
Heat Transfer Analysis in Ciliary Transport 

of MHD Flow 

 

 
 

 

By 

 

Naeema Manzoor 

Reg. No. 51-FBAS/PHDMA/F15 

 

 

Department of Mathematics and Statistics 

Faculty of Basic and Applied Sciences 

International Islamic University, Islamabad 

2020 



Heat Transfer Analysis in Ciliary Transport 

of MHD Flow 
 

 

 

 

By 

Naeema Manzoor 

Supervised by 

 

Dr. Khadija Maqbool 

 

Department of Mathematics and Statistics 

Faculty of Basic and Applied Sciences 

International Islamic University, Islamabad 

2020 



Heat Transfer Analysis in Ciliary Transport 

of MHD Flow 
 

By 

Naeema Manzoor 

A Thesis  

Submitted in the Partial Fulfilment of the  

Requirements for the degree of  

DOCTOR OF PHILOSOPHY 

IN 

MATHEMATICS 

 

Supervised by 

Dr. Khadija Maqbool 

 

Department of Mathematics and Statistics 

Faculty of Basic and Applied Sciences 

International Islamic University, Islamabad 

2020



i 

 

Author’s Declaration 
 

 

 

I, Naeema Manzoor Reg. No. 51-FBAS/PHDMA/F15 hereby state that my 

Ph.D. thesis titled: Heat Transfer Analysis in Ciliary Transport of MHD Flow 

is my own work and has not been submitted previously by me for taking any degree 

from this university, International Islamic University, Sector H-10, Islamabad, 

Pakistan or anywhere else in the country/world. 

At any time if my statement is found to be incorrect even after my Graduation 

the university has the right to withdraw my Ph.D. degree. 

 

 

 

 

Name of Student: (Naeema Manzoor) 

Reg. No. 51-FBAS/PHDMA/F15 

Dated: 01/01/2021 

  



ii 

 

Plagiarism Undertaking 
 

 

 

I solemnly declare that research work presented in the thesis titled: Heat 

Transfer Analysis in Ciliary Transport of MHD Flow is solely my research work 

with no significant contribution from any other person. Small contribution/help 

wherever taken has been duly acknowledged and that complete thesis has been 

written by me. 

I understand the zero tolerance policy of the HEC and University, 

International Islamic University, Sector H-10, Islamabad, Pakistan towards 

plagiarism. Therefore, I as an Author of the above titled thesis declare that no 

portion of my thesis has been plagiarized and any material used as reference is 

properly referred/cited. 

I undertake that if I am found guilty of any formal plagiarism in the above 

titled thesis even after award of Ph.D. degree, the university reserves the rights to 

withdraw/revoke my Ph.D. degree and that HEC and the University has the right to 

publish my name on the HEC/University Website on which names of students are 

placed who submitted plagiarized thesis. 

 

 

 

 

Student/Author Signature: ___________________________ 

Name: (Naeema Manzoor) 

 

 

 



iii 

 

Certificate of Approval 

 

This is to certify that the research work presented in this thesis, entitled: Heat 

Transfer Analysis in Ciliary Transport of MHD Flow was conducted by Ms. 

Naeema Manzoor, Reg. No. 51-FBAS/PHDMA/F15 under the supervision of Dr. 

Khadija Maqbool no part of this thesis has been submitted anywhere else for any 

other degree. This thesis is submitted to the Department of Mathematics & 

Statistics, FBAS, IIU, Islamabad in partial fulfillment of the requirements for the 

degree of Doctor of Philosophy in Mathematics, Department of Mathematics & 

Statistics, Faculty of Basic & Applied Science, International Islamic University, 

Sector H-10, Islamabad, Pakistan. 

 

Student Name: Naeema Manzoor  Signature: ______________ 

 

Examination Committee: 
 

a) External Examiner 1: 

 Name/Designation/Office Address Signature: ______________ 

b) External Examiner 2: 

 Name/Designation/Office Address) Signature: ______________ 

 

c) Internal Examiner: 

 Name/Designation/Office Address) Signature: ______________ 

Supervisor Name:     

 Dr. Khadija Maqbool   Signature: ______________ 

Name of HOD:     

 Dr. Ambreen Afsar Khan   Signature: ______________ 

Name of Dean:     

 Prof. Dr. Muhammad Irfan Khan Signature: ______________ 

Prof. Dr. Sohail Nadeem 

Professor of Mathematics, 

Department of Mathematics, 

Quaid-i-Azam University, Islamabad,  

Islamabad. 

Dr. Nabeela Kousar 

Associate Professor 

Department of Mathematics, 

Air University, Islamabad. 

Dr. Ambreen Afsar Khan 

Assistant Professor 
 



iv 

 

Dedication 

I dedicate this dissertation to a man who sacrificed his life for me, whom himself was 

deprived of education but he went beyond all means to ensure that I have access to the best 

education. His love for knowledge and learning is the foundation of my qualifications. The 

love he instilled me for education and learning is what kept me motivated throughout my 

academic career.   

My Father, Manzoor Hussain Karimi, the man responsible for what I am today. 

 



v 

 

Acknowledgements 
Words are insufficient to describe my gratefulness and appreciation to the ALLAH 

Almighty, the creator of the universe, who gave me strength, ability, courage and patience 

to successfully complete my thesis. I pay tributes to the Holy Prophet Muhammad (PBUH), 

whose personality showed the right path to mankind and His teachings make us ponder to 

explore the world.  

I would like to extend my gratitude to my respected supervisor Dr. Khadija Maqbool, for 

their patient guide, enthusiastic encouragement and useful critiques of this research work. 

This thesis would not be possible without her worthy comments, suggestions, advice and 

assistance for keeping my progress on schedule. I pay my respects to all my teachers who 

enabled me for making my dream true.  

I would have never accomplished all this without love, support and encouragement of my 

family especially parents. I am also thankful to my Ph.D. class fellows especially Hadia 

Tariq who always helped with all aspects of academia. 

I am also very thankful to the Higher Education Commission, Pakistan for providing me 

the opportunity to avail the International Research Support Initiative Program, which 

enhanced and improved my capabilities for research and provided the opportunity for 

further international collaboration.   

In the end, I am grateful to Allah for bestowing me with such a wonderful husband, Abdul 

Saboor, whose love, care, encouragement, support, relentlessness, patience and sacrifices 

have been a pillar of strength for me during the time-consuming process to this thesis.    

Naeema Manzoor 



vi 

 

Preface 

A complex feature observed on biological surfaces is the ciliary transport in the existence 

of magnetic and thermal field. Cilia are small but complex additional structures that 

protrude from the walls of the vessels. Cilia with an average length of around 0.1 mm can 

easily fold and thus contribute to many advanced biophysical transport mechanisms. They 

usually emerge in large density dies, unlike the flagella, which generally exists in nature as 

pairs or single structures. The ciliary flogging mechanisms (metachronism) which control 

the direction of the induced propulsion, therefore differ considerably from the flagellar 

flogging. They manifest whip-like movements that appear in plants, cells, sea creatures and 

physiological organs. They play a huge part across the spectrum and biological properties 

e.g. embryonic mechanotransduction processes, tracheal aerodynamics, ventricular 

cerebrospinal fluid dynamics, coral reef systems, etc. The mathematical modeling of 

moving cilia has significance to estimate the various variables that are effected in this 

mechanism. Although experiments together with mathematical model of ciliary transport 

estimates the role of frequency, length, velocity and number of cilia in fluid dynamics and 

provide the awareness of ciliary importance in occurrence of diseases (related to cilia). 

Motivated by these facts, the cynosure of current thesis is based on the study of different  

fluid flow originate by the ciliary movement in a magnetic and thermal field with different 

effects like Hall effect, ion slip effect, magnetic field effect, viscous dissipation effect and 

inertial effects in different geometries and mathematical tools. Under such assumptions, 

the governing equations of above mentioned biological flows are modelled using 

continuity, momentum and energy equation. To analyze the effect of ion-slip and Hall 

current, generalized Ohm’s law and Maxwell’s equation are used. The resulting partial 

differential equations are developed with or without long wavelength approximation. The 

resulting linear and nonlinear system of equation has been evaluated by the perturbation 

method, Adomian decomposition method, Homotopy perturbation method and Fourier 

series expansion method. The effects of emerging parameters are shown through graphs 

plotted by the software Mathematica. The impacts of physical parameters such as 

Hartmann number, ion-slip parameter, Hall parameter, porosity parameter, Weissenberg 

number, slip parameter, cilia length, power law index, fluid parameters and Brinkman 
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number are illustrated by the graphs. It is found that cilia has to work more efficiently in 

the existence of magnetic field and heat transport in the fluid can be enhanced by the ciliary 

activity. This thesis comprises eight chapters which are described in following manners. 

 The introduction of fluid mechanics, basic information about cilia, non-dimensional 

numbers, fundamental laws, governing equations and explanation of methodology 

pertinent to the problems presented in chapters are included in chapter one. 

 Chapter two develops the mathematical model of magnetohydrodynamic (MHD) flow 

through the infinite length of ciliated porous planer surface. The governing partial 

differential equations are evaluated by Fourier series expansion method. The exact solution 

has been found which is used to find the velocity of propulsion of wave. The application 

of ciliary propulsion is also explained in this chapter. The behavior of physical variables 

are estimated by graphical results. This study is published in Journal of Magnetism and 

Magnetic Materials, (2019) doi.org/10.1016/j-jmmm.2019.02.074. 

 Chapter three extended the work presented in chapter two where influence of Hall and ion-

slip on the metachronal flogging of cilia to flow the Newtonian fluid has been obtained. 

The finding are discussed and displayed by the graphs. This investigation is published in 

Journal of porous media (2020) 23, 943-954. 

 The rheological behavior of the fluid simulated with the non-Newtonian fluid under the 

action of magnetic field has been considered in chapter four. Mathematical modeling is 

evaluated for the flow of viscoelastic physiological fluid with Johnson-Segalman 

constitutive model in channel. The channel is ciliated internally and flow occur due to 

whip-like motion of cilia. The governing equations are simplified and solved analytically. 

The series solution is found by the perturbation method. The effect of important parameters 

on velocity field, pressure rise and pressure gradient are interpreted graphically. This work 

is published in Computer Methods in Biomechanics and Biomedical Engineering, 

(2019) 22, 685-695. 

 Chapter five illustrates the mathematical modeling of ciliary transport of electrically 

conducting inertial flow in a two dimensional channel implanted in a porous medium. The 

fluid obey the law of second grade constitutive model. The partial differential equations 

are non-linear and complex due to the inertial effect. The stream function, velocity profile 

and pressure gradient are commutated graphically for several values of involved 
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parameters. The analytical solution of complex partial differential equation is obtained by 

Homotopy perturbation method (HPM). The comparison of velocities due to symplectic 

and antiplectic metachronal wave are achieved graphically. This analysis is submitted for 

publication in Mathematical Biosciences. 

In chapter six, force convective viscoelastic physiological Jeffery fluid model is 

contemplated through the ciliated channel. The Darcy law for porous medium is also used 

to model the problem. To obtain the impact of magnetohydrodynamic (MHD), magnetic 

field is applied normally. The viscous dissipation is also incorporated in the energy 

equation. The non-linear governing equations are evaluated by the Adomian 

decomposition method. The impact of interested parameters on temperature profile, 

velocity, pressure rise and pressure gradient are plotted by the graphs. The streamlines for 

the effect of various parameters are shown graphically. This effort is published in Heat 

Transfer—Asian Research, (2018) 1–26. 

Chapter seven is devoted to analyze the mixed convective flow of electrically conducting 

generalized Newtonian fluid in a vertical ciliated channel. The behavior of the fluid is 

simulated with the Carreau constitutive model. The momentum and energy equations are 

simplified by using the low Reynolds number and small wavelength approximations. The 

emerging complicated boundary value problem is solved by Adomian decomposition 

method (ADM). The pressure rise, axial velocity, pressure gradient and temperature profile 

are obtained graphically for various values of interested variables. The material of this 

chapter is submitted for publication in Journal of Thermal Analysis and Calorimetry. 

Chapter eight involves the convective flow of Carreau fluid through the two dimensional 

ciliated tube with ohmic heating. The Generalized Ohm’s law is used to obtain the impact 

of Hall current and ion-slip on the fluid flow. The non-linear momentum equation and non-

homogeneous energy equation are solved analytically. The Homotopy perturbation method 

has been used to compute the axial pressure gradient, axial velocity, streamlines and the 

temperature profile. The interested variables based on physiologically relevant data are 

graphically shown and discussed in detail. The results emerged in this chapter (chap. eight) 

are submitted for publication in European journal of physics. 
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Nomenclature 

𝑽 Velocity field vector 

𝑢, 𝑣 Wave frame longitudinal and transverse velocity  

𝑥, 𝑦 Wave frame rectangular coordinates  

𝑈̂, 𝑉̂ Fixed frame longitudinal and transverse velocity  

𝑋̂, 𝑌̂ Fixed frame rectangular coordinates  

𝑅̂, 𝑍̂ Cylindrical coordinates of fixed frame 

𝑈̂, 𝑊̂ longitudinal and transverse velocity in fixed frame 

𝑃̂, 𝑝̂ Pressure in fixed and wave frame 

𝑰 Identity tensor 

𝑺 Cauchy stress tensor 

𝑱 Current density 

𝑩 Magnetic field 

𝑬 Electric filed 

𝒃𝒇 Body force 

𝑹 Darcy's resistance 

                         𝑇 Fluid temperature 

 𝑐𝑝 Specific heat 

𝜔 Cyclotron frequency 

ℎ Half length of channel 

𝑡 Time  

𝑛 Power law index 
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𝑘 Non-dimensional porosity parameter 

𝒦 Permeability of porous medium 

ℳ Hartmann number 

𝔠 Wave speed 

𝑙 Wave amplitude 

𝑄 Volume flow rate  

𝑅𝑒 Reynolds number 

𝑃𝑟 Prandtl number 

𝐸𝑐 Eckert number  

𝐵𝑟 Non-dimensional Brinkman number 

𝐺𝑟 Grashof number 

𝑘1 Thermal conductivity  

𝑠0 Unit area 

𝑒𝑖𝑗 Rate of strain tensor 

𝑊𝑒 Weissenberg number 

𝑫 Symmetric part of the velocity gradient 

𝑾 Skew symmetric part of the velocity gradient 

𝒂 Rheological slip parameter 

𝑚 Relaxation time 

𝑐𝑓 Skin friction coefficient 
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Greek Letters 

𝜌 Fluid density 

𝜆 Wavelength 

𝜆1, 𝜆2 viscoelastic parameters 

𝛽 Non-dimensional wave number 

𝛽𝑡 Coefficient of thermal expansion 

𝛽𝑒 Hall parameter 

𝛽𝑖 Ionslip parameter 

𝜀 Cilia length 

𝛼 Eccentricity of elliptical path 

𝜎𝑖𝑗 Stresses exerted by the organisms on the fluid 

𝜇𝑚 Magnetic permeability 

𝜓 Stream function 

𝛾̇ Shear rate 

Φ Viscous dissipation 

𝜎 Thermal conductivity of the fluid 

𝜑 Porosity media 

𝜇 Viscosity of fluid 

𝜇∞ Infinite shear rate viscosity 

𝜇0 Zero shear rate viscosity 

𝜃 Dimensionless temperature 

𝜞 Time constant 
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𝜏0 Electron collision time 

𝝉 Extra stress tensor 
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Chapter 1 

Introduction 

1.1 Fluid Mechanics 

1.1.1 History and applications 

 Fluid mechanics studies fluid in rest or motion. Leonardo Da Vinci (1452-1519) 

pioneered it by building the first chambered canal lock near Milan. Amongst his most 

remarkable work, his study was on flights of birds. He studied the complex movements 

of flight of birds, air flow and designed models for a flying machine which resembles 

a modern day helicopter. His torch was carried forward by Galileo, Euler, Torricelli, 

Newton, D' Alembert and Bernoulli’s family. Their observations and experiments made 

the study of fluid mechanics ponder on. 

 Fluid is working as a medium in all the fields of science and technology, in almost all 

the actions a person does. For instance the design of all means of transportation 

including subsonic and supersonic aircraft, surface ships, submarines, automobile, 

pumps, fans, blowers, compressors, and turbines require applications of fluid 

mechanics. Even the circulatory system of the body is based on the law of fluid 

mechanics. 

1.1.2 Types of Fluids 

 Fluid mechanics is further divided into Newtonian fluids (stress and deformation rate 

vary linearly) and the non-Newtonian fluids (stress and strain rate vary nonlinearly). 

Some common Newtonian fluids include air, water and gasoline while the most familiar 

non-Newtonian fluids include toothpaste, ketchup, emulsions and Lucite paints.  

1.2 Cilia and its Working 

 Cilia are the slender 1-10𝜇𝑚 long organelles, these organelles are present on surface 

of many microorganisms and on the different cells inside the human and animal bodies 

to perform the variety of essential activities. The ciliary activity helps to move the 

complete cell body or minute particles in fluid medium, or the cilia are static in 

epithelium and allow the fluid flow across the epithelium. There are two different cilia 
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(motile and non-motile). Motile cilia are moving and exists in groups on an organism 

whereas non-motile cilia are stationary and found on a cell body. All protozoan ciliates 

possess motile cilia. They utilize the cilia not only for transportation, also to feed 

themselves. Examples include the mytilus, veligers of molluscs, vorticella, annelid 

trochophores, coleps and echinoderm larvae which all rely on cilia to get their 

destination. In mammals, cilia are involved in the normal physiology of the entire 

respiratory tract, especially in the mechanism of lubrication and clearance of its surface, 

and in body defenses against foreign particulate matter. In genital tract, cilia play a vital 

role in the passage of spermatozoa and in the conduction of ova. 

1.2.1 Ciliary Structure 

 Cilia has complex internal structure called axenemes given in Fig. 1.1. Cilia is 

composed of protein filaments called microtubules. The cross-sectional area of cilia 

shows the arrangement of these microtubules. In moving cilia, it consists of 9 doublet 

pair of microtubules organized in a circular manner around two central microtubules 

called 9+2 arrangement. It also contain radial spokes, dynein arm and nexin links for 

different functions. Primary cilia consists of 9+0 (absence of two central microtubules) 

arrangement of microtubules. 

 

 

Fig. 1.1: The axoneme: 1-radial spoke, 2-dynein arms, 3-outer doublets, 4-nexin links, 

5-central capsule, 6-plasma membrane. 

1.2.3 Ciliary Movement  
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 A cilium, collectively called cilia, exhibit two phase stroke, power stroke (effective 

stroke) and recovery stroke. Power stroke in which a cilium swings in full extension 

weakly, while in a recovery stroke it reach to the base and slowly return to the original 

position. The high friction effective stroke is followed by low friction recovery stroke. 

Cilium undergoes a cyclic motion with these two strokes, which generates force to 

induced relative motion between the cell and its surrounding fluid. Since cilia are close 

together on a single organism and move in coordination. This coordination produce a 

collective behavior of cilia beating which forms a wave, called metachronal wave. This 

wave can have different types, depending on the direction of propagation with effective 

stroke. If both (wave and power stroke) are in same direction, it is symplectic 

metachronal wave, or in opposite direction, called antiplectic metachronal wave, or 

perpendicular to each other, known as diplectic metachronal wave. 

1.2.4 Pumping 

 A characteristics feature of ciliary transport in which cilia pumps the fluids from 

smaller pressure to larger pressure under certain conditions is known as pumping. This 

pumping can be negative or positive depending on negative and positive flow rate, 

respectively. If both pumping and pressure rise are positive, it is known as ciliary 

pumping. If pumping is positive but pressure rise is negative, it is augmented 

pumping or co-pumping. If pumping is negative and pressure rise is positive, it is 

retrograde pumping.  

1.2.5 Trapping 

 Trapping is known as the circular bolus formed by the closed stream lines and move 

ahead along the metachronal wave of the ciliary flow. Basically, it helps to understand 

the behavior of flow pattern. 

1.3 Some Basics Definitions 

1.3.1 Surface Forces 

The forces which are directly in contact with surface (internal or external) of the body. 

It decompose into normal force, i.e. act perpendicularly over the area and shear force, 

i.e. act tangentially over the area.  
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1.3.2 Body Forces 

 Forces that act on the entire volume of body but not in contact with the body e.g. forces 

due to magnetic field, electric filed and gravity.   

1.3.3 Pressure Gradient 

 It is the rapid rate of change of pressure (i.e. applied force per unit area) in a specific 

area towards a peculiar direction. Mathematical form can be obtained by applying 

gradient operator to the pressure function.   

1.3.4 Stream Lines 

 Streamlines describe the path of flow that is created by the fluid particles as it move 

with the flow and velocity at every point tangent to the path line.  

1.3.5 Stream Function 

 The stream function, 𝜓, for which velocity components of incompressible fluid flow is 

expressed in derivative form and is used to represents the trajectory of flow so that it 

can be visualized graphically.  Mathematically,   

                                                                𝑢 =
𝜕𝜓

𝜕𝑦
,   𝑣 = −

𝜕𝜓

𝜕𝑥
,                                            (1.1) 

where 𝑢 and 𝑣 are longitudinal and transverse velocities.  

1.3.6 Volume Flow Rate  

 It offers the amount of fluid that passes through a unit area in unit time. It is also known 

as volumetric flow rate and usually represented by  𝑄.  

1.3.7 Hall Current and Ion-Slip Effect 

 The Hall current is the production of voltage difference when a current carrying 

conductor through an electric field is placed in a perpendicular direction of applied 

magnetic field, it is used to analyze the nature of conduction process in metals and 

semiconducting materials whereas an ion-slip effect is a relative drift that produced 

between ions, electrons and neutral particles due to the force exerted by the magnetic 

and electric field in the presence of high Hall parameter. 
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1.4 Heat Transfer 

 Heat transfer is also known as thermal energy. The form of energy which flow from 

one region to another or between the systems and surroundings as a result of 

temperature differences. Heat is transferred primarily through three modes conduction, 

convection are radiation.  

 Conduction (through surface): The continue process of energy transfer through the 

collision of warmer or high energetic particles to the cooler or low energetic particles 

until all particles get the same temperature.  

 Convection (through liquids): Convective heat transfer (or convection) is the study of 

processes which involves the heat transport by the flow of fluids. Heat transfer through 

fluid is thermal field and ensure energy balance of the system. The convective heat 

transfer is further divided into forced convection, free convection and mixed 

convection.  

1.5 Laws of Fluid Mechanics 

 The fundamental laws of fluid mechanics which describe the fluid behavior are mass, 

momentum and energy conversations and are applicable in all the problems whether 

we realized it or not.  

1.5.1 Continuity Equation 

 Law of conservation of mass is mathematically represented by the continuity equation. 

This Law states that neither mass can be generated nor demolished or the mass is 

conserved. For compressible fluid, the continuity equation is defined as follow 

                                                                
𝑑𝜌

𝑑𝑡
+ 𝜌𝛁. 𝑽 = 0,                                                     (1.2) 

Where 𝜌 is the density of fluid, 𝑽 is the velocity field vector and 
𝑑

𝑑𝑡
 is the material time 

derivative which is defines as 

                                                                    
𝑑

𝑑𝑡
=

𝜕

𝜕𝑡
+ 𝑽. 𝛁.                                                  (1.3) 

Thus combining Eq. (1.2) and Eq. (1.3), we get 
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𝑑𝜌

𝑑𝑡
+ 𝛁. (𝜌𝑽) = 0.                                             (1.4) 

The continuity equation for incompressible fluid is defined as follow 

                                                                             𝛁. 𝑽 = 0.                                                     (1.5) 

1.5.2 Momentum Equation 

 The law of conservation of momentum is governed by the following equation 

                                               𝜌 (
𝜕𝑽

𝜕𝑡
+ (𝑽. 𝛁)𝐕) = −𝛁𝑃 + 𝛁. 𝝉 + 𝜌𝒃𝒇,                          (1.6) 

in which 𝑽, is the velocity field vector, 𝜌, is the density of fluid, 𝑃, is the pressure force, 

𝝉, is the extra stress tensor and 𝒃𝒇 represents the  body force. 

1.5.3 Energy Equation 

 The convective heat transfer problem requires a solution for the temperature 

distribution through the flow. The equation for achieving this ultimate form is the 

energy equation. Mathematically we can write 

                                                      𝜌𝑐𝑝 (
𝑑𝑇

𝑑𝑡
) = 𝑘𝛁2𝑇 + 𝝉. 𝑳 + 𝜌𝑟,                                    (1.7) 

where 𝑇 is the temperature, 𝝉 is the extra stress tensor, 𝑟 is radial heating, 𝑘 is the 

thermal conductivity and 𝑐𝑝 is the specific heat.  

1.5.4 Generalized Ohm’s Law 

 The current density 𝑱 for Hall and ion-slip effect is interpreted by the generalized 

Ohm’s law as follow   

                                   𝑱 = 𝜎(𝑬 + 𝑽 × 𝑩) −
𝛽𝑒

𝐵0

(𝑱 × 𝑩) +
𝛽𝑒𝛽𝑖

𝐵0
((𝑱 × 𝑩) × 𝑩),          (1.8) 

where Hall parameter 𝛽𝑒 = 𝜔𝑒𝜏𝑒 in which 𝜔𝑒 is cyclotron frequency, 𝜏𝑒 is electron 

collusion time.  𝜎 is the fluid conductivity, 𝛽𝑖 is ion-slip parameter, magnetic field 𝑩 =

𝐵𝑖 + 𝐵0, 𝐵𝑖 and 𝐵0 are induced and constant applied magnetic field, respectively, and 

𝑬 represents the electric field. In the current thesis, no applied voltage (i.e. 𝑬 = 0) is 

assumed and 𝐵𝑖 is negligible. 
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1.6 Dimensionless Numbers 

1.6.1 Hartmann Number 

 It is elucidated the ratio of electromagnetic forces to the viscous forces. It appears in 

the magnetohydrodymics flow problems. Mathematically,  

                                                                      ℳ = 𝐵0𝑙√
𝜎

𝜇
,                                                   (1.9) 

where 𝐵0, 𝑙 , 𝜎, 𝜇 are  magnetic field intensity, mean width of channel/tube, fluid 

conductivity and fluid viscosity, respectively. 

1.6.2 Porosity Parameter 

 It is the ratio of volume pores in the medium to the volume of bulk fluid in the medium. 

Mathematically,  

                                                                            
1

𝒦
=

𝜑𝑙2

𝑘
.                                                  (1.10) 

1.6.3 Reynolds Number 

 The most essential dimensionless parameter to determine whether the flow is laminar 

i.e.  similar pattern flow that occur at low Reynolds number, or turbulent flow i.e. fluid 

does not know the next flow pattern and occur at high Reynolds number. It is expressed 

as a ratio of inertial to the viscous forces and is denoted by Re. Its mathematical form 

is as follow 

                                                                           𝑅𝑒 =
𝜌𝑈𝑓𝑙

𝜇
.                                                (1.11) 

1.6.4 Wave Number 

 The important dimensionless number for wavy flow is the ratio of mean width of 

channel to the wavelength (i.e. metachronal wave in this thesis) represent the wave 

number. Mathematically,  

                                                                                𝛽 =
𝑙

𝜆
.                                                   (1.12) 
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1.6.5 Weissenberg Number 

 The ratio of elastic forces to the viscous forces is actually the Weissenberg number. 

This dimensionless number is used to study the non-Newtonian viscoelastic fluid. 

