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Preface

In recent years, peristaltic transport mechanism has received a considerable attention
due to its extensive relevance to medical science and engineering. The peristaltic
transport is involved in the blood flow in capillaries, arteries and venules,
Spermatozoa transport, swallowing of food through the esophagus, transportation of
lymph from lymphatic vessels and movement of the chyme in the gastrointestinal
tract. Many modern bio-medical devices and chemical pumps have been designed by
exploiting the peristaltic mechanism. Examples include heart-lung machines, diabetic
pumps, waste migration control pumps, roller and finger pumps and pharmacological
drug delivery systems. These applications and new emerging ones have mobilized
significant activity in theoretical studies of peristaltic fluid dynamics. In the most of
physiological ducts such as esophagus, gastrointestinal tract, lymphatic vessels and
small blood vessels, it is observed that the wall pumping fluid is coated with a fluid of
different characteristics than the fluid being pumped out. In order to properly
recognize the influence of coated fluid on transport properties, the concept of the
single-layered transport phenomenon has been extended to two-layered and three-
layered phenomena by considering different viscosities layered in the flow domain.
Several mathematical models of the peristaltic mechanism have been employed in the
literature to recognize the proper effects different viscosity layers in the flow domain.
It is important to mention that studies carried out for multi-layered peristaltic transport
are valid under the constraints of “the long wavelength and low Reynolds number”.
An important aspect highlighted in these studies is that for prescribed wall movement,
a larger viscosity fluid in the peripheral layer dramatically increases the pumped
volume flow rate compared with the single-fluid pump for a fixed pressure head.
Thus, the presence of a greater viscosity peripheral layer could lead to amplification
in the peristaltic flow. This observation gives further motivation to identify alternative
means that could results in the augmentation of peristaltic flow. One such mechanism
is the electro-osmotic mechanism. Several researchers developed theoretical models
of electro-osmotic flows based on Newtonian and non-Newtonian constitutive
equations that are relevant to physiological mechanisms and design of accurate bio-
devices. In the recent years, electro-osmotic and peristaltic phenomena have been
exploited in industrial technologies, bio-medical engineering, toxic waste conveyance

in chemical development engineering and biological micro-electromechanical



devices. Continuous improvements in designs require gradually more refined models
for electro-osmotic peristaltic transports, employing complex working fluids (.non-
Newtonian and nano-technological). The studies available on transport processes due
to peristalsis and electro-osmotic phenomena analyze different flow features such as
velocity profile, pressure gradient, trapping and reflux phenomena. However, such
studies are limited in number and do not include important aspects arising due to the
inclusion of complex non-Newtonian fluid models. Motivated by the these facts, the
aim of present thesis is to study the flow generated due to combined influence of both
electro-osmotic and peristaltic activity for complex non-Newtonian fluids through
different geometries. The thesis is composed of seven chapters. A brief description of

each chapter is given below:

Chapter 1 is the introductory chapter in which a detail explanations of peristaltic and
electro-osmotic phenomena are provided. Comprehensive review of the available

literature on peristaltic and electro-osmotic flows is also included at the end.

Chapter 2 presents the theoretical study of electro-osmotic peristaltic flow of third
order fluid in an asymmetric microchannel. The governing equations are simplified by
using the approximations of “long wavelength and low Reynolds number”.
Mathematica 8.1 is used to solve these equations numerically. The influences of the
emerging parameters are thoroughly studied. It is noted that the trapping is completely
controlled by proper tuning of embedded parameters. The results of this chapter are

submitted for publication.

Chapter 3 explores analytically the dynamics of two-fluid electro-osmotic peristaltic
flow through a cylindrical tube. The rheology of the fluid in the central core (inner
region or core region) is captured through the Ellis equation. The region adjacent to
the wall (outer region or peripheral region) is occupied by a Newtonian fluid. The
equations governing the flow in each region are modeled by using the appropriate
suppositions of “long wavelength and low Reynolds number”. The closed form
expressions for stream function corresponding to each region are obtained and utilized
to determine the axial pressure gradient and the interface between the inner and the
outer regions. The pumping characteristics, trapping and reflux phenomena are
investigated in detail with reference to the Ellis model parameters and the electro-

kinetic slip velocity. The present model also generalizes earlier studies from the



literature which can be retrieved as special cases. The results of this chapter are

published in The European Physical Journal Plus (2019) 134: 141

Chapter 4 investigates the effects of peripheral layer and electro-osmotic force for
the peristaltic flow of Phan-Thien-Tanner fluid. The core (inner) layer fluid satisfies
the constitutive equation of PTT fluid model and peripheral (outer) layer is
characterized as a Newtonian fluid. The governing equations in each region are
simplified by invoking the constraints of “long wavelength and low Reynolds
number”. Closed form expressions for velocity and stream function are derived and
then employed to investigate the pressure variations, trapping, interface region and
reflux for a variety of the involved parameters. The influences of the emerging
parameters are thoroughly studied. It is noted that the trapping and reflux are
completely controlled by proper tuning the fluid model parameters and electro-
osmotic slip velocity. The results of this chapter are published Rheologica Acta
(2019) 58 603-618.

Chapter 5 explores two-dimensional peristaltic motion of two-fluids in a flexible
tube under the influence of electro-osmotic force. The flow domain is composed of
two regions, namely, the core region and the peripheral region. The Newtonian and
the FENE-P models are used to describe the rheology of fluids in the peripheral and
the core regions, respectively. Governing flow equations corresponding to each region
are established under the approximation of “long wavelength and low-Reynolds
number”. The interface between the two regions is computed numerically by
employing a system of non-linear algebraic equations. Influence of relevant
controlling parameters on pressure gradient, interface, trapping and reflux are
highlighted graphically and explained in detail. Special, attention is given to estimate
the influences of viscoelastic parameter of the core region fluid in the presence of
electro-osmotic environment. Our investigation indicates an augmentation in the
pressure drop at zero volumetric flow rate with growing the viscoelastic and occlusion
parameters. Moreover, trapping, reflux and pumping efficiency are found to increase
with raising the electro-osmotic and viscoelastic parameters. The results of this

chapter are published Physics of Fluid 32 023105 (2020).

Chapter 6 aims to analyze peristaltic movement of Rabinowitsch fluid in a

cylindrical tube under the effect of external electric field. We highlight the



characteristics of the two-layered fluid by considering the Newtonian fluid in the
peripheral layer while the non-Newtonian (Rabinowitsch) fluid in the core layer.
Some physical restrictions such as “long wavelength and low Reynolds number” have
been adopted to simplify the governing flow equations in each region. The stream
function expression for peripheral and core are obtained. Numerical computations are
carried out using Mathematica 8.1. This study is focused on determining the
phenomena of trapping, pressure rise, velocity, pumping efficiency and reflux. The
computational results have also been interpreted by graphical visualization along with

a detailed discussion. The results of this chapter are submitted for publication.

Chapter 7 investigates three-layered flow of power-law fluid driven by peristaltic
activity and electro-osmotic phenomenon. The flow problem is modeled by invoking
“long wavelength and low Reynolds number constraints”. Closed form expressions of
stream function are obtained for each region. The interfaces between core and
intermediate and intermediate and peripheral regions are computed by solving a
system of nonlinear equations numerically. Pressure rise, mechanical efficiency and
trapping phenomena are also evaluated by varying the involved parameters. The
present study generalizes many of the available studies on multi-phase peristaltic
transport. The results of this chapter are published in The European Physical
Journal Plus (2020) 135:348.
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E,
u,w

u,v

Nomenclature

external electric field
velocity components in tube

velocity components in channel

uc, w, velocity components in core region

uy, wy velocity components in peripheral region

S
A

H1
Ha
1
2

Re
1-k
¢DC

shear stress

wavelength

viscosity in the core region
viscosity in the peripheral region
electric potential, at lower wall of the channel
electric potential, at upper wall of the channel
viscosity ratio between two regions
linear function for PTT fluid

linear function for FENE-P fluid
extensibility parameter of the model
physical parameter of the FENE-P fluid
Debye length

time averaged volumetric flow rate
pressure gradient at z = 0

interface of the two fluid

boundary of the tube wall

flow rate in outer boundary

flow rate in inner boundary
dielectric constant in inner region
dielectric constant in outer region
Deborah number

relaxation time

velocity of the tube wall

velocity of the channel wall
Reynolds number

peripheral thickness at z = 0

occlusion parameter
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P* stream function in fixed frame

Y stream function in wave frame

Pcv  concentration total charge density

o characteristics radius of the tube

) small parameter. (It is the ratio of the characteristics radial length to the

characteristics axial length scale.)

Pe total ionic charge density

e elementary charge

z charge valance

n* number density of cations

n- number density of anions

£ permittivity of the fluid

T temperature

k, Boltzmann constant

D, diffusivity of the chemical species
ng ionic concentration at the bulk

AP, pressure rise per wavelength at (Q=0)
Subscripts:
c core region

N peripheral region
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Chapter 1

Introduction

In this chapter, we highlight the fundamental concepts of the fluid dynamics such as
Newtonian fluids, non-Newtonian fluids, peristalsis and electro-osmotic phenomena.
The fundamental laws based on conservation of mass and momentum are briefly
discussed. The dimensionless numbers related to the research topic are defined. A

brief review of available literature on the topic under consideration is also provided.

1.1 Brief introduction of peristaltic and electro-osmotic flow
phenomena

1.1.1 Peristaltic flow
The analysis of peristaltic flow has established significant attention in the last four
decades because of its several biological and industrial applications. Peristaltic flow is
a form of fluid flow from a region of lower to higher pressure due to progressive
waves propagating along the length of the flexible confinement. Mechanism of
peristaltic wave is naturally generated resulting in the motion of the physiological
fluid from one part of the body to the other. This phenomenon is observed in
esophagus, the ductus efferentes of male reproductive tract Batra (1974) and also in
small blood vessels, small and large intestines Macagno and Christensen (1980), bile
duct, urine transport through ureter Roshani et al. (1999). The said phenomenon has
been also utilized in the design of heart-lung machines Taber et al. (2006),
pharmacological drug delivery system Tripathi and Beg (2014), dialysis and diabetes
pumps Jackman et al. (1980) and waste migration control pump. In general the most
of physiological ducts such as esophagus, gastrointestinal tract Pandey et al. (2015),
embryo transport Elshehawey and Gharseldien (2004), and blood transport in the
small vessels Tripathi (2012), it is observed that the structure of the wall pumping the
fluid is coated with a fluid of different characteristics than the fluid being pumped out.
In order to properly recognize the influence of coated fluid on transport properties, the
concept of the single-layered transport phenomenon should be extended to two-

layered and three-layered phenomena by considering different viscosities layered in

15



the flow domain. Several theoretical mathematical models of the peristaltic
mechanism have been employed in the literature to recognize the proper effects of the

two-layered and three-layered viscosities.
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Fig. 1.1: Peristalsis phenomenon
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Fig. 1.2: Peristalsis flow in the esophagus in different layers
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Fig. 1.3: Blood flow in the capillary with different layers

1.1.2 Electro-osmotic flow

Electro-osmotic transport flow is a process in which motion in an ionized solution
(electrolyte) confined in a micro-channel is generated by the application of applied
electric potential. It has many emerging applications in era of bio-microfluidics. In
this regard, first attempt was made by F. F. Reuss in (1809), to study the electro-
kinetic flow phenomena he considered “pumping water through a porous clay plug by
positioning electrodes on opposite sides of the plug and applying electrical potential,

observing what we call electro-osmosis today”.  Basically, the electro-kinetic
phenomena is a group of influence that occur either in a solution having particles or
fluid filled systems e.g., porous structures or capillaries. The common phenomena in
all these effects are the electrical double layer (EDL) that arises due to the solid/fluid
interaction (see Fig. (1.5)). The negative charged surface attracts opposite ions in the
ionized solution, developing a layer of positively charged fluid near the wall and at
the same time repelling the counter-ions. “The thin layer of immobile counter-ions
covering the inner side of the wall of the surface is known as the Stern layer”. A
thicker layer of moving counter-ions, known as a diffuse layer, is formed next to the
Stern layer. The combination of the “Stern layer and the thicker layer is known as the
electric double layer (EDL)”. It is hardly, to define the exact position of the EDL
where the EDL ends, and bulk fluid starts. The typical thickness of the EDL is known

18



as Debye length (1p), is defined as the “distanced outside the Stern plane at which the
potential has changed by a factor 1/e (~0.368)”. The potential at EDL is called the
“zeta-potential” (§). The electro-kinetic body force emerges due to the difference in
the amount of charges from cations and anions by connecting the system to an
external applied electric field. The capability to set the diffuse layer fluid in motion
with an applied external electric field, which in turn sets the bulk fluid in movement
(see Fig. (1.4)) is what makes electro-osmotic pumping possible. Similarly if fluid is
forced through a capillary, with an electric double layer at the fluid/solid interface, a
current is moved through the capillary and a “streaming potential” can be perceived
between the capillary ends. The resulting multi-physical fluid dynamic problem
encompasses the computation of the flow field developed by the combined effects of

the wall movement and the electro-kinetic body force

Fig. 1.4: Electroosmotic flow

1.1.3 Electric double layer
The negative charged surface attracts opposite ions in the ionized solution, developing
a layer of positively charged fluid near the wall and at the same time repelling the
counter-ions which shown in Fig. (1.5). “The thin layer of immobile counter-ions
covering the inner side of the wall is known as the Stern layer”. A thicker layer of
moving counter-ions, known as a diffuse layer, is formed next to the Stern layer. The
potential at EDL is called the “zeta-potential”. The combination of the “Stern layer
and the thicker layer is known as the electric double layer (EDL)”. When the system
is connects to the external electrical potential, electro-kinetic body force emerges. The

resulting multi-physical fluid dynamic problem encompasses the computation of the
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flow field developed by the combined effects of the wall movement and the electro-

kinetic body force.
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Fig. 1.5: Electric double layer

1.2 Some basic definitions related to peristaltic transport
1.2.1 Fluid dynamics

Fluid dynamics is the branch of “applied science” that describes the flow of fluids
(liquid and gasses). Fluid is a substance that continually deform under an external
force or shear stress. There are two types of the external forces namely; body force
and surface force. The forces due to the electric field, magnetic field and gravity are
the examples of body forces. The surface force is the force that acts across the
external or internal surface element of the material object. Surface force can be
divided into two perpendicular components as normal forces and tangential forces or
shear forces. In general, the fluid behavior remains same under the action of these
forces but at micro-level the fluid properties like, viscosity and density experience
considerable changes. The flow of fluid in channels or tubes is due to various agents.
These include pressure gradient, movement of the channel or tube wall, gravitational,

electromagnetic forces etc.
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1.2.2 Newtonian fluids
The most common fluids such as water, air and gasoline are Newtonian under normal
condition. The Newtonian fluids follow the Newton’s law of viscosity. Sir Issac
Newton (1642 - 1726) was the first one who explored the flow behavior of fluids
through a simple linear relation between shear stress and shear rate. This relationship
is known as Newton's Law of Viscosity. The only parameter required to analyze such
fluid models is the slope of the shear stress—shear rate relationship which is called
viscosity. The viscosity of Newtonian fluids will remain a constant no matter how fast
they are forced to flow through a duct, that is, the viscosity is independent of the shear

rate.

1.2.3 Non-Newtonian fluids
A fluid which does not obey the Newton's law of viscosity is known as non-
Newtonian fluid. In reality most of the fluids are non-Newtonian and the viscosity is
dependent on the shear rate (shear thickening or thinning) or the deformation history
(thixotropic). The non-Newtonian fluids display a non-linear relation between shear
stress and shear rate. The viscosity of the shear-thinning fluids decreases with shear
stress like, Ketchup, Quicksand, whole blood and many commercial house paints are
the examples of the shear-thinning fluids. The viscosity of the shear-thickening fluids
increases with shear stress and the synovial fluid that lubricates our joints and
Cornstarch slurries are shear-thickening fluids. Fluids whose viscosities change with
respect to time can also be categorized as non-Newtonian. Fluids with a viscosity that
decreases over time are called thixotropic, whereas those whose viscosity increases

over time are called rheopectic.
1.2.4 Volumetric flow rate

The volumetric flow rate (or volume flow rate) of a system is measure of the volume

of fluid passing a point in the system per unit time.
Mathematically it is given by
Q=Av. (1.1)

Where the Q represent the volumetric flow rate, A be the cross sectional area and v

be the average flow velocity.
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1.2.5 Streamlines

A streamline is a curve drawn in the fluid such that tangent to it at every point is in
the direction of fluid velocity at that point at the instant considered. Basically the
streamlines show the path of imaginary particles suspended in it and transported along
it. The streamlines in the flow can be visualized by considering the movement of a

small marked element of the fluid.

1.2.6 Bolus
Trapping corresponds to the formation of eddying regions in the flow domain. Such
regions enclose a volume of fluid which is usually known bolus in the literature .The

bolus is transported along the tube via the peristaltic activity with the speed of wave.
1.2.7 Trapping

Trapping corresponds to the flow situation when streamline splits and encloses a fluid
bolus which is translated with the wave speed along the peristaltic wave. In this
phenomenon, a blockage of the flow along the central line appears due to the presence

of boluses on either side of the central line.

1.3 Dimensionless numbers

The important dimensionless numbers relating to the research topic are defined as

1.3.1 Reynolds number
The Reynolds number is the ratio of inertial forces to viscous forces and usually

denoted by Re. Mathematically it is written by
Re = —, (1.2)

where v is the flow velocity, L is the length of duct and u represents the dynamic
viscosity of the fluid. It is an appropriate parameter to predict whether the flow
condition will be laminar or turbulent. It can be interpreted that when the viscous
forces are dominant (slow flow, low Reynolds number) they are appropriate enough
to keep all the fluid particles in line, then the flow is laminar. Even very low Reynolds
number specifies viscous creeping movement, where inertia influence are negligible.
When the inertial forces dominate over the viscous forces (when the fluid is flowing

faster and Re is larger) then the flow is turbulent.
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1.3.2 Wave number
The wave number refers to the ratio of the radius (width) of the tube (channel) to the
wavelength of the wave propagating along the tube (channel) wall. Usually it is

denoted by Greek symbol §. Mathematically, it is given as
L
§=1, (1.3)
where L denotes the characteristic length and A is the wavelength.

1.3.3 Amplitude ratio
It is ratio of amplitude of the peristaltic wave to the radius (width) of the tube

(channel). It is usually denoted by ¢.

1.3.4 Weissenberg number
The Weissenberg number is a dimensionless quantity used to describe the viscoelastic
flows. It is a ratio of the elastic forces to the viscous forces. Basically, it compares the
elastic forces to the viscous forces. It is usually define by the relation of stress
relaxation time of the fluid and a specific process time. Weissenberg number, denoted

by Wi or We, is defined as

We = elastic forces (1.4)

viscous forces

The Weissenberg number shows the degree of orientation produced by the
deformation, and is suitable to investigate flows with a constant stretch history, such

as simple shear.
1.4 Governing equations for fluid motion

To study the physical behavior of fluid flow features such as: velocity profile,
pressure gradient, streamline topology, efficiency and reflux, etc. We must have to
use some fundamental mathematical relations including law of conservation of mass,
law of conservation of momentum and law of conservation of energy. Basically, these
fundamental laws provide the relations for the rate of change of mass, momentum and

energy.
Now we discuss the governing equations as:

1.4.1 Law of conservation of mass (continuity equation)

According to law conservation of mass, the mass of enclosed system always remains
constant with passage of time, unless mass is added or removed from the system.
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The mathematical form of law of conservation of mass is given by
2+ v.(pV) =0, (1.5)
is known as equation of continuity. It relates the density and velocity of the fluid. For
incompressible flow it take the following form
vV.v=0. (1.6)
1.4.2 Law of conservation of momentum (momentum equation)

The mathematical form of law of conservation of momentum is define as
av
pE=—Vp+V.t+pF, a.7

where p is the pressure, T be the extra stress tensor defined differently for different

fluid models and F represents the body force vector.

1.5 Literature survey

In recent years, electro-kinetically modulated peristaltic transport mechanism has
received a considerable attention due to its extensive relevance to medical science and
engineering. The peristaltic transport is involved in the blood flow in capillaries,
arteries and venules, spermatozoa transport, swallowing of food through the
esophagus, transportation of lymph from lymphatic vessels and movement of the
chyme in the gastrointestinal tract. In general the most of physiological ducts such as
esophagus, gastrointestinal tract, embryo transport, and blood transport in the smali
vessels, it is observed that the structure of the wall pumping the fluid is coated with a
fluid of different characteristics than the fluid being pumped out. In order to properly
recognize the influence of coated fluid on transport properties, the concept of the
single-layered transport phenomenon should be extended to two-layered and three-
layered phenomena by considering different viscosities layered in the flow domain.
Several theoretical mathematical models of the peristaltic mechanism have been
employed in the literature to recognize the proper effects of the single-layered, two-
layered and three-layered viscosities. Many modern bio-medical devices and chemical
pumps have been designed by exploiting the peristaltic mechanism. Examples include
heart-lung machines, diabetic pumps, waste migration control pumps, roller and
finger pumps and pharmacological drug delivery systems. These applications and new

emerging ones have mobilized significant activity in theoretical studies of peristaltic
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fluid dynamics. In the beginning all researchers were focusing on the single layered
analysis. Latham (1966) was the first one who introduced the idea of peristaltic flow
phenomenon. The brief review of literature on peristaltic and electro-osmotic

transport of Newtonian and non-Newtonian fluids is given below.

