i dq)-
1. 0<Cisps(PQ) <1

2. Clers(P,Q) = C2srs(Q. P).
3. C?‘SFS(PfQ) =1ifP =Q.
Whenever the weight of the elements is considered in a real-life phenomenon, attributes

have different importance in different situations and therefore need to be weighted

accordingly. Therefore, we developed weighted grey SM as follows:
3.4.2. Definition

For two TSFNs P = (sp,ip,dp) and Q@ = (sQ, lg d’Q), the weighted grey SM is defined

as:
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m ; ; ’ »
3 1 A$min + Asma;t Almin + Almau Ad min T Ad max
WCrsrs(P,Q) =3 ) W, : : n
34 . As; + ASpmas Ai; + Ay, Ad; + Ad g
i=

where As, = |s30¢) — 530, Aig = |iB(x) = i§Gx)] and Ad = [dF0e) = d30e)].
Further  Agpin = min{|s306) = sp0D}  Abmin = min{]i20e) = i3(e)[}  and
Bl i = min{|dB0c) — ARG} also Ay = mar{|s306) = 50|} Abmax =

ma}t{|i{,‘(}f¢-) - ig(}q)” and Ad' ;0 = max{ld’}.}(}ti) —d7j (J{i)l}.

The following properties hold true for the weighted grey similarity measure of two TSFNs
P = (sp,ip,dp)and @ = (SQuiQ:d'Q)-

I 0SWG(P,Q)<1
2. WGis(P, Q) = WCers(Q, P).

3. W(;?rSFS(P:Q) =1ifP=0Q.

3.5. Application in Pattern Recognition

The tools of SMs have applications in pattern recognition. In problems, the class of an
unknown pattern or object is determined using some information measure tools and some
preferences of decision makers. Here, we aim to apply the SMs proposed in T-Spherical
Fuzzy environment to a problem of building material recognition.

3.5.1. Building Material Recognition

In this subsection, the T-spherical fuzzy SMs, developed in Section 3.2, 3.3 and 3.4 so far,
are applied to a building material recognition problem where the class of an unknown

building material is determined. The results obtained using the SMs of TSFSs are then
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analyzed for the advantages of proposed work and the limitations of existing work. To

explain the phenomenon, an illustrative example adapted from Reference [73] is discussed.

3.5.1.1.Example

Consider four TSFNs P;(i = 1,2,3,4) represent four known building materials and let
X={x;:4=1,2,3,..7} be the collection of attributes having weights w =
(0.16,0.12,0.09, 0.18, 0.20,0.10,0.15)" based on which building materials are
categorized. We assume another unknown material P with the hypothetical information
listed in Table 6. With the help of defined SMs for TSFSs, we shall identify the class of
unknown building material from four materials denoted by P;(i = 1,2,3, 4). Using the

recognition principle discussed in [68, 73], given below, the evaluation of the class of P to

P, is established.

Py
(0.56,0.47,0.22)
(0.11,0.11,0.11)
(0.35,0.45,0.61)
(0.33,0.54,0.31)

0.35,0.2,0.64)
(0.47,0.37,0.68)

(0.78,0.55,0.03)

k =arg g?s’ﬁ {WCTSFS}

P,

(0.81,0.3,0.37)

(0.59, 0.66,0.66)

(0.42,0.56,0.71)

0.59,0.45,0.9)

(0.16,0.33,0.42)

(0.68,0.46,0.88)

(0.49,0.54,0.39)

P
(0.43,0.43,0.55)
(0.91,0.34,0.68)
(0.81,0.41,0.35)
(0.44,0.55,0.77)
(0.55, 0.44,0.29)
(0.47,0.66,0.75)

(0.58,0.34,0.23)

2
(0.57,0.51,0.39)
(0.56,0.76,0.31)
(0.27,0.59,0.72)
(0.46,0.46,0.45)
(0.57,0.66,0.91)
(0.41,0.73,0.41)

(0.21,0.43,0.13)

Table 6 (Data on building materials)
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(0.34,0.56,0.78)

(0.47,0.38,0.84)

(0.55,0.44,0.65)

(0.76,0.46,0.85)

(0.13,0.35,0.57)

(0.24,0.54,0.45)

(0.82,0.46, 0.69)



All the numbers in Table 1 are purely TSFNs for n = 4 which means that the SMs of IFSs
and PFSs could not handle such type of data as their structures are limited. Even SFSs
could not handle of this type of data as in SFSs we have n = 2. This shows the significance
of working in the environment of TSFSs. Now, the different SMs defined in Section 3.2,

3.3 and 3.4 are applied to the given data in Table 1 and the results are provided in Table 7.

Similarity Measures (P4, P) (P,,P) (P53, P) (Pg, P)

1

WCrers 0.612207 0.690072 0.64601 0.603693
z

WCrsrs 0.3197 0.367149 0.26296 0.160122

3
WCrsrs 0.762518 0.792809 0.796319 0.750893

Table 7 (Similanity measures of P, with P)

Analyzing Table 7, it seems that material P, is close to P as the similarity index of
(P,, P) = 0.69 and (P,, P) = 0.79 which is larger than the similarity index of all other pairs
if we apply CSMs or set-theoretic SMs. However, if we apply grey SMs, it seems that the
values of (P, P) and (P;, P) can be considered nearly equal or the similarity of (Ps, P) is
slightly higher than that of (P, P), so by grey SM, P has a relatively larger similarity index
with the class of P3. Thus, it is concluded that based on CSM or set-theoretic SM, the
unknown material P belongs to the class of P, type material while based on grey SM, the
material P belongs to P; type material. The choice of using any of the SM is up to decision

makers.
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3.6. Comparative Study and Advantages

The SMs developed in this chapter are the generalizations of the SMs proposed in [68, 72]
and [73]. In the following remarks, we prove that the previously defined SMs becomes the

special cases of the proposed SMs.

3.6.1. Remark

e By placing n = 2, Definitions 3.2.1 and 3.3.2 reduced to spherical fuzzy environment.

e By placing n = 1, Definitions 3.2.1 and 3.3.2 reduced to picture fuzzy environment

[73].

e Byplacingn = 1and i = 0, Definitions 3.2.1 and 3.3.2 reduced to intuitionistic fuzzy

environment [73].

3.6.2. Remark

e By placing n = 2, Definitions 3.3.1 and 3.3.2 reduced to spherical fuzzy environment.

e By placing n = 1, Definitions 3.3.1 and 3.3.2 reduced to picture fuzzy environment

[73].

e By placingn = 1 and i = 0, Definitions 3.3.1 and 3.3.2 reduced to intuitionistic fuzzy

environment [73].

3.6.3. Remark

e By placing n = 2, Definitions 3.4.1 and 3.4.2 reduced to spherical fuzzy environment.
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e By placing n = 1, Definitions 3.4.1 and 3.4.2 reduced to picture fuzzy environment

[73].

e Byplacingn = 1andi = 0, Definitions 3.4.1 and 3.4.2 reduced to intuitionistic fuzzy

environment [73].

The main advantage of the SMs proposed in the environment of SFSs and TSFSs is
that these SMs can handle the data provided in [68, 72] and [73]. However, none of the
SMs of the IFSs, PyFSs, g-ROFSs and PFSs can handle the information given in the form
of TSFNs.

Now, the building material recognition problem from Reference [73] is solved using SMs

of TSFSs forn = 1.

3.6.4. Example

In this problem from [73], four building materials are denoted by P,(i=1,23,4). The
weighted SMs of TSFSs defined in 3.2.3,3.3.2 and 3.4.2 are applied on the data provided
in Table 8 to evaluate the class of unknown building material P. The weight vector in this

case is (0.12,0.15,0.09, 0.16, 0.20, 0.10, 0.18)7.
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P, P, Py Py p

(0.17,0.53,0.13) (0.51,0.24,0.21) (0.31,0.39,0.25) (1,0,0) (0.91, 0.03,0.05)
(0.10,0.81,0.05) (0.62,0.12,0.07) (0.60,0.26,0.11) (1,0,0) (0.78,0.12,0.07)
(0.53,0.33,0.09) (1,0,0) (0.91,0.03,0.02) (0.85,0.09,0.05) (0.90,0.05,0.02)

(0.89,0.08,0.03)  (0.13,0.64,0.21) (0.07,0.09,0.07)  (0.74,0.16,0.1)  (0.68,0.08,0.2 1)
(0.42,0.35,0.18) (0.03,0.82,0.13) (0.04,0.85,0.10) (0.02,0.89, 0.05) (0.05,0.87,0.06)
(0.08,0.89,0.02) (0.73,0.15,0.08) (0.68,0.26,0.06) (0.08,0.84,0.06) (0.13,0.75, 0.09)
(0.33,0.51,0.12)  (0.52,0.31,0.16) (0.15,0.76,0.07) (0.16,0.71,0.05) (0.15,0.73,0.08)

Table 8 (information about known and unknown patterns [73])

All data in Table 8 is in picture fuzzy environment, we can use the proposed T-spherical

fuzzy SMs by taking n = 1 and the results are given in Table 9.

(P,P) (PoP) (P3,P) (P4 P)

1
0.715235 0.763072 0.855508 0.993654

2
WCrers 0.5556  0.65557 0.693305 0.919909

3
0.708292 0.785837 0.915441 0.941545

Table 9 (SMs of P, with P}

The results obtained in Table 9 are similar to those obtained in [73] which strengthened
our claim that the SMs of TSFSs can handle the data provided in the environment of PFSs
and subsequently other existing fuzzy frameworks. Conversely, the SMs of IFSs and PFSs
could not handle the data provided in TSF environment as a TSFN cannot be considered
as an IFN or PFN in general.

The main two advantages of working in TSF environment are as follows:

e A TSF framework allows us to discuss the four aspects of uncertainty with the help of

the MG, AG, NG and RG while IFS, PyFS and q-ROFS have only MG and NG. This
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means that the chances of the loss in information in previous study is more than the
proposed study.

Proposed SMs of TSFSs has no restriction for assigning values to MG, AG and NG
while in the environment of IFSs, PyFSs and PFSs there are some restrictions in

assigning membership values.
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Chapter 4

Correlation Coefficients for T-Spherical Fuzzy Sets and Their

Applications *

The objective of this chapter is to develop some correlation coefficients (CCs) for TSFSs
due to the non-applicability of CCs of IFSs and PFSs in some certain circumstances. The
validity of new CCs has been discussed and their significance is studied with the help of
some results. A clustering and multi-attribute decision making algorithms have been
proposed in the environment of TSFSs. To demonstrate the viability of proposed
algorithms and CCs, two real life problems including a clustering problem and a MADM
problem have been solved. A comparative study of newly presented and pre-existing
literature is established showing the superiority of proposed work. Some advantages of the
new CCs and the drawbacks of the previous study are demonstrated with the help of

numerical examples.
4.1. Examining the Drawbacks in Existing Study

The goal of this section is to study some CCs in intuitionistic and picture fuzzy settings
and point out their limitations. CCs are most useful for MADM, pattern recognition,

clustering and medical diagnosis problems. For a detailed study about CCs, one is referred

4 The work of this chapter is from following published paper:

Ullah K., *Garg H., Mahmood T., Jan N. and Ali Z. Correlation coefficients for T-spherical fuzzy sets and
their applications in clustering and multi-attribute decision making. Soft Computing, 2019.
hitps://doi.org/10.1007/500500-019-03993-6
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to [25, 72, 75, 76, 78, 79, 82]. Throughout this chapter, X shall denote a universe of

discourse and »; € X forj = 1,2,3,..m.

The concept of information energy (IE) of an IFS was given by Gerstenkorn and Manko

[75] and is defined as:

4.1.1. Definition [75]

ForanIFS | = {(H, (s, d')): € X}, the IE of I is defined as:

Eips(D) = i[SZ(J‘j) + dlz(”i)]

Gerstenkorn and Manko [75] used the above IE to define the correlation of two IFSs as

follows:
4.1.2. Definition [75]

For two IFSs I, and I,, the correlation between I; and I, is defined as:
m
Cirs(1,12) = Z[Sl(”j) -52(04) + d () - d‘Z(”j)]
j=1

Extending this idea of correlation, Gerstenkorn and Manko [75] proposed the concept of

CC between two IFSs as follows:
4.1.3. Definition [75]

For two IFSs I; and I, the CC between I; and I is defined as:

25‘11[51(’{1') -52(05) + dq (%) - d'Z("j)]
JUEA05206) + 20D ERal530e) + 4306)D)]

76

7(11105(11:12) =




This CC of IFS describe two aspects of human opinion i.e. yes or no denoted by MG and
NG only. However, it fails whenever information has some abstinence and refusal degree
such as in MADM an pattern recognition. To overcome this difficulty, Sing [76] introduced

the idea of IE and CCs in picture fuzzy environment.
The concept of information energy (IE) of a PFS proposed by Sing [76] and is defined as:
4.1.4. Definition [76]

ForaPFS I = {(J—t, (s i, d')): X € X}, the IE of I is defined as:

Epps(I) = 2[52(’0’) +i2(x) + d?(x;) + rz(”f)]

Sing [76] used the above IE to define the correlation of two IFSs as follows:
4.1.5. Definition [76]

For two PFSs I; and I,, the correlation between /; and [, is defined as:

CorsUy 15) = Z[Si(”j) -52(0) + ia(7) - 1505) + d1.(37) - d2(0) + 11 (35) - 12 (307)]

J

Extending this idea of correlation, Sing [76] proposed the concept of CC between two PFSs

as follows:
4.1.6. Definition [76]

For two PFSs I, and I,, the CCs between I; and I, is defined as:
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Hprs(y, I2)
Z}n=1[$1(”j) : $2(”j) + i1(”j) . iz(}fj) + d'l(”j) ' d'Z(”j) + rl(”j) 'rz(”j)]

) \FT:JS%(KJ) +i2(05) + d2() + 2 (1)) (T [53 () + 3 05) + d3() + 77 (7))

This concept of CC for PFS is a generalization of the CC of IFS proposed by Gerstenkorn
and Manko [75] and has the ability of describing abstinence and refusal degree along with
MG and NG and hence reduced the chances of information loss. However, it is observed
that under some certain circumstances, the defined CCs are unable to measures of degree
of relationship between two PFSs. For instance, consider triplets of the form [; =
(0.5,0.6,0.8) and I, = (0.3,0.6,0.9). These two triplets cannot be considered as PFSs as
0<05+06+08=19%1 and 0<03+06+09=18%1 and the above-
mentioned CCs cannot be applied to compute their degree of correlation. Therefore, we
aim to develop some improved more general CCs that can be used to compute the CC of

such triplets.
4.2.New Correlation Coefficients

The aim of this section is to develop some new CCs to overcome the situations which were
remained unsolved by the previous literature studied in [75, 76]. We propose the new type

of IE, correlation and CCs in the environment of TSFSs as follows:
4.2.1. Definition

Fora TSFS I = {(x (s, 1, d’)): X E X}, the IE of I is defined as:
Ersrs(D) = Y [(5205))" + (206))" + (¢2(5))" + (-20)) |
j=1
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4.2.2. Definition

For two TSFSs I, and I, the correlation between I; and I; is defined as:

Cisps(ly, 1) = Z [51 () - 530) + i (%) - 3 2oy) +

d7(x) - d3 3(%;) + 1 S CHR (%)

Extending this idea of correlation, we propose the concept of CC between two TSFSs as
follows:

4.2.3. Definition

For two TSFSs I; and I,, the CC between [, and I, is defined as:

m [S?(Hj) -530) + i3 () - 5 0) +
= d10g) - 4304) + 7 0g) - 1E00)

(2 [(5200))" + (269)" + (a209))" + (5204)) ]).
(74 (300)) + (300))+ (a30)" + (26) )

The Definition 4.2.3 likely to satisfy the following properties:

7(71‘5Fs(11'12) =

1. jc%sr*s(lp L) = jcrlsr"s(lle )
2. 0< g(’['lsps(ll,lz) <1

3. Kises(p ) =1 5L = 1
Proof:

1. From Definition 4.2.3, we have
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[520) - s30g) + () - 50g) +

= [d’?(’fj) - d3 () + 11 () 'rzn(”")]

Fﬁﬂﬂ@f%ﬂ@f%ﬁ%ﬁ+@%ﬁh
(2. [(309))" + (106)" + (309D + (Co))'])

x%st«'s“p 12) =

m [5300)-570g) + 204). 20) +
2 [d'?(”j)-d'?(”j) +r804) 1 (”j)]

ﬁﬁﬂﬁ@fﬂﬂ@fﬂﬂ@f%ﬂmﬂ)

n [(5200)) + (1269)) + (@30)) + (20)) )
= :K’II‘SFS(IZ' 11)

2. For two TSFSs I;and I, the inequality Kips(ly,12) = 0 holds trivially by the

Definition 4.2.3. Now, we show that K7sps(y,12) < 1.

Cleps(ly, 1) = i [5711(”1') -53(0) + 7 (%) - i2(») +]
j=1

d‘?(”j) . d”z“(}{j) + Tln(}fj) .rzn(}{j)

A7 0ty) - d206) + 17 00) 13 0e) ] LdT0r2) - A3 () + 1 0) - 17 012)
[5?(”m) ' $§(Hm) + i?(”m) : i?(”m) +]

[[s';(m 550w + 76 100 4] , (i) 5H0) & o) GO,y
dﬂf(}‘fm) : d'g(xm) + rln(Hm) ) Tzn(”m)

Using Cauchy Schwarz Inequality for (g, #as oos Him)s (Y11 V2o o001 ym) € R™, we have

1
Gtays + HaYa + H3Y3 + o HmYm)? = 02 + 5% + -+ #%). (2 +yE + o+ ym).

Thus,

(C'Il'SFS(Ilt 12))2
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[sT(1) - 55001) + i7(01) - iy (y) + st(np) - 53 0e2) + 07 ) - i3 0ng) + W
d70ty) - 43 () + 11 (1) - 13 0o1) o 20r) - d30e) +1206) -1 0e) | T T
{ [sl(ﬂm) $7(m) + 17 Otm) - 17 (i) +
d70tm) - d3(m) + 11 Motm) - 13 (tm)

in

(S0t - $B06) + 00) - B0a) +] |, [sR0) - 530) + 06) - 306 ], ]
47 (0y) - d20t0) + 11Gy) - 5 0e) | T LdTGeg) - d306) + 7)1 (oe2) ot
[s1<nm) 2 (tm) + 10t - B 0tm) +
n(”m) dn(”m)'l'r (Km) r2 (Km)

2. [(5360))" + (2069))" + (309D + (205))]
Z $2(Hj) 12 (xj))n + (d’%(xj))n + (rzz(uj))n]

= ETSFS(Il)' ETSFS(IZ)

Therefore, (Chsps (s 12))" < Enses(1y)- Ersps(l2), which implies that Hfsps(ls, 12) < 1.

Hence, 0 < KFgrs(l1, 1) < 1.

3.

Using the Definition of TSFS (Definition 2.4.1), we have I; = I, & s’f(h:j) =
sg(xj), i{‘(xj) = i;‘(}t,-) and d"f(;tj) = d"zl(uj) where »; € X. Hence Kisps(ly, 1) = 1.
4.2.4. Remark

If we set n = 2 in Definition 4.2.3. Then it reduces to the CC of SFSs.

4.2.5. Example

Consider I; = (< #4,0.7,0.8,0.9 >, < x3, 0.7,0.6,0.4 >, < 3,0.5,0.4,0.5 >) and I; = (<

#4,0.7,0.6,0.5 >, < #,,0.9,0.8,0.9 >, < x3, 0.4,0.7,0.5 >) be two TSFSs. Clearly I, and
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I, are PFss as the sum of all three grades in I; and I, exceeds 1. So, the CC for PFSs
defined in Definition 4.1.6 could not be used to compute the CC of I, and I,. On the other
hand, the new correlation proposed Definition 4.2.3 can compute the correlation of I; and
I,. Further note that I, and I, are TSFSs for n = 6. First, using Definition 4.2.1, the
information energy of I; and I, are computed as Ersps( 1) = 0.38 and Ersrs(lz) = 0.66.
Then, using Definition 4.2.2, we compute Cleps( Iy, 1) = 0.109. Finally, the CC between

the TSFSs I, and I, is computed by using Definition 4.2.3 given by K7sps (11, I2) = 0.22.

Now, using the IE and correlation (see Definition 4.2.1 and 4.2.2), we propose the

following CC for TSFSs.
4.2.6. Definition

For two TSFSs /; and I,, the CC between I3 and I, is defined as:

m FT(HJ) . 530) + 2 0) - 13 () +]

= d'?(:fj) : d"z'(”j)n+ 54 (x,-)-rz"rng) _
(25"’:1 (53(”1)) + (if (x,-)) + (d‘i(x,-)) + (rf (’fj)) )
(2 (53090)" + (366" + (206)" + () )

:}CTZSFS(IlrIZ) =

max

The Definition 4.2.6 likely to satisfy the following properties:

6. 767%5175(11:12) = K’IZ'SFS(IZfll)
7. 0 < Kisps(1, 1) S 1

8. jCTZSFS(II'IZ) = 1 (= 11 = ,2

Proof: The proof of 6 and 8 is obvious. To prove 7, it is obvious that Kips(ly,12) 2 0. To

show KZgps (I3, 12) < 1, as
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(C%sps(lv 12)) < \/ETSFS(II)' Erses(l2)
Hence

(C'II‘SFS(IlfIZ)) < max(ETSFS(Il)v ETSFS(IZ))
Therefore, Kisps (I3, 1) < 1.