Basically, it described the degree of deformation in simple shear flow. It is usually 

denoted by 𝑊𝑖 or 𝑊𝑒 (in this thesis, we use 𝑊𝑒). Mathematically, it is defined as 

                                                                       𝑊𝑒 =
𝑚𝑈𝑓

𝑙
.                                                  (1.13) 

1.6.6 Prandtl Number 

 It describes the ratio of momentum to thermal diffusivity and measure the heat transfer 

between moving fluid and solid surface if Prandtl number (denoted by 𝑃𝑟) goes to unity, 

it corresponds to flow for which both, momentum and thermal dissipation, are at the 

same rate. Heat diffuses quickly if 𝑃𝑟 is very small (𝑃𝑟 ≪ 1) and slowly if 𝑃𝑟 is large 

(𝑃𝑟 ≫ 1) relative to the velocity boundary layer, respectively. Mathematically, 

                                                                          𝑃𝑟 =
𝜇𝑐𝑝

𝑘1
.                                                   (1.14) 

1.6.7 Eckert Number 

 It is the ratio of advective mass transfer to the heat dissipation potential. This 

dimensionless number is used to characterize the effect of self-heating in the presence 

of viscous dissipation term in the energy equation. It simply shows the relation between 

enthalpy and kinetic energy of the flow and is denoted by 𝐸𝑐. Mathematical 

representation is as follow 

                                                                       𝐸𝑐 =
𝑈𝑓

2

𝑐𝑝∆𝑇
.                                                    (1.15) 

1.6.8 Brinkman Number 

 This dimensionless number specifies the viscous dissipation in the fluid flow. It is 

expressed as a ratio of viscous heat generation to the heat transfer rate and is essential 

for short distance velocity changes flow i.e. lubricant flow. It is denoted by Br in the 

product of Eckert and Prandtl number i.e. 𝐵𝑟 = 𝐸𝑐𝑃𝑟. 
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1.6.9 Grashof Number 

 The ratio of buoyancy forces due to convective heat transfer to the viscous forces is 

known as Grashof number. This non-dimensional parameter is a measure of free or 

natural convection. Mathematically, the Grashof number is defines as 

                                                                       𝐺𝑟 =
𝑔𝛽∆𝑇𝑙3

𝜈2
,                                              (1.16) 

in which 𝑔 denotes the gravitational acceleration, 𝛽 denotes the volume expansion,  𝐿 

be the characteristics length,  ∆𝑇 is the change in temperature and 𝜈 is for the viscous 

forces. It is also used to deduce the nature of convective boundary layer thickness. The 

laminar boundary layer occurs at low Grashof number and turbulent boundary layer 

arises at high Grashof number. 

1.7 Literature Review  

 The study of ciliary flow is very rich in history. The light microscopic scientist, 

namely, ‘Antoni van Leeuwenhoek’ observed for the first time, motion of the little legs 

or thin feet of microorganisms in 1674-1675 [1]. Although, in 1786, Otto Friedrich 

Müller was the first to use the term ‘cilia’ for these organelles [2]. Originally, the cilia 

were discovered by their motile function, and, it was assumed the only function of cilia 

for the long time.    

 Later, in the 2nd half of the 19th century, some researchers [3, 4, 5] observed the 

stationary cilia, and, the first scientist to ever notice these organelles in mammalian 

cells including was Zimmermann. But his research and Zimmermann's name for these 

organelles were soon forgotten. In 1986, it was renamed to primary cilia [6]. In the last 

century, small attention was paid to this distinctive class of non-motile cilia and it 

remained a mystery. 

 The study of these organelles was limited due to deficient resolution of light 

microscope of nineteen and early twenty century. The problem of resolution resumed 

after the invention of electron microscope and causes the expansion in ciliary study. 

The contribution of Keith Porter in elucidation of ciliary structure [7] is highly 

appreciated. He described complete pattern of axoneme for both moving and stationary 

cilia which is discussed in subsection 1.2.1. 
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 The comprehensive study of ciliary motion of microorganisms in 1950-1969 was given 

by, Taylor [8], Reynold’s [9], Tuck [10], Lighthill [11], Sleigh [12, 13], for finite and 

infinite length models. They made calculation for the motion of single cilium and 

discussed the case of high concentration of cilia lying on the microorganism, which 

resembled the Gray’s comment. Blake [14, 15] represent that comparison of the 

velocities of propulsion for the finite and infinite length model and reveals that 

propulsive velocity of infinite model is twice that are found for the finite model. During 

1970s, Blake [15] and Brennen [16, 17] used the envelope model to study the 

locomotion of ciliated microorganisms later Katz [18] and Lardner [19] presented the 

propulsion of fluid due to cilia in mammalian reproductive systems and then Blake [20] 

used this model to study both female and male reproductive system. In 1980s, 

Sanderson, Sleigh [21], Fulford, Blake [22], Agarwal [23] and Sleigh [24] described 

the motion of mucus-propelling cilia of mammalian respiratory system. They presented 

the understanding of the mechanism of mucociliary transport and to provide an 

awareness of its importance in lung defense. By 1990s, it is seemed that with each 

passed years the field of cilia [25-29] reached a state of maturity, with incremental 

advances in the study. Ciliary systems are rather complex and most of the analysis in 

this domain are based on simplification of assumptions concerning the interaction of 

fluid and the cilia i.e. long wavelength and low Reynolds number assumptions. These 

assumptions are only applicable for physiological processes. Some recent 

investigations based on these assumptions can be found in [30-35].  

 Many physiological process in which the mechanism of ciliary transport play a major 

role, includes the movement of ovum in the fallopian tube [36, 37, 38], the mucus 

transport in the respiratory track [39, 40, 41] and the movement of spermatozoa in the 

ductus efferent of the male reproductive track [42,43, 44], etc. There are many diseases 

that may occur due to failure of ciliary system in human body such as lobar pneumonia, 

asthma, acute tracheobronchitis, postoperative atelectasis, influenzal pneumonia, 

bronchiectasis and bronchopneumonia, which were discussed by Hilding [45, 46]. Also, 

Afzelius [47] discussed diseases related to defective cilia such as immotile-cilia 

syndrome, situs inversus totalis, male infertility, female infertility or fertility, anosmia, 

hydrocephalus, retinitis pigmentosa. Due to its numerous importance, the study of 

motile cilia has key role in biofluid dynamics.    
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 Magnetohydrodynamics (MHD) is an important area in modern smart (intelligent) 

bionic systems. It can be applied successfully to control flux, direction and other 

characteristics of the flow of electrically conducting fluids. MHD features in numerous 

medical technologies e.g. MRI, GMR, EMG, IMF, etc. wherein it allows the precise 

and non-invasive therapy of many physiological conditions. In biological propulsion, 

magnetohydrodynamic flows have been addressed for a variety of bionic systems 

including ciliated magneto hydraulics in soft robotics [48], respiratory magnetic 

treatment [49], peristaltic magnetofluid [50, 51, 52], magnetic blood pumps [53, 54], 

magneto-robotic microswimmers [55].  

The role of MHD in mucociliary flow is highly beneficial, therefore Maan et al. [56] 

modelled the fractional Burgers’ fluid to study the mocuciliary transport process and 

compare velocity for two types of metachronal wave (symplectic and antiplectic). 

Results are obtained by using fractional Adomian decomposition method reveal that 

antiplectic wave are efficient to transport the fluid than symplectic wave. Further, Bhatti 

et al. [57] studied the impact of magnetohydrodynamics (MHD) on ciliary motion of 

Casson fluid model embedded in the porous medium. The problem is modelled and 

simplified by applying the long wave length and low Reynolds number approximation. 

Closed form solution is obtained and results show that MHD and particles volume 

fractions decrease the fluid velocity. Same results concluded for the Newtonian fluid 

model considered by Elkhair et al. [58] without applying long wave length and low 

Reynolds number approximation. They also demonstrated that axial fluid velocity is 

efficient without ciliated boundary as compared to ciliated boundary whereas an 

opposite result shown near the boundary wall. Siddique et al. [59] studied the MHD 

viscous flow for the ciliary system in the porous planar channel (i.e. they considered 

mucus as a porous medium) and investigated that in case of mucus congestion in 

respiratory track magnetic field can be applied to clear the throat passage. Ramesh et 

al. [48] studied the cilia assisted magneto hydrodynamic flow of couple stress 

physiological fluid which can be used in medical devices such as MHD micro scale 

robots and biomimetic pump. Closed form solution is obtained and complicated 

numerical solution are evaluated by MATLAB. Results show that velocity is defeated 

in the core region by increasing magnetic parameter.  

 Magnetic field is also widely used for artificial cilia in microfluidic flow and mixing. 

These cilia can also be used for cells transportation, antifouling surfaces, biochemically 
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targets, proteins and chemical agents’ sensing. Vilfan et al. [60] demonstrated the fluid 

motion by creating the self-assembled artificial cilia using the chains of super 

paramagnetic beads. Here the use of magnetic field to actuate the beating cilia in a 

simple non-reciprocal beating manner which causes nearly a uniform motion above the 

surface of cilia. Guager et al. [61] described the numerical modelling of fluid transport 

that occur due to motion of artificial cilia. These artificial cilia are made up of super 

paramagnetic elastic filament that are actuated by applied magnetic field. The magnetic 

or the electric field is used for better control over the artificial cilia. 

 Thermal analysis of biological systems is a vibrant area of modern biomechanics and 

biomedical engineering. Thermal science is divided into biological thermodynamics, 

classical thermodynamics, equilibrium and non-equilibrium thermodynamics, 

statistical thermodynamics, and heat transfer. The human body may be considered as 

an open system (heat engine). The fundamental law used in thermal conduction is 

Fourier law. Heat regulation is essential to all mammals and furthermore thermal 

analysis has found many exciting new applications in modern biomedical engineering. 

These include heat flow in blood [62], thermal tumors treatment [63], thermal treatment 

on food processing [64], heat transfer in treatment of eye [65], heat diffusion in 

dynamics of swallowing [66], air thermal control [67], cardiovascular system transport 

[68], thermal treatment of skin burns [69], thermo-bio convection [70], heat transfer in 

tissue (micro vascular) [71] and human thermal comfort [72].  Other applications of 

heat transfer in biological systems include laser radiation of tissue, thawing and freezing 

process for preserving the biological material, cryosurgery, infrared radiators, and 

microwave methods. Computational and mathematical thermal analysis is considered 

as a critical modern tool in biological flows. Mathematical simulation imparts a 

powerful and inexpensive methodology for robust analysis of mass and heat transfer. 

There to study the heat transfer, Mill et al. [73] deliberated the effect of elliptical beating 

motion of cilia on the heat transfer in the micro channel containing fluid and deduced 

that cilia enhance the transport of heat in the fluid. Akbar et al. [74-75] observed the 

influence of Hartmann layer and the analysis of heat transfer on transportation of copper 

nanofluids due to the metachronal wave of beating cilia. Recently, the heat transfer in 

bio fluid flow in curved channel due to metachronal flogging of cilia with variable 

viscosity (i.e. temperature dependent viscosity) is debated by Sadaf [76]. She observed 

that pressure gradient is larger for variable viscosity than that of constant viscosity. 
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Sadaf and Nadeem [77] found the exact solution of the same work in the existence of 

radial magnetic field also Adomian decomposition method has been applied on the 

mixed convective electromagnetic fluid flow in the vertical ciliated channel with 

variable viscosity by Farooq et al. [78]. Mathematical modeling of heat transfer and 

effect of MHD (transverse) through efferent ducts of male reproductive part with 

variable viscosity is elucidated by Imran et al. [79]. This study is useful to know the 

importance of cilia in fluid flow through male reproductive tract and movement of 

sperm and ovum in fallopian tube.  

1.8 Research Methodology 
 

 We will use some analytical techniques to solve the linear and nonlinear problems 

appearing in the next chapters. Some of the these suitable techniques are described 

below 

 Fourier series expansion method 

 Perturbation method 

 Adomian decomposition method 

 Homotopy perturbation method 

1.8.1 Fourier Series Expansion Method 

 An approximate solution can be found using Fourier series expansion method, for this 

a function 𝜑(𝑥) represented as follows  

                               𝜑(𝑥) = 𝑎0 + ∑ (𝑎𝑛𝑐𝑜𝑠𝑛𝑥 + 𝑏𝑛𝑠𝑖𝑛𝑛𝑥),∞
𝑛=1                  (1.17)                             

in which 𝑎0, 𝑎𝑛 and 𝑏𝑛 are Fourier coefficients can be determined by the definition of 

orthogonality. This method is applicable for almost all kind of wave function. The 

Fourier series has many applications in physical sciences that uses sinusoidal signals in 

medical, applied mathematics, engineering, physics and chemistry.  

1.8.2 Perturbation Method 

This well-known method is widely applied to evaluate the nonlinear problems 

analytically. To approximate the perturbation solution [80], we assume 𝒃 is a small or 
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large variable then the unknown function 𝒖 of the differential equation can be express 

as  

                                                   𝑢 = 𝑢0 + 𝑢1𝑏 + 𝑢2𝑏
2 + 𝑢3𝑏

3 + ⋯                            (1.18) 

and substitute in differential equation to alter the nonlinear equation into numbers of 

linear problems depending on the large or small parameter of the equation and then 

solution is approximated by the sum of sub linear equation’s solution. This technique 

has its vital role in development of science and engineering.  

1.8.3 Adomian Decomposition Method 

 The Adomian decomposition method (ADM) [81, 82] is an efficient solution for linear 

and nonlinear, initial and boundary value problem. ADM doesn’t need any restrictive 

assumptions such as linearization. Nonlinear differential equation can be written in the 

following form 

 

                                 𝑢(𝑥) = 𝑓(𝑥) − 𝐿−1(𝑅𝑢) − 𝐿−1(𝑁𝑢),                          (1.19) 

in which unknown function 𝑢 decompose into a sum of an infinite number of 

components and calculated in a recursive manner, 𝑓(𝑥) is inhomogeneous term, L is 

the inverse operator of linear highest order derivative, 𝑅𝑢 is the linear part of the 

equation and can be decompose in the infinite sum of component of 𝑢𝑚 where  𝑚 =

0, 1, 2, 3…, and 𝑁𝑢 represent the nonlinear part of the equation and can be decompose 

into an infinite series of Adomian polynomials 𝐴𝑚 where  𝑚 = 0, 1, 2, 3…,  which are 

based on trigonometric and algebraic identities and on Taylor series. Finally, the partial 

sum of the equation is the solution of required equation. 

1.8.4 Homotopy Perturbation Method  

 The Homotopy perturbation technique [83] is a powerful and efficient technique to 

find the approximate solution of linear and nonlinear equation. HPM combines the two 

different methods that are perturbation and Homotopy method, it reduces the limitations 

that may alter the physical manner of the model under discussion. This method is 

applicable when the exact solution of an equation is not possible. It start with the initial 

approximation which can be freely selected with possible unknown constants. The 

Homotopy structure can be written in the following form  
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                           ℍ(𝑣, 𝑞) = (1 − 𝑞)[𝐿(𝑣) − 𝐿(𝑤0)] + 𝑞[𝐴(𝑣) − 𝑓(𝑟)] = 0,          (1.10) 

in which 𝐿 is the linear part, 𝐴 can be decompose into a linear and nonlinear part, 𝑢0 is 

the initial guess which satisfy the considered equation and 𝑞 ∈ [0,1] is an embedding 

parameter. 

 Homptopy perturbation method leads to an expression for the desire solution in terms 

of a formal power series. In this way, a strict nonlinear equation reduce into solvable 

linear and nonlinear equation.  
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 Chapter 2                     

Magnetohydrodynamic Flow Induced 

by Ciliary Movement 

 In this chapter, we have assessed the impact of magnetohydrodynamic (MHD) through 

a ciliated porous sheet of infinite length and flow occurs due to metachronal beating of 

cilia. The present problem is modelled under the small Reynolds number approximation 

and exact solution of partial differential equations have been found by the Fourier series 

expansion method. The impact of physical parameters along the characteristics of 

ciliary motion are illustrated by the graphs and discussed in detail.  

 

2.1 Mathematical Modeling 

 Consider the two dimensional electrically conducting incompressible viscous fluid 

flow through a porous medium in a ciliated sheet. The fluid flow emerges due to the 

continuous flogging of cilia which appears as the metachronal wave due to small phase 

difference between the neighboring cilia. The fluid is flowing in the horizontal direction 

i.e. along the 𝑋-axes and magnetic field 𝐵0 is applied perpendicular to the flow i.e. 

along  𝑌-axes. The geometry of current problem is displayed in Fig. 2.1. The governing 

equations of conservation of mass and momentum along Maxwell’s equations for 

magnetohydrodynamics and Darcy’s law for porous medium can be written as 
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Fig. 2.1: Geometry of the problem 

 

                                                                       
𝜕𝑈

𝜕𝑋
+

𝜕𝑉

𝜕𝑌
= 0,                                                  (2.1) 

                                               𝜇 (
𝜕2𝑈

𝜕𝑋2
+

𝜕2𝑈

𝜕𝑌2
) − 𝜎𝐵0𝑈 −

𝜇𝜑

𝑘
𝑈 =

𝜕𝑃

𝜕𝑋
,                          (2.2) 

                                                        𝜇 (
𝜕2𝑉

𝜕𝑋2
+

𝜕2𝑉

𝜕𝑌2
) −

𝜇𝜑

𝑘
𝑉 =

𝜕𝑃

𝜕𝑌
,                                 (2.3) 

where 𝑈, 𝑉, 𝑋, 𝑌 and 𝑃 are velocity components, Cartesian coordinates and pressure in 

fixed frame, respectively, and  𝜇, 𝜎, 𝜑, 𝑘 and 𝐵0  are fluid viscosity, electric 

conductivity, porosity media, permeability of porous medium and magnetic field.  

The fixed and the wave frames are related by the following expressions 

                                          𝑢 = 𝑈 − 𝔠,   𝑥 = 𝑋 − 𝔠𝑡,   𝑣 = 𝑉,    𝑦 = 𝑌   𝑝 = 𝑃.              (2.4) 

Using Eq. (2.4) into Eqs. (2.1)-(2.3), following expressions can be obtained  

                                                                          
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0,                                                (2.5) 

                                            𝜇 (
𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
) − 𝜎𝐵0𝑢 −

𝜇𝜑

𝑘
(𝑢 + 𝔠) =

𝜕𝑝

𝜕𝑥
,                    (2.6) 

                                                          𝜇 (
𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
) −

𝜇𝜑

𝑘
𝑣 =

𝜕𝑝

𝜕𝑦
,                                 (2.7) 
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Eqs. (2.5)-(2.7) are the governing equations of motion for MHD incompressible viscous 

fluid flow in porous medium. We have three equations and three unknowns 𝑢, 𝑣 and 𝑝. 

Thus we can find the exact solution using Fourier series expansion method. 

Where 𝑢 and 𝑣 in term of stream function are defined as follow 

                                                                𝑢 =
𝜕𝜓

𝜕𝑦
,   𝑣 = −

𝜕𝜓

𝜕𝑥
.                                            (2.8) 

The two dimensional function 𝜓(𝑥, 𝑦) in the form of Fourier series expansion is 

expressed as follows 

                                              𝜓(𝑥, 𝑦) = ∑(𝑓𝑛𝑐𝑜𝑠𝑛𝑥 + 𝑔𝑛𝑠𝑖𝑛𝑛𝑥)𝜓𝑛(𝑦),

∞

𝑛=0

                    (2.9) 

Where 𝑓𝑛 and 𝑔𝑛 are known as the Fourier coefficients. 

The velocity boundary conditions at 𝑦 = 𝑙 i.e. the mean width of the sheet in the frame 

of reference moving in crests are 

                                         𝑢(𝑥, 𝑙) = 𝐴0 + ∑(𝐴𝑛𝑐𝑜𝑠𝑛𝑥 + 𝐵𝑛𝑠𝑖𝑛𝑛𝑥)𝜓𝑛(𝑦),

∞

𝑛=1

             (2.10) 

                                             𝑣(𝑥, 𝑙) = ∑(𝐶𝑛𝑐𝑜𝑠𝑛𝑥 + 𝐷𝑛𝑠𝑖𝑛𝑛𝑥)𝜓𝑛(𝑦),

∞

𝑛=1

                   (2.11) 

in which 𝐴𝑛, 𝐵𝑛, 𝐶𝑛 and 𝐷𝑛 are known as Fourier coefficients. 

The two dimensional fluid flow is symmetric along the centerline of the sheet i.e. the 

upper and lower half planes has same problem. So for convenience, we only take the 

upper portion of plane. 

Now convert system of PDE given in Eqs. (2.6) & (2.7) into single PDE by eliminating 

the pressure and using the stream function defined in Eq. (2.8), we get  

                                                       ∇4𝜓 +
𝜑

𝑘
∇2𝜓 −

𝜎𝐵0

𝜇

𝜕2𝜓

𝜕𝑦2
= 0,                                 (2.12) 

where  

                                                        ∇4=
𝜕4𝜓

𝜕𝑥4
+

𝜕4𝜓

𝜕𝑦4
+ 2

𝜕4𝜓

𝜕𝑥2𝜕𝑦2
,                                (2.13) 

                                                                    ∇2=
𝜕2𝜓

𝜕𝑥2
+

𝜕2𝜓

𝜕𝑦2
.                                           (2.14) 

Invoking Eq. (2.9) into Eq. (2.12), we get following form of single ODE  

               𝜓𝑛
𝑖𝑣(𝑦) − (2𝑛2 +

𝜑

𝑘
+ ℳ2)𝜓𝑛

′′(𝑦) + 𝑛2 (𝑛2 +
𝜑

𝑘
)𝜓𝑛(𝑦) = 0,          (2.15) 
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where  

                                                                      ℳ2 =
𝜎𝐵0

𝜇
.                                                    (2.16) 

2.2 Solution of the Problem 

The solution of the ordinary differential equation is 

                                           𝜓𝑛(𝑦) = 𝒶𝑒𝐿1𝑦 + 𝒷𝑒−𝐿1𝑦 + 𝔡𝑒𝐿2𝑦 + 𝒻𝑒−𝐿2𝑦,                 (2.17) 

where  

                                𝐿1 = √
1

2
(2𝑛2 +

𝜑

𝑘
+ ℳ2 + √(

𝜑

𝑘
+ ℳ2)

2

+ 4ℳ2𝑛2),        (2.18) 

                               𝐿2 = √
1

2
(2𝑛2 +

𝜑

𝑘
+ ℳ2 − √(

𝜑

𝑘
+ ℳ2)

2

+ 4ℳ2𝑛2),        (2.19) 

where 𝐿1, 𝐿2 are constants that depend upon physical parameters 𝜑, 𝑘,ℳ and 𝑛 defined 

in Eqs. (2.18) and (2.19) and 𝒶, 𝒷, 𝔡 and 𝒻 are constant to be determined. 

We have considered the infinite length model containing cilia but 𝜓𝑛(𝑦) is finite. Thus 

as 𝑦 → ∞, we have 𝒶 = 𝔡 = 0, hence  

 

                                                          𝜓𝑛(𝑦) = 𝒷𝑒−𝐿1𝑦 + 𝒻𝑒−𝐿2𝑦,                                   (2.20) 

Placing the value of  𝜓𝑛(𝑦) into Eq. (2.8) and using the boundary conditions given in 

Eqs. (2.9) and (2.10), we get solution for stream function 

𝜓(𝑥, 𝑦) = 𝛼0𝑒
−𝑙1𝑦 + 𝛽0 + ∑(𝛼𝑛𝑒𝐿1𝑦 + 𝛽𝑛𝑒𝐿2𝑦)𝑐𝑜𝑠𝑛𝑥

∞

𝑛=1

 

                                            + ∑(𝛾𝑛𝑒𝐿1𝑦 + 𝛿𝑛𝑒𝐿2𝑦)𝑠𝑖𝑛𝑛𝑥

∞

𝑛=1

,                                          (2.21) 

which is the representative solution for the stream function in which 𝛽0 is the arbitrary 

parameter and we can find the following values with the assistance of boundary 

conditions in Eq. (2.9) and (2.10). 

𝑙1 = √
𝜑

𝑘
+ 𝑀2,   𝛼0 =

𝐴0

𝑙1𝑒−𝑙1𝑙
, 
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𝛼𝑛 =
𝐿2𝐷𝑛 + 𝑛𝐴𝑛

𝑛(𝐿2 − 𝐿1)𝑒−𝐿1𝑙
,   𝛽𝑛 =

𝐿1𝐷𝑛 + 𝑛𝐴𝑛

𝑛(𝐿2 − 𝐿1)𝑒−𝐿2𝑙
, 

                                   𝛾𝑛 =
𝐿2𝐵𝑛 − 𝑛𝐶𝑛

𝑛(𝐿2 − 𝐿1)𝑒−𝐿1𝑙
,   𝛿𝑛 =

𝐿1𝐵𝑛 − 𝑛𝐶𝑛

𝑛(𝐿2 − 𝐿1)𝑒−𝐿2𝑙
.                     (2.22) 

Following form of the velocity gives the solution of Eq. (2.15) 

           𝑢(𝑥, 𝑦) = 𝐴0𝑒
−𝑙1(𝑦−𝑙) − ∑(𝐿1𝐿11𝑒

−𝐿1(𝑦−𝑙) − 𝐿2𝐿21𝑒
−𝐿2(𝑦−𝑙))𝑐𝑜𝑠𝑛𝑥

∞

𝑛=1

   

− ∑(𝐿1𝐿12𝑒
𝐿1(𝑦−𝑙) − 𝐿2𝐿22𝑒

𝐿2(𝑦−𝑙))𝑠𝑖𝑛𝑛𝑥

∞

𝑛=1

,                                  (2.23) 

              𝑣(𝑥, 𝑦) = ∑(𝑛𝐿11𝑒
−𝐿1(𝑦−𝑙) − 𝑛𝐿21𝑒

−𝐿2(𝑦−𝑙))𝑠𝑖𝑛𝑛𝑥

∞

𝑛=1

         

− ∑(𝑛𝐿12𝑒
𝐿1(𝑦−𝑙) − 𝑛𝐿22𝑒

𝐿2(𝑦−𝑙))𝑐𝑜𝑠𝑛𝑥

∞

𝑛=1

.                                     (2.24) 

Where  

𝐿11 =
𝐿2𝐷𝑛 + 𝑛𝐴𝑛

𝑛(𝐿2 − 𝐿1)
,   𝐿21 =

𝐿1𝐷𝑛 + 𝑛𝐴𝑛

𝑛(𝐿2 − 𝐿1)
, 

                                         𝐿12 =
𝐿2𝐵𝑛 − 𝑛𝐶𝑛

𝑛(𝐿2 − 𝐿1)
,   𝐿22 =

𝐿1𝐵𝑛 − 𝑛𝐶𝑛

𝑛(𝐿2 − 𝐿1)
.                            (2.25) 

With the aid of Eqs. (2.6) and Eq. (2.7), we get following pressure distribution 

𝑝 = 𝜇 ∑ (
𝑛

𝐿1
(𝑛2 − 𝐿1

2 +
𝜑

𝑘
) 𝐿11𝑒

−𝐿1(𝑦−𝑙)

∞

𝑛=1

−
𝑛

𝐿2
(𝑛2 − 𝐿2

2 +
𝜑

𝑘
) 𝐿21𝑒

−𝐿2(𝑦−𝑙)) 𝑠𝑖𝑛𝑛𝑥

− 𝜇 ∑ (
𝑛

𝐿1
(𝑛2 − 𝐿1

2 +
𝜑

𝑘
) 𝐿12𝑒

𝐿1(𝑦−𝑙)

∞

𝑛=1

−
𝑛

𝐿2
(𝑛2 − 𝐿2

2 +
𝜑

𝑘
) 𝐿22𝑒

𝐿2(𝑦−𝑙)) 𝑐𝑜𝑠𝑛𝑥 + 𝐶,                                (2.26) 

where 𝐶 is the constant of integration. 