1.5.1 Peristaltic transport of Newtonian and non-Newtonian fluids

In the beginning, Newtonian fluid models were developed to explore the peristaltic
flow characteristic. These earlier research on peristalsis were restrained to study the
urine transport through ureter (1964). Shapiro (1967) discussed peristaltic transport of
a two-dimensional model and developed a closed form solution under small wave
number and negligible inertial effects. Weinberg (1970) and Shapiro and Latham
(1966) provided a comparison between the experimental and theoretical results. On
the later stage a theoretical model, developed by Shapiro et al. (1969) and Fung and
Yih (1968) approximated the actual situation as the flow in a flexible tube with a
sinusoidally deformed boundary. They simplified the governing equations under
constrains of creeping flow and long wavelength. The pumping, trapping and reflux
phenomena were discussed in detail. Later studies on this topic can be considered as
the extensions of the work of Shapiro et al. Barton and Raynor (1968) suggested a
model of intestinal transport of peristaltic flow circular tube under the constrain of
long wavelength. Raju and Devanathan (1972) discussed the peristaltic transport of a
power law fluid in a circular tube, with a sinusoidal wave of small amplitude
travelling down along the length of the channel wall. Bohme and Friedrich (1983)
explored the peristaltic phenomenon for an incompressible linear viscoelastic fluid by
taking general second order integral constitutive equation. They discussed the
pumping efficiency and the pressure discharge characteristics of the peristaltic pump.
Peristaltic transport of second grade fluid in circular tube and channel geometry was
investigated by Siddiqui et al. (1991) and Siddiqui and Schwarz (1994).

Several important non-Newtonian effects were investigated in these extensions. For
example, non-Newtonian fluid characteristics (rheology) were analyzed by Provost
and Schwarz (1994), Wang et al. (2008), Rao and Mishra(2004), Hayat et al. (2008)
and Hayat et al. ( 2007), Wang et al. (2004), Wang et al. (2011), Wang et al. (2011),
inertial and streamline curvature effects were discussed by Jaffrin (1973), Rao and
Mishra (2004) and Usha and Rao (2000), heat and mass transfer effects by Hayat et
al. (2016), Misra et al. (2018) and Ali et al. (2010), conduit wall elastic effects by
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Takagi and Balmforth (2011a, 2011b), wall curvature effects by Ali et al. (2010,
2011), Ali et al. (2015a), Ali et al. (2016) and Tanveer et al. (2017) and wave profile
effects by Hayat et al. (2006) and Dobrolyubovn et al. (2002).

1.5.2 Peristaltic transport of two-layered fluids
Most of the theoretical analyses on peristaltic motion are carried out for a single layer
fluid. However, in many physiological systems this assumption may not hold. For
instance, the fluids flowing through the core region of the small intestine, esophagus,
gastrointestinal tract, small blood vessels and cervical ducts are surrounded by a thin
layer of another fluid of different viscosity. Therefore, in such ducts the flow must be
considered as a two-phase flow. In order to properly recognize the influence of coated
fluid on transport properties, the concept of the single-layered transport phenomenon
should be extended to two-layered and three-layered phenomena by considering
different viscosities layered in the flow domain. Several theoretical mathematical
models of the peristaltic mechanism have been employed in the literature to recognize
the proper effects of the single-layered, two-layered and three-layered viscosities. The
first study in this direction was initiated by Shukla et al. (1980) in symmetric ducts for
a specified interface shape between the peripheral and the core regions. Brasseur et al.
(1987) revisited the same problem for the channel geometry when interface is
unknown a priori and provided a detailed discussion on trapping, reflux and interface
shape. Later attempts on the two-fluid peristaltic flows were made by Rao and Usha
(1995) who examined the pumping of two-immiscible Newtonians fluids in circular
tube geometry and emphasized the trapping under co-pumping conditions and the
detachments of the trapped bolus from the centerline. The simplified model of Shukla
et al. (1980) was also extended by Srivastava and Saxena (1995) by taking the Casson
fluid in the center region of a cylindrical tube. Misra and Pandy (1999) followed the
approach of Brasseur et al. (1987) and presented the analytical results for peristaltic
flow of power-law fluid in a channel with a peripheral layer. The effects of porous
medium in the model of Brasseur et al. (1987) were incorporated by Mishra and Rao
(2005). Vajrarelu et al. (2006) utilized the Herschel-Bulkley constitutive equation to
characterize the fluid in the central region and highlighted the influence of yields
stress in peristaltic movement of two immiscible fluids through a channel. The
analysis of Usha and Rao (1995) was extended by Vajravelu et al. (2009) to the flow

of Casson fluid in the core region and a viscous fluid in the peripheral region in a tube
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with permeable wall. Peristaltic flow of Bigham fluid in contact with viscous fluid
was analyzed by Narahari and Sreendh (2010) and Prabakara et al. (2013). More
recently, Kavitha et al. (2017) investigated the peristaltic flow of Jeffery fluid in an
inclined channel with peripheral layer and reported the variations in the shape of

interface with respect to the Jeffery parameter.

1.5.3 Peristaltic transport of multi-layered fluids
The idea of peristaltic transport of two-layered fluid system has also been extended to
three-layered fluid system. In this context, Elshehawey and Gharseldien (2004)
developed a theoretical model of three-layered peristaltic transport in a channel with
variable viscosity. The resemblance of this flow situation is to the embryo transport
mechanism where the fluid can be divided in three regions; egg and the fluid close to
it occupies core region, intermediate region is filled with culture fluid and the outer
peripheral layer comprises of intrauterine fluid. Tripathi (2012) studied three-layered
blood flow in cylindrical tube geometry by assuming that the RBC (red blood cell) in
the central (core) region, WBC (white blood cell) in the intermediate region and the
plasma in the outer (peripheral) region. Later, Pandey et al. (2015a, 2015b)
investigated the peristaltic transport of three-layered power-law fluid in both channel
and tube geometry and developed its relevance with the intestinal flow in the
gastrointestinal tract. In the gastrointestinal tract the chyme is basically a partially-
digested food mixed with intestinal secrants and is usually characterized as a non-
Newtonian fluid. The rheological character of chyme is much closer to the behavior of
the power-law fluid. In a small intestine the mucous layer behave as a peripheral layer
and plays the role of a lubricant which protect the inner part of the intestine from the
raw material of the chyme and secrets enzymes to help digestion. In this way, the flow

inside the small intestine may be treated as a two-layered peristaltic flow.

1.5.4 Electro-osmotic transport of Newtonian and non-Newtonian fluids
It is important to mention that all the studies mentioned above are valid under the
constraints of the long wavelength and low Reynolds number. An important aspect
highlighted in these studies is that for prescribed wall movement, a larger viscosity
fluid in the peripheral layer dramatically increases the pumped volume flow rate
compared with the single-fluid pump for a fixed pressure head. Thus, the presence of

a greater viscosity peripheral layer could lead to amplification in the peristaltic flow.
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This observation gives further motivation to identify alternative means that could
results in the augmentation of peristaltic flow.

In all the above cited, literature the flow is solely driven by peristaltic waves as there
is not any other agent of flow like, electro-osmosis, electro-phrosis etc. The electro-
osmosis is a process in which the movement of the fluid in any conduit (capillary
tube, microchannel) is produced under the effect of an applied external potential. In
this mechanism, the solid surface remains stationary and fluid moves due the
influence of electric field. This process plays a vital role in the chemical separation
technique. The electro-kinetic phenomenon has been subsequently used in improving
various devices in medicine (2005) and other field of technology (1994). Several
researchers developed theoretical models of electro-osmotic flows based on
Newtonian and non-Newtonian constitutive equations that are relevant to
physiological mechanisms and design of accurate bio-devices. Recent studies
regarding electro-osmotic transports of Newtonian fluids in micro-channels and
capillaries have been carried out by Haywood et al. (2014), Herr et al. (2000), Kang et
al. (2002) and Yang et al. (2001). In the realm of non-Newtonian electro-osmotic
flows, the following studies are worth mentioning. Ng (2013) studied the electro-
osmotic flow of Casson fluid in a micro-channel. Ng and Qi (2014) investigated the
electro-osmotic flow of power-law fluid in a non-uniform micro-channel. Si and Jian
(2015) analyzed the flow phenomena of Jeffery fluid via electro-osmotic mechanism
in a corrugated microchannel. Ghosh and Chakraborty (2016) demonstrated the
electro-osmotic flow over a non-homogenous charged surface in the presence of non-
electrostatic ion-ion interactions. Jimenez et al. (2016) examined the flow of Maxwell
fluid in an electro-osmotic environment through a rectangular microfluidic channel.
Lei et al. (2017) provided an analysis of electro-osmotic flow over a slightly bumpy
plate. Afonso et al. (2009) analytically studied combined influence of electro-kinetic
force and pressure gradient on flow through a microchannel by invoking the Debye-
Huckel approximation. Zhao and Yang (2013) described the electro-kinetic transport
on nano-scale. They developed a mathematical model to study the electro-osmotic
effects on flow of power-law fluid in a micro-channel. Kou and Dejam (2019) studied
the electro-osmotic and pressure driven flow in a channel surrounded by a permeable
porous medium. Gailwad et al. (2016) developed a model to study the electro-osmotic
and pressure driven movement of immiscible binary system with a layer of non-

conducting fluid under interfacial slip. They also studied the slip driven micro-
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pumping of binary system with a layer of non-conducting fluid in the presence of
electric double layer mechanism and applied pressure gradient (2017). On the later
stage, Zhao et al. (2013) examined key properties of non-steady flow of Oldroyd-B
fluid in a capillary under the effect of electro-kinetic force. Afonso et al. (2013)
analytically tackled the two-fluid electro-kinetic flow of viscoelastic liquid in a
cylindrical tube. Ferras et al. (2014) probed electro-kinetic effects in annular flow of
viscoelastic fluid and provided both numerical and analytical illustration of the
solution of the problem. Ferras et al. (2016) made another attempt to investigate the
electro-osmotic and pressure driven movement in micro-channel. They provided both
analytical and semi-analytical solution of the flow problem. Kaushik and Chakraborty
(2017) developed a theoretical model to analysis the electro-osmotic transport of
Oldroyd-B fluid in a rectangular micro-channel with symmetric and asymmetric wall
zeta potentials. It is important to mention that all the above mentioned studies were
carried out without considering the interfacial transport and contact line dynamics
phenomena. The two-fluid transport phenomena with interfacial transport and contact
line dynamics of non-Newtonian fluids is a well-established area and interesting
studies in this regard are available in the literature Yue and Feng (2012), Yue et al.
(2006) and Weidner and Schwartz (1994).

Park and Lee (2008) investigated the electro-osmotic flow of Phan-Thien and Tannr
in a rectangular duct under the influence of external potential and pressure gradient.
They also obtain the numerical solution by using the finite volume technique. Berli
and Olivares (2008) developed a theoretical model of electro-osmotic transport of
power-law fluid in a cylindrical microchannel. Zhao et al. (2008) explored the electro-
osmotic flow of power-law fluid in a silt channel. They also obtain the exact solution
of the velocity distribution. Siddiqui and Lakhatia (2009) developed a theoretical
model of electro-osmotic flow of micropolar fluid in uniform rectangular
microchannel under the effect of external electric field. Vasu and De (2010) discussed
the electro-osmotic flow of power law fluid in a rectangular microchannel at high zeta
potential and simplify the flow problem without invoking the Debye-Huckel linear
approximation. Sadeghi et al. (2011) studied the electro-osmotic flow of PTT and
FENE-P fluids in slit microchannel and also obtain the analytical solutions of the
transverse distribution of velocity, and thermal transport characteristics. Jian et al.
(2014) present the Semi-analytical solutions for transient electro-osmotic flow of

Maxwell fluid between micro-parallel plates. More recent studies dealing with the

29



application of electro-osmotic methods for transportation of fluid in channel or tube
were carried out by Afonso et al. (2009, 2013), Dhinakaran et al. (2010), Ferras et al.
(2014), Das and Chakraborty (2006).

1.5.5 Electro-osmotic peristaltic flows
Motivated by the bio-microfluidics developments of electro-kinetic flow, recently
some analyses on electro-kinetically modulated physiological transport have also been
presented. These investigations explored the complex flow situation including electro-
kinetic and other physical effects. Chakraborty (2006) was the first one to develop a
mathematical model to investigate the effects of electro-osmosis on peristaltic
transport. The analysis of Chakraborty (2006) was also extended by several
researchers. In this regard, Tripathi et al. (2016) extended Chakraborty’s model with
the inclusion of a transverse magnetic field for time-dependent peristaltic flow.
Prakash and Tripathi (2018) discussed the flow of non-Newtonian ionic nano-fluid in
a tapered peristaltic channel. They utilized constitutive equations of the Williamson
viscoelastic model and obtained linearized solutions via perturbation and MATLAB
routine bvp-4c methods. Later on Misra et al. (2014) investigated the electro-osmotic
peristaltic transport of micro-polar liquid in a flexible channel. Tripathi et al. (2017)
studied the electro-kinetic modulated peristaltic transport of the viscoelastic fluid in a
finite length capillary. Tripathi et al. (2018a) developed a model to study the
combined influence of electro-kinetically modulated peristaltic movement of nano-
fluid in a micro-channel along with joule heating and buoyancy effects. Prakash et al.
(2018) described the electro-kinetic peristaltic flow of nano-liquid in a micro-fluidic
channel. Goswami et al. (2016) analyzed the two-layered electro-osmotic peristaltic
movement of power-law fluid in a tabular geometry which closely resembles with a
blood vessel. Goswami et al. (2016) explored the simultaneous effects of a thin
peripheral layer and electro-osmotic body force on the peristaltic movement of power-
law fluid through a circular tube. The analysis of Goswami et al. (2016) is a direct
extension of the work by Usha and Rao (1995). Flow of Jeffrey fluid in an
asymmetric channel induced by electro-osmosis and peristaltic activity has been
investigated by Tripathi et al. (2018b). Narla and Tripathi (2019) discussed the two-
layer electro-osmotic transport in a curved channel by considering the viscous fluid in
both regions. Electro-osmotic peristaltic transport of a Jeffrey fluid model in a tapered

channel induced by asymmetric zeta potential at the walls of the channel has been
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analyzed by Narla et al. (2018). Chaube et al. (2018) investigated the inertia free
peristaltic flow of a power-law aqueous solution in a mirco-channel under the
influence of electro-kinetic body force. Prakash et al. (2019) examined the peristaltic
transport of pseudoplastic aqueous nano-liquids in a micro-channel under the effects
of electric field. The pseudoplastic aqueous liquid has been modeled by tangent
hyperbolic equation. Mondal et al. (2015) developed a model to analyze the interfacial
transport and contact line dynamics of two-fluid system with chemically patched
walls under the electrokinetic effects. They employed the constitutive equations of the
power-law to capture the behavior of the non-Newtonian fluid and employed the
diffuse interface phase-field technique to investigate the interfacial transport and
contact line dynamics. Recently, Tripathi et al. (2017) discussed the electro-osmotic
peristaltic transport of three-layered microvascular fluid. They assumed that RBC
occupies the central (core) layer, WBC the intermediate layer and plasma the outer
(peripheral) region.

It is noted from the literature cited above that due attention has been given to study
the dynamics of the flows generated by the combination of peristaltic and electro-
osmosis for Newtonian and generalized Newtonian fluid models. However, there is
hardly a study available where such flows has been analyzed for advanced non-
Newtonian models like PTT and FENE-P models. Further, the models like
Rabinowitsch and third grade are also not integrated in this frame work. Same is the
case when it comes to multi-layered electro-osmotic peristaltic flows. Motivated by
the these facts, the aim of present thesis is to study the flow generated due to
combined influence of both electro-osmotic and peristaltic activities for complex non-
Newtonian fluids through different geometries. The complex non-Newtonian fluids
are modeled through the constitutive relations of third grade, PTT, FENE-P,

Rabinowitsch and power-law models.
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Chapter 2

Theoretical study of electro-osmotic peristaltic flow of

third order fluid in an asymmetric in microchannel

In chapter 2, a theoretical study of electro-osmotic peristaltic transport of third order
fluid in an asymmetric microchannel is presented. The equations governing the flow
are modeled by using the suitable approximations of long wavelength and low
Reynolds number. A numerical procedure is implemented in Mathematica 8.1 to
compute velocity, pressure gradient and stream function. The computational results
are presented graphically for several values of the controlling parameters. It is noted
that trapping is more sensitive due to an external applied potential rather than the
electro-osmotic parameter and third order fluid model parameters. The results

obtained may be applicable in the modulation of peristaltic pumping in the efficient

operation of various industrial and bio-medical devices.

A
Y| oh)=0

Net flow due to Peristalsis
and electric field

Fig. 2.1: Geometry of the flow problem
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2.1 Mathematical formulation of the problem

We considered a flexible asymmetric microchannel having width (b, + b;) through
which a bio-fluid is flowing due to peristaltic movement of microchannel walls and
under the action of an electro-osmotic body force (Fig. (2.1)). The upper and lower

walls surface satisfy:
. 21
H, =b; +a,sin (T (x — ct)), 2.1

Hy = —b, — azsin (Z (x - ct)+9y). 2.2)

In the above relations, A is the wavelength, x is the axial coordinate and t is the time,
a,,a, are the waves amplitude and ¢, is the phase difference with 0 < ¢, <.
@, = 0 corresponds to the symmetric microchannel with waves out of phase and for
@, = m the waves are in phase. The bio-fluid in the channel characterized by the third
grade model is considered to be an ionized solution that is sensitive to an external
applied potential along the length of the microchannel. When the negatively charged
walls of the microchannel are in contact with the ionized solution, an electric double
layer is established within the flow domain due to the solid-liquid interaction. Upon
applying the external potential along the axis of the channel, an electrical field is
generated, which exerts a body force on the opposite ions of the EDL, and as a result
of which the EDL moves along the channel dragging the neutral liquid. Thus, the
motion in the fluid is generated by a combination of peristalsis and electro-osmotic
mechanisms. In subsequent parts, a mathematical model is established and later
analyzed to investigate the non-Newtonian liquid movement via electro-osmosis and

peristaltic activities.

2.2 Mathematical formulation

The vector form of the momentum equation for the flow under consideration Fig. (2.

1) is given by:
DV
p (E) =-Pp+V.S+F,, 2.3)

where p is the density of the fluid, S be the extra stress tensor, p is the pressure and F,

represents the electro- kinetic body force. The continuity equation is given by:

(38) +7.ov) = 0. 2.4)
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The extra stress tensor S is defined for third order fluid as: (Hayat and Abbasi (2011),
Ali et al. (2010))

S = (u+ B3tr(AD))A; + a1A; + B1A; + a,AT + B2(AzA; +A1A7),  (2.5)

where u,a,,a,, B, B2, B3 are the materials constants and A;,A,, A3 are the Rivlin

Ericksen tensor defined through the relation: (Rivlin and Ericksen (1955))
Ay = (VV) + (W),

Ap =224 A (W) + (W)TA, > 1, 2.6)

where V denotes the gradient operator, V be the velocity and d/dt is the material time
derivative. A comprehensive thermodynamic discussion of equation (2.5) is provided
by Fosdick and Rajagopal (1980). According to this study, when the fluid locally at

rest then these material constants satisfy the following inequalities:

#ZO, 0_'120, ﬁgZO, |a1+a2| S-\/24ﬂﬁ, ﬁ1=ﬁ2=0. (27)

In this investigation, we considered that the fluid is thermodynamically compactible

then from Eq. (2.5), we get

S = (u+ Bstr(A2))A; + @ Ay +a, AL (2.8)
The velocity profile for an asymmetric microchannel flow is
V=|:u(x,y,t),v(x,y,t),0:|. 2.9)

We perform our analysis in the moving frame of reference, which is related to the

laboratory frame of reference via relations:
Y2y, p—p,id D>u—c,X >x—ct,Vo>v. (2.10)

The continuity equation (2.3) and momentum equation (2.4) in moving frame of

reference can be written as:
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where §x_x,§x7,§w.§w are the extra stress tensor and @, 7 are the velocity components

in Cartesian coordinate and E, be the axial electric field given by

F_; = ﬁeEx'

(2.14)
Here p, be the total ionic charge density, which is associated to the electric potential
¢ through the equation

V¢=-p /e, (2.15)

in which ¢ is the permittivity of the medium. For symmetric electrolyte solution, the
total ionic distribution p, is defined asp, = ez(ii* —7~). The ionic number

distributions of single species are obtained through Nernst-Planck equation for each

species. That is,

— 2— 2— y y
@_iﬂ—,%w@:po 5”2t+a”; 1 Dozel © ﬁi% + 2 ﬁt% .(2.16)
o7 & & & k,T\ox\ “x ) o\~ &

It is assumed that coefficients of ionic diffusions for both species are equal and the

transport of the species is evaluated through Einstein formula.

The appropriate dimensionless quantities are

- — — — 2 ]
x _1’ y*zl ,v*-_—i,u‘ :1,1‘* =£?,5=-l-7l,S* :Lg,p* =Lﬁ,
A b c c A A HAc pcA
- = 2 2
Rezpcb] ,¢a=kBT¢,nt:l1_’ﬂ1=_aﬁ’/12=%’}/1=ﬁ1—c2,}/2=ﬂ2€2 }(2.17)
ez "y b, Hb b Hb;
2 7 A 2k To
73=ﬂ3c2 3h*2:£3h‘1=£, :zme-aa:ﬂsd:&’b:&‘
ub, b, b, eze b, b, b, ]

where Re is the Reynold number, De be the Deborah number and § is the wave
number. After applying the dimensionless quantities (2.17) and the approximations

that §, Pe,Re < 1, where Pe = ReSc and Sc = u/pD, represent the ionic Peclet
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number and Schmidt number, respectively, the Poisson and Nernst Planck equations

reduce to (dropping asterisk)

] )1
dy ’"( 2 ) 1
Ony o 3)_

R 19

where m, =bez\[2n,/eK,T =b /1, ,is the electro-osmotic parameter.

Now solving the Eq. (2.19) subject to the bulk condition asny =1 at ¢=0 and

on
—£ =0 where 9 _ 0, we get
Y
n,=e". (2.20)

In view of Eq. (2. 18) and Eq. (2. 20) we obtain

o’¢ 2
——=m,” sinh{¢ (2.21)
a2y ( )
By invoking the linearization approximation, Eq. (2.21) reduces to
o' _ >
L me (2.22)
o’y

Now solving Eq. (2.22) by using the condition at¢|y=,,1 =¢, and ¢|y=hz= ¢, we obtain
the electric potential as follow

¢=Ce™ +Ce" (2.23)
where, C, = e*™ ¢, —e"™ £, [e*™ —e™™ and

C, = ehmrhm. ( g, —ehmg, ) /ezmm, _ g2

Applying the long wavelength (6§ << 1) and low Reynolds number (Re « 1)
approximations, Egs. (2.11) — (2.13) becomes (dropping asterisk)

Ou oOv _

=0 (2.24)
w_olou f(au) |, .