Whenever we deal with real life problems, the weight of experts plays an essential role such as in
MADM problems. For such kinds of scenarios, we developed some weighted CCs. In our further

study, w = (wy, Wy, e Wp)t is considered as a weight vector such that w; >0 wherej €

{1,2,3,4,...m}and XjL w; = 1.
The weighted CC corresponding to Definition 4.2.64.2.3 is defined as
4.2.7. Definition

For two TSFSs I; and I, the weighted CC between I, and I, is defined as:

_— [S?(”j) 530¢) +i20) - 206) +]

1= 4n () - d30g) + 17 () -7 ()
(2w [(200) + (209)" + (€309)) + (6) )-
(2w [(5300))" + (B60))” + (4309)) "+ (C9)) )

:K"?SFS(Ip 12) =

The Definition 4.2.7 likely to satisfy the following properties:

1. KispsUy 1) = KisesUz 1)
2. 0< Kips(l2) <1

3. :’,CT35FS(11'12) =1 11 = 12

Proof: Straightforward
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The weighted CC corresponding to Definition 4.2.74.2.6 is defined as
4.2.8. Definition

For two TSFSs /; and I,, the weighted CC between I, and I, is defined as:

m o [ﬂ‘(’fj) - 530) + 3 0) - 3 07) +]

— d'?(n’fi) - d3() + () 'rz"TS”i) _
( =1 W [(5%("])) + (if (”j)) + (d'i(”j)) + (rf (”j)) )
(2w [(5300)) "+ (809)) "+ (a309)) "+ (200) )

KispsUn I) =

max

The Definition 4.2.8 likely to satisfy the following properties:

1. :K'?SFs(Ivlz) = :]CT4$FS(12'11)
2. 0< .’K}”SFS(Il,Iz) <1

3. Kispsp)=1e L=15L
Proof: Straightforward
4.2.9. Remark

If we set i = 2, then the weighted CCs proposed in Definition 4.2.7 and 4.2.8 reduced to
the CCs for SFSs.

4.2.10. Remark

The Definition 4.2.7 and 4.2.8 reduces to Definition 4.2.3 and 4.2.6 respectively if we

1

1
p;; ---v;)t-

3fr

assume w = (
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4.3. Applications

In this section, our aim is to use the CCs introduced in TSF environment in clustering and
MADM problems. We studied algorithms for clustering and MADM and solved numerical

problems to illustrate the algorithms.
4.3.1. Clustering

A clustering algorithm based on intuitionistic fuzzy CC is introduced by Gerstenkorn and
Manko [75] which was further extended by Sing [76] to picture fuzzy environment. Sing [76]
used CCs of PFNs instead of CCs of IFNs which obviously enhanced the results as a PFS can model
human opinion better than IFS. As we have studied in Section 4.1 that in some cases, the CCs of
IFNs and PFNs are unable to apply to practical problems and further the loss of information is more

in intuitionistic and picture fuzzy environment. We used the algorithm proposed by Gerstenkorn

and Manko [75] using CCs of TSFSs and solved a clustering problem.
4.3.1.1. Definition
For a collection of TSFNs [;, D = (Kji)mxm be a matrix of CCs where Kj; = K (A, Ax)

is a CC between (A, Ay) satisfying

L 0<K(ALA) <1

2 KA A =1

3. .’K(Aj,Ak) = :K:(Ak,Aj)

4.3.1.2. Definition [75]

For a matrix of CCs D = (Kji)mxm if D% = D o D = (Kjk)mxm- Then D? is known as

the composition matrix of D and Kj is defined as:
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:].Cjk = mizx{min(?fﬂ,?(lk)}
4.3.1.3. Theorem [75]

For a correlation matrix D and for 5, I, € Z, the composite matrix phlz = ph o Dl isalso

a correlation matrix.
4.3.1.4. Definition [75]

For a matrix of CCs D = (¥jx)mxm such that D% € D, D is considered as an equivalent

correlation matrix. Further D? € D means mfm{min(%ﬂ,?(lk)} < K-

4.3.1.5. Theorem [75]

Let D = (Kjx)mxm be a matrix of correlation. Then after a finite times composition i.e.
D — D% » D* = - D?* > ... there must exist some k € Z such that D2% = D2**D where

D2k is an equivalent correlation matrix.
4.3.1.6. Definition [75]

For a matrix of correlation coefficients D = (Kjx) mxm,> We say Dy = (0Kjx)mxm is the

¢ —cutting matrix of D where 0 € [0,1] and

0 lf ijkSG
UK(AJ:AI:)={1 if K=o

Next, we present the algorithm for solving clustering problem under the TSF environment
as follows. The various steps summarized in it are given as below followed by a flow chart

in Figure 11.
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Step 1. Let 4; be a collection of TSFNs. Then using Definition 4.2.7 or Definition 4.2.8,

the matrix of CCs i.e. D = (Kjx)mxm is obtained.

Step 2. Check, if D> € D i.e. if D is an equivalent matrix. If not, construct the finite time

composition to get the equivalent matrix p?' unless D? = "’

Step 3. Using Definition 4.3.1.6, an o — cutting matrix is established for classification
of the TSENS. If all the elements of the j* line and the corresponding element of the kth
line in D, are the same. Then the TSFNs are considered as of the same type. Using this

principle, all TSFNs are classified.

Figure 11 (Flowchart of the clustering algorithm)

The following Example 4.3.1.7 is to demonstrate the above defined clustering algorithm.
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4.3.1.7. Example

Consider a car company needed to classify their cars based on some attribute. In this
example (adapted from [76]), four cars are taken, and we need to classify these four cars
based on three attributes. Let A = {A,, Az, Az, Ay} denotes the set of four cars under the
attribute set C = {¢y, C3, €3} Where ¢y, ¢; and ¢3 denote the fuel economy, safety and price
of the car respectively. Let w = {0.5,0.3,0.2}* be the weight vector and the evaluation of
experts on each car are listed in Table 10. The data clearly indicate the MG, AG and the

NG of the cars A; under the attributes c;. Moreover, note that every entry provided in Table

10 is purely a TSFN for n = 3.

(0.93,0.46,0.46)  (0.46,0.10,0.71)

(0.67,0.59, 0.46)
(0.74,0.46,0.50)  (0.10,0.89,0.46) (0.67,0.59,0.74)
(0.59,0.56,0.46)  (0.90,0.46,0.10) (0.89, 0.46,0.00)
(0.90,0.40,0.20)  (0.50,0.50,0.40) (0.60, 0.50, 0.40)

Table 10 (Decision Matrix based on evaluation of cars)

Clearly, the data provided in Table 10 could not be handled using the approach
proposed in [75] and [76]. The correlations of IFSs are based on MG and NG only and
therefore unable to process information provided in the form of TSFNs. Similarly, the
correlation of PFSs has a specific constraint on its membership grades and therefore unable
to process the data provided in the form of TSFNs. For example, if we consider the value
of A, under ¢; which is (0.67,0.59, 0.46). So 0 < sum (0.67,0.59, 0.46) =172« 1.
Now, the algorithm proposed for clustering is applied on data provided in Table 10 and the

stepwise computations are discussed below.
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Step 1: Using Definition 4.2.7 on the data provided in Table 10, the correlation matrix is

constructed after computing CCs as follows:

1 4455 .8227 .5329
.4455 1 4574 6466
.8227  A574 1 .4498
5329 .6466 4498 1

D =

Step 2: Construction of equivalent correlation matrix.

1 .5329 .8227 .5329
.5329 1 4574 6466

p2=Do D=
.8227 4574 1 .5329
5329 .6466 5329 1
1 5329 8227 .5329
.5329 1 5329 .6466
4_p2op?=
b D D .8227 .5329 1 5329
.5329 .6466 5329 1
and
1 5329 8227 .5329
D8 = p*oD*= .5329 1 5329 .6466

.8227 5329 1 .5329
5329 .6466  .5329 1

Obviously D® = D*. Therefore, D* is the equivalent correlation matrix in this case.

Step 3: Using Definition 4.3.1.6, the 0 — cutting matrix is obtained based on which the

following classifications are established.

1. If0 € ¢ < 0.5329. Then all A, Az, Az and A, of the same type i.c. we have
(A1, Az, Az A}

7. 1f0.5329<0 < 0.6466. Then the classifications are.

{AZ}f {Ali A3, A4}

89



3. 1f0.6466 < o < 0.8227. Then the cars are classified into three types.
{A1, A3} {42} {Aq}-
4. 1£0.8227 < g < 1. Then the cars are classified into four types.

{A;}, {42}, {43}, {A4}-

The results obtained clearly indicated the effectiveness of correlation of TSFSs as all the
four cars are classified in four types which occur very rarely in cluster analysis. This type
of problems was discussed in intuitionistic and picture fuzzy environments [75, 76] but the

loss of information is more likely to occur in those cases.
4.3.2. Multi-Attribute Decision Making

MADM is one of the most discussed topics in fuzzy mathematics. Several approaches
based on aggregation theory or distance/ similarity measures have been adapted so far in
several extensions of FSs. Some valuable work on MADM process in various fuzzy
environments could be found in [25-31, 64, 65, 13, 75, 76, 80-82, 86, 87]. In this
subsection, the method of MADM is established in the environment of TSFSs based on the
proposed CCs. To demonstrate the approach and to show its effectiveness, a numerical

example is presented.

In MADM, the selection of best alternative has been carried out among a list of alternatives
AG=1 2,3, ...m) under some attributes Cy(k = 1,2,3, ... m) using the CCs of TSFNs.
Here, w denotes the weight vector showing the weight of cach attribute. The detailed steps

of algorithm for MADM are as follows:

Step 1: This step involves the formation of decision matrix i.e. the decision makers provide

their information about alternatives under attributes in the form of TSFNGs.
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Step 2: The attributes under consideration are not always of benefit type. To make all the
attributes of benefit type, the decision matrix provided in Step 1 is normalized. In
normalization, the cost type attributes are converted into benefit type by taking their

complement (see Definition 2.2.1).

Step 3: This step involves the computation of CC of all TSFNs provided in the decision
matrix with B = (1,0,0) which is considered as an ideal value for an alternative. The

alternatives whose degree of CC is largest will be considered as best.
Step 4: In this step, the CCs are ranked in order to get the best alternative.

To demonstrate the steps of proposed algorithm, an example is solved using new CCs of
TSFSs. Here, we also declared that the CCs of IFSs and PFSs developed in [75] and [76]
are unable to solve this type of problem while the proposed new CCs can solve these

problems conveniently with no information loss.

4.3.2.1. Example

Islamabad is the capital of Pakistan and is considered as one of the most beautiful cities.
There are several parks and picnic points in Islamabad which a number of people visit on
daily basis. The administration of Islamabad is governed by Metropolitan Corporation of
Islamabad (MCI). The MCI decided to renovate all the parks and picnic points to maintain
their beauty. To do so, MCI needs some private contractors to get hired. After some initial
screening MCI selected 4 private firms for further selection. The four firms include Aq:
Arish Associates, A;: Nauman Estate and Builders, As: Areva Engineering, Construction
and Interiors and A,: The Wow Architects. The experts of MCI set 5 attributes for the

selection of best firm/company. These 5 attributes include C;: Cost, C3: Previous
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performance, C3: Time constraint, C,: Quality Assurance and Cs: Quantity of labor. Further
the weight vector of attributes is given as w = (0.3,0.15,0.25,0.2, 0.1)7. The decision-
making panel of MCI has provided their information in the form of TSFNs provided in

Table 11. The detailed steps of decision-making process are as follows:

Step 1. Opinion of decision makers in the form of TSFNs is provided in Table 11.

FMl  (0.1,0.7,0.4) (0.5,0.8,0.9) (0.8,0.8,0.8) (0.6,0.7,0.8) (0.3,0.5,0.7)
P (0.2,07,0.6) (0.6,0.7,0.8) (0.3,0.7,0.7) (0.1,0.7,0.9) (0.4,0.6,0.8)
(0.5,0.6,0.6) (0.5,0.6,0.7) (0.5,0.7,0.1) (0.9,0.6,0.2) (0.5,0.6,0.9)

ﬂ ((050608) (080704) (0807,03) (060601) (080404)

Table 11 (Decision Matrix)

Note that all the values in Table 11 are purely TSFNs for n = 5 which means that neither
the operators of IFSs, PyFSs, q-ROFSs and nor of PFSs can deal with such type of

information.

Step 2. The criteria C; is of cost type. Therefore, the values under C; are converted into
benefit type by taking complement of TSFNs. The normalized decision matrix is obtained

in Table 12.
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(0.4,0.7,0.1) (0.5,0.809) (0.8080.8) (0.60.7,0.8) (0.30.5,0.7)
(0.6,0.7,02) (0.6,0.7,0.8) (0.3,0.7,0.7) (0.1,0.7,0.9) (0.4,0.6,0.8)
(0.6,0.60.5) (0.50.60.7) (0.50.7,0.1) (0.9,0.6,0.2) (0.50.6,0.9)

H ((080.605)) (080.7,04) (080.7,03) (0.6060.1) (0.80404)

Table 12: {(Normalized decision matrix of the alternatives)

Step 3. The CC of each TSFN provided in Table 12 is computed with (1,0,0) using

Definition 4.2.7 and are listed in Table 13.

WH3sps(A1, B) WKFsps(Az, B) WK Eges(A3, B) WKisrs(Aq, B)

0.1982 0.0883 0.3927 0.8310

Table 13: Correlation degrees

Now the correlation of each TSFN given in Table 12 is computed using Definition 4.2.8

and is provided in Table 14.

WHKeps(41, B) WK7sps(Ag, B) WK Fsps(A1, B) W Fsps(41, B)

Step 4: Both, analysis of Table 13 and Table 14 leads us to the same ranking which is given

0.2525

0.0282 0.1208

Table 14 Correlation degrees

as:

A, <Ay <Az < Ay
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Therefore, A, is the best choice i.e. the Wow Architect is the best according to the
evaluation of decision makers based on CCs of TSFNs. Further note that due to complex

structure of TSFNs, the CCs of IFSs and PFSs cannot be applied to this type of problem.
4.4. Comparative Study and Advantages

In this section, we discussed the generalizations of the proposed CCs over the existing CCs.
The following two remarks show the generalization of new CCs of TSFSs over the CCs of

IFSs and PFSs.
4.4.1. Remark

If we replace the value of n by 1. Then the Definition 4.2.7 and Definition 4.2.8 reduced

to CCs of PFSs proposed in [76].
4.4.2. Remark

If we replace the value of n by 1 and set iy =i =0. Then, the Definition 4.2.7 and

Definition 4.2.8 reduced to CCs of IFSs proposed in [75].

Now we show that the problems solved in [76] and [92] can be solved using the CCs of
TSFSs. However, the CCs of IFSs [75] and PFSs [76] are unable to handle the data

provided in the environment of TSFSs as discussed in Example 4.3.1.7 and 4.3.2.1.

4.4.3. Example

In this example, we take the data about cars from [76] and apply the CCs of TSFSs on it.
The information about cars by the experts in [76] is given in the below Table 15. The
calculations are demonstrated stepwise below. Moreover, because a PFS is a special case
of TSFS for n = 1. So, in solving this example, we take the value of n = 1.
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Cq (o} C3
(0.3,0.2,0.1) (0.8,0.1,0.1) (0.1,0.0,0.9)
(0.4,0.1,0.5) (0.0,0.7,0.1) (0.3,0.2,0.4)
H (0.2,0.6,0.1) (0.9,0.1,0.0) (0.7,0.1,0.2)

Pl (0.7,0.3,0.0) (0.5,0.1,0.3) (0.6,0.0,0.3)

Table 15 ((Decision matrix based on car data set))

We applied the algorithm proposed in Section 4.3.1 for clustering and stepwise

computations are discussed below.

Step 1: Using Definition 4.2.7 on the data provided in Table 15, the correlation matrix is

constructed after computing CCs as follows:

1 .4787 8176 .7453
.4787 1 4046 .5580
.8176  .4646 1 .8042
.7453 .5580  .8042 1

D=

Step 2: Construction of equivalent correlation matrix.

1 .5580 .8176 .8042
.5580 1 .5580 .5580

2 —_
D*=DoD=|g176 5580 1 .8042
8042 5580 .8042 1
1 5580 .8176 .8042
5580 1  .5580 .5580
4_p2op?=
D*=D"0D"=1'6176 5580 1 .8042
8042 5580 .8042 1
and
1 5580 .8176 .8042
b8 —propto|-5580 1 5580 .5580

.8176  .5580 1 .8042
.8042 .5580  .8042 1
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Obviously D® = D*. Therefore, D* is the equivalent correlation matrix in this case.

Step 3: Using Definition 4.3.1.6, the o — cutting matrix is obtained based on which the

following classifications are established.

1. If0 < o < 0.5580. Then all A,, 4,, A; and A, of the same type i.e. we have
{A1, Az, A3, Ay}

2. If 0.5580 < o < 0.8042. Then the classifications are.
{42}, {A1, 43, A4}

3. 1f0.8042 < o < 0.8176. Then the cars are classified into three types.

{A1, A3}, {A2}, {A4}.

4. 1f0.8176 < g < 1. Then the cars are classified into four types.

{A1}: {AZ}I {AB}I {A4}

The clustering results obtained here are the same as obtained in [76]. Hence our claim that
CC of TSFSs generalizes CC of PFSs holds true. Similarly, by taking i = 0 and n = 1 the
proposed CC can be applied to the problems discussed in the environment of IFS in [75].
These examples prominently show the significance of CCa of TSFSs. On the other hand,
the CCs IFSs and PFSs cannot be applied to problems involving TSFNs studied in Example

43.1.7.

Now we prove the effectiveness of proposed CCs in MADM problem where a problem
in the environment of PFSs is solved using proposed CCs. The problem discussed in [92]

is solved here using proposed CCs of TSFSs forn = 1.
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4.4.4, Example

This problem is taken from [92] where the selection of best policy for upcoming financial
year has been discussed using SM of PFSs. We prove the usefulness of our proposed work
by solving this problem using CCs of TSFSs. This problem is analogous to Example 4321
except the weight vector is taken as (0.2,0.3,0.1, 0.4)¢ and the decision matrix is given in

Table 16.

Step 1. Opinion of decision makers in the form of TSFNs is provided in Table 16.

€y C; C3 ("
(0.2,0.1,0.6) (0.5,0.3,0.1) (0.5,0.1,0.3) (0.4,0.3,0.2)
(0.1,0.4,0.4) (0.6,0.3,0.1) (0.5,0.2,0.2) (0.2,0.1,0.7)
(0.3,0.2,0.2) (0.6,0.2,0.1) (0.4,0.1,0.3) (0.3,0.3,0.4)

ﬂ ((03,0.1,0.6)) (0.1,0.2,0.6) (0.1,03,0.5) (0.2,0.30.2)

Table 16 (Decision matrix)

Step 2. To make all the attributes are of benefit type, the normalized decision matrix is

obtained in Table 17.

C, C; C3 Cy
(0.6,0.1,0.2) (0.5,0.3,0.1) (0.5,0.1,0.3) (0.4,0.3,0.2)
(0.4,0.4,0.1) (0.6,0.3,0.1) (0.5,0.2,0.2) (0.2,0.1,0.7)
H (0.2,0.2,0.3) (0.6,0.2,0.1) (0.4,0.1,0.3) (0.3,0.3,0.4)

((0.60.1,03)) (0.1,02,0.6) (0.1,0.305) (02,03,0.2)

Table 17 (Normalized decision matrix)



Step 3. The correlation of each TSFN provided in Table 17 are computed with ideal

value B = (1, 0,0) using Definition 4.2.7 for n = 1 and are listed in Table 18.

w:}c’:l’.'SFS(Al‘B) WK%SFS(AZ'B) WK%SFS(A&B) ch%'SFS(A‘i-‘B)

Now the correlation of each TSFN given in Table 17 is computed using Definition 4.2.8

0.8531 0.6757 0.3136

Table 18 (Correlation degrees)

for n = 1 and is provided in Table 19.

W psps(A1,4) WK7gps(Az, A) W Eps(A3, A) W7 sps(A4, A)

0.0256 0.1008 0.0300 0.0196

Table 19 ((Correlation degrees))

Step 4: Analysis of Table 18 and Table 19 leads us to the following ranking.
A, <A <43 <A

Therefore, A, is the best strategy i.e. the investment plan of Russia is the best according to

the evaluation of decision makers based on CCs of TSFNs.

The advantages of proposed CCs is that these can be applied to problems in the
environment of SFSs, PFSs, q-ROPFSs, PyFSs and IFSs. In Example 4.4.3, the defined
CCs have been applied to a problem involving PFNs from [76] and obtained results are the
same as in [76]. Similarly, the defined CCs are applied to MADM problem studied in [92].
On the other hand, neither the correlation of IFSs proposed in [75] nor the correlation of
PFSs proposed in [76] could be applied to problems presented in Example 4.3.1.7 and
4.3.2.1. All this shows the effectiveness and superiority of proposed work over the previous

literature.



Chapter S

Averaging and Geometric Aggregation Operators of T-

Spherical Fuzzy Sets °

The aim of this chapter is to develop some new set theoretic operations for TSFSs
including algebraic sum, product etc. Based on new operations some averaging and
geometric AOs including T-spherical fuzzy weighted averaging (TSFWA) operator and
weighted geometric operator abbreviated as TSFWG, T-spherical fuzzy ordered weighted
averaging (TSFOWA) operator and ordered weighted geometric operator abbreviated as
TSFOWG, T-spherical fuzzy hybrid averaging (TSFHA) operator and hybrid geometric
abbreviated as TSFHG operator are developed. The monotonicity, idempotency and
boundedness of the defined operators are investigated, and their fitness is validated using
induction method. Numerical examples are given to support the applicability of the new
AOs. As an application, MADM process is briefly demonstrated in the environment of
TSFSs and numerically explained with the help of new AOs. The new proposed work and
the existing literature is compared numerically demonstrating the drawbacks of the existing
work and the significance of the new operations. Some advantages of proposed work over

existing work are also studied.

