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Preface

A complex feature observed on biological surfaces is the ciliary transport in the existence
of magnetic and thermal field. Cilia are small but complex additional structures that
protrude from the walls of the vessels. Cilia with an average length of around 0.1 mm can
easily fold and thus contribute to many advanced biophysical transport mechanisms. They
usually emerge in large density dies, unlike the flagella, which generally exists in nature as
pairs or single structures. The ciliary flogging mechanisms (metachronism) which control
the direction of the induced propulsion, therefore differ considerably from the flagellar
flogging. They manifest whip-like movements that appear in plants, cells, sea creatures and
physiological organs. They play a huge part across the spectrum and biological properties
e.g. embryonic mechanotransduction processes, tracheal aerodynamics, ventricular
cerebrospinal fluid dynamics, coral reef systems, etc. The mathematical modeling of
moving cilia has significance to estimate the various variables that are effected in this
mechanism. Although experiments together with mathematical model of ciliary transport
estimates the role of frequency, length, velocity and number of cilia in fluid dynamics and
provide the awareness of ciliary importance in occurrence of diseases (related to cilia).
Motivated by these facts, the cynosure of current thesis is based on the study of different
fluid flow originate by the ciliary movement in a magnetic and thermal field with different
effects like Hall effect, ion slip effect, magnetic field effect, viscous dissipation effect and
inertial effects in different geometries and mathematical tools. Under such assumptions,
the governing equations of above mentioned biological flows are modelled using
continuity, momentum and energy equation. To analyze the effect of ion-slip and Hall
current, generalized Ohm’s law and Maxwell’s equation are used. The resulting partial
differential equations are developed with or without long wavelength approximation. The
resulting linear and nonlinear system of equation has been evaluated by the perturbation
method, Adomian decomposition method, Homotopy perturbation method and Fourier
series expansion method. The effects of emerging parameters are shown through graphs
plotted by the software Mathematica. The impacts of physical parameters such as
Hartmann number, ion-slip parameter, Hall parameter, porosity parameter, Weissenberg

number, slip parameter, cilia length, power law index, fluid parameters and Brinkman
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number are illustrated by the graphs. It is found that cilia has to work more efficiently in
the existence of magnetic field and heat transport in the fluid can be enhanced by the ciliary
activity. This thesis comprises eight chapters which are described in following manners.
The introduction of fluid mechanics, basic information about cilia, non-dimensional
numbers, fundamental laws, governing equations and explanation of methodology
pertinent to the problems presented in chapters are included in chapter one.

Chapter two develops the mathematical model of magnetohydrodynamic (MHD) flow
through the infinite length of ciliated porous planer surface. The governing partial
differential equations are evaluated by Fourier series expansion method. The exact solution
has been found which is used to find the velocity of propulsion of wave. The application
of ciliary propulsion is also explained in this chapter. The behavior of physical variables
are estimated by graphical results. This study is published in Journal of Magnetism and
Magnetic Materials, (2019) doi.org/10.1016/j-jmmm.2019.02.074.

Chapter three extended the work presented in chapter two where influence of Hall and ion-
slip on the metachronal flogging of cilia to flow the Newtonian fluid has been obtained.
The finding are discussed and displayed by the graphs. This investigation is published in
Journal of porous media (2020) 23, 943-954.

The rheological behavior of the fluid simulated with the non-Newtonian fluid under the
action of magnetic field has been considered in chapter four. Mathematical modeling is
evaluated for the flow of viscoelastic physiological fluid with Johnson-Segalman
constitutive model in channel. The channel is ciliated internally and flow occur due to
whip-like motion of cilia. The governing equations are simplified and solved analytically.
The series solution is found by the perturbation method. The effect of important parameters
on velocity field, pressure rise and pressure gradient are interpreted graphically. This work
is published in Computer Methods in Biomechanics and Biomedical Engineering,
(2019) 22, 685-695.

Chapter five illustrates the mathematical modeling of ciliary transport of electrically
conducting inertial flow in a two dimensional channel implanted in a porous medium. The
fluid obey the law of second grade constitutive model. The partial differential equations
are non-linear and complex due to the inertial effect. The stream function, velocity profile

and pressure gradient are commutated graphically for several values of involved
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parameters. The analytical solution of complex partial differential equation is obtained by
Homotopy perturbation method (HPM). The comparison of velocities due to symplectic
and antiplectic metachronal wave are achieved graphically. This analysis is submitted for
publication in Mathematical Biosciences.

In chapter six, force convective viscoelastic physiological Jeffery fluid model is
contemplated through the ciliated channel. The Darcy law for porous medium is also used
to model the problem. To obtain the impact of magnetohydrodynamic (MHD), magnetic
field is applied normally. The viscous dissipation is also incorporated in the energy
equation. The non-linear governing equations are evaluated by the Adomian
decomposition method. The impact of interested parameters on temperature profile,
velocity, pressure rise and pressure gradient are plotted by the graphs. The streamlines for
the effect of various parameters are shown graphically. This effort is published in Heat
Transfer—Asian Research, (2018) 1-26.

Chapter seven is devoted to analyze the mixed convective flow of electrically conducting
generalized Newtonian fluid in a vertical ciliated channel. The behavior of the fluid is
simulated with the Carreau constitutive model. The momentum and energy equations are
simplified by using the low Reynolds number and small wavelength approximations. The
emerging complicated boundary value problem is solved by Adomian decomposition
method (ADM). The pressure rise, axial velocity, pressure gradient and temperature profile
are obtained graphically for various values of interested variables. The material of this
chapter is submitted for publication in Journal of Thermal Analysis and Calorimetry.
Chapter eight involves the convective flow of Carreau fluid through the two dimensional
ciliated tube with ohmic heating. The Generalized Ohm’s law is used to obtain the impact
of Hall current and ion-slip on the fluid flow. The non-linear momentum equation and non-
homogeneous energy equation are solved analytically. The Homotopy perturbation method
has been used to compute the axial pressure gradient, axial velocity, streamlines and the
temperature profile. The interested variables based on physiologically relevant data are
graphically shown and discussed in detail. The results emerged in this chapter (chap. eight)

are submitted for publication in European journal of physics.
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Nomenclature

4

u,v

Velocity field vector

Wave frame longitudinal and transverse velocity
Wave frame rectangular coordinates

Fixed frame longitudinal and transverse velocity
Fixed frame rectangular coordinates

Cylindrical coordinates of fixed frame
longitudinal and transverse velocity in fixed frame
Pressure in fixed and wave frame

Identity tensor

Cauchy stress tensor

Current density

Magnetic field

Electric filed

Body force

Darcy's resistance

Fluid temperature

Specific heat

Cyclotron frequency

Half length of channel

Time

Power law index



Re

Pr

Ec

Br

Gr

Cr

Non-dimensional porosity parameter
Permeability of porous medium
Hartmann number

Wave speed

Wave amplitude

Volume flow rate

Reynolds number

Prandtl number

Eckert number

Non-dimensional Brinkman number
Grashof number

Thermal conductivity

Unit area

Rate of strain tensor

Weissenberg number

Symmetric part of the velocity gradient

Skew symmetric part of the velocity gradient

Rheological slip parameter
Relaxation time

Skin friction coefficient



Greek Letters

p

A

A, A,

Bt
Be
Bi

Hoo

Ho

Fluid density

Wavelength

viscoelastic parameters

Non-dimensional wave number

Coefficient of thermal expansion

Hall parameter

lonslip parameter

Cilia length

Eccentricity of elliptical path

Stresses exerted by the organisms on the fluid

Magnetic permeability

Stream function

Shear rate

Viscous dissipation

Thermal conductivity of the fluid
Porosity media

Viscosity of fluid

Infinite shear rate viscosity

Zero shear rate viscosity
Dimensionless temperature

Time constant

Xi



To

Electron collision time

Extra stress tensor
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Chapter 1

Introduction

1.1 Fluid Mechanics

1.1.1 History and applications

Fluid mechanics studies fluid in rest or motion. Leonardo Da Vinci (1452-1519)
pioneered it by building the first chambered canal lock near Milan. Amongst his most
remarkable work, his study was on flights of birds. He studied the complex movements
of flight of birds, air flow and designed models for a flying machine which resembles
a modern day helicopter. His torch was carried forward by Galileo, Euler, Torricelli,
Newton, D' Alembert and Bernoulli’s family. Their observations and experiments made

the study of fluid mechanics ponder on.

Fluid is working as a medium in all the fields of science and technology, in almost all
the actions a person does. For instance the design of all means of transportation
including subsonic and supersonic aircraft, surface ships, submarines, automobile,
pumps, fans, blowers, compressors, and turbines require applications of fluid
mechanics. Even the circulatory system of the body is based on the law of fluid

mechanics.

1.1.2 Types of Fluids

Fluid mechanics is further divided into Newtonian fluids (stress and deformation rate
vary linearly) and the non-Newtonian fluids (stress and strain rate vary nonlinearly).
Some common Newtonian fluids include air, water and gasoline while the most familiar

non-Newtonian fluids include toothpaste, ketchup, emulsions and Lucite paints.
1.2 Cilia and its Working

Cilia are the slender 1-10um long organelles, these organelles are present on surface
of many microorganisms and on the different cells inside the human and animal bodies
to perform the variety of essential activities. The ciliary activity helps to move the
complete cell body or minute particles in fluid medium, or the cilia are static in

epithelium and allow the fluid flow across the epithelium. There are two different cilia

1



(motile and non-motile). Motile cilia are moving and exists in groups on an organism
whereas non-motile cilia are stationary and found on a cell body. All protozoan ciliates
possess motile cilia. They utilize the cilia not only for transportation, also to feed
themselves. Examples include the mytilus, veligers of molluscs, vorticella, annelid
trochophores, coleps and echinoderm larvae which all rely on cilia to get their
destination. In mammals, cilia are involved in the normal physiology of the entire
respiratory tract, especially in the mechanism of lubrication and clearance of its surface,
and in body defenses against foreign particulate matter. In genital tract, cilia play a vital

role in the passage of spermatozoa and in the conduction of ova.

1.2.1 Ciliary Structure

Cilia has complex internal structure called axenemes given in Fig. 1.1. Cilia is
composed of protein filaments called microtubules. The cross-sectional area of cilia
shows the arrangement of these microtubules. In moving cilia, it consists of 9 doublet
pair of microtubules organized in a circular manner around two central microtubules
called 9+2 arrangement. It also contain radial spokes, dynein arm and nexin links for
different functions. Primary cilia consists of 9+0 (absence of two central microtubules)

arrangement of microtubules.

Fig. 1.1: The axoneme: 1-radial spoke, 2-dynein arms, 3-outer doublets, 4-nexin links,

S-central capsule, 6-plasma membrane.

1.2.3 Ciliary Movement



A cilium, collectively called cilia, exhibit two phase stroke, power stroke (effective
stroke) and recovery stroke. Power stroke in which a cilium swings in full extension
weakly, while in a recovery stroke it reach to the base and slowly return to the original
position. The high friction effective stroke is followed by low friction recovery stroke.
Cilium undergoes a cyclic motion with these two strokes, which generates force to
induced relative motion between the cell and its surrounding fluid. Since cilia are close
together on a single organism and move in coordination. This coordination produce a
collective behavior of cilia beating which forms a wave, called metachronal wave. This
wave can have different types, depending on the direction of propagation with effective
stroke. If both (wave and power stroke) are in same direction, it is symplectic
metachronal wave, or in opposite direction, called antiplectic metachronal wave, or

perpendicular to each other, known as diplectic metachronal wave.

1.2.4 Pumping

A characteristics feature of ciliary transport in which cilia pumps the fluids from
smaller pressure to larger pressure under certain conditions is known as pumping. This
pumping can be negative or positive depending on negative and positive flow rate,
respectively. If both pumping and pressure rise are positive, it is known as ciliary
pumping. If pumping is positive but pressure rise is negative, it is augmented
pumping or co-pumping. If pumping is negative and pressure rise is positive, it is

retrograde pumping.

1.2.5 Trapping

Trapping is known as the circular bolus formed by the closed stream lines and move
ahead along the metachronal wave of the ciliary flow. Basically, it helps to understand
the behavior of flow pattern.

1.3 Some Basics Definitions

1.3.1 Surface Forces

The forces which are directly in contact with surface (internal or external) of the body.
It decompose into normal force, i.e. act perpendicularly over the area and shear force,

i.e. act tangentially over the area.



1.3.2 Body Forces

Forces that act on the entire volume of body but not in contact with the body e.qg. forces
due to magnetic field, electric filed and gravity.

1.3.3 Pressure Gradient

It is the rapid rate of change of pressure (i.e. applied force per unit area) in a specific
area towards a peculiar direction. Mathematical form can be obtained by applying

gradient operator to the pressure function.

1.3.4 Stream Lines

Streamlines describe the path of flow that is created by the fluid particles as it move

with the flow and velocity at every point tangent to the path line.

1.3.5 Stream Function

The stream function, v, for which velocity components of incompressible fluid flow is
expressed in derivative form and is used to represents the trajectory of flow so that it
can be visualized graphically. Mathematically,

oy oY
u—a,v— Ix (1.1)

where u and v are longitudinal and transverse velocities.

1.3.6 Volume Flow Rate

It offers the amount of fluid that passes through a unit area in unit time. It is also known

as volumetric flow rate and usually represented by Q.

1.3.7 Hall Current and lon-Slip Effect

The Hall current is the production of voltage difference when a current carrying
conductor through an electric field is placed in a perpendicular direction of applied
magnetic field, it is used to analyze the nature of conduction process in metals and
semiconducting materials whereas an ion-slip effect is a relative drift that produced
between ions, electrons and neutral particles due to the force exerted by the magnetic

and electric field in the presence of high Hall parameter.



1.4 Heat Transfer

Heat transfer is also known as thermal energy. The form of energy which flow from
one region to another or between the systems and surroundings as a result of
temperature differences. Heat is transferred primarily through three modes conduction,

convection are radiation.

Conduction (through surface): The continue process of energy transfer through the
collision of warmer or high energetic particles to the cooler or low energetic particles

until all particles get the same temperature.

Convection (through liquids): Convective heat transfer (or convection) is the study of
processes which involves the heat transport by the flow of fluids. Heat transfer through
fluid is thermal field and ensure energy balance of the system. The convective heat
transfer is further divided into forced convection, free convection and mixed

convection.

1.5 Laws of Fluid Mechanics

The fundamental laws of fluid mechanics which describe the fluid behavior are mass,
momentum and energy conversations and are applicable in all the problems whether

we realized it or not.

1.5.1 Continuity Equation

Law of conservation of mass is mathematically represented by the continuity equation.
This Law states that neither mass can be generated nor demolished or the mass is

conserved. For compressible fluid, the continuity equation is defined as follow

@ V=0 1.2
TPV =0, (1.2)

Where p is the density of fluid, V is the velocity field vector and % is the material time

derivative which is defines as

d—a+VV 1.3
dt ot (1.3)

Thus combining Eqg. (1.2) and Eq. (1.3), we get



dp V.(pV) =0 1.4
7 .(pV) = 0. (1.4)

The continuity equation for incompressible fluid is defined as follow

V.V =0. (1.5)

1.5.2 Momentum Equation

The law of conservation of momentum is governed by the following equation

)%
p (E + (V. V)v) = —VP + V.7 + pby, (1.6)

in which V, is the velocity field vector, p, is the density of fluid, P, is the pressure force,

7, is the extra stress tensor and b represents the body force.

1.5.3 Energy Equation

The convective heat transfer problem requires a solution for the temperature
distribution through the flow. The equation for achieving this ultimate form is the

energy equation. Mathematically we can write

dT
pc, (E) = kV?T + 1. L + pr, (1.7)

where T is the temperature, T is the extra stress tensor, r is radial heating, k is the

thermal conductivity and c,, is the specific heat.

1.5.4 Generalized Ohm’s Law

The current density J for Hall and ion-slip effect is interpreted by the generalized

Ohm’s law as follow

]=a(E+VxB)—§—Z(]xB)+B;fi

(JxB)xB), (18)

where Hall parameter 8, = w,.t, in which w, is cyclotron frequency, t, is electron
collusion time. ¢ is the fluid conductivity, f; is ion-slip parameter, magnetic field B =
B; + By, B; and By, are induced and constant applied magnetic field, respectively, and
E represents the electric field. In the current thesis, no applied voltage (i.e. E = 0) is

assumed and B; is negligible.



1.6 Dimensionless Numbers

1.6.1 Hartmann Number

It is elucidated the ratio of electromagnetic forces to the viscous forces. It appears in
the magnetohydrodymics flow problems. Mathematically,

o
M = Bol\/;, (1.9)

where By, | ,o,u are magnetic field intensity, mean width of channel/tube, fluid

conductivity and fluid viscosity, respectively.

1.6.2 Porosity Parameter

It is the ratio of volume pores in the medium to the volume of bulk fluid in the medium.
Mathematically,
1 l?

== (1.10)

1.6.3 Reynolds Number

The most essential dimensionless parameter to determine whether the flow is laminar
i.e. similar pattern flow that occur at low Reynolds number, or turbulent flow i.e. fluid
does not know the next flow pattern and occur at high Reynolds number. It is expressed
as a ratio of inertial to the viscous forces and is denoted by Re. Its mathematical form
is as follow

pUsl

Re = —-. 1.11
p (1.11)

1.6.4 Wave Number

The important dimensionless number for wavy flow is the ratio of mean width of
channel to the wavelength (i.e. metachronal wave in this thesis) represent the wave

number. Mathematically,

(1.12)



1.6.5 Weissenberg Number

The ratio of elastic forces to the viscous forces is actually the Weissenberg number.
This dimensionless number is used to study the non-Newtonian viscoelastic fluid.
Basically, it described the degree of deformation in simple shear flow. It is usually

denoted by Wi or We (in this thesis, we use We). Mathematically, it is defined as
We =—2L, (1.13)

1.6.6 Prandtl Number

It describes the ratio of momentum to thermal diffusivity and measure the heat transfer
between moving fluid and solid surface if Prandtl number (denoted by Pr) goes to unity,
it corresponds to flow for which both, momentum and thermal dissipation, are at the
same rate. Heat diffuses quickly if Pr is very small (Pr <« 1) and slowly if Pr is large
(Pr > 1) relative to the velocity boundary layer, respectively. Mathematically,

_Hey

Pr="t (1.14)

1.6.7 Eckert Number

It is the ratio of advective mass transfer to the heat dissipation potential. This
dimensionless number is used to characterize the effect of self-heating in the presence
of viscous dissipation term in the energy equation. It simply shows the relation between
enthalpy and kinetic energy of the flow and is denoted by E.. Mathematical

representation is as follow

E Uy
¢ cp AT

(1.15)

1.6.8 Brinkman Number

This dimensionless number specifies the viscous dissipation in the fluid flow. It is
expressed as a ratio of viscous heat generation to the heat transfer rate and is essential
for short distance velocity changes flow i.e. lubricant flow. It is denoted by Br in the

product of Eckert and Prandtl number i.e. Br = EcPr.



1.6.9 Grashof Number

The ratio of buoyancy forces due to convective heat transfer to the viscous forces is
known as Grashof number. This non-dimensional parameter is a measure of free or

natural convection. Mathematically, the Grashof number is defines as

gBATI3
r =
2

, (1.16)

in which g denotes the gravitational acceleration, £ denotes the volume expansion, L
be the characteristics length, AT is the change in temperature and v is for the viscous
forces. It is also used to deduce the nature of convective boundary layer thickness. The
laminar boundary layer occurs at low Grashof number and turbulent boundary layer

arises at high Grashof number.