6x_6y[8y+2r(ay) }me U:d, (2.25)
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_ (2.26)
&y
where, U, =—E & [ ucis the electro-kinetic slip velocity and T' = y, + 5.

The velocity components in term of stream function are

u=Y - 0%v 2.27)
Oy ox
Invoking relations (2.27) in above equations, the continuity equation is satisfied

identically and Eq. (2.25) reads

2 2
P_0\0y ooV +meE¢. (2.28)
ox ay o'y &y y
The boundary condition in term of stream function are:
oy oy
—(#)=-1 and —(h,)=-1. (2.29)

2.2.1 Volumetric flow rate

The volumetric flow rate in dimensional form is defined becomes

Hy(x.0)
= frioy 16y, 6)dy. (2.30)

The above expression in the wave frame of reference as

haGo) _
q = 31X )y (2.31)

using (2.32) in (2.33), we get

Q =q+chi(x) —ch,(x) (2.32)

The time-averaged volume flow rate over a period T in fixed frame is defined as
== f Qdt (2.33)

Invoking the equation (2.33) in (2.34) and integrating, we get

Q=q+ch, +ch, (2.34)

The dimensionless volume flow rate in

@=F+1+d, (2.35)
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where © is the dimensionless volume flow rate in the fixed frame and F represents the

dimensionless volume flow rate in the wave frame of reference. That is,
hyd
= [ 2 dy = (k) — P(hy) (2.36)

Eq. (2.36) suggests that

W(hy) = F/2 and Y(h,) = —F/2, 2.37)
where

hy = 1 + asin(2mx), (2.38)
hy = —d — bsin(2mx + @1 ). (2.39)

Eq. (2.28) along with boundary conditions (2.29) and (2.37) is not amenable to
analytic solution, therefore we obtain the numerical solution of the governing
equations by using Mathematica 8.1 solver NDSolve. We compute the velocity
distribution, pressure gradient and streamline topologies which are analyzed in

subsequent sections.

2.3 Results and discussion
In this section, we will analyze the influences of the emerging parameters such as, T,

me, Ug and @, on velocity profile, trapping and the pressure rise. These results are

shown in Figs. (2.2 - 2.8).

2.3.1 Velocity profile
The velocity distribution is visualized graphically for several values of the emerging
parameters (I, m,, Ug and phase difference ¢,) which are shown in Fig. (2.2). The
effects of the electro-kinetic slip velocity Uz on longitudinal velocity profile are
depicted in the panels (a) and (b) of Fig. (2.2). The amount of the applied potential on
channel walls varies the nature of the velocity profile. It is observed that for (>
¢2 (applied potential on upper wall is greater than the applied potential on lower wall),
the velocity decreases by increasing electro-kinetic slip velocity Ug while an opposite
trend is noted for {; < {,. Figs. (2.2¢) explores the variation of the velocity profile for
various values of the electro-osmotic parameter m,. The velocity reduces for

enormous value of electro-osmotic parameter. An asymmetric behavior of velocity
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profile is also found by varying m,. The effects of the I" on velocity profile are shown
in the Fig. (2.2d). It is clearly observed that the velocity profile increases for
increasing of I'. The velocity profile against different values of the phase difference is
shown in the Fig. (2.2e). Here reduction in the magnitude of velocity is noted for

higher values of ¢;.

2.3.2 Pressure distribution
The pressure rise is an important feature of the peristaltic pumping. The pumping
characteristics for several values of the electro-kinetic slip velocity, electro-osmotic
parameter, Deborah number and phase difference can be visualized in the Figs. (2.3 a-
d). Fig. (2.3a) illustrates the variations in the pressure rise for different values of the
electro-osmotic parameter. An increasing trend in pressure rise is noted by increasing
the value of the electro-osmotic parameter. Fig. (2.3b) provides the variations of Ap
against the flow rate Q for different". A growth in pressure is observed in the
pumping region Ap > 0 while an opposite trend is noted in the co-pumping region
Ap < 0 for increasing values I'. Fig. (2.3¢) illustrates the behavior of pressure rise
with respect to electro-kinetic slip parameter. Here a significant decrease in pressure
rise is observed for increasing values of electro-osmotic slip velocity. The classical
linear relation between pressure difference and flow rate is also validated through this
figure. The influence of the phase difference on the pressure rise is shown in the Fig.
(2.3d). Clearly, larger phase differences produces reduction in pressure rise inside the

channel.

2.3.3 Trapping phenomenon
The streamline plots showing trapping inside the asymmetric microchannel are
displayed in Figs. (2.4) — (2.7). A detailed explanation regarding the development of
trapped bolus in the flow domain is provided by Tripathi ef al. (2017). According to
Tripathi et al. (2017), trapping is strongly dependent upon the bulk momentum of the
flow. The greater the momentum of the fluid, the lower the probability of fluid
particles being trapped in zones of re-circulation. Trapping for several values of the
emerging parameters, I', m, , phase difference ¢, and the electro-osmotic slip velocity
Ug is shown in the Figs. (2.4 - 2.7). Fig. (2.4a-c) provides the streamlines structure for
different values of the electro-osmotic slip velocity. It is observed that the size of the

trapped bolus reduces for higher values of the Uz . The large value of the electro-
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osmotic slip velocity means that the strong potential applied to the system. The
resistance within the fluid also reduces for large Uz , which indicates that the tendency
of the fluid element to flow along the length of the channel increases and as a result
eradication of trapping phenomenon occurs. Further, the trapped boluses enlarge by
increasing the values of the I' and m, (see Figs. (2.5, 2.6)) which ensures that the size
of the trapped bolus is strongly affected by changing the embedded parameters.
Trapping for several values of the phase difference is displayed in the Fig. (2.7). No
significant change in bolus size is noted except the restructuring of shape from

asymmetric to symmetric for decreasing values of phase difference.

2.4 Conclusion

A theoretical analysis is presented for a two-dimensional electro-osmotic flow of third
order fluid due to peristaltic activity in an asymmetric microchannel. By incorporating
the suitable transformations, the governing equations are transformed from fixed
frame to moving frame. The well-known assumptions of long wavelength and low
Reynolds number are used to simplify the flow problem. The velocity distribution,
pressure gradient and stream functions are computed numerically from the simplified
momentum equation by using Mathematica 8.1 software subject to the suitable

boundary conditions. The main outcomes of the present investigation are:

e The area of the trapped bolus in the channel reduces by increasing the
values of the electro-osmotic slip velocity.

e The size of the trapped bolus in the flow domain increases subject to the
modulations in electro-osmotic parameter.

e The longitudinal flow velocity increases for higher values of the electro-
osmotic slip velocity and Deborah number.

e Growth in pressure rise appears for large values of parameters I and m,, .

e Reduction in pressure rise is encountered for high values of the electro-

osmotic slip velocity Uy .
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Fig. 2.2 ((a) - (c)): Velocity variations for different values of the parameters Ug
and m,.

41



0.0
-0.2

d & —04 e
-0.6

m,=341=05 4 =1,
Ug=1 ¢ =nr/3.

-0.8

-1.0

—0..5 0.0 0.5 1.0

0.2

0.0

-0.2 .

(e X -04 ..........

-0.6 ’

me=3T=002 ¢; =0.5,

-0.8 ‘ $H=1 Ug =1

10t

-0.5 0.0 0.5 1.0

y

Fig. 2.2 ((d), (e)): Velocity variations for different values of the parameters I', ¢, and
electro-kinetic slip velocity Us.
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Fig. 2.3 (a): Pumping efficiency with different values of me.
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Fig. 2.4 ((a) - (¢)): The streamlines variation for different values of Uz when I' =
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Fig. 2.5 ((a) - (¢)): The streamlines variation for different parametric values of m,
when " = 0.02,Q = 1.7, UE = 1, 1= 7'[/3,(1 = 0.5,(2 =1.

46



@S

—6.7.2 0.0 0.2 0.4 0.6

—(.).2 0.0 0.2 0.4 0.6
X

I =02
1.0

0.5

(c) 00 \/’\

-0.5

-1.5

-0.2 0.0 0.2 0.4 0.6
X

Fig. 2.6 ((a) - (c)): The streamlines variation for different values of I when m, =
1,0=17,Us=1,¢, = n/3,{1 =05 =1.

47



1.

S © 9~
b QO WL

S
'y
A,

-0.5
-1.0
-1.5 _
-0.2 00 0.2 0.4 0.6
X
s : : . . .
wr=x/7
1.0 -
0.5 -
(© > 00 o ]
-0.5
-1.0
—1'5 A A n ry A
-02 0.0 0.2 0.4 0.6
X

Fig. 2.7 ((a) - (c)). The streamlines variation for different values of @,whenl =
002, =17,m, = 1,44=05{ =1and U = 1.

48



Chapter 3

Mathematical modelling of two-fluid electro-osmotic

peristaltic pumping of Ellis fluid in an axisymmetric tube

In chapter 3, we explore analytically the dynamics of two-fluid electro-osmotic
peristaltic flow through a cylindrical tube. The rheology of the fluid in the central core
(inner region or core region) is captured through the Ellis equation. The region
adjacent to the wall (outer region or peripheral region) is occupied by a Newtonian
fluid. The equations governing the flow in each region are modeled by using the
appropriate suppositions of long wavelength and low Reynolds number. Closed form
expressions for stream function corresponding to each region are obtained and utilized
to determine the axial pressure gradient and the interface between the inner and the
outer regions. The pumping characteristics, trapping and reflux phenomena are
investigated in detail with reference to the Ellis model parameters and the electro-
kinetic slip velocity. The present model also generalizes earlier studies from the
literature which can be retrieved as special cases. The analysis shows that pressure
drop at zero volumetric flow rate is elevated with increasing occlusion parameter.
Trapping and reflux phenomena are mitigated with increasing electro-osmotic slip and
shear-thinning effects. At larger value of the occlusion parameter an increase in the
power-law index reduces the magnitude of the pressure drop. Increasing Ellis
rheological parameter reduces the pressure drop over the entire range of occlusion
parameters for the case when the peripheral region fluid viscosity exceeds that of the
central region fluid. The results obtained may be applicable in the modulation of
peristaltic pumping in the efficient operation of various industrial and bio-medical

devices.

3.1 Geometric model of the physical problem
Consider a flexible cylindrical tube of un-deformed radius 1o through which a bio-
fluid is flowing due to peristaltic movement of the tube boundary and under the action

of an electro-osmotic body force as shown in F ig. (3.1). The region inside the tube is
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composed of the peripheral and core regions. The fluid in the core (central) region is
characterized by the Ellis model whereas the fluid in the peripheral (outer) region

obeys the Newtonian constitutive law.

Fig. 3.1: Geometry of the flow problem.

The negative charged surface attracts opposite ions in the ionized solution, developing
a layer of positively charged fluid near the wall and at the same time repelling the
counter-ions. “The thin layer of immobile counter-ions covering the inner side of the
wall is known as the Stern layer . A thicker layer of moving counter-ions, known as a
diffuse layer, is formed next to the Stern layer. The combination of the “Stern layer
and the thicker layer is known as the electric double layer (EDL)”. When the system
is connects to the external electrical potential, electro-kinetic body force emerges. The
resulting multi-physical fluid dynamic problem encompasses the computation of the
flow field developed by the combined effects of the wall movement and the electro-

kinetic body force.

3.2 Mathematical model
The vector form of the momentum equation for the flow under consideration (Fig. 3.

1) is given by:

DV
or(2) = —Vp+ V.5 +F,, 3.1)

where py is the density of the fluid, S the extra stress tensor, p the pressure and, F, is

the electro- kinetic body force. The continuity equation is given by:

() +v(p,v) = 0. (3.2)
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The extra stress tensor S is defined differently for both the core (Ellis fluid) and the
peripheral (Newtonian) regions:

—_ llc()/) Yl 0<sr< Rl(zﬁ t)!
5= {uN Y, Ry <71 <Ry(zt), (3-3)
where R; is the expression for the interface between the core and peripheral regions.

Since, the core region is characterized by the Ellis model, therefore the appropriate

rheological relation is:
() = —= (34)

Here g represents the zero-shear rate viscosity, 7 denotes the second invariant stress
tensor ¥, a is the power-law index and quantifies shear-thinning behavior (a > 1), 7
is the shear stress at which the apparent viscosity becomes py/2, y (= (1/2){VV —
(VV)T}) is the strain-rate tensor and py is the viscosity of Newtonian fluid in the
peripheral region. For axisymmetric incompressible flow in the tube, it is appropriate
to define the velocity vector as follows:

V = [u(r,z1t),0,w(rzt)l. 3.5

In view of above velocity field, the basic equations (3.1) and (3.2) the presence of the

electro-kinetic force applied in the axial direction yield

19(ru) , dw _

ST 4=, (3.6)
du du ou _ _9p  [13(Sr) | 9Srz _ See

Pr (at + uar + Waz) -~ or + [r or + 9z r ]’ G.7)
D04y 2 gy D) = 00 1205 | ]

pf(0t+uar+waz)_ 2z T 17 o T oz +Fe. 3.8)

— 0y =R _
w=0u===, atr = Ry(z,t). 3.9

The Eqgs. (3.6) - (3.8) are the basic equations of two-dimensional incompressible
peristaltic flow in fixed frame of reference in axisymmetric tube. The body force term
due to applied electric potential in the axial direction is of the form as mentioned in
Hunter (1981). The continuity equation shows that the mass of the system remain
conserved during the peristaltic flow and momentum equations shows that the

momentum of the system remain conserved during the motion. The first boundary
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condition in Eq. (3.9) represent the no-slip at the wall while the second one arise due

to symmetry

It is noteworthy that:

(opww) = {0 (3.10)
where the subscript ¢ stands for the core region whereas N designates the peripheral
region. When the external electric field E is applied, the liquid undergoes a body force
which takes the form:

F, = pE, (3.11)
where p, is the total ionic charge concentration which is considered as the sum of p,y
and p,., the ionic charge concentrations corresponding to the peripheral and the core
regions, respectively. The motion of the tube is assumed to be a periodic peristaltic
wave motion with wave speed U and the wavelength A. The radius of the tube Ry is a
function of (z — Ut) in the fixed frame. However, switching the analysis from the
fixed frame (7, z) to the moving frame (7, 2) it can be made a function of Z alone. The
conversion between fixed frames to wave frame is achieved via the following

transformations:
Zoz=-Ut,r>ru-uw-w-Up-p. (3.12)

In view of Eq. (3.12) the Egs. (3.6 -3.8) in moving frame of reference can be written

as.
1o(m) o _ (3.13)
¥ or oz

27 3 [ aFErr < q
pf(aa_”+wa—”)=—@+ 19(757) 55 Se | (3.14)

& @) T |F @ & 7

_ow _ow) o |10(FS=) &S|

A B= |, F. 3.15
pf(”af”” z) - G

Under the action of external axial electric field E=(O, 0, Ez), the fluid undergoes a

body force given as Hunter (1981).
F =p,Ek, (3.16)
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where k is the unit vector in the axial direction and p, be the total ionic charge

density, which is associated to the electric potential ¢ through the equation
V¢=-p,/¢, (3.17)
in which ¢ is the permittivity of the medium. For symmetric electrolyte solution, the

total ionic distribution g, is defined as p, = ez(fi* — fi~). Further, the order pairs
(Pen» €n) and (P, €.) respectively denote the ionic charge density and permittivity of
the fluid in peripheral and core regions. The ionic number distributions of single

species are obtained through Nernst-Planck equation for each species. That is,

— _ e -
-aif+ﬁ%+W@=Do 6”; +é 9 (r o, ) Dyze 7, 6¢ ni% :
ot or 0z 0z° ror\ or k,T 62 t oz rﬁf or

(3.18)
It is assumed that coefficients of ionic diffusions for both species are equal and the
transport of the species is evaluated through Einstein formula.

Now introducing the dimensionless variables

r‘:f_’ Z..=5_Z,u,.= u ,w‘=l,t'=5—UT’5=r—o,
A 3 (V) U A
AU . ezd =
p=S0p pe=P po-t 5 o gl (3.19)
wU H Y kT wU
gt _a, . RKkTp,
TR eze,

where Re is the Reynold number, De be the Deborah number and § is the wave
number. After applying the dimensionless quantities (3.19) and the approximations
that §, Pe,Re < 1, where Pe = ReSc,Sc = u,/pD, represents the ionic Peclet
number and Schmidt number, respectively. Under these assumptions, the Poisson and

Nernst Planck equations reduce to (dropping asterisk)

lﬁ(r%)z_mez nyon-y (3.20)
ror\_ or 2
8
0=12(10%),1 5( +@), (321)
rorir or ror\. —or

where m, = roez,/Zn0 /eKT =r,/4,,is the electro-osmotic parameter. Eqgs. (3.20) and

(3.21) subject to appropriate boundary conditions may give the potential distribution
for both regions. Based on these potentials the explicit form of body force term

corresponding to each region can be derived Tripathi et al. (2017). However, we shall
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not follow this line of action in the subsequent analysis. The details about alternative
course of action shall be provided in the later part of this section.

By using the approximations of long wavelength (§ <« 1) and low Reynolds number
(Re) the momentum equations and the stress components in the core and peripheral
regions reduce to:

The long wavelength(§ « 1) approximation means that the length of the peristaltic
wave is greater than the characteristic length (width) of the channel or radius of the
tube. The low Reynolds number(Re) means that the viscous forces are dominant and
thus flow can be considered as inertia free. Therefore, these approximations appear to
be trustable to explain biological systems (ureter and gastro-intestinal tract) and in
mechanical roller pump using viscous fluid. Eqgs. (3.13) — (3.15) for both regions (core
and peripheral) become (dropping asterisk)

Core region:

_ dp 19(r Srz) Wr

0=-24 [(;———ar )] +Ug Eop,, (3.22)
_9

0=22, (3.23)

(52)

Srr = See = Szz = 0, STZ = m)a—_l, (324)
where, § = U/ry14?
Peripheral region:

a 1 (3(r Srz)
0=—L4p 2(522) 4 Uy, pey,  where 1, = b (3.25)

_ o
0= o (3.26)
d

Srr =S00 = S22 =10, Spz = (5%) . (3.27)
The boundary conditions are:
% = 0,at r = 0; (symmetry at the center-line) (3.28)
we = wy and (Syz)y = (Syz)cat 7= Ry;

(Continuity of velocity and stress at the interface) . (3.29)
wy = —1 atr = Ry; (no-slip condition at the wall). (3.30)

54



Following Goswami e al. (2016), we drop the electrokinetic body force terms from
momentum equations (3.25 - 3.27) and (3.28 - 3.30) along with suitable modification
of the no-slip boundary condition at the wall. In this way, the governing equations and

boundary condition take the form:

Core region:

_ Op 19(r S;z)
0=-2+[G52)) 3-31)
_o
0= Pl (3.32)
aw
STT = See = SZZ = 0, STZ = %, (333)
dwe _
= = 0,at r=0. (3.34)
Peripheral region:
_ _@ l (7 Syrz)
- az+p'rr( ar )’ (3.35)
=
0= Py (3.36)
]
Srr=S00= S22 =0, 5= (37), (337)
ow, _
S:=0at r=0, (3.38)
Wy = UE - 1, at r = Ro. (339)

3.3 Velocity components in term of stream function
The velocity components in term of stream function are defined by the Cauchy-

Riemann equations:

u=-2 =1 (3.40)

az '~ ~ r oor’

Here " is the stream function in the moving frame of reference and is related to its
counterpart in the fixed frame via the relation ¥ = 1p* — r2/2. Now introducing the

stream function, the momentum equations in the core and peripheral regions become:

-1
|*7 P a

2 (10v) _ron  ®

ar (r ar) =27 ) lar ar ! O0sr=Ry (3.41)
—_9%_ 190 9 (1o¥

0= 0z + ror (T'lJ.r ar (r 6r))] ’ Ry =7 =R (3.42)

The associated boundary conditions are:
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v =0 53| _ =0 (3.43)
Y(Ro) =2, 2= (Us - DRy, (3.44)
EHEES (3.45)

Here . is the viscosity ratio, q,, g are the volumetric flow rates through the inner and
outer cross-sections of the tube, respectively. Now, integrating the Eqns. (3.41) and
(3.41) subject to the boundary condition (3.43) and (3.44), we arrive at the following

expressions for stream function in terms of R, for both core and peripheral regions:

a-— 16p 2 ratil R1a+1 1 6p

_ B |9p _ 2
¢ {(UE D+ (2 loz (a+1)(a+3) (a+1) 166 {T 2R, }+
19

Lo Roz}},O <r<R, (3.46)

r? Ry® 19
b= 0+ (5= W D)4 6 - R RSy <R

Wy 0z
(3.47)
From the above expressions, axial velocity emerges as:
_ 1) 4 @ (p|F T R _2r®t R 100, p o2
E D+ 2)* loz oz [(a+1)(a+3) (a+1) + 16 9z {r 2Ry }
w(r,z) = yED Z{R2— Ry%}, 07 <Ry
(Ug 1)+1a"(2 Ro?), Ry <7 <R,
(3.48)

For the subsequent analysis, it is assumed that the shape of the outer bouﬁdary can be
described by the following expression:

Ry(2) =1+ ¢, sin(2nz), (3.49)
where ¢, represents the dimensionless occlusion parameter. It is important to point
that the solution to the considered problem is still not complete due to the unknowns
R, and dp/dz appearing in the expressions (3.46) and (3.47). To obtain these
unknowns, the following semi-analytical approach is deployed Goswami et al. (2016).