S The work in this Chapter was presented in “International Conference on Soft Computing and Machine
Learning” held on April 26-29, 2019 at Huazhong University of Science and Technology, Wuhan, China.
This work received support from Higher Education Commission (HEC) Pakistan under Grant No
306.51/TG/R&D/HEC/2018/29450
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5.1. Previous Study and its Drawbacks

In this section, we listed all the previous study on averaging and geometric AOs in several

fuzzy frameworks. We also described the reasons for the failure of these operators in

. . t
several circumstances. Note that throughout this chapter, w = (wl,wz, w3 ...wm) shall

denote the weight vector of §,i,d and r where j = 1,2,3,..m such that w; > 0 and

The aggregation theory of IFSs was started by Xu [29] and Xu and Yager [30] and are

defined as:
5.1.1. Definition

For some IFNs I;, the IFWA and IFWG operators are of the following form

m m
IFWA(, Iy 15 L) = [ 1= 1—1(1 -5, H(d‘,-)wf
j=1 j=1

m m
IFWG(ly, Iy, I o1y = 1—[($j)wj 1= H(l ~d;)"
j=1 Jj=1

Intuitionistic fuzzy WAA and WGA operators discussed the MG and NG of an uncertain
event only but in a restricted range. Whenever we have the information of the form
(0.8,0.5), the applicability of the above defined IFWA and IFWG operators became a

challenge to aggregate such information.
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Keeping the limitations of IFWA and IFWG operators in mind, Rahman et al. [44] and
Peng and Yang [45] proposed WGA and WAA operators in Pythagorean fuzzy

environment respectively which are given as:
5.1.2. Definition

For some PyFNs [}, the PYFWA and PyFWG operators are of the following form

m m
PYFWAU I s ) = 1= [ [(1=5)""] [(@)”
j=1 j=1

m m
PyFWG(11,12,13 ...Im) = H(sj)wl’z 1_1—[(1—(1'}2)‘”]
j=1 j=1

The operations proposed by Rahman et al. [44] and Peng and Yang [45] still had
applicability issues which leads Liu and Wang [85] to develop WAA and WGA operators

in g-rung orthopair fuzzy environment defined as:
5.1.3. Definition

For some q-ROFNs I, the -ROFWA and q-ROFWG operators are of the following form

m m
q — ROFWA(l, I, I3 .. Ip) = [1- l—[(l —s1)", H(d}')w"
j=1 j=1

m

m
q — ROFWG(y, Iy, Iy .. 1) = n(s,-)“’f - 1_[(1 —am)"i

j=1 j=1
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The main advantage of the ¢-ROFWA and q-ROFWG operators is that these operators can
aggregate any kind of information without the barrier of any restricted range. However, as
suggested by Cuong [9] that duplets from intuitionistic fuzzy, Pythagorean fuzzy and q-
rung orthopair fuzzy environments only discussed the MG and NG of an uncertain event.
In real life, human opinion has abstinence and refusal degree as well. Cuong’s [9] concept
of PFS provided a better platform for working with uncertainties and the WAA and WGA
operators in picture fuzzy environment were discussed by three different researchers [50,

51, 83].

The WGA operators proposed Wang et al. [51] in picture fuzzy environment is defined as

follows:
5.1.4. Definition [51]
For some PFNs J;, the PFWG operator is of the form
m m m
PFWG(Iy, I ) = ( w1 (e L= (-
vl ) = i T i j

j= j=1 j=1 j=1
Garg [50] proposed the concept of WAA operators for PFSs defined as:
5.1.5. Definition [51]
For some PFNs I;, the PEWA operator is of the form

m

PFWA(ly, Iy, - I) = ﬁ 1-(5)) H(ij)wj,ﬁ(d'j )"

]:1 j:l j=1
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Wei [83] proposed both WAA and WGA operators for PFSs independently in the same

year and are defined as:
5.1.6. Definition [51]

For some PFNs I;, the PFWA and PFWG operators are of the form

PEWAUL Ity = [ 1= [ [(1=6) " ] J@)™. [ Je)™
j=1 j=1 j=1

m

PFWG (I, Iy, o I) = n(sj)“”,1—n(1—(z, "1- 1_[ 1—(d,)
j=1

j=1 j=1

The WGA operator proposed in Definition 5.1.4, 5.1.5 and 5.1.6 cannot be applied to
triplets for which sum(s, i, d’) exceeds 1 hence providing a lesser range for assigning
values to MG, AG and NG. Therefore, in the next section, we propose some new operations
which leads us to setup new WAA and WGA operators that can overcome the drawbacks

of the previous study.
5.2.T-Spherical Fuzzy Operational Laws

The aim of this section is to develop some new operational laws in TSF environment. The
new operational laws are the generalization of the operational laws of IFS, PyFS, q-ROFSs
and PFSs studied in [29, 30, 44, 45, 85, 50, 51, 83]. The TSF operational laws along with

some sub sequential results are proposed as follows:
5.2.1. Definition

Consider three TSFNs 1, I; and I, for some n € Z* and let A > 0. Then:
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1. L®L = (st +s5 — 5520 iy dy.dy).
2. L®L = (51- $2:i1- 12, W;l +d% —dT. d”21)

3. a1 =(V1-a-sh 0% (d)*).
= ()%, WA VT= (A= d7)

5.2.2. Remark

>

Obviously I;®ly, I ®1,, 4.1 and I* are TSFNs.
5.2.3. Remark

The operations proposed in Definition 5.2.1 reduced to spherical fuzzy environment for

n = 2 as follows:

1. L®L = (\/5? +53 — $f-$§ni1-iz:d'1-d'z)
2. 1,8 = (5152, in. /AT +d7 - dZ.d3)
3. 4.1 = (YI- G -8 04 @)

4 1= (A OHT- - )

5.2.4. Remark

e The operations proposed in Definition 5.2.1 reduced to picture fuzzy environment for
n=1

e The operations proposed in Definition 5.2.1 reduced to q-rung orthopair fuzzy
environment for i = i; = i; = 0.

e The operations proposed in Definition 5.2.1 reduced to Pythagorean fuzzy

environment forn = 2and i =iy =i = 0.
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o The operations proposed in Definition 5.2.1 reduced to intuitionistic fuzzy

environment forn = landi =i; =i =0.

The basic properties of the new operational laws of TSFSs are examined in the following

theorem.

5.2.5. Theorem For three TSFNs /,1; and I, and for A, A;, A, > 0, the following holds:
1. ,®l, =Ll
2. L®L =1,8I
3. A(L,®1,) = LDl
4. (L®L)* = 1,'®L
5. MI®A] = (A + )]
6. M@I% = [Mth
7. (IO = QAN
8. A(%) = (1*)°
9. L,°@©L° = (L®L)°
10. ,°®L° = (,8hL)°
Proof: The proof for result 1,3, 5,7 and 9 are provided below. The remaining results

could be proved analogously. Let I = (51,11, d'y) and I = (52, i,,d’;) and A,4,,4; > 0.

Then

1. L,®L = Vst +52 — st.s5, i1. iz, d1. d’z)

= (Vg + 57— §5+ 51, L2+ I/ d’. d'1)

=1L,0hL
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3 AL @) = A(Y5E + 55 — 5555, i la. 4. d2)

= <H\F— (1 - (V?f +55 = 51+ 5721)11)1 ,Cigeig)?, (d'1-d'z)’1>

= (n 1-(1-Gl+sz— st.sm) ()@ (d'l)’l(d'z)’1> (1)

Allellz = A(Sll ill d,l)el(SZI i2' d'2)

) (m Gt d'i) ® (W iz, d’2>

(i) ()% (@D

_(fa=a-spm+a-a-sh-a-a-spha-a- s;‘m.)
(M, (@) )

= (n\ﬁ -(1- 52))‘- (1- 53)1. (i1)l(i2))‘: (d'1))'(d'2)l)

= (n,‘ 1- (1 — (st 52— $1- 5721))1' (il)l(iz)l; (d'1)l(d'2)l> - (2"
11. Using (1") and (2"), we have AL, 1) = AL®AL

5. A, 1@2,1
- (nJ 1— (1 - s, M, (da)“) ® (nJ 1— (1-5D%, (i)™, (d'1)12>
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_ K 1—(1—5’1"‘)’11> +(",1—(1—$’1‘)"2> —(" 1—(1—5?)’“) - ( 1—(1—s;%) .

(iM (i%, (dpn (d'1)12

Proceeding as we did in Proof of 3, we have,

- (YT A=A =5, @) @R )

= (ﬁ — (1 - A (1= s ()M @) (@)™ (d'l)lz)

— (n 1 _ (1 _ 5711),11-}-2,2’ (il)ll‘flz‘ (dll)ll'*'a.z)

= (/11 + /12)1

7. (IC)A = ((s1, i1 (1'1)C)/1 = (dy, 1'1'51);L

= ((dll))" (il)li "’ 1-—- (1 - $¥)A)

= (D¢

9. IfGBIZC = (dy, i1,$1)63(d'2,i2,$2)

- (';/d*"; AT — Ay, i iz, 51.52) (3D

C
(11®12)C = (51-$2' i1. 0 W + d'? - d,;.l' drzl)

= (YaT + dF — dT.d3, iv. b2 51.52) o (4)

From (3') and (4), we have fels = (L®L)°
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5.3.T-Spherical Fuzzy Averaging Aggregation Operators

In this section, the WAA operators for TSFSs are developed including TSFWA operator,
TSFOWA operator and TSFHA operator. We investigated the basic properties of these
operators like monotonicity, idempotency and boundedness etc. The fitness of these AOs

is validated using mathematical induction.
5.3.1. Definition

For some TSFNs I, the TSFWA operator is a mapping defined as:
m

TSFWA(, I, Iz . Im) = ijlj
j=1

5.3.2. Theorem

The aggregated value of some TSFNs I; using TSFWA operator is a TSFN and is given

by:

n m m m
rsEWAGy by b = | 1= [0 -5 ] 1@ ] [@)”
j:l j=1 j=1

Proof: Using mathematical induction,

Form =2

wilp = (V1= (1 =sP)¥, ()" (d1)*) and

waly = (YT= G = 5%, ()", (d2)")

wily@w,ly = (YT A= 5D ()", ([@)") @ (VT =5 ()", (@)
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(=T + (iG] VTG AT G0

(i)W (i)"2 (d)*. (d2)™

= (V= (@ —sD" (=" ()" (i)™ (d2)™ (d)"2)

i

(VT= A= sD™ (L = 5", (" ()", [d)™. (d2)*)

n 2 2 2
=T a-sp ] Jw™.] [@)”
j=1 j=1 j=1

Assume that result is true form = k i.e.

k k k
TSFWAUL I I D) = [1— H(l -5, ﬂ(i,-)w" . ﬂ(d',-)w"
j=1 j=1 j=1

To prove this result form = k + 1. Consider

k+1

TSFWA(Il, 12,13 ...Ik, 1k+1) = Z W}I] =
j=1

k
wil; ®Wyt1lk+1
j=1

= n1—ﬁ(l—s}‘)w’?ﬁ(ij)w’l[k—[(d'j)w" o ((¥1- =) (i), (4))
j=1 j=1 j=1

Proceeding like we did in Step 1.

k+1 k+1 k+1

PSEWA o f o) = | (1= [ -5 [ [ ] [@)”
j=1 j=1 j=1

109



Hence the result holds form = k + 1.
The following Theorem is based on the basic properties of aggregation.

5.3.3. Theorem

1. (Idempotency)

Ifforallj =1,2,3,..m, I =1 = (5,i,d). Then TSFWA(, I, 15 .. 1) =1
2. (Boundedness)

IfI- = (mjin S mj.ja\x i, m]ax dj)

and It = (m]ax S mjin i, mjin d’j). Then

I < TSFWA(y, Iy, I3 D) < TF

3. (Monotonicity)

Let [; = (1, irp d;)and Py = (se,0 i dp,) be two TSFNs such that I; < P} V.

Then

TSFWA(l, I, I3 .. I;y) < TSFWA(Py, Py, Ps v Pr)

4. (Shift Invariance)

For another TSFN P = (sp, ip,d'p)

TSFWA(l, + P, I, + P,I3 + P, ...I; + P) < TSFWA(y, 15, I3 ... I, )P

5. (Homogeneity)

For A > 0, TSFWA(Aly, Alg, Al .. Alyy) = A TSFWA(y, Iz, I3 i Im)
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The following example illustrates the applicability of TSFWA operators.
5.3.4. Example

Consider for n = 2, we have three TSFNs /; = (0.67,0.34, 0.58), I, = (0.43,0.59,0.31)

and I; = (0.78,0.63,0.48) and w = (0.5,0.3,0.2)° be the weight vector. Then

TSFWA(, 15, I3)

_ ( J1= (- 0.67595)((1 — 0.432)%3)((1 — 0.78%)%2), )
(0'342)0.5 (0.592)0.3 (0.632)0'2, (0.582)0'5 (03 12)0.3 (0.22)0.2

TSFWA(Iy, I, I3) = (0.64898, 0.453799,0.374583)

In TSFWA operators, the weight is applied to TSFNs. Sometimes in MADM problems,
when we need to weight the ordered position of the TSFN, then we need to develop
TSFOWA operator and when we need to weight the TSFNs as well as its ordered position
we use the concept of TSFHA operator. Therefore, we developed TSFOWA operators and

TSFHA operators and explained them with the help of numerical examples.
5.3.5. Definition

For some TSFNs /;, the TSFOWA operator is a mapping defined as:

m
TSFOWA(l, I, I3 oo Iy) = Z w;lo()
=1

Where I,(;y is the j** largest of TSFNs /;.
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5.3.6. Theorem

The aggregated value of some TSFNs J; using TSFOWA operator is a TSFN and is given

by:

m m m
TSFOWA(, I Iz 1) = |1— n(1 —st) ,n(igu))wf ,n(d',,(,))wf
j=1 j=1 j=1

Proof: Similarly
5.3.7. Remark
Some Special Cases of TSFOWA operator are as follows:

1. Forw = (1,0,0, ..0)t, TSFOWA(y I, I3 . I;) = mas{ly, I, Iy .. Im}

2. Forw = (0,0,0, ... 1), TSFOWA(ly, Iy, Iy .. Ipy) = min{ly, Iz, I3 . Im}

3. Forwj=1lor0, TSFOWA(ly, 15, I3 . I) = 5y where Iq(j is the j largest of
TSFNs J;.

5.3.8. Example

We solve Example 5.3.4 using TSFOWA operators. To do so, first we need to calculate
the score values of TSFNs to arrange them in ordered positions and then simply aggregate
them using TSFOWA operator. The score values are: S(I;) = 0.3045, S(1,) = 0.0888,

S(I3) = 0.37. Based on score values, the new ordered position of TSFNSs are:
Iy = I3 = (0.78, 0.63,0.48)
Iypy=h= (0.67,0.34,0.58)

Ioay = I = (0.43,0.59,0.31)

112



TSFOWA(3, 11, 1) = (0.705422, 0.516755,0.410042)
5.3.9. Definition

For some TSFNs I;, the TSFHA operator is a mapping defined as:

m
TSFHA(l, 15,13 .. 1) = Z wils(j)

Jj=1

Where I,;) is the j** largest of TSFNs I; and I; = mawjl; such that m is the number of

TSFNs and @ = (wy, Wy, w3 ... w,)" is the weight vector of I;.

While applying TSFHA operator, we first determine ij = muwj;l; using the weight vector
w = (wy, Wy, w3 ...wy)". Then the weighted TSFNs ij are rearranged where i,,(j) is the
jth largest of TSFNs ij. Finally, the TSFHA operator is used to aggregate the TSFNs ij.

Using the basic operations of TSFNG, the following theorem is proposed.
5.3.10. Theorem

The aggregated value of some TSFNs I; using TSFHA operator is a TSFN and is given

by:

n m m m
TSFHA(, I, I3 o Ip) = | |1 = H(1 —5m)" H(igg))wl ,ﬂ(d'a(,-))wf
j=1 j=1 j=1

Proof: Similar
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5.3.11. Example

Consider for n = 2, we have three TSFNs I; = (0.67,0.34,0.58), I = (0.43,0.59,0.31)
and I3 = (0.78,0.63,0.48) and w = (0.4,0.35,0.25)" be the weight vector of given

TSFNs while w = (0.5, 0.3, 0.2)¢ is the aggregated associated weighted vector. Then

Iy = 30,0, = 3% 041 = (YT — (T - 0.672)304,(0.347)™%, (0.582)2%04)

= (0.71,0.27,0.52)

Similarly, I, = (0.44,0.57,0.29) and iz = (0.71,0.71,0.58). Now we use score

function to compute the ordered position of i ; as follows:

S(il) = 0.2337, §(iz) = 0.1095, 5(13) = 0.1677. Based on score values, the new
ordered position of TSFNSs are:

Iy = I = (0.7,0.08,0.27)

Iy = Iz = (0.7,0.5,0.33)

Iy = I, = (0.44,0.33,0.08)

TSFHA(Iy, I3, ;) = (0.65286,0.409917, 0.446074)

5.3.12. Theorem

11 1\!
,= = —) _Then the TSFHA operator reduced
mm m

3|~

If we assume the weight vector w as (

to TSFWA operator.

. t .
Proof: As [; = muw;l; and w = (i,r—ln-,—:; i) .Sow;jl; = wjl; and
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m

m
TSFHA(I, 15, I3 .. 1) = Z wilo(y = Z wjlj = TSFWA(ly, 1,13 . I)

j=1 j=1

5.3.13. Theorem

’ ’

11 1\/
=, =, . —) . Then the TSFHA operator reduced
mm m

B

If we assume the weight vector w as (

to TSFOWA operator.

Proof: Straightforward.
5.4. T-Spherical Fuzzy Geometric Aggregation Operators

In this section, the WGA operators for TSFSs are developed including TSFWG operator,
TSFOWG operator and TSFHG operator. We investigated the basic properties of these
operators like monotonicity, idempotency and boundedness etc. The fitness of these AOs

is validated using mathematical induction.
5.4.1. Definition

For some TSFNs I, the TSFWG operator is a mapping defined as:
m
TSEWGy Iy, I oo Ip) = 1—[ g

5.4.2. Theorem

The aggregated value of some TSFNs J; using TSFWG operator is a TSFN and is given

by:
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m m n m
TSFWG(y 1y I3 o I) = 1—[(5 DI n(i,-)‘”", 1- n(1 —am)"
j=1 j=1 j=1

Proof: Using mathematical induction:

Form =2

wily = ((s)¥1, (i)*, Y1 = (1 - d})*:) and

wol, = ((52)‘”2: (i)™, 'Vl -(1- d'rzl)wz)

wil; @ wyl,

= (o™, (", V1= - dD™) ® (62" (12" V1= (1= a5 )

(s (52072, (i)™ (i)™,
) ( [Vi=a=apm) + (Vi-G-dp) - Vi G- apm V- (- dD”

(G5™. (520", (). ()" VT = (L= d)¥e. (1 - apH:)

Il

2 2 n 2
[T [l -1 Ja-ap”
j=1 j=1 j=1

True for m = 2. Assume that result holds for m = kie.

k k k
TSFWG(Iy, Ip 15 o 1) = H(sj)wf , ﬂ(i,-)wf, 1- H(1 —dr)"
j=1 j=1 j=1

To prove for m = k + 1. Consider
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k+1

TSFWG Uy Iy Is o Do Test) = ﬂl}.‘”i =
j=1 j

k
Wi
J Wit1
L
=1

k k k
= H(SJ)Wj : n(ij)wj - ﬂ(l —dm" |® ((sz)‘”"“, (ip)"k+, (’iﬁ— (1- d'g)wkﬂ))
j=1 j=1 j=1

Finally,

k+1 k+1 k+1

TSFWG (3, Iy, I3 oI 1) = n(s DI ,H(i,-)‘”’ - n(1 —am)"
j=1 j=1 j=1

Hence the result holds form = k + 1.
The following Theorem is based on the basic properties of aggregation.

5.4.3. Theorem

1. (Idempotency)

Ifforallj = 1,2,3,..m,[j = = (5,i,d). Then TSFWG(I1, I, I3 ) =1

2. (Boundedness)

IfI- = (mjin 3, max i,-,mjc,m d'}-) and [T = (m}c_m $j,m]_in ij,mjin d'j). Then
1= < TSFWG(y, Ip Is o Iy) S TF

3. (Monotonicity)

Letl; = (s,}., i,j,d',j) and P; = (spj, ipj,d'P}.) be two TSFNs such that ; < P; V.

Then

117



TSFWG(y, 15, 15 .. I;m) < TSFWG(Py, Py, P3 v Pr)
5.4.4. Example

Consider for n = 2, we have three TSFNs I; = (0.67,0.34,0.58), I, = (0.43,0.59,0.31)

and I3 = (0.78,0.63,0.48) and w = (0.5,0.3, 0.2)¢ be the weight vector. Then

TSFWG (I, I, 13)

3 ((0.582)0'5(0.432)0'3(0.782)0'2, (0_342)0.5(0'592)0.3 (0.632)0'2,
T\ Y= ((-0.589)%5)((1 - 031%)°)((1 - 0.482)°%) >

TSFWG(Iy, I, 13) = (0.60464,0.453799, 0.385256)

In TSFWG operators, the weight is applied to TSFNs. Sometimes in MADM problems,
when we need to weight the ordered position of the TSFN, then we need to develop
TSFOWG operator and when we need to weight the TSFNs as well as its ordered position
we use the concept of TSFHG operator. Therefore, we developed TSFOWG operators and

TSFHG operators and explained them with the help of numerical examples.
5.4.5. Definition

For some TSFNs /j, the TSFOWG operator is a mapping defined as:
m
TSFOWG(ly, Iy, I3 o ) = ﬂ WA

j=1

Where I,y is the j*" largest of TSFNs I;.
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5.4.6. Theorem

The aggregated value of some TSFNs /; using TSFOWG operator is a TSFN and is given

by:

m m m
TSFOWG (s, 15, I3 oo Im) = n(s,,(,-))w" , ﬂ(igw)w", 1- H(1 —dn )"
j=1 j=1 j=1

Proof: Similar.
5.4.7. Example

We solve Example 5.4.4 using TSFOWG operators. To do that, first we need to calculate
the score values of TSFNs to arrange them in ordered positions and then simply aggregate
them using TSFOWG operator. The score values are: S(I;) = 0.3045 , S(1,) = 0.0888,

§(13) = 0.37. Based on score values, the new ordered position of TSFNSs are:
Iy = I3 = (0.78,0.63, 0.48)

Is2y = 1, = (0.67,0.34, 0.58)

Iyay=hL = (0.43,0.59,0.31)

TSFOWG(I5,1,, 1) = (0.856729, 0.516755,0.322408)

5.4.8. Definition

For some TSFNs J;, the TSFHG operator is a mapping defined as:

Wj

m
ISFHG (L, Iy, I3 v 1) = ﬂiuu)
j=1
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Where I,y is the j** largest of TSFNs fjand f; =1 jmw" such that m is the number of

TSFNs and @ = (w;, Wy, W3 ...w,)" is the weight vector of I;.