1.7 Literature Review

The study of ciliary flow is very rich in history. The light microscopic scientist,
namely, ‘Antoni van Leeuwenhoek’ observed for the first time, motion of the little legs
or thin feet of microorganisms in 1674-1675 [1]. Although, in 1786, Otto Friedrich
Muiller was the first to use the term ‘cilia’ for these organelles [2]. Originally, the cilia
were discovered by their motile function, and, it was assumed the only function of cilia
for the long time.

Later, in the 2" half of the 19" century, some researchers [3, 4, 5] observed the
stationary cilia, and, the first scientist to ever notice these organelles in mammalian
cells including was Zimmermann. But his research and Zimmermann's name for these
organelles were soon forgotten. In 1986, it was renamed to primary cilia [6]. In the last
century, small attention was paid to this distinctive class of non-motile cilia and it
remained a mystery.

The study of these organelles was limited due to deficient resolution of light
microscope of nineteen and early twenty century. The problem of resolution resumed
after the invention of electron microscope and causes the expansion in ciliary study.
The contribution of Keith Porter in elucidation of ciliary structure [7] is highly
appreciated. He described complete pattern of axoneme for both moving and stationary

cilia which is discussed in subsection 1.2.1.



The comprehensive study of ciliary motion of microorganisms in 1950-1969 was given
by, Taylor [8], Reynold’s [9], Tuck [10], Lighthill [11], Sleigh [12, 13], for finite and
infinite length models. They made calculation for the motion of single cilium and
discussed the case of high concentration of cilia lying on the microorganism, which
resembled the Gray’s comment. Blake [14, 15] represent that comparison of the
velocities of propulsion for the finite and infinite length model and reveals that
propulsive velocity of infinite model is twice that are found for the finite model. During
1970s, Blake [15] and Brennen [16, 17] used the envelope model to study the
locomotion of ciliated microorganisms later Katz [18] and Lardner [19] presented the
propulsion of fluid due to cilia in mammalian reproductive systems and then Blake [20]
used this model to study both female and male reproductive system. In 1980s,
Sanderson, Sleigh [21], Fulford, Blake [22], Agarwal [23] and Sleigh [24] described
the motion of mucus-propelling cilia of mammalian respiratory system. They presented
the understanding of the mechanism of mucociliary transport and to provide an
awareness of its importance in lung defense. By 1990s, it is seemed that with each
passed years the field of cilia [25-29] reached a state of maturity, with incremental
advances in the study. Ciliary systems are rather complex and most of the analysis in
this domain are based on simplification of assumptions concerning the interaction of
fluid and the cilia i.e. long wavelength and low Reynolds number assumptions. These
assumptions are only applicable for physiological processes. Some recent

investigations based on these assumptions can be found in [30-35].

Many physiological process in which the mechanism of ciliary transport play a major
role, includes the movement of ovum in the fallopian tube [36, 37, 38], the mucus
transport in the respiratory track [39, 40, 41] and the movement of spermatozoa in the
ductus efferent of the male reproductive track [42,43, 44], etc. There are many diseases
that may occur due to failure of ciliary system in human body such as lobar pneumonia,
asthma, acute tracheobronchitis, postoperative atelectasis, influenzal pneumonia,
bronchiectasis and bronchopneumonia, which were discussed by Hilding [45, 46]. Also,
Afzelius [47] discussed diseases related to defective cilia such as immotile-cilia
syndrome, situs inversus totalis, male infertility, female infertility or fertility, anosmia,
hydrocephalus, retinitis pigmentosa. Due to its numerous importance, the study of

motile cilia has key role in biofluid dynamics.
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Magnetohydrodynamics (MHD) is an important area in modern smart (intelligent)
bionic systems. It can be applied successfully to control flux, direction and other
characteristics of the flow of electrically conducting fluids. MHD features in numerous
medical technologies e.g. MRI, GMR, EMG, IMF, etc. wherein it allows the precise
and non-invasive therapy of many physiological conditions. In biological propulsion,
magnetohydrodynamic flows have been addressed for a variety of bionic systems
including ciliated magneto hydraulics in soft robotics [48], respiratory magnetic
treatment [49], peristaltic magnetofluid [50, 51, 52], magnetic blood pumps [53, 54],

magneto-robotic microswimmers [55].

The role of MHD in mucociliary flow is highly beneficial, therefore Maan et al. [56]
modelled the fractional Burgers’ fluid to study the mocuciliary transport process and
compare velocity for two types of metachronal wave (symplectic and antiplectic).
Results are obtained by using fractional Adomian decomposition method reveal that
antiplectic wave are efficient to transport the fluid than symplectic wave. Further, Bhatti
et al. [57] studied the impact of magnetohydrodynamics (MHD) on ciliary motion of
Casson fluid model embedded in the porous medium. The problem is modelled and
simplified by applying the long wave length and low Reynolds number approximation.
Closed form solution is obtained and results show that MHD and particles volume
fractions decrease the fluid velocity. Same results concluded for the Newtonian fluid
model considered by Elkhair et al. [58] without applying long wave length and low
Reynolds number approximation. They also demonstrated that axial fluid velocity is
efficient without ciliated boundary as compared to ciliated boundary whereas an
opposite result shown near the boundary wall. Siddique et al. [59] studied the MHD
viscous flow for the ciliary system in the porous planar channel (i.e. they considered
mucus as a porous medium) and investigated that in case of mucus congestion in
respiratory track magnetic field can be applied to clear the throat passage. Ramesh et
al. [48] studied the cilia assisted magneto hydrodynamic flow of couple stress
physiological fluid which can be used in medical devices such as MHD micro scale
robots and biomimetic pump. Closed form solution is obtained and complicated
numerical solution are evaluated by MATLAB. Results show that velocity is defeated

in the core region by increasing magnetic parameter.

Magnetic field is also widely used for artificial cilia in microfluidic flow and mixing.

These cilia can also be used for cells transportation, antifouling surfaces, biochemically
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targets, proteins and chemical agents’ sensing. Vilfan et al. [60] demonstrated the fluid
motion by creating the self-assembled artificial cilia using the chains of super
paramagnetic beads. Here the use of magnetic field to actuate the beating cilia in a
simple non-reciprocal beating manner which causes nearly a uniform motion above the
surface of cilia. Guager et al. [61] described the numerical modelling of fluid transport
that occur due to motion of artificial cilia. These artificial cilia are made up of super
paramagnetic elastic filament that are actuated by applied magnetic field. The magnetic
or the electric field is used for better control over the artificial cilia.

Thermal analysis of biological systems is a vibrant area of modern biomechanics and
biomedical engineering. Thermal science is divided into biological thermodynamics,
classical thermodynamics, equilibrium and non-equilibrium thermodynamics,
statistical thermodynamics, and heat transfer. The human body may be considered as
an open system (heat engine). The fundamental law used in thermal conduction is
Fourier law. Heat regulation is essential to all mammals and furthermore thermal
analysis has found many exciting new applications in modern biomedical engineering.
These include heat flow in blood [62], thermal tumors treatment [63], thermal treatment
on food processing [64], heat transfer in treatment of eye [65], heat diffusion in
dynamics of swallowing [66], air thermal control [67], cardiovascular system transport
[68], thermal treatment of skin burns [69], thermo-bio convection [70], heat transfer in
tissue (micro vascular) [71] and human thermal comfort [72]. Other applications of
heat transfer in biological systems include laser radiation of tissue, thawing and freezing
process for preserving the biological material, cryosurgery, infrared radiators, and
microwave methods. Computational and mathematical thermal analysis is considered
as a critical modern tool in biological flows. Mathematical simulation imparts a
powerful and inexpensive methodology for robust analysis of mass and heat transfer.
There to study the heat transfer, Mill et al. [ 73] deliberated the effect of elliptical beating
motion of cilia on the heat transfer in the micro channel containing fluid and deduced
that cilia enhance the transport of heat in the fluid. Akbar et al. [74-75] observed the
influence of Hartmann layer and the analysis of heat transfer on transportation of copper
nanofluids due to the metachronal wave of beating cilia. Recently, the heat transfer in
bio fluid flow in curved channel due to metachronal flogging of cilia with variable
viscosity (i.e. temperature dependent viscosity) is debated by Sadaf [76]. She observed

that pressure gradient is larger for variable viscosity than that of constant viscosity.
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Sadaf and Nadeem [77] found the exact solution of the same work in the existence of
radial magnetic field also Adomian decomposition method has been applied on the
mixed convective electromagnetic fluid flow in the vertical ciliated channel with
variable viscosity by Farooq et al. [78]. Mathematical modeling of heat transfer and
effect of MHD (transverse) through efferent ducts of male reproductive part with
variable viscosity is elucidated by Imran et al. [79]. This study is useful to know the
importance of cilia in fluid flow through male reproductive tract and movement of

sperm and ovum in fallopian tube.

1.8 Research Methodology

We will use some analytical techniques to solve the linear and nonlinear problems
appearing in the next chapters. Some of the these suitable techniques are described

below

e Fourier series expansion method
e Perturbation method
e Adomian decomposition method

e Homotopy perturbation method

1.8.1 Fourier Series Expansion Method

An approximate solution can be found using Fourier series expansion method, for this

a function ¢ (x) represented as follows
o) =ay + X1 (aycosnx + b,sinnx), (1.17)

in which ay, a,, and b,, are Fourier coefficients can be determined by the definition of
orthogonality. This method is applicable for almost all kind of wave function. The
Fourier series has many applications in physical sciences that uses sinusoidal signals in

medical, applied mathematics, engineering, physics and chemistry.

1.8.2 Perturbation Method

This well-known method is widely applied to evaluate the nonlinear problems

analytically. To approximate the perturbation solution [80], we assume b is a small or
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large variable then the unknown function u of the differential equation can be express

as

U =1uy + ub + uyb? + uzh® + -+ (1.18)
and substitute in differential equation to alter the nonlinear equation into numbers of
linear problems depending on the large or small parameter of the equation and then
solution is approximated by the sum of sub linear equation’s solution. This technique

has its vital role in development of science and engineering.

1.8.3 Adomian Decomposition Method

The Adomian decomposition method (ADM) [81, 82] is an efficient solution for linear
and nonlinear, initial and boundary value problem. ADM doesn’t need any restrictive
assumptions such as linearization. Nonlinear differential equation can be written in the

following form

u(x) = f(x) — LY (Ru) — L™Y(Nu), (1.19)

in which unknown function u decompose into a sum of an infinite number of
components and calculated in a recursive manner, f(x) is inhomogeneous term, L is
the inverse operator of linear highest order derivative, Ru is the linear part of the
equation and can be decompose in the infinite sum of component of u,, where m =
0,1,2,3 ..., and Nu represent the nonlinear part of the equation and can be decompose
into an infinite series of Adomian polynomials 4,, where m = 0,1, 2,3 ..., which are
based on trigonometric and algebraic identities and on Taylor series. Finally, the partial

sum of the equation is the solution of required equation.

1.8.4 Homotopy Perturbation Method

The Homotopy perturbation technique [83] is a powerful and efficient technique to
find the approximate solution of linear and nonlinear equation. HPM combines the two
different methods that are perturbation and Homotopy method, it reduces the limitations
that may alter the physical manner of the model under discussion. This method is
applicable when the exact solution of an equation is not possible. It start with the initial
approximation which can be freely selected with possible unknown constants. The
Homotopy structure can be written in the following form
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H(w,q) = (1 —q@)[L(W) — Lwy)] + q[A(v) — f(1] =0, (1.10)
in which L is the linear part, A can be decompose into a linear and nonlinear part, u, is
the initial guess which satisfy the considered equation and g € [0,1] is an embedding
parameter.

Homptopy perturbation method leads to an expression for the desire solution in terms
of a formal power series. In this way, a strict nonlinear equation reduce into solvable

linear and nonlinear equation.
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Chapter 2

Magnetohydrodynamic Flow Induced
by Ciliary Movement

In this chapter, we have assessed the impact of magnetohydrodynamic (MHD) through
a ciliated porous sheet of infinite length and flow occurs due to metachronal beating of
cilia. The present problem is modelled under the small Reynolds number approximation
and exact solution of partial differential equations have been found by the Fourier series
expansion method. The impact of physical parameters along the characteristics of

ciliary motion are illustrated by the graphs and discussed in detail.

2.1 Mathematical Modeling

Consider the two dimensional electrically conducting incompressible viscous fluid
flow through a porous medium in a ciliated sheet. The fluid flow emerges due to the
continuous flogging of cilia which appears as the metachronal wave due to small phase
difference between the neighboring cilia. The fluid is flowing in the horizontal direction
i.e. along the X-axes and magnetic field B, is applied perpendicular to the flow i.e.
along Y-axes. The geometry of current problem is displayed in Fig. 2.1. The governing
equations of conservation of mass and momentum along Maxwell’s equations for

magnetohydrodynamics and Darcy’s law for porous medium can be written as
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where U,V,X,Y and P are velocity components, Cartesian coordinates and pressure in

fixed frame, respectively, and u, o, ¢, k and B,

are fluid viscosity, electric

conductivity, porosity media, permeability of porous medium and magnetic field.

The fixed and the wave frames are related by the following expressions
u=U-¢ x=X—ct, v=V, y=Y p=P.
Using Eq. (2.4) into Egs. (2.1)-(2.3), following expressions can be obtained
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ox dy
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— 4+ — = oBou — — -
’“‘(axz + 6y2> oBou —— (u+o9 %

k' "oy
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Egs. (2.5)-(2.7) are the governing equations of motion for MHD incompressible viscous
fluid flow in porous medium. We have three equations and three unknowns u, v and p.
Thus we can find the exact solution using Fourier series expansion method.

Where u and v in term of stream function are defined as follow

_oy 0y
u—w, U——E. (28)

The two dimensional function y(x,y) in the form of Fourier series expansion is

expressed as follows

P(6Y) = ) (facosnx + gusinna) (), (29)
n=0

Where f,, and g,, are known as the Fourier coefficients.
The velocity boundary conditions at y = [ i.e. the mean width of the sheet in the frame

of reference moving in crests are

u(x,l) =Ap + Z(Ancosnx + B, sinnx)y, (y), (2.10)
n=1
vix, D) = Z(Cncosnx + D, sinnx)y, (y), (2.11)
n=1

in which A4,,, B, C,, and D,, are known as Fourier coefficients.

The two dimensional fluid flow is symmetric along the centerline of the sheet i.e. the
upper and lower half planes has same problem. So for convenience, we only take the
upper portion of plane.

Now convert system of PDE given in Egs. (2.6) & (2.7) into single PDE by eliminating

the pressure and using the stream function defined in Eg. (2.8), we get

W, @, 0By0d*Y

Tty ——2— = 2.12
where
oty oty oty
4= 2 2.1
v ox*  0y* + 0x20y?’ (213)
0%y 9%y

2 — 4 ——. 2.14
v dx2 + dy? ( )

Invoking Eq. (2.9) into Eq. (2.12), we get following form of single ODE

Pn" ) = (202 + T+ M2 " 0) + 02 (0 + L) ) =0, (215)
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where
mz=—"2 (2.16)
2.2 Solution of the Problem

The solution of the ordinary differential equation is

P (y) = ae'Y + be~"1Y +pel2Y + fet2Y, (2.17)
where
2
L= |z 2n2+%+]\/[2+\/(%+]\/[2) +4M2n2>, (2.18)
2
L,= |=| 2n2 +%+ M2 — \](%-I—MZ) +4aM2n2 |, (2.19)

where L,, L, are constants that depend upon physical parameters ¢, k, M and n defined
in Egs. (2.18) and (2.19) and a, &, b and # are constant to be determined.
We have considered the infinite length model containing cilia but y,, (y) is finite. Thus

asy — oo, we have a = d = 0, hence

Pn(y) = be™11Y + fe~l2Y, (2.20)
Placing the value of v, (y) into Eq. (2.8) and using the boundary conditions given in
Egs. (2.9) and (2.10), we get solution for stream function

(6, y) = age™ Y + By + ) (aner” + Brel2Y)cosnx
y 0

n=1

+ Z(yneLly + §,et?Y)sinnx, (2.21)

n=1
which is the representative solution for the stream function in which g, is the arbitrary
parameter and we can find the following values with the assistance of boundary
conditions in Eq. (2.9) and (2.10).
% Ay

— | 2 —_-0
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=21 =T (2.22)
n(L, — Ly)e Ll n(L, —Ly)e Lal

Following form of the velocity gives the solution of Eq. (2.15)

u(x, y) = Aoe—l1(Y—l) _ Z(LlLlle—Ll(y—l) _ L2L21e_L2(y"D)cosnx

n=1

Yn

o)

— Z(LlleeLl(y_l) — LyLy,et207V)sinnx,

n=1

(2.23)

o

v(x,y) = Z(nLlle_Ll(y_l) — nly e 207 sinnx

n=1
(o]

— Z(nleeLl(y_l) — nlLy,et207Y)cosnx.

n=1

(2.24)
Where

_ L;Dp +nAy, _ LyDp +n4,
H n(L, —Lq) rA n(L, — L) ’

L,B, —nC, LB, —nC,
Lig=————, Lyy=——7—. 2.25
27 n(Ly - Ly) 227 n(Ly — Ly) ( )

With the aid of Egs. (2.6) and Eq. (2.7), we get following pressure distribution

n ¢ L (y-
p= #Z (L_ (nz — L+ E) Lyje™10D
1
n=1

2a_;2,% ~L, =D g
L (n L, +k>L21e 2 )smnx

n % —
- ,u Z (L_l (nz - L12 + E) leeLl(y l)

n=1
n
- n% —L,% + %) LZZeLZ(y‘”) cosnx + C,
2

where C is the constant of integration.

(2.26)

Now we will calculate rate of working per unit area of the sheet which can be expressed
by the following integral

S
P :f ul-aijnjds, (227)
S

0
where

oij = pbij — 2uey;, (2.28)
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or

T

P=2m f(uaxy +v0yy) , 4% (2.29)

-1
where

Ju OJv dv
Oxy = —U (@ + a), Oyy =D — 2l @ (2.30)

Using Egs. (2.10), (2.11) and (2.30) into Eq. (2.29), working rate takes the following
form

k) LL,

~(n2 + %) LL)). (2.31)

- C% + D,
P= g<2Aozll + Z(Ll +Ly) (Anz +B,” + (n2 +£) u)

n=1

C LiL,
+ z(BnCn _A,D,) (Zn =
n=1

2.3 Surface of Organism

The oscillation of cilium is periodic so we can represent the surface envelope of the
. . . 2 .
organism, for symplectic metachronal wave with frequency % and wavelength 7", ina

fixed frame by Fourier series as follow

N
Xo=X+¢ Z(ansinn(/&X — ot) — bycosn(£X — at)), (2.32)
n=1
N
Yo=1+ eZ(cnsinn(/&X — ot) — d,cosn(#X — at)), (2.33)

n=1

Also surface in wave frame can be expressed as follow

N
Xo=Xx+¢€ Z(ansinnx — b,cosnx), (2.34)
n=1
N
Yo=1l+¢ Z(cnsinnx — d,cosnx), (2.35)
n=1

As we consider the no slip condition for the extensible sheet, so by taking the
derivatives of Eq. (2.34) and Eq. (2.35) w.r.t ¢ i.e. %and %, we get the following
form of longitudinal velocity u(x,, y,) and transverse velocity v(x,, v,), respectively
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N

u(xg,y0) =0 + o€ Z n(a,cosnx + b,sinnx), (2.36)
n=1
N
v(x9,Yo) = O€ Z n(cpcosnx + d,sinnx), (2.37)
n=1

To acquire velocity coefficients in Egs. (2.9) & (2.10), the following Taylor's series

expansion is applied for the velocity component about (x, 1),

pl ~
. . ky\ (xg — )" (yo — D™ 0%V
P = VG030 = D () e gy €. 239)
k:n=1}|-n

To get the order of accuracy, we applied the iterative technique for velocity component
of Taylor series expansion. To proceed this technique, we take the 1% order
approximation i.e. O(e) of Taylor’s series and equate Vix,D) = (ulx,D),v(x,D),0)
and V(xy, v0) = (u(xg, ¥0), v(x0, ¥o), 0) Which gives the following approximation for
Ay, Ay, By, C, and D,,.