Using the condition (3.45), we get:
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q1 _ R,® q Ro ;_ — 2
LI WU -+ (G- Ws — D) 4 o P (R - R)) (3-50)

Here q, is another constant to be determined. To eliminate q; we set Ry = 1and R, =

k at z = 0 in the above equation which yields the following:

k2
L= B W~ 0+ (- W —D3) + o Polk? - D2 3.51)

Eliminating q; between (3.50) and (3.51) results in the following equation:

2 2

k q 1 ) , Ry
5 Ws =D+ (3= Ws = 15) + 1o Polhk? = D? == W =)

(4 0= D5 20 - R o)

where k is the inner layer thickness measured at z = 0 from the boundary wall and
Py = (0p/02)|,;=¢. Thus we have replaced g, with another unknown P,. In this way,
there are three unknown to be determined to be able to close the solution i.e., Py, Ry
and dp/0z. However, there is only one condition available i.e. Eqn. (3.51). The other
two conditions can be furnished as follows. Since the stream function given by the
Eqns. (3.46) and (3.47) must be same at the interface, therefore it follows that:

B 'ap
(2)%+1 9z

o
0z

alRa+3

R 4 ap
az o (Ro" - R14)+__(UE _1) + 263

(a+3)  16p,
(3.53)

Proceeding with the analysis, the following equation is produced:

B

k% Py, @ 1 K
(2)a+1P0| pola-t Ky Fo OB K +2- (s — 13+ TP =0. (3.54)

(a+3) 16y, 9z

Effectively Eqgns. (3.52) - (3.54) can be solved numerically to obtain the values of Py,
R, and dp/dz at each axial positionz. The bisection method is used for the
computations. This process yields closed form expressions for stream function at each

axial position z. At this point the solution to the considered problem is complete.

3.4 Graphical results and interpretations

3.4.1 The interface region
The numerical procedure based on the bisection method is implemented in the

symbolic software Mathematica 8.1 to compute the values of Py, R, and dp/0z
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corresponding to each axial position z. The plots of interface R, against z for different
values of U, @, Ugand B are displayed in Figs. (3.2) and (3.3(a - d)). It is important
to remember that @ and f are the material (rheological) parameters associated with
the core fluid Ellis model whereas Uy is the parameter arising from the inclusion of
the electro-osmotic effects. Fig. (3.2) illustrates the variations in the interface R, with
respect to the parameter 1, which is the ratio between the viscosities of the outer and
inner regions.

It is observed that interface curve corresponding to p, =1 lies in between the
corresponding curves for p. = 0.1 and p, = 10. In fact these curves depict the
position of the interface for three situations ie.,p, <1,u, =1 and p, > 1.
Generally, during the flow the fluid under the crest region will experience a vertical
normal force whereas the fluid in the trough region is subjected to a vertically
downward force. When . <1 i.e., the viscosity of the inner core exceeds the
viscosity of the outer region, the fluid in the peripheral region under the wave crest
will undergo a reduced vertical force in the upward direction and hence stay below the
interface level for p, = 1. At the same time, the fluid in the outer region under the
wave trough will also feel a reduced force in downward direction and hence stay
above the interface level for u,. = 1. However, a reverse trend is observed when p, >
1. The slight shifting of the fluid in the outer region in both the crest and trough
regions is of the same magnitude. However, this is not the situation when the variation
is observed with respect to the other parameters such as Ug 8 and a. The couple type
force arrangement experienced by the peripheral fluid in the crest and trough region
breaks when the core region fluid is assumed to be non-Newtonian. This is
attributable to the deformation-dependent viscosity of the non-Newtonian liquid. In
the crest region, the normal force acting in the upward direction is least affected with
an elevation in either a, Uz and B. Significant changes in the magnitude of normal
force are only observed in the wave trough region. Therefore, the interface in the
trough region is displaced downward with increasing & and f§ whereas it is displaced
upward with increasing Uz . Analysis of Fig. (3.3d) shows that the findings of present
study about the interface region are consistent with the Rao and Usha (1995) study
when, f = 0 and the other parameters are kept constant. By increasing the values of
viscosity ratio a considerable variation occurs in the interface shape after certain

values of viscosity ratio. The crest (peripheral) region viscosity becomes almost
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uniform, but in trough (core) region a dramatic change occurs in the shape of interface

due to a strong downward normal force.

3.4.2 Pressure and volume flux variation
The axial pressure gradient dp/dz in the tube can be computed from the following

equation:

9 _ __tour 1oy — 1)(k? — R,> N, ! bz 132
dz (RIZ_ROZ)Z {2 (UE 1)(k R1 + Ro ) + Ton, Po(k 1) }. (355)

The pressure rise over one wavelength is obtained by integrating the above expression

from the limits 0 to A as follows:

16Hr
(Re2- R02)2

%(Ug—l)(kz‘R12+R°2)+ e Po(k?- 1)2} (3.56)

AP = 164, f(f{

The volume flux in the moving frame q is related to its counterpart Qs in the fixed

frame of references via the relation:
Qs =2[,°(w+1)rdr =q+Ro" (3.57)
Averaging over a complete time-period yields:
_ 1 Tp _ ¢2
Q _Efo Qsdt—Q+(1 +7), (3.58)

where Tp = A/U is a complete time-period.

The integration in Eq. (3.56) is performed numerically and the results computed
which illustrate the variations in pressure rise per wavelength at zero volumetric flow
rate AP, = AP| -, against the occlusion parameter ¢, are displayed in Figs. (3.4(a,
b)). This figure infact provides the estimate of dimensionless pressure rise resulting

from the peristaltic motion of the wall.

Fig. (3.4a) shows the results for the case when core region fluid is characterized by
the Ellis model. This figure also highlights the influence of viscosity ratio on AP,.
Here the effects of electro-osmotic slip are not considered i.e., Uy = 0. It is observed
that pressure drop at zero volumetric flow rate increases with increasing occlusion
parameter. A much greater pressure drop is required to maintain zero flow rate when

the core region fluid is less viscous than the peripheral region fluid in comparison to
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the scenario where the outer region is less viscous than the inner region fluid. Further,
the effects of the viscosity ratio are more noticeable in comparison to the effects of
the power-law index, a. Infact, the effects of a are only realized at larger values of the
occlusion parameter ¢,.. At larger values of the occlusion parameter a rise in the
power-law index reduces the magnitude of AP,. The parameter « is in fact a measure
of the shear-thinning nature of the fluid in the core region. Larger values of a
correspond to the case of fluid with pronounced share-thinning effects i.e., fluid with
a significantly reduced apparent viscosity. Therefore, the depletion in pressure
associated with increasing a at large occlusion is attributable to the decreased
apparent viscosity of the fluid in the inner region. The effects of electro-osmotic slip
velocity on AP, are shown in Fig. (3.4b). Here, it is evident that the presence of
electro-osmotic slip velocity reduces the pressure drop only for intermediate values of
the occlusion parameter. As the occlusion parameter approaches unity, the reduction
is almost negligible. The effects of the Ellis parameter 8 on AP, are displayed in Fig.
(3.4b). It is observed that the role of the parameter £ is to decrease the pressure drop
over the whole considered range of the occlusion parameter ¢,., when the peripheral
(outer) region fluid is more viscous than the core (central) region fluid. In contrast,
when the core region fluid is more viscous than the peripheral region fluid the
reduction in pressure drop with increasing f is only realizable at larger values of the

occlusion parameter.

3.4.3 Mechanical efficiency
One of the important physical quantity known as mechanical efficiency of pumping is

mathematically given as:

QAP QAP
E= = : 3.59
%forf;ZRop%dzdt AP(1+%E)—11 ( )
where
1d
11 = fO d_ZRoz dz. (360)

Basically, it is ratio between the average rate per wavelength at which work is carried
out by the transport of the fluid against pressure rise and the average rate at which the
peristaltic walls movement do work on the fluid. The numerical procedure based on
the bisection method is implemented in the symbolic software Mathematica 8.1 to
compute the value of the efficiency expression. The efficiency expression as a

function of @Q is illustrated in Fig. (3.5(a - €)) for different values of the parameters. It
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is observed that a considerable growth occurs in pumping efficiency by increasing the
values of the parameters Uz f and ., but opposite trend is observed in case of a,
because the peristaltic transport in the pumping limits depends on the viscous forces
caused by the walls of the tube. For § = 0 the present analysis reduces to Newtonian
case, and the efficiency expression coincide with the expression of Rao and Usha

(1995) which illustrated in Fig. (3.5e).

3.44 Trapping phenomenon
The streamline plots showing trapping inside the core and peripheral regions are

displayed in Figs. (3.6(a - d)) — (3.11(a - d)). A detailed explanation regarding the
development of trapped bolus in the flow domain is provided by Goswami et al.
(2016). According to Goswami et al. (2016), trapping is strongly dependent upon the
bulk momentum of the flow. The greater the momentum of the fluid, the lower the
probability of fluid particles being trapped in zones of re-circulation. Fig. (3.6(a - d))
and (3.7(a - d)) illustrates the effects of electro-osmotic slip velocity on the trapped
bolus for the case when the inner core is less viscous than the peripheral region. It is
observed that the trapped bolus, regardless of its position, reduces in size and finally
vanishes with increasing the electro-osmotic slip velocity. For the case when viscosity
of the inner core exceeds the viscosity of the peripheral region, the trapped bolus
appearing either in the core or peripheral regions is smaller than its counterpart for the
previous case. Fig. (3.8(a - d)) shows that the effect of viscosity ratio on the trapped
bolus is same as that observed for electro-osmotic slip velocity. Similarly, it is
inferred from Fig. (3.9(a - d)) that the fluid power-law index a exerts a similar effect
on the trapped bolus as that observed for viscosity the ratio and the electro-osmotic
slip velocity. In contrast, Fig. (3.10(a - d)) and (3.11(a - d)) reveals that the trapped
bolus either in the core or peripheral regions increases in size with an increase in the
Ellis model parameter 8. However, the increase in the bolus size with increasing Ellis
model parameter § is not indefinite i.e., the size of the trapped bolus increases with
initial increase in 8 upto a certain value and thereafter it becomes independent of £.
For p, = 1, the constancy in the size of the trapped bolus is observed at values of f
that are significantly larger than their counterparts for p. > 1.

It is also of great use to determine the parametric ranges in which the trapping
phenomenon occurs. In this regard, we have presented plots of Q/Qap=o against the

occlusion parameter for several values of the key parameters such as electro-kinetic
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slip velocity, viscosity ratio and material parameters of the Ellis model in Figs. 3.12(a
- d). In fact, for each ¢, there exists a unique value of Q/Qap=o and vice-versa.

The identification of plausible value of ¢, and Q/Qap=¢is carried out first by
obtaining a trial subregion in the domain (0 < Q/Qap=0 < 1); (0 < ¢ < 1) where
the stream function 1 changes its sign and then employing a root-finding algorithm to
exactly pinpoint the value of ¢,. and ¥ at which such a transition occurs Goswami ef
al. (2016).

Two distinct regions can be readily identified for each figure. One below a specific
curve and the other one above it. The region of trapping comprises of the zone that
lies above a specific curve in the ¢, - @/Qap=o Pplane. Figs. (3.6(a - d)) and (3.7(a -
d)) shows the effect of the electro-osmotic slip velocity on the trapping region. It is
observed that trapping region reduces with increasing the electro-osmotic slip

velocity, power-law index a and the viscosity ratio p_. In contrast, it increases with

increasing the Ellis parameter §.

3.4.5 Reflux
Reflux is the process in which the fluid moves in backward direction in a complete
wave cycle due to the unfavorable pressure gradient across the flow geometry or by
the opposite movement of a fluid element inside the tube Goswami ef al.(2016). It is
anticipated that the reflux phenomenon in both regions depends strongly on the

involved parameters. According to Shapiro et al (1969), the amount of reflux can be
estimated through the quantity (Q - Qy ) /Q during one wave cycle, where Qy is
defined as Rao and Mishra (2004):

Qy = 21,b+f01r2 dz. (3.61)

The above expression emerges by transforming the following expression from the

fixed frame to the wave frame and taking the average over one period of the wave:

0 =2 ¥ rwar, (3.62)

In (3.51) Qy is the average volume flow rate between the axis of the tube and a
streamline 1)’'=constant in the fixed frame. Since the quantity Q,, /Q varies between 0
to 1 therefore the quantity (Q - Qy )/Q must vary from 1 to 0. However, under

certain conditions it may happen that for some values of ¥’ the quantity Qy /Q
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exceeds unity, or, the quantity (Q - Qy ) /Q < 0 which is an indicator that there is
some sort of backward motion or reflux occurring within the flow domain. Figs.
3.13(a-d) shows that reflux can avoided by increasing the electro-osmotic slip
velocity Ur and the fluid power-law index a. In contrast, reflux is enhanced with an
increase in both the viscosity ratio 4 and the Ellis parameter .

Finally, we demonstrate the generality of the present analysis in comparison to the
previously published results. To this end, we have shown in Fig. (3.13(a - d)) that the
results for the situation when the fluid in the core region is characterized by power-
law model can be deduced from the present analysis by proper selection of the Ellis
parameter o and B. Specifically, it is shown that the shape of the interface by
considering the power-law fluid in the core region for o = 0.5 can be reproduced
from the present analysis by setting a = 2 and 8§ = 20. The other parameters which
are kept same in both scenarios arek =038, =2,Q =0,Ug =0 ,¢, = 0.6
Similarly, it is shown that the profile of (Ap)g=o for the case when the core region
fluid is of power-law type can be deduced from our analysis by setting a =2, f =
10 provided that the other parameters are kept fixed in both situations tok =
0.7,1, = 0.1, Q = 0,Uz = 0. Obviously, the present results also contract to the results
for the case when the fluid in the inner region obeys the Newtonian constitutive law
by settinga =1, f = 0.

The objective of the present study is to analyze the influence of the electro-osmotic
peristaltic transport of non-Newtonian fluids. Our analysis is applicable particularly to
blood flow. Our findings are more exotic than the outcomes of previous study, as it
presents detailed discussion of both shear thinning and yield stress simultaneously
which are essential features of blood flow. While the previous study just focused on

shear thinning and ignored yield stress. So our study is more comprehensive than

previous study.

3.5 Conclusions
In this chapter, an analysis is presented for peristaltic motion of two immiscible fluids

in a tubular confinement under electro-osmotic body force. The core region fluid is
assumed to obey the Ellis constitutive equation whereas the peripheral region fluid is
characterized by the Newtonian model. The stream function for each region is derived
for the case when the shape of the interface is not known a priori. The important

phenomena of pumping, trapping and reflux are discussed in detail. It is found that the
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maximum pressure against which peristalsis has to work as a positive displacement
pump can be reduced by choosing small values of the Ellis model parameters o and S.
Further, trapping and reflux phenomena can be avoided by enhancing the electro-
osmotic slip and shear-thinning effects. In blood vessels, trapping is undesirable
owing to its role is the formation of thrombosis of blood. Similarly, it may also trigger
undesired chemical reactions in reactive fluids. Despite these disadvantages, trapping
is advantageous in situations where it is desired to achieve better mixing of the
contents with in the hollow structure. One such situation arises during the chyme
motion in the small intestine. The reflux in the context of biological fluid transport is
undesirable since it contributes to the migration of micro-organism in the opposite
direction to the peristaltic wave motion. Moreover, in the magnitude of non-
dimensional pressure produced by the wavy wall movement of the tube is linked with
the efficiency of the pumping and therefore needs to be reduced. Our results suggest
the following possible remedies to avoid trapping and reflux and to reduce the
pressure evolved by the wall movement. The first option is the imposition of the
electro-osmotic slip velocity which has already been proposed by previous researchers
(Chakraborty (2006), Dhinkaran et al. (2010), Ferras et al. (2014), Das and
Chakraborty (2006), Tripathi et al. (2016), Tripathi et al. (2018), Prakash and Tripathi
(2018) and Goswami et al. (2016)). This solution is universal in the sense that it
minimizes all three of the above-mentioned phenomena. The other possible way is to
enhance the shear-thinning nature of the fluid to be transported. Similarly, the
reduction in pressure and reflux can also be achieved by properly tuning the
rheological characteristics of the fluid controlled by the parameter ty. However, this

will happen at the cost of an increase in the trapping phenomenon.
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Fig. 3.10 ((a), (b)): The streamline plots showing the trapping for parameter § in core
region when @ = 0, k=04, u, =1,a=15,8 =2,¢,. = 0.75,Ug =0.
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Fig. 3.11 (a): The streamline plots showing for parameter § in peripheral region
when Q =4, k=04, =1,a=15,8=2,¢,. =0.75,Uz =0.
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Fig. 3.11 ((b) - (d): The streamline plots showing for parameter § in peripheral region
whenQ =4, k=04, =1,a=15,8=2,¢,. =0.75,Uz =0.
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Chapter 4

Peristaltic flow of Phan-Thien-Tanner fluid: Effects of

peripheral layer and electro-osmotic force

In chapter 4, we investigate the two-layer electro-osmotic peristaltic flow of Phan-
Thien-Tanner (PTT) fluid in a flexible cylindrical tube. The core (inner) layer fluid
satisfies the constitutive equation of PTT fluid model and peripheral (outer) layer is
characterized as a Newtonian fluid. For each region, the two-dimensional
conservation equations for mass and momentum with electro-osmotic body forces are
transformed from the fixed frame to the moving frame of reference. These equations
are further modified by invoking the constraints of long wavelength and low Reynolds
number. Closed form expressions for velocity and stream function are derived and
then employed to investigate the pressure variations, trapping, interface region and
reflux for a variety of the involved parameters. The analysis reveals that the trapping
and reflux can be restrained by appropriately tuning the electro-kinetic slip parameter
and Deborah number. Further, the pumping efficacy can also been improved by
adjusting the rheological and the electro-kinetic effects. These results may be helpful

for improving the performance of the microfluidic peristaltic pump.

4.1 Basic equations
The constitutive equations for the Phan-Thien-Tanner (PTT) fluid model are (Oliveira

and Pinho (1999), Hayat et al. (2010) and Ferras et al. (2012)):

i
T=-pIl+8S,

3 f(1r(S))S+x8Y =2uD, 4.1)

s’ =%+(V.V)S—S(VV)T -(VV)s.

where p be the pressure, x is the relaxation time, S is an extra-stress tensor, D is the

deformation rate tensor, #ris the trace, Iis the identity tensor,S" is the Oldroyd’s
upper-convected derivative, Tis the Cauchy stress tensor and uis the dynamic

viscosity. The function f is defined as
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Linearized PTT (LPTT): £ (tr(S))S =1+2=(1x(S)), @.2)
Y7

Exponential PTT (EPTT): f(tr(S))S =exp(£5—(tr(S))). “4.3)

4.2 Problem formulation and its solution

The physical sketch of the problem under consideration is shown in Fig. (4.1). It
describes the flow of a bio-fluid due to combined action of the electro-osmotic force
and the peristaltic movement of the tube wall. Two distinct regions can be identified
inside the tube; the region adjacent to the wall of tube is outer or peripheral region and
the central core is inner or core region. The charged surface of the tube is neutralized
through equal and opposite ions in the polar liquid inside the tube. The charged
surface attracts the opposite ion in the polar fluid and form a layer near the wall and at
the same time repels the co-ions. “The thin layer of immobile counter-ion covering
the inner side of the wall is known as Stern layer”. A thicker layer of moving counter-
ions, known as a diffuse layer, is formed next to the Stern layer. The combination of
both “Stern layer and thicker layer is known as electric double layer (EDL)”. Now,
when a DC potential difference is applied along the axis at the inlet and outlet, an
electric field is produced that exerts a body force on the opposite ions of the EDL and
as a result of which EDL moves along the channel dragging the neutral core. In the
next to come, our aim is to compute the flow fluid generated by both electro-kinetic

body force and peristaltic movement of the wall.

Q’Iﬂ i "5'":’;»%‘5‘3’1:% 3551 PP
RQEBRESFLEA Baes:

Fig. 4.1: Geometry of the flow problem.
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The basic equations necessary to formulate the flow problem are same as the Eq. (3.1)
and Eq. (3.2). For axisymmetric incompressible flow in the tube, it is appropriate to
define the velocity vector as Eq. (3.5). The transformations of the frames from fixed
to wave frames are given as Eq. (3.12) and the dimensionless quantities are defined as
Eq. (3.13). To simplify the electro-osmotic body force term we follow the same line
of action is adopted as provided in the chapter 3. The components forms of the
governing equations in two different regions (core and peripheral regions) after the
dimensionless treatment are given as:

Core region:

1o(ru) ow. o @.4)
r or 0z
5’| 6Re| u, a“"+wc%) N la(rS”)+&’Sﬂ _ S , (4.5)
i or 0z o |\r or 0z r
o’ 5Re(uC aw”+wc awc) =—§B+ la(rS") +€N‘U’UE Lo (4. 6)
i or 0z Oz r or €
(é'uc g +ow, %)MS,, - 5
f(tr(S)),u]S,,+DeJ 5 =2,u]§5(uc), 4.7)
z[ag(uc);ﬁsﬁaz_(uc)ylsﬂ]
0 6) ow
(5uc—+5wc WS, = —=S,
S (e (S)) S, + De r = o (52 %+a—w—)
-(5%+5%) s, —&u, Fe s = o
oz o )0 T O
(4.8)
(5uc ai +5wc Ea-)lulSrB _5(uc)lu]Sr0 -
F(tr(S)) 48,4 + De " ’ =0, 4.9)
3 Ou
ou,—=S,,-dou, 6zc S,

F(17(S)) 14Sp + De {(&tc -éar- +0w, %)MSW - 2§(uCU),u]Sw} =2u,6u,, (4.10)
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(5uc-§—r+5wc ';)MSE -2uS,, (ZC) o
F(r(S))S,, + De § = 462, (411)
ow, 0z
2408, | =
0z
Linearized PTT : f (tr(S)) =1+b(S,),
4.12)

Exponential PTT : f (tr (S)) =exp(b(S.,))-
Peripheral region:
10(ruy) owy _ (4.13)
r Or 0z
5? 5Re(uN%+wN%) _ & 4|(12S,) , &S, | S | (4.14)

i or 0z o |\r or 0z r

i ow ow op |(10(rS.))| enU,
5| SR — — ===+ - = NP g 4.15

] e(””ar”“” az)] az+|:r [T e P @D

Ou Ou, Ow u ow

S =2uo—L,8S =8 =p|8—H+—L|,8S,=pus-L,S. =2u5—",
ld M, o rz zr Iur( oz + or ) 66 H, r zz H, &z
Sr9 =S0r =S€: =S:6 =0. (4]6)

The subscripts ¢, N are used to differentiate between the core and peripheral region.