While applying TSFHG operator, we first determine ij =] jmwj using the weight vector
w = (w;, Wy, W3 ... wy)". Then the weighted TSFNs I are rearranged where I5(j) is the

jt largest of TSFNs ij. Finally, the TSFHG operator is used to aggregate the TSFNs I',-.

Using the basic operations of TSFNs, the following theorem is proposed.
5.4.9. Theorem

The aggregated value of some TSFNs J; using TSFHG operator is a TSFN and is given

by:

m m n m
TSFHG Uy I s oo l) = | | [Goo)"™ ] [Gen)™ |1 = [Ja-dme)”
j:]_ j=1 j=1

Proof: Similar.

5.4.10. Example

Consider for n = 2, we have three TSFNs I; = (0.67, 0.34,0.58), I, = (0.43,0.59,0.31)

and I; = (0.78,0.63,0.48) and w = (0.4,0.35,0.25)" be the weight vector of given

TSFNs while w = (0.5, 0.3,0.2)" is the aggregated associated weighted vector. Then

i _ p3wi _ 3x0.4
I, = I1 = I

= ((0.672)3"0'4, (0.342)3%04, Y1 - (1 - 0.582)3"0-4)
= (0.618429,0.274015,0.623421)
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Similarly, I, = (0.412232,0.574638, 0.317261) and I; = (0.82997,0.707,0.42229).

Now we use score function to find the ordered position of ij as follows:

§(i,) = 0.006199, §(I,) = —0.06928, §(i3) = —0.51055. Based on score values, the

new ordered position of TSFNSs are:

fyqy = I = (0.618429,0.274015, 0.623421)

Iy = I3 = (0.829986,0.70714, 0.422288)

Iy = I, = (0.412232,0.574638,0.317261)
TSFWG(iy, I3, I;) = (0.483282,0.41902,0.683548)

5.4.11. Theorem

1 1\t
,=, —) . Then the TSFHG operator
m m

e

If we assume the weight vector w to be w = (

reduced to TSFWG operator.

. ; t .
Proof: As [; = Ij.mw’ andw = (-;-,%ﬁ T—n-) .Sol.

m m
TSFHG U s o lm) = | |1y = [ |17 = TSFWG Ui T Iy )
j=1

j=1

5.4.12. Theorem

t
If we assume the weight vector w to be w = ( ,%,i, 7—;-) . Then the TSFHG operator

reduces to TSFOWG operator.

Proof: Straightforward.
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5.5. Application in Multi-Attribute Decision Making

In this section, we aim to use the TSFWA and TSFWG AOs in MADM problem. In
MADM process, we rank the set of alternatives A; based on some attributes K; having
weights in the form of weight vector w. In this phenomenon, a panel of decision makers
evaluated the alternatives A; and provided their information in the form of TSFNsi.e. ina
decision matrix containing TSFNs. Then the TSFWA and TSFWG AOs are utilized to
aggregate the information for the evaluation of best alternative. The steps of algorithm of

the MADM process are described below:
5.5.1. Algorithm:

Step 1: The information in the form of TSFNs under some attributes about the alternatives

are gathered and a decision matrix is formed.

Step 2: In step 2, the data provided by the decision makers is aggregated using AOs of

TSFNE.
Step 3: In step 3, the scores of the aggregated data is computed.

Step 4: The final step involves the ranking of score values and most suitable alternative is

obtained.

To demonstrate the MADM algorithm, we present the following numerical

example.
5.5.2. Example

A multinational company is designing its financial policy for the upcoming year about

where to invest to get a potential profit. For this, the research department of the company
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came with four plans about where to invest after some initial screening. These four
alternatives are, A, : Asian Markets, A,: Local Markets, Aj: European Markets and A,
African Markets. The evaluation of suitable market to invest in is based on four attributes
which are, P;: The growth perspective, Ps: risk perspective, P;: political and social
perspective and P,: environmental perspective. The WV is w = (0.2,0.1,0.3, 0.4)7. The

stepwise demonstration of MADM process is as follows:

Step 1: The formation of decision matrix in Table 20. Note that all the data provided in

Table 20 are purely TSFNs for n = 3.

P, P, Py
(0.53,0.33,0.38) (0.65,0.24,0.74)  (0.61,0.39, 0.45) (0.55,0.88,0.29)
(0.40,0.71,0.15) (0.48, 0.46,0.67) (0.69,0.46,0.29) (0.61,0.73,0.43)
(0.33,0.53,0.79) (0.71,0.49, 0.16) (0.53,0.39,0.84) (0.50,0.90, 0.01)'

Ay (0.64,0.38,0.73) (0.33,0.64,0.76) (0.27,0.89,0.07) (0.74,0.36,0.19)
Table 20 (Decision Matrix)

Step 2: The data provided by the decision makers in Table 20 is aggregated using TSFWA
operators in this step. The steps involved are already explained, here we just provided the

results which are:

Ay = TSFWA(I11, 12, 113, 114) = (0.548023, 0.49755, 0.383533)
A, = TSFWA(lyq, I3z, 133, I4) = (0.602926, 0.603509, 0.323543)
Az = TSFWA(l34, I32, I33, I34) = (0.521966, 0.592777,0.11946)

A, = TSFWA(lgy, Liz, Iaz, Las) = (0.623935,0.505723,0.211727)
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Step 3: Now we compute the score values of the date obtained in Step 2.
sc(l,) = (0.548023)3 — (0.056417)3 = 0.10817
SC(l,) = (0.602926)3 — (0.033869)3 = 0.185307
SC(13) = (0.521966)3 — (0.001705)3 = 0.140504
sc(1,) = (0.623935)3 — (0.009491)3 = 0.233403

Step 4: Step 4 involves the comparison of score values obtained in Step 3. The

comparison is as follows:
SC(l,) > SCy) > SC(I3) > SC(1)

Clearly, the score of I, is greater among all so the firm needed to go with policy 4 i.e. to
invest in African markets according to the evaluation of the data using TSFWA operators.
Such type of decision making could be very helpful in management sciences, economics
and problems of engineering and computer sciences where one need to choose among some

alternatives based on expert’s opinion.
5.6. Comparative Study and Advantages

In this section we are about to establish a comparative study of proposed study and existing
work which will demonstrate the diverse nature of the AOs of TSFSs along with the
limitations of the AOs of IFSs, PyFSs and PFSs. Here we are interested in showing that the
proposed AOs are the generalizations of the AOs of IFSs [29, 30], PyFSs [44, 45], q-ROFSs
[85] and PFSs [50, 83]. The following remark will explain how the AOs of IFSs, PyFSs,

g-ROFSs and PFSs becomes particular cases of T-spherical fuzzy AOs.
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5.6.1. Remark

Consider the TSFWA and TSFWG operator as follows:

n m m m
TSFWA(ly Ip b5 o Ip) = [1— 1—[(1 —s1)" ,ﬂ(i,-)w" . H(d',-)w’
j=1 j=1 j=1

m m n m
TSFWG (U bt ) = | | [0 ] 6™ |1 - [Ja-an”
j=1 j=1 j=1

e Ifwe take the n = 2, we obtained WAA and WGA of SFSs given as:

m m m
SFWA(L I Iy 1) = |1— H(l —s3)" .n(i,-)wj .H(d})w’
j=1 j=1 j=1

m

m m
SFWG(ly, Iy I3 . Iyy) = ﬂ(s;)wi.l—[(ij)"vj, 1 1"[(1 —an)”
j=1 j=1

j=1

e If we take the n = 1, we obtained WAA operator and WGA operator of PFSs
proposed in [50, 83].

o If we take the i; = 0, we obtained WAA operator and WGA operator of q-ROFSs
proposed in [85].

e Ifwetakethen =2andij = 0, we obtained WAA operator and WGA operator of
PyFSs proposed in [44, 45].

o If we take the n = 1 and i; = 0, we obtained WAA operator and WGA operator of

PyFSs proposed in [29, 30].
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Hence, it is proved that the WAA operators and WGA operators proposed in this
manuscript are the generalizations of the AOs of IFSs, PyFSs and PFSs and can handle the

data which the existing tools could not.

As described in Section 5.1, that the theory of IFSs, PyFSs and q-ROFSs can only deal
with situations where we face two types of opinion i.e. yes and no. These types of structures
failed to describe the voting phenomena or situations where opinion might be described by
MG, NG, AG and RG. In view of all these facts, it is claimed that the aggregation theory
proposed in this manuscript is better than the theory that is already developed and can

model human opinion more effectively.

Further, we show that the proposed AOs of TSFSs can be applied to solve the problems
lying in the environment of IFSs, PyFSs, q-ROFSs and PFSs etc. For this purpose, we
consider our Example 5.5.2 and dropped the AG from cach triplet of Table 20. The new

decision matrix obtained is provided in Table 21.

Py P, P; P,
A; (0.53,0.38) (0.65,0.74) (0.61,0.45) (0.55,0.29)
A, (0.40,0.15) (0.48, 0.67) (0.69,0.29) (0.61, 0.43)
Az (0.33,0.79) (0.71, 0.16) (0.53,0.84) (0.50,0.01)

A, (0.64,0.73) (0.33,0.76) (0.27,0.07) (0.74,0.19)

Table 21 (Decision Matrix after dropping the abstinence grade)

The information obtained after dropping the abstinence grade are now PyFNs as for all the
duplets, the sum of square of the MG and BG is less than 1. Therefore, we use the following

special case of the Remark 5.6.1 to aggregate the information obtained in Table 21.
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m m
PYFWA(, I b5 ) = | [1=] [0 =58 [ @™
j=1 j=1

The aggregated results are
A, = (0.548023,0.383533)
A, = (0.602926,0.323543)
As = (0.521966,0.11946)
A, = (0.623935,0.211727)

To find the most suitable alternative, we use the score function and the score values are

given by:

SC(A,) = (0.548023)3 — (0.383533)* = 0.10817

SC(A,) = (0.602926)3 — (0.323543)3 = 0.185307

SC(A3) = (0.521966)° — (0.11946)3 = 0.140504

SC(A,) = (0.623935)* — (0.11946)% = 0.233403

Based on the score values, we obtained the following ranking pattern

SC(A,) > SC(Ay) > SC(A3) > SC(A;)

The result is consistent, and it shows that the proposed TSFWA operators are applicable in

existing fuzzy environments and can solve any problem without any limitations. Here this

point must be noted that the result is similar to that of Example 5.5.2 after dropping AG. It

is not necessary that the results may always get change. However, it is evident that the
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accuracy of the results must change as in in TSF environment, accuracy rate is more

because of less information loss.

Note that later at some stages, the work proposed in this chapter was further improved by
Garg et al. [94] where he points out some cases where TSFWA and TSFWG AOs failed.
Further, Liu et al. [95] also pointed out the weakness of the AOs of TSFSs proposed in
Chapter 2 and of this chapter. One may refer to [94, 95] for better understanding of the new

modified AOs.
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Chapter 6

Hamacher Aggregation Operators of T-Spherical Fuzzy Sets °

In this chapter, it is observed that the Hamacher aggregation (HA) operators of IFSs,
PyFSs, q-ROFSs and PFSs have some limitations in their applicability. To serve the
purpose, some HA operators based on T-spherical fuzzy numbers are introduced. The
concepts of TSF Hamacher weighted averaging (TSFHWA) and TSF Hamacher weighted
geometric (TSFHWG) aggregation operators are proposed which described four aspects of
human opinion including yes, no, abstinence and refusal degree with no limitations. Such
type of AOs efficiently described the cases that left unsolved by the existing AOs. The
validity of the proposed AOs is examined, and some basic properties are discussed. The
proposed new HA operators are used to analyze the performance of search and rescue
robots using a MADM approach as their performance in an emergency is eminent. The
proposed HA operators have two variable parameters namely n and y which effects the
decision-making process and their sensitivity towards decision-making results is also
analyzed. A comparative analysis of the results obtained using proposed HA operators in
view of the variable parameters n and y is established to discuss any advantages or

disadvantages.

6 The work in this chapter has been published in the following paper:

Ulah K., Mahmood T. and Garg, H. Evaluation of the Performance of Search and Rescue Robots Using T-
spherical Fuzzy Hamacher Aggregation Operators. International Journal of Fuzzy Systems, 2020.
https://doi.org/10.1007/s40815-020-00803-2
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6.1.2. Remark

The Hamacher product and the Hamacher sum defined above reduces to algebraic product
and algebraic sum [58] for y = 1 and it reduces to Einstein sum and Einstein product [58]
for y = 2 respectively.

Now we investigate several HA operators so far developed and their limitations in order to
develop the ground for new HA operators. Recently, Darko and Liang [93] proposed HA
operators in g-rung orthopair fuzzy environment. Such HA operators are capable of

handling the imprecise information of Pythagorean fuzzy settings and intuitionistic fuzzy

settings as well.

6.1.3. Definition [93]

The averaging and geometric HA operators for some q-ROFNss are defined as

q — ROFHWA(Iy I, I3, ... Im)

o (14 o= DspY - (1 -5
m @+ -5+ - DI (1 - st
YR, )’

nl_ wj Wj
s, (14 & = D - ) + = D)™
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q — ROFHWG(Iy I, I3, ... Iy

WH;T}_q $:-Vj
n\ﬁﬁl (1 + -0 -s} ) +(y — DI} (s] )ZW]
[ im0 G- e

m 1+ -0d) + - 1) e, (1-dm™

The HA operators for PyFSs and IFSs were proposed by Wu and Wei [54] and Huang [53]
respectively which are the special cases of the HA operators of q-ROFSs proposed by
Darko and Liang [93]. The intuitionistic fuzzy HA operators proposed by Huang [53] by
placing g = 1 in Definition 6.1.3 while the HA operators of PyFSs proposed by Wu and

Wei [54] can be obtained by placing ¢ = 2 in Definition 6.1.3.

However, the HA operators of IFNs, PyFNs and q-ROFNs deal with only those
circumstances where human opinion is described by the MG and the NG only which leads
to information loss as a human opinion has abstinence and refusal degree too. In situations
where human opinion has some abstinence as well as refusal degree involved, these
concepts fail to be applied as suggested by Cuong [9]. In such situations, the framework of
PFNs is a better option. Keeping this in view, Wei [58] developed HA operators in picture

fuzzy environment. The concept of picture fuzzy HA operators is described as follows:
6.1.4. Definition [58]
The averaging and geometric HA operators for a some PFNs are defined as:

PFHWA(I 15, I3, .. In)
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m (1+@-Ds;)" - TIR (1-5;)"

A1+@—1kﬂ +W—1H]10—%)’
Yy Ty i

- ﬁ41+@-1x1—m) +@-1n11@fw
Yy T, d)”

Wi .
n (1+G-DA-d)) + 0= D)™
PFHWG(Iy I3, 13, .. I1m)

an1$}”1
m (1+ ¢ -D-5)) +-DII L ()™
1U+w—nm'—n10—w“
1(1 + (y - 1)L,) + (y - D7 L(1- l]) J
1(1 + - 1)11) —[T% 1(1 - 11) !
\ I 1(1+(y D)7 + @ = DI - )"

HA operators of PFSs proposed by Wei [58] have been successfully utilized in MADM
problems. Obviously, HA operators proposed by Wei [58] deals with imprecise
information involving human opinion, are better than HA operators proposed by Wu and
Wei [54], Huang [53] and Darko and Liang [93] as the chance of information loss is
reduced sufficiently due to the ability of taking into account the AG and RG alongside of

the MG and the NG.

There are some situations where the concept of picture fuzzy information aggregation
could not be applied especially when the triplets under observation i.e. (s, i,d) does not
satisfy the condition 0 < sum(s,i,d) < 1e.g. the triplet (0.71,0.52,0.91) is not a PFN
because the sum of three components exceeds 1. To deal with such situations, we proposed

the framework of SFSs and consequently TSFSs in Chapter 2. In view of the Definition of
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TSFS, every triplet of the form (s,i,d) can be regarded as a TSFN for some n € Zt.
Therefore in this chapter, we propose the idea of HA operators for TSFSs which can

process any kind of data which the existing HA operators fail to process.
6.2. T-Spherical fuzzy Hamacher operations

The aim of this section is to propose the Hamacher operations in TSF environment and
show their superiority over the Hamacher operations of IFNs, PyFNs and PFNs. Using

Hamacher t-norm and Hamacher t-conorm we propose the following HA operations.
6.2.1. Definition

For two TSFNs I, = (54, iy, d1) and I = (52,12, d,) and for A,y > 0. The T-spherical

fuzzy Hamacher operations are:

n [st+sE-stsh—(1-y)sTsy
1-(1-y)sTss

1. 1 I, =
1® 2 i1i3 d,d;
y+(—y)Gr+ig-itiy)’ Yy +(1-y)(dT+dF-d1d7)
$152

y+A-Grtsa—si55)

2 L®L=]|, - -(-p)ii} n[d7+d7-dTd3-(1-y)dTd7
1-(1-p)iti3 1-(1-y)d}dy

nJ A+y-1sHA-a-sHA
(1+-1)sHA+y-1Da-sHr’
3. AL = Vrid Vyd

! A
n\ﬁﬂy—1)(1—i;‘))'1+(y—1)(i;‘)2'l " (1+-Da-4D) +r-DEH

st

%+ (}/—1)(1—5'1‘))/1+(}'—1)(51‘)2’1

2 [ arG-DIA-a-ipr n|_(+@-ndHA-a-dD?
(1+(y'1)i111))‘+(}’—1)(1-i¥)1' (1+(y—1)d”11)1+(y_1)(1_d'711)).

]
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The Hamacher operations proposed in Definition 6.2.1 are more generalized than
the existing Hamacher operations of IFSs, PyFSs, q-ROFSs and PFSs. Unlike Hamacher
operations of IFSs, PyFSs and PFSs, the T-spherical fuzzy Hamacher operations described
the MG, the AG, the NG and the RG with no limitations. The reason is that for every triplet

(s,i,d), there is a n € Z* that make the triplet a TSFN.

There are some conditions under which the proposed Hamacher operations of TSFNs
reduced to the environment of SFSs, PFSs, 4-ROFSs, PyFSs and IFSs respectively. Using
T-spherical fuzzy Hamacher operations proposed in Definition 6.2.1, we proposed the
Hamacher operations for SFNs, PFNs, g-ROFNs. PyFNs and IFNs in the following remark

as its special cases.
6.2.2. Remark

The T-spherical fuzzy Hamacher operations reduced to Hamacher operations of

e SFNs; if we take n = 2.

e PFNs; if wetaken = 1.

e Q-ROFNs; if we take the AG i.e. i as zero.

e PyFNs; if we take n = 2 and the AG i.e. i as zero.
e IFNs; if we take n = 1 and the AG i.e. i as zero.

6.3. T-Spherical fuzzy Hamacher Averaging Operators

This section is based on the averaging AOs based on Hamacher operations. Using
Hamacher operation proposed in Definition 6.2.1, we proposed TSFHWA operator. The
induction method is used for the validation of the proposed TSFHWA operator and some
properties are also investigated.
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6.3.1. Definition
Let I; = (5, i, d) be a collection of TSFNs. Then TSFHWA operator isamap T™ = T such
that

m
TSFHWA(Iy I3, Ia, .. Im) = @® wjl;
j=t

Now, using Definition 6.2.1 and Definition 6.3.1, we propose the following result.

6.3.2. Theorem

Let [; = (5,i,d) be a collection of TSFNs. Then TSFHWA operator is a TSFN and is

having the form

TSFHWA(ly 15,13, .. In)

HiE T e G
M1+ 0 - Ds)™ + & = DI (1= 57)"
YTy i

nx[ﬂ}'il (1+0-D@- )" + = DI )™
VIR, d)

i (1 0 - D= a)” + 0 = DI ()™

Proof: Using mathematical induction,

Form = 2

wily @ wol,
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nj (1+(r = Dsp)*: = (1= 5P

A+ @G- DsPHvz — (¥ — DA —sp)72’

Vi
% i =DA=IP)" + - DE™
Yydy?

s o -na-ap)” + o - DEp

"\f H7=1(1 +(r— 1)55‘[)% - nf=1(1 B 5?)Wj

2 (1+ = D)) + = DG (1-sP"
Yy 1)

\E‘? (1+@-D(- )+ o= H?=1(i}‘)zw"'
Wy [ d)”

(14 0= D= 8)” + 0= DIa(a))™

wily @ wyly =

The result holds true for m = 2.

Now, suppose the result is true for m = k and

TSFHWA(I I, I3, .. i) =
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Toproveform=k +1

TSFHWA(I I, I3, . Do Iiesr ) = TSFHWA(ly I, I, .. Iic) @ Its
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TSFHWA(I Iy, I3, .. Iis1)

o T+ (0 — 1)57) Me2(1-s7)"™ \
M+ o - D)™ + = DI -s)"™

VI

"\ﬁ-[kn (1 +(y- 1)(1 _ ln)) +y-1 Hk+1(ln) WJ
Wil d,‘”'

sz (14 o - D -a)” + 0 - D)™

Hence the result holds for m = k + 1 and therefore holds true for all values of m.
Now, we discussed some basic properties of the proposed TSFHWA operator as follows:
6.3.3. Theorem
The HA operator of TSFNs satisfies the following properties:
1. (Idempotency)
If=1=(5id)Vj=123..m Then TSFHWA(4, I, 15 .. 1) =1
2. (Boundedness)

IflI- = (m_in §jmax ij, max d,) and [T = (m}au $,,mm ij,mind; ) Then
J J J J

I~ < TSFHWA(y, I, 15 o I) < 17

3. (Monotonicity)

Let I; and P; be two TSFNs such that I; < P; V j. Then
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TSFHWA(l,, I, Iz ... 1) < TSFHWA(Py, P, P3 ... Py)
Proof: Similar

The TSFHWA AO weighs the TSFN only. In MADM problem, there are circumstances
when the ordered position of the TSFN matters. For, those situations, the concept of
ordered weighted averaging operators play a significant role and TSFHOWA operator is

proposed as follows.
6.3.4. Definition

Let I; = (5,i,d) be a collection of TSFNs. Then TSFHOWA operator is a map T > T

such that
m
TSFHOWA(ly 1, I3, .. 1) =® wilo(
j=1

Where o(j) is such that Iy(j_1y = lo¢y V J.
6.3.5. Theorem

Let I; = (5,i,d) be a collection of TSFNs. Then TSFHOWA operator is a TSFN having

the form

TSFHOWA(Iy 13, I3, ... Im)
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6.3.6. Remark

The TSFHOWA operator satisfies the properties of idempotency, monotonicity and

boundedness stated in Theorem 6.3.3.