Ay =0, A, = ¢ona,, B, =ceonb,, C, = conc,, D, =eond,, (2.39)
foralln=1,2,..,N.
To obtain the next approximation we have to go to the second order approximation i.e.
0(€?) of two dimensional Taylor’s series. For this we need to simplify the velocity
component in x-direction only, thus the 2"@ approximation gives

2

2

n=1

U=0+ (nzan2 +n%b,% + n(Ly + L,)(byc,, — andy,)

— LiLy(en® +dy?)), (2.40)

which is the velocity of propulsion of second approximation.

2.4 Application to Ciliary Propulsion

Each individual cilium usually has a consistent rhythm that often appear by the
propagation of tip of cilia. Generally the cilium is straighten out during the power stroke
in the beat known as recovery stroke (beat back) the cilium sneaks back to its initial
point in the bend position so that the significant portion of the each cilium is moving
tangential to the fluid rather than perpendicular to it as in the effective stroke. Generally

the recovery stroke is longer than the effective stroke. The cilia exhibit metachronal
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wave (in which cilium beats slightly out of the phase). The direction of the wave
propagation may have almost any orientation relative to the direction of power stroke.
For this model, we need symplectic wave in which the metachronal wave propagation
and the power stroke are in the same direction.
The mathematical representation of considered envelope model for symplectic
metachronal wave can be represented as.

Xo = x + Bcos(x + ct) + ysin(x + ct), (2.41)

Yo = L+ bsin(x + ct), (2.42)

where 8 and b are major and minor axes of elliptical path and y is due to the inclination
of cilia tip to body axes.

Differentiating Egs. (2.41) & (2.42) w.r.t t, and comparing with Egs. (2.36) & (2.37),
we get

ap=—, bp=—, c,=—, d, =0, (2.43)

foralln=1,2,..,N.

Substituting Egs. (2.41) & (2.42) into Eq. (2.39) and Eq. (2.29), we get the following
2" order velocities and the 1% order rate of working

o)

b2
zZ(V B2 (Lt L) LlLZF). (2.44)

| Q

<211 + Z(Ll + L) (V +B%+ (” + (Ilc)) le;)

=1

po*
2
i <2n Ll ~(n? + %) Llan))' (2.45)

n=1

P =

If we consider instantaneous model with b # 0, § and y zero, one can obtain the

following velocity of propulsion in non dimensional form

0~ b?
U=g— EZ Lil,—, (2.46)
n=1

whereas for § #0, b and y are zero, one can obtain the following velocity of

propulsion in non- dimensional form

O_ o0
u=a+5232. (2.47)
n=1
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2.5 Results and Discussion

In this section we have described the graphical results of velocity components in Fig.
2.2 and Fig. 2.3, working rate per unit area in Fig. 2.4 and the stream function in Fig.
2.5 and Fig. 2.6 under the influence of Hartmann number which is the ratio of
electromagnetic force to the viscous force and porosity parameter that represents the
ratio of volume of pores to the volume of bulk fluid in the medium. Fig. 2.2 and Fig.
2.3 show that the effect of both parameters diminished as fluid moves away from
boundary layer thickness. But this contraction become faster in horizontal velocity than
vertical velocity. The consequence of Hartmann number on the velocity components,
uand v,can be seen through Fig. 2.2a and Fig. 2.2b. To see this influence we
considered the electromagnetic force equal, double, triple and four times to the viscous
forces. The horizontal velocity attains its maximum value near the boundary layer
thickness i.e. at y = 1.2 while vertical velocity is maximum around y = 1.6 for all
values of Hartmann number. The magnetic force create resistance for the fluid flow, if
it is applied normal to flow. Thus it can be notice from Fig. 2.2a that velocity reduces
as the value of Hartmann number increases while Fig. 2.2b shows a dual behavior i.e.
velocity decreases near the boundary layer and transition occur at y = 2.2 and velocity
rises with increase in Hartmann number. Fig. 2.3 depicts that the influence of porosity
parameter on u and v is same i.e. velocity increases for the ratio (which define the
porosity parameter) 1%, 5%, 10% and 50%. The maximum change is attained in both
velocities for all the values of porosity parameter near the boundary layer thickness, the
horizontal velocity reaches to its peak, at y = 1.2, while vertical movement attains its
peak around y = 1.6. The influence of Hartmann number and porosity parameter on
pressure distribution can be seen by Fig. 2.4a and Fig. 2.4b, respectively. As the
resistance occur in the ciliary flow due to the implication of magnetic field, cilia have
to work more efficiently in the Hartmann boundary layer region to speed up the flow.
Thus, it can be noted from Fig. 2.4a, that more power is required as the Hartmann
number increases. But if the ratio that define the porosity parameter changes from 1%
to 50% we have to decrease power for high speed of ciliary flow. The impact of
Hartmann number and porosity parameter on the trapped bolus can be seen by Fig. 2.5
and Fig. 2.6, respectively. Trapping is known as the circular bolus formed by the closed
stream lines and move ahead along the metachronal wave of the ciliary flow. Basically,

it helps to understand the behavior of flow pattern. Thus form Fig. 2.5a-c, we can see
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the behavior of ciliary flow in the existence of magnetic field. As the Hartmann number
results the reduction in velocity which indicates reduction in the number and size of
trapped bolus. Fig. 2.6a-c indicate the trapping phenomena in the existence of porous
medium. As the porous medium causes the thinning of boundary layer, so the velocity
accelerate and trapped bolus rises by increasing the ratio of volume fraction from 1%-
3%.

3t
H 2:
[ AM=L1.0, 2.0, 3.0, 4.0
1
[] ?'M‘:'l_i-t-dku-_.-
1 2 3 4 3
¥

Fig. 2.2a: Influence of Hartmann number on longitudinal velocity u(x,y) for § = 0.5, y =0,
c=1u=1b=05101=1, ¢ =0.1, k = 10.
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Fig. 2.2b: Influence of Hartmann number on transverse velocity v(x,y) for § = 0.5, y =0,
c=1u=1b=051=1, ¢ =0.1, k=10.

25



Fig. 2.3a: Influence of porosity parameter on longitudinal velocity u(x,y) for 8 = 0.5, y =
0,0=1u=1b=05101=1 ¢=01 M =1.
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Fig. 2.3b: Influence of porosity parameter on transverse velocity v(x,y) for § = 0.5, y =0,
c=1,u=1b=05101=1, ¢=01 M =1.
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Fig. 2.4a: Influence of Hartmann number on longitudinal velocity u(x,y) for g = 0.5, y =
0,0=1u=1b=051=1 ¢ =0.1, k = 10.

kE=0.01, 0.05, 0.1, 0.5

Fig. 2.4b: Influence of Hartmann number on transverse velocity v(x,y) for § = 0.5, y =0,
c=1,u=1b=051=1, ¢=01 M=1.
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Fig. 2.5: Influence of Hartmann number M on stream function for 8 = 0.25, y = 0.25, a =
1, u=1, b=051=1, ¢ =01,k =10.
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Fig. 2.6: Influence of porosity parameter £ on stream function for § = 0.25, y = 0.25, a =
1, u=1b=051=1 ¢=01 M =1.
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2.6 Conclusion

The existing study have shown the effects of MHD and porous medium for the infinite
length of cilia model. If M - 0 and % - 0, i.e. the non-existence of magnetic field and

porous medium, the present study can be deduced to the study of Blake [14]. Key points
of the present chapter are as follows.

e The implication of magnetic field indicate that the horizontal component of the
velocity decelerates for the increasing value of magnetic field and dual behavior
is observed for the vertical component of the velocity field.

e The presence of porous medium shows that velocity profile rises by rising the
volume fraction parameter from 1% to 50%.

e The impact of Hartmann number and volume fraction parameter show that fluid
is required large amount of power for the flow in the existence of magnetic field
and less amount of power is required in the existence of porous medium.

e Present study is very helpful to treat the diseases in respiratory track as in case
of congestion, fluid in respiratory track become thick and to make the bio fluid
thin magnetic pills are required that will increase the transverse velocity and

throat passage can be cleared and patient can breathe easily.
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Chapter 3

Series Solution of Cilia Induced MHD
Flow in a Porous Medium under the
Hall Current and Ionslip Effect

This chapter is the expansion of previous chapter. We have studied the impact of Hall
current and ionslip on the flow created by the metachoronal wave of cilia in the infinite
length model of porous ciliated sheet. Following the procedure of chapter 2, results can

be observed by the graphs and discussed in section 3.3.

3.1 Mathematical Formulation

We have assumed the magnetohydrodynamic (MHD) viscous fluid flow passed on a
two-dimensional sheet implanted in a porous medium. The flow is produced by ciliary
movement which generates the metachronal wave. The fluid is flowing in the X and Y-
direction and the metachronal wave is produced in the X-direction. The constant

magnetic field is applied normally to the flow i.e. in Z-direction.

Porous ]
medium Z-Axis
~ |~
— B,
—_
=
A\
A — Y-Axis
b X-Axis >

> S>> >>—>
Metachronal Wave

Fig. 3.1: Geometry of problem
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To observe the effect of Hall current and ionslip we will use the following generalized

Ohm's law.
J=0(E+VxB)— "% x B) + ¥ ((j x B) x B), (3.1)
By By

Where J = (J,, J,0) is the current density, E = (E,, E,,0) is the electric field which
is constant everywhere in the flow field, B = (0, 0, B,) is the applied magnetic field.
Choose (x,y) and (X,Y) coordinates into wave frame and in fixed frame, which are
related as follow

u=U-¢ x=X—-¢ct, v=V, y=Y, p=P (3.2)
Solving Eg. (3.1), we obtain the following components of current density vector.

o (ae(Ex — Byv) + B. (Ey + Bo(u + C))>
a2+ B,°

Jx = ) (3.3)

o (ae (Ey — Bo(u + c)) + B.(E, + BOU)>
a2 + B’

Iy = , (3.4)

where 8; = w.t, and a, =1 + B;B..
The law of conservation of momentum and mass in the presence of porous medium,

Hall and ionslip effects imply the following equations in wave frame

AL 3.5
ox  dy (3:5)
o <azu ) azu> 0B (e (By = Bo(u + 9) + BBy + Bov)
dx " \dx2  0y? a2+ B,°
- % (u+o)), (3.6)
ap B <62v+ azv) O'BO (ae(Ex —BO‘U) +.Be (Ey +B0(u+c))>
dy " \oxz  0y? a2 + B,°
_ %v. 3.7)
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Fourier series expansion of the stream function ¥ (x, y) is given as follows

Y(x,y) = Z(fncosnx + gnsinnx)yP, (v), (3.8)
n=0
also the velocity components and the stream function are related by the following
expression
Y 0y
u(x,y) = E, v(x,y) = ~ox (3.9)
The velocity boundary conditions at y = [ are
u(x,l) = Ay + Z(Ancosnx + B, sinnx)y, (y), (3.10)
n=1
v(x, 1) = Z(Cncosnx + D, sinnx)y, (y), (3.11)
n=1

Eliminating pressure gradient and using Eqg. (3.9), Eqg. (3.6) and Eq. (3.7) take the

following form
0By a, _+ g) v aBOaZ_¢
.u(ae2 + Be ) k

Using Eq. (3.8) into Eq. (3.12), we get following form

W¢+<

0" () - (an LI +9)¢ ")
" u(a? + 8.2 k)"
2
+n? <nz + % + %) Pa(y) =0, (3.13)

3.2 Solution of Problem

Solution of the ordinary differential equation (3.13) is

¢n(y) — ae\/nz—+Ay + ,{),e—\/n2+Ay + de™ + /ﬁ.e—ny’ (3_14)

Asy — oo, a =b = 0,50 we have

Vo (y) = e VHAY 4 goy, (3.15)
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where

2
Ma,

@ By
A=—"——° 4=
(a2 +B.%) k

o
and M?=—, (3.16)
u
and the solution in the form of stream function is given by

W(x,y) = age ™V + B, + Z (anem2+‘4y + Bne"y) cosnx
n=1

+ Z (yne n?+dy 4 Sne”y) sinnx, (3.17)

n=1

where f3, is arbitrary constant and

Ag A, + D,
Ay =————, a, = :
° VAevar T n(Vn? + A —n)e-Vn*+Aul
vn? + AD,, + nA, C, — B,

YOy e P L ey B

5 = nB, —Vn? + AC,
" n(VnZ+A-n)e

With the help of Egs. (3.10), (3.11) and Eq. (3.17) following velocity component u and

(3.18)

v are obtained
u(x,y) = Aoe"‘/z(y‘l)

— Z ( n2 4 AL, eV HA0-D _ nL21e‘”(y‘l)) cosnx

|
s

(\/n2 + AL, eV A0-0 anze”(y‘l)) sinnx, (3.19)

S
1l
[y

v(x,y) =

Ns

(nLlle‘ Vn2+A(y-1) _ nL21e‘”(y‘l)) sinnx
1

|
N3

(nlee"mz“LA(y"l) — anze‘”(y"l)) cosnx, (3.20)
n=1
where
L A, + D, nd, +vn? + AD,
1 =

_n(\/n2+A—n)’ bz = n(\/n2+A—n)’
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C,— B, nB, —Vn? + AC,

L, = - , Lyp = : 3.21
T i Ay T Wi A—n) 520
The following expression is found for pressure from Egs. (3.6) and Eq. (3.7)
p= ﬂ\/ZAoﬁee_\/Z(y_D
2 Lyy
+uz (n(nz —yn?+ 4 —Aa )—
n=1< ‘J\nT¥ A
= A
+ ABele) e_ n2+A(y_l) - ; (aeL21 + ﬁeLzz)e_n(y_l)> Slnnx
+ui (n(nz —/n? +A2 — Aa )L
— ‘JNnZ+ A
= A
- A,Bele) e~ Vn*+A-D 4 - (apLyy + BeL21)e_"(y_l)) cosnx
+ C. (3.22)

where C is the constant of integration.

Now following Egs. (2.27)-(2.30) of chapter 2, we can calculate work rate as follows

P = %(ZAOZ\/Z

+Z( n2+A+n)<An2+Bn2+anCn

n=1

n? — Aa
- = (an - Dnz)
nvn? + A4
nvn? + A4 ) )
> (BnCn - AnDn - Cn - Dn - ZAﬁe(AnCn
=vn +A—n
+ B,Dy))
- n? — Aa,
—Z n?+A-n+————-,,(B,C, — A,.D,) |. (3.23)
— n2+A-—n

Following the sections 2.3, we get the expression for velocity of propulsion U and
working rate P as follow

< VT T A+
u=0+gz<y2+32— "n p2 - X1 nﬁb), (3.24)
n=1

n
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p ot 2\/Z+§:( n2+A+n)<y2+,82—wb2>
nvn? + A
P nvn? + A +n2—Aae>
n+A—-n +VYn?2+A4A
- nb
- z ———(V/n2 + Ab + 248,y - n)) (3.25)

n2+A4—-n

3.3 Results and Discussion

In this section impact of various parameters of interest are explored graphically. Effect
of Hall parameter f,, ionslip parameter 3;, Hartmann number M, porosity parameter k
are plotted for stream function and velocity profile. Figs. 3.2-3.5 have been presented
for velocity components u and v against y for the different values of involved
parameters. It is noted from Fig. 3.2-3.3 that horizontal and vertical velocity
components mounted with the escalating values of Hall parameter £, and ionslip
parameter f3;, respectively. But the vertical velocity component increases slowly. The
increase in Hall and ionslip parameters results a decrease in fluid resistance in the
direction of wave therefore velocity profile along the metachronal wave increases by
increasing Hall and ionslip parameter. Fig. 3.4 shows that magnetic field resist the fluid
flow in x and y direction as Lorentz force due to magnetic field opposes the fluid flow.
Fig. 3.5 show that both horizontal and the vertical velocity increases in the presence of
porous medium as the porous medium in ciliary movement accelerate the velocity
profile.

Stream lines owing to ciliary motion are shown in Figs. 3.6-3.7. It is noted that bolus
formed by the fluid flow rises by increasing the values of porosity parameter i.e.
porosity parameter play an essential role to expedite the fluid flow. Reverse behavior
is noted due to increase in magnetic parameter i.e. it decelerated the fluid flow therefore

bolus size reduces.
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Fig. 3.2a: Influence of Hall parameter on longitudinal velocity u(x,y) for § = 0.5, y =0,
0:1; I,lzl, b:05J l=1, §0=01: k=10' Blzl
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Fig. 3.2b: Influence of Hall parameter on transverse velocity v(x,y) for § = 0.5, y =0,
6=1u=1b=051=1¢=01, M =1, k=10, B = 1.
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Fig. 3.3a: Influence of ionslip parameter on longitudinal velocity u(x,y) for § = 0.5, y =0,
6=1u=1b=051=1¢=01, M =1, k=10, 8, = 1.
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Fig. 3.3b: Influence of ionslip parameter on transverse velocity v(x,y) for § = 0.5, y =0,
c=1u=1b=051=1 ¢=01, M =1, k=10, B, = 1.
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Fig. 3.4a: Influence of Hartmann number on longitudinal velocity u(x,y) for § = 0.5, y =
0,0=1u=1b=051=1 ¢=01, k=10, B, =1, B;=1.
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Fig. 3.4b: Influence of Hartmann number on transverse velocity v(x,y) for § = 0.5, y =0,
o=1u=1b=051=1 ¢=01, k=10, g.=1, ;=1
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Fig. 3.5a: Influence of porosity parameter on longitudinal velocity u(x,y) for 8 = 0.5, y =
0,0=1u=1b=05101=1 ¢=01, M =1, B.=1, ;=1
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Fig. 3.5b: Influence of porosity parameter on transverse velocity v(x,y) for § = 0.5, y =0,
c=1,u=1,b=05101=1¢=01, M =1, B.=1, B =1
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Fig. 3.6: Influence of Hartmann number M on stream function for 8 = 0.25, y = 0.25, a =
1, u=1,b=051=1 ¢=01, k=10, . =1, B =1.
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Fig. 3.7: Influence of porosity parameter £ on stream function for § = 0.25, y = 0.25, a =
1, u=1,b=051=1 =01, M=1, B.=1, B;=1.
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3.4 Conclusion

In this study we have developed a mathematical model of velocity profile, stream

function, pressure and work rate in the existence of Hall current and ionslip effect is

developed. The flow is produced by the ciliated surface in which cilia tip form a

metachronal wave. The metachronal wave suggest the envelope of cilia which helps to

find the velocity, stream function and pressure. The Navier Stoke's equations in 2-

dimensional and 2-directional are transformed into bi harmonic partial differential

equation and evaluated by Fourier series expansion method. The resulting velocity

profile and stream function involve the magnetic parameter M, porosity parameter k,

ionslip parameter B; and Hall parameter §,. Following observations are found for the

velocity and stream function.