U, =/, is the viscosity ratio between two-regions. The parameter De is the

Deborah number and is a measure of the elasticity in the fluid. On the other hand the
parameter ¢ is the measure of the extensional property of the fluid. It is evident that
variations of De have stronger impact than similar variations of ¢ because of the
manner in which both parameters appear in the analysis. The combine effects of ¢
and De can be felt via a single parameter b = £!/2 De which gives a measure of both
elastic and extensional properties of the fluid. At this stage, we make use of long
wavelength (6 « 1) and low Reynolds number (Re « 1) constraints to get the

following equations for each region.

Core region:
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0z r or € @17
0=_%
or
(1+55,)S, =("’Wc),
or
. ) ow
Linearized PTT: < (1+szz)Szz = 2De( arc JS"’ (4.18)
Srr =S50 =SzH =Sr6' =O’
' ow
2bS_)S.=| —= |,
exp(2bS.)S.. ( 5 )
: ow,
Exponential PTT: exp(2szz)Szz = 2De( ar“ )Sm, (4.19)
Srr :S60 =Szt9 =Sr€ =0’

where U, =—6,E_[wUis the electro-kinetic slip velocity, ¢ ande, stand for

dielectric constants corresponding to inner and outer regions, respectively.

Peripheral region:

' S
O:-a_p‘{'l:[la(r n)):|+U[,£,:—peN5
Oz r or : €y
ap
0=——, 4.20
" o (420)
ow
S = N
rz /’tr( ar)

\

From set of equations (4.18) and (4.19), a simple manipulation gives

Linearized PIT : (1+bS2,_ )S,, =—<,
T or
. 2 aW
Exponential PT1 :exp(2bS ,Z)S'z = arc )

4.21)

4

The appropriate dimensionless boundary conditions for the model under consideration

arc:
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ow

[4

=0,atr =0; (symmetry at the centerline) 4.22)

w,=w, and (S.), =(S,.), at r=R,; ( continuity of shear stress and velocity of the

fluid at the interface) (4.23)

w, =—1 atr = R,; (no-slip condition at the wall) (4.24)
From the equations (4.17) and (4.20), we drop the electro-osmotic body force term by
incorporating the well-known artifice from the electro-kinetic literature. Through this
artifice the plug velocity of electro-osmotic flow can be equivalently achieved either
by taking into account the body force term in the momentum equation or observing
the effects of this term in the boundary in the form of slip condition based on electro-
osmotic slip velocity. In our problem, we shall drop the electro-osmotic body force
term from the momentum equation with an appropriate simplification of no-slip
boundary condition at the wall. This process is already used by Goswami et al.
(2016). In this way, our problem is now governed by the following equations and
boundary conditions.

From here onward, we shall follow the approach of Goswami et al. (2016) and drop
the electro-osmotic body force term form the momentum in favor of suitable
modification of no-slip boundary condition at the wall. In this way, our problem is

now governed by the following equations and boundary conditions.

Core region:
z |\ or (4.25)
0=-2.
or
Linearized PTT:(1+bS2,z)S,z _ o, ,
or . (4.26)
Exponential PTT :exp(2bS2,,)S,z =—,
: or
M _0atr=0. 4.27)
or

Peripheral region:
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]
O :——-{-l:(lM]],
oz r or
lo=-2
= (4.28)
ow
S = N
(2]
% =0,atr =0,
" (4.29)

w, =U, -latr=R,.

In order to adopt stream function formulation, it is appropriate to define

_a_‘//_,w=__1__‘?£’_, (4.30)
oz r Or

Uu=

where " is the stream function in the moving frame and it is associated to its

2
counterpart in the fixed frame according to the relationy =y° —12-. Employing the

definition of stream function, equations and boundary condition governing the flow

read
3
Linearized PTT: _6_(16_1//)=£6_p+2(6_p) r ,0<r<R 4.31)
or\r or 20z 4\ oz
2
Exponential PTT: é(la—)=exp é(@_p) r rop ,0<r<R (4.32)
or\r or 2\ 0z 20r
op 10 0 (1 ay/)
o A i} s o R <r< 4.33
oz ror fadrm e <rsk (*+33)
o(1oy
=0, —| ——— |=0atr =0, 4.34
v 8r(r 8r) ar (434)
0
-4, L (U, -1)R,atr =k, (4.35)
-4 -R
W= 2,atr— . (4.36)
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In above equations g and g, stand for volume flow rate over the outer and the inner

cross-section, respectively. Solving Egs. (4.31) - (4.33) subject to the boundary

conditions (4.34) and (4.35), the stream function for each region appears as
For linearized PTT model:

r (v —1)+i > [ ~3R ]+—— {r2—2R2}+i{R2-R02} 0<r<R
L) > E 43 ; | P 1 Vs |

ﬁz-(UE —1)+(%—(UE -1)£)+L@(r2 —R02)2.R1 <r<R,

2 2 ) 4p &
4.37)
For exponential PTT model
p
1 dp(,2 2
Up -1)+——(R* -
(0 1)+ i 2 (7 -)
2
5 2 2 2
: 2eepr_p |+ L 1 op op Rl2 ,0<r<R
») % | \a Rk el iy
V=18 X g &z
o %
2 2
r q R 1 dpra .2\
U -1)+| L-{Up 1) 2 |+ —Z(F* - R <r<
R R R v T R
(4.38)

From the above expressions and Eq. (4.30), the axial velocity corresponding to inner

and outer region for both linearized and exponential PTT fluid models becomes

For linearized PTT model:

o) (UE—1)+% kd D“—R{‘]&%({ R}+L{R RO})0<r<R1
wlr,z) =1 oz
1 op

L(UE —1)+ma(r -R, )R1 <r<R,

(4.39)

For exponential PTT model:
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2 2
! 2_6£ exp| exp| b| — | ——expd a_p R
p) # & &z
bl —
0Oz
w(r,z)=s+(UE ~1)+ 1 @{RIZ—ROZ},OSrSR] (4. 40)
4y, Oz

The function characterizing wall deformation in dimensionless is

R,(z)=1+4, sin (27z), (4.41)
where ¢ is the occlusion parameter.

The solution of the considered problem is still incomplete because of two unknowns

R and Op/0z appearing in the Eq. (4.37) and (4.38). In order to obtain these

unknowns, a semi-analytical approach Goswami et al. (2016) is used. Invoking the

boundary condition (4. 36) yields

R? 2 1 9
AR G e - LR A

In order to eliminate the g,, weset R, =land R =katz=0 in Eq. (4.42), to get

k2 1 1
L0040 05 g () e

Eliminating g, from Eqgs. (4.42) and (4.43), we get

2 2
A L A L FR ) R
Hr (4.44)

4y R, 1P pe_p2y
[(5 (UE ]) 2j+16,u, <9Z(R1 RO))’

where k is the inner layer thickness measured at z = 0 from the boundary wall and

Py = (3p/02z)|,=¢. In this way, q, is replaced by another unknown P,. Now, there are
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three unknown to be determined i.e., Py, R, and dp/dz. However, there is only one
condition available, i.e., Eq. (4.44). The other two conditions can be furnished as
follow: Since the stream function given by the Egs. (4.37) and (4.38) for both regions,

must be same at the interface, therefore, the following equation emerges.

Linearized PTT:
3
g
oL R+ L Ppe, 1 ap(Ro R4)+——(U -1)R° =0, (4.45)
Pe 16 0z 16y, oz
Exponential PTT:

map/az’:GXp(b(ap/azf%_l/b(ap/az)zjjl+%—(UE —1)%+
1 op

I@E<R"4_R‘4)=O’

(4.46)

Setting R) =land R =katz=0, the above expressions become

Linearized PTT: 2 P3¢ 4+ L Pk"+—1—P(1—k“) ——(UE “)i=0. @447
48°°7 16 164, 2
2 R2
Exponential PTT: b(PO) (4.48)
q
2(U, -1)= 1-k*! =0,
(U, =)ok -

Eqs. (4.44) - (4.48) are solved numerically using the bisection technique at each axial
station z to obtain the values of Py, R;,dp/ dz for both linearized and exponential
PTT fluid models. Mathematica 8.1 has been used for producing the numerical
results. It is mentioned that analytic treatment of Eqs. (4.45) and (4.47) is possible for
LPTT model and one has to deal numerically only with Eq. (4.44). In contrast no such
liberty is available for EPTT model and therefore all three Eqgs. (4.44), (4.46) and (4.
44) must be solved numerically.

The interface polynomial for limiting case, that is, the fluids in the both regions are

Newtonian, can be obtained by taking b = 0 in above expressions as:
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4.3 Results and discussions

4.3.1 Analysis of interface region

The parameter b is the measure of non-Newtonian shear-thinning behavior of the core
region fluid. Greater values of this parameter correspond to the enhanced shear-
thinning effects of the inner (core) region fluid. The parameter y, is the ratio of the
viscosity of the outer (peripheral) region and the core region. Three cases arise
depending on the values of .. The situation when the viscosity of the inner (core)
region exceeds the viscosity of the outer (peripheral) region is represented by
taking ¢4, < 1. When both regions have equal viscosities then y, = 1. Similarly, u, >
1 corresponds to the situation when the viscosity of the outer (peripheral) region
exceeds the viscosity of the inner (core) region. The remaining important parameter in
the problem is denoted by Uy and is known as electro-kinetic slip velocity. Naturally,
cach of the above mentioned parameters affect the interface shape, pumping
characteristics, trapping and reflux. In order to quantify such effects, Figs. (4.2(a - ¢))
are prepared. Fig. (4.2(a - ¢)) shows that an increase in the viscosity ratio leads to an
increase in the vertical force experienced by the peripheral fluid in upper level or
(wave crest) region. Further, the peripheral fluid in the trough region experience is an
increased vertically downward force with increasing the viscosity ratio. In such an
arrangement the interface curves for y, < 1 and Ur =1 lies in between the interface
curves for u, <1 and p, > 1. In contrast, the peripheral fluid in the crest region
experience is an increased vertically downward force with increasing the electro-
kinetic slip velocity. While the peripheral fluid in the trough region is acted upon an
increased upward force with increasing the electro-kinetic slip velocity. A similar
variation in the interface is noted with increasing the parameter b as observed with
raising the parameter u,. However, the peripheral fluid in the crest region is less
sensitive to an increase in the parameter b in comparison to the peripheral fluid in the
trough region for which the effects of b are much prounced. As a result the interface
curves for b = 4 shows larger deviation from the corresponding interfacial curves for
b =0.1. Such a deviation is attributed to enhance shear-thinning in viscosity for
larger values of the parameter b and the greater deformation gradients in the trough
region,

A comparison between the predictions of the linear PTT model and the exponential

PTT model is presented in Fig. (4.3(a - ¢)). It is observed that the results of both
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models are in excellent correlation for smaller values of the parameter b. However,
the deviation between the results of both models amplifies as the parameter b

increases. Therefore, we have presented the subsequent results only for EPTT model.

4.3.2 Pressure expression and graphical discussion

From Eq. (3.44), the expression of pressure gradient dp/0z in the tube is given by

op __ 16y, 1 _ 2_p2 2 1 2 1\
5_(R12_R02)2{2(UE N+ -& +R0)+16ﬂ Bk 1)} (4.49)

r

The change in pressure rise across one wavelength is obtained by integrating the

above expression as follows

2 (%(UE -1)(k2-R12+R02)+1 6Lr PO(kZ—l)z]

Ap=164, _([ (- Roz)z

The volume flux in moving and fixed frame of references are linked through with the

az. (4.50)

following expression

O =2T(w+1)rdr=q+R02. (4.51)
0
The above expression after time-averaging over a complete period gives
1 Ty ¢2
=— | Q,dt=q+|1+Z |, 4.52
0=7 { O;di=q ( 2) (4.52)

where T, is a complete period.
The integration in Eq. (4.50) is performed numerically and the profiles of pressure

rise per wavelength at zero volumetric flow rate, i.e., AR, =AP|,, against the

occlusion parameter are demonstrated in Fig. (4.4(a, b)). Special attention is given to
seek the influence of the key parameters such as electro-kinetic slip velocity U,
viscosity ratio u,, and the rheological parameter b on the pressure rise at zero volume
flow rate. It is observed that both electro-kinetic slip velocity (Ug) and viscosity
ratio (4,) amplify the pressure rise at zero volume flow rate. The amplification with
raising Ug is maximum at lower occlusion values and least when occlusion parameter

approaches unity. On the other hand, increase in AF, with increasing u,. is observed

over the entire range of occlusion parameter. Contrary to effects of Ug and p,, an
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increase in the fluid rheological parameter b causes a decrement in the pressure
required to evolve zero volume flow rate. Again, this decrease is a consequence of

enhanced shear-thinning in viscosity of fluid in the core region for larger values of b.

4.3.3 Trapping phenomenon
Trapping corresponds to the formation of eddying regions in the flow domain. Such
regions enclose a volume of fluid which is usually known bolus in the literature .The
bolus is transported along the tube via the peristaltic activity with the speed of wave.
Its formation is linked with the bulk momentum of the flow. The zones of low bulk
momentum are more vulnerable to the bolus formation in comparison to the region
where bulk movement is high. Figs. (4.5(a - d) - 4.9(a, b)) illustrates the effects of
electro-kinetic slip velocity on the trapped bolus in both core and peripheral region. It
is evident that trapped bolus reduces in size and eventually vanishes with raising the
electro-kinetic slip velocity. In contrast, raising the parameter b results in an increase
in size and circulation of the trapped bolus. Similar results are obtained with
increasing the viscosity ratio p,. Another important aspect is to find the trapping limit
on the normalized volume flow rate for a given set of the involved parameters. To do

so, we have plotted the normalized volume flow rate Q/Q, _, against the occlusion

parameter for several values of b and Ug. In fact, the values of stream function lies

between 0 and O where =0 is the center streamline while ¥ =( represents the

boundary wall. In order to obtain the pair (¢OC,Q/ QAP:O), the first step is to locate a

sub-region in the flow domain {O <4, <1:0<Q9/Q, < 1} where the stream function
w changes its sign from negative to positive. In the next step, a suitable iterative
technique is used to evaluate the exact value of the pair (¢M,Q/ QAP:O) at which the

transition occurs. The region above a specific curve in each figure is the region of
trapping. It is observed that trapping region expands with increasing the parameter b

while it narrows down with enhancing the electro-kinetic slip velocity.

4.3.4 Reflux
The phenomenon which estimates the net flow of fluid in a complete wave cycle is
known as reflux. It happens due to an unfavorable pressure gradient across the tube or
backward motion of the fluid elements within the tube. The reflux phenomena in both

regions is strongly dependent on the involved parameters, such as, electro-kinetic slip
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velocity, viscosity ratio and b. In the earlier analyses Brasseur et al. (1987) estimated

the amount of reflux through the quantity (Q—QW) / Q during a wave cycle, where

Q, is given by the relation Rao and Mishra (2004)
1

9,= 21//+J‘r2dz. (4. 53)
0

Expression (4.53) arises as a consequence of transforming the expression

r(y'z)
Q,=2 I rwdr from the fixed frame to the wave frame and then averaging over one
0

period of wave. The quantity 0, is the average volumetric flow rate between the axis

of the tube and a streamline y'=constantin the fixed frame. The quantity

(Q—QW)/Q is such that 1<(Q—QW)/Q<O because 0 <Q, /Q <1. However, it may

happen that Q, /O takes values greater than unity from some values ofy' thereby

indicating that there is some sort of backward motion or reflux in the flow domain.
Fig. (4.10(a, b)) shows that reflux is enhanced by increasing the parameter b while it

reduces with the increase in electro-kinetic slip velocity.

4.4 Deductions

In this chapter, we study the electro-osmotic peristaltic flow of PTT fluid model in
contact with the Newtonian in a tube. The governing equations are simplified by using
well known approximations of long wave length and low Reynolds number. The main
focus of this study is to highlight the effects of electro-kinetic slip velocity and PTT
model parameters on pressure rise per wavelength, interface region, trapping and
reflux phenomena. The information about these phenomena is important for both
physiological and industrial application of peristaltic transport. Our study reveals that
both trapping and reflux can be controlled either by increasing the strength of the
applied electric field or by exploiting the viscoelastic and extensional characteristics
of the core region fluid. In fact, it turns out that in order avoid trapping and reflux the
non-dimensional number b which provides a measure of both the extensional
(measured by ¢ ) and the elastic (measured by De) characteristics of the core fluid
must be kept small. This observation also advocates carrying out a complete
rheological characterization of the material in the core region. In contrast, the

efficiency of the pumping can be improved by taking the lower values of the non-
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dimensional group b associated with the core region fluid or by regulating the strength

of the applied electric field.
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Fig. 4.5 (a): The streamline behavior in the core region whenk = 0.4,b = 0.1, 4, =
10, ¢, = 0.75,Q = 0.
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Fig. 4.5 ((b) — (d)): The streamline behavior in the core region whenk = 0.4,b =
0.1, 4, = 10,¢,. = 0.75,0Q = 0.
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Fig. 4.6 ((a) — (c)): The streamline behavior in the peripheral region when k =
0.8,b = 0.1,y = 1,y = 0.75,Q = 4.
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Fig. 4.6 (d): The streamline behavior in the peripheral region whenk = 0.8,b =
0.1, u, = 1,¢o. = 0.75,Q = 4.
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Fig. 4.7 ((a), (b)): Effect of » on trapping when k = 0.4, 4, = 0.1, ¢, = 0.6,0 =
0.6,Ug = 0.
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Fig. 4.7 ((¢), (d)): Effect of b on trapping whenk = 0.4, u, = 0.1, ¢, = 0.6,Q =
0.6,Ug = 0.
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Fig. 4.8 (a): The trapping phenomenon for viscosity ratio when k= 0.4,b =

0.1,¢,.=0.75,Q = 0.1,Ug = 0.
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Fig. 4.8 ((b) — (d)): The trapping phenomenon for viscosity ratio when k = 0.4,b =
0.1,¢,. =0.75,Q =0.1,Us = 0.
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Chapter 5

An analysis of two-layered electro-osmotic peristaltic

flow of FENE-P fluid in an axisymmetric tube

In this chapter 5 we presented the theoretical analysis of two-dimensional peristaltic
transport of two-fluids in a flexible tube under the influence of electro-osmotic force.
The flow domain is composed of two regions, namely, the core region and the
peripheral region. The Newtonian and the FENE-P models are used to describe the
rheology of fluids in the peripheral and the core regions, respectively. Governing flow
equations corresponding to each region are developed under the assumption of long
wavelength and low-Reynolds number. The interface between the two regions is
computed numerically by employing a system of non-linear algebraic equations.
Influence of relevant controlling parameters on pressure gradient, interface, trapping
and reflux are highlighted graphically and explained in detail. Special consideration is
given to estimate the influence of viscoelastic parameter of the core region fluid in the
presence of electro-osmotic environment. Our investigation indicates an augmentation
in the pressure loss at zero volumetric flow rate with growing the viscoelastic and
occlusion parameters. Moreover, trapping, reflux and pumping efficiency are found to
increase with raising the electro-osmotic and viscoelastic parameters. The analysis
presented here may be helpful in controlling the micro-vascular transport through the
fractionation of blood into plasma and erythrocytes. This study may also have
potential applications in areas like electrophoresis, hematology, design and

improvement of bio-mimetic electro-osmotic pumps.

5.1 Problem description

Consider the flow of an incompressible FENE-P fluid through a flexible tube of un-
deformed radius r; due to combined action of the peristaltic wall movement and
electro-osmotic force (see Fig. 5. 1). The region within the tube is categorized as core
and peripheral regions. Fluid present in the central region is described by the FENE-P

model while the peripheral region fluid is assumed as a Newtonian fluid. The electro-
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osmotic mechanism work in the following manner. The negatively charged surface of
the tube wall attracts the opposite ions (cations) from the ionized solution in the
peripheral region and at the same time repels the same charge ions (co-ions). Due to
this repulsion and attraction two types of layers generated are Stern layer and
diffusion layer and the combination of both these layers is called electric double layer
(EDL). The motion of the counter-ions of the EDL is achieved through the application
of the DC potential difference between the two electrodes at inlet and outlet of the
tube. This motion results in the dragging of the remaining fluid in the tube. Apart
from that the superimposed peristaltic wall movement is also present and described by

the equation
Ry(z,t) =1y + agsin (27” (z- Ut)) 5.1

where 4, 15, agand U are the wavelength, undeform radius, amplitude and speed of
the wave. In the next section, we present mathematical modeling of the flow produced

by both electro-osmotic and peristaltic mechanisms.

Core region
Ry(2,t) (PENE-P fluid)

Peripheral region
(Newtonian)

Fig. 5. 1: Geometry of the problem and coordinate system.

5.2 Mathematical formulation

The vectorial form of the continuity and momentum equations are same as Eq. (3.1)
and Eq. (3.2). Basic constitutive equations of the FENE-P fluid model are Ali and
Asghar (2014)

T=-pl+S, (5.2)

Y(tr(S))S+4, S=2auD, (5.3)
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v
S =%f:+(v.v)s—s(vv)T —(VV)S, 0<r<R (1),
where ﬂp be the relaxation time, D be the rate of strain tensor and S is the deviatoric

stress of FENE-P fluid. The function | is defined as

A
3a+-L (tr (S))
Y,(tr(S))=1+——'uL2——, (5:4)
where 4is the model parameter defined in terms of the extensibility parameter L as
1
a=—-.
1-3/1

The expression of stress tensor for the peripheral region (R, (Z,t) <r<R, (z,t )) is
T=-pIl+S, (5.5)
where S=21,D (5.6)

The velocity profile for an incompressible flow in an axisymmetric tube is given as in
Eq. (3.5). We perform our analysis in the wave frame of reference, which is related to
the laboratory frame of reference via relations as Eq. (3.12).

The continuity and momentum equations in moving frame of reference can be written

as
éa(r—)+—5_” =0, 5.7)
¥ or oz

_on _om) op |10(FS+) 85, S

— W |2 ————+ ———— ,
oL 7 Y zj or |r or & 7| ©.8)

oW _ow) op 15(7§rz) 08z | =

—+W—|=——+|= +F,. .9
- waz—] z |F o e ©-9)

Under the action of external axial electric fieldE=(0,0,E,), the fluid undergoes a
body force given as Hunter (1981).