The TSFHWA operator and TSFHOWA operator discussed two different scenarios. The
first one only weighs the T-spherical fuzzy argument while the later weighs the ordered
position of the TSF argument. We need to develop such operator that weighs both, the
ordered position as well as the argument itself. Therefore, we propose the concept of
hybrid operator that takes into account the weight of both, the argument and its ordered

position.
6.3.7. Definition

Let I; = (5.1, d) be a collection of TSFNs. Then TSFHHA operator is a map T™ = T such

that

m ]
TSFHHA(Iy I, I, .. I;m) = ® wils()
j=1
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where I'UU-) is the jt* largest of the TSFN ij = mw;l; with w; as the weight vector of T-

spherical fuzzy arguments [; such that w; € [0,1] and e w; = 1 and m is the balancing

coefficient.
6.3.8. Theorem

Let I; = (s, i,d) be a collection of TSFNs. Then TSFHHA operator is a TSFN having the

form

TSFHHA(I I3, I3, .. Im)

[ e g - Deg) -G -5)”
m (14— Dshgy) + (= DI (1= 35)"

VIR indy

T T
VI gt

\1;/“}11 (1+@-D(1- d’ZU)))Wj +(r = DI (A5

2w]

2wj

6.3.9. Remark
The TSFHHA operator reduced to TSFHWA operator if we take w;=

T T
(i,-}-, = l) while it reduced to TSFHOWA operator if we take w; = (—1-,—1-, £l —1-) .
m mm m m m m

m

6.3.10. Remark

The TSFHHA operator satisfies the properties of idempotency, monotonicity and

boundedness stated in Theorem 6.3.3.
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6.4. T-Spherical fuzzy Hamacher Geometric Operators

This section is based on the geometric aggregation operators of TSFNs. We propose
TSFHWG operator and the induction method is used for the validation of the proposed HA

operator. Some other properties of the TSFHWG operator are also investigated.

6.4.1. Definition

Let I; = (s,i,d") be a collection of TSFNs. Then TSFHWG operator is a map T™ — T such
that

m
TSFHWG (I I, I, .. I;n) = @ wyl;
j=1

Now, using Definition 6.2.1, we propose the following result.
6.4.2. Theorem

Let [; = (5, i, d) be a collection of TSFNs. Then TSFHWG operator is a TSFN having the

form

m .
TSFHWG(Iy 15, I3, . Im) = ® 1].“”’
j=1

WHT:l $;Vj
i (14 0= D -sp)” + &= DG ™

o MR+ & = D) - TR (- )
w1+ - D) + - DI (- )"

o[ IR0+ O = D)™ -~ T (1 - )™
\ m (14 @ - DA + - DR, (1 - df)”
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Proof: Using mathematical induction,

Form = 2

wily @ wyl;

wily @ wol, =

sy \

@+ 0 - DA -H)" + o - DD
n\f 1+ (- DM - (A= " o
(

1+ (- DiD¥1 + (¥ - DA =i’

nl (14 (@ -1dpw - (1 -dP™
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I
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The result holds true for m = 2.

Suppose the result is true for m = k and
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TSFHWG(Iy Iy, I3, .. Iie) =
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n Wi ' ’
M (14 6= D(=5) " + 0 = D)™

| T+ 0= D) =T - )"
L1+ G- D)+ 0 - DI (=)

2

[T - Da - M- a)”
(1 + & = DaN7 + (v = DI, (1 - df)”

2

To prove form = k + 1,
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TSFHWG (I I, I3, o Ties1)
Yy Iits; \
sz (1 o - (- 5p)” + o - DIEN™

n k+1(1 +(y - 1)ln)wl l-[k+1(1 n)wj
k+1(1 + (- 1)1") +(y - 1) nk+1(1 n)wi !

L

nli k+1(1+(y 1)dn)wl l-[k+1(1 n)wi
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Hence the result holds for m = k + 1 and therefore holds true for all values of m.

Now, we discussed some basic properties of the proposed TSFHWG operator as follows:
6.4.3. Theorem

The TSFHWG operator satisfies the following properties:

1. (Idempotency)

If=1=(id)vVj=1.23..m Then TSFHWG(Iy, 15,13 .. 1) = 1

2. (Boundedness)
IflI- = (m_in §j,max i;, max d'j) and It = (mc_m $jmini;, min d'j). Then
J J J j j J

I~ S TSFHWG(ly, I, I3 .. 1) S 1T
3. (Monotonicity)
Let I; and P; be two TSFNs such that I; < P; V j. Then

TSFHWG(Iy, Iy, Is .. Iy) < TSFHWG(Py, Py, Ps ... P)
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The TSFHWG aggregation operator weighs the TSFN only. In MADM problem, there are
circumstances when the ordered position of the TSFN matters. For those situations, the
concept of ordered weighted averaging operators play a significant role and TSFHOWG

operator is proposed as follows.
6.4.4. Definition

Let I; = (5,i,d) be a collection of TSFNs. Then TSFHOWG operator is amap T" = T

such that
m
TSFHOWG (I I, I3, ... Im) = @ Wilo(j)
j=1

Where o (j) is such that I5j_1y = lo() V /.
6.4.5. Theorem

Let I; = (s,i,d") be a collection of TSFNs. Then TSFHOWG operator is a TSFN having

the form

m
TSFHOWG(Iy I3, Is, .. 1) = @ Wilo()
j=1

wi wj
/ n ;-"=1(1 + (- 1)520)) - H}-":l(l - SZU)) ’ \
T Wi !
m (14— Dsip)" + 0 = DI - 55¢5)
n Wy
\/71_17}_—1 la(]j)

- — .
ﬂl (1+o-n(- i2p) =D (i)™
VP I 4y
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147



6.4.6. Remark

The TSFHOWG operator satisfies the properties of idempotency, monotonicity and

boundedness stated in Theorem 6.4.3.

The TSFHWG operator and TSFHOWG operator discussed two different scenarios. The
first one only weighs the TSF argument while the later weighs the ordered position of the
TSF argument. We propose the concept of Hamacher hybrid geometric operator that

weighs both argument and its ordered position.
6.4.7. Definition
Let I; = (5,1, d") be a collection of TSFNs. Then TSFHHG operator is a map T™ = T such

that

m »
TSFHHG(Iy 13, I3, . Im) = ® Wilo(
j=1

where I,y is the jth largest of the TSFN Ij= Ijmwj with w; as the weight vector of T-

spherical fuzzy arguments I; such that w; € [0,1] and X w; = 1 and m is the balancing

coefficient.
6.4.8. Theorem

Let I; = (5,i, d) be a collection of TSFNG. Then TSFHHG operator is a TSFN having the

form

TSFHHG (I Iy, I3, ... Im)
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6.4.9. Remark

The TSFHHG operator reduced to TSFHWG operator if we take w; =

T T
(—1—,—1-,-1-...1) while it reduced to TSFHOWG operator if we take w; = (i 2. l) .
m m m m

m'm’'m"™"m
6.4.10. Remark

The TSFHHG operator satisfy the properties of idempotency, monotonicity and

boundedness stated in Theorem 6.4.3.

6.5. Some Special Cases
The goal of this section is to prove the generalization of TSFHWA and TSFHWG operators

over previous HA operators discussed in Section 6.1. We state some restrictions upon
which the proposed HA operators reduced to previous HA operators. In other words, the
existing HA operators become special cases of the proposed TSFHWA and TSFHWG

operators.
6.5.1. Remark

Consider the TSFHWA and TSFHWG aggregation operators
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o MR+ =5 TR (-5
m (1 +@-Ds)” + - DI -s)"
B VT i
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TSFHWG(Iy Iy, I3, ... Im)

V_H] 1$
'ﬁ’ll(H(V—D(l—sS’)) G- DI D™
e o -0t - - )

m (14 -0 + - DI -

oI, (1+ = D)™ - T, (1= dp)Y
m (14 @ -0dD)" + - DT, (1-dp)™

The TSFHWA and TSFHWG operators reduced to the HA operators of

o SFNis (this paper); if we take n = 2.

e PFNs [58]; if we take n = 1.

e Q-ROFNs [93]; if we take the AG i.e. i as zero.

e PyFNs [54]; if we take n = 2 and the AG i.e. i as zero.

e IFNs [53]; if we take n = 1 and the AG i.e. i as zero.
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All this analysis shows the generalization of TSFHWA and TSFHWG operators over the
HA operations of IFSs, PyFSs, q-ROFSs, PFSs and SFSs. The HA operators of q-ROFSs,
PyFSs and IFSs used two grades (namely MG and NG) to quantify fuzziness while that of
PFSs, SFSs and TSFSs use three grades (MG, AG and NG) to quantify fuzziness.
Obviously, the results obtained using PFSs, SFSs and TSFSs would be more significant
than using duplets as the chances of information loss reduced significantly. Further, as
described in Chapter 2 that PFS and SFS have their limitation in range (shown in Figure 6,
Figure 7, Figure 8 and Figure 9, in Chapter 0.1 hence proving that TSFS is the only fuzzy
framework that gives us better results conveniently with no information loss comparative

to other fuzzy frameworks.

6.6. Multi-Attribute Decision Making for Evaluating the Performance of

Search and Rescue Robots

This section aims to utilize the proposed HA operators of TSFNs in MADM problem. We
utilize both TSFHWA and TSFHWG operators in MADM algorithm followed by
numerical demonstration and show the significance of the parameter n in decision making

process.

MADM is a process of selecting a best alternative among a list of finite alternatives
using AOs and similarity or distance measures etc. Here, the interesting fact is that
information about the alternative is in the form of TSFNs which not only discuss the MG
and NG but also the AG and RG in uncertain environment. Let us assume the collection of
alternatives be denoted by Ay (£ is finite) and the attributes based on which the

alternatives are assessed be denoted by G, (4 is finite) under the weight vector w;. Let
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Dpx; = (Fax; = (m, 4, n) be the decision matrix containing the information about the
alternatives in the form of TSFNs. The MADM algorithm containing proposed HA

operators is demonstrated as follows.
6.6.1. Algorithm

The steps of MADM algorithm using HA operators are described below followed by a

comprehensive flowchart in Figure 12.

Step 1: This step involves information gathering form decision makers about the given
alternatives. The decision makers provide their evaluation about alternatives in the form of

TSFNs keeping the view the attributes.

Step 2: The aim here is to compute the value of n which makes every value in the decision
matrix a TSEN. We take the least value of n for which every triplet of the decision matrix

is a TSFN.

Step 3: This step is based on normalization of decision matrix provided in Step 1 to ensure
that every attribute is of benefit type. If an attribute is of cost type, then we use the

definition of complement of TSFN proposed in Definition 2.2.1 to make all values are of

benefit type.

Step 4: This step involves the aggregation of normalized data obtained in Step 3 using

TSFHWA and TSFHWG operators proposed in Section 6.3 and 6.4 respectively.

Step 5: In Step 5, the following score function of TSFNs proposed in Section 2.3 in order

to rank the alternatives based on greater score values.
s(H=¢g"—=d™nr"
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Step 6: In step 6, best alternative is chosen based on the score values obtained in Step 5.

P
8
i .
sl
3

Figure 12 (flow chart of the proposed MADM algorithm}

In this section, we used the MADM algorithm to evaluate the performance of search and

rescue robots.

The performance of search and rescue robots [96] is eminent in situations of emergencies.
Rescue robots took place of the responders in case of emergency as they can take photos
of the scenes and could record some live videos that can help a lot in understanding the
intensity of the situation. These search and rescue robots can be helpful in caves, tunnels

and wilderness for finding victims or a potential hazard. The motivation to use these search
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and rescue robots is their aped and completeness of the task without increasing risks to

victims or rescuer.
6.6.2. Example

In this example, we consider the problem of evaluating the performance of search and
rescue robots. This example is adapted from [97] where the performance of search and
rescue robots was examined using intuitionistic fuzzy normalized weighted Bonferroni
hormonic mean-based operators. However, in intuitionistic fuzzy environment, only two
aspects of human opinion were studied which leads to information loss as the abstinence
and refusal degree of human opinion are neglected. Based on existing literature [97], the
attributes that have an essential role in the evaluation of search and rescue robots include
Gy; viability, G,; athletic ability, G3; working ability and G,; communication and control
capability. Let the number of search and rescue robots that needs to be assessed be 4,
denoted by A, A, Az, A4 The weight vector for the four attributes be w =
(0.32,0.23,0.18,0.27 ). The evaluation here involves the opinion of the experts which
they provide in the form of a decision matrix keeping in view the four attributes. The
opinion of the experts is expressed in the form of TSFNs describing the MG, AG, NG and
RG of alternatives based on attributes. The experts from the respective field gave their
opinion and a decision matrix is provided in Table 22 and the stepwise computations are

provided as:

Step 1: The initial evaluation about the search and rescue robots by the experts in the form
of TSFNs is given in Table 22. The three components involved in the triplets respectively

represents MG, the AG and the NG.
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51 G2 93 G4
w¥§ (0.64,0.34,0.71) (0.72,0.45,0.63) (0.51,0.59,0.68) (0.56,0.88,0.71)
' (0.74,0.69,0.56) (0.65,0.59,0.68) (0.91,0.50,0.63) (0.87,0.61,0.79)
Py (0.54,0.33,0.39) (0.75,0.54,0.67) (0.84,0.66,0.70) (0.72,0.88,0.35)

o (0.77,0.63,0.45) (0.88,0.60,0.44) (0.67,0.77,0.55) (0.70,0.40,0.50)

EERE

Table 22 (Decision matrix containing opinion of experts about robots)

Step 2: In this step, we compute the value of n for which every triplet given in Table 22
becomes a TSFN. To do so, first we analyze the sum all three components of the triplets
ie. sum(s™,i",d") for n=1,2,3,4,56.. unless we found an n for which 0 <
sum (s",i",d™) < 1. After some iterations, we found that all the triplets of Table 22 are
TSFNs for n = 5 and the sum i.e. sum (s°,i% d'®) for each entry of Table 22 is given in

Table 23.

0.292341 0.311188 0.251388 0.763228
'0.433377 0332915 0.754526  0.890586
0.058852 0.418234 0.711515 0.726476

0.388375 0.621984 0.456019  0.20956

Table 23 (m" + " + n" forn = 5)

Step 4: Assuming that all the attributes in this problem are of benefit type, we proceed to
the aggregation of the decision matrix proposed in Table 22. We use the TSFHWA operator
and TSFHWG operator to aggregate the decision matrix and the results are listed in Table

24 below.
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TSFHWA aperator TSFHWG operator

(0.63136459,0.527244, 0.694886) (0.61476783,0.70588141, 0.89609987)
(0.81580694, 0.613081, 0.665947) (0.80208765, 0.62469032, 0.89583012)
(0.72527687,0.556551, 0.479825) (0.69448866,0.71784277, 0.88174917)

(0.77847638,0.577191,0.478821)  (0.772873,0.63365776, 0.87523554)

Table 24 (Aggregated information)

Utilizing the score function, we computed the scores of the aggregated information in Table

25 below.

Scores TSFHWA operator TSFHWG operator

—0.07829324 —0.87437565
0.24920943 —0.44116969
0.17835228 —0.67101258
0.26568982 —0.41245345

Table 25 (Scores of aggregated information)

Step 5: By comparing the score values obtained in Table 25, the arrangement of

alternatives is given in Table 26 followed by their geometrical comparison in Figure 13.

IRV LN T ATl Ay > Ay > Az > Ay
TSFHWG operator [ tYR t a2 s

Table 26 (Ranking of alternatives)



Comparison of the Ranking of alternatives using TSFHWA
and TSFHWG operators

04

02

-02

-0.4

-0.6

-0.8

B Using TSFHWA operator M Using TSFHWG operator

Figure 13 (Comparison of the ranking of the alternatives using TSFHWA and TSFHWG operators)

The ranking analysis shows that the search and rescue robot number A4 is the most reliable
one for dealing with emergency situations. Further, in this case the rankings are the same
whether we use TSFHW A operator or TSFHWG operator which is not compulsory always

as the result may differ depending upon the data provided by the decision makers.
6.6.3. Effect of "y" on ranking of alternatives

In the Definition Hamacher operations, the condition on constant y is that y > 0.
Therefore, we aim to analyze the effect of variation in y on the ranking results. For this
purpose, we solved the Example 6.6.2 for various values of y and the ranking results are

given in Table 27.
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y TSFHWA operator TSFHWG operator

-Jl4>le>Jl3>o‘l1 Ay > Ay > Az > Aq

ﬂcﬂ4>cﬂz>cﬂ3>ﬂ1 Ay > Ay > Az > Aq
SO Ay > Ay > Az > Ay Ay > Ay > Az > Ay
SOl A, > Ay > Az > Ay Az > Ag > Az > Ay

Wcﬂ4>o‘lz>cﬂ3>cﬂl Ay > Ay > Az > Ay

Table 27 (Ranking resuits for various values of y)

The analysis from Table 27 clearly indicates that varying y have no effect on
ranking in case of TSFHWA operator from y = 2 to y = 500. On the other hand, it is
observed that the ranking results get changed in case of TSFHWG operator for y = 105
which is shown in highlighted text in Table 27. However, from y = 105 to y = 500, the
results remain the same. This shows the significance of variation in y in decision analysis.
At this stage, as for y = 105, the results are stable so the it must be taken as y = 105 for

consistent results.

i n

6.6.4. Effect of variation in “n” on ranking results

In TSFHWA and TSFHWG operators, y is not the only variable constant but the value
of "n" also plays an important role. Here, we analyze the impact of "n" on ranking results.
In the Example 6.6.2, we have chosen "n = 5" because it was the least value of "n" that
made each triplet provided by the decision maker a TSFN and the problem could not be

solved for any lesser value of "n". Now we analyze the impact of larger values of "n" on

ranking results. The ranking results for various values of "n" are shown in Table 28.
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n TSFHWAoperator TSFHWG operator

“ﬂ4>ﬂz>ﬂ3>ﬂ1 Ay > Ay > Az > Ay
ncﬂz>cﬂ4>cﬂg><fl1 Ay > Ay > Az > Ay

A > Ay > A3 > Agr Ay > Ay > Az > Ay

ﬂa‘lz>ﬂ4>cﬂ3>cﬂ1 Ay > Ay > Az > Ay
cﬂ2><ﬂ4><fl3>cfl1 Ay > Ay > Az > Ay

Wcﬂz>cﬂ4>ﬂ3>cﬂ1 Ay > Ay > Az > Ap

Table 28 (Ranking results for various values of y = 2 and various values of "n")

The ranking results seems consistent after analyzing Table 28 as the ranking pattern gets
changed at n = 6 in case of TSFHWA operator while the ranking pattern get changed at
n = 11 in case of TSFHWG operators. However, the ranking pattern after n = 11 remains
the same in both cases no matter how high we raise the value of "n". This shows a stability
in ranking results at n = 11. The ranking pattern for below and above the stability points
in case of TSFHWA and TSFHWG operator is geometrically shown in Figure 14 and

Figure 15 respectively.

Ranking pattern above and below stability values in case of TSFHHWA
operator

0.3
0.25
0.2
0.15
01
005

-0.05
-0.1

MM Below (=6 === Above q=6

Figure 14 (Ranking pattern above and below stability values in case of TSFHWA operator)
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Ranking patteen above and below stability values in case of I'SFHWA
operator

0
-0.1
-02
-0.3
-0.4
-0.5
-0.6

Above q=11

I Below q=11

Figure 15 {Ranking pattern above and below stability values in case of TSFHWG operator)

6.7. Comparative Study

The goal of this section is to establish a comparison of the proposed work with that of
existing literature to demonstrate the advantages of the new proposed work over existing

theory. We establish two types of comparison here.

In our first approach, we take the numerical Example 6.6.2 and dropped the AG from
each triplet of the decision matrix. Doing so will reduce the decision matrix given in Table
22 to the environment of q-ROFS. Hence using a special case of proposed HA operators

discussed in Section 6.5, we solved the given problem and analyze the results.

In second approach, we apply the AOs proposed in Chapter 2, Chapter 5, AOs proposed
by Garg et al. [94] and Liu et al. [95] to the decision matrix provided in Table 22 and

analyze the results.
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6.7.1. Example

Consider the Example 6.6.2. If we drop the AG from the decision matrix provided in Table
22. We obtained the following decision matrix in Table 29. The rest of the information like

weight vector is the same as taken in Example 6.6.2.

91 G2 g3 G4
(0.64,0.71) (0.72,0.63) (0.51,0.68) (0.56,0.71)
(0.74,0.56)  (0.65,0.68) (0.91,0.63) (0.87,0.79)
(0.54,0.39) (0.75,0.67) (0.84,,0.70)  (0.72,0.35)

(0.77,0.45)  (0.88,0.44)  (0.67,0.55)  (0.70,0.50)

Table 29 (Decision matrix containing opinion of experts about robots after dropping the abstinence grade)

After examining the duplets obtained in Table 29, all the duplets are g-ROFNs for n = 4.
Now, this type of information can be processed by using the averaging and geometric HA
operators of q-ROFSs proposed by Darko and Liang [93]. The aggregated information

using -ROFHWA and q-ROFHWG operators is given in Table 30.

q — ROFHWA operator q— ROFHWG operator

(0.62759479,0.701401)  (0.60888807,0.9862327)

(0.81273797,0.672338) (0.77880727,0.98623275)

(0.71992669,0.482812)  (0.68152261,0.9862327)
A

(0.77591318,0.480725)  (0.75470923,0.9862327)

Table 30 Aggregated information using g-ROFHWA and q-ROFHWG operators)

The scores of aggregated information obtained in Table 30 are given in Table 31 as

follows.
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—0.10792025 —0.74974108

Scores q— ROFHWA operator q— ROFHWG operator
Ay

0.27938052 —0.2865601
0.22593439 —0.47844049
0.32555303 —0.23847328

Table 31 (Score values of alternatives)

The ranking of alternatives based on score values of Table 31 are given in Table 32 as

follows.