Horizontal and vertical velocity is mounted by increasing Hall parameter 3,
lonslip parameter £5; showed the increasing effect on the horizontal and vertical
velocity but the effect on horizontal velocity is more significant as compared to the
vertical velocity.

Magnetic parameter M retarded the motion in the horizontal and vertical direction.
The velocity profile in x and y direction decreases by increasing the porosity
parameter k.

Contour plots of stream function show that when accelerated flow is required,
porosity, Hall and ion slip effect should be incorporated whereas for the decelerated
flow magnetic field should be applied in the perpendicular direction of the flow.
Current study can be used for the treatment of diseases caused by the inactive cilia
like asthma by pulmonary cilia and loss of memory due to cilia caused the

movement of cerebrospinal fluid.

43



Chapter 4

Ciliary Flow of MHD Johson-Segalman
Fluid in a Channel

In this chapter, a mathematical model for the cilia-generated propulsion of an
electrically-conducting non-Newtonian fluid in a channel, under the action of magnetic
field is discussed. The rheological behavior of the fluid is simulated with the Johnson-
Segalman constitutive model which allows internal wall slip. Under the classical
lubrication approximation, the boundary value problem is non-dimensionalized and
solved analytically with a perturbation technique. The influence of the geometric,
rheological (slip and Weissenberg number) and magnetic parameters on pressure rise,
velocity and the pressure gradient (evaluated via the stream function in symbolic

software) are presented graphically and interpreted at length.

4.1 Mathematical Modeling

Assume an incompressible MHD Johnson-Segalman fluid flow through a symmetric
ciliated channel of width 2L, under the action of a transverse magnetic field B,. The X-
axis is taken along the direction of metachronal wave. The model is shown in Fig. 4.1.
Cilia are continuously beating with recovery and effective strokes and the tip of the
cilia follow the elliptical path centered at (X, [). The position of the cilia is given by

the following parametric representation.
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Fig. 4.1: Geometry of Problem
~ ~ 21
X =FXt)=X,+ elasm( ) (X —cb), (4.1)
Y=H(X, t)—l+lscos< >(X—c) +L, (4.2)

Here lea is the major axis in the X-direction and e is its minor axis in the Y-direction.
After determining the location of the cilia tips, we may calculate the horizontal and
vertical velocity components. The horizontal velocity U is obtained by the time
derivative at X and vertical velocity ¥ is obtained by taking time derivative of vertical
coordinate Y i.e.

22 (sctacos () (£ - )

U= (4.3)

1- 27” <£lacos ( 5) (% - ct))
2 (sctasin () (5 - 1))

V= » (4.4)
1-— ;LT <elacos( )(X — ct))

Using the MHD Johnson-Segalman fluid model [38, 50] the continuity and momentum

equations in a fixed frame are defined as follows:
divV =0, (4.5)
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V.
pE = divt + pby,

pbs = (6B,°U,0,0),
T=PI+TandT = 2uD + S,

as
S+m<—

—+S(W—aD) + (W - aD)TS> = 21D,

1 1
D=E(L+LT), WZE(L—LT),

L=gradv, Vv =(U(X,7,1),V(X,7,£),0),

(4.6)

(4.7)
(4.8)

(4.9)

(4.10)

(4.11)

where all the parameters, tensors and stresses which are used in Eqgs. (4.1)-(4.10) are

defined in nomenclature. When we take slip parameter equals one i.e. a = 1, then this

fluid model reduced to Oldroyd-B model, if dynamics viscosity of Johnson Segalmann

fluid is zero i.e. u = 0 and the slip parameter a = 1, we get Maxwell fluid model, if

% < a < 1, this fluid will be rod climbing, and when relaxation time m =0 of Johnson

Segalmann fluid, we get classical Navier-Stokes fluid. Now Egs. (4.5) and (4.6)

together with Egs. (4.7)-(4.10) take the following form:

Here S¢¢, S and Syp satisfy following equations
21— = Sge + (Ui+ V— g )SX - Zamgggaﬁ
aX )4

(-0 -a+a2%)s
m Yo% oy | R

T](a—l,{+a—li> =§g?+m(ﬁi+vi,\> Ag? E<(1—(1)—U\— (1+a)
oY o0X 0X ay 2
E((1 —a)—V— (1 +a)a—({>.§??,
2 aYy
Zna—‘f = g?? +m(ﬁi+?i).§?? —ZamSAﬂ?a—If
aY 0X aY aYy
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(4.13)

(4.14)

(4.15)

I7
Sxz

(4.16)



~

aUu d
+m (1—a)——(1+a)a

><> <
=~

) X '

The fixed and the wave frame are related as

£=X—c, a=U—-c¢, 9=V, 9=V
p(%,9,t) = P(X Y,), H(X,t) = h(®).
With the help of Eq. (4.18), Egs. (4.12)-(4.17) take the following form
ou N 00 0
ox 0y
ot ony _ dp 0Sse  0Ses )
L OU _ _ 6B.2(4 ,
p(ua v Oy) S 9% ox dy oBo"(@ +¢)
a0 9D 0p 9Sg5  0Sps
(u—+v—)=——zz —+ =2
0x ay ady  0x ay

Here Sz¢, Sgp and Sy satisfy following equations

ou 0 0\ 4 . 0l
27’]%= 2£+m(Ua+v—) ff— Sx%

+m<(1—a)——(1+a) > 29

(6ﬁ+69)_§ 4 ( 6+ a)A
7737 f‘”m”ax ”ay 2

o )aa AP
2 Dy~ a5 ) Se

o )aﬁ R
2 Dz~ A+ D55 )5

Zav_A N (A6+A6)A ) . 0D

T]a,\— 99 muaf Uaj; amway
ot 0D\ .
+m<(1—a)a—;—(1+a)a—;> ”

The non-dimensional variables are elucidated as follows:

_x oy _a A d
Ty Ytr ittt eVttt
S R I 12p

=7 BPEx Su= e PEy

oB,212 cl me

Mm2=220"  pe=PE =T

u l
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(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)



here M, B, We and Re represents Hartmann number, wave number, Weissenberg
number, Reynolds number, respectively. The two dimensional flow is represented by

the following stream function

L0y 0y
u—a—y, U= Fra (4.26)

With the assistance of Egs. (4.25), (4.26) and the lubrication approximations (long
wavelength relative to channel width and low Reynolds number), Egs. (4.19)-(4.24) can

be written as

u+ n> Op _0Syy,  0°Y 5 (0#) )
( )"y Ty M 3y * 1), (4.27)
dp
3y = (4.28)
zlP
Sex =We(1+ a) Say» (4.29)
no*yP ll} _We 2l/J
;_16_312 (1 - a) (1 + a) yy, (430)
2711
Syy = —We(1l - a) Says (4.31)

Eliminating pressure gradient from Eq. (4.27) and Eq. (4.28), following expression can

be obtained

4- 2
a+l/JM1/J

52 Tyt 57 0. (4.32)
From Eqgs. (4.29)-(4.31), the shear stress, S,,,, can be found as follows
n9%p
Say = 1oy® (4.33)

1+ We?(1 - )(a ‘”)
Now placing Eq. (4.33) into Egs. (4.32) and (4.27) yields
2 2
52 /(’7+1)a Yt we 2(1—a2)(a—lé’>
0y? k 1+ We?(1—a?) (621/;)

3

- Mzz/)) =0, (4.34)

10 \‘ \
B T

g ) 14 We2(1 — a?) (621,11) / * dy3 dy + 1>, (4.35)

0
0
dy?
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In bionic pumping systems, volume flow rate is a key design quantity. The

instantaneous volumetric flow rate in a fixed frame is given by

H

-~

p= f 0(%,7,2)a?, (4.36)
0

using the formula of transformation (fixed to wave) given in Eq. (4.18), we get
R
f u(x,y)dy, (4.37)
0

Now the fixed and wave frame for volume flow rate can be defined with the help of Eq.
(4.36) and Eq. (4.37) as

F=f+ch, (4.38)
The time-mean flow, at a fixed position X, over a period 7" is defined as
T
Q= ! j F dt, (4.39)
7 :
0
using Eq. (4.38) into Eq. (4.39), and integrating, we get
1 1
Q= j(f +ch)dz =f + cj hdz, (4.40)
0 0
now with the help of Eq. (4.2), Eq. (4.18) and Eq. (4.40) become
Q=f+cl (4.41)
Define the dimensionless form of time mean flow Q and F respectively as
Q= 9 L, (4.42)
cl’ l
we get
oy
j Sy = () = $(0). (443)
And
Q=F+1, (4.44)

If we choose ¥ = 0 at y = 0then y = F at y = h. The boundary conditions become

as
2

0y
l/JZO, a—yzzo, at y:(),
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— =, at y=nh. (4.45)

Where

dy, wy=—1—-2meaf cos(2nx), h =1+ ecos(2mx). (4.46)

°’|~s

h
of
With the help of binomial theorem and neglecting higher powers of( Zyw)

5 6

°y
e 0<(ay2)),

azlp azlp 3 5

W(ay + We? 2<6_yz) —K1M l/l =0, (4.47)

Egs. (4.34) and (4.35) then take the following form

Jp 21 21 oY
e 6y(6y + We x2<ay ) >—K1M2 <@+1>. (4.48)

I (a®-1)
—, Ky = .
u+n u+n

Here u, n are viscosity coefficients of the Johnson-Segalman fluid, a is slip parameter.

Here

i, = (4.49)

4.4 Perturbation Solution

To solve the non-linear Egs. (4.47) and (4.48) together with the boundary condition
(4.45), a perturbation method is employed. Expanding the stream function ), pressure
distribution p and flow rate F about the Weissenberg number We (assuming small

Weissenberg number) leads to

Y =Py + WePhy + -, (4.50)
p=7po+ We?p, + -, (4.51)
F =Fy+ We?F, + -, (4.52)

Using the above equations in (4.47)-(4.48) we obtain the following systems

4.4.1 Zeroth Order System
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92 (9%,

a_:yz<a_:yz - Klelp()) = 0, (4‘53)
dp, 0 0%, 2 (%o
E = @( ayz - KlM (W + 1) (454)

The associated boundary conditions are
0%,
Yo =0, 3y =0, at y=0,
_ 0Py B
Yo = Fo, oy o at y = h. (4.55)

Solution of zeroth order system

Solution of zeroth order system given by Egs. (4.53)-(4.55) is as follows

Yo
_ —Mycosh(Mhv/k;)Fo; + ysinh(Mhv/k;)u, + sinh(Mhvicy) (Fy — hy) 456
B sinh(Mhi;) — Mcosh(Mhi;) /i, , (4:56)
Using Egs. (4.54) and (4.56), the zeroth order pressure gradient is obtained as
dpy _ M1 (—Mcosh(Mhy/icy) (h + Fo)y/ie; + sinh(Mhy/ie) (1 + 1)) 157
dx —sinh(M h/k;) + Mcosh(Mh\/k;) /i, - (437)
4.4.2 First Order System
8% (3%, DY
a_:yz< ayz + WBZKZ < ayz ) - KIMZII)I = 0, (458)
o1 _ 9 (3%, (3% , <a¢1 )
P 6y<6y2 + We“k, 3y2 KM y +1). (4.59)
The relevant boundary conditions are
0%,
Y1 =0, 3y =0, at y=0,
Y, =F %=0 at y=nh (4.60)
1 1 ay ] y ] .

Solution of first order system

Solving first order system as given by Egs. (4.58)-(4.60), we obtain
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V1

N ey
+ M fie; (~8ycosh(Mhy/x;) (sinh (Mh/x;))”

+ h(—3(sinh(M (y — 3h)\/k;) —sinh(M (y — h)\[x;) — sinh(M (y + h)\/K_l)

+ sinh(M (y + 3h)\/}c_1)) + M\/K_1(6y(sinh(2]\/[\/lc_1)2

+ h(—3(cosh(M (y — 3h)\[k;) + cosh(m(y — h)\/x,))

— 8M (cosh(Mhy/ky))” (hsinh(My./fi;) + 3ysinh(Mhy/x;)) {x;

+ 8M2y(COSh(Mh\/K'—1))4hK1))))) — M4K1))2 (— cosh(M (y — 3h) [x;)

+ cosh(M (3y — h)\[k;) — cosh(M (3y + h)\/x,)

+ M (2y (—6 sinh(M (y — h)\/k;) — 8 sinh(2Mh,/x, )

+ (sinh(4]\/[h\/rc_1) +6 sinh(M(y + h)\/K_l))

+h (—33inh(]\/[(y — 3h)\/K_1) + sinh(M(3y — h)\/K_l) + sinh(M(3y + +h)\/K_1)
— 3sinh(M (y + 3h)\/K_1))) Jr1 + 24M2h(y — ycosh(Mh,[k;) cosh(mh,[k;)

+ hsinh(My, /i) sinh(Mh. /i) 1)ic, (—Fy + hu0)3)>. (4.61)

Using Eq. (4.61) into Eq. (4.59), we arrive at the first order pressure gradient

dp
dx
1

= RGOV — Meosh(ThTi i) <M2K1 <—16cosh(2]v[h\/zc_1)(—1
+ M*h3(h + FKk%)
— 4cosh(4Mh fic;) (1 + Mhic; (3F; + h(6 + M?h(h + F)ky)) )

— 8Msinh(2Mh /i )i (F1 — MFyi1215 + h(4 + 3M*Fo? 1, Kep140)

— 3M h%k, (F; + M Fykcikaug?) + M2h3k, (—4 + M2K1K2u03))

+ Msinh(4Mhic;)\fie; (4F, — M*Fo?iy%1c, + h(16 + 3M*Fy?ie,21cp i)
— 3M Rk, (—4F, + M2 Fyicykytig?) + M2h31, (16 + M2K1K2u03))

+ 12 (—1

+ MZhK1 (F1 - M4F03K'12K2 + h(z + 3M4F02K12K2/LL0)
- Mzthl(Fl + 3M2F0K1K2'LL02)

+ M2h3K, (-1 + M2K1K2u03))>)>, (4.62)

Now summarize the above results up to order We? and to achieve final results we

introduce F = F, + We?F, or F, = F — We?F, in stream function 1 and pressure
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gradient Z—Zgiven in Egs. (4.50) and (4.51). Where ¢, Y1, % and % are defined in

Egs. (4.56), (4.57), (4.61) and (4.62).

4.5 Results and Discussion

Figs. 4.2, 4.3 and 4.4 are plotted to visualize the effects of the key parameters i.e.
Hartmann number, Weissenberg number, slip parameter and the cilia length, on the
pressure rise, velocity and the pressure gradient keeping all other parameters fixed.

Figs. 4.2a-d illustrate the impact of Hartmann number M, Weissenberg number We,
slip parameter a and cilia length € on the axial pressure p evolution with axial
coordinate x i.e. pressure gradient. Fig. 4.2a shows that pressure is strongly affected by
the Hartmann number. With the rise in Hartmann number there is a uniform decrease
in pressure. A reduction in pressure is also induced with increasing slip parameter in
Fig 4.2c. However pressure is boosted with elevation in Weissenberg number (Fig.
4.2c) and cilia length (Fig. 4.2d). There is a more uniform pressure distribution along
the channel length with variation in Hartmann number (Fig. 4.2a) and the principal
reduction in pressure is concentrated in the intermediate section of the channel; lower
pressures ascend at entry and exit of the channel with maximum pressures in between,
an important feature is required for efficient medical magnetic pumping performance.
Hartmann number appears in the Lorentz magnetohydrodynamic body force terms in
Egs. (4.47) and (4.48). This is a retarding force which opposes the flow and induces
deceleration across the channel span (described later). Effectively pressure is
suppressed with stronger magnetic field. The maximum pressure is achieved for the
case M = 1 wherein viscous and magnetic forces in the regime are equivalent in
magnitude. For M > 1 the magnetic drag force dominates the viscous hydrodynamic
resistance. Figs. 4.2b-d indicate that the other parameters induce a more marked
modification in pressure profiles in the vicinity of the entry and exit zones (low and
high values of axial coordinate). The viscoelastic parameter i.e. Weissenberg number
embodies the relative contribution of viscous forces to the elastic forces. For cases
where the time-scale of a flow is significantly less than the relaxation time of the
viscoelastic fluids, then elastic effects dominate the flow behavior. However, when
time-scale exceeds the relaxation time, substantial elastic relaxation takes place and the
viscous forces dominate the flow. The Johnson-Segalman fluid model is more

sophisticated than other viscoelastic models and permits the non-monotonic variation
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in shear stress with decrease/increase in the rate of deformation for simple shear flows.
It is also capable of simulating slip effects and furthermore the spurt phenomenon i.e.
an abnormal rise in volume throughput for a very weak elevation in the driving pressure
gradient. With greater Weissenberg numbers the elastic effect dominates the behavior
and this contributes to the enhancement in pressure. With greater slip effect the pressure
is decreased significantly (Fig. 4.2c). The increase in pressure with greater cilia length
is related to the enhanced transfer of force to the fluid in the channel with longer cilia
geometry. This boosts the pressure in the central channel length area but depresses the
pressure near the entry and exit locations.

Figs. 4.3a-d reveal the impact of the key parameters on axial velocity across the
channel span i.e. with transverse coordinate, y. Evidently although symmetrical profiles
in velocity are consistently computed, the parameters exhibit different effects. Fig. 4.3a
and 4.3b show that by increasing Hartmann number and Weissenberg number velocity
reduces in the central (core) region, —0.32 < y < 0.32 and rises near the walls in
range, y < —0.32 and y > 0.32 of the channel. The contrary behavior can be observed
with a rise in slip parameter and cilia length from Figs. 4.3c and 4.3d. Furthermore,
inspection of the figures reveals that Hartmann number, Weissenberg number and slip
parameter generate a more significant influence at the center as compared to walls of
the channel.

The expression for the pressure rise is

1

f d—p (4.63)
To calculate the result of volume flow rate, We use the expression of Ap which involves
integration of Due to the complexity of the expression given in the Eq. (4.63), the
symbolic software, MATHEMATICA, has been implemented for the numerical
integration. The results are shown in Figs. 4.4a-b, which present the evolution in
average rise in the pressure against Q (time-averaged flux). The impact of magnetic
parameter M on pressure rise is shown in Fig. 4.4a, which shows the retrograde
pumping Q < 0,Ap > 0 and the free pumping Ap = 0 uniformly change with the rise
in Hartmann number. Fig. 4.4b and 4.4c, reveals the change of pressure rise against
time average flux, for the different values of Weissenberg number We and the slip
parameter a. It is noted that co-pumping rate reduces with the rising values of slip

parameter and Weissenberg number. Fig. 4.4d, depicts the effect of cilia length & on the
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pressure rise. It is noticeable that the pumping and co-pumping rates increases with

growing cilia length.

—-14 M=L.0, 2.0, 3.0 ‘ .
—16k=="u . . . MR
-04 =02 0.0 0.2 0.4
X

Fig. 4.2a: The effect of Hartmann number M on pressure gradient.

Fig. 4.2b: The effect of Weissenberg number We on pressure gradient.
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04 -02 00 02 04

Fig. 4.2c: The effect of slip parameter a on pressure gradient.

Fig. 4.2d: The effect of cilia length & on pressure gradient.
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M=1.0, 3.0, 5.0

-0.6 -0.4-0.2 0.0 02 0.4 0.6
¥

Fig. 4.3a: The effect of Hartmann number M on velocity.