F =pEX, (5.10)
where Kk is the unit vector in the axial direction and P, be the total ionic charge

density, which is associated to the electric potential ¢ through the equation

Vg =-p,/e, (.11)

in which ¢ is the permittivity of the medium. For symmetric electrolyte solution, the
total ionic distribution g, is defined as g, = ez(i* — fi™). Further, the order pairs

(Pen»€n) and (B, £.) respectively denote the ionic charge density and permittivity of
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the fluid in peripheral and core regions. To simplify the Eq. (5.11) for electric

potential, the rest of the subsequent analysis is same as mention in the chapter 3.

Now introducing the dimensionless variables

gl 0T e B W OUssh
%, A (6U) U r, A
AU . ez -
g0l e pe Yy o B g
mU ty 7 ky mU
n*—ﬁ _9% ._roszT,T)e
n Rt ezgy

g (5.12)

where Reis the Reynold number, De be the Deborah number and § is the wave

number.

Applying the long wavelength (§ « 1) and low Reynolds number (Re « 1)

approximations, Eqs. (5.7) — (5.9) for both regions (core and peripheral) become

(dropping asterisk)

Core region

__p |[19(rS.) b
0= 82+I:(r or )]+UE £, Pecs

__

or’

( ow

Y S_.=2D £S .,

l(tr(s)) i e— S,

ow,

<Yl(tr(s))l S. =a o

Srr=S6’t9= r0=S€:=0

Peripheral region

0=-@+K1MH+UE#,PM,

Oz r Or
lo-_2.
or
ow
S = —
o)
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where, Up = —yk;TE, [Uezp, is the electro-kinetic slip velocity, &,(= &y /€,)is the

permittivity ratio and K4, (= I / /11) is the ratio of viscosities.

Solving and simplifying the system (5.17) gives

2De* (S .2
1+_2(2_ﬂ) s = (5.16)
al or

The dimensionless boundary conditions are defined as

v,

=0,atr =0; (central line symmetry)

W, =Wy and (S,), =(S,,), at 7 =R;; (continuity of velocity and shear stresses at the

interface)
Wy ==1 atr = R;; (no-slip condition) .

From now onward, we omit the body force term from the governing equations by
invoking a well-established assumption from the electro-osmotic studies. According
to this assumption, the velocity of the plug-core region in electro-kinetic transport
may be equivalently obtained either by considering the body force term in the
equation of motion or shifting its contribution in the boundary at the wall. Therefore,
we drop the electro-kinetic term from the equation of motion by properly moditying
the no-slip condition at the boundary. This approach is already used by Goswami et al
(2016). There the authors have thoroughly discussed the validity of this assumption.
According to their discussion, which is supported by several previous studies from
electro-osmotic flows, this assumption is valid under thin Debye-layer and weak

electric field limit. Thus, our flow problem is governed as:

In core region

Oz_gp_+ (lM) ,
oz r or (5.17)

0.
or
2De’(S,.?) ow
1 S ===, 5.18
( * a’l’ = or (5.18)
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o, =0,atr =0,
or

In peripheral region

oz r Oor
<0 =—a—p,
or
Srz =:ur (%)'
or
|
% =0,atr =0;
or

w, =U,~latr=R,.

(5.19)

(5.20)

(5.21)

The velocity components in term of stream function are defined by the Cauchy-

Riemann equations as Eq. (3.40). In the presence of the relation of the stream function

as Eq. (3.40) the momentum equations in the core and peripheral regions become and

boundary condition are emerge as:

(5.22)

(5.23)

(5.24)

(5.25)

(5.26)

Integrating Eqs. (5.22) and (5.23) and invoking the boundary conditions (5.24) and

(5.25) yield
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-r; (UE —1)+_ﬂ— @ [r4—3R]4:|+%%§({r2—2R12}+1{R12—R02}) 0<r<R

2 2
%(UE -1) (L(UE -1)1%}16; %(rz —1&02)2,1%l <r<

(5.27)

where f= Dez/ 16a°L is the viscoelastic parameter which is affected by extensibility of
fluid and relaxation time. From Eq. (5.27), the velocity components for inner

(0 <r< Rl) and outer (R <r < Ro) regions become

3
(g -1)+ﬁ(§) [ -R{‘]&%p({/ -R12}+L{R12 —Roz}),o Sr<R

(g —1)+i%p(r2 ~R)-R <r<Ry
¥

w(r,z)=<

\

(5.28)
The dimensionless equation describing the wall deformation is

R,(z)=1+4,.sin(27z). (5.29)

In order to evaluate R, and gp/az, a semi-analytical technique is considered Goswami

et al. (2016). Using the boundary condition (5.26), the second equation in (5.27) gives

& (U ~1)+ (——(U -1)R°) 161;1 ZIZ)(RZ—ROZ)Z. (5.30)

In order to find g;, we set R = kand Ry = latz =0. Thus, Eq. (5.30) becomes

LB, )+ (-0, -0 oA (8- 31

where, Py = (0p/02)|,=¢. Then eliminating ¢, from Egs. (5.30) and (5.31) yields

K R?

—(U; -1)+ = (U; -1+

A SR FA e
[£-we-ng)) " (-0

Now, there are three unknown in Eq. (5.32) i.e., Py, R, and dp/dz. For a unique

solution there must be three equations connecting these unknowns. The other two
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equations can be easily developed since the stream function specified by the
expression (5.27) for both regions must be same at the interface. Employing this

continuity condition yields

3

Bl P g LPpa, 1 P 4 —1R°— 5.33
3 :3; R]+1662R1 16,u, az(R" R)+ ~(U:-1) 0 33

Setting R = k andR(, =latz =0, the above expression becomes

IB 6 44 1 4\, 9 1
—k')+1-(U, -1)==0.
3 L Pk +16Pk 16/4,}3(1 k)+2 (U, )2 (5.34)
From Eq. (5.35), we get
d__tou |l _ -
- 2)Z{Z(UE (k- R} +R0) 6, B (K 1)} (5.35)

substituting gp/dz from (5.34) into (5.33) gives

g[_lq“_rz_z{%(UE—l)(kz—Rf+Roz) L _p(e-1) }]R

(R]2+R0 ) 164,
(s 1 2 2 2 1 2 2 4
+ ——(Rzl—lRoz)z {E(UE_I)(k -R"+R, )+16ﬂr Po(k —1)} R (5.36)

, %{%(UE—I)(H R R - 1)} (R -RY)+

(R*-R)

‘Z“(UE“)RO =0

164

Eqgs. (5.34) and (5.36) are solved numerically by employing bisection method to
obtain the values of Py, R;. The numerical value of pressure gradient follows from Eq.

(5.36).

5.3 Results and graphical discussions

5.3.1 Analysis of interface
The numerical calculations for Py, R; and dp/0dz based on bisection technique are
carried out by using symbolic software Mathematica 8.1 at each axial position z. The
physical interpretation of our results is facilitated through graphs which show the

variations of interface with respect to the emerging parameters S, u,, Ug in Fig. (5.2(a
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- d)). The parameter § characterizes the effect of viscoelastic nature of the core region
fluid whereas Uy estimates the effect of electro-kinetic slip velocity. Larger values of
B correspond to enhanced viscoelastic effects manifested by the core region fluid
while higher values of Ug (larger slip velocity) represent the situation of intense
movement of counter-ions in the EDL. The parameter u, which the ratio of
viscosities corresponding to the core and peripheral regions can be used to identify
three scenarios: g, = 1 represents the scenario in which fluid viscosities in both
regions are equal, u, < 1 is the case in which the viscosity of central region fluid is
greater than the outer layer fluid and , > 1 corresponds to situation in which a
lower viscosity fluid is surrounded by a higher viscosity fluid. In most of the real
physiological flows, the fluid in peripheral region has smaller viscosity than that of
the core region. But for the sake of completeness, both situations are highlighted in
Fig. (5.2(a)). Generally, the core layer fluid in the crest portion pushes the peripheral
layer fluid with normal force acting in the upward direction while the outer layer fluid
pushes the inner layer fluid with a normal force in downward direction. This situation
resembles with that a couple to some extent. However, the magnitude of upward
normal force is not equal to the magnitude of downward normal force. Hence, the
interface though similar in shape to that of boundary wall is not symmetric for all
three situations. These results are in accordance with the results of Brasseur et al.
(1987) and Rao and Usha (1995). It is necessary to highlight that the present analysis
is not performed for a presumed interface shape as done by Shukla et al. (1980). In
fact, Shukla et al. (1980) assumed the interface shape according to the relation Ry «
R, which clearly indicates that R, is symmetric and known as a priori. However, this
assumption was subject to criticism by Brasseur et al. (1980). They argued that such a
deduction of the interface shape leads to violation of condition that mass must be
independently conserved in the peripheral layer and the core layer. Further, they
explicitly showed that the interface shape Ry « Ry of Shukla et al. (1980) is never
achieved for any choice of the involved parameters. Fig. (5.2(a)) further reveals that
the interface in the crest region for u, < 1 lies above the interface for s, = 1 and vice
versa. In contrast, a completely opposite trend prevails for u,. > 1. Fig. (5.2(b))
highlights the variations of interface with respect to electro-kinetic slip parameter Ug.
It is observed that the interface in the crest region slightly shift downward with

raising Ug. However a reverse trend is noted in the trough region. The variations of
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interface against viscoelastic parameter 8, which is the ratio of the Deborah number
De and the extensibility parameter L, are shown through Fig. (5.2(c)). Clearly, the
effects of the B is similar to the effect of y,. Fig. (5.2(d)) illustrates the variations in
interfaces for several parametric values of g, by settingp = 0,Ug = 0. This
corresponds to the situation, in which the core and peripheral regions are occupied by
Newtonian fluids of different viscosities and flow is purely peristaltic. The
computations for this scenario have been already reported by Rao and Usha (1995). In
order to validate present analysis, we have reproduce Fig. 2 of their paper in Fig.
(5.2(d)) through our numerical procedure and found that there is an excellent match
between both figures. This clearly testifies that our numerical procedure and all the

subsequent extended results are correct.

5.3.2 Pressure expression and results discussion

The solution of Eq. (5.38) gives us following expression for pressure gradient op/oz

in the tube
0 164, 1 1 .

By integrating the above equation over z from z=0to z= 4, gives
i (8;4, (U -1)(K* -R2+ R )+ B (K’ —1)2)
o (R?-R7)

dz . (5.38)

However, due to unavailability of analytical expression of P, and R, the above
expression do not give the analytical expression fordgp/adz. Infact, the numerical

values of Py and R; obtained from Eqs. (5.34) and (5.36) are used to obtain the

numerical values of gp/az from Eq. (5.37) at each cross section z. The numerical

values of AP follows through numerical integration as indicated in Eq. (5.38).
The relation between volume fluxes in wave and laboratory frame of references is

given by following equation

O =2T(w+1)rdr:q+R02. (5.39)
0

Time-averaging yields

0-L7o, dt=q+(l+¢—22), (5.40)
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where, 7, = /%] is a complete period.

Graphically, we visualize the pressure growth AR =AP|,_, against the ¢ocin Fig.

(5.3(a, b)) for distinct values of Ug, u,, and the FENE-P fluid model parameter. Fig.

(5.3(a)) depicts the combined effects of viscoelastic parameter and viscosity ratio on
AR . A progressive increase in AR is noted with raising the occlusion parameter¢oc.

In fact, with an increase in the value of occlusion parameter, the fluid is squeezed
through the trough region with greater velocity. To retain a zero volume flow rate
over one wavelength of the cylindrical tube, the fluid under crest impedes the motion
of the fluid in the trough portion by evolving a pressure gradient, which rises by
increasing the occlusion parameter. It is further observed that for a fixed value of
occlusion parameter, the pressure rise at zero flow rate increases with increasing the

viscosity ratio while a reverse trend prevails with increasing viscoelastic parameter.

Fig. (5.3(b)) demonstrates variations of pressure growth APl for several values of

electro-kinetic slip velocity Ug. The corresponding curve for Ug = 0 depicts the

situations when the pressure rise AF is only due to peristaltic activity. Further, an

increase in Ug results in an increase in API at smaller occlusions. However, opposite

trend is observed at larger occlusions. Thus, synchronization in peristaltic activity and

electro-osmotic phenomenon is observed at smaller occlusions.

5.3.3 Velocity profile
In this section, velocity distribution (5.33) is analyzed graphically for different
Ug, u-, and B. Fig. (5.4(a)) demonstrates the impact of electro-kinetic slip velocity on
the velocity profile. It is found that the velocity of fluid in the inner (core) region
increases for large values of the electro-kinetic slip velocity Ug. The same trend is
noted by varying the viscosity ratio Fig. (5.4(b)). The changes in the behavior of
velocity profile due to the variations of Deborah number and extensibility parameter
are depicted in Fig. (5.4(¢c)). An increment in the velocity of fluid at the center of the
tube is observed by increasing the Deborah number. While the flow accelerates with a
decrement in the extensibility parameter. The plug-flow situation is also visible at the
center of the tube (core region) for non-zero f§ only. For B = 0 there is no indication

of any such region which clearly shows that plug-flow situation is a typical
characteristic of FENE-P fluid.
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5.3.4 Mechanical efficiency

The machenical efficiency of pumping is defined as Rao and Usha (1995)
- QAP _ QAP
%f:f:ZRop%ldzdt AP(1+-¢;—2)—11'

(5.41)

where

L= [ R dz.
Physically it is defined as the ratio between average rate per wavelength at which
work is carried out by the movement of the fluid against a pressure rise and average
rate at which the peristaltic walls motion do work on the fluid Rao and Usha (1995).
Profiles of the mechanical efficiency (E) against ratio of time-averaged flow rate and

maximum average flow rate are shown in Fig. (5.5(a-d)) to highlight the impact of

emerging parameters at ¢oc =0.4. The change in mechanical efficiency with viscosity

ratio is illustrated in Fig. (5.5(a)). The mechanical efficiency grows by increasing the
viscosity ratio and this growth eventually becomes slower after a certain value of u,.
The influence of electro-kinetic slip velocity on mechanical efficiency is
demonstrated in Fig. (5.5(b)) wherein it is noted that the mechanical efficiency
increases with rise the value slip parameter. The variation in mechanical efficiency
with respect to viscoelastic parameter is illustrated in Fig. (5.5(c)). Here a progressive
growth in mechanical efficiency is observed with augmenting the viscoelastic
parameter. Fig. (5.5(d)) demonstrates the variations in mechanical efficiency for
several values of u, by setting B = 0,Uz = 0. Physically, this corresponds to the
situation in which both core and peripheral regions are occupied by Newtonian fluids
and there is not any electrokinetic body force. This scenario is already dealt by Rao
and Usha (1995). The values of u, assumed in Fig. (5.5(d)) are similar to those as
considered by Rao and Usha. It is clearly observed that our results agree well with the
results of Rao and Usha (1995). This trend again strongly supports the authenticity of

our analysis.

5.3.5 Trapping phenomenon
Streamlines play a vital role in fluid flow investigations. In peristaltic transport, the
phenomenon when closed streamlines are perceived, at certain values of embedded
parameters, is known as trapping. These closed streamlines enclose a quantity of fluid

that is termed as trapped bolus in the peristaltic literature. The size/area of such bolus
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is largely affected by the involved parameters. In order to have a better understanding
of this claim, Figs. (5.6(a - h) - 5.8(a - d)) are plotted to see the variations in
streamlines for several values of electro-kinetic slip parameter, viscosity ratio and
viscoelastic parameter. Fig. (5.6((a) — (h)) depicts the variation of electro-kinetic slip
parameter on the area of trapped bolus of fluid in both inner (core) and outer
(peripheral) regions of tube. It is noted that the area of trapped bolus reduces with
increasing the electro-kinetic slip velocity and the bolus finally disappears in both
outer (peripheral) and inner (core) regions for large slip velocities. In fact, increasing
the electro-kinetic slip velocity reduces the resistance within the fluid that opposes the
fluid flow. This ensures the transport of fluid with greater bulk momentum in the axial
directions and disappearing of the trapped bolus. Fig. (5.7(a - d)) reveals the
variations in the trapped bolus for different values of viscoelastic parameter. Here it is
noticed that the trapped bolus increases in size with increasing the viscoelastic
parameter. Fig. (5.8(a - d)) illustrates the influence of u, on the trapping region. A
prominent growth in the trapped bolus is observed with increasing the viscosity ratio.
For further understanding of trapping mechanism, we calculate the limits of the

involved parameter and point out the region where tapping phenomenon occurs. In
this context, we determine the sub-region in the domain (O <g,<1,0<0/0,, < 1)

in which the transition occurs in the values of ¥/ from negative to positive and then

use a suitable iterative scheme to locate the values of Q/ QAp=O and ¢oc at which this

change in sign appears Goswami et al. (2016). Finally, we plot Q/ QAP:O verses ¢oc for

several values of the emerging parameters. The region above a specific curve
corresponds to the trapping region. Fig. (5.9(a)) illustrates variations in the trapping
region for electro-osmotic slip velocity. A contraction in trapping region is observed
with growing values of electro-kinetic parameter. Fig. (5.9(b)) demonstrates the
variations in the trapping region for several values of viscoelastic parameter. It is

found that trapping region expands with growing the value of viscoelastic parameter.

5.3.6 Reflux
Reflux is important phenomenon in the peristaltic transport mechanism which occurs
due to movement of fluid particles against the flow direction or backward movement
of fluid particles inside the tube. The reflux phenomenon in peripheral and core

regions strongly depend on the emerging parameters such as viscoelastic parameter,
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viscosity ratio and electro-osmotic parameter. Following Brasseur et al. (1987), are

approximate the quantity of backward fluid or reflux from the ratio (Q—QV, ) /Q

throughout a wave cycle. Where Q, is obtained as

o, =2y +J'r2dz. (5.42)
0

The above equation is obtained by converting the following relation from wave frame

to fixed frame and averaging over one time period.

(y',2)
Qy,=2 I rwdr. (5.43)

1]

In (5. 43), Q,/,rrepresents average volumetric flow rate between the axis of tube and
the ' streamlines in the moving frame. Naturally, the ratio Q;, =0, /Q lies between 0

and 1 and hence the quantity (Q—QV, ) / Q must vary from 1 to 0. However, it may
happen that QV exceeds unity for some specific cases thereby indicating that there is

some kind of backflow or reflux in the tube. Fig. (5.10(a)) depicts the variations in Q:,

for different values of the viscoelastic parameters. This figure indicates that for large

extensibility parameter or for small of Deborah number, the reflux reduces. Fig.
(5.10(b)) presents the variations in Q;, for u, and electro-kinetic slip velocity. It is

noted that reflux is increased with increasing the viscosity ratio while an opposite

trend is observed when electro-kinetic slip velocity is increased.

5.4 Deductions

In the present study, we investigated the electro-osmotically modulated peristaltic
movement in an axisymmetric tube containing a two-fluid system. The governing
flow problem is simplified by incorporating the well-known assumptions of low
Reynolds number and long wavelength. Prime focus of this analysis is to study the
influence of electro-osmotic parameter and viscoelastic behavior of the fluid on
pressure, trapping, interface region, and reflux phenomena. Results are suggestive of
adjusting the emerging controlling parameters for avoiding the trapping and reflux.
Physiologically, trapping is undesirable because it causes thrombosis in blood vessels.
Further it can also cause undesirable chemical reactions in reactive fluids. In context

of biological fluids, the reflux is also unfavorable phenomenon because of its role in
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the migration of micro-organism against the direction of peristaltic movement. Our
findings show that it is possible to avoid both trapping and reflux by augmenting the
electro-kinetic slip velocity. The situation where it is required to enhance the trapping
and to avoid the reflux, one can use the other option i.e. the excitation of the

viscoelastic effects of the core region fluid.
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with the study of Rao and Usha (1995).
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Fig. 5.6 ((a), (b)): The streamlines variation in the core region for Uy when =
0.0001,Q = 0,k = 0.4, ¢,. = 0.75, u, = 10. '
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Fig. 5.6 ((c), (d)): The streamlines variation in the core region for Ug when B=
0.0001,Q = 0,k = 0.4, ¢, = 0.75, 4, = 10.
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Fig. 5.6 (e). The streamlines variation in the peripheral region when ¢4, = 0.75,Q =
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Fig. 5.6 ((f) — (h)). The streamlines variation in the peripheral region when ¢oc =
0.75,Q = 4,8 = 0.0001,p, =1,k = 0.8.
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Fig. 5.7 ((a) — (¢)): Variations in trapped bolus with respect to the viscoelastic
parameter B for Uz = 0,k = 0.4,¢,. = 0.75,4,, = 1.5,Q = 0.
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Fig. 5.7 (d): Variations in trapped bolus with respect to the viscoelastic parameter f
forUg =0,k = 04,¢,. = 0.75, 4, =15,Q =0.
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Fig. 5.8 ((a), (b)). Variations in trapped bolus with respect to the viscosity ratio for
k=04,Q=0,Uz=0,=0.0001,u =1, pyc = 0.75.
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reflux.

130



Chapter 6

Peristaltic flow of Rabinowitsch fluid in an axisymmetric
tube under the influence of electro-osmotic force

This chapter, provides the theoretical study of electro-osmotic peristaltic transport of
Rabinowitsch fluid in a cylindrical tube. We highlight the characteristics of the
Newtonian fluid in contact with non-Newtonian fluid under the effects of external
electric field. The fluid in the peripheral layer is taken as Newtonian while, the non-
Newtonian fluid located at the center region (core layer) of the tube is modeled as
Rabinowitsch model. Some physical restrictions such as approximations of long
wavelength and low Reynolds number, have been adopted to simplify the governing
equations in each region. The stream function expression for both peripheral and core
layers are obtained. The computations for interface, pressure rise, trapping and reflux
are carried out using Mathematica 8.1. Visual illustrations for trapping, pressure rise,
velocity, pumping efficiency and reflux are presented. A detail interpretation of the
obtained results accompanied with physical significance is provided. This study finds

potential applications in bio-medical devices and drug delivery instruments.