VIR T L N Ll Ay > Ay > Az > Ay
q — ROFHWG operator LV PR EE Y M

Table 32 (Ranking of alternatives)

This ranking is different than the one obtained in Table 26 using TSFHWA and TSFHWG
operators. This shows that by dropping the AG, some information loss accrued which
causes the change in ranking pattern. Therefore, the use of TSFHWA and TSFHWG
operators is eminent for modeling of human opinion without any loss of information. AG
is always been a part of human opinion and the frameworks of IFS, PyFS and q-ROFS lack
such component. This make the T-spherical fuzzy environment and proposed T-spherical

fuzzy HA operators more reliable than existing fuzzy frameworks.

6.7.2. Example

In this example, the information of the decision makers about the alternatives in Example
6.6.2 is processed by several existing aggregation tools to assess the validity of the ranking

results obtained in Table 26. Here it is important to note that the existing HA operators of
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IFSs [53, 57], PyFSs [54, 55], ¢-ROFSs [93] and PFSs [58] cannot solve the data and
information given in Example 6.6.2. Now we use the AOs proposed in Chapter 2, Chapter
4, by Garg et al. [94], Liu et al. [95] on the data provided in Table 22 to compare the results.

The ranking results obtained by using the stated existing AOs are listed in Table 33.

Aggregation operator By Ranking
TSFHWA operator [EUNHELLIE Ay > Ay > Az > Ay
TSFHWG operator This Chapter Ay > Ay > Az > Ay
TSFWG operator Chapter 2 Ay > Ay > Ay > Ay
TSFWA operator Chapter 4 Ay > Az > Az > A
TSFWG operator Chapter 4 Ay > Ay > Az > Ay
YA IR T Gargetal. [94] Ay > Az > Ay > A,

TSFPMM operator QRIS EINER] Ay > A3 > A > A,

Table 33 (Ranking of alternatives using existing and proposed)

Analyzing the ranking of alternative given in Table 33, it is evident that the results
obtained using proposed TSFHWA and TSFHWG operators are consistent as these are
much similar to the ranking results obtained by Garg et al. [94] and Liu et al. [95]. This
must be noted that the AOs proposed by Garg et al. [94] is an improved version of the AOs

proposed in Chapter 2 and Chapter 4 in this thesis.
6.8. Discussion and Advantages of the Proposed Work

Working in T-spherical fuzzy environment allows you to discuss four aspects of human
opinion namely MG, AG, NG and RG unlike intuitionistic, Pythagorean and q-rung ortho

pair fuzzy environments. Hence, the chance of losing information in T-spherical fuzzy
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environment will always be negligible than other fuzzy environments. One such example
is discussed in Example 6.7.1 where the AG of the T-spherical fuzzy information is
dropped, and we observed the consequences in the results. Here, it is worth mentioning
that the framework of PFS also allows you to describe the four aspects of human opinion
but in a limited range (Discussed in Chapter 1). Therefore, the more convenient option is
to use T-spherical fuzzy framework. Some key advantages of the proposed work are stated

below:

1. T-spherical fuzzy HA operators generalizes existing HA operators describing the
abstinence and refusal degree of human opinion with unlimited range while the existing
HA operators either leads to the loss of information or have limited range.

2. The existing HA operators becomes special cases of the proposed T-spherical fuzzy
HA operators.

3. T-spherical fuzzy HA operators can solve the problems studied in existing literature
while the existing HA operators of IFSs, PyFSs, q-ROFSs and PFSs cannot take over

the problems discussed in T-spherical fuzzy environment.

The results obtained using T-spherical fuzzy HA operators are stable than those obtained
using existing literature. This is because the proposed HA operators have two variable
parameters which are responsible for changing the ranking of alternatives but provides

some stable results at a certain stage as discussed in Example 6.6.2.
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Chapter 7

Interval Valued T-Spherical Fuzzy Set and its Applications ’

Expressing the measure of uncertainty, in terms of an interval instead of a crisp number,
provides improved results in fuzzy mathematics. Several such concepts are established,
including the IVFS, the IVIFS, and the IVPFS. The goal of this chapter is to enhance the
T-spherical fuzzy set (TSFS) by introducing the concept of interval-valued TSFS
(IVTSFS), which describes the uncertainty measure in terms of the MG, AG, NG, and the
RG. The novelty of the IVTSFS over the pre-existing fuzzy structures is analyzed. The
basic operations are proposed for IVTSFSs and their properties are investigated. Two AOs
for IVTSFSs are developed, including WAA and WGA operators, and their validity is
examined using the induction method. Several consequences of new operators, along with
their comparative studies, are elaborated. A multi-attribute decision-making method in the
context of IVTSFSs is developed, followed by a brief numerical example where the
selection of the best policy, among a list of investment policies of a multinational company,
is to be evaluated. The advantages of using the framework of IVTSFSs are described

theoretically and numerically, hence showing the limitations of pre-existing concepts.

So far, there are several fuzzy frameworks developed. Some of them use crisp values from
[0, 1] for expressing the MG, AG, NG such as IFS, PyFS, g-ROFS, PFS, SFS, SVNS and

TSFS. There exist some fuzzy frameworks that takes closed subintervals of [0,1] to

7 The work in this chapter 1s taken from the following published article:

Ullah K., Hassan N., Mahmood T. Jan N. and Hassan M. Evaluation of Investment Policy Based on Multi-Attribute
Decision-Making Using Interval Valued T-Spherical Fuzzy Aggregation Operators. Symmetry, 2019, 11 (3), 357-380.
https //dot org/10 3390/sym 11030357
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represent the MG, AG and NG of the uncertain event such as IVFS, IVIFS, IVPyFS, IVq-
ROFS, IVPFS, IVNS etc. The question might arise that how the quantification of MGs
using intervals produce better results than by quantifying them using crisp values. To
answer the question, in the next section, we analyzed the results of a problem using two

approaches and establish a comparison.
7.1.The Significance of Interval-Valued Fuzzy Structures

Sometimes, the impression of an event cannot be characterized by a crisp number. For
example, suppose if the MG of an object is [0.4, 0.8] and one chose the MG to 0.7 or 0.5
from the interval. It means some information is totally ignored about the object. The
concepts of IFFS, IVIFS and other fuzzy frameworks are introduced to reduce the
information loss in such cases. The interval-valued frameworks for the IFS, PyFS, q-
ROPFS, PFS and SVNS are developed in [14, 15, 16, 10, 17]. Now, we discussed the
significance of using interval-valued frameworks instead of the ordinary fuzzy framework
with crisp representations numerically. Note that in our study, w = (wy, wy, W, ... wp)T
shall denote the weight vector, such that w; € [0,1] for j = 1,2,3 ..mand ¥7L, w; = 1.

Consider the following example in which the selection of the best candidate is to be
carried out among four candidates (C;,i = 1,2,3,4) based on four attributes (G;,j =
1,2,3,4) under the weight vector w = (0.22,0.34,0.27,0.17)T. In this case, the
evaluation information of the candidates is in the form of IVIFNSs, which are given in Table

34.
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I([[%%%i’]) (oi03t) (ozaet) (for.02)
l([[%i%?]) (oo.031) (o201 (ooar)
l([[%‘é?,i]]) (oxost) (o504 (i5.05)
. (o2031) (ras) (roa) (oroar)

attributes.
To aggregate the data provided in Table 34 based on IVIFNS denoted by ;, Xu and Cai [37]

developed the following aggregation tool:

IVIFWA(ly, 15, 13 ... I1y)

:]s
.:___13

( (1-6)"a-T ] —(s;o)“”'J,[f[(d';)"’f.ﬁ(dﬂ“’f )

The aggregated results are:

IVIFWA(l 1, iz Iys, I4) = ([0.6235,0.7569], {0.0000, 0.3386])
IVIFW Ay, Iy, Iys, Ia) = ([0.6777,0.8180], [0.0000, 0.28001)
IVIFWA(lsy, I3, I3, 134) = ([0.5730,0.7745],[0.1713, 0.3454])

IVIFWA(l,1, Lig, L3, 1se) = ([0.6493,0.8352],[0.1165, 0.2510])

The following score of IVIFN, I = ([}, s*], [d", d*]) is used to get the score values of the

aggregated information.

167



1
sc{) = E(s‘ —dt 4+ —d¥)

Using this score’s functions, we have:
S$C(¢,) = 0.5209, SC(C,) = 0.6079, SC(C5) = 0.4154, SC(C,) = 0.5585
Clearly,
SC(C,) > SC(C,) > SC(Cy) > SC(C5)
Hence, C, is the suitable candidate, according to the MADM method based on the IVIFWA
operators. Now our target is to convert the information provided in Table 34 to intuitionistic
fuzzy environment. By doing so, some information loss will occur.
Assigning a crisp value to the MG and NG of the above problem reduces the information
in Table 34 in the context of IFSs. Such information can be aggregated using the
aggregation operators proposed by Xu [29]. The decision matrix for the problem discussed
above in the context of [FSs is given in Table 2.
G4 G, G; Gy

(0.3,05) (0.6,0.3) (0.5,0.4) (0.8,0.2)

(0.7,0.3) (0.6,0.3) (0.7,0.3) (0.7,0.2)

(0.5,0.4) (0.6,0.3) (0.6,0.4) (0.7,0.3)

Wl (0.6,0.2) (0.5,0.1) (0.7,0.1) (0.3,0.1)

Table 35 The decision matrix where (C,,i = 1,2,3,4) denotes alternatives and (G,, ] = 1,2,3,4) denotes the attributes.

The WAA operator of the IFSs, proposed by Xu [29], is given by:

IFWA(, L, 1I; .. 1) = 1- l——[ (1 _ (Sj))wj'l_[(d,j)wi

j=1 Jj=1
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IFWA(ly1, 112, I3, 114) = (0.7569,0.3386)

IFWA(121, 122, 123, 124) = (0.8180, 0.2800)

[FWA(131, 132, 133, 134) = (0.774‘5, 0.3454)

IFWA(L, Ly Lz, L) = (0.7489,0.1165)

For the ranking of IFN I, the score function developed in [29] is given by:

SC)=s—-d
Using this score function, we have:
SC(C,) = 0.4183, SC(C,) = 0.5380, SC(C3) = 0.4291, SC(C,) = 0.6324
Clearly, SC(c,) > SC(c;) > SC(c3) > SC(cy)
Thus, C, is the suitable candidate, according to the MADM method based on the IFWA
operators. It can be clearly seen that the results are drastically changed, and this is only
because of the information loss due to converting the data from interval valued
intuitionistic fuzzy environment to intuitionistic fuzzy environment. This shows the
importance of using interval-valued fuzzy frameworks over crisp-valued fuzzy
frameworks.
The concept of the SFS and TSFS developed in Chapter 2 of this thesis is a generalization
of the q-ROFS, PyFS, PFS, IFS, and FS. Keeping the importance of interval valued fuzzy
frameworks in view of above discussed example, we aim to introduce the concept of
interval valued TSFS (IVTSFS). The concept of the IVTSFS will provide flexibility in
modeling the MG, AG, NG and RG in terms of closed subintervals rather than by a crisp

number. So far, we have studied the applications of TSFSs in medical diagnosis, pattern
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recognition, MADM and clustering and it is evident that the framework of IVTSFS will
provide more better results as the MG, AG, NG and RG are expressed in terms of closed

subintervals instead of crisp numbers.

In the next section, the definition of the IVTSFS is proposed and its superiority over the

existing fuzzy concepts is shown, with the help of some useful remarks.
7.2.Interval Valued T-Spherical Fuzzy Set

In this section, we aim to define the concept of IVTSFS and show its generalization and
superiority over the previously defined fuzzy frameworks. We also aim to develop the basic
set theoretic operations of IVTSFSs and compare it with previously defined operations. For
ranking purpose, the score function of IVTSFS is also introduced and its significance is

discussed. Note that IVTSFS(X) shall denote the set of all the IVTSFSs.
7.2.1. Definition

An IVTSFS has the shape | = {(s (%), i(x), d'(x)): veX }, where s(3), i(3), and d'(x) are
mappings from X to a closed subinterval of [0, 1], such that $(3¢) = [s'(x),s* ()], i(») =
[itGo),i%(e)), and  d'(x) = [d'(x),d%(x)] with a restriction that 0<

sum ((s¥)", (i)™, (d*)™) < 1 for some n € Z*. The term RG is defined by

(1= (59706) = (0e) — (¥R,

r(0) = ([r' GO, r* (0] = 1
(1= (H"6) = @O0 — (dH™n

and the pair (s(x), i(»), d'(3)) is considered to be the interval valued TSFN (IVTSFN).
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The existing frameworks become the special cases of the IVTSFS. Consider the following

theorem:
7.2.2. Theorem

An IVTSFS reduces to:
1. TSFS: if we consider st = s%,i! = i* and d* = d™. [This thesis]
2. IVSEFS: if we consider n = 2. [This thesis]
3. SFS: if we consider n = 2 and s! = s%,i! = i¥%, and d" = d™. [This thesis]
4. IVPFS: if we consider n = 1. [10]
5. PFS:if we considern = 1 and §! = s%,i* = i* and d* = d™ [10]
6. IVQ-ROPEFS: if we consider i' = i* = 0. [16]
7. q-ROPFS: if we consider ' = s%,i' = {* and d* = d". [8]
8. IVPYFS: if we considern =2 and i* = i{* = 0. [15]
9. PyFS: if we considern = 2 and §' = s%,i* = i* = 0 and d* = d™. (7]
10. IVIFS: if we consider n = 1 and i' = i% = 0.[14]
11.IFS: if we consider n = 1 and ! = §%,i' = i% = 0 and d* = d™. [5]
12. IVFS: if we considern = 1 and i* = i* = d' = d™* = 0. [13]

13. FS: if we considern = 1and §' = g%,i' = i% = 0 = d! = d™ [1]

Next, the operations of the sum, product, scalar multiplications, and power operation for
IVTSFNs will be introduced. With the help of a remark, it is shown that these operations

are the generalizations of the operations of existing concepts under some restrictions.
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7.2.3. Definition

For I, I, € IVTSFS(X), let Iy = ([s%, 541, [i4, i¥], [d4, d¥]) and I, = ([sh. 551, [i3, i3],
[d%, d%]) be two IVTSFNs and A > 0. Then, the operations of the sum, product, scalar

multiplications, and power are defined as:

n n n n n
Jsi +sb —si.sh,

n\/ CLik.ib, i %), [dE. d, d¥. dY]
s+ sy —stsy"

1. 11®12=

"\/d'g" +di —dtt "
2. L @I, ={| [st.sh st.550 [if. ib, it i3],

noaun un .  pun
Jd}‘ + dU" — U Y

s = (|1 st - e [ @) )’ @)

4. 1= ([(5’1){ (st ‘],[(ii)l, Cy )A]'[ijl - (1-at")’, \F— (l—dqzin)l])

7.2.4. Remark

The operations in Definition 7.2.3 become valid for:

TSFSs: if we consider §* = s%,i' = i¥%, and d* = d™ [This thesis]

e IVSFSs: if we consider n = 2. [This thesis]
e SFSs: if we consider n = 2 and s! = s%,i! = i* and d' = d™. [This thesis]
e [VPFSs: if we consider n = 1. [This thesis]
e PFSs: if we considern = 1 and s = s%,i' = i* and d* = d™. [This thesis]

e IVg@-ROPFSs: if we consider i = i* = 0. [This thesis]
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7.2.5.

q-ROPFSs: if we consider §* = %, i = i* and d! = d™. [85]

IVPyFSs: if we consider n = 2 and i = i* = 0. [47]

PyFSs: if we consider n = 2 and §' = §%,i' = {* = 0 and d! = d"™. [45, 46]
IVIFSs: if we consider n = 1 and i* = i* = 0. [37]

IFSs: if we consider n = 1 and §! = s%,i' = i¥ = 0 and d* = d™. [29, 30]
IVFSs: if we considern = 1and i' = i* =d*' = d* = 0.

FSs: if we considern = 1and gt =s%,i' =i* =0 =4d' =d™

Theorem

The following properties hold true for A, B € IVTSFS(X), where 4,4;,43 > 0.

[o—

8.

9.

. 11612 = 12@11

L®L =1Ll
AL®L) = AL @Al
(11®12)A = 11'1®12'1
A L®A, 1 = (A + A
1111®1112 — 11114’12
COEICING

c A€
A(LL5) = (11 )

11C®12C = (l1®12)c

10. ,°Q®L,° = (I,®1,)°¢

Proof. Trivial.
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The ranking of two numbers in fuzzy algebraic structures has certain importance, especially
in MADM, medical diagnosis and in pattern recognition. There are several rules defined
for the ranking of two numbers of a certain fuzzy framework studied by a number of
scientists. Here, we follow the idea of Joshi and Kumar [43], to define a score function for

an IVTSFN.
7.2.6. Definition

For an IVTSFN I = ([s%, s%], [i%, i%], [d*, d*]), the score function is defined as:

()" (1-()"=(@)")+ H(A-EH"-@O™)
3

sc) = and SC(I) € [0,1]

7.2.7. Remark

Using the restrictions stated in Theorem 1, the score value for the TSFS, IVSFS, SFS,

IVPFS, and PFS, as well as other fuzzy algebraic structures, can be obtained analogously.

7.2.8. Example

Let I, = ([0.3,0.6],[0.2,0.7],[0.5,0.8]) and I, = ([0.2,0.4],[0.2,0.3], [0.3, 0.8]) be two

IVTSFNs for n = 4. Then, using the score function, we have:
SC(I;) = 0.0227 and SC(I,) = 0.0066

Clearly, SC(1;) > SC(l,). So I; > I.
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7.3. Averaging Aggregation Operators for Interval-Valued T-Spherical

Fuzzy Sets

In this section, some AOs for IVTSFSs are proposed. These operators include the interval
valued T-spherical fuzzy weighted averaging (IVTSFWA) operator, interval valued T-
spherical fuzzy ordered weighted averaging (IVTSFOWA) operator and interval valued T-
spherical fuzzy hybrid averaging (IVTSFHA) operator. The validation and basic properties
of these aggregation tools are studied and supported by numerical examples.

7.3.1. Definition

The IVTSFWA operator for IVTSFNs I; (j = 1,2, 3 ...m) is of the form:

m
IVTSFWA(L, Ty, Iy 1) = Z w1,
=1

7.3.2. Theorem

The aggregated value of IVTSFNs I;, using the IVTSFWA operator, is an IVTSFN which

is given as:

T Ja-epn =T Ja- 6|

IVTSFWA(l,, 1, 15 ... 1) =
m m m m

[T T Te™ T Tean™. ] Tem™
j=1 j=1 j=1 j=1

Proof: Using mathematical induction.

Form = 2.
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= ([1f1 = Aot =m0 @™ b )™ 01)™)

And

s = ([2f1= st = (o™ 6™ )bt (@)™
wy Il Bw, 1,

_ (([’Jl-<1-sh")”i"Jl—(1—%")”“],[(zL)Wﬂ(m)"’lL [(d'sl)“’a(d-z)wq)e)

(['Jl ~ (15" 1 - (1-5:;")“J (G ()" (@)™, (d'w”])

\

j(\jl (1-st" ) (Jl (1-s." )n—"\ll—(1—$§”)Wl."\]1—(1—$§"‘”2,-\
= ’j(\/1 (1-se™ ) (J1 (1—s1™ ) J1 (1-se™)™ J1 (1-su"

[(‘11) (llz) (lll) (112) ] /
\ )" (@)™, ()™ (%)™

([\/1 (158" (155", ’j1 (1-sE™)" (1_$}¢zn)wz|)

[(‘l) (l:) (11) (ll) ]
[(af)™ (d1,)™ (@)™ (a3)™]

= U - f] (=) n\/l B ﬁ (1-st )W’]

Hence, for m = 2, the result is true.
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Supposedly, we claim that the result is valid for m = k, i.e.,

IVTSFWA(ly, Iy, Is .. 1)

[ ] ln)Wj‘n 1—1:[(1_5}1")‘”] '
e

K k
wj g m\WiJ , w,
ﬂ (™) TG ] T
j=1 j=1 j=1
To prove the result for m = k + 1, consider:

k+1

IVTSFWAUL b1y i Tess) = ) Wi Zw,l OWirilns
Jj=1 j=1

["\/1 - (1 - $;c+1n)Wk+1' "\/1 - (1 - S%Hn)w’”l] ’
W W
[( ’k+1 o ( e WkH] [(d1k+1 - (d1k+1 )Wk“]
Finally, we get:

IVTSFWA(L, Iy, s Do Tier)

k+1 n k+1
w .
=L Ja-s -] Ja-s|
= j=1
k+1 " k+1 Wi k+1 L\ k+1 W)
1_[("1 ) 'ﬂ(”/ ) ’ H(d’j ) ’ﬂ(d'i )
j=1 J=1 j=1 j=1
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Hence, the result is valid for m = k + 1. So, using the induction method, it is proven that
the result is valid for all m € Z*. In the following theorem, we state that the IVTSFWA

operator satisfies the basic characteristics of an AOs.