We=0.1, 0.2, 0.3

-0.6 -0.4-0.2 0.0 0.2 0.4 0.6
¥
Fig. 4.3b: The effect of Weissenberg number We on velocity.
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-0.6 -0.4-0.2 0.0 0.2 0.4 0.6
¥

Fig. 4.3c: The effect of slip parameter a on velocity.

s £=0.1,0.2, 0.3 L
—0.5} 7 H0 ' ]

I z

-0.6 -0.4-0.2 0.0 0.2 0.4 0.6

F
Fig. 4.3d: The effect of cilia length € on velocity.
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M=1.0, 2.0, 3.0

Fig. 4.4a: The effect of Hartmann number M on pressure rise.

i
2
AP IJ
=21 _
[ We=0.1. 0.15, 0.2
|
-1.0 -0.5 0.0 0.5 1.0
0

Fig. 4.4b: The effect of Weissenberg number We on pressure rise.

59



= bk Ju 2n

=2} a=0.5, 1.0, 1.5
-4k .. Y
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Fig. 4.4c: The effect of slip parameter a on pressure rise.

4r
2f
AP o}
-2}
: £=0.1,0.2,0.3
—4k : , , ]
-1.0 -0.5 0.0 0.5 1.0
0

Fig. 4.4d: The effect of cilia length & on pressure rise.
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4.6 Conclusion

In this study, we have considered the ciliary transport of MHD Johnson-Segalman fluid

in a 2D symmetric channel. The flow is produced by continuous beating of cilia in an

elliptical path which generates the two-dimensional velocity field. The governing

equations are simplified by using lubrication theory and converted into non-

dimensional form via suitable transformations. A regular perturbation technique is used

to solve non-linear PDEs with appropriate boundary conditions. Mathematica symbolic

software is deployed to evaluate the series solutions and results are visualized

graphically. The principal findings from this chapter may be concluded as follows:

The pressure gradient is strongly affected by Weissenberg viscoelastic number
We and cilia length €.

With increase in Weissenberg viscoelastic number We and cilia length ¢ larger
pressure gradient is required to maintain the same flux through a narrow region
as compared to a wider region of channel, whereas, smaller pressure gradient is
required with rise in magnetic parameter M and slip parameter a.

The velocity response is not the same throughout the channel. Velocity
decreases in the central region by rising magnetic number M and Weissenberg
number We and enhances with a rise in slip parameter a and cilia length «.

By increasing magnetic parameter M and cilia length & pressure rise increases
whereas it is reduced with larger values of Weissenberg number We and cilia
length €.

The present investigation has neglected curvature, rotational and heat transfer
effects which are also important in biomimetic pumps and these may be

addressed in the future.
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Chapter 5

Inertial Flow of MHD Second Grade
Fluid in a Ciliated Channel

This study is presented for MHD second grade fluid in a ciliated channel embedded in
a porous medium. The two dimensional flow is modelled with the inertial effects (Re #
0) which make the partial differential equation non-linear and complex. The Homotopy
Perturbation Method (HPM)), is used to solve the complex partial differential equation,
which does not indispensable the assumption of small parameter like the perturbation
method. The HPM solution is found by the help of software "Mathematica” and
graphical results are shown in the last section.

5.1 Mathematical Formulation

Assume the ciliary flow of an incompressible second grade fluid in a symmetric
channel embedded in a porous medium under the effect of constant applied magnetic
field. To study the magnetohydrodynamics flow of second grade model having
properties @, + @, = 0 and a; > 0 through a ciliated porous channel, the Lorentz force
and Darcy's law are considered with the two dimensional momentum equations. The
flow occur due to ciliary motion as a cilium moves in an elliptical path and collectively
produced a metachronal wave in X-direction of Cartesian coordinate system and Y-axis
is normal to the wave propagation. The mathematical form of horizontal and vertical
components of the elliptical path followed by the cilia are given in Egs. 4.1 and 4.2.
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Ciliated Surface o <~ © & > X-Axis
Porous

sl

Metachronal Wave

Figure 5.1: Geometry of Problem

The fixed and the wave frame are related as follow

A A ~ A~

£=X—c, a=U-¢ 9=Y, 9=V, p(x,9 D =P(X Vi), (51

where (%,9) and (i, ) are coordinates and velocity in wave frame and (X,Y) and

(U, V) are coordinate and velocity in fixed frame. The non-dimensional variables are

stated as
X 1 .y _AD
ottt YT Ve
_lzﬁ t_ct h—L !
p_cl-l, _A, _lr ﬁ_)t'
pcl 1 @o? 0By 12
Re=—, —=— 2 =
e #lj(s k )M )
)\_E ;\_% (5.2)
1—lll, Z—Hl- .

Where p is pressure, h is mean width of channel, § is wave number, M is Hartmann
number, ¥ is porosity parameter, Reis Reynolds number, A; and A, are fluid
parameters.

The non-dimensional equations of continuity and momentum for the second grade fluid

model [84] in a moving system are as follows

Jdu OJv
a‘l‘@:(), (5.3)
ou  Ou op ,0%u 0%u
Reﬁ(’“a*"@)*a*(ﬁ ﬁ*a—yz)
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The relevant boundary conditions are

and the symmetry condition is

The stream function v is defined as

+MB |

+1(37\ + 21,) 9
4 1 27 0x

(o

_Op 6
__@4_’8( ozt )

{—v(ﬁza_z+ az)( Za_v_a_u>\
d0x?  0dy? dx OJdy

/ ,0%u  0%u \
o [ 55

*ox | (2 20, O

\ ( 0x? 6y2>

2 2

1(s5) +1(35)
+%)(u+1)
oo

”‘“i ; /

+— ’ \
\ ayk+BZV<3237+ayz)/
u

/4( ou\> 4 6v> \
e +ans "o "oy
A "0y v ou\’
2
dx y
1.
_%’3 v,
u=uy,=—1-2meaf cos(2mx),
v = 2me sin(2nx) + B (2me)%asin(2mx)cos (2mx),
at y=h=1+ ¢esin(2nx). (5.6)
ou =0 ty=0 5.7
ay - T (57)
P P
—E, U——a. (58)



After eliminating the pressure gradient and ignoring 82 and 3 terms (long wavelength

approximation), the governing equations in terms of 1 will take the following form

( 2, )02¢_R o 0% dPatyY
dy* %) ayz ~ "P\ Gy oxay? ~ ax ay°

oY 9%y  0Yo°Y
-\ <@ 9x3y*  x y5 ) (5.9
5.2 Volumetric Flow Rate and Boundary Conditions
The volumetric flow rate at a certain instant in a fixed frame is given by
H
F= f 0(%,7,2)dy. (5.10)
0
Using Eq. (5.1) in Eqg. (5.10), we get
N L
f=[ aw9as (5.11)
0
From Egs. (5.10), (5.11) and (5.1), we get
F=Ff+cL (5.12)
The time mean flow, at a fixed position X, over a period 7 is defined as
1 (7.
=—=| Fdt. 5.13
0=7] (513)
Using Eqg. (5.12) into Eqg. (5.13), and integrating, we get
1 . . 1
Q= f (f+cL)dz =f + cf Ldzx. (5.14)
0 0
Now with the aid of Eq. (4.2), Eq. (5.1) and Eq. (5.14), we get
Q=f+cl (5.15)
Define the dimensionless form of time mean flow Q and F respectively as
~_Q  f
Q= K F= N (5.16)
we get
0=F+1, (5.17)
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where

halp
P Sody = - v, (5.18)
o 0y
If we choose p = 0aty = Otheny = F aty = h and other boundary conditions are
0%y
Y =0, a—yZ—O, at y=0,
0y
Y =F, 3y - o aty = h, (5.19)

where

ho
F = f %dy, uy = —1—2neaf cos(2nx), h =1+ ecos(2mx). (5.20)
0

5.3 Solution of Problem

To solve Eg. (5.9) along the boundary conditions (5.19), we use HPM.

Here we choose the linear operator L and the nonlinear operator N as

oty 1\ 02
L_a_y‘l'_<M2+%>a_yz’ (521)
_ oY 0% Y a*yP
N = Ref8 <E—axay2 - aa—yJ

oy 5% oY acy
AP (—— )

- 22
dy 0xdoy* 0x dyS (5:22)

We established a homotopy [, g]: Q X [0,1] = R which satisfy

HW, q) = (1 = QILW) = Lwe)] +q[LY) + N@) —g()] =0,  (5.23)

Here wy, is the initial guess and qe[0,1] is the embedding parameter.

Also define the homotopy equation

9% 1\ 02
R B
oy* K) 0y? oY %y  IYady
(1_Q)| 0w, ,  1\0%w, ‘+q ~Rep @axayz_a(?ﬁ)
_<6y4 _<M +%) 6y2> oy Y Ay
_+7\1’8 (@ dxdy* ox 6y5>_

=0, (5.24)

The associated boundary conditions are

66



=0 i =0 t 0

l/)— , =0, at y=0,

l/)—} =Uu aty=nh 5.25
, ay 0 y ( )

Decomposing stream function y and the flux F in following series

Y=19o+qP+-, (5.26)
We choose initial guess
(y? —h*)dP
Wo = U + — d_xo' (5.28)

and making use of Egs. (5.26)-(5.28) in Egs. (5.24) and (5.25) and equating the same

powers of g on both sides, we get the following equations

0ty 1\ 0%y, 0d*w, 1\ 02w,
0. — | M2 —) = —( 2 —) : 5.29
1 dy* ( T3 dy?  dy* Tx dy? (5.29)
with the boundary conditions
91y
IIJO:OF ayz :0: at y: )
_ 0y _ 3

Yo = Fo, oy Yo aty = h, (5.30)

q: 0", _ (Mz 1)‘721/)1 — Rep 0, 0%, _ 0y 0%y,
' dy 0xdy? odx 0dy3
0 0%y 0Py 0%

MB <6y xdy* dx dyS ) 3D

0%,

Yi=0, 5=0 at y=0,

Y =F Wi a y=h (5.32)
) ay )

Solving Egs. (5.29)-(5.32), we get following expressions
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1 dP,

ax Y

Yo = [2\/5

ZG%cosh(\/Eh)h — ZGsinh(\/Eh)
— cosh[VG(y — h)]h)

+ \/Ecosh[\/ﬁh] (% (y —h)(—2 + Gyh) + ZGyF0>

+ sinh[VGy] (2 % — Gh? % —2GFy + ZGu0>
— sinh[VGh] (% (2 + Gy? — 2Gyh) + ZGyuo)
—2 @smh[ﬁ(y — h)]], (5.33)
dx
Y1 = ! Ci(x,y)F.
" 8(—VGeosh[VGh]h + simk[VGR])
B(Re — GA)h'
= [C2(x, y) + cosh[VGR]C5(x, )
1280 <—x/5cosh[\/5h]h> [€2(063) + cosh{VGhJCaCr.y
+sinh[VGh]

+ cosh[VGh|C,(x,y) + cosh[VGh]C5(x,y) + cosh[VGR]|C4(x,y)
+ cosh[VGh|C,(x,y) + sinh[VGh]Cs(x, y) + sinh[VGh]|Co(x,y)
+ sinh[2VGh]A14(x,y) + sinh[3VGh]|Cy1 (x, y)

+ sinh[4\/5h]C12 (x,y) + cosh[\/E(y — h)]C13(x, y)

+ cosh[\/E(y + h)]C14(x, y) + cosh[\/E(y - Zh)]Cls(x, y)

+ cosh[\/E(y + 2h)]C16(x, y) + cosh[\/ﬁ(y - 3h)]Cl7(x, y)

+ cosh[\/E(y + 3h)]C18(x, y) + cosh[\/ﬁ(y - 4h)]C19(x, y)

+ sinh[VG (y — W) Cy0(x, ¥) + sinh[VG (y + h)|Cy1(x, )

+ sinh[VG (y — 2h)|Ca2(x,y) + sinh[VG (y + 2R)|Co3(x, y)

+ sinh[\/E(y — 3Rh)]Cou(x, ¥) + sinh[\/E(y + 3Rh)|Cas(x, )

+ sinh[VG(y

- 4h)]C26(x: }’)], (5.34)

where

G =M+~ (5.35)
j(\l

where C;(x,y),C,(x,y), C3(x,y), ..., C.6(x, y) are given in appendix.
Using Egs. (5.33) and (5.34) into (5.26), we get the solution in the following form

Y=9o+qy + -, (5.36)

We introduce F = F, + qF; in stream function i given in Eq. (5.36). Now pressure

gradient can be found in the following equations
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dp oY o*y Yo%y 9%y
— = Ref | — - +
0x dx dy? Odyodxdy) dy3

Y oy 9*yY a¢a4¢+ 0%y 9% %Y %Y
1P dy 0xdy3 0x dy* 0xdy dy3® 0xdy? dy?

1\ /0y
— (MZ + y_c) <_6y + 1>, (5.37)
ap 0% 331
3y 20,8 52355 (5.38)

Here one more interested physical quantity is the non-dimensional skin friction

coefficient c; which is defined at the height y = h of the channel as

TW

=— .39
Cr pCZ' (5.39)

The dimensionless form of Eq. (5.39) is
VRec; =1y, (5.40)

where
0%y oY 9%  oYady _ 9%P 9%

Ty = la—yz + }\1,8 <E axayz - a ay3 +2 axay ay2>ly=h. (541)

The above expression can be obtained by driving Eq. (5.36) into Eq. (5.39) and the
numerical result which is found by using software MTHEMATICA, has been

discussed in the next section.

5.4 Numerical Solution and Discussion

In this section effect of Hartmann number M, fluid parameter A;, porosity
parameter K and Reynolds number Re on pressure gradient, velocity field and trapping
bolus are investigated. Figs. 5.2a-d reveal the impacts of interested parameters on
horizontal velocity which show that influences of emerging parameters on ciliated flow
are strong at the center region of the channel and decay near the channel's wall due to
cilia anchored in the inner wall surface. The parabolic behavior of flow is caused by
pressure gradient which is close to the core region of the channel due to the moving
force caused by tip of cilia bed. Fig. 5.2a reveals the outcome of Hartmann
number/magnetic parameter M on the horizontal velocity. The magnetic parameter is
the ratio of electromagnetic forces to the viscous forces. Here we have considered the
ratio 1, 2 and 3 that means electromagnetic forces are equal, double and triple to the
viscous forces and help to retard the horizontal velocity as electromagnetic forces are
applied transverse to the direction of flow. The viscoelastic fluid flow due to ciliary

movement in the existence of viscous and inertial effects can be visualized due to the
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magnetic field that is dominant over the viscous effect therefore impact of magnetic
field in the normal direction is more powerful than the viscous effect which helps to
retard the motion to observe the frequency of cilia beat. Fig. 5.2b depicts the impact of
porosity parameter K on the horizontal component of the velocity. Porosity parameter
is the ratio of pore volume to the bulk volume which is mostly less than one. It shows
that if bulk volume decreases or pore volume increases then horizontal velocity
increases close to core region of the channel, because increase in pore volume permit
the fluid to flow through the porous space that results to enhance the velocity profile in
the horizontal direction (x direction). Fig. 5.2c shows that velocity profile in
longitudinal direction rises with the increasing value of viscoelastic parameter A,,
because the fluid become thin and resistivity due to viscosity become weak. Fig. 5.2d
shows that the Reynolds number Re is considered to be 1, 5 and 10. Since in this study
we have considered the inertial effects due to Reynolds number, which causes to
accelerate the fluid flow because inertial forces have large impact due to high speed as
compared to the viscous forces.

The behavior of the vertical component of the velocity field is indicated in Figs. 5.3a-
d. These figures show that velocity vanishes at the center of the channel and behave
like a sinusoidal wave. These figures indicate the effect of Hartmann number M, fluid
parameter A, porosity parameter K and Reynolds number Re. Figs. 5.3a-d show that
vertical velocity enhances with the rising value of M (Hartmann number), A; (fluid
parameter), K (Porosity parameter) Re (Reynolds number) in upper half of the channel
and same behavior is observed in the lower half of the channel in opposite direction due

to symmetry of ciliated channel with effective and recovery stroke (to and fro motion).
Figs. 5.4a-d illustrate that horizontal pressure gradient g—z has a periodic nature. Figs.

5.4a-b show that favorable pressure gradient occurs with the rising value of Hartmann
number M and with the rising value of porosity parameter %, because Lorentz force
due to magnetic field require more pressure to flow and porous medium requires less
pressure for the fluid flow in the porous regime. However Figs. 5.4c-d show the dual
behavior of pressure gradient with the growing value of fluid parameter A, and
Reynolds number Re. It can be depicted from Figs. 5.4c-d that pressure gradient show
decline inthe region —1 < x < —0.5and 0 < x < 0.5 whilerises in the region —0.5 <
x < 0and 0.5 < x < 1 with the growing value of A, and Re due to the metachoronal

wave motion in the horizontal direction.
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The behavior of vertical pressure gradient is seen in Figs. 5.5a-d which is symmetric
about the center line and behave like a sinusoidal wave. These figures show that vertical
pressure gradient is favorable in the region —0.5< x <0 and adverse in the region 0 <
x < 0.5 with the growing value of A, , M and K near the upper wall, and static pressure
increases in the direction of flow due to forward and backward stroke.

The stream line plots can be seen for Hartmann number M, fluid parameter A;, porosity
parameter K and Reynolds number Re in Figs. 5.6a-5.9c¢ by taking all other parameters
a =04, =04 €=0.1, Q = 0.9. The impact of Hartmann number on stream lines
is shown in Figs. 5.6a-c which illustrate that increasing value of Hartmann number M
resist the flow, therefore bolus size reduces. It can be observed from Figs. 5.7a-c that
bolus size increases with the rising value of porosity parameter K as it allows the fluid
to flow through the medium. Figs. 5.8a-c indicate that increasing value of fluid
parameter A; help to increase the size of trapped bolus. Figs. 5.9a-c indicate that bolus
size and the number of stream lines become larger due to the increasing amount of
inertial forces compared to the viscous forces. Fig. 5.10a-b have been plotted for the
comparison of velocity for both symplectic and antiplectic metachronal waves. It is
noted that both velocities have same effect for symplectic and antiplectic waves by
growing cilia length &, but the magnitude of velocity for antiplectic metachronal wave
is greater than the magnitude of velocity due to symplectic metachronal wave.
Therefore for the high speed, researchers used the antiplectic patterns of the wave
whereas for the low speed of ciliary flow they used the symplectic patterns. At the end,
the impact of viscoelastic second grade fluid on the skin friction has been plotted in
Fig. 5.11 for the growing length of cilia €. This figure reveals the linear relation between
the 7,, and A, It is also noted that this linear relation become nonlinear as cilia length

£ increases.
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Fig. 5.2a: The effect of Hartmann number M on longitudinal velocity.
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Fig. 5.2b: The effect of porosity parameter X on longitudinal velocity.
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Fig. 5.2c: The effect of fluid parameter 1, on transverse velocity.
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Fig. 5.2d: The effect of Reynolds number Re on transverse velocity.
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Fig. 5.3a: The effect of Hartmann number M on transverse velocity.
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Fig. 5.3b: The effect of porosity parameter K on transverse velocity.
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Fig. 5.3c: The effect of fluid parameter 1, on transverse velocity.
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Fig. 5.3d: The effect of Reynolds number Re on transverse velocity.
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Fig. 5.4c: The effect of fluid parameter A, on longitudinal pressure gradient.
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Fig. 5.4d: The effect of Reynolds number Re on longitudinal pressure gradient.
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Fig. 5.5b: The effect of porosity parameter K on transverse pressure gradient.
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Fig. 5.10: Comparison of velocities for the effect of cilia length & for both symplectic
and antiplectic metachronal wave.
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5.5 Conclusion

In this study we have assumed the inertial flow of MHD 2" grade fluid in a ciliated
channel implanted in a porous medium. This study is presented first time with the effect
of inertial forces Re # 0 in the existence of magnetic field and porous medium. The
highly nonlinear equation is solved by the HPM and Software “Mathematica”. From
the Figs. 5.2-5.9 it is clear that code is validated for the emerging parameters Re,
Hartmann number M, fluid parameter A; and porosity parameter K for the velocity,
pressure gradient and stream function as showing the symmetric behaviour about y=0.
From the graphs of stream functions it is cleared that path of ciliary movement is elliptic
which is shown in graphs plotted by the code that is generated in software
“Mathematica”. The two dimensional and two directional flow is represented by non-
linear PDEs which are solved by HPM. The study of second grade fluid with small
Reynolds number approximation is recently presented by S. Hina [84] but not a single
study is available in literature for inertial flow of 2" grade fluid in a ciliated channel.
If A;,— 0,Re — 0 and B — 0 then present study can be validated with the study of A.
M. Siddiqui [43] that is hydro magnetic ciliated flow of Newtonian fluid in a porous
medium.