6.1 Mathematical treatment of the flow problem

We consider an incompressible fluid in a cylindrical elastic tube having uniform
radius 7. The movement of the fluid is due to the motion of tube wall and electro-
osmotic body force as shown in Fig. (6.1). Two different layers are manifested in the
flow field. The region adjacent to the wall is peripheral layer while the region at the
center of the tube is referred as core layer. Electro-osmotic phenomenon appears due
to the solid-fluid interaction. The charged surface of tube wall attracts the oppositely
charged ions from the ionized solution within the tube and repels the ions having
same charge. This phenomenon generates two types of layers, Stern layer and
diffusion layer, whose combination is called EDL. When the system is subjected the
electric field, a body force arises (particularly in the diffusion layer) which drag the

fluid from positive to negative terminal.
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Fig. 6. 1: Geometry

6.2 Governing equations and its solution
The fundamental equations of continuity and momentum are same as given by Eq.

(3.1) and Eq. (3.2). In the core region 0<r< R, (z,t) , basic constitutive equations of

the Rabinowitsch fluid model are reported by Singh and Singh (2014) and
Naduvinamani et al. (2014). According to this model, empirical stress—strain relations
in components form are given by (Asghar et al. (2017))

ow ou ow
S +7(S,) =pm=,8, =2 Z.5_=2u4 2. 6.1

In the peripheral region R (z,r)<r <R,(z1), the stress will be governed by the

equation

T=-pl+8, (6.2)
where,

S=2uD. (6.3)

Assuming the velocity profile given in Eq. (3.5) and using the transformations
reported in Eq. (3.12), the governing equations and stress components along with

body force term F, in the wave frame of reference are:

o(7u)
=

L (6.4)

aE
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i _ou a(FS») 55. 3
p(ﬁgﬁ+w§£)=_g§+ l—u+%_§—i‘£:|’ (65)

o &z rooor Z 7
_Oow _ow _ aﬁ 1 a(an) agzz -
p(ua_F'l'WaE)—- 6_z_+ ;_- P +—52— +F;. (6.6)

Stress components for inner region:

e <\ ow 5 ou 5 ow

Sr.'+ Sn = —,Srr=2 —,S:z=2 - 6.7
7(S=) =% e s 6.7)

Stress components for outer region:

S oui - 5 ou ow) g U3 ow

Sy =24 —,Se =Sy =p,| —=+— [,Se =, =, 8= =2, —,
H e /”2(62 67) 00 /127 ) =

§r0 = §0r = §02 = :S’—ZO =0. (68)

The subsequently analysis is based on the simplification of electro-kinetic body force
term F, = p,E. for which the detail are provided in the chapter 3. Thus, the body

force term in the momentum equation is treated according to the same argument.
After using the dimensionless variables as given by Eq. (3.15) and the physical
restriction such as long wavelength (6 « 1) and low Reynolds number(Re < 1)

approximation, Eqs (6.4) — (6.8) in the both regions reduce to

Core region:

Oz—g.p_.{.[(lé(is’z_))}_i_ljﬁ‘ &_pdc’
or T €

4 , (6.9)
__9
a’ﬂ b
S, +a,(S.) = agf , (6.10)

where @, =yu?U? [r? is called the model parameter of Rabinowitsch constitutive

equation.

Peripheral region:
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& 6.11)
0=-2.
or
ow
S = N 6.12
2 #,( ar) (6.12)

where, U, =-¢,£E. [, Uis the electro-kinetic slip velocity. The dimensionless

boundary conditions linked with Eqs. (6.9) - (6.12) are given Egs. (3.28) - (3.30).
Here, we have two choices to analyze the problem,; first, we can solve the problem by
considering the electro-kinetic term in the momentum equation and second one is to
include the influence of electro-kinetic term in a boundary condition. The output
yielded from both ways will always be the same (Goswami et al. (2016)). The present
fluid problem is figured out by taking body force term in the boundary condition.

Therefore, the following problem emerges.

In core region:

2]
oz r or (6.13)

__%
0= or

>

ow
S +a (S ) ===, 6.14
rz 1( rz) ar ( )
ow
[4 =0’ t =O; 6.15

> atr (6.15)
In peripheral region:
-3 [2)

2 [\ , (6.16)
0-.

or
S =u (%] 6.17)

or

%=O,atr=0;
or (6.18)

wy =U;-latr=R,.
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The above equations after adopting stream function formulation take the form

d(10y) rop oY

S5 L) osre )

o 18]( o(10

52;5 rﬂra ;EW ,RISVSRO (620)

y=02 %%‘/’]:o,atr:o, 621)
_4 W _ = 6.22

(//_29 ar _( E )Ro,atr_Roa ( . )
_4 _

(//——2—,atr—R1. (6.23)

Solving Eq. (6.19) and (6.20) subject to the boundary conditions (6.21) and (6.22), the

stream fun

From Eq.

ctions are given by

(6.24)

(6.24), the velocity components for inner (0<»<R) and outer

(R <r<R,) regions are:

w(r,z)=:

(UE _1)+2L @ [r4—Rl4]+i-%({r2 —R12}+-1—{R]2 —Roz}j,OSrSR1

(6.25)

The dimensionless wall equation of the tube is R, (z) =1+4,, sin(27z)

Employing the semi-analytical approach outlined by Goswami et al. (2016), the

following expression for computation of interface emerges.
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2

g R a4 R )L g2y
= 2(UE 1)+(2 U, -1) 2j+16,u,82(R1 R’). (6.26)

For eliminating g,, we set Ry =1and R =katz=0, so that Eq. (6.26) becomes

K 1 1
theo (e e

Eliminating g, from Eq. (6.26) and (6.27), we get

(k—;(UE —1)+(%—(U5 _1)_;.)}_1_130(18 1) -

164,

R el nBE P (r2_p2y -
(T(UE 1)’{2 (U -1) 2 D 164, az(R‘ Ry) =o.

(6.28)

Solving Eq. (6.28) yields the following expression for pressure gradient,

@_ﬂ_z{l(UE_l)(kz_Rlugg)Jr ! Po(kz—l)z}. (6.29)

oz (Rlz_Roz)

2 164

r

Integrating Eq. (6.29) over one wavelength gives

i |(8u (U, -1k =R*+R2)+ B, (K -1}
. (ﬂr( ) +R<;)+ ( )) . 630
o (R*-R’)

The conversion of the volume flux from fixed to moving frame of reference is

obtained through the equation

Oy =2,jr(u+l)rdr:q+R02. 6.31)

0
On simplification, Eq. (6.31) will give
0-Lo d-q+{1+L (6.32)
T, 4T ) | '

Using Eq. (6.29) in Eq. (6.28) yields
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Po(kz—l)z} R}

of 1o {l(UE—l)(kz—Rf+R;)+

U(R-R) 2 164,
L # Ny _\ke- ! 1) 6.33
+16{(R12_rR(2))2 {Z(UE l)(k2 R12+R‘2’)+16p, Po(k2 1) }]R;‘ (6.33)
1 1 1 | )
o [(Rf— R {E(UE —1)(k2 ~RI+R3)+ o Py (k*-1) }](Rg_ R})+
q R; _
1 (vg-1)5=0.

Now, we have two unknown in Eq. (6.33) i.e., Py and R, . For attaining the complete
solution, the only available equation is Eq. (6.28). Other conditions are developed by
using the fact that stream functions given by the expression (6.24) for both regions

must be same at the interface. Thus, we get

3

a 2
Q| P Rls+L5_PRI4+L?£(RO4_RI4)+1_(UE )& o (634)
96 oz 16 Oz 164, Oz 2 2

setting Ry =land R =katz =0, above equation becomes

& p3ge, 1 4 1 A 1
ApgS+—PE +—P(1-K)+1-(U. -1)==0. 6.35
96 ° 16°°% 16 °( ) 2 (Us )2 (6.35)

r

The system in now consistent i.e. three known ( Py, Ry, dp/0z) with three equations
(6.33 — 6.35). It is important to note that these equations are difficult to solve
analytically. Therefore, we shall solve them numerically using Mathematica 8.1. The
obtained results are highlighted through graphs with comprehensive discussion in the

next section.

6.3 Results and discussions

In this section, we will perform a detailed parametric analysis to study the effects of
emerging parameter on the two-layered electro-osmotic peristaltic bio-fluid flow. The
salient results of our simulation can be observed from Figs. (6.2 - 6.9). These
graphical results highlight the influences of various involved parameters on important
flow features such as velocity profile, fluid-fluid interface, pressure difference and
mechanical efficiency. Moreover, the effects of emerging parameters on trapping and

reflux in both the core and the peripheral layers have also been considered. Fig. (6.2a)

137



interprets behavior or the interface against the viscoelastic parameter. In this model,
@, indicates three different responses, that is, a; > 0 (shear — thinning), a; <
O(shear — thickening) and a; = 0 (Newtonian). when a; < 0, the fluid in the
crest region experiences a reduced normal force due to large viscosity in the core
region and the interface curve will remain below the interface curve for a; = 0. But
in the trough region, this trend is reversed and interface curve will appear above the
interface curve for @; = 0. For a; > 0, interface curve shows an opposite behavior in
both regions. A similar behavior of interface curve at crest and trough regions for
different viscosity ratio, u, < 1,4, > 1 and g, = 1, are observed in the Fig. (6.2b).
In the wave crest region, the fluid experiences an upward normal force while in the
trough region this force appears to be in the downward direction. Fig. (6.2¢) illustrates
the interfacial behavior for several values of the electro-osmotic slip velocity.
Actually, increment in the electro-osmotic slip velocity decreases the viscous
resistance within the fluid domain. In response to that the fluid experiences a reduced
upward normal force in the crest region and thus the interfacial curve for positive
value of Ug remains below the curve for Ug = 0. In contrast, a reverse trend prevails

for positive electro-osmotic slip velocity in the trough region.

The pressure variations in pressure with respect to the involved parameters are shown
in Fig. (6.3(a - d)). Fig. (6.3a) depicts pressure difference at zero flow rate for several
values of the electro-kinetic slip velocity and viscosity ratio. The fluid propagates
with high velocity at the trough region as compared to the crest region. An
enlargement in the pressure rise is observed for large electrokinetic slip velocity at
moderate occlusion parameter. But at the higher values of the occlusion parameter,
the influence of the electro-kinetic slip velocity becomes negligible. Figs. (6.3(b-d))
demonstrate the pressure difference against the volumetric flow rate for different
values of the parameters k, @, and Ug. It is observed that the pressure rise increases by
increasing the values of the electro-kinetic slip velocity but decreasing trend is noted
for k and a;. The mechanical efficiency against the time-averaged volumetric rate is
shown in the Figs. (6.4(a, b)). We observe an increment in the mechanical efficiency
for increasing values of the electro-kinetic slip velocity. This ensures the maximum
fluid transmission from the conduit. We may conclude that the increase in the

intensity of external potential efficiency leads to the improvement of the system. On
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the other hand, the opposite trend observed when the value of Rabinowitsch

parameter is increased.

Velocity distribution (6.25) is visualized in the Fig. 6.5(a - ¢) for several values of the
emerging parameters f,, @, and Ug. Fig. (6.5a) demonstrates the behavior of the
velocity profile for the fluid in the central region at different values of the
Rabinowitsch model parameter. It is observed that the velocity in the center region
decreases by increasing the values of a,. Figs. (6.5(b, c)) illustrate the variations of
the velocity for different parametric values of viscosity ratio and electro-osmotic
parameter. It is noted that the velocity of the fluid in the central region increases for
large values of the electro-kinetic slip velocity. A similar trend in velocity prevails for

different values of the viscosity ratio u,..

The streamline topologies play a significant role to understand the fluid flow
phenomenon. At some certain values of the volume flow rate and occlusion parameter
some closed streamlines are found in the flow. These closed streamlines originate the
phenomenon called as trapping. Trapping has a significant role in many physiological
and industrial systems. Sometimes, it creates many disorders in human body in the
form of thrombosis in the blood circulation. Further, it can also cause undesirable
chemical reactions in reactive fluids. The trapping phenomenon for different values of
involved parameters is depicted in Figs. (6.6(a - ¢)) — (6.8(a - ¢)). F ig. (6.6(a - ¢))
highlights the trapping mechanism for several values of the Rabinowitsch parameter.
It is found that the size of the trapped bolus increases with an increment in the
parameter a;. Figs. (6.7(a - ¢)) and (6.8(a - ¢)) illustrate the behavior of the trapped
fluid in the flow domain for both core and peripheral region. Trapped boluses are
observed at small values of electro-kinetic slip velocity in both core and peripheral
regions. One can observe a gradual reduction in the size of trapped bolus with
eventual disappearance with increasing electro-osmotic slip velocity. Fig. (6.9)
explores the reflux phenomenon for different values of parameters a; and Ug. It is
found that the reflux phenomenon reduces by increasing the values of Ug and an

opposite trend is noted for a;.

6.4 Conclusion

In this chapter, we presented theoretical analysis of two-layered electro-osmotic

peristaltic flow of Rabinowitsch fluid in a cylindrical tube. Appropriate electro-kinetic
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suppositions are considered to model a problem. We also considered the creeping
flow along with long wavelength approximation. The momentum equations for each
region are solved analytically to get the closed form expressions for stream function
and axial velocity. Mechanical efficiency, pressure difference, trapping and reflux are
evaluated numerically. Interface between the two-fluids is also computed using
Mathematica software. The computational results have been presented graphically.

Following conclusions are made from the present study:

e The mechanical efficiency increases by increasing the electro-kinetic slip
velocity at low volumetric flow rate, whereas follows a decreasing trend with
respect to the Rabinowitsch parameter.

e An increment in the pressure rise is found for large values of the involved
parameters

e Velocity increases in the center region for higher electro-kinetic slip
velocities.

e Trapping phenomenon is observed in the core and peripheral regions at
certain values of electro-kinetic slip velocity. The trapped boluses are only
prominent in both regions for smaller electro-kinetic slip velocities while
increasingly higher velocities make them disappear from the flow field.

e The size of the trapped bolus increases and becomes prominent in the core
region when the viscosity of the core region fluid is greater than the fluid of
peripheral region.

e The reflux reduces by increasing the values of the electro-kinetic slip
velocity.

e The volume of the trapped boluses increases for higher values of the
Rabinowitsch parameter. Similarly, reflux grows for increasing Rabinowitsch

parameter.
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Fig. 6.6 ((a) — (c)): The streamlines variation in the core region for different values
of a; when Ug = 0.05,Q = 0,k = 0.4, ¢boc = 0.75, 4, = 10.
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Fig. 6.8 ((a) - (c)): The streamlines variation in the core region for Uy when a, =
01,0 =0,k=04,¢,. = 0.75,u, = 10.
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Chapter 7

Electro-Kinetically modulated peristaltic transport of
multi-layered power-law fluid in an axisymmetric tube

The objective of this chapter is to investigate three-layered flow of power-law fluid
driven by peristaltic activity and electro-osmotic phenomenon. The flow problem is
modeled by invoking long wavelength and low Reynolds number constraints. Closed
form expressions of stream function are obtained for each region. The interfaces
between core and intermediate and intermediate and peripheral regions are computed
by solving a system of nonlinear equations numerically and displayed graphically.
Pressure rise, mechanical efficiency and trapping phenomena are also evaluated by
varying the involved parameters. The present study generalizes many of the available

studies on multi-phase peristaltic transport.

7.1 Mathematical formulation and solution of the problem

Consider three-layered electro-osmotic peristaltic transport of an incompressible
power-law fluid in an axisymmetric flexible tube (Fig. 7.1). The movement of the
fluid inside the tube is due to peristaltic motion of the tube wall and the electro-
osmotic force. The electro-osmosis is a process in which the solid boundary of the
ducts remains stationary and the motion of the liquid is due to an applied external
electric potential. It occurs due to solid-fluid interaction. The solid is in the form of a
capillary or a porous plug which is filled with liquid. Consider solid has a negatively
charged surface and assume bio-fluid as an aqueous ionic solution. The negatively
charged surface attracts the counter-ions forming layers of positively charged liquid
near the wall. The thin layers in the immediate neighborhood of wall consisting of
immobile counter-ions are called the Stern layers. The Stern layers are followed by
layers of mobile counter-ions. The two-layers formed in this way constitute the so
called electric-double layer (EDL). Now in response to an externally applied electric
field the counter-ions move along the channel dragging the neutral liquid core. In
addition to the electro-osmotic phenomena, the tube wall is deformed as a result of the

peristaltic movement according to law
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Ro(z",t*) =74 (1 + ¢ sin (27" (z" - Ut*))). (7. 1)

In above expression, ry is the radius of the undeformed tube, ¢ is the wave speed,
occlusion ¢y is the occlusion, A is the wavelength and t is the time. Moreover, this

expression is valid in the fixed frame of reference (r*,z").
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Fig. 7. 1: Flow geometry and coordinate system

The continuity and momentum equations for the flow under consideration are

2+ V.oV =0, (1.2)
Dv‘ * * *
o(25) = —Vp* +7.5" +F;, (1.3)

where p is the density, p* is the pressure, S* is the stress tensor, F; is the body force

and V* is the velocity. The constitutive equation for power-law model is given by

- - {#* [ [x(B; :B;)]H} B}, (7.4)

where Bj is related to the velocity gradient tensor L* as

Bi =L +L7 and L' =V V",
n-1

The quantity u* [ ;(B] :Bj )] in (7.4) is termed as the apparent viscosity. u*

and n refer to consistency and fluid behavior index, respectively. The cases, n < 1,
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n>land n=1 in Eq. (7.4) correspond to shear-thinning, shear-thickening and

Newtonian fluid, respectively. The velocity profile for an axisymmetric tube flow is

Vi =[u'(rs,z%,t"), 0,w*(r, z*, t")]. (7.5)
The magnitude of the body force in the present scenario is given by Hunter (1981)
Fe = pc E, (7.6)

in which p; is the total ionic charge distribution and E is the constant axial electric
field.

The viscosity function is assumed as follows

Uo 0<r<R
W=1{u Ri<r<R, (1.7)
Ha RzSTSRo,

where uy, uy and p, are defined as the viscosity of the core, intermediate and
peripheral regions, respectively.

If we invoke the transformations relating the frames (r*,z* ) and (7, Z ) in the form
Z=z" = Ut F=r", w=w*=-"U, u=u',p=p’ and p, = p;, (7.8)

then the flow in the new frame (7, Z ) can be treated as steady. The frame (7,Z) is
called the wave frame. In this frame the equations of continuity and momentum (7.2),
(7.3) take the form

P =0 19)
P55+ 7 3) =~ F 41200, % 7.10)
p(aF+ W) =242 din (.11)
where, Sy = 2¢, % i1 =Spr= ¢ (G2 +22), Siz= 2122, (1.12)

N
]
=]

1)
35|

n-1
b= f2{() + () + )+ (Z+2)] 7 (7.13)
Under the action of external axial electric ﬁeldE=(0,0, Ez), the fluid undergoes a
body force given as Hunter (1981).
F,=p,Ek, (7.14)
where k is the unit vector in the axial direction and p, be the total ionic charge
density, which is associated to the electric potential ¢ through the equation
Vig=—p,/e, (7.15)
in which ¢ is the permittivity of the medium. For symmetric electrolyte solution, the

total ionic distribution g, is defined as Pe =ez(N™ —77). e, z, At n"elementary
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charge, charge valance, number density of cations, number density of anions,
respectively. The ionic number distributions of single species are obtained through

Nernst-Planck equation for each species. That is,

on, _on, _onm, o'n 18(_6@) Dyze o), 18 - o9
g M _p|on 1 0(o0n .
" e 0(62'2+r_8r'r6r_ T az-"az- Farl o

(7.16)
It is assumed that coefficients of ionic diffusions for both species are equal and the
transport of the species is evaluated through Einstein formula.

Now introducing the dimensionless variables

_r . %7 4 . W, SU__ n
¥ =—,z =E—u = » W =—=t =_t9§=_'9
A ¥ (§U) U r, A
AU 5 -
pt_%ﬁ,Rezw’b ’Dez P ,¢ :ﬂ, "= rO ‘Sf,r (7.17)
U Ky To ksT HU
n=lg =% kTP,
0 n Y eze,

where Re is the Reynold number, De be the Deborah number and § is the wave
number. After applying the dimensionless quantities (7.17) and the approximations
that §, Pe, Re < 1, where Pe = ReSc, Sc = Uo/pDy represents the ionic Peclet
number and Schmidt number, respectively. Under these assumptions, the Poisson and

Nernst Planck equations reduce to (dropping asterisk)

19(,9¢)__2(m—n

rar(r 6r) " ( 2 )’ (7.18)
19(10n) 19 o¢

O=——[=—L |1_Zfpm X | 7.1
rér(r 6}*] rar(miar) (7.19)

where x =rez[2n/eK,T =r,/4, ,is the electro-osmotic parameter. Eqs. (7.18) and

(7.19) subject to appropriate boundary conditions may give the potential distribution
for both regions. Based on these potentials the explicit form of body force term can be
derived Tripathi et al. (2017). However, we shall not follow this line of action in the
subsequent analysis. The details about alternative course of action shall be provided in
the later part of this section.

The dimensionless equation of wall reads:

Ro(2) = 1 + ¢q sin2n(2). (7.20)
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Applying the long wavelength (§ < 1) and low Reynolds number (Re « 1)
approximations, Eqgs. (7.9) - (7.11) become (dropping asterisk)

 _19f 3wlow"? 4 % _ 721
az—rar{ ar lor }+UE€pe ' ar = O (7.21)
where Ug = —ff—i is the electro-kinetic slip parameter.