7.3.3. Theorem
For the IVTSFWA operator, the following properties hold true:

1. Idempotency:

Ifl; =Iforallj=1,2,3,..m,then IVTSFWA(ly, I3, I5 ... Iy} = |
Proof: Let [; = I = ([s*,s* ], [i", i*], [d", d*]) for all j, then:

IVTSFWA(L,1,1...1)

1- 1;[(1 —sHm™, |1- ,H(l — smym¥i,

ﬁ(il)wf ) ﬁ(i“)wi] , [ﬁ(d'l)wj , ﬁ(d:u)wj
j=1 j=1 j=1 j=1

[1/1 — (1= (shmZ=w, "\/1 -(1- (su)n)ZE';1WiJ,
[(il)Z?:llwi, (iu)Zf'é1 Wi]’ [(dvl)Z{’;lwi' (d'u)z’i’;lwi]

= ([s%s* 1[4 4, [dh d¥D) =1
2. Boundedness:
IfI- = min(sj, i d}) and I* = qu(sj, ij d]) are the least and greatest [IVTSFNs, then:
j j
Im S IVTSFWA(l, I, 15 .. 1) < 17
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Proof: Straightforward.

3. Monotonicity:
For the two collections of IVTSFNs, [; and P;. If [; < P; V J, then:
IVTSFWA(l, 1y, 15 ... 1) < IVTSFWA(Py, Py, Ps ... Py)
Proof: As
IVTSFWA(I, 1, 15 ... Iy) = wily + wyly + walz +-wy [y
and
IVTSFWA(P,, Py, P; ... By) = wi Py + Wy Py + w3P3 + - wy,, Py

Asl; < P V. So,

IVTSFWA(ly, 15,15 ... 1;) < IVTSFWA(Py, Py, P3 ... By)
In MADM problems, sometimes the ordered position of the information has importance
and needs to be weighted. For this reason, the concept of the IVTSFOWA operator is

proposed.
7.3.4. Definition

The IVTSFOWA operator for IVTSFNs /; (j = 1,2,3...m) is of the form:

m
IVTSFOWA(L, Iy, Iy ... Iy) = Z wila()

Jj=1

where I,(j) denotes the j™* largest value of I;.
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7.3.5. Theorem

The aggregated value of the IVTSFNS, [;, using an IVTSFOWA operator, is an IVTSFN

and is given as:

IVTSFOWA(,, I, 15 ... 1)

n = l n\wj " = u n\Wj
-] Ja=Gie))™ =T Ja- G|,
j=1 j=1

m m m m

. Wi ] wj , w; , "y
[ JeEa)™ ] [ »[H(dfz(i)) L] ko™
J=1 j=1 j=1 j=1

Proof: This result can analogously be proved.

7.3.6. Example

Let I, = ([0.3,0.6],[0.2,0.7],[0.5,0.8]), I, = ([0.2,0.4],[0.2,0.6],[0.3,0.8]), I5=
([0.3,0.3], [0.4,0.5],[0.7,0.8]), and I, = ([0.1,0.5],[0.2,0.2], [0.3,0.5]) be the four
IVTSFNs for n = 4 and let w = (0.22,0.34,0.27,0.17)7 be the weight vector. Then,
using the score function defined in Definition 7.2.6, we have SC(I,) = 0.0227, SC(l,) =
0.0055, SC(I3) = 0.0089, and SC(I,) = 0.0066. So, the IVTSFNs are ranked as: I; >

I3 > I, > I, and we get:
Iy = ([0.3,0.6], [0.2,0.7],[0.5, 0.8])
Iy2) = ([0.3,0.3],[0.4,0.5],[0.7,0.8])

Iags) = ([0.1,0.5],[0.2,0.2], [0.3,0.5])
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lutey = ([0.2,0.4],[0.2,0.6],[0.3,0.8])

Now, the aggregated value of I, I, I3, and 1, using the IVTSFOWA operator, is given by:

IVTSFOWA(I,, 15,1, 1) = ([0.2691,0.4573 ],[0.2532,0.4485 ], [0.3994,0.8000])
As discussed, whenever the ordered position of IVTSFNs is necessary, we use the
IVTSFOWA operator. If along with this, the argument also needs to be weighted, then we

develop the IVTSFHA operator.
7.3.7. Definition

The IVTSFHA operator for the IVTSFN I; (j = 1,2,3...m) is of the form:
m
IVTSFHA(l, I, I3 ... 1) = Z wila(i)
j=1

where ij can be computed as ij = mwlj, ia(j) denotes the jt* largest value of ij, and

further w = (w;, w,, w3 ... w,)" is the weight vector of [;.

7.3.8. Theorem

The aggregated value of the IVTSFNs /;, using the IVTSFHA operator, is an IVTSFN and

is given as:

IVTSFHA(ly, I, Is ... Iy)

m m
n w; n Wi
-] Ja= G =T Ja=6Ea)D™|.
j=1 j=1

B m m m m
. . B . N Wi [N w
h [ ] TGk '|I [@ie)™. ] Jehon™

j=1 j=1 j=1 j=1
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Proof: This result can analogously be proved.

7.3.9. Example

Let I, = ([0.3,0.6],[0.2,0.7],[0.5,0.8]), I, =([0.2,0.4],[0.2,0.6],[0.3,0.8]), I3=
([0.3,0.3],[0.4,0.5],[0.7,0.8]), and I, = ([0.1,0.5],[0.2,0.2],[0.3,0.5]) be the four
IVTSFNs for n = 4 and let w = (0.22,0.34,0.27,0.17)T be the weight vector of the
IVTSFNs. Furthermore, let w = (0.2, 0.1,0.3,0.4)7 be the aggregated associated weight

vector. Then, using ij = mwl;, we have:

I; = mwl,

_ ([Vl — (1—(0.3)4)4x022, /1 — (1—(0,6)4)4x0.22] '>
[(0.2)#X922, (0.7)*%022], [(0.5)**022, (0.8)**0-22]

= ([0.3466,0.6379],[0.0004, 0.0528], [0.0138,0.0901 ])
Similarly,
I, = mwl, = ([0.1120,0.2876],[0.0005,0.0441],[0.0028,0.1393])
I; = mwl; = ([0.2725, 0.2725], [0.0069,0.0069],[0.0169,0.1106])

i, = mwl, = ([0.3347,0.5363], [0.0003, 0.0014], [0.0014,0.0696])

Now, using the score function defined in Definition 6, we have SC (il) = 0.5240,

Sc(i,) = 0.1900, SC(I3) = 0.3461, and SC(i,) = 0.5003. So, the IVTSFNs [ are

ranked as:

L>1,>05L>1
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And we get:
ia(l) = ([0.3466,0.6379],[0.0004, 0.0528],[0.0138,0.0901 ])

faqzy = ([0.3347,0.5363],[0.0003, 0.0014], [0.0014,0.0696])

faga) = ([0.2725,0.2725], [0.0069,0.0069], [0.0169,0.1106])
faqay = ([0.1120,0.2876], [0.0005,0.0441], [0.0028,0.1393])

Now, the aggregated value of Iy, I, I, and I, using the IVTSFHA operator, is given
by:

IVTSFHA(I,, I, I3, 1) = ([0.3129,0.5153], [0.0008, 0.0066], [0.0050, 0.0903])

7.3.10. Theorem
111 1\t
Ifw= (—,—, -, —) , then the IVTSFHA operator becomes the IVTSFWA operator.
m m m m
. t ,
Proof: As [; = mw;l; and w = (%%'i’ i) . So w;l; = w;l; and

m m
IVTSFHA(LL, Iy, I . 1) = Z wilyy = Z wl; = IVTSFWA(lL, I, I3 .. Iy)

j=1 j=1
7.4. Geometric Aggregation Operators for Interval-Valued T-Spherical
Fuzzy Sets:

In this section, some geometric AOs for IVTSFSs are proposed. These operators include
the interval valued T-spherical fuzzy weighted geometric (IVTSFWG) operator, interval

valued T-spherical fuzzy ordered weighted geometric (IVTSFOWG) operator and interval
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valued T-spherical fuzzy hybrid geometric (IVTSFHG) operator. The validation and basic

properties of these aggregation tools are studied and supported by numerical examples.
7.4.1. Definition

The IVTSFWG operator for the IVTSFNs I; (j = 1,2, 3 ...m) is of the form:

m
IVTSFWG (I, I Iy .1y, = 1_[ I
j=1

7.4.2. Theorem

The aggregated value of the IVTSFNS [;, using the IVTSFWG operator, is an IVTSFN and

is given as:

IVTSFWG(y, 15,13 ... 1)
m m m m
[T T[] Ta.] Jao™|.
j=1 j=1 j=1 j=1

n l"ﬁ(l-(d'f-)")w"" 1-f](1—<d';*)">‘”’

Proof: Using mathematical induction.

Form = 2.

= (160" 61" )™ @) 21 - G=at )™ 1= -ag)”

And

e = (60" 6™ @) - =at ™ i - a-axy™))
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Vi

[(m“ 1)) @)™ [ - e ) - ey D
[($Iz)wz (Slz)wz] [(i IZ)W2 (Iz)wz] [\ﬁ— (1- dl wz "\f_ (1_d}42n)wz )

[5Gt )™ (1) G ™ GR) ™ (i)™ () ™),

n

"1- (1=t ™™,

Ny

[(%)Wl (Slz)wz (%)W1 ($Iz)wz] [(‘li)w1 (llz)wz (‘ll)W1 (lz)wz]

n

n

[Jl—(l —a ) () - (e (e

[U(S?)Wj : U(s}‘)wj ] : [U(i})“’f , U(i’y)wj] ,

Hence, for m = 2, the result is true.

["1 [ Ja-@m”, 1—ﬂ(1—(du))]

(Tﬂ\/l(l —dt ™" ) (\[1—(1 ~qL" ) \f (1-at )"
- (Jl - (1—d'3‘2")w’) - "\/1 — (1-qv"

)

Based on this assumption, we claim that the result is valid form =k i.e,

IVTSFWG(ly, 15, I3 ...

L)
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U($§- )" U(s}‘)w’ ] : [U(z;)wf , U " ,] |

- a- @ =T e- @

To prove the result for m = k + 1, consider:

k+1 k
IVTSFWG(Iy, L Iy . iy Tsr) = ﬂl"” = [ eny

/ [U(s;)”f,lj(sy)“”f].[U(i;)“’f.lj(tr)"’f].

=\ [T ey =T Ja- @

[Cshi) ™" i)™ D 1) ™ ()™
[J1—(1 a M "\/1—(1 —dn )wkﬂ] )

Finally, we get:

WVTSFWG(y, I, I3 . Iy, Iisr)

[H(Sﬁ‘)wi : H(s}‘)w’] : [H(i})wi , H(i’y)wj]‘

1—1‘[(1—@’) N (CCOPN

Hence, the result is valid for m = k + 1. Consequently, using the induction method, it is

proven that the result is valid for all m € Z*.
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In the following theorem, we state that the IVTSFWG operator satisfies the basic

characteristics of aggregation operators.
7.4.3. Theorem

For an IVTSFWG operator, the following properties hold true.

1. Idempotency:

Ifl; =1Iforallj =1,2,3,..m, then IVTSFWG(Iy, I3, 15 ... I,) = 1
2. Boundedness:

IfI- = mjin(s ji;dj) and It = mjz_ax(s j»ijd;) are the least and greatest IVTSFNs,
then

I < IVTSFWG(I, I, 15 .. Ly) < T

3. Monotonicity:

For the two collections of IVTSFNs, [; and P;, if [; S P; V § then

IVTSFWA(ly, I, 15 ... 1) < IVTSFWA(P,, Py, Py ... Py)

Proof: Similar
To handle situations where the ordered position of the information is important, the concept

of the IVTSFOWG operator is proposed.
7.4.4. Definition

The IVTSFOWG operator for IVTSFNs [; (j = 1,2, 3 ...m) is of the form:

wj

m
IVTSFOWG(Iy, I, I3 ... Iy) = ﬂ Ity
j=1
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where I, (;) denotes the j th largest value of ;.

7.4.5. Theorem

The aggregated value of the IVTSFNs I;, using the IVTSFOWG operator, is an IVTSFN

and is given as:

IVTSFOWG(Iy, 15,15 ... 1)

m m m m

wj i , w;j , i
| |($fz(;)) "l I(#(j))wj ) | l(t},m) }'l I(lgu))wl )
j=1 j=1 j=1 j=1

"1 - [_](1 — (@)D" - 1](1 — (@2,

7.4.6. Example

Let I, = ([0.3,0.6],[0.2,0.7],[0.5,0.8]), I, = ([0.2,0.4],[0.2,0.6],[0.3,0.8]), I5=
([0.3,0.3],[0.4,0.5],[0.7,0.8]), and I, = ([0.1,0.5],[0.2,0.2], [0.3,0.5]) be the four
IVTSFNs forn = 4 and letw = (0.22,0.34,0.27,0.17)" be the weight vector. Then, using
the score function, we have SC(I;) = 0.0227, SC(I,) = 0.0055, SC(I3) = 0.0089, and
SC(1,) = 0.0066. So, the IVTSFNs are ranked as:

L>L>I0,>]

And we get:
Iy = ([0.3,0.6], [0.2,0.7],[0.5,0.8])

la = ({0.3,0.3],[0.4,0.5],[0.7, 0.8])
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I = ([0.1,0.5],[0.2,0.2], [0.3,0.5])
laay = ([0.2,0.4],[0.2,0.6], [0.3,0.8])

Now, the aggregated value of I, I,, I3, and I, using the IVTSFOWA operator, is given by:

IVTSFOWG(Iy, I, I, I,) = ([0.2081, 0.4212], [0.2532, 0.4336], [0.5844, 0.7626])

Next, the notion of the IVTSFHG operator is proposed.
7.4.7. Definition

The IVTSFHG operator for IVTSFNs I; (j = 1, 2,3 ...m) is of the form:

IVTSFHG(I, 15, 15 ... In) = I_Ila(j)

j=1

where [; can be computed as J; = I™®, [y;) denotes the j™ largest value of [}, and w =

(w,, w,, W3 ... w,,)" is the weight vector of I;.
1 3 n g ]

7.4.8. Theorem

The aggregated value of IVTSFNs /j, using the IVTSFHG operator, is an IVTSFN and is

given as:

IVTSFHG(ly, Iy, 15 .. 1y)

m m m m

. Wi . w; . w . w
ﬂ(sﬁzo’)) ’,1_[(52(;)) ot l_[(‘fz(n) ]'1—[(‘20’)) gt
j=1 j=1 j=1 j=1

—f[ 1—(d o)) -

1 - (d% (1))
J =1

J
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Proof: This result can analogously be proved.
7.4.9. Example

Let I, = ([0.3,0.6],{0.2,0.7],[0.5,0.8]), I, = ([0.2,0.4],[0.2,0.6],[0.3,0.8]), I;=
([0.3,0.3], [0.4, 0.5}, [0.7,0.8]), and I, = ([0.1,0.5],[0.2,0.2],[0.3,0.5]) be the four
IVTSFNs for n=4 and let w = (0.22,0.34,0.27,0.17)Tbe the weight vector of
[VTSFNs. Furthermore, let w = (0.2,0.1,0.3,0.4)7 be the aggregated associated weight

vector. Then, using ij = Ijm“’, we have:

L =1

[(0_3)4><0-22’ (0_6)4x0.22]’ [(0_2)4x0.22’ (0_7)4x0.22]'
= ([Vl — (1—(0.5)%)4x0.22, Vl _ (1—(0.8)4)4’<°-22] )

= ([0.0018,0.0285],[0.0004, 0.0528], [0.5434,0.8217])
Similarly,
I, = I™ = ([0.0005, 0.0087], [0.0005, 0.0441], [0.1945, 0.7382])
iy = 15" = ([0.0022,0.0022], [0.0069, 0.0069], [0.4730, 0.7858])
i, = I™ = ([0.0003,0.0044 ], [0.0003, 0.0014], [0.4410,0.8592])
Now, using the score function of IVTSFNs, we have SC(il) = 0.0020, SC(iZ) = (.0011,
SC(i3) = 0.0013, and SC(f,) = 0.0004. So, the IVTSFNs are ranked as:

L>L>L>I,
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Now, the aggregated value of iy, I, I3, and I4, using the IVTSFHG operator, is given

by:
IVTSFHG (14, 13,15, 1,) = ([0.0008, 0.0055], [0.0008, 0.0066], [0.4681,0.8235])

7.4.10. Theorem
111 1\!
Ifw= (—, -, =, —) , then the IVTSFHG operator becomes the [VTSFWG operator.
m m m m
Proof: As ;=1 7 and w = (l = l)t So i =1I"and
) J J m'm'm’""m/ J J
m m
WVTSFHG(y, Iy, I o 1) = 1—[ = ﬂl}”" = IVTSFWG (I3, Iy 5 o Ie)
j=1 j=1

7 5. Multi-Attribute Decision-Making Investment Planning

MADM is one of the most suitable areas where the aggregation of the tools of fuzzy
structures is applied to get useful results. A detailed literature survey of MADM problems
has been discussed in Chapter 0.1. In this section, our aim is to develop the MADM method
in the context of IVTSFSs.

In a MADM problem, the selection of the best or most suitable option is carried out using
a list of options. Consider a list of m alternatives, denoted by A;, being observed by
decision makers with k attributes, denoted by H,. The decision makers evaluated the m
number of alternatives with k attributes and provided their information in the form of
[VISENs. Furthermore, w = (wy, Wy, W3, ..wy)t denoted the weight vector of the

attributes. The detailed steps of the MADM process are given as:
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Step 1: The decision makers assess the alternatives, given the attributes, and provide

their information in the form of a decision matrix.
Step 2: Apply the proposed aggregation tools to the decision matrix obtained in Step 1.
Step 3: Compute the scores of the IVTSFNs obtained in Step 2.

Step 4: Analyze the score values of the alternatives and rank them to obtain the best

alternative.

The following example demonstrates the proposed MADM algorithm in detail.
7.5.1. Example

A multinational company needed to announce its policy on its investment for the upcoming
financial year. Keeping in mind its previous performance, the company needed to evaluate
its financial policies to launch the best investment. It had four policies to be evaluated after
some initial screening. These four policies included four possible places (countries) for
investments i.e., A, - To invest in Pakistan, Ay: To invest in Iran, As; To invest in the UAE,
and A,: To invest in Bangladesh. Assuming that all of the attributes are of benefit, the four
investment plans were evaluated based on the following attributes: H,: Comfort zone, Hy:
Government regulations, Hz: Interest of the people, and H,: Competition in the markets.
The attribute H, shows that evaluation policies are based on the law and considers the
situation of the country for the investment. The attribute H, allows the decision makers to
evaluate the policy, keeping in mind the relevant government policies that directly affect
the business policies. The attribute Hz allows the decision makers to evaluate the policy

based on the cultural values and overall lifestyle of the people of the country, as any
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investment policy is directly linked to the consumers and distributors. The fourth attribute,
H,, provides a chance for the decision makers to evaluate the policy by considering the
competition in the market. If the competition in the market is low, then the success of the
policy may be assured. All of the four factors had a great impact on the success of the
policy and the decision makers provided their evaluations with all four attributes in mind.
Letw = (0.22,0.34,0.27,0.17)" be the weight vector of the attributes. The policy makers

gave their opinions in the form of IVTSFNss, as follows.

The description of imprecise information, in terms of intervals instead of crisp numbers,
provides consistent and improved results numerically, as described in Section 7.1.
Furthermore, the description of imprecision using the MG, AG, NG, and the RG, improves
the accuracy of the human opinion about an uncertain event. Therefore, the evaluation of the
investment policy, in this case, is studied in the environment of IVTSFSs, using the WA and
WG aggregation operators. The stepwise demonstration of the MADM process is as

follows:

Step 1: The evaluation of the alternatives, A;, by the decision makers in the form of a

decision matrix.
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Daxa

H, H, Hs H,
[03,05,\ /[0.1,05]\ [[0.2,071\ [[0.4,0.9],

A, |[04,06),] |[0306]] {[04 0.4],) [0.5,0.6],
([0.2, 0.6] <[o.4, 0.7]) [0.3,0.5] [0.3,0.4]

[0.4,05]\ [[04,0.7]\ [l0.4,08L\ [[0.3,08],
4, (102,07, ) {10306l ] {[0.204]} |I[040.6]
- [0.6,0.7] [0.5,0.8] [0.1,0.6)] [0.2,0.2]

[0.8,0.8]\ /[0.2,07]\ [[0.7,09], [0.3,0.4],

[0.0,0.3], ([0.1, 0.2],) [0.3, 0.3],> [0.4,0.8],

[0.5, 0.6] [0.4,0.8] [0.4,0.8] [0.4, 0.4]

[0.2,0.21\ /[0.507]\ [[0.2,08], [0.1,0.9],

A, |1[05,05], ([0.3, 0.6, | |1[0.3,0.4], [0.3,0.7],
[0.2,0.6]

[0.3,0.3] [0.1,0.3] [0.5, 0.6]

The selection of the best location for investment is carried out using two approaches.
Firstly, by using the IVTSFWA operators and secondly, by using IVTSFWG operators. It
can be seen that all of the values in the decision matrix are IVTSFNs forn = 5. For a lesser
n, some values are not IVTSFNs. Therefore, we take n = 5.

Step 2: By applying the IVTSFWA operators to the decision matrix provided in Step 1,

we get.

Ay = IVTSFWA(A11, A1z, A1z, Ara)

— ([0.2986, 0.7225), [0.3768, 0.5378], [0.3026, 0.5618])

A, = IVTSFWA(Azy1, A2z, Az3, Azq)

= ([0.3891,0.7365], [0.2583, 0.5563], [0.2884, 0.5679])

Az = IVTSFWA(Az;, Az, A3z, Aza)

= ([0.6634,0.7986], [0.0000,0.3088 ], [0.4201,0.6675])
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A, = IVTSFWA(As1, Asz Aszi Ass)

= ([0.4050,0.7725},[0.3357, 0.5304], [0.2225,0.3931])

Step 3: This step involves the computation of the score values as such:
SC(4,) = 0.1083,5C(4;) = 0.1423,SC(A;) = 0.3846, and SC(A,) = 0.1846

Step 4: In this step, the score values obtained in Step 3 are analyzed. Based on the score

values, the ranking of the alternatives is given:

SC(A3) > SC(A4) > SC(A7) > SC(A1)

The ranking analysis shows that A3 has the greatest value, hence the policy of making
investments in the UAE is the best, according to the proposed decision-making method
using the IVTSFWA operators.