This study can be very useful for those researchers who are interested to observe the
pressure and flow pattern of mucus in trachea and blood flow in fallopian tube during
motion with the inertial effect. When the body is performing a job (exercise) then shear

forces and inertial forces are very effective for the biological flows e.g. mucus in
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trachea, blood in fallopian tube and cerebrospinal fluid due to ciliary movement.

The MHD flow of the 2" grade fluid in a ciliated channel have shown following

observations on velocity, pressure gradient and stream function.
e The horizontal velocity decreases with Hartmann number M and increases with
Reynolds number Re, porosity parameterX, and fluid parameter A, at the centre of
the channel. But velocity is small at the exit and entrance region and attain its
maximum value at the center of the channel. Whereas, the vertical component of
the velocity vanishes at the center of channel and move like a sinusoidal wave.
e Favorable pressure gradient in x direction uniformly increases for Hartmann
number M and uniformly decreases with the porosity parameter K and it shows a
dual behaviour for the fluid parameter A, and the Reynolds numberRe, whereas, the
vertical favorable pressure gradient is symmetric about the center of channel. It
decreases for large value of Hartmann number M while increases for larger values
of fluid parameter A; and Reynolds number Re.
e Size of trapped bolus reduces with increasing value of Hartmann number M
and expanded with increasing value of porosity parameter K and fluid parameter
A;. However both the size and number of trapped bolus increases in a specific

direction by increasing the value of Reynolds number Re due to high speed.
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Chapter 6

Forced Convective Flow of MHD
Jeffrey Bio Fluid in a Ciliated Channel

Physiological transportation often occur due to ciliated surfaces. In human body, the
physiological fluids e.g. blood which contain hemoglobin consists of ionic constituents
that make reaction with the magnetic forces when undergo to external (extra-corporeal)
magnetic fields. Motivated by these applications, here, we have assumed the forced
convective magnetohydrodynamic viscoelastic physiological fluid flow through a
ciliated channel. Darcy porous medium drag force model has been used for the
existence of deposits e.g. cholesterol, fats etc. Viscous dissipation is fitted in energy
conversation equation to reveals the heat loss effects. The infinite series of pressure
distribution, velocity and temperature have been constructed via ADM. The impact of
interested physical parameters such as Brinkman number, Jeffrey first and second
viscoelastic parameters, Hartmann number and permeability parameter on temperature,

pressure gradient, velocity and stream function are visualized graphically.

6.1 Mathematical Formulation

The regime under investigation, as visualized in Fig. 6.1, examines the forced
convective magnetohydrodynamic (MHD) flow of an incompressible physiological
liquid through a ciliated channel of finite length L. The channel is ciliated internally,
and contains a high-permeability porous medium (representative of deposits, debris etc.
in biomedical vessels). A constant strength of magnetic field, B, is applied normal to

the longitudinal axis of the channel.
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Fig. 6.1: Geometry of Problem

The collective motion of cilia generates a metachronal wave in the axial direction of
channel having wave speed ¢, and wavelength L. The biofluid rheology is simulated

with the robust Jeffrey elastic-viscous model [34] for which the constitutive equation

is
T=—pl+S, (6.1)
where
S = —— @ + L), (62)
14+
The momentum and energy equations in the fixed frame are given by
ou av
—,\+—,\=O, (63)
X oY
_o0 o0 0P 0Sge 0Sgyp
UO—+V—s|=—— = — 4+ (J X B)¢ + Ry, 6.4
p(ax 6Y> ox T ax TTay TUXBatRe 64
Uav+l7av = 6}3+65)?7+6SW+UXB) +R (6.5)
P\"0x 7 "97)” "ar T ax " av v '
ﬁaTH?aT
C - -
Pee\"ax " " 3
L 00 (00 07N o op L (0T 0T
T ex T \ay T ax) Moy Tt\axz  avz) '
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Where

Sgg = —2H [1+A (ﬁaﬂ?a)]aﬁ 6.7
1+ 2\"ax " " av/lax’ (&7
Sep = —1 [1+A ((7 +176)] o, v (6.8)
S TW 2\"ax " " av/l\ay " ax) '
Spp = 2H [1+A ((76+176>]6A (6.9)
AT \"ax " " av/lay’ '
(J X B)g = —0By?, (] XxB)y =0, (6.10)
HP HP -
Ry =0, Ry=—-V. (6.11)
The envelope of the tips are as follow
=F(X,t) =X+ elasm( )(X— cf), (6.12)
Y=H(X,)= l+£lcos< )(X cf) = *L. (6.13)
The fixed and the wave frame are related as follow
g=X—ct, a=U0-¢ 9=V, 9=V, p(x 90 =P(X7,0). (6.14)
The following non-dimensional variables are implemented
I _a Yy AD
Tttt e YT Ve
P t_ct h—L 1
PEaw T hET BEy
pcl 1 @l? 0By 12
R = — _—= — 2 =
e l/[ J j(\ k ) M M )
T c?
Pr=— E ——, Br=PrE_,
kl c EPTO c
g _To 6.15
- To " ( " )

With the help of Egs. (6.7)-(6.15) and employing the low Reynolds number

approximation from lubrication theory, Egs. (6.3)-(6.6) take the following form:

au av _0 616

ax ay (6.16)

op__1 9 1+ ( a+ a) ou <M2+1)( +1) 6.17

ox 1+ A, dy P\t v55) )5y )@t (617
dp

5_0, (6.18)
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629_ Br L4 ( 6+ 6) <6u>2 6.1
9y2  1+X P tv3) G (6.19)

The associated boundary conditions can be emerge as
u(h) = uy = —1 — 2meaf cos(2mx),
v(h) = 2me sin(2mx) + B(2me)%a sin(2mx) cos(2mx),

6(h) =0, at y=h,

au—O 66—0 ty=0 6.20
ay_ ’ ay_ , a y_ ) ( ' )
here h = 1 + £ cos(2mx).
The stream function y is defined as
P Y
M—E, U——a. (621)

Eqgs. (6.16)-(6.19) in terms of y take the following form

Y _ Yo oY a w 0%y
i =P (E$_$@) 5 (MZ )(1+Al)—. (6.22)
0% Br ow o ooy (0%

The boundary conditions can be expressed as

=0 0%y =0 06 =0, at y=0
l/J - ) ayz - ) ay - ) a y - ]
0y
Y =F, 3y = —1—2meaf cos(2nx), 6 =0, (6.24)
P : :
Pl 2me sin(2mx) + B(2me)%a sin(2mx) cos(2mx), aty = h.

Here Q is the volumetric flow rate, and related to the flux by the following relation

szoh(g—;/j+1)dy:F+h. (6.25)

In fixed frame, the time mean volumetric flow rate is defined as

R 1 h ) 1
Q:Ffo (F+h)dt=fO(F+h)dt=F+1. (6.26)
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6.2 Solution of the Problem

Many advanced computational and semi-computational methods may be employed to

evaluate the transformed boundary value problem defined by Egs. 6.22-6.24. These
include homotopy methods, spectral methods, variational iterative methods and finite
element methods. Here we have employed the Adomian decomposition method
(ADM), introduced by American mathematician, Adomian [81]. Recent applications of
this technique in complex biological flow problems include Bég et al. [85] (for smart
lubrication squeeze films) and Bég [86] (swirling nanofluid bioreactors).

Re-writing Egs. (6.22) and (6.23) in terms of Adomian operators we have

0% /0w 0 oY 0\ 02
1/):(P0+L1_1<—7\ (VJ 4 ) VJ)

2 9y2\dy dx dx dy/ dy?
1 0%y
-1
+L, ((MZ + %) 1+2) a—yz>, (6.27)

2
~ Br  _, ANV,
0 = (p1—1+)\1L2 (1'{')\2[3 (Ea—a@>> <a—yz . (628)

Here the inverse operators are defined as

Ll_l(.)=JJJJ(.)dy, (6.29)

L, = ff(-)dy, (6.30)

The linear term iy (x,y) is decomposed in term of an infinite series of components
through the following expression

YY) = ) ). (631)
n=0

The nonlinear term Ny (x,y) can be decomposed into Adomian polynomials and

satisfies
_1dm S B
An - Ed}\m N Z lpl’ , N = OF1F2F3l aes (6.32)
=0 A=0
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This leads to

_ W00 s 3o 0% 3%
0 dx dy> = 0y 0xdy* dy? dxdy3
0*1ho 0o
oy* dxoy’

(6.33)

0oy 0% s 3%
dx dy> 0x dy>  dy oxdy*
0Py 0°9y N 0%y 0"y N 0%y 9%y
dy dxdy* dy? dxdy3 dy? dxdy3
0o 0%y 8™p; 0%
2 dy* dxdy 2 oy* dxdy’

(6.34)

0%, i 0%y 0, 0%
dx dy5 0x dy> dx dy®
+0¢o 0%, 0y 8%y | 0P, %Yy
dy dxdy* dy dxdy* 0y 0xdy*
0% 0%, 0%y 0™, 0%, 0%
dy? 0xdy3 + dy? dxady3 + dy? 0xdy3
00ty 0 0%y 0%2 0%
oy* dxdy oy* 0xdy oy* dxody

o
[\
Il

(6.35)

and
2 3

y y
Po :C1+C2y+C3?+C4§, (636)

Here c,, ¢y, c3,¢4 , dq, d, are integration constants and can be extracted with the
assistance of boundary conditions given in Eq. (6.24). Now by decomposing the linear

and the non-linear terms in the infinite series form, we get

i Yn = Qon + L <_-,\2363_2(0¢ni _0¥n 0 )62¢n>
n=0

y2\ 9y ox ox dy/ 9y?
1 K
+L1_1 <(]V[Z =+ %> 1+21) %), (6.38)
0 2
B Br | Yo oy a> %y
Z‘) On = P1n 14+ L2 (1 T Af <6y ax oxay))\ayz) | (6:39)
n=
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Following the ADM, we obtain

_ (3F —hu(h) F — hu(h)
‘/’0_( 2h )y_< 23 >y3’

(6.40)

1

27BF3 Ak’ + h(—42BF* A u(h)R’
O T T0R (1 + Ay)

+h(=5h* + 188F A, u?(R)h’ ]
+3BA, (F — hu(h))(3F + 2hu(h)u'(h)))

Br

Br

oY

2

.\ 1 [3Brmz (F — hu(h))(3F2 — 3hFu(h)] ,
2h8(1 + Ay) +h2u2 (WK + h2Fu/ (h))

1 3B, (F — hu(h))” x (3F — 2hu(h))h’
TSRO + &) l +h2u' () V" (641)

L -1 Y ﬁ 02 (alpn—li_alpn—li>azlpn—1
! 2T oy2\ 9y ox dx dy/ 0y?

2
+L, 7t ((MZ + %) (1+2y) 4 w”*),

Un

357 > 1, (6.42)
On = —1 ir)q L,~! <1 + 0,8 (aall;” :—x - a;i" :—y)) (a;;pzn>2 . (6.43)
The solution in the ¥ can be written as
Y= i Yn(6,y) = Yo + Py + Py +1P3 + - = A1 (0)y + A (0)y?
A (OYS + A0y + sy 4, (644)

and the solution of temperature can be written as

0=0y+6;+0,+05+ =By(x) +B,(x)y*
+B3(x)y°® + B4 (x)y® + Bs(x)y'® + Bs(x)y"?
+B7(x)y** + Bg(x)y'® + Bo(x)y*® + By (x)y*°
+B11(x)y?% 4+ B, (x)y?* + ---. (6.45)
Here A, (x), A15(x)... B15(x) are given in the appendix.
The pressure gradient ( v

dx) after using Eq. (6.44) in Eq. (6.17) is as follows

dp 1 0 oY o 0P d\\o*y , 1\ 0
1+ (5 ) - (e ) (o ). ot
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Integrate Eq. (6.46) to obtain the pressure rise per wavelength as

A —fldpd 6.47
p_ de X. (' )

However, the numerical value of the integral is evaluated using the symbolic software
MATHEMATICA.

6.3 Results and Discussion

The influence of interested parameters on axial velocity u(x,y), axial pressure
gradient Z—Z, pressure rise Ap, temperature profile, stream function iy (x, y) are displayed

graphically in Figs. 6.2-6.9.

Axial velocity

In Figs. 6.2a-6.2d the effect of Hartmann number M, permeability parameter ¥,
Jeffrey 1%t and 2" viscoelastic parameters (A, A,) on the horizontal velocity u(x, y). It
can be observed from this figure that behavior of velocity is not same at the center and
near to the wall of channel due to presence of cilia in the interior channel wall. Figs.
6.2a and 6.2c depict that the horizontal velocity decreases in the region —0.38 < y <
0.38 otherwise significant variation is not seen with the increase in Mand A, because
magnetic force and viscous force are strong at the center of the channel whereas the
converse behavior can be seen in Figs. 6.2b and 6.2d with an increase in & and A, as
porosity and retardation time causes to increase the velocity near the center of the
channel.

Pumping characteristics

Figs. 6.3a-d show that the pressure gradient has a periodic nature and attains its peak
at core region of the channel then reduces rapidly as we progress from the core zone.
Similar to velocity field the behavior of pressure gradient exhibits some variation
throughout the region. It can be observed from Figs. 6.3a that pressure gradient is
boosted at the center and depressed near the walls with increasing Hartmann number.
The magnetic field effect is enhanced with rising Hartmann number and generates
deceleration in the flow. The inverse relation between velocity and pressure manifests
in an elevation in pressure gradient in the core flow. With increasing permeability %,
although velocity is enhanced (Fig. 6.2b), the converse effect is induced in pressure

gradient (Fig. 6.3c). The Darcy resistance term in Eq. (6.22) is inversely proportional
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to permeability. Increasing K values decrease the impedance to flow and result in an
acceleration and a drop in the pressure gradient. Figs. 6.3c and 6.3d show that the
first A;, and second A, Jeffrey parameters induce respectively an enhancement and
suppression in the pressure gradient, although the first parameter has a much more
profound effect. The first parameter denotes the ratio of the relaxation to retardation
times of the bio-rheological fluid whereas the second parameter designates purely
retardation time. When A; = 1 relaxation time is exactly equivalent to retardation time.
However, we have considered some values less than unity which are more
representative of physiological fluids [87]. For A; < 1, the retardation time is greater
than relaxation time which implies that the biofluid responds quicker with the removal
of stress and returns faster to its unperturbed state. This influences pressure gradient
(and velocity field).

Figs. 6.4a-c show the effect of various values of Hartmann number M, permeability
parameter %, and the ratio of retardation to relaxation times A; on pressure rise Ap
versus Q. A linear relation between pressure rise Ap and volumetric flow rate Q can be
seen from these figures. Fig. 6.4a depicts that pressure rise increases with Hartmann
numberM, in the region —1.5 < § < —0.3 because in this region resistive force due
to magnetic field requires more pressure difference and reverse behavior is noted in the
range —0.4 < Q < 1 whereas, it decreases with greater permeability (lesser Darcian
resistance) in the range —1.5 < Q < —0.4 because permeability requires less pressure
difference for the flow through the mentioned volume flux. The effect of A; on
pressure rise decreases in the region—1.5 < Q < —1.0. However, the contrary effect is
induced in the range —1.5 < Q@ < 1.0 with increasing first Jeffrey viscoelastic
parameter.

Temperature profile

Figs. 6.5a-¢e are plotted to analyze the outcome of Hartmann number M, permeability
parameter K, Brinkman number Br, Jeffrey first parameter A; and second parameter A,
on temperature distribution across the channel. The manner of the temperature profile
is same as that of the velocity profile although the profiles are significantly more
plateau-like in the interior region of the channel. Significantly less variation in profiles
is observed near the channel walls. Increasing Hartmann number (Fig. 6.5a) induces a
strong elevation in temperatures across the channel due to slow motion in the existence

of magnetic field. The supplementary work expended by the biofluid is dragging against
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the applied magnetic field, conversely increasing permeability parameter (Fig. 6.5b)
leads to a reduction in temperature because porosity causes to reduce conductivity of
the biofluid. The increase in medium permeability implies a decrease in solid matrix
fibers in the medium. This reduces the material available for thermal conduction heat
transfer and manifests in a cooling of the medium. Thermal conductivity of the fluid-
saturated medium is clearly influenced with a modification in permeability and as the
permeability increases the heat transfer rate to the walls will increase. Increasing first
and second Jeffrey parameters (Figs. 6.5c and 6.5d) respectively decreases and
enhances the temperature magnitudes in the medium. Retardation of the biofluid is
therefore beneficial to heat transfer through the medium whereas relaxation opposes it.
Fig.5e illustrates the impact of Brinkman number on the temperature profile. Brinkman
number is the heat conduction from the boundary to the viscous fluid and characterizes
the viscous dissipation term in the fluid flow. With rising the value of Brinkman
number, the thermal conductivity of the fluid reduces so larger quantity of heat that can
be transferred through the fluid. It is also noted that a higher temperature exists close
to the interior region of the channel in comparison to the walls of the ciliated channel.
Streamlines

Figs. 6.6-6.9 reveal the impact of Hartmann number M, permeability parameter &, the
Jeffrey 1% parameter A, and 2" parameter A, on the stream function. Figs. 6.6a-c depicts
that the number of trapped boluses decrease with Hartmann number. This is because
magnetic force decelerate the velocity. It is noted from Figs. 6.7a-c that the amplitude
of wave reduces with a rise in the permeability parameter since the flow is accelerated
and this prevents the build-up of larger amplitudes generated by the metachronal wave
motion. Figs. 6.8a-c highlight that the number of trapped boluses and their magnitudes
are enhanced with increasing Jeffrey first viscoelastic parameter i.e. with greater
rheological relaxation times. The boluses are strongly stretched in the vertical direction
with greater values of A;. Finally, it is evident from Figs. 6.9a-c that the size of trapped

boluses is also increased with greater retardation time values A,.
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Fig. 6.2a: The effect of Hartmann number M on velocity.
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Fig. 6.2b: The effect of porosity parameter K on velocity.
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Fig. 6.2c: The effect of fluid parameter A, on velocity.
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Fig. 6.2d: The effect of fluid parameter A, on velocity.
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Fig. 6.3a: The effect of Hartmann number M on pressure gradient.
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Fig. 6.3b: The effect of porosity parameter K on pressure gradient.
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Fig. 6.3c: The effect of fluid parameter A, on velocity.
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Fig. 3d: The effect of fluid parameter 1, on pressure gradient.
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Fig. 6.4a: The effect of Hartmann number M on pressure rise Ap with time mean
volumetric flow rate Q.
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Fig. 6.4b: The effect of porosity parameter & on pressure rise Ap with time mean
volumetric flow rate Q.
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Fig. 6.4c: The effect of fluid parameter A, on pressure rise Ap with volumetric flow
rate Q.
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Fig. 6.5a: The effect of Hartmann number M on temperature profile.
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Fig. 6.5b: The effect of porosity parameter K on temperature profile.
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Fig. 6.5c: The effect of fluid parameter 1, on temperature profile.
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Fig. 6.5d: The effect of fluid parameter A, on temperature profile.
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Fig. 6.5e: The effect of Brinkman number Br on temperature profile.
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6.4 Conclusion

A mathematical model has been presented for forced convective heat transfer in
transport of a viscoelastic Jeffrey fluid through a ciliated channel containing a high
permeability porous medium under the impact of a normal magnetic field. The flow is
produced due to the metachronal wave generated by synchronized beating of cilia
which follow an elliptical path. The transformed (fixed to wave frame) and non-
dimensional boundary value problem (momentum and energy conservation equations
and associated channel wall boundary conditions) have been solved with the semi-
numerical Adomian decomposition method (ADM). Extensive details of the ADM
solutions have been provided. The numerical evaluation of the power-series solutions
is conducted in MATHEMATICA software with the approximately one hour of CPU
time. In the present study if A;, A, — 0 then [43] can be obtained which assume that our
results are correct. The present study can be used to discuss the problem caused by
cholesterol in veins and arteries. The results show that:

e Velocity field, pressure gradient and temperature profile show a similar
parabolic nature and attain maximum magnitudes at the midway of the conduit
and further decrease rapidly at the walls of channel.

e The behavior of velocity field and pressure gradient is distinctly different
throughout the channel.

e Velocity is decreased with increasing Hartmann number and Jeffrey 1%
viscoelastic parameter in the core section of the channel whereas the flow is
accelerated close to the walls.

e Velocity is elevated with rising permeability parameter and Jeffrey 2"
viscoelastic parameter (retardation parameter) in the core zone.

e Pressure gradient is increased with high Hartmann number whereas it is reduced
with greater permeability parameter at the center of the channel.

e Temperature profile is maximized in the core section of the channel and
diminished at the walls.

e Temperature is noted to be enhanced with rising Hartmann number and second
Jeffrey parameter whereas it is reduced with permeability parameter and Jeffrey

first parameter.
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Volume flow rate and pressure rise have shown the linear relationship between
each other.