Now we will calculate rate of working per unit area of the sheet which can be expressed 

by the following integral 

                                                                  𝑃 = ∫ 𝑢𝑖𝜎𝑖𝑗𝑛𝑗𝑑𝑠,
𝑆

𝑠0

                                            (2.27) 

where 

                                                                  𝜎𝑖𝑗 = 𝑝𝛿𝑖𝑗 − 2𝜇𝑒𝑖𝑗 ,                                           (2.28) 
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or 

                                                      𝑃 = 2𝜋 ∫(𝑢𝜎𝑥𝑦 + 𝑣𝜎𝑦𝑦)
(𝑥,𝑙)

𝑑𝑥,

𝜋

−𝜋

                             (2.29) 

where 

                                               𝜎𝑥𝑦 = −𝜇 (
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
),   𝜎𝑦𝑦 = 𝑝 − 2𝜇

𝜕𝑣

𝜕𝑦
.                    (2.30) 

Using Eqs. (2.10), (2.11) and (2.30) into Eq. (2.29), working rate takes the following 

form  

                        𝑃 =
𝜇

2
(2𝐴0

2𝑙1 + ∑(𝐿1 + 𝐿2) (𝐴𝑛
2 + 𝐵𝑛

2 + (𝑛2 +
𝜑

𝑘
)
𝐶𝑛

2 + 𝐷𝑛
2

𝐿1𝐿2
)

∞

𝑛=1

+ ∑(𝐵𝑛𝐶𝑛 − 𝐴𝑛𝐷𝑛) (2𝑛 −
𝐿1𝐿2

𝑛
− (𝑛2 +

𝜑

𝑘
)

𝑛

𝐿1𝐿2
)

∞

𝑛=1

).               (2.31) 

2.3 Surface of Organism 

The oscillation of cilium is periodic so we can represent the surface envelope of the 

organism, for symplectic metachronal wave with frequency 
𝜎

2𝜋
 and wavelength 

2𝜋

𝓀
, in a 

fixed frame by Fourier series as follow 

                                𝑋0 = 𝑋 + 𝜀 ∑(𝑎𝑛𝑠𝑖𝑛𝑛(𝓀𝑋 − 𝜎𝑡) − 𝑏𝑛𝑐𝑜𝑠𝑛(𝓀𝑋 − 𝜎𝑡)),

𝑁

𝑛=1

     (2.32) 

                                𝑌0 = 𝑙 + 𝜀 ∑(𝑐𝑛𝑠𝑖𝑛𝑛(𝓀𝑋 − 𝜎𝑡) − 𝑑𝑛𝑐𝑜𝑠𝑛(𝓀𝑋 − 𝜎𝑡)),

𝑁

𝑛=1

        (2.33) 

Also surface in wave frame can be expressed as follow 

                                                  𝑥0 = 𝑥 + 𝜀 ∑(𝑎𝑛𝑠𝑖𝑛𝑛𝑥 − 𝑏𝑛𝑐𝑜𝑠𝑛𝑥),

𝑁

𝑛=1

                       (2.34) 

                                                  𝑦0 = 𝑙 + 𝜀 ∑(𝑐𝑛𝑠𝑖𝑛𝑛𝑥 − 𝑑𝑛𝑐𝑜𝑠𝑛𝑥),

𝑁

𝑛=1

                       (2.35) 

As we consider the no slip condition for the extensible sheet, so by taking the 

derivatives of Eq. (2.34) and Eq. (2.35) w.r.t 𝑡 i.e. 
𝜕𝑥0

𝜕𝑡
 and 

𝜕𝑦0

𝜕𝑡
, we get the following 

form of longitudinal velocity 𝑢(𝑥0, 𝑦0) and transverse velocity 𝑣(𝑥0, 𝑦0), respectively 
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                                        𝑢(𝑥0, 𝑦0) = 𝜎 + 𝜎𝜀 ∑ 𝑛(𝑎𝑛𝑐𝑜𝑠𝑛𝑥 + 𝑏𝑛𝑠𝑖𝑛𝑛𝑥),

𝑁

𝑛=1

              (2.36) 

                                             𝑣(𝑥0, 𝑦0) = 𝜎𝜀 ∑ 𝑛(𝑐𝑛𝑐𝑜𝑠𝑛𝑥 + 𝑑𝑛𝑠𝑖𝑛𝑛𝑥),

𝑁

𝑛=1

                  (2.37) 

To acquire velocity coefficients in Eqs. (2.9) & (2.10), the following Taylor's series 

expansion is applied for the velocity component about (𝑥, 𝑙),  

 𝑉̂(𝑥, 𝑙) = 𝑉̂(𝑥0, 𝑦0) − ∑ (
𝑘

𝑚
)
(𝑥0 − 𝑥)𝑛(𝑦0 − 𝑙)𝑛

𝑘!

𝑝1

𝑘=1
𝑘=𝑚+𝑛

𝜕𝑘𝑉̂

𝜕𝑥𝑚𝜕𝑦𝑛
+ 𝑂(𝜖𝑝1+2).   (2.38) 

To get the order of accuracy, we applied the iterative technique for velocity component 

of Taylor series expansion. To proceed this technique, we take the 1st order 

approximation i.e. 𝑂(𝜖) of Taylor’s series and equate  𝑉̂(𝑥, 𝑙) = (𝑢(𝑥, 𝑙), 𝑣(𝑥, 𝑙), 0) 

and  𝑉̂(𝑥0, 𝑦0) = (𝑢(𝑥0, 𝑦0), 𝑣(𝑥0, 𝑦0), 0) which gives the following approximation for 

𝐴0, 𝐴𝑛, 𝐵𝑛, 𝐶𝑛 and 𝐷𝑛. 

                𝐴0 = 𝜎,   𝐴𝑛 = 𝜀𝜎𝑛𝑎𝑛,   𝐵𝑛 = 𝜀𝜎𝑛𝑏𝑛,   𝐶𝑛 = 𝜀𝜎𝑛𝑐𝑛,   𝐷𝑛 = 𝜀𝜎𝑛𝑑𝑛,      (2.39) 

for all 𝑛 = 1, 2, … ,𝑁. 

To obtain the next approximation we have to go to the second order approximation i.e. 

𝑂(𝜖2) of two dimensional Taylor’s series. For this we need to simplify the velocity 

component in x-direction only, thus the 2nd approximation gives 

 𝔘 = 𝜎 +
𝜎𝜀2

2
∑ (𝑛2𝑎𝑛

2 + 𝑛2𝑏𝑛
2 + 𝑛(𝐿1 + 𝐿2)(𝑏𝑛𝑐𝑛 − 𝑎𝑛𝑑𝑛)

∞

𝑛=1

− 𝐿1𝐿2(𝑐𝑛
2 + 𝑑𝑛

2)),                                                                             (2.40) 

which is the velocity of propulsion of second approximation. 

 

2.4 Application to Ciliary Propulsion 

 Each individual cilium usually has a consistent rhythm that often appear by the 

propagation of tip of cilia. Generally the cilium is straighten out during the power stroke 

in the beat known as recovery stroke (beat back) the cilium sneaks back to its initial 

point in the bend position so that the significant portion of the each cilium is moving 

tangential to the fluid rather than perpendicular to it as in the  effective stroke. Generally 

the recovery stroke is longer than the effective stroke. The cilia exhibit metachronal 
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wave (in which cilium beats slightly out of the phase). The direction of the wave 

propagation may have almost any orientation relative to the direction of power stroke. 

For this model, we need symplectic wave in which the metachronal wave propagation 

and the power stroke are in the same direction.  

The mathematical representation of considered envelope model for symplectic 

metachronal wave can be represented as.  

                                                  𝑥0 = 𝑥 + 𝛽𝑐𝑜𝑠(𝑥 + 𝑐𝑡) + 𝛾𝑠𝑖𝑛(𝑥 + 𝑐𝑡),                    (2.41) 

                                                              𝑦0 = 𝑙 + 𝑏𝑠𝑖𝑛(𝑥 + 𝑐𝑡),                                        (2.42) 

where 𝛽 and 𝑏 are major and minor axes of elliptical path and 𝛾 is due to the inclination 

of cilia tip to body axes. 

Differentiating Eqs. (2.41) & (2.42) w.r.t 𝑡, and comparing with Eqs. (2.36) & (2.37), 

we get 

                                                   𝑎𝑛 =
𝛾

𝑛𝜀
,   𝑏𝑛 =

𝛽

𝑛𝜀
,   𝑐𝑛 =

𝑏

𝑛𝜀
,   𝑑𝑛 = 0,                   (2.43) 

for all 𝑛 = 1, 2, … ,𝑁. 

Substituting Eqs. (2.41) & (2.42) into Eq. (2.39) and Eq. (2.29), we get the following 

2nd order velocities and the 1st order rate of working   

                               𝔘 = 𝜎 +
𝜎

2
∑ (𝛾2 + 𝛽2 − (𝐿1 + 𝐿2)

𝑏𝛽

𝑛
− 𝐿1𝐿2

𝑏2

𝑛2
)

∞

𝑛=1

,              (2.44) 

                        𝑃 =
𝜇𝜎2

2
(2𝑙1 + ∑(𝐿1 + 𝐿2) (𝛾2 + 𝛽2 + (𝑛2 +

𝜑

𝑘
)

𝑏2

𝐿1𝐿2
)

∞

𝑛=1

− ∑ 𝑏𝛽 (2𝑛 −
𝐿1𝐿2

𝑛
− (𝑛2 +

𝜑

𝑘
)

𝑛

𝐿1𝐿2
)

∞

𝑛=1

).                                      (2.45) 

If we consider instantaneous model with 𝑏 ≠ 0, 𝛽 and 𝛾 zero, one can obtain the 

following velocity of propulsion in non dimensional form 

                                                          𝔘 = 𝜎 −
𝜎

2
∑ 𝐿1𝐿2

𝑏2

𝑛2

∞

𝑛=1

,                                           (2.46) 

whereas for 𝛽 ≠ 0,  𝑏 and 𝛾 are zero, one can obtain the following velocity of 

propulsion in non- dimensional form 

                                                                  𝔘 = 𝜎 +
𝜎

2
∑ 𝛽2

∞

𝑛=1

.                                            (2.47) 
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2.5 Results and Discussion 

 In this section we have described the graphical results of velocity components in Fig. 

2.2 and Fig. 2.3, working rate per unit area in Fig. 2.4 and the stream function in Fig. 

2.5 and Fig. 2.6 under the influence of Hartmann number which is the ratio of 

electromagnetic force to the viscous force and porosity parameter that represents the 

ratio of volume of pores to the volume of bulk fluid in the medium. Fig. 2.2 and Fig. 

2.3 show that the effect of both parameters diminished as fluid moves away from 

boundary layer thickness. But this contraction become faster in horizontal velocity than 

vertical velocity. The consequence of Hartmann number on the velocity components, 

𝑢 and 𝑣, can be seen through Fig. 2.2a and Fig. 2.2b. To see this influence we 

considered the electromagnetic force equal, double, triple and four times to the viscous 

forces. The horizontal velocity attains its maximum value near the boundary layer 

thickness i.e. at 𝑦 = 1.2 while vertical velocity is maximum around 𝑦 = 1.6 for all 

values of Hartmann number. The magnetic force create resistance for the fluid flow, if 

it is applied normal to flow. Thus it can be notice from Fig. 2.2a that velocity reduces 

as the value of Hartmann number increases while Fig. 2.2b shows a dual behavior i.e. 

velocity decreases near the boundary layer and transition occur at 𝑦 = 2.2 and velocity 

rises with increase in Hartmann number. Fig. 2.3 depicts that the influence of porosity 

parameter on 𝑢 and 𝑣 is same i.e. velocity increases for the ratio (which define the 

porosity parameter) 1%, 5%, 10% and 50%. The maximum change is attained in both 

velocities for all the values of porosity parameter near the boundary layer thickness, the 

horizontal velocity reaches to its peak, at 𝑦 = 1.2, while vertical movement attains its 

peak around 𝑦 = 1.6. The influence of Hartmann number and porosity parameter on 

pressure distribution can be seen by Fig. 2.4a and Fig. 2.4b, respectively. As the 

resistance occur in the ciliary flow due to the implication of magnetic field, cilia have 

to work more efficiently in the Hartmann boundary layer region to speed up the flow. 

Thus, it can be noted from Fig. 2.4a, that more power is required as the Hartmann 

number increases. But if the ratio that define the porosity parameter changes from 1% 

to 50% we have to decrease power for high speed of ciliary flow. The impact of 

Hartmann number and porosity parameter on the trapped bolus can be seen by Fig. 2.5 

and Fig. 2.6, respectively. Trapping is known as the circular bolus formed by the closed 

stream lines and move ahead along the metachronal wave of the ciliary flow. Basically, 

it helps to understand the behavior of flow pattern. Thus form Fig. 2.5a-c, we can see 
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the behavior of ciliary flow in the existence of magnetic field. As the Hartmann number 

results the reduction in velocity which indicates reduction in the number and size of 

trapped bolus. Fig. 2.6a-c indicate the trapping phenomena in the existence of porous 

medium. As the porous medium causes the thinning of boundary layer, so the  velocity 

accelerate and trapped bolus rises by increasing the ratio of volume fraction from 1%-

3%.  

 

 

Fig. 2.2a: Influence of Hartmann number on longitudinal velocity 𝑢(𝑥, 𝑦) for 𝛽 = 0.5, 𝛾 = 0,

𝜎 = 1, 𝜇 = 1, 𝑏 = 0.5, 𝑙 = 1, 𝜑 = 0.1, 𝑘 = 10. 

 

 

Fig. 2.2b: Influence of Hartmann number on transverse velocity 𝑣(𝑥, 𝑦) for 𝛽 = 0.5, 𝛾 = 0,

𝜎 = 1, 𝜇 = 1, 𝑏 = 0.5, 𝑙 = 1, 𝜑 = 0.1, 𝑘 = 10. 
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Fig. 2.3a: Influence of porosity parameter on longitudinal velocity 𝑢(𝑥, 𝑦) for 𝛽 = 0.5, 𝛾 =

0, 𝜎 = 1, 𝜇 = 1, 𝑏 = 0.5, 𝑙 = 1, 𝜑 = 0.1, ℳ = 1. 

 

 

 

 

Fig. 2.3b: Influence of porosity parameter on transverse velocity 𝑣(𝑥, 𝑦) for 𝛽 = 0.5, 𝛾 = 0,

𝜎 = 1, 𝜇 = 1, 𝑏 = 0.5, 𝑙 = 1, 𝜑 = 0.1, ℳ = 1. 
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Fig. 2.4a: Influence of Hartmann number on longitudinal velocity 𝑢(𝑥, 𝑦) for 𝛽 = 0.5, 𝛾 =

0, 𝜎 = 1, 𝜇 = 1, 𝑏 = 0.5, 𝑙 = 1, 𝜑 = 0.1, 𝑘 = 10. 

 

 

 

 

Fig. 2.4b: Influence of Hartmann number on transverse velocity 𝑣(𝑥, 𝑦) for 𝛽 = 0.5, 𝛾 = 0,

𝜎 = 1, 𝜇 = 1, 𝑏 = 0.5, 𝑙 = 1, 𝜑 = 0.1, ℳ = 1. 
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           (a)  ℳ = 1          (b) ℳ = 6 

    

                   

 

   

         (c) ℳ = 9  

Fig. 2.5: Influence of Hartmann number ℳ on stream function for 𝛽 = 0.25, 𝛾 = 0.25, 𝛼 =

1, 𝜇 = 1, 𝑏 = 0.5, 𝑙 = 1, 𝜑 = 0.1, 𝑘 = 10. 
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      (a) 𝑘 = 0.01                  (b) 𝑘 = 0.02  

 

 

 

 

            (c) 𝑘 = 0.03 

Fig. 2.6: Influence of porosity parameter 𝓀 on stream function for 𝛽 = 0.25, 𝛾 = 0.25, 𝛼 =

1, 𝜇 = 1, 𝑏 = 0.5, 𝑙 = 1, 𝜑 = 0.1, ℳ = 1. 
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2.6 Conclusion 

 The existing study have shown the effects of MHD and porous medium for the infinite 

length of cilia model. If ℳ → 0 and 
1

𝑘
→ 0, i.e. the non-existence of magnetic field and 

porous medium, the present study can be deduced to the study of Blake [14]. Key points 

of the present chapter are as follows. 

 The implication of magnetic field indicate that the horizontal component of the 

velocity decelerates for the increasing value of magnetic field and dual behavior 

is observed for the vertical component of the velocity field. 

 The presence of porous medium shows that velocity profile rises by rising the 

volume fraction parameter from 1% to 50%. 

 The impact of Hartmann number and volume fraction parameter show that fluid 

is required large amount of power for the flow in the existence of magnetic field 

and less amount of power is required in the existence of porous medium. 

 Present study is very helpful to treat the diseases in respiratory track as in case 

of congestion, fluid in respiratory track become thick and to make the bio fluid 

thin magnetic pills are required that will increase the transverse velocity and 

throat passage can be cleared and patient can breathe easily.  
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Chapter 3 

Series Solution of Cilia Induced MHD 

Flow in a Porous Medium under the 

Hall Current and Ionslip Effect 

 This chapter is the expansion of previous chapter. We have studied the impact of Hall 

current and ionslip on the flow created by the metachoronal wave of cilia in the infinite 

length model of porous ciliated sheet. Following the procedure of chapter 2, results can 

be observed by the graphs and discussed in section 3.3. 

 

3.1 Mathematical Formulation 

We have assumed the magnetohydrodynamic (MHD) viscous fluid flow passed on a 

two-dimensional sheet implanted in a porous medium. The flow is produced by ciliary 

movement which generates the metachronal wave. The fluid is flowing in the X and Y-

direction and the metachronal wave is produced in the X-direction. The constant 

magnetic field is applied normally to the flow i.e. in Z-direction. 

 

 

 

Fig. 3.1: Geometry of problem 
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To observe the effect of Hall current and ionslip we will use the following generalized 

Ohm's law. 

                          𝑱 = 𝜎(𝑬 + 𝑽 × 𝑩) −
𝑤𝑒𝜏𝑒

𝐵0
(𝑱 × 𝑩) +

𝑤𝑒𝜏𝑒𝛽𝑖

𝐵0
2 ((𝑱 × 𝑩) × 𝑩),              (3.1)                                            

Where 𝑱 = (𝐽𝑥, 𝐽𝑦 , 0) is the current density, 𝑬 = (𝐸𝑥, 𝐸𝑦, 0) is the electric field which 

is constant everywhere in the flow field, 𝑩 = (0, 0, 𝐵0) is the applied magnetic field. 

Choose (𝑥, 𝑦) and (𝑋, 𝑌)  coordinates into wave frame and in fixed frame, which are 

related as follow 

                                    𝑢 = 𝑈 − 𝔠,    𝑥 = 𝑋 − 𝔠𝑡,    𝑣 = 𝑉,    𝑦 = 𝑌,   𝑝 = 𝑃                  (3.2) 

Solving Eq. (3.1), we obtain the following components of current density vector.  

                                        𝐽𝑥 =
𝜎 (𝛼𝑒(𝐸𝑥 − 𝐵0𝑣) + 𝛽𝑒 (𝐸𝑦 + 𝐵0(𝑢 + 𝔠)))

𝛼𝑒
2 + 𝛽𝑒

2 ,                  (3.3) 

                                         𝐽𝑦 =
𝜎 (𝛼𝑒 (𝐸𝑦 − 𝐵0(𝑢 + 𝔠)) + 𝛽𝑒(𝐸𝑥 + 𝐵0𝑣))

𝛼𝑒
2 + 𝛽𝑒

2 ,                 (3.4) 

where 𝛽𝑖 = 𝜔𝑒𝜏𝑒  and  𝛼𝑒 = 1 + 𝛽𝑖𝛽𝑒. 

The law of conservation of momentum and mass in the presence of porous medium, 

Hall and ionslip effects imply the following equations in wave frame 

 

                                                                
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0,                                                          (3.5) 

                 
𝜕𝑝

𝜕𝑥
= 𝜇 (

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
) +

𝜎𝐵0 (𝛼𝑒 (𝐸𝑦 − 𝐵0(𝑢 + 𝔠)) + 𝛽𝑒(𝐸𝑥 + 𝐵0𝑣))

𝛼𝑒
2 + 𝛽𝑒

2

−
𝜇𝜑

𝑘
(𝑢 + 𝑐),                                                                                              (3.6) 

                 
𝜕𝑝

𝜕𝑦
= 𝜇 (

𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
) −

𝜎𝐵0 (𝛼𝑒(𝐸𝑥 − 𝐵0𝑣) + 𝛽𝑒 (𝐸𝑦 + 𝐵0(𝑢 + 𝔠)))

𝛼𝑒
2 + 𝛽𝑒

2

−
𝜇𝜑

𝑘
𝑣.                                                                                                         (3.7) 
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Fourier series expansion of the stream function 𝜓(𝑥, 𝑦) is given as follows 

                                         𝜓(𝑥, 𝑦) = ∑(𝑓𝑛𝑐𝑜𝑠𝑛𝑥 + 𝑔𝑛𝑠𝑖𝑛𝑛𝑥)𝜓𝑛(𝑦),

∞

𝑛=0

                         (3.8) 

also the velocity components and the stream function are related by the following 

expression 

                                                  𝑢(𝑥, 𝑦) =
𝜕𝜓

𝜕𝑦
,   𝑣(𝑥, 𝑦) = −

𝜕𝜓

𝜕𝑥
.                                    (3.9) 

The velocity boundary conditions at 𝑦 = 𝑙 are  

                                       𝑢(𝑥, 𝑙) = 𝐴0 + ∑(𝐴𝑛𝑐𝑜𝑠𝑛𝑥 + 𝐵𝑛𝑠𝑖𝑛𝑛𝑥)𝜓𝑛(𝑦),

∞

𝑛=1

               (3.10) 

                                           𝑣(𝑥, 𝑙) = ∑(𝐶𝑛𝑐𝑜𝑠𝑛𝑥 + 𝐷𝑛𝑠𝑖𝑛𝑛𝑥)𝜓𝑛(𝑦),

∞

𝑛=1

                     (3.11) 

Eliminating pressure gradient and using Eq. (3.9), Eq. (3.6) and Eq. (3.7) take the 

following form 

                                      ∇4𝜓 + (
𝜎𝐵0

2𝛼𝑒

𝜇(𝛼𝑒
2 + 𝛽𝑒

2)
+

𝜑

𝑘
)∇2𝜓 −

𝜎𝐵0

𝜇

𝜕2𝜓

𝜕𝑦2
= 0.              (3.12) 

Using Eq. (3.8) into Eq. (3.12), we get following form  

    𝜓𝑛
𝑖𝑣(𝑦) − (2𝑛2 +

𝜎𝐵0
2𝛼𝑒

𝜇(𝛼𝑒
2 + 𝛽𝑒

2)
+

𝜑

𝑘
)𝜓𝑛

′′(𝑦) 

                                        +𝑛2 (𝑛2 +
𝜎𝐵0

2𝛼𝑒

𝜇(𝛼𝑒
2 + 𝛽𝑒

2)
+

𝜑

𝑘
)𝜓𝑛(𝑦) = 0,                        (3.13) 

3.2 Solution of Problem 

 Solution of the ordinary differential equation (3.13) is 

                                    𝜓𝑛(𝑦) = 𝒶𝑒√𝑛2+𝐴𝑦 + 𝒷𝑒−√𝑛2+𝐴𝑦 + 𝔡𝑒𝑛𝑦 + 𝒻𝑒−𝑛𝑦,             (3.14) 

As 𝑦 → ∞,   𝒶 = 𝔡 = 0, so we have   

                                                       𝜓𝑛(𝑦) = 𝒷𝑒−√𝑛2+𝐴𝑦 + 𝒻𝑒−𝑛𝑦,                                (3.15) 
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where  

                                            𝐴 =
ℳ2𝛼𝑒

(𝛼𝑒
2 + 𝛽𝑒

2)
+

𝜑

𝑘
   and   ℳ2 =

𝜎𝐵0

𝜇
,                        (3.16) 

and the solution in the form of stream function is given by 

               𝜓(𝑥, 𝑦) = 𝛼0𝑒
−√𝐴𝑦 + 𝛽0 + ∑ (𝛼𝑛𝑒√𝑛2+𝐴𝑦 + 𝛽𝑛𝑒𝑛𝑦) 𝑐𝑜𝑠𝑛𝑥

∞

𝑛=1

  

                                                 + ∑ (𝛾𝑛𝑒√𝑛2+𝐴𝑦 + 𝛿𝑛𝑒𝑛𝑦) 𝑠𝑖𝑛𝑛𝑥

∞

𝑛=1

,                             (3.17) 

where 𝛽0 is arbitrary constant and   

 𝛼0 =
𝐴0

√𝐴𝑒−√𝐴𝑙
,   𝛼𝑛 =

𝐴𝑛 + 𝐷𝑛

𝑛(√𝑛2 + 𝐴 − 𝑛)𝑒−√𝑛2+𝐴1𝑙
,    

𝛽𝑛 =
√𝑛2 + 𝐴𝐷𝑛 + 𝑛𝐴𝑛

𝑛(√𝑛2 + 𝐴 − 𝑛)𝑒−𝑛𝑙
,   𝛾𝑛 =

𝐶𝑛 − 𝐵𝑛

𝑛(√𝑛2 + 𝐴 − 𝑛)𝑒−√𝑛2+𝐴𝑙
,    

                                                   𝛿𝑛 =
𝑛𝐵𝑛 − √𝑛2 + 𝐴𝐶𝑛

𝑛(√𝑛2 + 𝐴 − 𝑛)𝑒−𝑛𝑙
.                                          (3.18) 

With the help of Eqs. (3.10), (3.11) and Eq. (3.17) following velocity component 𝑢 and 

𝑣 are obtained 

             𝑢(𝑥, 𝑦) = 𝐴0𝑒
−√𝐴(𝑦−𝑙)

− ∑ (√𝑛2 + 𝐴𝐿11𝑒
−√𝑛2+𝐴(𝑦−𝑙) − 𝑛𝐿21𝑒

−𝑛(𝑦−𝑙)) 𝑐𝑜𝑠𝑛𝑥

∞

𝑛=1

− ∑ (√𝑛2 + 𝐴𝐿12𝑒
√𝑛2+𝐴(𝑦−𝑙) − 𝑛𝐿22𝑒

𝑛(𝑦−𝑙)) 𝑠𝑖𝑛𝑛𝑥

∞

𝑛=1

,                (3.19) 

              𝑣(𝑥, 𝑦) = ∑ (𝑛𝐿11𝑒
−√𝑛2+𝐴(𝑦−𝑙) − 𝑛𝐿21𝑒

−𝑛(𝑦−𝑙)) 𝑠𝑖𝑛𝑛𝑥

∞

𝑛=1

− ∑ (𝑛𝐿12𝑒
−√𝑛2+𝐴(𝑦−𝑙) − 𝑛𝐿22𝑒

−𝑛(𝑦−𝑙)) 𝑐𝑜𝑠𝑛𝑥

∞

𝑛=1

,                        (3.20) 

where 

𝐿11 = −
𝐴𝑛 + 𝐷𝑛

𝑛(√𝑛2 + 𝐴 − 𝑛)
,   𝐿21 =

𝑛𝐴𝑛 + √𝑛2 + 𝐴𝐷𝑛

𝑛(√𝑛2 + 𝐴 − 𝑛)
, 
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                                  𝐿12 =
𝐶𝑛 − 𝐵𝑛

(√𝑛2 + 𝐴 − 𝑛)
,   𝐿22 =

𝑛𝐵𝑛 − √𝑛2 + 𝐴𝐶𝑛

(√𝑛2 + 𝐴 − 𝑛)
.                  (3.21) 

The following expression is found for pressure from Eqs. (3.6) and Eq. (3.7)  

𝑝 = 𝜇√𝐴𝐴0𝛽𝑒𝑒
−√𝐴(𝑦−𝑙)

+ 𝜇 ∑ ((𝑛 (𝑛2 − √𝑛2 + 𝐴
2

− 𝐴𝛼𝑒)
𝐿11

√𝑛2 + 𝐴

∞

𝑛=1

+ 𝐴𝛽𝑒𝐿12) 𝑒−√𝑛2+𝐴(𝑦−𝑙) −
𝐴

𝑛
(𝛼𝑒𝐿21 + 𝛽𝑒𝐿22)𝑒

−𝑛(𝑦−𝑙)) 𝑠𝑖𝑛𝑛𝑥

+ 𝜇 ∑ ((𝑛 (𝑛2 − √𝑛2 + 𝐴
2

− 𝐴𝛼𝑒)
𝐿12

√𝑛2 + 𝐴

∞

𝑛=1

− 𝐴𝛽𝑒𝐿12) 𝑒−√𝑛2+𝐴(𝑦−𝑙) +
𝐴

𝑛
(𝛼𝑒𝐿22 + 𝛽𝑒𝐿21)𝑒

−𝑛(𝑦−𝑙)) 𝑐𝑜𝑠𝑛𝑥

+ 𝐶.                                                                                                             (3.22) 

where 𝐶 is the constant of integration. 