Now, the same data is analyzed to find the best policy of investment using IVTSFWG

operators.
Step 2: By applying the IVTSFWG operators to the decision matrix provided in Step 1,
we get.
A = IVTSFWG(A11'A12'A13'A14)
= ([0.1944,0.6051 ], [0.3768, 0.5378],[0.3413,0.6132])

Ay = IVTSFWG(Az1, Az2) Aza,s Azs)

— ([0.3809,0.6894 ], [0.2583,0.5563], [0.4900, 0.7090])

A3 = IVTSFWG(A31, A32, A33, A34)

= ([0.4077,0.7015), [0.0000, 0.3088], [0.4312,0.7455])
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Ay = IVTSFWG (A4, Agz Asss Ass)

= ([0.2427,0.5749], [0.3357, 0.5304], [0.3627,0.5040])

Step 3: This step involves the computation of the score values as:

SC(A,) = 0.0520, C(4;) = 0.0993, SC(A3) = 0.1263, and SC(A,) =

0.0589

Step 4: In this step, the score values obtained in Step 3 are analyzed. Based on the score

values, the ranking of alternatives is given as:

SC(A3) > SC(A;) > SC(A,) > SC(Ay)

The ranking analysis shows that A; has the greatest value, thus the policy of making
investments in the UAE is the best option, according to the proposed decision-making
method using IVTSFWG operators. Hence, in this case, we obtain the same results by using
IVTAFWA operators as we do by using IVTSFWG operators. However, we will not
necessarily always obtain the same results using different aggregation tools, i.e., the results
obtained using IVTSFWA and IVTSFWG operators may differ. Thus, this type of
information cannot be processed by using the pre-existing aggregation tools because of
their limited structures. Our proposed aggregation operators, on the other hand, can
aggregate such types of information. The other interesting fact is that the information
provided in this problem is similar to human opinion, as it describes the MG, AG, NG, and
the RG. Furthermore, if we used only a single crisp value for each membership grade

instead of intervals, then the result would drastically change, as illustrated in Section 7.1.

7.6. Consequences of the Proposed Work and a Comparative Study
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The aim of this section is to analyze some consequences of our proposed work. We

prove that the previous AOs of IFSs, IVIFSs, PyFSs, IVPyFSs, q-ROFSs, IVq-ROFSs,
PFSs, IVPFSs, SFSs and TSFSs becomes the special cases of the proposed AOs.

Consider the IVTSFWA and IVTSFWG operators, respectively.

IVTSFWA(ly, I, I3 o Iy

m m

"Iﬁh@) - Ja-6n"

_IN j=1

[ m m m m
NANY] a\Wj ’ 1 » 1
6 ] T ||l Ten™ ] Jan™
\_j:l j=1 j=1 j=1

IVTSFWG (I, I, I3 .o Iy)

ﬁm’ﬂw“owﬂm%

]:1 =

- - [ Jo- @)

1. If we use s = s* =s5,i = i% =4, and d* = d* = d, then the WAA and the WGA

operators of TSFSs are obtained and are given as:

TSFWA(, bl - =1{meﬁfmmﬂww

m m n m
TSFWG (b 1y - Ind | | [G5)™ ] ]G)™ |2 = [Ta-@)n”
j=1 j=1 j=1
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2 If we use n = 2, then the WAA and the WGA operators of IVSFSs are obtained and

are given as:

IVSFWA(ly, I, I3 oo )

ﬁ (1-GY)" |1- ﬁ (1-67)

= \J j=1 Ll
Lﬂ(fﬂw’ﬁ@f‘)” ' lﬂl(d’,%)””fﬁ(d';t)”f
j=1 j=1 j=1 o

IVSFWG(Iy, Iy, I3 oo 1)

ﬁ(sﬁ')w]"ﬁ(s}-‘)w" , ﬁ(l})wjfl(l}l)wl |
1- ﬁ 1_(dl) ﬁ (d'u)

]=1 j=1

3. fweusen=2,s =s¢=s5il=i"=i and d* = d* = d, then the WAA and the

WGA operators of SFSs are obtained and are given as:

m
SFWA(L, Iy, Iy o) = 1—ﬂ 1—(;, ﬂ(z,)w’,l—l(d'j )"
j=1 j=1
m m m
wj L \Wi
SFWG(ly, Iy, Iy o Iy) H(sj) J @™ -] [(1- (@)
j=1 j=1 j=1

4. If we use n = 1, then the WAA and the WGA operators of IVPFSs are obtained and

are given as:

IVPFWA(Ly, I, I3 oo L)
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[ 66" Ta-e) ]

j= j=

[ﬁ(i})wj , fl(lju)w!] , lﬁ(d})% ' U(d;t)w,]

j=1

IVPFWG(ly, I, I3 oo Iy)

f[(sz-)“’fﬁ(s;‘)w'l |
-0~

j=

,f](ir)w'].

(1- @) }

H:Js 1":]3

CIfweusen=1,s =st=s,i =i*=1i and d' = d* = d, then the WAA and the
WGA operators of PFSs are obtained. Note that these PEWA operator and PFWG
operators are the same as the one proposed by Garg [50] and Wei [83].

 Ifweuse il = i% = i = 0, then the WAA and the WGA operators of the IVq-ROPFSs
are obtained and are given as:

IVq — ROPFWA(l, I, I3 ... Iy)

e-eme =T la- 6" .[f[(d'})“’f . ﬁ(d’}-‘)w’]

IVq = ROPFWG(ly, Iy, I3 ... Im)

[ﬁ(*)wﬁ(# ] o] Jo- e - o
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7. Ifweuses' =s* =s,il = i* =i =0,andd* = d* = d’ thenthe WAA and the WGA
operators of the newly developed q-ROPFSs are obtained as proposed by Liu and Wang
[85].

8 If we use n = 2 and i! = i* = i = 0, then the WAA and the WGA operators of the
[VPyFSs are obtained. Note that these IVPyFWA and IWPyFWG operators are the
same as those proposed by Rehman et al. [46, 47].

9. fweusen=2,s=s¢t=s,il=i*=i=0and d! = d% = d, then the WAA and
the WGA operators of the PyFSs are obtained. Note that these PyFWA and PyFWG
operators are the same as those proposed by Rahman et al. [44] and Peng and Yang
[45].

(8) If weuse n =1 and il = i% = = 0, then the WAA and the WGA operators of the
IVIFSs are obtained. Note that these [VIFWA and IVIFWG operators are the same as
those proposed by in [35, 37).

©) fweusen=1,5' =s* =5,i' =i*=i=0, and d! = d* = d, then the WAA and
the WGA operators of the IFSs are obtained. Note that these IFWA and IFW operators

are the same as those proposed by Xu [29] and Xu and Yager [30].

Hence, using the proposed definitions of the IVTSFWA and IVTSFWG operators and with

the help of some restrictions, we successfully proposed WAA and WGA operators for [Vg-

ROPFSs, q-ROPFSs, TSFSs, IVSFSs, SFSs, IVPFSs, and PFSs. Furthermore, it is also

shown that the proposed operators are the generalizations of the aggregation tools of PFSs,

PyFSs, IVPyESs, IFSs, and IVIFs.

Now, we discuss the viability of the proposed IVTSF aggregation operators in the problems

of the existing frameworks.

200



Firstly, consider the MADM problem discussed in Chapter 2, Example 2.6.2.2, with three

alternatives and three attributes. The decision matrix is shown in Table 36.

(0.8,0.5,0.4) (0.7,0.4,0.4) (0.3,0.5,0.4)
Pl (0.9,0.2,0.4) (0.6,0.3,0.2) (0.4,0.1,0.7)

FE (0.5,05,0.5) (0.8,0.2,0.3) (0.6,04,0.3)

Table 36 (The decision matrix)
This type of MADM problem can easily be solved by placing st=st=sil=i"=i
and d* = d* = d into the proposed IVTSFWA and IVTSFWG operators.
Now, consider the MADM problem studied by Garg [50], with four alternatives and
four attributes. The decision matrix is shown in Table 37.
Hq H, H; H;
(0.2,0.1,0.6) (0.50.3,0.1) (0.5,0.1,03) (0.4,0.3,0.2)
H (0.1,0.4,04) (0.6,0.3,0.1) (0.50.20.2) (0.2,0.10.7)
FE (0.3,02,02) (0.60.201) (04,0.1,03) (03,0.3, 0.4)

(0.3,0.1,0.6) (0.1,0.2,0.6) (0.1,03,0.5) (0.2,0.3,0.2)

Table 37 (The decision matrix by Garg [50])
This type of MADM problem can easily be solved by placing n = 1, st=st=35i=
i* = i, and d' = d* = d into the proposed IVTSFWA operator.
Similarly, the MADM problems solved by [29-37, 44-5138] can also be solved using

the proposed AOs.
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7.7. Advantages of Proposed Work

In this section, the advantages of the proposed new aggregation tools over the pre-existing
aggregation tools are discussed and further demonstrated with a numerical example. If we
consider MADM problem in Example 7.5, it becomes quite clear that none of the existing
aggregation tools of the previous fuzzy frameworks could solve the data involved in that
problem, thus showing the limitations of the existing AOs.

On the other hand, if we consider an example in the context of the existing fuzzy
frameworks, then such a problem can easily be solved by using the proposed aggregation
tools of the IVTSFSs. For instance, consider a decision matrix of four alternatives and three

attributes in the MADM problem discussed by Garg [98].

o (ohsly (oeda) (o169)
| @sey osery osery
o (0308 (050l (0500l
o (0708 (a0l (ozody

Here, the four alternatives denote four possible policies of investment and our aim is
to find the best policy. Now, this problem can easily be solved using the aggregation
operators of the IVTSFNs by placing n = 2 and it =% =i = 0. The IVTSFWA operator

forn =2 and i' = i* = i = 0, becomes:
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IVTSFWA(L, I, I3 . Iy)

ﬁl—(s, , ﬁl—(s’,‘)

]:1 j=1

m m
[ Jen™.] Jen”
j=1 j=1

The aggregation results are:
A, = ([0.2692,0.4079], [0.3955, 0.5206])
A, = ([0.4586, 0.6408], [0.1995,0.3153])
= ([0.3972,0.5612],[0.2197, 0.3946])
A, = ([0.4910, 0.6024], [0.1565, 0.2736])
Using the score function, we get:
SC(4,) > SC(A,) > SC(A3) > SC(A)

Hence, the score values show that A; is the best policy to be implemented. This result is
well in accordance with the results obtained by Garg [98]. Therefore, the claim that the
IVTSFWA and IVTSFWG operators can deal with data in the form of pre-existing fuzzy

frameworks is proven to be true.
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Chapter 8

A Comparative Study of Several Aspects of Single Valued

Neutrosophic Sets and T-Spherical Fuzzy Sets

In this thesis, we have established several AOs, SMs and CCs and studied their
viability in MADM, pattern recognition, medical diagnosis and clustering. We also
established the comparison of the proposed and previous study and numerically examined
it. TSFS is a generalization of IFS and other fuzzy frameworks so is the SVNS. Keeping
in mind, the broad idea reflected by the thesis title, the goal of this chapter is to establish a
comparative study of TSFSs and SVNSs as both are two widely studied generalizations of
IFSs. Our focus is to examine the frameworks of TSFSs and SVNSs and point out their
limitations (if any) and advantages. We also aim to apply some AOs and SMs to some
problems analyze the results comparatively. Based on the results, we aim to draw some

conclusions about these two fuzzy frameworks.

For convenience, we aim to recall the definitions of TSFS and SVNS and their basic

operations for better understanding.
8.1. Comparison of the Basic Notions

The aim of this section is to discuss the basic definitions of SVNSs and TSFSs and
related terms. We aim to examine both generalizations of the IFSs critically and point out

the weak and strong points.
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The concept of SVNS is developed by Wang et al. [11] after Smarandache [12] proposed
the concept of NS theory. The reason to introduce the notion of SVNS is due to the

limitations of IFSs proposed by Atanassov [5]. The concept of IFS is defined as:

8.1.1. Definition

On a set X, an IFS is of the shape I = {(H, (sGo), d’(u))) :0 < sum(s,d) < 1}. Further,

r(x) = 1 — sum(s, d) represents the hesitancy degree of » € X and the pair (s,d) is

termed as a IFN.

So far, several generalizations of IFSs are proposed known as PyFS, q-ROFS, SVNS, PFS,
SFS and TSFS. There are two main drawbacks in IFS; one, it restricts assigning values to
MG and NG in a certain range as depicted in Figure 1. Two, it described only two aspects
of human opinion i.e. MG and NG and there is no discussion about the AG and RG.
However, it described the hesitancy degree but that is dependent on MG and NG. To
enhance the first drawback of IFS, Yager developed the concept of PyFS [6] and q-ROFS
[8]. To deal with second drawback, Smarandache [12] proposed neutrosophic logic and NS
theory which were further extended to the concept of SVNS proposed by Wang et al. [11].

The concept of SVNS proposed by Wang et al. [11] is defined as:

8.1.2. Definition [17]

On a set X, a SVNS is of the shape I = {(J{, (s(;{), i(x), d'(x))) 0 < sum(s, i, d) < 3}.
Further, the triplet (s, i, d’) is termed as a SVNN.

If we observe the definition, Wang et al. [11] introduced the neutral membership degree

denoted by i left undescribed by Atanassov IFS. Further, in the definition, Wang et al. [11]
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introduced the restriction on MG, neutral MG and NG as 0 < sum(s, i,d) < 3. This
condition, without any doubts, allows us to assign any value to s,i and d' from [0, 1]
interval. This concept of SVNS indeed generalizes the framework of IFS improving both

the drawbacks that exists in IFSs.
However, there arises some questions:

1. What is the significance of using the restriction “0 < sum(s, i,d) < 3”? As in almost
all the fuzzy frameworks the lower and upper limits are 0 and 1.

2. What would be the meaning of a SVNN described as (1,1, 1)? Because generally if
MG increases the other two decreases in any real-life event. For example, if we take
the phenomenon of voting. There is a fixed number of voters, so if the number of “votes
in favor” of someone increases. The number of “votes against” hence decreased in
general but in SVNS, it does not seem so.

3. How could we describe the SVNN expressed as (1,1, 0). Though it is according to
definition but its ambiguous.

4. In real life situations, yes, neutral MG exists so is refusal grade. The NS theory provide
no information about discussing the refusal grade of human opinion. However, it

described the RG in along with AG combined.

In parallel but after few years of SVNSs, Cuong [9] introduced the idea of PFS as another
generalization of IFS. Cuong’s PFS is based on a MG, AG, NG and a RG and is defined

as:

206



8.1.3. Definition [9]

On a set X, a PFS is of the shape | = {(x, (s(x),i(u),d’(%))) 10 < sum(s,i, d) < 1}.
Further, (%) = 1 — sum(s, i, d) represents the RG of » € X and the triplet (s, i, d) is

termed as a PFN.

Cuong’s concept of PFS also described the abstinence and refusal aspect of human opinion
left undescribed by Atanassov’s IFS with a condition 0 < sum(s,i,d) < 1and withaRG
defined as 7(3) = 1 — sum(s, i,d). This concept is also the generalization of IFS and
described the RG as well along with AG. Because, when referring to real-life voting, Cuong
suggested that one may vote in favor, or remain abstain, or vote against but there are some
who do not come to vote at all. Hence, PFS described all the four aspects of human opinion.
Further, in PFS if MG increases, the AG, NG and RG decreases keeping the condition i.e.
0 < sum(s,i,d) < 1 in observation. In other words, we can say that MG, AG, NG and

RG are not independent.

Though, Cuong’s PFS proved to be a more realistic approach but it has a restriction, 0 <
sum(s, i, d) < 1, that keeps us in a certain range for assigning the values to MG, AG and
NG. For example, if a situation is considered where the triplet (s,i,d) has values from
[0,1] such as § = 0.99,i = 0.57 &d = 0.49. In such case, the sum of components i.e.
sum(s, i, d’) exceeds [0, 1]. However, if the power on constraints is raised to n where n €
7Z* then we can assign any value of our choice to 5, i, d in the interval [0, 1]. In the current
example if 1 is taken as 6. Then sum(s®, i®, d'®) = 0.986556 € [0, 1]. The choice of n is
up to decision makers and it may affect the results in aggregation process. We recalled the

definition of TSFS as:
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8.1.4. Definition

For any universal set X, a TSFS is of the form | = {(x, (s, d’)) VreeX } Here s,i and d'
are mappings from X — [0, 1] denoting the MG, AG and NG respectively provided that

for some least ne€ZY, 0<sum (s"(}t), i"(u),d’"(x)) <1 and r(x)=

n\jl —sum (s"(u), i"(}t),d’"(x)) is known as the RD of » in I. The triplet (s,i,d) is
considered as a T-spherical fuzzy number (TSFN).

A TSFS have all the features that a PFS has and the plus point is TSFS has no limitation as
for every triplet (s, i, d’) we have an n such that 0 < sum (5" (), i" (%), d™ ()) < 1. This
means that a TSFS allows the MG, AG and NG to be independent (except the absolute
casesi.e. (1,0,0), (0,1,0), (0,0, 1)). However, the RG of TSFS is still dependent on other

grades.

Now we establish a comparison between TSFS and SVNS by discussing their similarities

and differences as follows.
8.1.5. Similarities
The similarities between SVNS and TSFS are as follows:

1. Both TSFS and SVNS discussed the abstinence of real-life events with an AG.

2. Both TSFS and SVNS generalizes the concept of IFS and can handle the problem which
IFS fails to handle.

3. In both frameworks, we the MG, AG, NG are independent of each other and can have
any value from [0, 1]. However, in TSFSs, this independency is not possible in absolute

cases.
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8.1.6. Differences

The differences of SVNS and TSFS are as follows:

1. SVNS discussed MG, AG and NG but not RG as it combined RG with AG while TSFS
discussed the RG separately.

2. The definition of SVNS leads to some SVNNs which has no meaning i.e. it allows the
SVNNs like (1,1, 1) and (1, 1, 0) while TSFS has no such cases.

3. The restriction of SVNS i.e. “0 < sum(s,i,d) < 3” allows the MG, AG and NG
independent by enlarging the restriction from 1 to 3. However TSFS also ensure
independency of MG, AG, NG by introducing a parameter n keeping the range of

restriction to 1.

The following are two remarks show the relationship of TSFNs and SVNSs.

8.1.7. Remark

In general, every SVNN can be considered as a TSFN.

Proof: This is true as for every SVNN (s,i,d) we can have an n such that 0 <

sum(s™, i",d™) < 1.

Some absolute cases such as (1,1,1), (1,1,0), (0,1,1), (1,0, 1) cannot be considered as

TSFNs.

8.1.8. Remark

Every TSFN can be considered as a SVNN.
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In the next section, we apply the AOs and SMs of both TSFS and SVNS to a common

problem to analyze the results.
8.2. Comparative Study in Multi-Attribute Decision Making

The aim of this section is to investigate a MADM problem using AOs of TSFSs and SVNSs
to analyze the results. For this purpose, we take a decision matrix from Example 5.5.2 with
4 alternatives say A;, A,, A; and A, and 4 attributes say Hy, Hp, H3 and H,. The weight

vector for this problem is w = (0.2,0.1,0.3, 0.4)t.

We already solved this problem using TSFWA aggregation operator in Section 5.5 and the

ranking results are provided in Table 38.

Score values using TSFWA operator

s$C(Ay) 0.10817
SC(Az) 0.185307
S$C(A3) 0.140504
SC(A,) 0.233403

Table 38 (Score values using TSFWA operator)

Now we solve this problem using WAA operators of SVNS proposed by Sahin [089]. For

convenience, the decision matrix discussed in Example 5.5.2 is provided again in Table 39.
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(0.53,0.33,0.38) (0.65,0.24,0.74) (0.61,0.39,045) (0.55,0.88, 0.29)
FM (0.40,0.71,0.15) (0.48,0.46,0.67) (0.69,0.46,0.29) (0.61,0.73,0.43)
(0.33,0.53,0.79) (0.71,0.49,0.16) (0.53,0.39,0.84) (0.50,0.90,0.01)

(0.64,0.38,0.73)  (0.33,0.64,0.76)  (0.27,0.89,0.07) (0.74,0.36,0.19)

Table 39 (Decision Matrix)

We applied the following WAA operator of SVNSs to the decision matrix given in Table

39 and the aggregated results for each alternative are listed as follows:
A, = (0.548023, 0.49755, 0.383533)
A, = (0.602926,0.603509, 0.323543)
Az = (0.521966,0.592777, 0.11946)
A, = (0.623935,0.505723, 0.211727)

The score values of alternatives based on score value of SVNNs proposed by Sahin [089]

are given in Table 40:

Score values using TSFWA operator

SC(A,) 0.083624
SC(Ay) —0.0097
SC(A3) 0.077252
SC(Ay) 0.056143

Table 40 (Score values using SVNWA operator)

If we compare the score values of alternatives using TSFWA operators and SVNWA

operator, it is observed that the results are quite different. The reason behind this is that in
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SVNS, the RG is totally ignored while computing the scores. In fact, there is no concept of
RG in SVNSs. That is the reason that the AOs of both TSFSs and SVNSs produce different
results from same data. The geometrical comparison of the ranking results of the

alternatives is given in Figure 16.

Comparison of Score Values Using TSFWA operator

and SVNWA operator

0.25

0.2
0.15

0.1

0 ma—
Al A2 A3 A4

-0.05

W Using TSFWA operator ~ mUsing SVNWA operator

Figure 16 (Comparison of score values)

Figure 16 clearly indicate that TSF AOs yields A, as best alternative while AOs of SVNNs
yields A, as best alternative. This huge difference is only because TSFES allows you to

consider RG while SVNS does not.
8.3. Comparative Study in Pattern Recognition

The aim of this section is to investigate a pattern recognition problem using CCs of TSFSs
and SVNSs. To serve the purpose, we consider Example 3.5.1.1 from Section 3.5.1 and

solve it using the CCs of SVNSs proposed by Ye [99]. For convenience, we consider the
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