Pressure rise is elevated with increasing permeability and Jeffrey 1% parameter
whereas it decreases with an increase in Lorentz retarding force i.e. with greater
Hartmann numbers.

Number of trapped boluses decreases as Hartmann number is high.

The amplitude of streamlines decreases with a rise in permeability parameter
whereas the size and the number of trapped boluses increase with greater values
of Jeffrey first and second viscoelastic parameters.

The current study has neglected magnetic induction and mass transfer effects
which are also important in fertility devices. These aspects will be addressed in
the future.
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Chapter 7

Influence of Heat Transfer on MHD
Carreau Fluid Flow Due to Motile Cilia

Mucus transport mediated by motile cilia in the airway is an important defense
mechanism for prevention of respiratory infections. As cilia motility can be affected by
temperature difference and magnetic field, therefore, in this research we investigate the
combined effects of magnetic field and buoyancy force due to temperature difference.
In the present study mixed convective flow of a Carreau fluid model through a ciliated
channel is modeled and analyzed by a symplectic metachoronal wave. The momentum
and energy equation for the Carreau fluid are modeled and simplified by the stream
function and small Reynolds number approximation. The transport moving boundary
value problem is solved with no slip condition by Adomian decomposition method. The
velocity profile, temperature profile and pressure distribution are obtained in the form
of infinite series by ADM which is evaluated by software "MATHEMATICA". The
influence of magnetic parameter, Carreau fluid parameter, Brinkman number and
Weissenberg number on velocity, temperature and pressure gradient are presented via
graphs. Hartmann number helps to decelerate the flow whereas Weissenberg number,
Grashof number and Carreau fluid parameter are responsible for the accelerated flow.
The temperature profile increases by increasing the values of Hartmann number,

Weissenberg number, Carreau fluid parameter and Brinkman number.
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Fig. 7.1: Geometry of problem

7.1 Problem Formulation

Let us assume the ciliary flow of an incompressible rheological Carreau fluid in a
symmetric vertical channel under the effect of constant magnetic field. To study the
mixed convective flow of Carreau fluid through a ciliated channel, buoyancy forces due
to temperature difference is considered. Viscous dissipation have a significant effect
during the energy transfer. Therefore in convective heat transfer the viscous dissipation
term is also considered in the modelling of mixed convective flow of MHD Carreau
fluid in a ciliated channel. The mathematical form of the longitudinal and transverse

components of the elliptical path followed by the cilia is as follow

o o . 2\ o .
X =F(X,t) = X, + elasin (7”) (X —cb), (7.1)
- o 2m\ o
Y =H(X,t) =1+ elcos (7> (X —cf) = L. (7.2)

The mass, momentum and the energy equations of an incompressible Carreau fluid
model are as follow
divV =0, (7.3)
av _
P = divt + by + pg B (T — Tp), (7.4)
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dr 5
pep o7 = k,V°T + @, (7.5)

where the parameters V, S, by, p, g, B1, T, To, ¢p, k and @ are defined in nomenclature.
Here

T=—PI+S, (7.6)

in which t is the extra stress tensor of Carreau fluid [88] and can be written as

S = ~[ten + (to — )[L + (T T 7, 7.7)

where uy, e, I' and y are defined in nomenclature and

S SR
y=3).0 ) vy = |30 (7.8)
i j

M= (V.V+ (V.V)T)2

where

(7.9)

In present work we consider u.,, = 0 and I'y « 1 for Eq. (7.7). Therefore extra stress
tensor becomes

n—1 ]
S =—u, [1 + T(Fy)z] y. (7.10)
The fixed and wave are related as

P

2=X—-ct, 0=U-¢

A~

=Y, 2=V, p9t =P(X7,1). (7.11)

where (%, )and (i1, ?) are coordinates and velocity in wave frame (X, Y)and (U, V) are
coordinate and velocity in fixed frame.

4 & Av 9
L
_Lp L N P 712
p_cl-l’ _)\; _l; - TO . ( )

The dimensionless form of mixed convective magnetohydrodynamic flow of Carreau
fluid is governed by the following equations

6u+6v_
ox  dy

ou Juy  0dp 0S,x Xy 5
Ref (u +v ) =5 + I + 3y M*(u+1)+Gro, (7.14)

0, (7.13)

dv dv dp aS aS
3 2 5yx yy
Ref (u P + —) =-3; + B Ep B 3y’ (7.15)




ov
g (00, 00\ 1 (0% 2%\ BSex gy + B "yay\‘ 16
eﬁ(u—+v—) ﬁﬁT-FT + Ec ou , ( )

2 2 av
0x dy 0 0 +Syx@+ﬁsyy@
where
n—1 du\“\ du
S, = 2B (1 + o we? (ax) )ﬁ’ (7.17)

= 5= (142 wer (L4 2 2 ) (2 22, m
Xy —ryx 2 eayﬁax ayﬁax' (7.18)

S, =2 1+n—1W2<6v)2 ov 7.19
yy — ﬁ 2 e ay ay ( )

In above equation the dimensionless parameters 8 (wave number), Re (Reynolds
number), We (Weissenberg number), M (Hartmann number), Pr (Prandtl number),

Gr (Grashof number) and Ec (Eckert number) are defined as follows

l pcl ne 0By 12
=7 Re=_; We=_' M2= ,
’ A ", lz H
HCp ¢ 1°pgPiTo
Pr=—, E.=——, Gr =——, Br = PrE,. 7.20
r kT T, r " r = Prk, (7.20)

Considering the long wavelength g «< 1 and low Reynolds number Re — 0
assumption, Eq. (7.14)-(7.19) reduce into following form

W _ 9 — M2(u+ 1)+ Gro, 7.21
Frie 3y u T (7.21)
dp

- = 22
% 0, (7.22)

220 ou
=3 = —BrSy o, (7.23)

in which

Sex =0, S, =0, (7.24)
S. =8, = 1+n—1W2<6u)2 ou 7.25
xy — “Yyx — ) e ay ay ( . )

Incorporating Eq. (7.25) into Eq. (7.21) and (7.23), following form can be obtained

0 °u 3(n—1
P_ + ( )Wez<

292y
—_— = 2
=37 > ) —M2(u+1) + Gro, (7.26)

dy/ dy?
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629_ B (6u)2+n—1W2(6u)4 797
dy? 4 oy 2 ¢ oy) ) (7.27)

The non-dimensional form of boundary conditions are

a—u=0, a—9=0, at y =0, (7.28)
dy dy
u=—1-—2meaf cos(2nx), 6 =0,
y =h =1+ esin(2nx). (7.29)

7.2 Solution Methodology

Eq. (7.26) and Eq. (7.27) depends upon each other, therefore we will simultaneously

solve these equation by Adomian decomposition method

ulx,y) = f(x,y)

_ 232
LN (M2 (u+ 1) — Gro) — L1 <M We? (a—”> a—”), (7.30)

2 dy/) 0y?
0=cy+c,+L || -B (6u)2+n—1W2(6u)4 7.31

= C3y Cy r ay ) e ay ) ( ' )

where L~ tis defined as
O = [[Oa, (7.32)

and
dp y*

flx,y) = ey + iy + ¢y, (7.33)

where c;, c,, c; and ¢, are integration constant and can be extracted by the aid of
boundary conditions which are given in Eq. (7.28) and Eq. (7.29). The linear terms

u(x,y) and 6(x,y) are decomposed in terms of infinite series as follows

o)

uy) = ) un (6,), 65Y) = ) 6n(xy), (7.38)
m=0

m=0

and the non-linear terms can be decomposed into infinite series of Adomian
polynomials, which satisfy
N(Zliui>] , m=0,1,23,.., (7.35)
(=0 A=0

1 am
where the non-linear term represented by Nu is as follow

™ mldam
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3(n -1) 292y

Pushing Eq. (7.34) into Eq. (7.30) & Eq. (7.31) and using the boundary conditions
(7.28) and (7.29), one can get

2 _p2
_ y°—h*dp
ug =u(h) + T Ix (7.37)
dp\“ (y*—h* n—-1___ y®—h® dp\*
B0 = —Br (dx) ( 1z Tz "3 (dx) (7.38)

The other terms of the series can be obtain from the following recursive relation

Ums1 = Bp + L1 (M2 (upy + G76,,))

3(n— ) Aup\ > 0%uy,
-]~ _ > .
L ( > We ( 3y ) 32 ) form = 0, (7.39)

d -1 O\ *
0, =D, + L1 (—Br (( ;;”) L —we? (%) > ) (7.40)

form=20,1,2,..
Where

By = by(x) + yb,(x), (7.41)
Dy = dy(x) + yd,(x), (7.42)

by, b,,d, and d, are integration’s constants and evaluated from the given conditions.
The solution for horizontal velocity and temperature profile can be found as
u=uy+u +-, (7.43)

0=0,+6, + (7.44)

Now the volumetric flow rate Q is related to the flux F by the following relation

h
Q = f (u+1)dy=F +h, (7.45)
0

and time mean volumetric flow rate Q in a fixed frame is related as

A~

1 h ) 1
Q=Tf0(F+h)dt=J0(F+h)dx=F+1. (7.46)

Q=F+1orF=0-1. (7.47)

With the aid of Eq. (7.43) and Eq. (7.45) pressure gradlent ~can be obtained interms
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of mean flow rate Q. The value of Z—z is obtained by software "MATHEMATICA"

which is graphically illustrated in Fig. 7.3.
By integrating the expression of pressure gradient, one can get the pressure rise as

A —fldpd 7.48
p_ de x' (' )

7.3 Results and Discussion

In this research mathematical modelling and computation for thermal analysis of
mucus flow due to ciliary movement has been made. The mucus rheology is described
by the Carreau fluid model. The flow characteristics of mucus are simulated by the
velocity field, temperature field and pressure distribution. The mixed convection is
utilized to analyze the thermal analysis of the flow field that will arise due to
temperature differences of the fluid and the environment. This part of the research is
focused to the discussions of different parameters of physical interest like pressure
gradient, pressure rise (drop), velocity and heat transfer. In this section, we will analyze
the impact of the Carreau fluid parameter We, power law index n, the magnetic
parameter M, the thermal Grashof number Gr. The values of other parameters are kept
fixed throughout the study, and these parameters with their values are « = 0.4, § =
0.4, Q =05, € =0.3.

Pressure rise and pressure gradient

Pressure rise against volume flux are presented in Fig. 7.2a-d. It is depicted from the
graphs that pressure rise attains free pumping at Q = 0 and decreases with the increase
in M for 0 < Q < 1 whereas increases for § < 0. Weissenberg number and power law
index show that pressure rise attains the free pumping in the region 0.05 < Q < 0.25
and increases for Q > 0.25. Increasing values of Gr show that pressure rise increases
in the whole pumping region.

Consequences of various values of M, We, nand Gr on the pressure gradient are

represented in Fig.7.3a-d. It is found that Z—Z reduces at the entrance, middle and exit

region of the channel as we increase M, We and n and opposite behavior can be seen
for increasing values of Gr. The impact of magnetic parameter M on the pressure
gradient shows that magnetic field helps to increase the favourable pressure gradient
for the flow of highly viscous mucus. The impact of Weissenberg number We on the
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pressure gradient illustrates that favorable pressure gradient increases by the increasing
value of shear rate and relaxation time, i.e. when viscous effects are dominant over the
elastic effect then favorable pressure gradient mounts. It can also be observed that for
shear thickening n > 1 of the mucus favorable pressure gradient increases. It is also
observed that M, We and n show the significant variation on the entrance and exit of
the channel when compared with middle of channel. The increasing values of Gr help
to decrease the favorable pressure gradient for the convective flow of mucus.

Velocity profile

The impacts of M, We, n and Gr on velocity profile are represented in Fig. 7.4a-d. It
is found that axial velocity is maximum at the middle of channel. Impact of magnetic
field M on axial velocity shows that magnitude of velocity increases as the strength of
magnetic field increases, physically it represents that the magnetic field can be used to
control the flow of viscous fluid. Figure 7.4b-d indicate that increasing value of We,
nand Gr show the significant change in velocity profile at the center of the channel.
The increasing values of We reduces the magnitude of velocity profile as shear rate and
relaxation time make the fluid thick due to cold environment. The increasing values of
power law index n > 1 make the mucus more consistent which reduces the magnitude
of the velocity profile. The increasing values of Grashof number Gr make the fluid
thick as buoyancy forces due to temperature difference are dominant over the viscous
forces, therefore magnitude of the axial velocity decreases and flow rate become slow.
Temperature profile

Effects of M, We, n and Br on temperature profile are represented in Fig 7.5a-d which
show that magnetic field tends to decelerate the flow and causes to rise in temperature
profile and as a result heat transfer through mucus flow increases with the increase in
We and n. It is depicted that temperature profile rises with the increase in Br (Brinkman
number) which is the product of Eckert and Prandtl number and shows that when the
value of Brinkman number Br is less than one temperature difference is dominant over
viscous effect. Here Br =0.1, 0.2, 0.3 show that as the effect of viscosity over
temperature difference become prominent then the convection process become fast due

to closure of molecules and heat transfer increases.
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Fig. 7.2a: The effect of Hartmann number M on pressure rise for « = 0.4, § = 0.4,

~

0 =05 ¢=03.

We=0.1, 0.2, 0.3

02 00 02 04 06 08 10

0

Fig. 7.2b: The effect of Weissenberg number We on pressure rise fora = 0.4, f =
0.4, Q =05, € =0.3.
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Fig. 7.2c: The effect of power law index n on pressure rise for a = 0.4, f = 0.4,
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Fig. 7.2d: The effect of Grashof number Gr on pressure rise for « = 0.4, = 0.4,
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Fig. 7.3a: The effect of Hartmann number M on pressure gradient for « = 0.4, =
04,0 = 0.5, € = 0.3.
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Fig. 7.3b: The effect of Weissenberg number We on pressure gradient for a = 0.4,
B =04,0 =05 ¢=0.3.
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Fig. 7.3c: The effect of Power law index n on pressure gradient fora = 0.4, § =
04,0 = 0.5, € = 0.3.
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Fig. 7.3d: The effect of Grashof number Gr on pressure gradient fora = 0.4, § =
0.4,0 = 0.5, € = 0.3.
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Fig. 7.4a: The effect of Hartmann number M on velocity for « = 0.4, § = 0.4,Q =
0.5, € = 0.3.
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Fig. 7.4b: The effect of Weissenberg number We on velocity fora = 0.4, 8 =
04,0 = 0.5, € = 0.3.
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Fig. 7.4d: The effect of Grashof number Gr on velocity for @ = 0.4, 8 = 0.4,0 =
0.5, e = 0.3.
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Fig. 7.5a: The effect of Hartmann number M on temperature profile for ¢ = 0.4,
B =040=05, €=0.3.
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Fig. 7.5b: The effect of Weissenberg number We on temperature profile for « = 0.4,
B =040=05, €=0.3.
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7.4 Conclusion

The mathematical study has been presented for muco ciliary flow affected by the
surrounding temperature in the presence of magnetic field. In this research for muco
ciliary flow we have considered mixed convective flow of MHD Carreau fluid through
a ciliated channel under the action of applied magnetic field. The flow is produced due
to effective stroke of metachoronal wave generated by the tip of cilia. The non-
dimensional moving boundary value problem is solved by semi analytic technique,
Adomian decomposition method and software "MATHEMATICA". The present study
shows that results of Siddiqui et al. [43] can be deduced if We — 0,Br —» 0,and Gr - 0
which guarantees that our study is correct. The main findings of this research are

summarized as follows:

e Pressure rise reduces with the increasing value of Hartmann number and
increases due to Grashof number.

e Favorable pressure gradient increases by the increasing values of Hartmann
number M, Weissenberg number We, power law index n and Grashof number
Gr.

e Magnitude of the axial velocity decreases by the increasing value of We, Gr
and n but increases for the increasing values of M.

e Temperature profile increases by increasing magnetic strength M, Weissenberg
number We, power law index n and Brinkman number Br.

e The present research can be beneficial for the designing of artificial cilia that
help to propel the viscous fluid. Also, magnetic field effect decelerate and heat
transfer effect (Grashof number) significantly accelerates the mucus flow, heat
transfer assists whereas magnetic field resists the ciliary induced flow. The
current study has neglected porous medium and thermophoresis effect which

are also important in biofluid.
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Chapter 8

Hall and Ion-slip Effect on Convective
Flow of Carreau Fluid in a Ciliated
Tube with Ohmic Heating

This study investigates the Carreau fluid flow and heat transfer through a ciliated tube
with the effects of Hall current, ionslip and ohmic heating. Mathematical modelling is
done using the long wavelength and small Reynolds number approximation. The non-
linear momentum equation with Hall and ionslip effect and the non-homogeneous
energy equation due to viscous dissipation and ohmic heating effect are solved by
Homotopy perturbation method which are solved by software Mathematica. Impact of
Hall and lonslip effect show an increase in velocity profile and the pressure gradient,
also performance of thermal energy enhances with the rise in magnetic parameter and
power law index of Carreau fluid. Variation of velocity and temperature profile are

observed by the graphical result plotted in software “Mathematica”.