Now following Eqs. (2.27)-(2.30) of chapter 2, we can calculate work rate as follows 

𝑃 =
𝜇

2
(2𝐴0

2√𝐴

+ ∑ (√𝑛2 + 𝐴 + 𝑛)(𝐴𝑛
2 + 𝐵𝑛

2 + 𝑛𝐵𝑛𝐶𝑛

∞

𝑛=1

−
𝑛2 − 𝐴𝛼𝑒

𝑛√𝑛2 + 𝐴
(𝐶𝑛

2 − 𝐷𝑛
2))

+ ∑
𝑛√𝑛2 + 𝐴

√𝑛2 + 𝐴 − 𝑛
(𝐵𝑛𝐶𝑛 − 𝐴𝑛𝐷𝑛 − 𝐶𝑛

2 − 𝐷𝑛
2 − 2𝐴𝛽𝑒(𝐴𝑛𝐶𝑛

∞

𝑛=1

+ 𝐵𝑛𝐷𝑛))

− ∑ (√𝑛2 + 𝐴 − 𝑛 +
𝑛2 − 𝐴𝛼𝑒

√𝑛2 + 𝐴 − 𝑛
) (𝐵𝑛𝐶𝑛 − 𝐴𝑛𝐷𝑛)

∞

𝑛=1

).            (3.23) 

Following the sections 2.3, we get the expression for velocity of propulsion 𝔘 and 

working rate 𝑃 as follow 

            𝔘 = 𝜎 +
𝜎

2
∑ (𝛾2 + 𝛽2 −

√𝑛2 + 𝐴

𝑛
𝑏2 −

√𝑛2 + 𝐴 + 𝑛

𝑛
𝛽𝑏)

∞

𝑛=1

,                    (3.24) 
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                        𝑃 =
𝜇𝜎2

2
(2√𝐴 + ∑ (√𝑛2 + 𝐴 + 𝑛)(𝛾2 + 𝛽2 −

𝑛2 − 𝐴𝛼𝑒

𝑛√𝑛2 + 𝐴
𝑏2)

∞

𝑛=1

− ∑ 𝑏𝛽 (√𝑛2 + 𝐴 − 𝑛 −
𝑛√𝑛2 + 𝐴

√𝑛2 + 𝐴 − 𝑛
+

𝑛2 − 𝐴𝛼𝑒

√𝑛2 + 𝐴
)

∞

𝑛=1

− ∑
𝑛𝑏

√𝑛2 + 𝐴 − 𝑛
(√𝑛2 + 𝐴𝑏 + 2𝐴𝛽𝑒𝛾 − 𝑛)

∞

𝑛=1

).                           (3.25) 

3.3 Results and Discussion 

 In this section impact of various parameters of interest are explored graphically. Effect 

of Hall parameter 𝛽𝑒 , ionslip parameter 𝛽𝑖, Hartmann number ℳ, porosity parameter 𝑘 

are plotted for stream function and velocity profile. Figs. 3.2-3.5 have been presented 

for velocity components 𝑢  and 𝑣 against 𝑦 for the different values of involved 

parameters. It is noted from Fig. 3.2-3.3 that horizontal and vertical velocity 

components mounted with the escalating values of Hall parameter 𝛽𝑒 and ionslip 

parameter 𝛽𝑖, respectively. But the vertical velocity component increases slowly. The 

increase in Hall and ionslip parameters results a decrease in fluid resistance in the 

direction of wave therefore velocity profile along the metachronal wave increases by 

increasing Hall and ionslip parameter. Fig. 3.4 shows that magnetic field resist the fluid 

flow in 𝑥 and 𝑦 direction as Lorentz force due to magnetic field opposes the fluid flow. 

Fig. 3.5 show that both horizontal and the vertical velocity increases in the presence of 

porous medium as the porous medium in ciliary movement accelerate the velocity 

profile. 

Stream lines owing to ciliary motion are shown in Figs. 3.6-3.7. It is noted that bolus 

formed by the fluid flow rises by increasing the values of porosity parameter i.e. 

porosity parameter play an essential role to expedite the fluid flow. Reverse behavior 

is noted due to increase in magnetic parameter i.e. it decelerated the fluid flow therefore 

bolus size reduces. 
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Fig. 3.2a: Influence of Hall parameter on longitudinal velocity 𝑢(𝑥, 𝑦) for 𝛽 = 0.5, 𝛾 = 0,

𝜎 = 1, 𝜇 = 1, 𝑏 = 0.5, 𝑙 = 1, 𝜑 = 0.1, 𝑘 = 10,   𝛽𝑖 = 1. 

 

 

 

 

 

Fig. 3.2b: Influence of Hall parameter on transverse velocity 𝑣(𝑥, 𝑦) for 𝛽 = 0.5,   𝛾 = 0,

𝜎 = 1, 𝜇 = 1, 𝑏 = 0.5, 𝑙 = 1, 𝜑 = 0.1, ℳ = 1, 𝑘 = 10,   𝛽𝑖 = 1. 
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Fig. 3.3a: Influence of ionslip parameter on longitudinal velocity 𝑢(𝑥, 𝑦) for 𝛽 = 0.5, 𝛾 = 0,

𝜎 = 1, 𝜇 = 1, 𝑏 = 0.5, 𝑙 = 1, 𝜑 = 0.1, ℳ = 1, 𝑘 = 10, 𝛽𝑒 = 1. 

 

 

 

 

 

Fig. 3.3b: Influence of ionslip parameter on transverse velocity 𝑣(𝑥, 𝑦) for 𝛽 = 0.5, 𝛾 = 0,

𝜎 = 1, 𝜇 = 1, 𝑏 = 0.5, 𝑙 = 1, 𝜑 = 0.1, ℳ = 1, 𝑘 = 10, 𝛽𝑒 = 1. 
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Fig. 3.4a: Influence of Hartmann number on longitudinal velocity 𝑢(𝑥, 𝑦) for 𝛽 = 0.5, 𝛾 =

0, 𝜎 = 1, 𝜇 = 1, 𝑏 = 0.5, 𝑙 = 1, 𝜑 = 0.1, 𝑘 = 10,   𝛽𝑒 = 1,   𝛽𝑖 = 1. 

 

 

 

 

Fig. 3.4b: Influence of Hartmann number on transverse velocity 𝑣(𝑥, 𝑦) for 𝛽 = 0.5, 𝛾 = 0,

𝜎 = 1, 𝜇 = 1, 𝑏 = 0.5, 𝑙 = 1, 𝜑 = 0.1, 𝑘 = 10,   𝛽𝑒 = 1,   𝛽𝑖 = 1. 
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Fig. 3.5a: Influence of porosity parameter on longitudinal velocity 𝑢(𝑥, 𝑦) for 𝛽 = 0.5,   𝛾 =

0, 𝜎 = 1, 𝜇 = 1, 𝑏 = 0.5, 𝑙 = 1, 𝜑 = 0.1, ℳ = 1,   𝛽𝑒 = 1,   𝛽𝑖 = 1. 

 

 

 

 

 

Fig. 3.5b: Influence of porosity parameter on transverse velocity 𝑣(𝑥, 𝑦) for 𝛽 = 0.5, 𝛾 = 0,

𝜎 = 1, 𝜇 = 1, 𝑏 = 0.5, 𝑙 = 1, 𝜑 = 0.1, ℳ = 1,   𝛽𝑒 = 1,   𝛽𝑖 = 1. 
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      (a) ℳ =1            (b) ℳ =5 

 

 

 

 

 

       (c) ℳ =10 

 

Fig. 3.6: Influence of Hartmann number ℳ on stream function for 𝛽 = 0.25, 𝛾 = 0.25, 𝛼 =

1, 𝜇 = 1, 𝑏 = 0.5, 𝑙 = 1, 𝜑 = 0.1,   𝑘 = 10,   𝛽𝑒 = 1,   𝛽𝑖 = 1. 

 

 

 



42 

 

 

 

     

    (a) 𝑘 =0.01         (b) 𝑘 =0.05  

 

 

 

 

 

                                                                       (c) 𝑘 =0.1                  

 

Fig. 3.7: Influence of porosity parameter 𝓀 on stream function for 𝛽 = 0.25, 𝛾 = 0.25, 𝛼 =

1, 𝜇 = 1, 𝑏 = 0.5, 𝑙 = 1, 𝜑 = 0.1, ℳ = 1,   𝛽𝑒 = 1,   𝛽𝑖 = 1. 
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3.4 Conclusion 

 In this study we have developed a mathematical model of velocity profile, stream 

function, pressure and work rate in the existence of Hall current and ionslip effect is 

developed. The flow is produced by the ciliated surface in which cilia tip form a 

metachronal wave. The metachronal wave suggest the envelope of cilia which helps to 

find the velocity, stream function and pressure. The Navier Stoke's equations in 2-

dimensional and 2-directional are transformed into bi harmonic partial differential 

equation and evaluated by Fourier series expansion method. The resulting velocity 

profile and stream function involve the magnetic parameter ℳ, porosity parameter 𝑘, 

ionslip parameter 𝛽𝑖 and Hall parameter 𝛽𝑒. Following observations are found for the 

velocity and stream function. 

 Horizontal and vertical velocity is mounted by increasing Hall parameter 𝛽𝑒  

 Ionslip parameter 𝛽𝑖 showed the increasing effect on the horizontal and vertical 

velocity but the effect on horizontal velocity is more significant as compared to the 

vertical velocity. 

 Magnetic parameter ℳ retarded the motion in the horizontal and vertical direction. 

 The velocity profile in 𝑥 and 𝑦 direction decreases by increasing the porosity 

parameter  𝑘.  

 Contour plots of stream function show that when accelerated flow is required, 

porosity, Hall and ion slip effect should be incorporated whereas for the decelerated 

flow magnetic field should be applied in the perpendicular direction of the flow. 

 Current study can be used for the treatment of diseases caused by the inactive cilia 

like asthma by pulmonary cilia and loss of memory due to cilia caused the 

movement of cerebrospinal fluid. 
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Chapter 4 

Ciliary Flow of MHD Johson-Segalman 

Fluid in a Channel 

 
 In this chapter, a mathematical model for the cilia-generated propulsion of an 

electrically-conducting non-Newtonian fluid in a channel, under the action of magnetic 

field is discussed. The rheological behavior of the fluid is simulated with the Johnson-

Segalman constitutive model which allows internal wall slip. Under the classical 

lubrication approximation, the boundary value problem is non-dimensionalized and 

solved analytically with a perturbation technique. The influence of the geometric, 

rheological (slip and Weissenberg number) and magnetic parameters on pressure rise, 

velocity and the pressure gradient (evaluated via the stream function in symbolic 

software) are presented graphically and interpreted at length. 

 

4.1 Mathematical Modeling 

 Assume an incompressible MHD Johnson-Segalman fluid flow through a symmetric 

ciliated channel of width 2L, under the action of a transverse magnetic field 𝐵0. The 𝑋-

axis is taken along the direction of metachronal wave. The model is shown in Fig. 4.1. 

Cilia are continuously beating with recovery and effective strokes and the tip of the 

cilia follow the elliptical path centered at (𝑋0, 𝑙). The position of the cilia is given by 

the following parametric representation. 
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Fig. 4.1: Geometry of Problem 

 

                                             𝑋̂  = 𝐹(𝑋̂, 𝑡̂) = 𝑋0 + 𝜀𝑙𝛼𝑠𝑖𝑛 (
2𝜋

𝜆
) (𝑋̂ − 𝔠𝑡̂),                     (4.1) 

                                           𝑌̂ = 𝐻(𝑋̂, 𝑡̂) = 𝑙 + 𝑙𝜀𝑐𝑜𝑠 (
2𝜋

𝜆
) (𝑋̂ − 𝔠𝑡̂) = ±𝐿,                  (4.2) 

 

Here 𝑙𝜀𝛼 is the major axis in the 𝑋̂-direction and 𝑙𝜀 is its minor axis in the 𝑌̂-direction. 

After determining the location of the cilia tips, we may calculate the horizontal and 

vertical velocity components. The horizontal velocity 𝑈̂ is obtained by the time 

derivative at 𝑋̂ and vertical velocity 𝑉̂ is obtained by taking time derivative of vertical 

coordinate 𝑌̂ i.e. 

                                                 𝑈̂ =

2𝜋
𝜆

(𝜀𝔠𝑙𝛼𝑐𝑜𝑠 (
2𝜋
𝜆

) (𝑋̂ − 𝔠𝑡̂))

1 −
2𝜋
𝜆

(𝜀𝑙𝛼𝑐𝑜𝑠 (
2𝜋
𝜆

) (𝑋̂ − 𝔠𝑡̂))

,                            (4.3) 

                                                  𝑉̂ =

2𝜋
𝜆

(𝜀𝔠𝑙𝛼𝑠𝑖𝑛 (
2𝜋
𝜆

) (𝑋̂ − 𝔠𝑡̂))

1 −
2𝜋
𝜆

(𝜀𝑙𝛼𝑐𝑜𝑠 (
2𝜋
𝜆

) (𝑋̂ − 𝔠𝑡̂))

 .                          (4.4) 

Using the MHD Johnson-Segalman fluid model [38, 50] the continuity and momentum 

equations in a fixed frame are defined as follows: 

                                                                         𝑑𝑖𝑣 𝑽 = 0,                                                      (4.5) 
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                                                                𝜌
𝑑𝑽

𝑑𝑡
= 𝑑𝑖𝑣𝝉 + 𝜌𝒃𝒇,                                             (4.6) 

                                                               𝜌𝒃𝒇 = (𝜎𝐵0
2𝑈̂, 0, 0),                                            (4.7) 

                                                      𝝉 = 𝑃𝑰 + 𝕋 and 𝕋 = 2𝜇𝑫 + 𝑺,                                    (4.8) 

                                  𝑺 + 𝑚 (
𝑑𝑺

𝑑𝑡
+ 𝑺(𝑾 − 𝑎𝑫) + (𝑾 − 𝑎𝑫)𝑇𝑺) = 2𝜂𝑫,                  (4.9) 

                                                   𝑫 =
1

2
(𝑳 + 𝑳𝑇),   𝑾 =

1

2
(𝑳 − 𝑳𝑇),                             (4.10) 

                                               𝑳 = grad𝑽,   𝑽 = (𝑈̂(𝑋̂, 𝑌̂, 𝑡̂), 𝑉̂(𝑋̂, 𝑌̂, 𝑡̂), 0),                 (4.11) 

 where all the parameters, tensors and stresses which are used in Eqs. (4.1)-(4.10) are 

defined in nomenclature. When we take slip parameter equals one i.e. 𝑎 = 1, then this 

fluid model reduced to Oldroyd-B model, if dynamics viscosity of Johnson Segalmann 

fluid is zero i.e. 𝜇 = 0 and the slip parameter 𝑎 = 1, we get Maxwell fluid model, if 

1

2
≤ 𝑎 ≤ 1, this fluid will be rod climbing, and when relaxation time 𝑚 =0 of Johnson 

Segalmann fluid, we get classical Navier-Stokes fluid. Now Eqs. (4.5) and (4.6) 

together with Eqs. (4.7)-(4.10) take the following form:  

                                                                     
𝜕𝑈̂

𝜕𝑋̂
+

𝜕𝑉̂

𝜕𝑌̂
= 0,                                                 (4.12) 

                      𝜌 (
𝜕𝑈̂

𝜕𝑡̂
+ 𝑈̂

𝜕𝑈̂

𝜕𝑋̂
+ 𝑉̂

𝜕𝑈̂

𝜕𝑌̂
) = −

𝜕𝑃̂

𝜕𝑋̂
+

𝜕𝑆̂𝑋̂𝑋̂

𝜕𝑋̂
+

𝜕𝑆̂𝑋̂𝑌̂

𝜕𝑌̂
− 𝜎𝐵0

2𝑈̂,             (4.13) 

                                  𝜌 (
𝜕𝑉̂

𝜕𝑡̂
+ 𝑈̂

𝜕𝑉̂

𝜕𝑋̂
+ 𝑉̂

𝜕𝑉̂

𝜕𝑌̂
) = −

𝜕𝑃̂

𝜕𝑌̂
+

𝜕𝑆̂𝑋̂𝑌̂

𝜕𝑋̂
+

𝜕𝑆̂𝑌̂𝑌̂

𝜕𝑌̂
,                   (4.14) 

Here 𝑆̂𝑋̂𝑋̂ , 𝑆̂𝑋̂𝑌̂ and 𝑆̂𝑌̂𝑌̂ satisfy following equations  

2𝜂
𝜕𝑈̂

𝜕𝑋̂
= 𝑆̂𝑋̂𝑋̂ + 𝑚 (𝑈̂

𝜕

𝜕𝑋̂
+ 𝑉̂

𝜕

𝜕𝑌̂
) 𝑆̂𝑋̂𝑋̂ − 2𝑎𝑚𝑆̂𝑋̂𝑋̂

𝜕𝑈̂

𝜕𝑋̂
 

                                                +𝑚 ((1 − 𝑎)
𝜕𝑉̂

𝜕𝑋̂
− (1 + 𝑎)

𝜕𝑈̂

𝜕𝑌̂
) 𝑆̂𝑋̂𝑌̂,                           (4.15) 

 

𝜂 (
𝜕𝑈̂

𝜕𝑌̂
+

𝜕𝑉̂

𝜕𝑋̂
) = 𝑆̂𝑋̂𝑌̂ + 𝑚 (𝑈̂

𝜕

𝜕𝑋̂
+ 𝑉̂

𝜕

𝜕𝑌̂
) 𝑆̂𝑋̂𝑌̂ +

𝑚

2
((1 − 𝑎)

𝜕𝑈̂

𝜕𝑌̂
− (1 + 𝑎)

𝜕𝑉̂

𝜕𝑋̂
) 𝑆̂𝑋̂𝑋̂  

+
𝑚

2
((1 − 𝑎)

𝜕𝑉̂

𝜕𝑋̂
− (1 + 𝑎)

𝜕𝑈̂

𝜕𝑌̂
) 𝑆̂𝑌̂𝑌̂,                                               (4.16) 

 

2𝜂
𝜕𝑉̂

𝜕𝑌̂
= 𝑆̂𝑌̂𝑌̂ + 𝑚 (𝑈̂

𝜕

𝜕𝑋̂
+ 𝑉̂

𝜕

𝜕𝑌̂
) 𝑆̂𝑌̂𝑌̂ − 2𝑎𝑚𝑆̂𝑌̂𝑌̂

𝜕𝑉̂

𝜕𝑌̂
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                                                  +𝑚 ((1 − 𝑎)
𝜕𝑈̂

𝜕𝑌̂
− (1 + 𝑎)

𝜕𝑉̂

𝜕𝑋̂
) 𝑆̂𝑋̂𝑌̂,                         (4.17) 

The fixed and the wave frame are related as 

 

𝑥̂ = 𝑋̂ − 𝔠𝑡̂,    𝑢̂ = 𝑈̂ − 𝔠,   𝑦̂ = 𝑌̂,    𝑣 = 𝑉̂   
                                       𝑝̂(𝑥̂, 𝑦̂, 𝑡̂) = 𝑃̂(𝑋̂, 𝑌̂, 𝑡̂),    𝐻(𝑋̂, 𝑡̂) = ℎ(𝑥̂).                             (4.18) 

 

With the help of Eq. (4.18), Eqs. (4.12)-(4.17) take the following form 

 

                                                                     
𝜕𝑢̂

𝜕𝑥̂
+

𝜕𝑣

𝜕𝑦̂
= 0,                                                  (4.19) 

                                𝜌 (𝑢̂
𝜕𝑢̂

𝜕𝑥̂
+ 𝑣

𝜕𝑢̂

𝜕𝑦̂
) = −

𝜕𝑝̂

𝜕𝑥̂
+

𝜕𝑆̂𝑥̂𝑥̂

𝜕𝑥
+

𝜕𝑆̂𝑥̂𝑦̂

𝜕𝑦
− 𝜎𝐵0

2(𝑢̂ + 𝑐),       (4.20) 

                                               𝜌 (𝑢̂
𝜕𝑣

𝜕𝑥̂
+ 𝑣

𝜕𝑣

𝜕𝑦̂
) = −

𝜕𝑝̂

𝜕𝑦̂
+

𝜕𝑆̂𝑥̂𝑦̂

𝜕𝑥̂
+

𝜕𝑆̂𝑦̂𝑦̂

𝜕𝑦̂
,                     (4.21) 

Here 𝑆̂𝑥̂𝑥̂, 𝑆̂𝑥̂𝑦̂ and 𝑆̂𝑦̂𝑦̂ satisfy following equations 

2𝜂
𝜕𝑢̂

𝜕𝑥̂
= 𝑆̂𝑥̂𝑥̂ + 𝑚 (𝑢̂

𝜕

𝜕𝑥̂
+ 𝑣

𝜕

𝜕𝑦̂
) 𝑆̂𝑥̂𝑥̂ − 2𝑎𝑚𝑆̂𝑥̂𝑥̂

𝜕𝑢̂

𝜕𝑥̂
 

                                                        +𝑚 ((1 − 𝑎)
𝜕𝑣

𝜕𝑥̂
− (1 + 𝑎)

𝜕𝑢̂

𝜕𝑦̂
) 𝑆̂𝑥̂𝑦̂,                    (4.22) 

 

   𝜂 (
𝜕𝑢̂

𝜕𝑦̂
+

𝜕𝑣

𝜕𝑥̂
) = 𝑆̂𝑥̂𝑦̂ + 𝑚 (𝑢̂

𝜕

𝜕𝑥̂
+ 𝑣

𝜕

𝜕𝑦̂
) 𝑆̂𝑥̂𝑦̂                        

+
𝑚

2
((1 − 𝑎)

𝜕𝑢̂

𝜕𝑦̂
− (1 + 𝑎)

𝜕𝑣

𝜕𝑥
) 𝑆̂𝑥̂𝑥̂       

+
𝑚

2
((1 − 𝑎)

𝜕𝑣

𝜕𝑥̂
− (1 + 𝑎)

𝜕𝑢̂

𝜕𝑦̂
) 𝑆̂𝑦̂𝑦̂,                                                (4.23) 

 

2𝜂
𝜕𝑣

𝜕𝑦̂
= 𝑆̂𝑦̂𝑦̂ + 𝑚 (𝑢̂

𝜕

𝜕𝑥̂
+ 𝑣

𝜕

𝜕𝑦̂
) 𝑆̂𝑦̂𝑦̂ − 2𝑎𝑚𝑆̂𝑦̂𝑦̂

𝜕𝑣

𝜕𝑦̂
 

                                                         +𝑚 ((1 − 𝑎)
𝜕𝑢̂

𝜕𝑦̂
− (1 + 𝑎)

𝜕𝑣

𝜕𝑥̂
) 𝑆̂𝑥̂𝑦̂,                   (4.24) 

 

The non-dimensional variables are elucidated as follows: 

 

𝑥 =
 𝑥̂

λ
,    𝑦 =

 𝑦̂

𝑙
,   𝑢 =

 𝑢̂

𝔠
,   𝑣 =

λ 𝑣

𝑙𝔠
 ,   𝑡 =

𝔠𝑡̂

λ
,  

  ℎ =
ℎ̂

𝑙
,    𝛽 =

𝑙

λ
,     𝑆𝑖𝑗 =

𝑙

𝜇𝔠
𝑆̂𝑖̂𝑗̂,   𝑝 =

𝑙2𝑝̂

λ(μ + η)
,   

                                        ℳ2 =
𝜎𝐵0

2𝑙2

𝜇
,    𝑅𝑒 =

𝜌𝔠𝑙

𝜇
 ,   𝑊𝑒 =

𝑚𝔠

𝑙
,                              (4.25) 
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here ℳ, 𝛽, 𝑊𝑒 and 𝑅𝑒 represents Hartmann number, wave number, Weissenberg 

number, Reynolds number, respectively. The two dimensional flow is represented by 

the following stream function  

                                                             𝑢̂ =
𝜕𝜓

𝜕𝑦̂
,   𝑣 = −

𝜕𝜓

𝜕𝑥̂
.                                            (4.26) 

With the assistance of Eqs. (4.25), (4.26) and the lubrication approximations (long 

wavelength relative to channel width and low Reynolds number), Eqs. (4.19)-(4.24) can 

be written as  

                                          (
𝜇 + 𝜂

𝜇
)
𝜕𝑝

𝜕𝑥
=

𝜕𝑆𝑥𝑦

𝜕𝑦
+

𝜕3𝜓

𝜕𝑦3
− ℳ2 (

𝜕𝜓

𝜕𝑦
+ 1),                    (4.27) 

                                                                             
𝜕𝑝

𝜕𝑦
= 0,                                                     (4.28) 

                                                        𝑆𝑥𝑥    = 𝑊𝑒(1 + 𝑎)
𝜕2𝜓

𝜕𝑦2
𝑆𝑥𝑦,                                   (4.29) 

                          
𝜂

𝜇

𝜕2𝜓

𝜕𝑦2
= 𝑆𝑥𝑦 +

𝑊𝑒

2
(1 − 𝑎)

𝜕2𝜓

𝜕𝑦2
𝑆𝑥𝑥 −

𝑊𝑒

2
(1 + 𝑎)

𝜕2𝜓

𝜕𝑦2
𝑆𝑦𝑦 ,       (4.30) 

                                                        𝑆𝑦𝑦 = −𝑊𝑒(1 − 𝑎)
𝜕2𝜓

𝜕𝑦2
𝑆𝑥𝑦,                                   (4.31) 

Eliminating pressure gradient from Eq. (4.27) and Eq. (4.28), following expression can 

be obtained 

                                                      
𝜕2𝑆𝑥𝑦

𝜕𝑦2
+

𝜕4𝜓

𝜕𝑦4
− ℳ2

𝜕2𝜓

𝜕𝑦2
= 0.                                   (4.32) 

From Eqs. (4.29)-(4.31), the shear stress, 𝑆𝑥𝑦, can be found as follows 

                                                  𝑆𝑥𝑦 =

𝜂
𝜇

𝜕2𝜓
𝜕𝑦2

1 + 𝑊𝑒2(1 − 𝑎2) (
𝜕2𝜓
𝜕𝑦2)

2 .                                (4.33) 

Now placing Eq. (4.33) into Eqs. (4.32) and (4.27) yields 

                             
𝜕2

𝜕𝑦2

(

 
 (

𝜂
𝜇 + 1)

𝜕2𝜓
𝜕𝑦2 + 𝑊𝑒2(1 − 𝑎2) (

𝜕2𝜓
𝜕𝑦2)

3

1 + 𝑊𝑒2(1 − 𝑎2) (
𝜕2𝜓
𝜕𝑦2)

2 − ℳ2𝜓

)

 
 

= 0,     (4.34) 

     (
𝜇 + 𝜂

𝜇
)
𝜕𝑝

𝜕𝑥
=

𝜕

𝜕𝑦

(

 
 

𝜂
𝜇

𝜕2𝜓
𝜕𝑦2

1 + 𝑊𝑒2(1 − 𝑎2) (
𝜕2𝜓
𝜕𝑦2)

2

)

 
 

+
𝜕3𝜓

𝜕𝑦3
− ℳ2 (

𝜕𝜓

𝜕𝑦
+ 1),    (4.35) 
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In bionic pumping systems, volume flow rate is a key design quantity. The 

instantaneous volumetric flow rate in a fixed frame is given by 

                                                           𝐹̂ = ∫ 𝑈̂(𝑋̂, 𝑌̂, 𝑡̂)𝑑𝑌̂

𝐻

0

,                                              (4.36) 

using the formula of transformation (fixed to wave) given in Eq. (4.18), we get 

                                                               𝑓 = ∫ 𝑢̂(𝑥̂, 𝑦̂)𝑑𝑦̂

ℎ̂

0

,                                                (4.37) 

Now the fixed and wave frame for volume flow rate can be defined with the help of Eq. 

(4.36) and Eq. (4.37) as 

                                                                  𝐹̂ = 𝑓 + 𝔠ℎ̂,                                                        (4.38) 

The time-mean flow, at a fixed position 𝑋̂, over a period 𝒯̂ is defined as 

                                                                𝑄 =
1

𝒯̂ 
∫ 𝐹̂ 𝑑𝑡̂

𝒯̂ 

0

,                                                   (4.39) 

using Eq. (4.38) into Eq. (4.39), and integrating, we get 

                                                     𝑄 = ∫(𝑓 + 𝔠ℎ̂)𝑑𝑥̂ =

1

0

𝑓 + 𝔠∫ ℎ̂𝑑𝑥̂

1

0

,                           (4.40) 

now with the help of Eq. (4.2), Eq. (4.18) and Eq. (4.40) become 

                                                                       𝑄 = 𝑓 + 𝑐𝑙.                                                    (4.41) 

Define the dimensionless form of time mean flow 𝑄̂ and 𝐹 respectively as 

                                                                   𝑄̂ =
𝑄

𝔠𝑙
,   𝐹 =

𝑓

𝔠𝑙
,                                              (4.42) 

we get 

                                                          𝐹 = ∫
𝜕𝜓

𝜕𝑦
𝑑𝑦 = 𝜓(ℎ) − 𝜓(0).