The boundary conditions applicable to present flow problem are:

= at r=0, (7.22)
w=-1 at r =R,. (7.23)
Here, we have two choices: we can either solve the problem by considering the
electro-kinetic term in the momentum equation or shift its contribution in the
boundary condition at the wall through the inclusion of electrokinetic slip parameter.
The output yielded via both the approaches will always be the same. The subsequent
analysis of the present fluid problem is figured out by taking the contribution of body
force term in the boundary condition at the wall. A detailed explanation about this
approach is given by Goswami et al.(2016). After this treatment the governing

equation and boundary condition are reduce to:

dp 10 dw [aw|N—1 ap _

=B ar =0 (7.24)
w=Ug-1 at r =R,, (7.25)
= at r =0, (7.26)

Now, introducing the relations, w = 1/r(0yY/or)and u =w = —1/r (dy/0z), the

governing equations in term of stream function become

212008 (@) (O )

The dimensionless viscosity function appearing in the above equation is defined as

n-1 op
}, 5, = 0. (7.27)

follow:
1 0<r < Rl’

'u={,u1 R1 Sr_<_R2, (728)
Ho R2 <rs Ro.

The volume flow rate in the wave frame of reference q is related to the time-averaged

flow rate § in the laboratory frame of reference via the equation

— 2
1=0~(1+%) =g +q,+q, (7.29)
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In the above equation q;,q, and g5 are the volume flow rates in wave frame
corresponding to core, intermediate and peripheral regions, respectively (see Fig. 7.1
for more clarification) and § = fol Qdt, where Q is the volume flow rate in the
laboratory frame. The volume flow rates 41,92 are related to their respective
counterparts Q; and @, by the expressions

41 = Q1 - [, R%dz = qi, (7.30)

4. =Q; - f01 R%*ydz =q, + qy,

where the parameters giand g, are used to relate flow rates between the wave and

fixed frames.

The boundary conditions in term of stream function are:

¥ =0, (%(%g—‘f))ﬂ, at r=0,

F
%%=UE—1 atr =R,,
Y= % = constant atr = R,, (7.31)
Y= %l = constant atr =R,,

Y= % = constant atr = R,.

The first boundary condition represents the symmetry of flow with respect to the
central plane r = 0, the second is the condition is the adherence condition at the fluid-
solid interface and the remaining conditions arise as a consequences of the mass

conservation in the three regions.

7.2 Problem description

Eliminating of pressure from two equations of (7.27) yields

2114, i(l"‘/’) 9 (l"‘/’)
or |ror ﬂar rdr/ lor \r ar

Now, integrating the Eq. (7.32) and invoking the first four boundary conditions in

n_l)] =0, (7.32)

(7.31), we get the following expression of stream function

= WEet Ut (We=DRe*-q) 1
2 2 1’

(7.33)

where
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1
L = forsst" (%)" dsods, (7.34)

1
I = foRo r ero (%)n dsdr.
In view of the Eq. (7.28), the stream function for three regions is computed as:

Coreregion 0 < r < R;:

(n+1) (n+1)

(1—%)121 n +(L1—L1>R2 o+
3n+1 n n n
%rz(q—(UE—l)Roz)("—) B pn ppn

n+1 2 (n+1) (n+1)
Up=1)r2 —iRo —(3n+1)r n
-Dr n
g =Yt b2 ,(7.35)
2 ' (3n+1) 1 X (3n+1) 1 (3n+1)
1- —l Rl n + —Z - _l R2 n + _lRo n
i a1 ppn un

Intermediate region R; < r < R,:

(n+1) (n+1)
(% - %)Rz no+ %Ro n
) 2

(n+1) = =

l(q—(UE—l)Roz) 1- LR+ (ﬂ r2{\mn  uzn uzn
2 2 n+1 (n+1)

uin _( 2n );r—-n

3n+1/ 1
n
3 . (7.36)
1 (3n+1) 1 1 (3n+1) 1 (3n+1)
un H1t ppn un
Peripheral region R, < r < R,:
Ugp-1
l/) = ( E )rZ +
2
(n+1) (n+1) )

1 1 nt1 1 1 D) apeny 1 Ry n
E(q—(UE—l)Roz) (1——1>R1 n 4+ —l__l R, n +(m)—lr2 an (n+1)

i Mt ugn uzn —(3n+1)7‘ n

1 (Bn+1) 1 1 (3n+1) 1 (3n+1) ’

1——1 Rl n + —_1-—'__1_ RZ n +_1R0 n
un Uit ugn u2mt

(7.37)

From Egs. (7.35) - (7.37), it is noted that the solution of the problem is still
incomplete due to presence of the unknowns R, and R,. In order of obtain, R, and R,

we proceed as follows.
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7.2.1 Determinations fluid-fluid interface
In the present three-layer problem, there exist two interfaces. The first interface lies
between core and intermediate regions while the second one exists between
intermediate and peripheral regions. To find these interfaces, we use Egs. (7.35) and

(7.36) and remaining boundary conditions in Eq. (7.31) to get

(3n+1) (n+1)
_{3n+1) 1 = r3n41 11 2
(1 ( n+1 ) 1>R1 not (n+1 )( 1 1>R2 n R4+

uin M gt
(n+1)
(3n+1) 11ROTR12
, 2 n+1/ 1
(g1—-(Ug-1)R, ) _ uyn
2 = (7.38)
(q-Wg-1)R, ) ) (3n+1) X ) (n+1) | @n+y)
1 ——_1_ R, n + _l-—__l_ R, n +—1R0 n
Hn H1Tt pan uzn
(3n+1) (3n+1)
1 —_— 1 3n+1) 1 padlan Vs
(1 ——1>R1 " +(_l_ (n+1 )_1>R2 not
uqn ugn uzn
(n+1)
(3n+1) 11Ro—n R,?
. 2 n+1 =
(G2~(Ug~1)R, ) _ uyn a 39)
(a-(WEe~1)Re?) 1 (3n+1) . 1 Gn+n) | @rey)’ )
1'-—l Ry, n + —I-T1 R, m +—5R, n
un o upn uzn

From the above equations, Eqs. (7.38) and (7.39), we obtain a system of non-linear

equations for interfaces as

AR, CMHD/n g p Grety/n C1(R) R\* + Dy(Ry) = 0, (7.40)
AR,/ | g p G/ C2(Ry) Ry> + Dy(R,) = 0, (7.41)
where
Ay =—(Ug - 1) (1 ~ il>,
Hr
Ay =—(Ug—1) (%—%)
Hat ppn

[- . 1 3n+1 1
Bi= a1 =1 )= (a-Us - DR,?) (1 ~- (& )T)J

[ (1
B, = |4, (—1——1) = (a-(Us - DRy? (i— =1 L)J

L M poT ( £ ° ) #1% (n-'-l)#zE

(3n+1) _ (3n+1)
C1(Ry) = [—(UE - 1) (%—%) Ry n —LERR T (34 (g, —
My upn upm n+l

(n+1) (n+1)
1)R02) << 11 - _11) R, n +— Ry |,
K1t ppn Hzn
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(3n+1) (3n+1)
=  (Ug-1), 2222 3n+1
cz(R1)=[—(UE—1)(1—%)R1 =Ry v — (22 (g-(Us -

7% HzT
(1)
1)Rs?) (%Ro " )]

Han

[~
|-

(3n+1) 1 (3n+1)
R2 n +_1R0 n N

Uz

Di(Ry) = q1 [(

3
3=

Hq Ha

. 2. 1 (3n+1) 1 (3n+1)
D2(Ry) = ((42 — (q—(Ug — 1)R, N1 ——x|Ri » +qg—=Ry, |
uym Ut

Assuming that R;(0) = a, R,(0) = B, one can relate g:and g, with a and £ in the

following manner:

(3n+1) (n+1)
3n+1) 1 S——Z  r3n+1 1 1 ==
(1—(,1“)-1)“ n +(m)<7‘—1>ﬂ noal+
q- (Ug-1)

uin Him a7
(3n+1)a_2
n+1 1
. n
41 = (Ug — Da® + L2 (7.42)
1 | Gn+y) 1 p | Bnty
I-—xja n +|—5-— no+—3
20 M pp7 2

(3n+1) (n+1)
3n+1) 1 pLiaitys 1 3n+1y\ 1 ALLLEY 3
(1 - (n+1 ) l)a n +( i~ (n+1 ) l)ﬁ no4
q- (Ug-1) #qn un ugn

(3n+1)ﬁ_2
n+1 %
4 = (Ug = 1)B% + k2 (7.43)
( 1 ) (3n+1) ( 1 1 ) (3n+1) 1
I-——xja n +|—-—% no+—
nimt uilt pom patt

Substituting the values of ¢,and g2 from above equation in equations (7.38) and
(7.39) leads to the equations for Ry and R, which are then solved by Newton’s
method for each z. The graphical results for interfaces along with the outermost
boundary R,(z) are shown for several values of involved parameters in Figs. (7.2 -
7.5). Fig. (7.2(a)) presents the variations in the interfaces R, and R, over one
wavelength with respect to the parameter Ug (electro-osmotic slip velocity) for five
different situations. In Fig. (7.2(a)) it is assumed that y; >y, and n = 1.5 i.e the
fluid in all three regions is shear-thickening and the vicosity of the intermadiate
region is greater than the viscosity of the periphral region. In this situation, both
interfaces experience a downward force in the crest region and an upward force in the
trough region with increasing Ug. As a result, both interfaces drops down in the
crest region whilst they elevates in the trough region with rasing Uz. However, the

drop down effect is much more stornger than that of elevation effect. A similar trend
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is noted form Fig. (7.2(b)) where it is assumed that U1 < Uy . A comparison of both
figures reveals that variation in R, with respect to Ug is more intense for the case
M1 < W than that of the case u; > u,. Further, a flattening trend is also identified in
both interfaces in the trough region for later situation i.e. My > U, and this trend is
found to diminish with raising Uy. Figs. (7.2(c - e)) display the variations in interfaces
with respect to U for shear-thinning, Newtonian and shear-thickening fluids by
assuming equal viscosites in both intermediate and peripheral regions. Again, it is
observed that both interfaces drop down in the crest region and elevate in the trough
region with raising Uy irrespective of the rheological nature of the fluid. However,
changing the rheological nature from shear-thinning to shear thickening intensifies the
variation in both interfaces with respect to Ug. Figs. (7.3(a - d)) highlight the effects
of viscosity ratio u; on both interfaces for n < 1,n=1andn > 1, respectively. In
all three cases, an elevation of both interfaces in the trough region and a drop down in
the crest region is noted with increasing p;. Morever, variations in both interfaces
with respect to y, is intense for shear-thinning fluid and mild for shear-thickening
fluid. Figs. (7.4(a - ¢)) show the impact of vicosity ratio y, on both interfaces for n <
I,n=1andn > 1, respectively. It is evident that the effect of U is quite opposite to
the effects of u,. Here, instead in the trough region an elevation of both interfaces are
observed in the crest region with raising the parameter p,. Again, the effect of
increasing y, is much pronounced in shear-thinning fluid than that of Newtonian and
shear-thickening fluids. The influence of fluid rheology on both interfaces is
demonstrated for three cases, namely, uy > u,, u; < u, and M1 = U, in Fig. (7.5(a
- ¢)), respectively. For u;, > p,, both interfaces elevate in the crest region and drop
down in the trough region with enhancing n from 0.5 to 1.5. A similar trend prevails
for uy = p,. In contrast, a reverse trend is noted for uy < p,. It is further observed
that both interfaces are more vulnerable to changes with respect to n in the crest
region for u; > p,. In contrast, pronounced changes in both interfaces are identified

with respect to n in the trough region for u, < u, and Uy = Uy,

7.2.2  Pumping characteristics
Invoking Egs. (7.32) - (7.34) in Eq. (7.29), the expression of the pressure gradient is

obtained as:
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Integrating the above expression with respect to z from 0 to 1 yields the following

expression of pressure rise per wavelength.

n-1
n —(Up~1)R,2 —(Ug-1)R,?

ap = —2(222)" 12 {M(z) (a-We=1)k, )}I—M(z)ﬁ—(" Ceto)l Gz, (745

Ro n RO n
where

(3n+1) (Bn+1) -1
Ry 1 1 \Ry 1
M(z)=|{1 T 1 (3n+1) T (3n+1) t—1

mn) Ry m \mm pyn )R, w Ugn

From Eq. (7.42), one can obtain the maximum flow rate Q, and the maximum
pressure rise per wavelength Ap,. Ap achieves the maximum values Ap, for Q = 0
and similarly, flow rate achieves its maximum Qo for Ap = 0 . The explicit expression

for computation of Ap,, is

Ap, =
n~1
3n+1\" 1 ~(Ug—1)Ro2—-1-¢2/2 -(Ug=1)Ro®—1~¢2/2
—2(Z4)7f; {M(z)( L )} ,—M(z) QoD 197/ l dz.(7.46)
Ry n Ry n

However, such an explicit expression is not achievable for Q,. For obtaining Q, one

has to solve the following nonlinear equation.

n
—(Ug—1)Ro*~1-¢?/2)
(3n+1)
n

_ 1
M) & dz = 0. (7.47)

1 (Go-We-1)R*~1-97/2
fo {M(Z) (3n+1) )}
n

Ro

Ro

The profiles of Ap with respect to @ for numerous values of n » Ug, uy and u, are
shown in Figs. (7.6(a - d)), respectively. Fig. 7.6(a) shows that the maximum
pressure raises Ap, increase with raising the power-law index from 0.5 to 1.5. In
contrast, the maximum flow rate (, decreases with enhancement in the power-law
index. Fig. 7.6(b) illustrates that both maximum pressure Ap, and maximum flow
rate Q, increase with an increase in the electro-kinetic slip velocity Uz. Fig. 7.6(c)

depicts that the impact of viscosity ratio g, and u, on Ap is similar to the impact of
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n. From above observations it is evident that a reduction in the maximum pressure
rise Apy and enhancement in the maximum flow rate Qo can be achieved at the same
time either by taking the power-law index below unity or decreasing the viscosity of
the intermediate region. Further, the enhancement in maximum flow rate can also be
achieved by raising the electro-osmotic slip velocity but this may happen at the cost of

increase in the maximum pressure.

7.2.3 Pumping efficiency
Following the definition of mechanical efficiency (E) as provided by Shapiro et al.

(1969) it turn out that

n-1
1 (‘I‘(UE‘l)Roz) (q—(UE-1)R02)
IR {M (z)ﬁ_Wl } -M (Z)ﬁ% dz
= Ry n Ry ©
E=¢Q 0 - 0 - In_l (7.48)
q~(Ug-1)R q-(Ug-1)R
f(}{m(z)( e )} —M(z)( - ) (Ro2-1)dz
Ro n Ry n I

The integrals appearing in above expression are evaluated numerically. Further,
variations in mechanical efficiency E with respect to normalized flow rate G/QAP:O
for different values of n , H1, 4z and U are shown in Figs. (7.7(a - d)).

It is observed that the mechanical efficiency increases by increasing electro-osmotic
slip velocity, power-law index and viscosity of the peripheral region. In contrast,
mechanical efficiency reduces with enhancing the viscosity of the intermediate layer.
Thus, reasonable pumping efficiencies can be achieved over a wider range of flow
rate by increasing the viscosity of the peripheral region or by increasing the electro-

osmotic slip velocity.

7.2.4 Trapping phenomenon
Trapping is another important characteristic of the peristaltic flow in which an
internally circulating bolus of fluid is developed by closed streamlines and this
trapped bolus is transported along with the peristaltic wave Shapiro et al. ( 1969). This
phenomenon occurs for certain values of the time-averaged flow rate and the
occlusion parameter. Moreover, depending on the flow rate trapped bolus may appear
in the core, intermediate and peripheral regions. In order to obtain the range of the
flow rate for which trapping appears in the core region, we equate i for the core

region (Eq. (7.32)) to zero to get

160



o+l 1
rn =—m——_ -
2n(q—(Ug-1)Ro?)

[(1 _ %> Ry {(3n + 1)(g=(Ug — DRZ)
un

(n+ DR,?} + (Ll— —) Ry = {(3n +1D(q-(Up = DR?) — (n + DR} +
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Eq. (7.46) represents an implicit relation for the curve at which Y=0.1It is also

evident from Eq. (7.32) that the trivial solution r = 0 is the other curve at which ¢ =

n+1
0. Now, for trapping to exist in the core region, one must have r = > 0 for some z.

This requirement is fulfilled only when both numerator and denominator on right

n+1
hand side of (7.46) have same signs. For a given z, it turns out that ¥ = > 0 when

Q- <Q<Qt, (7.50)

where
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X
and Rimax = Ry |z=1/4, Romax = R, |z=1/4s Ry mim = Ry |z=3/4’ Rz mim =

Ry |2=3/4. Inequality (7.47) gives the range of Q for trapping in the core region. Such
analytic expressions for ¢~ and Q* are not available for intermediate and peripheral
regions. Therefore, one has to relay on numerical procedure to get Q™ and Q%
corresponding to intermediate and peripheral regions. The trapping limit provided in
(7.47) is a generalization of the limits provided by Pandey et al. (2015), Tripathi et al.
(2017) and Elshehawey and Gharseldien (2004).
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The graphical results illustrating the effects of various involved parameters on trapped
bolus in the core region are shown in F igs. (7.8(a - ¢) - 7.11(a - ¢)). Fig. (7.8(a - ¢))
shows the effects of the u, on trapped bolus. This figure clearly predicts an increase
in the area of the trapping region with increasing p,. Similarly, Fig. (7.9(a - ¢))
depicts an expansion in the area of the trapping region with increasing y;. Similar
trend is observed by raising the power-law index n from 0.8 to 1.5. In contrast, the
area of the trapping region diminishes with increasing the electro-osmotic slip

parameter.

7.3 Conclusion

A theoretical analysis is obtained for multilayered electro-osmotic peristaltic tube
transport of power-law fluid. By using appropriate transformation, the flow problem
is transformed from fixed frame to moving frame. Long wavelength and low
Reynolds number assumption are employed to simplify the problem. In order to
obtain the closed form expressions of stream functions valid for three regions, the
simplified momentum equation is integrated subject to the appropriate boundary
conditions. Moreover, the expression of stream function is used to derive the
expression of the pressure gradient, mechanical efficiency, time-averaged flow rate
and trapping limits. The non-linear equations for interfaces are also obtained and

solved numerically. The main outcomes of the present analysis are:

* The area of the trapped bolus in the core region expands with raising the
viscosities of the intermediate and peripheral regions.

* Trapped bolus appears at lower flow rate for shear-thickening fluids as
compared to shear-thinning fluids.

* The area of the trapped bolus in the core region reduces with rise in
electro-osmotic slip parameter. The trapped bolus completely disappears
at higher electro-osmotic slip velocities.

® Mechanical efficiency can be increased by raising all emerging
parametric except the viscosity of the intermediate layer.

* Growth in maximum pressure rise owes to the high values of the involved
parameters.

* A linear decay in pressure rise is observed with increasing the volumetric

flow rate.
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* Intense variations in both interfaces are observable either by varying the

viscosity ratios corresponding to the intermediate and peripheral regions

or by varying the electro-osmotic slip velocity.
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Fig. 7.2 ((a) - (¢)): Variation in the interfaces Riand R, for different values of the
involved parameters (a) #1 =10, 4, =01,¢ =05,Q0 = 0.4,n = 1.5,a = 0.65,48 =
0.85(b) pu; =0.1,pu, = 10,¢ =050 =04,n=15,a = 0.65,8 = 0.85 (¢) y; =
Lu=1,¢=050Q=04n=05a= 0.65,8 = 0.85.
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Fig. 7.2 ((d), (e)): Variation in the interfaces R;and R, for different values of the Ug
when the other  parameters (Du; =1,p,=1,¢ =050 =04,n = l,a=
0.65,=085(e)pu, =1,u, = 1,¢$=05Q=04n=15,a= 0.65, 4 = 0.85.
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Fig. 7.3 (a): Variation in the interfaces Riand R, for different values of the Uy the
other parameters (a) u, = 0.1,¢=050Q=04n=05a= 0.65,8 = 0.85.
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Fig. 7.3 ((b) - (d)): Variation in the interfaces R;and R, for different values of the
different values of the My other parameters (b) u, = 0.1, Us=0,¢=05,Q0 =
0.4,m=1,a = 0658 = 0.85 (Du; =01,Us =0,¢ = 050=04 n=15a=
0.65, 8 = 0.85 and (d) the compasion with Tripathi results (2017).
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Fig. 7.4 ((a) - (¢)): Variation in the interfaces Ryand R, for different values of the Uy
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(b)

Fig. 7.8 ((a) — (¢)): Variation in trapped bolus for different values of u, when u; =
01,U=0,¢ =06, =07, =07, = 0.9,n = 1.5.
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Summary and future research directions
In this thesis, we investigated electro-osmotic peristaltic transport of single-layer and
multi-layered fluids by taking into account various complex non-Newtonian fluid
models such as, third grade, Ellis, PTT, FENE-P, Rabinowitsch and power-law
models. The governing equations are derived by using the appropriate suppositions of
“long wavelength and low Reynolds number”. The differential equations thus
obtained involve geometries, rheological and electro-osmotic parameters. A detailed
investigation is carried out to quantify the influence of these model parameters on
different features of electro-osmotic peristaltic transport phenomenon. In particular,
flow features like, velocity, interface behaviors, pumping efficiency, mechanical
efficiency, trapping and reflux are thoroughly scrutinized by varying parameters. It is
observed that the dynamics of peristaltic flow can be controlling by proper tuning of
these parameters. Specially, the role electro-osmotic slip velocity in controlling the
flow dynamics is highly significant and potentially useful in various applications. In
fact, electro-osmotic slip velocity offers an alternative mechanism to control the
transport properties in addition to geometric and rheological solutions. Thus, for a
predefined peristaltic wave the liquid transport in the conduit can be modulated via
electro-kinetic activity without actually changing the mechanical properties of the
liquid. The multi-layered flow structure is also found to be assistive factor in
modulating the transport properties. These observations are made in the frame work
that does not incorporate the effect of geometric curvature, streamline curvature,
inertia and Reynolds number. Further, the effects of variable fluid properties magnetic
field, porous medium, different wave shapes and advanced constitutive relations
cannot be visualized in this frame work. Therefore, the mathematical model analyzed
in this thesis could be extended to include:

e More complex rheological fluid models in multi-layered peristaltic transport

processes
¢ Curvature of the conduit
o The effects of heat transfer, magnetic field, variable viscosity and porous
medium
e Inertia and streamline coverture effects by using appropriate numerical

techniques
e The effect of different types of waves shapes propagating along the ducts

walls
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