8.1 Mathematical Formulation

Consider the forced convective Carreau fluid flow in two dimensional axisymmetric tube
of length L. The walls of the tube are ciliated internally which causes the fluid flow (due to
flogging of cilia) by generating the metachronal wave with the wave speed ¢ and
wavelength A. The shape of the sinusoidal waves in laboratory frame is defined through the

following expressions

A , 2my

R=H(Z{) =+ [l + elcos (;) (2 - cf)], (8.1)
N - 2m\ .0 .

Z=F(Z,t) = Z, + elasin (7) (Z = ct). (8.2)
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Fig. 8.1: Geometry of problem

Moreover, the tube walls are presumed to be conducted with constant
temperature T,. To detect the plasma (Carreau fluid) flow in a ciliated tube a strong
magnetic field is exerted normal to the flow. The shear stress near the tip of cilia is
measured by the momentum equation and Lorentz force due to Hall effect that can be
calculated from generalized Ohm’s law.

]=a(E+VxB)—§—quB)+’*§—fi(uxB)xB), (8.3)
2

oB, —~ . ~ —~
JxB=- m((%u + BeW)e, + (a,W - B0)e,),  (84)

o?By* .. .
J=—"— (0% +W?), 8.5
1= ) (85)
where 8, = w,T, and a, = 1 + S.0;.

The momentum and energy equations for the forced convective flow of Carreau fluid [88]

o0, 0 W _, 56
TRz ®
U o0 __ a0 0P 10(RSgz) 9Spz See
—+U—,\+W—,\ == = =~ + T T a
’0<6t oR az) R R ok 9z R
0B,* — —~
- (a,0 + B,W), 8.7
PERTICARD ©7
ow _ow _ oW
P —,\+U—A+W =
ot oR FYA
oP 1 a(R§§§ 0S4, oBy? — —
= ——+ = = + = W — U' 8.8
97 R OR FY; a62+ﬁ62(ae peU) (8:8)
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0R? ROR 022 R R
+$ aﬁ+§ ow + @By (0% +Ww?). (8.9)
Koz ez a2+ ﬁez

. -1 o0
SM=2(1+—W 2 2)—” 8.10
RR ) ey Py ( )
. . n—1__ N[00 0w
Srz = S2r =(1+—2 We?y ) AR (8.11)
. n—1 ow
SM=2<1+ w 2'2) =, 8.12
22 ) ey a7 ( )
/2 =2 al72+2 6W2+ 6(7+6VT/2 (8.13)
Y =\or 9z 9z aR) " '

The transformation from fixed to wave frame by using Galilean transformation are
given by
f=R, 04=0 2=2-c, w=W-—c p(#21%) =P(RZ1). (814)

The following non-dimensional variables are used in Egs. (8.6)-(8.13).

P a2 W
e P
N
_xl _ll p_c)\u' — A

cl oB,212 ¢?

Re:p_‘ Mzz 0 , C: ,

u 7 cpTo
T-T,

pr=E? pr_prp, 9="220 (8.15)

kl TO

The non-dimensional form of Egs. (8.6)-(8.13) are as follows

auuaw

et = (8.16)
ou du ap 1 a(rSrr) aS Sgg
'32R8<u6_+waz>__§_ﬁ; - _ﬁz ,8—
M2
- 'B 2 (Baeu + B.(w + 1)), (8.17)

R ( ou au) op 19(rS,,) OSZZ M?
e

ar ==, 7 - - 1
u6r+ 0z 0z r Or —F 0z a,2+B,> (@(w+1) = Bhew) (8.18)
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g Ju Lo ow
20 86\ (9?60 106 0320 /”_ =Srz =
RePTﬁ(u—+w—)=( +__+ﬁ2 >+Brﬁ ar ﬁ aT'

or dz or2 ' ror 922 +5 6_u+5 6_w
ZTaZ zZz az
2
IO s
in which
n—-1 . ,\0u
Srr=—2,8(1+TWe 14 )E'
_ _ n— 9.2 ,0u dw
SrZ—Szr——(1+TWe y )(B E-I_W)'
n—1 . \ow
SZZ=—23(1 +TWe 14 )E'
(s 2(s %)+ (e
or 0z oz or)

\

(8.19)

(8.20)

(8.21)

(8.22)

(8.23)

Where the wave number 8, Weissenberg number We, Reynolds number Re, Hartmann

number M, Eckert number Ec and Prandtl number Pr are the dimensionless numbers

defined in Eq. (8.15). Incorporating the approximation of long wave length and small
Reynolds number (1 - o, Re — 0), Eq. (8.16)-(8.23) takes the following form

dp

ar
p  100S,,) M?a,
9z r or a2 + B,

629+169 _ g (5 aW)+ Brm? 4B (6w>
arz " ror) = 0 \Pr gy ae2+ﬁez(w ) "\or)

where

Sy = (1+"_1W2'2)6W
e 2 Y o

and

2
= ()
The non-dimensional geometry of the wave is as follow
r=h=1+ ecos(2nz),
and the associated boundary conditions can be emerge as
w(h) = —1 — 2rmeaf cos(2nz),
u(h) = 2me sin(2nz) + B(2me)?a sin(2nz) cos(2nz), 6 (h) = 0,
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(8.25)

(8.26)

(8.27)

(8.28)

(8.31)



W _ o 9% 0 at r=o0 8.32
ar—,ar—,ar—. (8.32)

8.3 Solution of Problem

We have employed Homotopy perturbation method (HPM) to evaluate the transformed
nonlinear problem defined in Eq. (8.29) under the boundary conditions given in Eq.
(8.32). HPM starts with the initial approximation selected by possible unknown
constants. Thus, we take the following approximation as an initial guess

r? — h2> dp

uy =w(h) + ( 2 a7 (8.33)

dP . . .. .
where —Is initial pressure gradient.

HPM takes the desire solution in terms of a formal power series by using embedding

parameter as a “small parameter”. The homotopy structure is expressed as follows

(1= q)(L[w(r,2)] — Lluo(r,2)]) = q(LIw(r, 2)] + N[w(r,2)] — g(2)), (8.34)
where g € [0, 1] is an embedding constant. Re-writing Eq. (8.29) with the aid of Eq.
(8.34) as follows

a-o (150535 5)

10 6W_I_n—1W2 (6W)3
r or Tar 2 er ar

= 8.35
q Ma, » (8.35)
— > > (W + 1) - a— /
e +ﬁ€
using
w=wy + qw; + q*w, + -+, (8.36)
0:90+q91+q202+"‘, (837)
dp  0py  Opy  ,0p;
—= 8.38
0z az+qaz+q az+ ( )
F = Fy + qF, + q*F, + -, (8.39)

Using Eq. (8.33), Eqg. (8.36) and Eq. (8.37) into Eq. (8.35) and equating the same power

of g on both sides, we get the following system of equations.
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8.3.1 Zeroth Order System

16<6w0) 16<6u0>_0 8.40
rarrar rarrar_' (8:40)
16( 690)
— c— ‘r'_
r or or
dwg\. n—1 , (OWo *
(5) += e (57)

= —Br 2 2\ (8.41)
J

M ow,
2 1 ()
aez +ﬁe ar

and the boundary conditions are

wo = —1 — 2meaf cos(2nz), 6, =0 at r=h,

Wo _o %% _ o w r=o0 8.42
oar _ ar M TET (8.42)

8.3.2 First Order System

16( awl)_ 16( 0u0> n—1W21a <6w0>3
rarrar - rarrar 2 erar r or

M?a, P,
+ — .z wo+1)+— (8.43)
ae” + Pe

0z’
ow;\> n—1 5 ow\*
1a<a¢91)_ . <6r) T e (a_r)
- = 2 b

ror\"ar M (s (4D
+————w + 12+ (—)
ae® + Pe or
and boundary conditions are
w;=0,60,=0 at r=h,
Mo g g =0 (8.45)
ar O ar L ®TEY '
8.3.3 Second Order System
16(6w2)_ n—1W216 (6w1)3
ror rar B 2 ¢ ror r ar
M?a 0
T (wy 1) + 2L (8.46)
ae® + fe 0z
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[ Ge) w5 )
li(r%> —_pr| T z 7% or (8.47)
ror\ or/) M? , (0w, K '
+———w, + D%+ (—)
%+ e or
and boundary conditions are
w,=0, 6,b=0=0, at r=h,
ow, a0,

Solving Egs. (8.40)-(8.48) with the help of software “Mathematica” we have found

w;, 8;, p; (i =0, 1,2) and the solution for velocity, temperature and pressure gradient

are
W = }JIH}(WO + qw, + quZ + )' (849)
0 0 0 d
P gim(Pe g g %P1y 2 9P2 Ly (8.51)

0z 0z
The volumetric flow rate can be evaluate by the following formula

$= q-1" 0z

h
Q= an r(w(r,z) + 1)dr. (8.52)
0

and mean volumetric flow rate in a fixed frame is written as follow

5L (Coator+ 145 8.53

8.4 Result and Discussion

This section compromise a detailed discussion on the graphs of pressure rise, pressure
gradient, velocity and temperature distribution. The parameters M, B;, B., n, We and
Br represent the Hartmann number, ion-slip parameter, Hall parameter, power law
index, Weissenberg number and Brinkman number, respectively. Figs. 8.2a-e show the
impact of interested parameters on the velocity field. The consequence of interested
parameters on the pressure gradient and pressure rise can be depicted from Fig. 8.3a-e
and Fig. 8.4a-e. Fig. 8.5a-e exhibit the impact of selected parameters on temperature

profile.
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Velocity profile

From Fig. 8.2a it is revealed that the significant variation in velocity can be observed
at the center of ciliated tube because in pioseuille flow velocity is high at the axis of
tube (i.e r = 0). The consequence of magnetic field on the velocity profile shows that
the speed of plasma in the axial direction became slow in the region —0.45 < r < 0.45
for rising value of Hartmann number. The increasing values of Hartmann number
indicate that electromagnetic forces are dominent over the viscous forces and acting
along the radial direction therefore causes to decelerate the axial velocity also Fig. 8.2b-
¢ show that axial velocity increases by rising Hall parameter S, and slip parameter £;.
Increasing values of Hall parameter show that when ratio of frequency of iron particles
in plasma and frequency of collision of electrons due to strong magnetic field increases
then fluid flow becomes faster in axial direction i.e Hall effect assist the fluid flow in
axial direction. Fig. 8.2d indicates that increasing values of Wessenberg number We
show that viscous properties of fluid are dominant over the elastic properties and by
increasing the amount of elasticity in plasma, fluid become thick and for increasing
value of We < 1, flow is deccelerated.

Fig. 8.2e illustrates that increasing power law index n < 1 make the fluid thin and in
results axial velocity increases but for n > 1 the fluid (plasma) become discontinouns
which is physically not possible in continium fluid mechanics.

Pressure gradient

Fig. 8.3 exhibit the consequential change in pressure gradient for rising value of
interested parameters, i.e, Hartmann number M, Hall parameter g, slip parameter g;,
Weissenberg number We and power law index n. It is depictted that behaviour of
pressure gradient is same for all parameters in the region z € [—1,1]. Fig. 8.3a
indicates that axial pressure gradient decreases by rising Hartmann number M. Since
the flow rate is directly proportional to pressure gradient, therefore, it is clear that strong
magnetic field opposes flow in axial direction which results a decrease in axial pressure
gradient. Fig. 8.3b and 8.3c show that axial pressure gradient increases by increases

Hall parameter S, and slip parameter £;. It is further noted that axial pressure gradient
is reinforced with rising value of g, and g;. Z—Z is small in region z € [—0.5,—0.2] and

z € 0.2, 0.5], whereas attain its maximum at r — axis. It can be revealed that flow can
move freely with small pressure gradient, whereas high pressure gradient is important

to attain the same flux. Fig. 8.3d indicates the impact of Wessenberg number We on
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pressure gradient. Since, fluid become more thick for increasing values of weissenberg
number We < 1, therefore, cilia need more effort to flow the fluid which results
increase in pressure gradient. Fig. 3e illustrates the impact of power law index n on
pressure gradient. For n < 1, the fluid become thin, therefore flow that generates due
to motion of cilia can move easily without imposing high pressure gradient. Thus
pressure gradient decreases as power law index n increases.

Streamlines

Fig. 8.4a-c, 8.5a-c and 8.6a-c represent the streamlines pattern of cilia-induced flow
with the effect of Hartmann number M, Hall prameter S, and slip parameter f;,
respectively. Since the streamlines show the pattren of fluid flow and internal
circulation of streamlines known as trapped bolus, also more boluses indicate fluid is
flowing rapidly. Fig. 8.4a-c indicate the influence of magnetic field on trapped bolus.
As the magnetic field causes reduction in fluid velocity, it decreases both the number
and size of trapping bolus by strong magnetic field. As Hall and slip parameter
accelerate the flow hence large size and more trapping blouses create in flow.
Therefore, it can be observed from Fig. 8.5a-c and 8.6a-c that the size of trapping
boluses rises by larger Hall parameter S, and slip parameter ;.

Temperature distribution

Fig. 8.7a-d depict the significance change in temperature profile 8 for growing values
of various parameters. The trend of temperature profile is same as velocity profile
attains its peak at center of tube (i.e » = 0). The impact of magnetic field can be
observed from Fig. 8.7a. Since the magnetic field resist the fluid flow hence rise in
Hartmann number M, results to increase in temperature profile. The resistance in the
flow due to magnetic field decreases average kinetic energy, thus from Fig. 8.7b and
8.7¢c we observe the reduction in temperature with higher values of M, B, and ;. The
impact of Brinkman number can be observed from Fig. 8.7d which reveals that higher

values of Brinkman number Br increases the temperature profile.
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Fig. 8.2a: Impact of Hartmann number M on horizontal velocity for a = 0.4, 8 =
04,¢6=02,0=0.2n=03, B, =0.5,8; = 0.5We = 0.2.
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Fig. 8.2b: Impact of Hall parameter 3, on horizontal velocity for a = 0.4, 8 =
04,¢6=020=02n=03M=15p; =05 We =0.2.
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Fig. 8.2c: Impact of lon-slip B; parameter on horizontal velocity for a = 0.4, 8 =
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Fig. 8.2d: Impact of Weissenberg We number on horizontal velocity for a« = 0.4, =
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Fig. 8.2e: Impact of power law index n on horizontal velocity for a = 0.4, 8 =
04,6 =0.2,0 =02,n=03,M =1.5,8, = 0.5,5 = 0.5, We = 0.2.
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Fig. 8.7a: Impact of Hartmann number on temperature profile for « = 0.4, = 0.4,
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Fig. 8.7b: Impact of Hall parameter on temperature profile fora = 0.4, § =04, ¢ =
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Fig. 8.7c: Impact of ionslip parameter on temperature profile for « = 0.4, f = 0.4,
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Fig. 8.7d: Impact of Brinkmann number on temperature profile for « = 0.4, f = 0.4,
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8.5 Conclusion

This study has been presented for heat transfer analysis with Hall current, ion-slip
effect and the Ohmic heating through a ciliary transport of Carreau fluid in a tube. The
dimensionless boundary value problem is evaluated by semi analytic technique
Homotopy perturbation method and software "MATHEMATICA". The outcomes are
examined for distinct parameters. The attributes of this study are:

e Velocity profile reduces with the larger Hartmann number M and Weissenberg
number We whereas it rises with Hall parameter, power law index n and ion-
slip parameter.

e Pressure gradient decreases for larger Hartmann number M and power law
index n and increases with Hall parameter, ion-slip parameter and Weissenberg
number We.

e The size of trapping bolus increases with the rise in Hall current 3, and ion-slip
parameter f; while reduces with rising Hartmann number M.

e Temperature profile is enhanced by increasing Hartmann number M and power
law index n and diminished by increasing Weissenberg number We, Hall

current S, and ion-slip parameter S;.
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Chapter 9

Conclusion

This thesis presents the effect of heat transfer in transport of magnetohydronamic flow
of two dimensional ciliated channel/tube. It is found that cilia has to work more
efficiently in the existence of magnetic field and heat transport in the fluid.

In chapter 1, introduction to cilia and review of literature is discussed regarding to the
contribution of various authors in ciliary transport.

In chapter 2, applications of ciliary propulsion is explained by mathematical model of
magnetohydrodynamic (MHD) flow through the infinite length of ciliated porous
planer surface. Influence of magnetic field and porous medium is higher near the
boundary and vanishes away from boundary.

Influence of Hall and ion-slip effect on the ciliary propulsion of viscous incompressible
flow in infinite length model embedded in porous medium is evaluated in chapter 3.
Impact of Hall and ionslip parameter showed the significant effect on longitudinal
velocity as compared to transverse velocity. It is also noted that porosity, Hall and
ionslip effect are required to accelerate the ciliary flow.

Chapter 4 presents the mathematical modeling of electrically conducting viscoelastic
physiological Johnson-Segalman fluid flow in a ciliated channel. With increase in fluid
parameter larger pressure gradient is required to maintain the same flux through a center
region of channel, whereas smaller pressure gradient is required with rise in magnetic

parameter.

In chapter 5, mathematical modeling of ciliary transport of electrically conducting
inertial flow of second grade fluid model is discussed in a two dimensional channel
implanted in a porous medium. It is investigated that larger inertial forces caused to
accelerate the flow, whereas magnetic forces reduce the longitudinal velocity but dual
behavior can be seen through transverse velocity.

Basically, it is concluded that magnetic field decelerated cilia induced flow if it is
applied normal to the direction of fluid flow. The impact of electromagnetic forces on
incompressible viscoelastic Johnson Segalman fluid and second grade fluid show that
magnetic field retarded the flow quickly in second grade fluid as compared to Johnson

Segalman fluid.
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In chapter 6, influence of porous medium and magnetohydrodynamic (MHD) on the
convective viscoelastic physiological Jeffrey fluid model is anticipated through the
ciliated channel. It is depicted that larger values of Hartmann number and Jeffrey first
viscoelastic parameter reduced the speed in core section of the channel whereas it is
elevated with rising permeability parameter and Jeffrey second viscoelastic parameter
(retardation parameter) in the core zone. Temperature is enhanced with rising Hartmann
number and second Jeffrey parameter whereas it is reduced with permeability parameter
and Jeffrey first parameter.

In chapter 7, mixed convective flow of electrically conducting Carreau fluid model is
discussed in a vertical ciliated channel. Electromagnetic forces revived whereas heat
transfer significantly accelerated the cilia induced flow.

In chapter 8, the impact of Hall current and ion-slip on the convective flow of Carreau
fluid is discussed through the two dimensional ciliated tube with ohmic heating. The
flow is accelerated in the presence of Hall and ionslip effect but heat transfer in ciliary
flow show the decreasing behavior.

Finally, it is concluded that the magnetic field resists the ciliated flow which result the
strong elevation in temperature profile. The magnitude of velocity is greater in Jeffrey
fluid flow thus more heat can be transfer through Jeffrey fluid compared for Carreau
fluid flow in tube or in channel. However, Carreau fluid flow in channel moves with
faster speed as compared with tube in the existence of magnetic field thus temperature
profile attains maximum rate in channel. This thesis is beneficial to discuss problem
occur in mucus in trachea, blood in fallopian tube, cholesterol in veins and arteries and

in designing the artificial cilia.
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