ℎ

0

                             (4.43) 

And 

                                                                          𝑄̂ = 𝐹 + 1,                                                 (4.44) 

If we choose 𝜓 = 0 at 𝑦 = 0 then 𝜓 = 𝐹 at 𝑦 = ℎ. The boundary conditions become 

as  

       𝜓 = 0,    
𝜕2𝜓

𝜕𝑦2
= 0,   𝑎𝑡   𝑦 = 0,  
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                                                       𝜓 = 𝐹,    
𝜕𝜓

𝜕𝑦
= 𝓊0,   𝑎𝑡   𝑦 = ℎ.                               (4.45) 

Where 

               𝐹 = ∫
𝜕𝜓

𝜕𝑦
𝑑𝑦

ℎ

0

,   𝓊0 = −1 − 2𝜋𝜀𝛼𝛽 cos(2𝜋𝑥) ,   ℎ = 1 + 𝜀 cos(2𝜋𝑥).  (4.46) 

With the help of binomial theorem and neglecting higher powers of (
𝜕2𝜓

𝜕𝑦2
) 

i.e. 𝑂 ((
𝜕2𝜓

𝜕𝑦2))

6

,  

                                         
𝜕2

𝜕𝑦2
(
𝜕2𝜓

𝜕𝑦2
+ 𝑊𝑒2𝜅2 (

𝜕2𝜓

𝜕𝑦2
)

3

− 𝜅1ℳ
2𝜓) = 0,                 (4.47) 

Eqs. (4.34) and (4.35) then take the following form  

 

                                 
𝜕𝑝

𝜕𝑥
=

𝜕

𝜕𝑦
(
𝜕2𝜓

𝜕𝑦2
+ 𝑊𝑒2𝜅2 (

𝜕2𝜓

𝜕𝑦2
)

3

) − 𝜅1ℳ
2 (

𝜕𝜓

𝜕𝑦
+ 1).        (4.48) 

Here 

                                                                𝜅1 =
𝜇

𝜇 + 𝜂
,   𝜅2 =

(𝑎2 − 1)

𝜇 + 𝜂
.                                         (4.49) 

Here 𝜇, 𝜂 are viscosity coefficients of the Johnson-Segalman fluid, 𝑎 is slip parameter.  

4.4 Perturbation Solution 

 To solve the non-linear Eqs. (4.47) and (4.48) together with the boundary condition 

(4.45), a perturbation method is employed. Expanding the stream function 𝜓, pressure 

distribution 𝑝 and flow rate 𝐹 about the Weissenberg number 𝑊𝑒 (assuming small 

Weissenberg number) leads to 

  

                                                                𝜓 = 𝜓0 + 𝑊𝑒2𝜓1 + ⋯,                                    (4.50) 

 

                                                                𝑝 = 𝑝0 + 𝑊𝑒2𝑝1 + ⋯,                                    (4.51) 

 

                                                                𝐹 = 𝐹0 + 𝑊𝑒2𝐹1 + ⋯,                                      (4.52) 

 

Using the above equations in (4.47)-(4.48) we obtain the following systems 

4.4.1 Zeroth Order System 
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𝜕2

𝜕𝑦2
(
𝜕2𝜓0

𝜕𝑦2
− 𝜅1ℳ

2𝜓0) = 0,                                  (4.53) 

 

                                               
𝑑𝑝0

𝑑𝑥
=

𝜕

𝜕𝑦
(
𝜕2𝜓0

𝜕𝑦2
) − 𝜅1ℳ

2 (
𝜕𝜓0

𝜕𝑦
+ 1).                       (4.54) 

 

The associated boundary conditions are 

                𝜓0 = 0,    
𝜕2𝜓0

𝜕𝑦2
= 0,   𝑎𝑡   𝑦 = 0,  

                                                      𝜓0 = 𝐹0 ,    
𝜕𝜓0

𝜕𝑦
= 𝓊0,   𝑎𝑡   𝑦 = ℎ.                           (4.55) 

Solution of zeroth order system 

 

 Solution of zeroth order system given by Eqs. (4.53)-(4.55) is as follows 

 

      𝜓0

=
−ℳ𝑦cosh(ℳℎ√𝜅1)𝐹0√𝜅1 + 𝑦sinh(ℳℎ√𝜅1)𝓊0 + sinh(ℳℎ√𝜅1)(𝐹0 − ℎ𝓊0)

sinh(ℳℎ√𝜅1) − ℳcosh(ℳℎ√𝜅1)ℎ√𝜅1

, (4.56) 

 

Using Eqs. (4.54) and (4.56), the zeroth order pressure gradient is obtained as 

 

  
𝑑𝑝0

𝑑𝑥
=

ℳ2𝜅1(−ℳcosh(ℳℎ√𝜅1)(ℎ + 𝐹0)√𝜅1 + sinh(ℳℎ√𝜅1)(1 + 𝓊0))

−sinh(ℳℎ√𝜅1) + ℳcosh(ℳℎ√𝜅1)ℎ√𝜅1

.   (4.57) 

4.4.2 First Order System 

                                    
𝜕2

𝜕𝑦2
(
𝜕2𝜓1

𝜕𝑦2
+ 𝑊𝑒2𝜅2 (

𝜕2𝜓0

𝜕𝑦2
)

3

− 𝜅1ℳ
2𝜓1) = 0,                (4.58) 

                            
𝜕𝑝1

𝜕𝑥
=

𝜕

𝜕𝑦
(
𝜕2𝜓1

𝜕𝑦2
+ 𝑊𝑒2𝜅2 (

𝜕2𝜓0

𝜕𝑦2
)

3

) − 𝜅1ℳ
2 (

𝜕𝜓1

𝜕𝑦
+ 1).      (4.59) 

The relevant boundary conditions are 

           𝜓1 = 0,    
𝜕2𝜓1

𝜕𝑦2
= 0,   𝑎𝑡   𝑦 = 0,  

                                                     𝜓1 = 𝐹1 ,     
𝜕𝜓1

𝜕𝑦
= 0,   𝑎𝑡   𝑦 = ℎ,                              (4.60) 

 

Solution of first order system 

Solving first order system as given by Eqs. (4.58)-(4.60), we obtain 



52 

 

𝜓1

=
1

64(sinh(ℳℎ√𝜅1) − ℳ𝑐𝑜𝑠ℎ(ℳℎ√𝜅1)ℎ√𝜅1)4
((8𝐹1 (8 sinh(ℳ𝑦√𝜅1)(sinh(ℳℎ√𝜅1))

3

+ ℳ√𝜅1 (−8𝑦cosh(ℳℎ√𝜅1)(sinh(ℳℎ√𝜅1))
3

+ ℎ(−3(sinh (ℳ(𝑦 − 3ℎ)√𝜅1)−sinh(ℳ(𝑦 − ℎ)√𝜅1) − sinh(ℳ(𝑦 + ℎ)√𝜅1)

+ sinh (ℳ(𝑦 + 3ℎ)√𝜅1)) + ℳ√𝜅1(6𝑦(sinh(2ℳ√𝜅1)
2

+ ℎ(−3(cosh(ℳ(𝑦 − 3ℎ)√𝜅1) + cosh(𝑚(𝑦 − ℎ)√𝜅1))

− 8ℳ(cosh(ℳℎ√𝜅1))
3
(ℎsinh(ℳ𝑦√𝜅1) + 3𝑦sinh(ℳℎ√𝜅1))√𝜅1

+ 8ℳ2𝑦(cosh(ℳℎ√𝜅1))
4
ℎ𝜅1))))) − ℳ4𝜅1))

2

(− cosh(ℳ(𝑦 − 3ℎ)√𝜅1)

+ cosh(ℳ(3𝑦 − ℎ)√𝜅1) − cosh(ℳ(3𝑦 + ℎ)√𝜅1)

+ ℳ(2𝑦 (−6 sinh(ℳ(𝑦 − ℎ)√𝜅1) − 8 sinh(2ℳℎ√𝜅1)

+ (sinh(4ℳℎ√𝜅1) + 6 sinh(ℳ(𝑦 + ℎ)√𝜅1))

+ ℎ (−3sinh(ℳ(y − 3h)√𝜅1) + sinh(ℳ(3y − h)√𝜅1) + sinh(ℳ(3y + +h)√𝜅1)

− 3sinh(ℳ(y + 3h)√𝜅1)))√𝜅1 + 24ℳ2ℎ(𝑦 − 𝑦cosh(ℳℎ√𝜅1) cosh(𝑚ℎ√𝜅1)

+ ℎsinh(ℳ𝑦√𝜅1)sinh(ℳℎ√𝜅1))𝜅1)𝜅2(−𝐹0 + ℎ𝓊0)
3)).                                    (4.61) 

 

Using Eq. (4.61) into Eq. (4.59), we arrive at the first order pressure gradient 

 
𝑑𝑝1

𝑑𝑥

=
1

32(sinh(ℳℎ√𝜅1) − ℳ𝑐𝑜𝑠ℎ(ℳℎ√𝜅1)ℎ√𝜅1)4
(ℳ2𝜅1 (−16𝑐𝑜𝑠ℎ(2ℳℎ√𝜅1)(−1

+ ℳ4ℎ3(ℎ + 𝐹1)𝜅1
2)

− 4𝑐𝑜𝑠ℎ(4ℳℎ√𝜅1) (1 + ℳ2ℎ𝜅1(3𝐹1 + ℎ(6 + ℳ2ℎ(ℎ + 𝐹1)𝜅1)))

− 8ℳ𝑠𝑖𝑛ℎ(2ℳℎ√𝜅1)√𝜅1 (𝐹1 − ℳ𝐹0
3𝜅1

2𝜅2 + ℎ(4 + 3ℳ4𝐹0
2𝜅1

2𝜅2𝓊0)

− 3ℳℎ2𝜅1(𝐹1 + ℳ𝐹0𝜅1𝜅2𝓊0
2) + ℳ2ℎ3𝜅1(−4 + ℳ2𝜅1𝜅2𝓊0

3))

+ ℳ𝑠𝑖𝑛ℎ(4ℳℎ√𝜅1)√𝜅1 (4𝐹1 − ℳ4𝐹0
3𝜅1

2𝜅2 + ℎ(16 + 3ℳ4𝐹0
2𝜅1

2𝜅2𝓊0)

− 3ℳℎ2𝜅1(−4𝐹1 + ℳ2𝐹0𝜅1𝜅2𝓊0
2) + ℳ2ℎ3𝜅1(16 + ℳ2𝜅1𝜅2𝓊0

3))

+ 12 (−1

+ ℳ2ℎ𝜅1 (𝐹1 − ℳ4𝐹0
3𝜅1

2𝜅2 + ℎ(2 + 3ℳ4𝐹0
2𝜅1

2𝜅2𝓊0)

− ℳ2ℎ2𝜅1(𝐹1 + 3ℳ2𝐹0𝜅1𝜅2𝓊0
2)

+ ℳ2ℎ3𝜅1(−1 + ℳ2𝜅1𝜅2𝓊0
3))))).                                                                         (4.62) 

 

Now summarize the above results up to order 𝑊𝑒2 and to achieve final results we 

introduce 𝐹 = 𝐹0 + 𝑊𝑒2𝐹1 or 𝐹0 = 𝐹 − 𝑊𝑒2𝐹1 in stream function 𝜓 and pressure 
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gradient 
𝑑𝑝

𝑑𝑥
 given in Eqs. (4.50) and (4.51). Where 𝜓0, 𝜓1, 

𝑑𝑝0

𝑑𝑥
 and 

𝑑𝑝1

𝑑𝑥
 are defined in 

Eqs. (4.56), (4.57), (4.61) and (4.62). 

 

4.5 Results and Discussion 

 Figs. 4.2, 4.3 and 4.4 are plotted to visualize the effects of the key parameters i.e. 

Hartmann number, Weissenberg number, slip parameter and the cilia length, on the 

pressure rise, velocity and the pressure gradient keeping all other parameters fixed.  

 Figs. 4.2a-d illustrate the impact of Hartmann number ℳ, Weissenberg number 𝑊𝑒, 

slip parameter 𝑎 and cilia length 𝜀 on the axial pressure 𝑝 evolution with axial 

coordinate 𝑥 i.e. pressure gradient. Fig. 4.2a shows that pressure is strongly affected by 

the Hartmann number. With the rise in Hartmann number there is a uniform decrease 

in pressure. A reduction in pressure is also induced with increasing slip parameter in 

Fig 4.2c. However pressure is boosted with elevation in Weissenberg number (Fig. 

4.2c) and cilia length (Fig. 4.2d). There is a more uniform pressure distribution along 

the channel length with variation in Hartmann number (Fig. 4.2a) and the principal 

reduction in pressure is concentrated in the intermediate section of the channel; lower 

pressures ascend at entry and exit of the channel with maximum pressures in between, 

an important feature is required for efficient medical magnetic pumping performance.  

 Hartmann number appears in the Lorentz magnetohydrodynamic body force terms in 

Eqs. (4.47) and (4.48). This is a retarding force which opposes the flow and induces 

deceleration across the channel span (described later). Effectively pressure is 

suppressed with stronger magnetic field. The maximum pressure is achieved for the 

case ℳ = 1 wherein viscous and magnetic forces in the regime are equivalent in 

magnitude. For ℳ > 1 the magnetic drag force dominates the viscous hydrodynamic 

resistance. Figs. 4.2b-d indicate that the other parameters induce a more marked 

modification in pressure profiles in the vicinity of the entry and exit zones (low and 

high values of axial coordinate). The viscoelastic parameter i.e. Weissenberg number 

embodies the relative contribution of viscous forces to the elastic forces. For cases 

where the time-scale of a flow is significantly less than the relaxation time of the 

viscoelastic fluids, then elastic effects dominate the flow behavior. However, when 

time-scale exceeds the relaxation time, substantial elastic relaxation takes place and the 

viscous forces dominate the flow. The Johnson-Segalman fluid model is more 

sophisticated than other viscoelastic models and permits the non-monotonic variation 



54 

 

in shear stress with decrease/increase in the rate of deformation for simple shear flows. 

It is also capable of simulating slip effects and furthermore the spurt phenomenon i.e. 

an abnormal rise in volume throughput for a very weak elevation in the driving pressure 

gradient. With greater Weissenberg numbers the elastic effect dominates the behavior 

and this contributes to the enhancement in pressure. With greater slip effect the pressure 

is decreased significantly (Fig. 4.2c). The increase in pressure with greater cilia length 

is related to the enhanced transfer of force to the fluid in the channel with longer cilia 

geometry. This boosts the pressure in the central channel length area but depresses the 

pressure near the entry and exit locations.  

 Figs. 4.3a-d reveal the impact of the key parameters on axial velocity across the 

channel span i.e. with transverse coordinate, 𝑦. Evidently although symmetrical profiles 

in velocity are consistently computed, the parameters exhibit different effects. Fig. 4.3a 

and 4.3b show that by increasing Hartmann number and Weissenberg number velocity 

reduces in the central (core) region, −0.32 < 𝑦 < 0.32 and rises near the walls in 

range, 𝑦 < −0.32 and 𝑦 > 0.32 of the channel. The contrary behavior can be observed 

with a rise in slip parameter and cilia length from Figs. 4.3c and 4.3d. Furthermore, 

inspection of the figures reveals that Hartmann number, Weissenberg number and slip 

parameter generate a more significant influence at the center as compared to walls of 

the channel.  

The expression for the pressure rise is  

                                                                   ∆𝑝 = ∫
𝑑𝑝

𝑑𝑥
𝑑𝑥,

1

0

                                                 (4.63) 

To calculate the result of volume flow rate, we use the expression of ∆𝑝 which involves 

integration of 
𝑑𝑝

𝑑𝑥
. Due to the complexity of the expression given in the Eq. (4.63), the 

symbolic software, MATHEMATICA, has been implemented for the numerical 

integration. The results are shown in Figs. 4.4a-b, which present the evolution in 

average rise in the pressure against 𝑄̂ (time-averaged flux). The impact of magnetic 

parameter ℳ on pressure rise is shown in Fig. 4.4a, which shows the retrograde 

pumping 𝑄̂ < 0, ∆𝑝 > 0 and the free pumping ∆𝑝 = 0 uniformly change with the rise 

in Hartmann number. Fig. 4.4b and 4.4c, reveals the change of pressure rise against 

time average flux, for the different values of Weissenberg number 𝑊𝑒 and the slip 

parameter 𝑎. It is noted that co-pumping rate reduces with the rising values of slip 

parameter and Weissenberg number. Fig. 4.4d, depicts the effect of cilia length 𝜀 on the 
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pressure rise. It is noticeable that the pumping and co-pumping rates increases with 

growing cilia length.  

 

 

 

 
Fig. 4.2a: The effect of Hartmann number ℳ on pressure gradient. 

 

 

 

 

 

 

 

 

 
Fig. 4.2b: The effect of Weissenberg number 𝑊𝑒 on pressure gradient. 
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Fig. 4.2c: The effect of slip parameter 𝑎 on pressure gradient. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4.2d: The effect of cilia length 𝜀 on pressure gradient. 
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Fig. 4.3a: The effect of Hartmann number ℳ on velocity. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4.3b: The effect of Weissenberg number 𝑊𝑒 on velocity. 
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Fig. 4.3c: The effect of slip parameter 𝑎 on velocity. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4.3d: The effect of cilia length 𝜀 on velocity. 
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Fig. 4.4a: The effect of Hartmann number ℳ on pressure rise. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4.4b: The effect of Weissenberg number 𝑊𝑒 on pressure rise. 
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Fig. 4.4c: The effect of slip parameter 𝑎 on pressure rise. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4.4d: The effect of cilia length 𝜀 on pressure rise. 
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4.6 Conclusion  

 In this study, we have considered the ciliary transport of MHD Johnson-Segalman fluid 

in a 2D symmetric channel. The flow is produced by continuous beating of cilia in an 

elliptical path which generates the two-dimensional velocity field. The governing 

equations are simplified by using lubrication theory and converted into non-

dimensional form via suitable transformations. A regular perturbation technique is used 

to solve non-linear PDEs with appropriate boundary conditions. Mathematica symbolic 

software is deployed to evaluate the series solutions and results are visualized 

graphically. The principal findings from this chapter may be concluded as follows:  

 The pressure gradient is strongly affected by Weissenberg viscoelastic number 

𝑊𝑒 and cilia length 𝜀.  

 With increase in Weissenberg viscoelastic number 𝑊𝑒 and cilia length 𝜀 larger 

pressure gradient is required to maintain the same flux through a narrow region 

as compared to a wider region of channel, whereas, smaller pressure gradient is 

required with rise in magnetic parameter ℳ and slip parameter 𝑎.  

 The velocity response is not the same throughout the channel. Velocity 

decreases in the central region by rising magnetic number ℳ and Weissenberg 

number 𝑊𝑒 and enhances with a rise in slip parameter 𝑎 and cilia length 𝜀.  

 By increasing magnetic parameter ℳ and cilia length 𝜀 pressure rise increases 

whereas it is reduced with larger values of Weissenberg number 𝑊𝑒 and cilia 

length 𝜀.  

 The present investigation has neglected curvature, rotational and heat transfer 

effects which are also important in biomimetic pumps and these may be 

addressed in the future.  
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Chapter 5 

Inertial Flow of MHD Second Grade 

Fluid in a Ciliated Channel  

 This study is presented for MHD second grade fluid in a ciliated channel embedded in 

a porous medium. The two dimensional flow is modelled with the inertial effects (𝑅𝑒 ≠

0) which make the partial differential equation non-linear and complex. The Homotopy 

Perturbation Method (HPM), is used to solve the complex partial differential equation, 

which does not indispensable the assumption of small parameter like the perturbation 

method. The HPM solution is found by the help of software "Mathematica" and 

graphical results are shown in the last section.  

 

5.1 Mathematical Formulation 

 Assume the ciliary flow of an incompressible second grade fluid in a symmetric 

channel embedded in a porous medium under the effect of constant applied magnetic 

field. To study the magnetohydrodynamics flow of second grade model having 

properties 𝛼1 + 𝛼2 = 0 and 𝛼1 > 0 through a ciliated porous channel, the Lorentz force 

and Darcy's law are considered with the two dimensional momentum equations. The 

flow occur due to ciliary motion as a cilium moves in an elliptical path and collectively 

produced a metachronal wave in 𝑋-direction of Cartesian coordinate system and 𝑌-axis 

is normal to the wave propagation. The mathematical form of horizontal and vertical 

components of the elliptical path followed by the cilia are given in Eqs. 4.1 and 4.2. 
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Figure 5.1: Geometry of Problem 

 

 

The fixed and the wave frame are related as follow 

 

                 𝑥̂ = 𝑋̂ − 𝔠𝑡̂,    𝑢̂ = 𝑈̂ − 𝔠,   𝑦̂ = 𝑌̂,    𝑣 = 𝑉̂,    𝑝̂(𝑥̂, 𝑦̂, 𝑡̂) = 𝑃̂(𝑋̂, 𝑌̂, 𝑡̂),       (5.1) 
 

where (𝑥̂, 𝑦̂) and (𝑢̂, 𝑣) are coordinates and velocity in wave frame and (𝑋̂, 𝑌̂) and 

(𝑈̂, 𝑉̂) are coordinate and velocity in fixed frame. The non-dimensional variables are 

stated as 

𝑥 =
 𝑥̂

λ
,    𝑢 =

 𝑢̂

𝔠
,    𝑦 =

 𝑦̂

𝑙
,    𝑣 =

λ 𝑣

𝑙𝔠
 , 

𝑝 =
𝑙2 𝑝̂

𝔠λμ
,   𝑡 =

𝔠 𝑡̂

λ
,   ℎ =

𝐿

𝑙
,   𝛽 =

𝑙

λ
 , 

𝑅𝑒 =
𝜌𝔠𝑙

𝜇
 ,   

1

𝒦
=

𝜑ℴ2

𝑘
,   ℳ2 =

𝜎𝐵0
2𝑙2

𝜇
 ,  

                                                                  λ1 =
𝛼1𝔠

𝜇𝑙
,   λ2 =

𝛼2𝔠

𝜇𝑙
.                                          (5.2) 

 

Where 𝑝 is pressure, ℎ is mean width of channel, 𝛽 is wave number, ℳ is Hartmann 

number, 𝒦 is porosity parameter, 𝑅𝑒 is Reynolds number, λ1 and λ2 are fluid 

parameters.  

The non-dimensional equations of continuity and momentum for the second grade fluid 

model [84] in a moving system are as follows 

                                                                           
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0,                                               (5.3) 

𝑅𝑒𝛽 (𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
) = −

𝜕𝑝

𝜕𝑥
+ (𝛽2

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
) 
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                                                            +λ1𝛽

(

 
 
 
 
 

−𝑣 (𝛽2
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
) (𝛽2

𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
)

+
𝜕

𝜕𝑥

(

 
 

𝑢 (𝛽2
𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
)

+𝛽2𝑣 (𝛽2
𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
)
)

 
 

)

 
 
 
 
 

 

                                                                      +
1

4
(3λ1 + 2λ2)

𝜕

𝜕𝑥

(

 
 

4(𝛽
𝜕𝑢

𝜕𝑥
)
2

+ 4(𝛽
𝜕𝑣

𝜕𝑦
)
2

+2(𝛽2
𝜕𝑣

𝜕𝑥
+

𝜕𝑢

𝜕𝑦
)
2

)

 
 

 

                                                                      − (ℳ2 +
1

𝒦
) (𝑢 + 1)                                    (5.4) 

 

 

𝑅𝑒𝛽3 (𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
) = −

𝜕𝑝

𝜕𝑦
+ 𝛽2 (𝛽2

𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
) 

                                                                      +λ1𝛽

(

 
 
 
 
 

𝑢 (𝛽2
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
) (𝛽2

𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
)

+
𝜕

𝜕𝑦

(

 
 

𝑢 (𝛽2
𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
)

+𝛽2𝑣 (𝛽2
𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
)
)

 
 

)

 
 
 
 
 

 

                                                                      +
1

4
(3λ1 + 2λ2)

𝜕

𝜕𝑦

(

 
 

4(𝛽
𝜕𝑢

𝜕𝑥
)
2

+ 4(𝛽
𝜕𝑣

𝜕𝑦
)
2

+2(𝛽2
𝜕𝑣

𝜕𝑥
+

𝜕𝑢

𝜕𝑦
)
2

)

 
 

 

                                                                         −
1

𝒦
𝛽2𝑣,                                                             (5.5)  

 

The relevant boundary conditions are 

 

𝑢 = 𝓊0 = −1 − 2𝜋𝜀𝛼𝛽 cos(2𝜋𝑥),  
 

𝑣 = 2𝜋𝜀 sin(2𝜋𝑥) + 𝛽(2𝜋𝜀)2𝛼𝑠𝑖𝑛(2𝜋𝑥)𝑐𝑜𝑠(2𝜋𝑥),   
 

                                                          at    𝑦 = ℎ = 1 + 𝜀 sin(2𝜋𝑥).                                  (5.6) 

 

and the symmetry condition is 

                                                                      
𝜕𝑢

𝜕𝑦
= 0,      at   𝑦 = 0,                                      (5.7) 

 

The stream function 𝜓 is defined as 

                                                                   𝑢 =
𝜕𝜓

𝜕𝑦
,   𝑣 = −

𝜕𝜓

𝜕𝑥
.                                         (5.8) 
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After eliminating the pressure gradient and ignoring 𝛽2 and 𝛽3 terms (long wavelength 

approximation), the governing equations in terms of 𝜓 will take the following form 

 

𝜕4𝜓

𝜕𝑦4
− (ℳ2 +

1

𝒦
)
𝜕2𝜓

𝜕𝑦2
= 𝑅𝑒𝛽 (

𝜕𝜓

𝜕𝑦

𝜕3𝜓

𝜕𝑥𝜕𝑦2
−

𝜕𝜓

𝜕𝑥

𝜕3𝜓

𝜕𝑦3
) 

                                                                            −λ1𝛽 (
𝜕𝜓

𝜕𝑦

𝜕5𝜓

𝜕𝑥𝜕𝑦4
−

𝜕𝜓

𝜕𝑥

𝜕5𝜓

𝜕𝑦5
).              (5.9) 

 

5.2 Volumetric Flow Rate and Boundary Conditions 

 The volumetric flow rate at a certain instant in a fixed frame is given by 

 

                                                                 𝐹̂ = ∫ 𝑈̂(𝑋̂, 𝑌̂, 𝑡̂)𝑑𝑌̂.
𝐻

0

                                       (5.10) 

 

Using Eq. (5.1) in Eq. (5.10), we get 

 

                                                                      𝑓 = ∫ 𝑢̂(𝑥̂, 𝑦̂)𝑑𝑦̂.
𝐿

0

                                        (5.11) 

 

From Eqs. (5.10), (5.11) and (5.1), we get 

 

                                                                         𝐹̂ = 𝑓 + 𝔠𝐿.                                                 (5.12) 

 

The time mean flow, at a fixed position 𝑋̂, over a period 𝒯̂ is defined as 

                                                                        𝑄 =
1

𝒯̂
∫ 𝐹̂𝑑𝑡̂.

𝒯̂

0

                                            (5.13) 

 

Using Eq. (5.12) into Eq. (5.13), and integrating, we get 

 

                                                    𝑄 = ∫ (𝑓 + 𝔠𝐿)𝑑𝑥̂ =
1

0

𝑓 + 𝔠∫ 𝐿𝑑𝑥̂.
1

0

                         (5.14) 

 

Now with the aid of Eq. (4.2), Eq. (5.1) and Eq. (5.14), we get 

 

                                                                      𝑄 = 𝑓 + 𝔠𝑙.                                                     (5.15) 

 

Define the dimensionless form of time mean flow 𝑄̂ and 𝐹̂ respectively as 

 

                                                                     𝑄̂ =
𝑄

𝔠𝑙
,   𝐹 =

𝑓

𝔠𝑙
,                                             (5.16) 

we get 

                                                                         𝑄̂ = 𝐹 + 1,                                                  (5.17) 

7 
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where  

                                                   𝐹 = ∫
𝜕𝜓

𝜕𝑦
𝑑𝑦

ℎ

0

= 𝜓(ℎ) − 𝜓(0).                                   (5.18) 

 

If we choose 𝜓 = 0 at 𝑦 = 0 then 𝜓 = 𝐹 at 𝑦 = ℎ 𝑎𝑛𝑑  other boundary conditions are  

 

𝜓 = 0,   
𝜕2𝜓

𝜕𝑦2
= 0,   𝑎𝑡   𝑦 = 0, 

                                                    𝜓 = 𝐹,   
𝜕𝜓

𝜕𝑦
= 𝑢0,   𝑎𝑡 𝑦 = ℎ,                                      (5.19) 

where 

     𝐹 = ∫
𝜕𝜓

𝜕𝑦
𝑑𝑦,   𝓊0 = −1 − 2𝜋𝜀𝛼𝛽 cos(2𝜋𝑥)

ℎ

0

,   ℎ = 1 + 𝜀 cos(2𝜋𝑥).          (5.20) 

 

5.3 Solution of Problem 

 To solve Eq. (5.9) along the boundary conditions (5.19), we use HPM.  

Here we choose the linear operator 𝐿 and the nonlinear operator 𝑁 as 

                                                    𝐿 =
𝜕4𝜓

𝜕𝑦4
− (ℳ2 +

1

𝒦
)
𝜕2𝜓

𝜕𝑦2
,                                       (5.21) 

  𝑁 = 𝑅𝑒𝛽 (
𝜕𝜓

𝜕𝑦

𝜕3𝜓

𝜕𝑥𝜕𝑦2
−

𝜕𝜓

𝜕𝑥

𝜕3𝜓

𝜕𝑦3
) 

                                                       −λ1𝛽 (
𝜕𝜓

𝜕𝑦

𝜕5𝜓

𝜕𝑥𝜕𝑦4
−

𝜕𝜓

𝜕𝑥

𝜕5𝜓

𝜕𝑦5
).                                (5.22) 

 

We established a homotopy 𝜓[𝑟, 𝑞]: Ω × [0,1] → 𝑅 which satisfy 

 

          ℍ(𝜓, 𝑞) = (1 − 𝑞)[𝐿(𝜓) − 𝐿(𝑤0)] + 𝑞[𝐿(𝜓) + 𝑁(𝜓) − 𝑔(𝑟)] = 0,         (5.23) 

 

Here 𝑤0 is the initial guess and 𝑞𝜖[0,1] is the embedding parameter. 

Also define the homotopy equation  

(1 − 𝑞)

[
 
 
 
 (

𝜕4𝜓

𝜕𝑦4
− (ℳ2 +

1

𝒦
)
𝜕2𝜓

𝜕𝑦2
)

−(
𝜕4𝑤0

𝜕𝑦4
− (ℳ2 +

1

𝒦
)
𝜕2𝑤0

𝜕𝑦2
)
]
 
 
 
 

+ 𝑞

[
 
 
 
 
 
 

𝜕4𝜓

𝜕𝑦4
− (ℳ2 +

1

𝒦
)
𝜕2𝜓

𝜕𝑦2

−𝑅𝑒𝛽 (
𝜕𝜓

𝜕𝑦

𝜕3𝜓

𝜕𝑥𝜕𝑦2
−

𝜕𝜓

𝜕𝑥

𝜕3𝜓

𝜕𝑦3
)

+λ1𝛽 (
𝜕𝜓

𝜕𝑦

𝜕5𝜓

𝜕𝑥𝜕𝑦4
−

𝜕𝜓

𝜕𝑥

𝜕5𝜓

𝜕𝑦5
)
]
 
 
 
 
 
 

= 0,                                                                                                             (5.24) 

 

The associated boundary conditions are 
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𝜓 = 0,   
𝜕2𝜓

𝜕𝑦2
= 0,   𝑎𝑡   𝑦 = 0, 

                                                   𝜓 = 𝐹,   
𝜕𝜓

𝜕𝑦
= 𝓊0,   𝑎𝑡 𝑦 = ℎ                                       (5.25) 

 

Decomposing stream function 𝜓 and the flux 𝐹 in following series  

 

                                                           𝜓 = 𝜓0 + 𝑞𝜓1 + ⋯,                                               (5.26) 

 

                                                            𝐹 = 𝐹0 + 𝑞𝐹1 + ⋯.                                                (5.27) 

 

We choose initial guess 

                                                     𝑤0 = 𝓊0 +
(𝑦2 − ℎ2)

2

𝑑𝑃0

𝑑𝑥
,                                         (5.28) 

 

and making use of Eqs. (5.26)-(5.28) in Eqs. (5.24) and (5.25) and equating the same 

powers of 𝑞 on both sides, we get the following equations 

                   𝑞0 : 
𝜕4𝜓0

𝜕𝑦4
− (ℳ2 +

1

𝒦
)
𝜕2𝜓0

𝜕𝑦2
=

𝜕4𝑤0

𝜕𝑦4
− (ℳ2 +

1

𝒦
)
𝜕2𝑤0

𝜕𝑦2
,               (5.29) 

 

with the boundary conditions 

𝜓0 = 0,   
𝜕2𝜓0

𝜕𝑦2
= 0,   at   𝑦 = 0, 

                                                 𝜓0 = 𝐹0 ,   
𝜕𝜓0

𝜕𝑦
= 𝓊0,   at 𝑦 = ℎ,                                   (5.30) 

 

𝑞1 : 
𝜕4𝜓1

𝜕𝑦4
− (ℳ2 +

1

𝒦
)
𝜕2𝜓1

𝜕𝑦2
= 𝑅𝑒𝛽 (

𝜕𝜓0

𝜕𝑦

𝜕3𝜓0

𝜕𝑥𝜕𝑦2
−

𝜕𝜓0

𝜕𝑥

𝜕3𝜓0

𝜕𝑦3
) 

                                                                            −λ1𝛽 (
𝜕𝜓0

𝜕𝑦

𝜕5𝜓0

𝜕𝑥𝜕𝑦4
−

𝜕𝜓0

𝜕𝑥

𝜕5𝜓0

𝜕𝑦5
),     (5.31) 

 

with boundary conditions 

𝜓1 = 0,   
𝜕2𝜓1

𝜕𝑦2
= 0,   at   𝑦 = 0, 

                                                  𝜓1 = 𝐹1 ,   
𝜕𝜓1

𝜕𝑦
= 0,   at  𝑦 = ℎ                                     (5.32) 

 

Solving Eqs. (5.29)-(5.32), we get following expressions 

 



68 

 

                  𝜓0 =
1

2𝐺
3
2𝑐𝑜𝑠ℎ(√𝐺ℎ)ℎ − 2𝐺𝑠𝑖𝑛ℎ(√𝐺ℎ)

[2√𝐺
𝑑𝑃0

𝑑𝑥
(𝑦

− 𝑐𝑜𝑠ℎ[√𝐺(𝑦 − ℎ)]ℎ)  

+ √𝐺𝑐𝑜𝑠ℎ[√𝐺ℎ] (
𝑑𝑃0

𝑑𝑥
(𝑦 − ℎ)(−2 + 𝐺𝑦ℎ) + 2𝐺𝑦𝐹0)

+ 𝑠𝑖𝑛ℎ[√𝐺𝑦] (2
𝑑𝑃0

𝑑𝑥
− 𝐺ℎ2

𝑑𝑃0

𝑑𝑥
− 2𝐺𝐹0 + 2𝐺𝓊0)

− 𝑠𝑖𝑛ℎ[√𝐺ℎ] (
𝑑𝑃0

𝑑𝑥
(2 + 𝐺𝑦2 − 2𝐺𝑦ℎ) + 2𝐺𝑦𝓊0)        

− 2
𝑑𝑃0

𝑑𝑥
𝑠𝑖𝑛ℎ[√𝐺(𝑦 − ℎ)]],                                                                  (5.33) 

 

 

                    𝜓1 =
1

8(−√𝐺𝑐𝑜𝑠ℎ[√𝐺ℎ]ℎ + 𝑠𝑖𝑛ℎ[√𝐺ℎ])
4 𝐶1(𝑥, 𝑦)𝐹1

+
𝛽(𝑅𝑒 − 𝐺λ)ℎ′

128𝐺
3
2 (

−√𝐺𝑐𝑜𝑠ℎ[√𝐺ℎ]ℎ

+𝑠𝑖𝑛ℎ[√𝐺ℎ]
)

4 [𝐶2(𝑥, 𝑦) + 𝑐𝑜𝑠ℎ[√𝐺ℎ]𝐶3(𝑥, 𝑦)

+ 𝑐𝑜𝑠ℎ[√𝐺ℎ]𝐶4(𝑥, 𝑦) + 𝑐𝑜𝑠ℎ[√𝐺ℎ]𝐶5(𝑥, 𝑦) + 𝑐𝑜𝑠ℎ[√𝐺ℎ]𝐶6(𝑥, 𝑦)

+ 𝑐𝑜𝑠ℎ[√𝐺ℎ]𝐶7(𝑥, 𝑦) + 𝑠𝑖𝑛ℎ[√𝐺ℎ]𝐶8(𝑥, 𝑦) + 𝑠𝑖𝑛ℎ[√𝐺ℎ]𝐶9(𝑥, 𝑦)

+ 𝑠𝑖𝑛ℎ[2√𝐺ℎ]𝐴10(𝑥, 𝑦) + 𝑠𝑖𝑛ℎ[3√𝐺ℎ]𝐶11(𝑥, 𝑦)

+ 𝑠𝑖𝑛ℎ[4√𝐺ℎ]𝐶12(𝑥, 𝑦) + 𝑐𝑜𝑠ℎ[√𝐺(𝑦 − ℎ)]𝐶13(𝑥, 𝑦)

+ 𝑐𝑜𝑠ℎ[√𝐺(𝑦 + ℎ)]𝐶14(𝑥, 𝑦) + 𝑐𝑜𝑠ℎ[√𝐺(𝑦 − 2ℎ)]𝐶15(𝑥, 𝑦)

+ 𝑐𝑜𝑠ℎ[√𝐺(𝑦 + 2ℎ)]𝐶16(𝑥, 𝑦) + 𝑐𝑜𝑠ℎ[√𝐺(𝑦 − 3ℎ)]𝐶17(𝑥, 𝑦)

+ 𝑐𝑜𝑠ℎ[√𝐺(𝑦 + 3ℎ)]𝐶18(𝑥, 𝑦) + 𝑐𝑜𝑠ℎ[√𝐺(𝑦 − 4ℎ)]𝐶19(𝑥, 𝑦)

+ 𝑠𝑖𝑛ℎ[√𝐺(𝑦 − ℎ)]𝐶20(𝑥, 𝑦) + 𝑠𝑖𝑛ℎ[√𝐺(𝑦 + ℎ)]𝐶21(𝑥, 𝑦)

+ 𝑠𝑖𝑛ℎ[√𝐺(𝑦 − 2ℎ)]𝐶22(𝑥, 𝑦) + 𝑠𝑖𝑛ℎ[√𝐺(𝑦 + 2ℎ)]𝐶23(𝑥, 𝑦)

+ 𝑠𝑖𝑛ℎ[√𝐺(𝑦 − 3ℎ)]𝐶24(𝑥, 𝑦) + 𝑠𝑖𝑛ℎ[√𝐺(𝑦 + 3ℎ)]𝐶25(𝑥, 𝑦)

+ 𝑠𝑖𝑛ℎ[√𝐺(𝑦

− 4ℎ)]𝐶26(𝑥, 𝑦)],                                                                                     (5.34) 

 

where 

                                                               𝐺 = ℳ2 +
1

𝒦
,                                                      (5.35) 

 

where 𝐶1(𝑥, 𝑦), 𝐶2(𝑥, 𝑦), 𝐶3(𝑥, 𝑦), … , 𝐶26(𝑥, 𝑦) are given in appendix. 

Using Eqs. (5.33) and (5.34) into (5.26), we get the solution in the following form 

                                                          𝜓 = 𝜓0 + 𝑞𝜓1 + ⋯,                                                (5.36) 

 

We introduce 𝐹 = 𝐹0 + 𝑞𝐹1 in stream function 𝜓 given in Eq. (5.36). Now pressure 

gradient can be found in the following equations 
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𝜕𝑝

𝜕𝑥
= 𝑅𝑒𝛽 (

𝜕𝜓

𝜕𝑥

𝜕2𝜓

𝜕𝑦2
−

𝜕𝜓

𝜕𝑦

𝜕2𝜓

𝜕𝑥𝜕𝑦
) +

𝜕3𝜓

𝜕𝑦3

+ λ1𝛽 (
𝜕𝜓

𝜕𝑦

𝜕4𝜓

𝜕𝑥𝜕𝑦3
−

𝜕𝜓

𝜕𝑥

𝜕4𝜓

𝜕𝑦4
+

𝜕2𝜓

𝜕𝑥𝜕𝑦

𝜕3𝜓

𝜕𝑦3
+

𝜕3𝜓

𝜕𝑥𝜕𝑦2

𝜕2𝜓

𝜕𝑦2
)

− (ℳ2 +
1

𝒦
)(

𝜕𝜓

𝜕𝑦
+ 1),                                                                       (5.37) 

  

                                                           
𝜕𝑝

𝜕𝑦
= 2λ1𝛽

𝜕2𝜓

𝜕𝑦2

𝜕3𝜓

𝜕𝑦3
.                                              (5.38) 

Here one more interested physical quantity is the non-dimensional skin friction 

coefficient 𝑐𝑓 which is defined at the height 𝑦 = ℎ of the channel as 

                                                                      𝑐𝑓 =
𝜏𝑤

𝜌𝔠2
,                                                         (5.39) 

The dimensionless form of Eq. (5.39) is  

                                                                    √𝑅𝑒𝑐𝑓 = 𝜏𝑤,                                                    (5.40) 

where 

                𝜏𝑤 = [
𝜕2𝜓

𝜕𝑦2
+ λ1𝛽 (

𝜕𝜓

𝜕𝑦

𝜕3𝜓

𝜕𝑥𝜕𝑦2
−

𝜕𝜓

𝜕𝑥

𝜕3𝜓

𝜕𝑦3
+ 2

𝜕2𝜓

𝜕𝑥𝜕𝑦

𝜕2𝜓

𝜕𝑦2
)]

𝑦=ℎ

.             (5.41) 

The above expression can be obtained by driving Eq. (5.36) into Eq. (5.39) and the 

numerical result which is found by using software MTHEMATICA, has been 

discussed in the next section. 

  

5.4 Numerical Solution and Discussion 

 In this section effect of Hartmann number ℳ, fluid parameter λ1, porosity 

parameter 𝒦 and Reynolds number 𝑅𝑒 on pressure gradient, velocity field and trapping 

bolus are investigated. Figs. 5.2a-d reveal the impacts of interested parameters on 

horizontal velocity which show that influences of emerging parameters on ciliated flow 

are strong at the center region of the channel and decay near the channel's wall due to 

cilia anchored in the inner wall surface. The parabolic behavior of flow is caused by 

pressure gradient which is close to the core region of the channel due to the moving 

force caused by tip of cilia bed. Fig. 5.2a reveals the outcome of Hartmann 

number/magnetic parameter ℳ on the horizontal velocity. The magnetic parameter is 

the ratio of electromagnetic forces to the viscous forces. Here we have considered the 

ratio 1, 2 and 3 that means electromagnetic forces are equal, double and triple to the 

viscous forces and help to retard the horizontal velocity as electromagnetic forces are 

applied transverse to the direction of flow. The viscoelastic fluid flow due to ciliary 

movement in the existence of viscous and inertial effects can be visualized due to the 
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magnetic field that is dominant over the viscous effect therefore impact of magnetic 

field in the normal direction is more powerful than the viscous effect which helps to 

retard the motion to observe the frequency of cilia beat. Fig. 5.2b depicts the impact of 

porosity parameter 𝒦 on the horizontal component of the velocity. Porosity parameter 

is the ratio of pore volume to the bulk volume which is mostly less than one. It shows 

that if bulk volume decreases or pore volume increases then horizontal velocity 

increases close to core region of the channel, because increase in pore volume permit 

the fluid to flow through the porous space that results to enhance the velocity profile in 

the horizontal direction (x direction). Fig. 5.2c shows that velocity profile in 

longitudinal direction rises with the increasing value of viscoelastic parameter λ1, 

because the fluid become thin and resistivity due to viscosity become weak. Fig. 5.2d 

shows that the Reynolds number 𝑅𝑒 is considered to be 1, 5 and 10. Since in this study 

we have considered the inertial effects due to Reynolds number, which causes to 

accelerate the fluid flow because inertial forces have large impact due to high speed as 

compared to the viscous forces. 

The behavior of the vertical component of the velocity field is indicated in Figs. 5.3a-

d. These figures show that velocity vanishes at the center of the channel and behave 

like a sinusoidal wave. These figures indicate the effect of Hartmann number ℳ, fluid 

parameter λ1, porosity parameter 𝒦 and Reynolds number 𝑅𝑒. Figs. 5.3a-d show that 

vertical velocity enhances with the rising value of ℳ (Hartmann number), λ1 (fluid 

parameter), 𝒦 (Porosity parameter) 𝑅𝑒 (Reynolds number) in upper half of the channel 

and same behavior is observed in the lower half of the channel in opposite direction due 

to symmetry of ciliated channel with effective and recovery stroke (to and fro motion).  

Figs. 5.4a-d illustrate that horizontal pressure gradient 
𝜕𝑝

𝜕𝑥
 has a periodic nature. Figs. 

5.4a-b show that favorable pressure gradient occurs with the rising value of Hartmann 

number ℳ and with the rising value of porosity parameter 𝒦, because Lorentz force 

due to magnetic field require more pressure to flow and porous medium requires less 

pressure for the fluid flow in the porous regime. However Figs. 5.4c-d show the dual 

behavior of pressure gradient with the growing value of fluid parameter λ1 and 

Reynolds number 𝑅𝑒.  It can be depicted from Figs. 5.4c-d that pressure gradient show 

decline in the region −1 < 𝑥 < −0.5 and 0 < 𝑥 < 0.5 while rises in the region −0.5 <

𝑥 < 0 and 0.5 < 𝑥 < 1 with the growing value of λ1 and 𝑅𝑒 due to the metachoronal 

wave motion in the horizontal direction. 
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The behavior of vertical pressure gradient is seen in Figs. 5.5a-d which is symmetric 

about the center line and behave like a sinusoidal wave. These figures show that vertical 

pressure gradient is favorable in the region 05.0  x  and adverse in the region 0 <

𝑥 < 0.5 with the growing value of λ1 ,ℳ and 𝒦 near the upper wall, and static pressure 

increases in the direction of flow due to forward and backward stroke. 

The stream line plots can be seen for Hartmann number ℳ, fluid parameter λ1, porosity 

parameter 𝒦 and Reynolds number 𝑅𝑒 in Figs. 5.6a-5.9c by taking all other parameters 

𝛼 = 0.4, 𝛽 = 0.4, 𝜀 = 0.1, 𝑄 = 0.9. The impact of Hartmann number on stream lines 

is shown in Figs. 5.6a-c which illustrate that increasing value of Hartmann number ℳ 

resist the flow, therefore bolus size reduces. It can be observed from Figs. 5.7a-c that 

bolus size increases with the rising value of porosity parameter 𝒦 as it allows the fluid 

to flow through the medium. Figs. 5.8a-c indicate that increasing value of fluid 

parameter λ1 help to increase the size of trapped bolus. Figs. 5.9a-c indicate that bolus 

size and the number of stream lines become larger due to the increasing amount of 

inertial forces compared to the viscous forces. Fig. 5.10a-b have been plotted for the 

comparison of velocity for both symplectic and antiplectic metachronal waves. It is 

noted that both velocities have same effect for symplectic and antiplectic waves by 

growing cilia length 𝜀, but the magnitude of velocity for antiplectic metachronal wave 

is greater than the magnitude of velocity due to symplectic metachronal wave. 

Therefore for the high speed, researchers used the antiplectic patterns of the wave 

whereas for the low speed of ciliary flow they used the symplectic patterns. At the end, 

the impact of viscoelastic second grade fluid on the skin friction has been plotted in 

Fig. 5.11 for the growing length of cilia 𝜀. This figure reveals the linear relation between 

the 𝜏𝑤 and λ1, It is also noted that this linear relation become nonlinear as cilia length 

𝜀 increases.  
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Fig. 5.2a: The effect of Hartmann number ℳ on longitudinal velocity. 

 

 

 

 

 

 

 

 

 

 
Fig. 5.2b: The effect of porosity parameter 𝒦 on longitudinal velocity. 
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Fig. 5.2c: The effect of fluid parameter 𝜆1 on transverse velocity. 

 

 

 

 

 

 

 

 

  

 
Fig. 5.2d: The effect of Reynolds number 𝑅𝑒 on transverse velocity.  
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Fig. 5.3a: The effect of Hartmann number ℳ on transverse velocity. 

 

 

 

 

 

 

 

 

 

 
Fig. 5.3b: The effect of porosity parameter 𝒦 on transverse velocity. 
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Fig. 5.3c: The effect of fluid parameter 𝜆1 on transverse velocity.  

 

 

 

 

 

 

 

 

 
Fig. 5.3d: The effect of Reynolds number 𝑅𝑒 on transverse velocity.  
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Fig. 5.4a: The effect of Hartmann number ℳ on longitudinal pressure gradient. 

 

 

 

 

 

 

 

 

 

 
Fig. 5.4b: The effect of porosity parameter 𝒦 on longitudinal pressure gradient. 
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Fig. 5.4c: The effect of fluid parameter 𝜆1 on longitudinal pressure gradient.  

 

 

 

 

 

 

 

 

 

 
Fig. 5.4d: The effect of Reynolds number 𝑅𝑒 on longitudinal pressure gradient.  
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Fig. 5.5a: The effect of Hartmann number ℳ on transverse pressure gradient. 

 

 
Fig. 5.5b: The effect of porosity parameter 𝒦 on transverse pressure gradient. 

 

 

 
Fig. 5.5c: The effect of fluid parameter 𝜆1 on transverse pressure gradient.  
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    (a) ℳ = 1.0        (b) ℳ = 1.5 

 

 

 

 

 

 

 

 
              

           (c) ℳ = 2.0 

 

 

Fig. 5.6: Influence of Hartmann number ℳ on stream function 
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 (a) 𝒦 = 0.15        (b) 𝒦 = 0.2 

 

 

 

 

 

 

 

 
          

      (c) 𝒦 = 0.3 
 

 

Fig. 5.7: Influence of porosity parameter 𝒦 on stream function 
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     (a) λ1 = 1         (b) λ1 = 3 

 

 

 

 

 

 

 

 
           

        (c) λ1 = 5 
 

 

Fig. 5.8: Influence of fluid parameter λ1 on stream function. 
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     (a) 𝑅𝑒 = 1                 (b) 𝑅𝑒 = 50 
 

 

 

 

 

 

 
          

      (c) 𝑅𝑒 = 100 
 

 

Fig. 5.9: Influence of Reynolds number 𝑅𝑒  on stream function. 
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(a) u(x,y) 

 

 

 

 

 

 

 

 
(b) v(x,y) 

 

Fig. 5.10: Comparison of velocities for the effect of cilia length 𝜀 for both symplectic 

and antiplectic metachronal wave. 
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Fig. 5.11: Influence of cilia length 𝜀 on the skin friction.  

 

 

5.5 Conclusion 

 In this study we have assumed the inertial flow of MHD 2nd grade fluid in a ciliated 

channel implanted in a porous medium. This study is presented first time with the effect 

of inertial forces 𝑅𝑒 ≠ 0 in the existence of magnetic field and porous medium. The 

highly nonlinear equation is solved by the HPM and Software “Mathematica”. From 

the Figs. 5.2-5.9 it is clear that code is validated for the emerging parameters Re, 

Hartmann number ℳ, fluid parameter λ1 and porosity parameter 𝒦 for the velocity, 

pressure gradient and stream function as showing the symmetric behaviour about y=0. 

From the graphs of stream functions it is cleared that path of ciliary movement is elliptic 

which is shown in graphs plotted by the code that is generated in software 

“Mathematica”. The two dimensional and two directional flow is represented by non-

linear PDEs which are solved by HPM. The study of second grade fluid with small 

Reynolds number approximation is recently presented by S. Hina [84] but not a single 

study is available in literature for inertial flow of 2nd grade fluid in a ciliated channel. 

If λ1,→ 0, 𝑅𝑒 → 0 and 𝛽 → 0 then present study can be validated with the study of A. 

M. Siddiqui [43] that is hydro magnetic ciliated flow of Newtonian fluid in a porous 

medium. 

 This study can be very useful for those researchers who are interested to observe the 

pressure and flow pattern of mucus in trachea and blood flow in fallopian tube during 

motion with the inertial effect. When the body is performing a job (exercise) then shear 

forces and inertial forces are very effective for the biological flows e.g. mucus in 
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trachea, blood in fallopian tube and cerebrospinal fluid due to ciliary movement. 

 The MHD flow of the 2nd grade fluid in a ciliated channel have shown following 

observations on velocity, pressure gradient and stream function. 

 The horizontal velocity decreases with Hartmann number ℳ and increases with 

Reynolds number 𝑅𝑒, porosity parameter𝒦, and fluid parameter λ1 at the centre of 

the channel. But velocity is small at the exit and entrance region and attain its 

maximum value at the center of the channel. Whereas, the vertical component of 

the velocity vanishes at the center of channel and move like a sinusoidal wave. 

 Favorable pressure gradient in x direction uniformly increases for Hartmann 

number ℳ and uniformly decreases with the porosity parameter 𝒦 and it shows a 

dual behaviour for the fluid parameter λ1 and the Reynolds number𝑅𝑒, whereas, the 

vertical favorable pressure gradient is symmetric about the center of channel. It 

decreases for large value of Hartmann number ℳ while increases for larger values 

of fluid parameter λ1 and Reynolds number Re. 

 Size of trapped bolus reduces with increasing value of Hartmann number ℳ 

and expanded with increasing value of porosity parameter 𝒦 and fluid parameter 

λ1. However both the size and number of trapped bolus increases in a specific 

direction by increasing the value of Reynolds number 𝑅𝑒 due to high speed. 
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Chapter 6 

Forced Convective Flow of MHD 

Jeffrey Bio Fluid in a Ciliated Channel  

 Physiological transportation often occur due to ciliated surfaces. In human body, the 

physiological fluids e.g. blood which contain hemoglobin consists of ionic constituents 

that make reaction with the magnetic forces when undergo to external (extra-corporeal) 

magnetic fields. Motivated by these applications, here, we have assumed the forced 

convective magnetohydrodynamic viscoelastic physiological fluid flow through a 

ciliated channel. Darcy porous medium drag force model has been used for the 

existence of deposits e.g. cholesterol, fats etc. Viscous dissipation is fitted in energy 

conversation equation to reveals the heat loss effects.  The infinite series of pressure 

distribution, velocity and temperature have been constructed via ADM. The impact of 

interested physical parameters such as Brinkman number, Jeffrey first and second 

viscoelastic parameters, Hartmann number and permeability parameter on temperature, 

pressure gradient, velocity and stream function are visualized graphically. 

 

6.1 Mathematical Formulation 

 The regime under investigation, as visualized in Fig. 6.1, examines the forced 

convective magnetohydrodynamic (MHD) flow of an incompressible physiological 

liquid through a ciliated channel of finite length L. The channel is ciliated internally, 

and contains a high-permeability porous medium (representative of deposits, debris etc. 

in biomedical vessels). A constant strength of magnetic field, 𝐵0, is applied normal to 

the longitudinal axis of the channel.  
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Fig. 6.1: Geometry of Problem 

 

The collective motion of cilia generates a metachronal wave in the axial direction of 

channel having wave speed 𝔠, and wavelength λ. The biofluid rheology is simulated 

with the robust Jeffrey elastic-viscous model [34] for which the constitutive equation 

is 

                                                  𝝉 = −𝑝𝑰 + 𝑺,                                                          (6.1) 

where 

                                                         𝑺 =
𝜇

1 + λ1

(𝜸̇ + λ2𝜸̈).                                                 (6.2) 

The momentum and energy equations in the fixed frame are given by 

                                                                
𝜕𝑈̂

𝜕𝑋̂
+

𝜕𝑉̂

𝜕𝑌̂
= 0,                                                         (6.3) 

               𝜌 (𝑈̂
𝜕𝑈̂

𝜕𝑋̂
+ 𝑉̂

𝜕𝑈̂

𝜕𝑌̂
) = −

𝜕𝑃̂

𝜕𝑋̂
+

𝜕𝑆𝑋̂𝑋̂

𝜕𝑋̂
+

𝜕𝑆𝑋̂𝑌̂

𝜕𝑌̂
+ (𝐽 × 𝐵)𝑋̂ + 𝑅𝑋̂ ,                   (6.4) 

               𝜌 (𝑈̂
𝜕𝑉̂

𝜕𝑋̂
+ 𝑉̂

𝜕𝑉̂

𝜕𝑌̂
) = −

𝜕𝑃̂

𝜕𝑌̂
+

𝜕𝑆𝑋̂𝑌̂

𝜕𝑋̂
+

𝜕𝑆𝑌̂𝑌̂

𝜕𝑌̂
+ (𝐽 × 𝐵)𝑌̂ + 𝑅𝑌̂,                    (6.5) 

𝜌𝑐𝑝 (𝑈̂
𝜕𝑇̂

𝜕𝑋̂
+ 𝑉̂

𝜕𝑇̂

𝜕𝑌̂
)

= 𝑆𝑋̂𝑋̂

𝜕𝑈̂

𝜕𝑋̂
+ 𝑆𝑋̂𝑌̂ (

𝜕𝑈̂

𝜕𝑌̂
+

𝜕𝑉̂

𝜕𝑋̂
) + 𝑆𝑌̂𝑌̂

𝜕𝑉̂

𝜕𝑌̂
+ 𝑘1 (

𝜕2𝑇̂

𝜕𝑋̂2
+

𝜕2𝑇̂

𝜕𝑌̂2
).         (6.6) 
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Where 

                                       𝑆𝑋̂𝑋̂ =
2𝜇

1 + λ1
[1 + λ2 (𝑈̂

𝜕

𝜕𝑋̂
+ 𝑉̂

𝜕

𝜕𝑌̂
)]

𝜕𝑈̂

𝜕𝑋̂
 ,                           (6.7) 

                                   𝑆𝑋̂𝑌̂ =
𝜇

1 + λ1
[1 + λ2 (𝑈̂

𝜕

𝜕𝑋̂
+ 𝑉̂

𝜕

𝜕𝑌̂
)] (

𝜕𝑈̂

𝜕𝑌̂
+

𝜕𝑉̂

𝜕𝑋̂
),                 (6.8) 

                                        𝑆𝑌̂𝑌̂ =
2𝜇

1 + λ1
[1 + λ2 (𝑈̂

𝜕

𝜕𝑋̂
+ 𝑉̂

𝜕

𝜕𝑌̂
)]

𝜕𝑉̂

𝜕𝑌̂
 ,                           (6.9) 

                                                 (𝐽 × 𝐵)𝑋̂ = −𝜎𝐵0
2,   (𝐽 × 𝐵)𝑌̂ = 0,                               (6.10) 

                                                         𝑅𝑋̂ =
𝜇𝜑

𝑘
𝑈̂,   𝑅𝑌̂ =

𝜇𝜑

𝑘
𝑉̂.                                         (6.11) 

The envelope of the tips are as follow 

                                    𝑋̂  = 𝐹(𝑋̂, 𝑡̂) = 𝑋0 + 𝜀𝑙𝛼𝑠𝑖𝑛 (
2𝜋

𝜆
) (𝑋̂ − 𝔠𝑡̂),                          (6.12) 

                                   𝑌̂ = 𝐻(𝑋̂, 𝑡̂) = 𝑙 + 𝜀𝑙𝑐𝑜𝑠 (
2𝜋

𝜆
) (𝑋̂ − 𝔠𝑡̂) = ±𝐿.                       (6.13) 

The fixed and the wave frame are related as follow 

 

          𝑥̂ = 𝑋̂ − 𝔠𝑡̂,    𝑢̂ = 𝑈̂ − 𝔠,   𝑦̂ = 𝑌̂,   𝑣 = 𝑉̂ ,    𝑝̂(𝑥̂, 𝑦̂, 𝑡̂) = 𝑃̂(𝑋̂, 𝑌̂, 𝑡̂).            (6.14) 

 

The following non-dimensional variables are implemented 

 

𝑥 =
 𝑥̂

λ
,    𝑢 =

 𝑢̂

𝔠
,    𝑦 =

 𝑦̂

𝑙
,   𝑣 =

λ 𝑣

𝑙𝔠
 , 

𝑝 =
𝑙2 𝑝̂

𝔠λμ
,   𝑡 =

𝔠 𝑡̂

λ
,   ℎ =

𝐿

𝑙
,   𝛽 =

𝑙

λ
 , 

𝑅𝑒 =
𝜌𝔠𝑙

𝜇
 ,   

1

𝒦
=

𝜑𝑙2

𝑘
,   ℳ2 =

𝜎𝐵0
2𝑙2

𝜇
 ,  

𝑃𝑟 =
𝜇𝑐𝑝

𝑘1
,   𝐸𝑐 =

𝔠2

𝑐𝑝𝑇0
,   𝐵𝑟 = 𝑃𝑟𝐸𝑐 , 

                                                                    𝜃 =
𝑇̂ − 𝑇0

𝑇0
 .                                                     (6.15) 

 

With the help of Eqs. (6.7)-(6.15) and employing the low Reynolds number 

approximation from lubrication theory, Eqs. (6.3)-(6.6) take the following form: 

                                                                  
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0,                                                     (6.16) 

         
𝜕𝑝

𝜕𝑥
=

1

1 + λ1

𝜕

𝜕𝑦
(1 + λ2𝛽 (𝑢

𝜕

𝜕𝑥
+ 𝑣

𝜕

𝜕𝑦
))

𝜕𝑢

𝜕𝑦
− (ℳ2 +

1

𝒦
) (𝑢 + 1),        (6.17) 

                                                                        
𝜕𝑝

𝜕𝑦
= 0,                                                          (6.18) 
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𝜕2𝜃

𝜕𝑦2
=

𝐵𝑟

1 + λ1
(1 + λ2𝛽 (𝑢

𝜕

𝜕𝑥
+ 𝑣

𝜕

𝜕𝑦
)) (

𝜕𝑢

𝜕𝑦
)
2

.                     (6.19) 

 

The associated boundary conditions can be emerge as 

 

𝑢(ℎ) = 𝓊0 = −1 − 2𝜋𝜀𝛼𝛽 cos(2𝜋𝑥), 
 

𝑣(ℎ) = 2𝜋𝜀 sin(2𝜋𝑥) + 𝛽(2𝜋𝜀)2𝛼 sin(2𝜋𝑥) cos(2𝜋𝑥), 
 

𝜃(ℎ) = 0,    at    𝑦 = ℎ, 

 

                                                      
𝜕𝑢

𝜕𝑦
= 0,   

𝜕𝜃

𝜕𝑦
= 0,   at   𝑦 = 0,                                   (6.20)  

 

here ℎ = 1 + 𝜀 cos(2𝜋𝑥).  
 

The stream function 𝜓 is defined as 

 

                                                         𝑢 =
𝜕𝜓

𝜕𝑦
,   𝑣 = −

𝜕𝜓

𝜕𝑥
 .                                               (6.21) 

 

Eqs. (6.16)-(6.19) in terms of 𝜓 take the following form 

 

         
𝜕4𝜓

𝜕𝑦4
= λ2𝛽

𝜕2

𝜕𝑦2
(
𝜕𝜓

𝜕𝑦

𝜕

𝜕𝑥
−

𝜕𝜓

𝜕𝑥

𝜕

𝜕𝑦
)
𝜕2𝜓

𝜕𝑦2
+ (ℳ2 +

1

𝒦
) (1 + λ1)

𝜕2𝜓

𝜕𝑦2
 .        (6.22) 

                                                        ,                                    

                             
𝜕2𝜃

𝜕𝑦2
=

𝐵𝑟

1 + λ1
(1 + λ2𝛽 (

𝜕𝜓

𝜕𝑦

𝜕

𝜕𝑥
−

𝜕𝜓

𝜕𝑥

𝜕

𝜕𝑦
))(

𝜕2𝜓

𝜕𝑦2
)

2

.                 (6.23) 

 

The boundary conditions can be expressed as 

 

𝜓 = 0,   
𝜕2𝜓

𝜕𝑦2
= 0,   

𝜕𝜃

𝜕𝑦
= 0,   𝑎𝑡   𝑦 = 0, 

                                     𝜓 = 𝐹,   
𝜕𝜓

𝜕𝑦
= −1 − 2𝜋𝜀𝛼𝛽 cos(2𝜋𝑥) ,   𝜃 = 0,                   (6.24) 

𝜕𝜓

𝜕𝑥
= 2𝜋𝜀 sin(2𝜋𝑥) + 𝛽(2𝜋𝜀)2𝛼 sin(2𝜋𝑥) cos(2𝜋𝑥) ,   𝑎𝑡 𝑦 = ℎ. 

 

Here 𝑄 is the volumetric flow rate, and related to the flux by the following relation 

 

                                                      𝑄 = ∫ (
𝜕𝜓

𝜕𝑦
+ 1) 𝑑𝑦

ℎ

0

= 𝐹 + ℎ.                                 (6.25) 

 

In fixed frame, the time mean volumetric flow rate is defined as 

                                         𝑄̂ =
1

𝑇
∫ (𝐹 + ℎ)𝑑𝑡̂ = ∫ (𝐹 + ℎ)𝑑𝑡 = 𝐹 + 1.

1

0

ℎ

0

                (6.26) 
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6.2 Solution of the Problem 

 Many advanced computational and semi-computational methods may be employed to 

evaluate the transformed boundary value problem defined by Eqs. 6.22-6.24. These 

include homotopy methods, spectral methods, variational iterative methods and finite 

element methods. Here we have employed the Adomian decomposition method 

(ADM), introduced by American mathematician, Adomian [81]. Recent applications of 

this technique in complex biological flow problems include Bég et al. [85] (for smart 

lubrication squeeze films) and Bég [86] (swirling nanofluid bioreactors). 

Re-writing Eqs. (6.22) and (6.23) in terms of Adomian operators we have 

 

𝜓 = 𝜑0 + 𝐿1
−1 (−λ2𝛽

𝜕2

𝜕𝑦2
(
𝜕𝜓

𝜕𝑦

𝜕

𝜕𝑥
−

𝜕𝜓

𝜕𝑥

𝜕

𝜕𝑦
)
𝜕2𝜓

𝜕𝑦2
) 

                                               +𝐿1
−1 ((ℳ2 +

1

𝒦
) (1 + λ1)

𝜕2𝜓

𝜕𝑦2
),                              (6.27) 

 

               𝜃 = 𝜑1 −
𝐵𝑟

1 + λ1
𝐿2

−1 ((1 + λ2𝛽 (
𝜕𝜓

𝜕𝑦

𝜕

𝜕𝑥
−

𝜕𝜓

𝜕𝑥

𝜕

𝜕𝑦
))(

𝜕2𝜓

𝜕𝑦2
)

2

).         (6.28) 

 

Here the inverse operators are defined as 

                                                         𝐿1
−1(. ) = ∫∫∫∫(. )𝑑𝑦,                                     (6.29) 

 

                                                                 𝐿2
−1 = ∫∫(. )𝑑𝑦,                                            (6.30) 

 

The linear term 𝜓(𝑥, 𝑦) is decomposed in term of an infinite series of components 

through the following expression 

                                                                 𝜓(𝑥, 𝑦) = ∑ 𝜓𝑛(𝑥, 𝑦).

∞

𝑛=0

                                   (6.31) 

 

The nonlinear term 𝑁𝜓(𝑥, 𝑦) can be decomposed into Adomian polynomials and 

satisfies 

 

                                           𝐴𝑛 =
1

𝑛!

𝑑𝑚

𝑑λ𝑚
[𝑁 (∑𝜓𝑖 ,

∞

𝑖=0

)]

λ=0

,   𝑛 = 0,1,2,3, ….            (6.32) 
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This leads to 

  

                             𝐴0 = −
𝜕𝜓0

𝜕𝑥

𝜕5𝜓0

𝜕𝑦5
+

𝜕𝜓0

𝜕𝑦

𝜕5𝜓0

𝜕𝑥𝜕𝑦4
+ 2

𝜕2𝜓0

𝜕𝑦2

𝜕4𝜓0

𝜕𝑥𝜕𝑦3
 

                                       −2
𝜕4𝜓0

𝜕𝑦4

𝜕2𝜓0

𝜕𝑥𝜕𝑦
 ,                                                                         (6.33) 

 

                             𝐴1 = −
𝜕𝜓0

𝜕𝑥

𝜕5𝜓1

𝜕𝑦5
−

𝜕𝜓1

𝜕𝑥

𝜕5𝜓0

𝜕𝑦5
+

𝜕𝜓1

𝜕𝑦

𝜕5𝜓0

𝜕𝑥𝜕𝑦4
         

           +
𝜕𝜓0

𝜕𝑦

𝜕5𝜓1

𝜕𝑥𝜕𝑦4
+ 2

𝜕2𝜓0

𝜕𝑦2

𝜕4𝜓1

𝜕𝑥𝜕𝑦3
+ 2

𝜕2𝜓1

𝜕𝑦2

𝜕4𝜓0

𝜕𝑥𝜕𝑦3
 

                                      −2
𝜕4𝜓0

𝜕𝑦4

𝜕2𝜓1

𝜕𝑥𝜕𝑦
− 2

𝜕4𝜓1

𝜕𝑦4

𝜕2𝜓0

𝜕𝑥𝜕𝑦
 ,                                            (6.34) 

 

                             𝐴2 = −
𝜕𝜓0

𝜕𝑥

𝜕5𝜓2

𝜕𝑦5
−

𝜕𝜓1

𝜕𝑥

𝜕5𝜓1

𝜕𝑦5
−

𝜕𝜓2

𝜕𝑥

𝜕5𝜓0

𝜕𝑦5
             

+
𝜕𝜓0

𝜕𝑦

𝜕5𝜓2

𝜕𝑥𝜕𝑦4
+

𝜕𝜓1

𝜕𝑦

𝜕5𝜓1

𝜕𝑥𝜕𝑦4
+

𝜕𝜓2

𝜕𝑦

𝜕5𝜓0

𝜕𝑥𝜕𝑦4
 

                +2
𝜕2𝜓0

𝜕𝑦2

𝜕4𝜓2

𝜕𝑥𝜕𝑦3
+ 2

𝜕2𝜓1

𝜕𝑦2

𝜕4𝜓1

𝜕𝑥𝜕𝑦3
+ 2

𝜕2𝜓2

𝜕𝑦2

𝜕4𝜓0

𝜕𝑥𝜕𝑦3
 

                                       −2
𝜕4𝜓0

𝜕𝑦4

𝜕2𝜓2

𝜕𝑥𝜕𝑦
− 2

𝜕4𝜓1

𝜕𝑦4

𝜕2𝜓1

𝜕𝑥𝜕𝑦
− 2

𝜕4𝜓2

𝜕𝑦4

𝜕2𝜓0

𝜕𝑥𝜕𝑦
 .               (6.35) 

 

and 

                                                𝜑0 = 𝑐1 + 𝑐2𝑦 + 𝑐3

𝑦2

2!
+ 𝑐4

𝑦3

3!
 ,                                     (6.36) 

 

 

                                                              𝜑1 = 𝑑1 + 𝑑2𝑦.                                                     (6.37) 

 

Here 𝑐1, 𝑐2, 𝑐3, 𝑐4 , 𝑑1, 𝑑2 are integration constants and can be extracted with the 

assistance of boundary conditions given in Eq. (6.24). Now by decomposing the linear 

and the non-linear terms in the infinite series form, we get 

            ∑ 𝜓𝑛

∞

𝑛=0

= 𝜑0,𝑛 + 𝐿1
−1 (−λ2𝛽

𝜕2

𝜕𝑦2
(
𝜕𝜓𝑛

𝜕𝑦

𝜕

𝜕𝑥
−

𝜕𝜓𝑛

𝜕𝑥

𝜕

𝜕𝑦
)
𝜕2𝜓𝑛

𝜕𝑦2
)          

                                                  +𝐿1
−1 ((ℳ2 +

1

𝒦
) (1 + λ1)

𝜕2𝜓𝑛

𝜕𝑦2
),                         (6.38) 

 

       ∑ 𝜃𝑛

∞

𝑛=0

= 𝜑1,𝑛 −
𝐵𝑟

1 + λ1
𝐿2

−1 ((1 + λ2𝛽 (
𝜕𝜓

𝜕𝑦

𝜕

𝜕𝑥
−

𝜕𝜓

𝜕𝑥

𝜕

𝜕𝑦
))(

𝜕2𝜓

𝜕𝑦2
)

2

).      (6.39) 
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Following the ADM, we obtain 

 

                                         𝜓0 = (
3𝐹 − ℎ𝑢(ℎ)

2ℎ
) 𝑦 − (

𝐹 − ℎ𝑢(ℎ)

2ℎ3
)𝑦3,                         (6.40) 

 

𝜃0 =
1

10ℎ4(1 + λ1)
[𝐵𝑟(

27𝛽𝐹3λ2ℎ
′ + ℎ(−42𝛽𝐹2λ2𝑢(ℎ)ℎ′

+ℎ(−5ℎ4 + 18𝛽𝐹λ2𝑢
2(ℎ)ℎ′

+3𝛽λ2(𝐹 − ℎ𝑢(ℎ))(3𝐹 + 2ℎ𝑢(ℎ))𝑢′(ℎ)))

)]

+
𝐵𝑟

2 + 2λ1
𝑦2

+
1

2ℎ8(1 + λ1)
[
3𝐵𝑟𝛽λ2(𝐹 − ℎ𝑢(ℎ))(3𝐹2 − 3ℎ𝐹𝑢(ℎ)

+ℎ2𝑢2(ℎ)ℎ′ + ℎ2𝐹𝑢′(ℎ))
] 𝑦4 

                                  +
1

5ℎ10(1 + λ1)
[
3𝐵𝑟𝛽λ2(𝐹 − ℎ𝑢(ℎ))

2
× (3𝐹 − 2ℎ𝑢(ℎ))ℎ′

+ℎ2𝑢′(ℎ))
] 𝑦6, (6.41) 

 

𝜓𝑛 = 𝐿1
−1 (−λ2𝛽

𝜕2

𝜕𝑦2
(
𝜕𝜓𝑛−1

𝜕𝑦

𝜕

𝜕𝑥
−

𝜕𝜓𝑛−1

𝜕𝑥

𝜕

𝜕𝑦
)
𝜕2𝜓𝑛−1

𝜕𝑦2
) 

                                  +𝐿1
−1 ((ℳ2 +

1

𝒦
) (1 + λ1)

𝜕2𝜓𝑛−1

𝜕𝑦2
) ,    𝑛 ≥ 1,                     (6.42) 

               𝜃𝑛 = −
𝐵𝑟

1 + λ1
𝐿2

−1 ((1 + λ2𝛽 (
𝜕𝜓𝑛

𝜕𝑦

𝜕

𝜕𝑥
−

𝜕𝜓𝑛

𝜕𝑥

𝜕

𝜕𝑦
))(

𝜕2𝜓𝑛

𝜕𝑦2
)

2

).       (6.43) 

 

The solution in the 𝜓 can be written as 

 

𝜓 = ∑ 𝜓𝑛(𝑥, 𝑦)

∞

𝑛=0

= 𝜓0 + 𝜓1 + 𝜓2 + 𝜓3 + ⋯ = 𝐴11(𝑥)𝑦 + 𝐴12(𝑥)𝑦3 

                                               +𝐴13(𝑥)𝑦5 + 𝐴14(𝑥)𝑦7 + 𝐴15(𝑥)𝑦9 + ⋯,            (6.44)  

 

and the solution of temperature can be written as 

 

𝜃 = 𝜃0 + 𝜃1 + 𝜃2 + 𝜃3 + ⋯ = 𝐵1(𝑥) + 𝐵2(𝑥)𝑦4 

 +𝐵3(𝑥)𝑦6 + 𝐵4(𝑥)𝑦8 + 𝐵5(𝑥)𝑦10 + 𝐵6(𝑥)𝑦12 

              +𝐵7(𝑥)𝑦14 + 𝐵8(𝑥)𝑦16 + 𝐵9(𝑥)𝑦18 + 𝐵10(𝑥)𝑦20 

                              +𝐵11(𝑥)𝑦22 + 𝐵12(𝑥)𝑦24 + ⋯.                                              (6.45) 

Here 𝐴11(𝑥), 𝐴12(𝑥)... 𝐵12(𝑥) are given in the appendix.  

The pressure gradient ( 
𝑑𝑝

𝑑𝑥
)  after using Eq. (6.44) in Eq. (6.17) is as follows 

 
𝑑𝑝

𝑑𝑥
=

1

1 + λ1

𝜕

𝜕𝑦
(1 + λ2𝛽 (

𝜕𝜓

𝜕𝑦

𝜕

𝜕𝑥
−

𝜕𝜓

𝜕𝑥

𝜕

𝜕𝑦
))

𝜕2𝜓

𝜕𝑦2
− (ℳ2 +

1

𝒦
)(

𝜕𝜓

𝜕𝑦
+ 1),   (6.46) 
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Integrate Eq. (6.46) to obtain the pressure rise per wavelength as  

                                                           ∆𝑝 = ∫
𝑑𝑝

𝑑𝑥

1

0

𝑑𝑥.                                                       (6.47) 

However, the numerical value of the integral is evaluated using the symbolic software 

MATHEMATICA. 

 

6.3 Results and Discussion 

  The influence of interested parameters on axial velocity 𝑢(𝑥, 𝑦), axial pressure 

gradient 
𝑑𝑝

𝑑𝑥
, pressure rise ∆𝑝, temperature profile, stream function 𝜓(𝑥, 𝑦) are displayed 

graphically in Figs. 6.2-6.9. 

Axial velocity 

 In Figs. 6.2a-6.2d the effect of Hartmann number ℳ, permeability parameter 𝒦, 

Jeffrey 1st and 2nd viscoelastic parameters (λ1, λ2) on the horizontal velocity 𝑢(𝑥, 𝑦). It 

can be observed from this figure that behavior of velocity is not same at the center and 

near to the wall of channel due to presence of cilia in the interior channel wall. Figs. 

6.2a and 6.2c depict that the horizontal velocity decreases in the region −0.38 < 𝑦 <

0.38 otherwise significant variation is not seen with the increase in ℳand λ1because 

magnetic force and viscous force are strong at the center of the channel whereas the 

converse behavior can be seen in Figs. 6.2b and 6.2d with an increase in 𝒦 and λ2 as 

porosity and retardation time causes to increase the velocity near the center of the 

channel. 

Pumping characteristics 

 Figs. 6.3a-d show that the pressure gradient has a periodic nature and attains its peak 

at core region of the channel then reduces rapidly as we progress from the core zone. 

Similar to velocity field the behavior of pressure gradient exhibits some variation 

throughout the region. It can be observed from Figs. 6.3a that pressure gradient is 

boosted at the center and depressed near the walls with increasing Hartmann number. 

The magnetic field effect is enhanced with rising Hartmann number and generates 

deceleration in the flow. The inverse relation between velocity and pressure manifests 

in an elevation in pressure gradient in the core flow. With increasing permeability 𝒦, 

although velocity is enhanced (Fig. 6.2b), the converse effect is induced in pressure 

gradient (Fig. 6.3c). The Darcy resistance term in Eq. (6.22) is inversely proportional 
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to permeability. Increasing 𝒦 values decrease the impedance to flow and result in an 

acceleration and a drop in the pressure gradient. Figs. 6.3c and 6.3d show that the 

first λ1, and second λ2 Jeffrey parameters induce respectively an enhancement and 

suppression in the pressure gradient, although the first parameter has a much more 

profound effect. The first parameter denotes the ratio of the relaxation to retardation 

times of the bio-rheological fluid whereas the second parameter designates purely 

retardation time. When λ1 = 1 relaxation time is exactly equivalent to retardation time. 

However, we have considered some values less than unity which are more 

representative of physiological fluids [87]. For λ1 < 1, the retardation time is greater 

than relaxation time which implies that the biofluid responds quicker with the removal 

of stress and returns faster to its unperturbed state. This influences pressure gradient 

(and velocity field). 

 Figs. 6.4a-c show the effect of various values of Hartmann number ℳ, permeability 

parameter 𝒦, and the ratio of retardation to relaxation times λ1 on pressure rise ∆𝑝 

versus 𝑄̂. A linear relation between pressure rise ∆𝑝 and volumetric flow rate 𝑄̂ can be 

seen from these figures. Fig. 6.4a depicts that pressure rise increases with Hartmann 

numberℳ, in the region −1.5 < 𝑄̂ < −0.3 because in this region resistive force due 

to magnetic field requires more pressure difference and reverse behavior is noted in the 

range −0.4 < 𝑄̂ < 1 whereas, it decreases with greater permeability (lesser Darcian 

resistance) in the range −1.5 < 𝑄̂ < −0.4 because permeability requires less pressure 

difference for the flow through the mentioned volume flux. The effect of  λ1  on 

pressure rise decreases in the region−1.5 < 𝑄̂ < −1.0. However, the contrary effect is 

induced in the range −1.5 < 𝑄̂ < 1.0 with increasing first Jeffrey viscoelastic 

parameter. 

Temperature profile 

 Figs. 6.5a-e are plotted to analyze the outcome of Hartmann number ℳ, permeability 

parameter 𝒦, Brinkman number 𝐵𝑟, Jeffrey first parameter λ1 and second parameter λ2 

on temperature distribution across the channel. The manner of the temperature profile 

is same as that of the velocity profile although the profiles are significantly more 

plateau-like in the interior region of the channel. Significantly less variation in profiles 

is observed near the channel walls. Increasing Hartmann number (Fig. 6.5a) induces a 

strong elevation in temperatures across the channel due to slow motion in the existence 

of magnetic field. The supplementary work expended by the biofluid is dragging against 
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the applied magnetic field, conversely increasing permeability parameter (Fig. 6.5b) 

leads to a reduction in temperature because porosity causes to reduce conductivity of 

the biofluid. The increase in medium permeability implies a decrease in solid matrix 

fibers in the medium. This reduces the material available for thermal conduction heat 

transfer and manifests in a cooling of the medium. Thermal conductivity of the fluid-

saturated medium is clearly influenced with a modification in permeability and as the 

permeability increases the heat transfer rate to the walls will increase. Increasing first 

and second Jeffrey parameters (Figs. 6.5c and 6.5d) respectively decreases and 

enhances the temperature magnitudes in the medium. Retardation of the biofluid is 

therefore beneficial to heat transfer through the medium whereas relaxation opposes it. 

Fig.5e illustrates the impact of Brinkman number on the temperature profile. Brinkman 

number is the heat conduction from the boundary to the viscous fluid and characterizes 

the viscous dissipation term in the fluid flow. With rising the value of Brinkman 

number, the thermal conductivity of the fluid reduces so larger quantity of heat that can 

be transferred through the fluid. It is also noted that a higher temperature exists close 

to the interior region of the channel in comparison to the walls of the ciliated channel. 

Streamlines 

 Figs. 6.6-6.9 reveal the impact of Hartmann number ℳ, permeability parameter 𝒦, the 

Jeffrey 1st parameter λ1 and 2nd parameter λ2 on the stream function. Figs. 6.6a-c depicts 

that the number of trapped boluses decrease with Hartmann number. This is because 

magnetic force decelerate the velocity. It is noted from Figs. 6.7a-c that the amplitude 

of wave reduces with a rise in the permeability parameter since the flow is accelerated 

and this prevents the build-up of larger amplitudes generated by the metachronal wave 

motion. Figs. 6.8a-c highlight that the number of trapped boluses and their magnitudes 

are enhanced with increasing Jeffrey first viscoelastic parameter i.e. with greater 

rheological relaxation times. The boluses are strongly stretched in the vertical direction 

with greater values of λ1. Finally, it is evident from Figs. 6.9a-c that the size of trapped 

boluses is also increased with greater retardation time values λ2. 
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Fig. 6.2a: The effect of Hartmann number ℳ on velocity.  

 

 

 

 

 

 

 

 

 

 
Fig. 6.2b: The effect of porosity parameter 𝒦 on velocity. 
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Fig. 6.2c: The effect of fluid parameter 𝜆1 on velocity.  

 

 

 

 

 

 

 

 

 
Fig. 6.2d: The effect of fluid parameter 𝜆2 on velocity.  
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Fig. 6.3a: The effect of Hartmann number ℳ on pressure gradient.  

 

 

 

 

 

 

 

 

 
Fig. 6.3b: The effect of porosity parameter 𝒦 on pressure gradient. 
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Fig. 6.3c: The effect of fluid parameter 𝜆1 on velocity.  

 

 

 

 

 

 

 

 

 

 
Fig. 3d: The effect of fluid parameter 𝜆2 on pressure gradient.  
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Fig. 6.4a: The effect of Hartmann number ℳ on pressure rise ∆𝑝 with time mean 

volumetric flow rate 𝑄̂. 

 

 
Fig. 6.4b: The effect of porosity parameter 𝒦 on pressure rise ∆𝑝 with time mean 

volumetric flow rate 𝑄̂.  

 

 
Fig. 6.4c: The effect of fluid parameter 𝜆1 on pressure rise ∆𝑝 with volumetric flow 

rate 𝑄̂. 
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Fig. 6.5a: The effect of Hartmann number ℳ on temperature profile.  

 

 

 

 

 

 

 

 

 
Fig. 6.5b: The effect of porosity parameter 𝒦 on temperature profile. 
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Fig. 6.5c: The effect of fluid parameter 𝜆1 on temperature profile.  

 
Fig. 6.5d: The effect of fluid parameter 𝜆2 on temperature profile.  

 

 
Fig. 6.5e: The effect of Brinkman number 𝐵𝑟 on temperature profile. 
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     (a) ℳ = 1.0       (b) ℳ = 1.5 

 

 

 

 

 

 

 

 
           (c) ℳ = 2.0 

 

 

Fig. 6.5: Influence of Hartmann number on stream function for 𝛼 = 0.3;  𝛽 = 0.1;  𝜀 =

0.3; 𝑄̂ = 2;  𝒦 = 0.1;  λ1 = λ2 = 1. 
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   (a) 𝒦 = 0.2        (b) 𝒦 = 0.3 

 

 

 

 

 

 

 

 
     (c) 𝒦 = 0.4 

 

 

Fig. 6.6: Influence of porosity parameter 𝒦 on stream function for 𝛼 = 0.3;  𝛽 =

0.1;  𝜀 = 0.3; 𝑄̂ = 2;  ℳ = 1;  λ1 = λ2 = 1. 
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        (a) 𝜆1 = 0.1                  (b) 𝜆1 = 0.4 

 

 

 

 

 

 

 

 
              (c) 𝜆1 = 0.8 

 

 

Fig. 6.7: Influence of fluid parameter 𝜆1 on stream function for 𝛼 = 0.3;  𝛽 = 0.1;  𝜀 =

0.3; 𝑄̂ = 2;  ℳ = 1;  𝒦 = 0.1; λ2 = 1. 
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     (a) 𝜆2 = 0.1        (b) 𝜆2 = 0.4 

 

 

 

 

 

 

 
     (c) 𝜆2 = 0.8 

 

 

Fig. 6.8: Influence of fluid parameter 𝜆2 on stream function for 𝛼 = 0.3;  𝛽 = 0.1;  𝜀 =

0.3; 𝑄̂ = 2;  ℳ = 1;  𝒦 = 0.1; λ1 = 1. 
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6.4 Conclusion 

 A mathematical model has been presented for forced convective heat transfer in 

transport of a viscoelastic Jeffrey fluid through a ciliated channel containing a high 

permeability porous medium under the impact of a normal magnetic field. The flow is 

produced due to the metachronal wave generated by synchronized beating of cilia 

which follow an elliptical path. The transformed (fixed to wave frame) and non-

dimensional boundary value problem (momentum and energy conservation equations 

and associated channel wall boundary conditions) have been solved with the semi-

numerical Adomian decomposition method (ADM). Extensive details of the ADM 

solutions have been provided. The numerical evaluation of the power-series solutions 

is conducted in MATHEMATICA software with the approximately one hour of CPU 

time. In the present study if λ1, λ2 → 0 then [43] can be obtained which assume that our 

results are correct. The present study can be used to discuss the problem caused by 

cholesterol in veins and arteries. The results show that: 

 Velocity field, pressure gradient and temperature profile show a similar 

parabolic nature and attain maximum magnitudes at the midway of the conduit 

and further decrease rapidly at the walls of channel. 

 The behavior of velocity field and pressure gradient is distinctly different 

throughout the channel. 

 Velocity is decreased with increasing Hartmann number and Jeffrey 1st 

viscoelastic parameter in the core section of the channel whereas the flow is 

accelerated close to the walls. 

 Velocity is elevated with rising permeability parameter and Jeffrey 2nd 

viscoelastic parameter (retardation parameter) in the core zone. 

 Pressure gradient is increased with high Hartmann number whereas it is reduced 

with greater permeability parameter at the center of the channel. 

 Temperature profile is maximized in the core section of the channel and 

diminished at the walls. 

 Temperature is noted to be enhanced with rising Hartmann number and second 

Jeffrey parameter whereas it is reduced with permeability parameter and Jeffrey 

first parameter. 
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 Volume flow rate and pressure rise have shown the linear relationship between 

each other.  

 Pressure rise is elevated with increasing permeability and Jeffrey 1st parameter 

whereas it decreases with an increase in Lorentz retarding force i.e. with greater 

Hartmann numbers. 

 Number of trapped boluses decreases as Hartmann number is high. 

 The amplitude of streamlines decreases with a rise in permeability parameter 

whereas the size and the number of trapped boluses increase with greater values 

of Jeffrey first and second viscoelastic parameters. 

 The current study has neglected magnetic induction and mass transfer effects 

which are also important in fertility devices. These aspects will be addressed in 

the future. 
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Chapter 7  

Influence of Heat Transfer on MHD 

Carreau Fluid Flow Due to Motile Cilia 

 Mucus transport mediated by motile cilia in the airway is an important defense 

mechanism for prevention of respiratory infections. As cilia motility can be affected by 

temperature difference and magnetic field, therefore, in this research we investigate the 

combined effects of magnetic field and buoyancy force due to temperature difference. 

In the present study mixed convective flow of a Carreau fluid model through a ciliated 

channel is modeled and analyzed by a symplectic metachoronal wave. The momentum 

and energy equation for the Carreau fluid are modeled and simplified by the stream 

function and small Reynolds number approximation. The transport moving boundary 

value problem is solved with no slip condition by Adomian decomposition method. The 

velocity profile, temperature profile and pressure distribution are obtained in the form 

of infinite series by ADM which is evaluated by software "MATHEMATICA". The 

influence of magnetic parameter, Carreau fluid parameter, Brinkman number and 

Weissenberg number on velocity, temperature and pressure gradient are presented via 

graphs. Hartmann number helps to decelerate the flow whereas Weissenberg number, 

Grashof number and Carreau fluid parameter are responsible for the accelerated flow. 

The temperature profile increases by increasing the values of Hartmann number, 

Weissenberg number, Carreau fluid parameter and Brinkman number. 
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Fig. 7.1: Geometry of problem 

 

 

7.1 Problem Formulation 

 Let us assume the ciliary flow of an incompressible rheological Carreau fluid in a 

symmetric vertical channel under the effect of constant magnetic field. To study the 

mixed convective flow of Carreau fluid through a ciliated channel, buoyancy forces due 

to temperature difference is considered. Viscous dissipation have a significant effect 

during the energy transfer. Therefore in convective heat transfer the viscous dissipation 

term is also considered in the modelling of mixed convective flow of MHD Carreau 

fluid in a ciliated channel. The mathematical form of the longitudinal and transverse 

components of the elliptical path followed by the cilia is as follow 

                                           𝑋̂  = 𝐹(𝑋̂, 𝑡̂) = 𝑋0 + 𝜀𝑙𝛼𝑠𝑖𝑛 (
2𝜋

𝜆
) (𝑋̂ − 𝔠𝑡̂),                       (7.1) 

                                        𝑌̂ = 𝐻(𝑋̂, 𝑡̂) = 𝑙 + 𝜀𝑙𝑐𝑜𝑠 (
2𝜋

𝜆
) (𝑋̂ − 𝔠𝑡̂) = ±𝐿.                     (7.2) 

 

The mass, momentum and the energy equations of an incompressible Carreau fluid 

model are as follow 

                                                                    𝑑𝑖𝑣 𝑽 = 0,                                                           (7.3) 

                                           𝜌
𝑑𝑽

𝑑𝑡
= 𝑑𝑖𝑣𝝉 + 𝒃𝒇 + 𝜌𝑔𝛽1(𝑇 − 𝑇0),                                      (7.4) 
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                                                            𝜌𝑐𝑝

𝑑𝑇

𝑑𝑡̅
= 𝑘1∇

2𝑇 + Φ,                                              (7.5) 

 

where the parameters 𝑽, 𝑺, 𝒃𝒇, 𝜌, 𝑔, 𝛽1, 𝑇, 𝑇0, 𝑐𝑝, 𝑘 and Φ are defined in nomenclature.  

Here 

                                                                 𝝉 = −𝑃𝑰 + 𝑺,                                                         (7.6) 

 

in which 𝝉 is the extra stress tensor of Carreau fluid [88] and can be written as  

 

                                             𝑺 = −[𝜇∞ + (𝜇0 − 𝜇∞)][1 + (Γ𝛾̇)2]
𝑛−1
2 𝜸̇,                        (7.7) 

 

where 𝜇0, 𝜇∞, Γ and 𝜸̇ are defined in nomenclature and 

                                                      𝜸̇ =
1

2
∑𝛾̇𝒊𝑗

𝑖

∑𝜸̇𝒊𝑗

𝑗

= √
1

2
Π,                                       (7.8) 

where 

                                                           Π = (∇. 𝑉 + (∇. 𝑉)𝑇)2.                                              (7.9) 

 

In present work we consider 𝜇∞ = 0 and Γ𝛾̇ ≪ 1 for Eq. (7.7). Therefore extra stress 

tensor becomes 

                                                        𝑺 = −𝜇0 [1 +
𝑛 − 1

2
(Γ𝛾̇)2] 𝜸̇.                                 (7.10) 

 

The fixed and wave are related as 

 

            𝑥̂ = 𝑋̂ − 𝔠𝑡̂,   𝑢̂ = 𝑈̂ − 𝔠,    𝑦̂ = 𝑌̂,    𝑣 = 𝑉̂,    𝑝̂(𝑥̂, 𝑦̂, 𝑡̂) = 𝑃̂(𝑋̂, 𝑌̂, 𝑡̂).          (7.11) 

 

where (𝑥̂, 𝑦̂)and (𝑢̂, 𝑣) are coordinates and velocity in wave frame (𝑋̂, 𝑌̂)and (𝑈̂, 𝑉̂) are 

coordinate and velocity in fixed frame.  

𝑢 =
 𝑢̂

𝔠
,   𝑥 =

 𝑥̂

λ
,   𝑣 =

λ 𝑣

𝑙𝔠
 ,    𝑦 =

 𝑦̂

𝑙
, 

                                           𝑝 =
𝑙2 𝑝̂

𝔠λμ
,   𝑡 =

𝔠 𝑡̂

λ
,   ℎ =

𝐿

𝑙
,   𝜃 =

𝑇̂ − 𝑇0

𝑇0
 .                        (7.12) 

 

The dimensionless form of mixed convective magnetohydrodynamic flow of Carreau 

fluid is governed by the following equations  

                                                                    
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0,                                                   (7.13) 

 

           𝑅𝑒𝛽 (𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
) = −

𝜕𝑝

𝜕𝑥
+ 𝛽

𝜕𝑆𝑥𝑥

𝜕𝑥
+

𝜕𝑆𝑥𝑦

𝜕𝑦
− ℳ2(𝑢 + 1) + 𝐺𝑟𝜃,         (7.14) 

 

                           𝑅𝑒𝛽3 (𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
) = −

𝜕𝑝

𝜕𝑦
+ 𝛽2

𝜕𝑆𝑦𝑥

𝜕𝑥
+ 𝛽

𝜕𝑆𝑦𝑦

𝜕𝑦
,                        (7.15) 
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    𝑅𝑒𝛽 (𝑢
𝜕𝜃

𝜕𝑥
+ 𝑣

𝜕𝜃

𝜕𝑦
) =

1

𝑃𝑟
(𝛽2

𝜕2𝜃

𝜕𝑥2
+

𝜕2𝜃

𝜕𝑦2
) + 𝐸𝑐

(

 
 

𝛽𝑆𝑥𝑥

𝜕𝑢

𝜕𝑥
+ 𝛽2𝑆𝑥𝑦

𝜕𝑣

𝜕𝑦

+𝑆𝑦𝑥

𝜕𝑢

𝜕𝑦
+ 𝛽𝑆𝑦𝑦

𝜕𝑣

𝜕𝑦)

 
 

,    (7.16) 

where  

                                          𝑆𝑥𝑥 = 2𝛽 (1 +
𝑛 − 1

2
𝑊𝑒2 (

𝜕𝑢

𝜕𝑥
)
2

)
𝜕𝑢

𝜕𝑥
,                              (7.17) 

 

                   𝑆𝑥𝑦 = 𝑆𝑦𝑥 = (1 +
𝑛 − 1

2
𝑊𝑒2 (

𝜕𝑢

𝜕𝑦
+ 𝛽2

𝜕𝑣

𝜕𝑥
)
2

) (
𝜕𝑢

𝜕𝑦
+ 𝛽2

𝜕𝑣

𝜕𝑥
),          (7.18) 

 

                                           𝑆𝑦𝑦 = 2𝛽 (1 +
𝑛 − 1

2
𝑊𝑒2 (

𝜕𝑣

𝜕𝑦
)
2

)
𝜕𝑣

𝜕𝑦
.                             (7.19) 

 

In above equation the dimensionless parameters 𝛽 (wave number), 𝑅𝑒 (Reynolds 

number),  𝑊𝑒 (Weissenberg number), ℳ (Hartmann number), 𝑃𝑟 (Prandtl number), 

𝐺𝑟 (Grashof number) and 𝐸𝑐 (Eckert number) are defined as follows 

𝛽 =
𝑙

λ
,   𝑅𝑒 =

𝜌𝔠𝑙

𝜇
 ,   𝑊𝑒 =

𝑛𝔠

𝑙
,   ℳ2 =

𝜎𝐵0
2𝑙2

𝜇
,  

                              𝑃𝑟 =
𝜇𝑐𝑝

𝑘1
,   𝐸𝑐 =

𝔠2

𝑐𝑝𝑇0
,   𝐺𝑟 =

𝑙2𝜌𝑔𝛽1𝑇0

𝔠𝜇
,   𝐵𝑟 = 𝑃𝑟𝐸𝑐 .            (7.20) 

 

Considering the long wavelength 𝛽 ≪ 1 and low Reynolds number 𝑅𝑒 → 0 

assumption, Eq. (7.14)-(7.19) reduce into following form 

                                                  
𝜕𝑝

𝜕𝑥
=

𝜕𝑆𝑥𝑦

𝜕𝑦
− ℳ2(𝑢 + 1) + 𝐺𝑟𝜃,                                 (7.21) 

                                                                      
𝜕𝑝

𝜕𝑦
= 0,                                                            (7.22) 

                                                             
𝜕2𝜃

𝜕𝑦2
= −𝐵𝑟𝑆𝑦𝑥

𝜕𝑢

𝜕𝑦
,                                               (7.23) 

in which  

                                                               𝑆𝑥𝑥 = 0,   𝑆𝑦𝑦 = 0,                                               (7.24) 

                                           𝑆𝑥𝑦 = 𝑆𝑦𝑥 = (1 +
𝑛 − 1

2
𝑊𝑒2 (

𝜕𝑢

𝜕𝑦
)
2

)
𝜕𝑢

𝜕𝑦
.                       (7.25) 

Incorporating Eq. (7.25) into Eq. (7.21) and (7.23), following form can be obtained 

 

                     
𝜕𝑝

𝜕𝑥
=

𝜕2𝑢

𝜕𝑦2
+

3(𝑛 − 1)

2
𝑊𝑒2 (

𝜕𝑢

𝜕𝑦
)
2 𝜕2𝑢

𝜕𝑦2
− ℳ2(𝑢 + 1) + 𝐺𝑟𝜃,           (7.26) 
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𝜕2𝜃

𝜕𝑦2
= −𝐵𝑟 ((

𝜕𝑢

𝜕𝑦
)
2

+
𝑛 − 1

2
𝑊𝑒2 (

𝜕𝑢

𝜕𝑦
)
4

),                     (7.27) 

The non-dimensional form of boundary conditions are 

                                                          
𝜕𝑢

𝜕𝑦
= 0,   

𝜕𝜃

𝜕𝑦
= 0,   at   𝑦 = 0,                                (7.28) 

                   𝑢 = −1 − 2𝜋𝜀𝛼𝛽 cos(2𝜋𝑥),   𝜃 = 0,     

                                                              𝑦 = ℎ = 1 + 𝜀 sin(2𝜋𝑥).                                   (7.29) 

 

7.2 Solution Methodology 

 Eq. (7.26) and Eq. (7.27) depends upon each other, therefore we will simultaneously 

solve these equation by Adomian decomposition method  

    𝑢(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) 

                    +𝐿−1(ℳ2(𝑢 + 1) − 𝐺𝑟𝜃) − 𝐿−1 (
3(𝑛 − 1)

2
𝑊𝑒2 (

𝜕𝑢

𝜕𝑦
)
2 𝜕2𝑢

𝜕𝑦2
),        (7.30)  

                   𝜃 = 𝑐3𝑦 + 𝑐4 + 𝐿−1 ((−𝐵𝑟 ((
𝜕𝑢

𝜕𝑦
)
2

+
𝑛 − 1

2
𝑊𝑒2 (

𝜕𝑢

𝜕𝑦
)
4

))),         (7.31) 

where 𝐿−1is defined as  

                                                            𝐿−1(. ) = ∬(. )𝑑𝑦,                                                 (7.32) 

and 

                                                    𝑓(𝑥, 𝑦) =
𝑑𝑝

𝑑𝑥

𝑦2

2
+ 𝑐1𝑦 + 𝑐2,                                        (7.33) 

where 𝑐1, 𝑐2, 𝑐3 and 𝑐4 are integration constant and can be extracted by the aid of 

boundary conditions which are given in Eq. (7.28) and Eq. (7.29). The linear terms 

𝑢(𝑥, 𝑦) 𝑎nd  𝜃(𝑥, 𝑦) are decomposed in terms of infinite series as follows  

                                𝑢(𝑥, 𝑦) = ∑ 𝑢𝑚

∞

𝑚=0

(𝑥, 𝑦),   𝜃(𝑥, 𝑦) = ∑ 𝜃𝑚(𝑥, 𝑦)

∞

𝑚=0

,                   (7.34) 

 

and the non-linear terms can be decomposed into infinite series of Adomian 

polynomials, which satisfy  

                                 𝐴𝑚 =
1

𝑚!

𝑑𝑚

𝑑𝜆𝑚
[𝑁 (∑𝜆𝑖𝑢𝑖

∞

𝑖=0

)]

𝜆=0

,   𝑚 = 0, 1, 2, 3, …,              (7.35) 

 

where the non-linear term represented by 𝑁𝑢 is as follow  
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                                                𝑁𝑢 =
3(𝑛 − 1)

2
𝑊𝑒2 (

𝜕𝑢

𝜕𝑦
)
2 𝜕2𝑢

𝜕𝑦2
.                                   (7.36) 

 

Pushing Eq. (7.34) into Eq. (7.30) & Eq. (7.31) and using the boundary conditions 

(7.28) and (7.29), one can get 

                                                       𝑢0 = 𝑢(ℎ) +
𝑦2 − ℎ2

2

𝑑𝑝

𝑑𝑥
,                                          (7.37) 

 

                         𝜃0 = −𝐵𝑟 (
𝑑𝑝

𝑑𝑥
)
2

(
𝑦4 − ℎ4

12
+

𝑛 − 1

2
𝑊𝑒2

𝑦6 − ℎ6

30
(
𝑑𝑝

𝑑𝑥
)
2

).            (7.38) 

 

The other terms of the series can be obtain from the following recursive relation 

 

                          𝑢𝑚+1 = 𝐵𝑛 + 𝐿−1(ℳ2(𝑢𝑚 + 𝐺𝑟𝜃𝑚)) 

                                        −𝐿−1 (
3(𝑛 − 1)

2
𝑊𝑒2 (

𝜕𝑢𝑚

𝜕𝑦
)

2 𝜕2𝑢𝑚

𝜕𝑦2
) ,   for 𝑚 ≥ 0,          (7.39) 

 

                     𝜃𝑚 = 𝐷𝑛 + 𝐿−1 (−𝐵𝑟 ((
𝜕𝑢𝑚

𝜕𝑦
)
2

+
𝑛 − 1

2
𝑊𝑒2 (

𝜕𝑢𝑚

𝜕𝑦
)
4

) ),             (7.40)   

for 𝑚 = 0, 1, 2, … 
Where 

 

                                                            𝐵𝑛 = 𝑏1(𝑥) + 𝑦𝑏2(𝑥),                                           (7.41) 

 

                                                           𝐷𝑛 = 𝑑1(𝑥) + 𝑦𝑑2(𝑥),                                           (7.42) 

 

 𝑏1, 𝑏2, 𝑑1 and 𝑑2 are integration’s constants and evaluated from the given conditions. 

The solution for horizontal velocity and temperature profile can be found as 

                                                                𝑢 = 𝑢0 + 𝑢1 + ⋯,                                              (7.43) 

 

                                                                𝜃 = 𝜃0 + 𝜃1 + ⋯,                                               (7.44) 

 

Now the volumetric flow rate 𝑄 is related to the flux 𝐹 by the following relation 

 

                                                         𝑄 = ∫ (𝑢 + 1)𝑑𝑦 = 𝐹 + ℎ,
ℎ

0

                                  (7.45) 

 

and time mean volumetric flow rate 𝑄̂ in a fixed frame is related as 

 

                                    𝑄̂ =
1

𝑇
∫ (𝐹 + ℎ)𝑑𝑡̂ = ∫ (𝐹 + ℎ)𝑑𝑥 = 𝐹 + 1

1

0

.
ℎ

0

                   (7.46) 

 

                                                           𝑄̂ = 𝐹 + 1 or 𝐹 = 𝑄̂ − 1.                                      (7.47) 

 

With the aid of Eq. (7.43) and Eq. (7.45) pressure gradient 
𝑑𝑝

𝑑𝑥
 can be obtained interms 
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of mean flow rate 𝑄̂. The value of 
𝑑𝑝

𝑑𝑥
 is obtained by software "MATHEMATICA" 

which is graphically illustrated in Fig. 7.3. 

By integrating the expression of pressure gradient, one can get the pressure rise as 

 

                                                            ∆𝑝 = ∫
𝑑𝑝

𝑑𝑥
𝑑𝑥.

1

0

                                                      (7.48) 

 

7.3 Results and Discussion 

 In this research mathematical modelling and computation for thermal analysis of 

mucus flow due to ciliary movement has been made. The mucus rheology is described 

by the Carreau fluid model. The flow characteristics of mucus are simulated by the 

velocity field, temperature field and pressure distribution. The mixed convection is 

utilized to analyze the thermal analysis of the flow field that will arise due to 

temperature differences of the fluid and the environment. This part of the research is 

focused to the discussions of different parameters of physical interest like pressure 

gradient, pressure rise (drop), velocity and heat transfer. In this section, we will analyze 

the impact of the Carreau fluid parameter 𝑊𝑒, power law index 𝑛, the magnetic 

parameter ℳ, the thermal Grashof number 𝐺𝑟. The values of other parameters are kept 

fixed throughout the study, and these parameters with their values are 𝛼 = 0.4, 𝛽 =

0.4, 𝑄̂ = 0.5, 𝜖 = 0.3. 

Pressure rise and pressure gradient 

 Pressure rise against volume flux are presented in Fig. 7.2a-d. It is depicted from the 

graphs that pressure rise attains free pumping at 𝑄̂ = 0 and decreases with the increase 

in ℳ for 0 < 𝑄̂ < 1 whereas increases for 𝑄̂ < 0. Weissenberg number and power law 

index show that pressure rise attains the free pumping in the region 0.05 < 𝑄̂ < 0.25 

and increases for 𝑄̂ > 0.25. Increasing values of 𝐺𝑟 show that pressure rise increases 

in the whole pumping region. 

 Consequences of various values of ℳ, 𝑊𝑒, 𝑛 and 𝐺𝑟 on the pressure gradient are 

represented in Fig.7.3a-d. It is found that 
𝑑𝑝

𝑑𝑥
 reduces at the entrance, middle and exit 

region of the channel as we increase ℳ, 𝑊𝑒 and 𝑛 and opposite behavior can be seen 

for increasing values of 𝐺𝑟. The impact of magnetic parameter ℳ on the pressure 

gradient shows that magnetic field helps to increase the favourable pressure gradient 

for the flow of highly viscous mucus. The impact of Weissenberg number We on the 
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pressure gradient illustrates that favorable pressure gradient increases by the increasing 

value of shear rate and relaxation time, i.e. when viscous effects are dominant over the 

elastic effect then favorable pressure gradient mounts. It can also be observed that for 

shear thickening 𝑛 > 1 of the mucus favorable pressure gradient increases. It is also 

observed that ℳ, We and n show the significant variation on the entrance and exit of 

the channel when compared with middle of channel. The increasing values of 𝐺𝑟 help 

to decrease the favorable pressure gradient for the convective flow of mucus. 

Velocity profile 

 The impacts of ℳ, 𝑊𝑒, 𝑛 and 𝐺𝑟 on velocity profile are represented in Fig. 7.4a-d. It 

is found that axial velocity is maximum at the middle of channel. Impact of magnetic 

field ℳ on axial velocity shows that magnitude of velocity increases as the strength of 

magnetic field increases, physically it represents that the magnetic field can be used to 

control the flow of viscous fluid. Figure 7.4b-d indicate that increasing value of 𝑊𝑒, 

𝑛 and 𝐺𝑟 show the significant change in velocity profile at the center of the channel. 

The increasing values of We reduces the magnitude of velocity profile as shear rate and 

relaxation time make the fluid thick due to cold environment. The increasing values of 

power law index 𝑛 > 1 make the mucus more consistent which reduces the magnitude 

of the velocity profile. The increasing values of Grashof number 𝐺𝑟 make the fluid 

thick as buoyancy forces due to temperature difference are dominant over the viscous 

forces, therefore magnitude of the axial velocity decreases and flow rate become slow. 

Temperature profile 

 Effects of ℳ, 𝑊𝑒, 𝑛 and 𝐵𝑟 on temperature profile are represented in Fig 7.5a-d which 

show that magnetic field tends to decelerate the flow and causes to rise in temperature 

profile and as a result heat transfer through mucus flow increases with the increase in 

𝑊𝑒 and 𝑛. It is depicted that temperature profile rises with the increase in 𝐵𝑟 (Brinkman 

number) which is the product of Eckert and Prandtl number and shows that when the 

value of Brinkman number 𝐵𝑟 is less than one temperature difference is dominant over 

viscous effect. Here 𝐵𝑟 =0.1, 0.2, 0.3 show that as the effect of viscosity over 

temperature difference become prominent then the convection process become fast due 

to closure of molecules and heat transfer increases. 
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Fig. 7.2a: The effect of Hartmann number ℳ on pressure rise for 𝛼 = 0.4, 𝛽 = 0.4,

𝑄̂ = 0.5, 𝜖 = 0.3. 
 

 

 

 

 

 

 

 

 
Fig. 7.2b: The effect of Weissenberg number 𝑊𝑒 on pressure rise for 𝛼 = 0.4, 𝛽 =

0.4, 𝑄̂ = 0.5, 𝜖 = 0.3. 
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Fig. 7.2c: The effect of power law index 𝑛 on pressure rise for 𝛼 = 0.4, 𝛽 = 0.4,

𝑄̂ = 0.5, 𝜖 = 0.3. 
 

 

 

 

 

 

 

 

 
Fig. 7.2d: The effect of Grashof number 𝐺𝑟 on pressure rise for 𝛼 = 0.4, 𝛽 = 0.4,

𝑄̂ = 0.5, 𝜖 = 0.3. 
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Fig. 7.3a: The effect of Hartmann number ℳ on pressure gradient for 𝛼 = 0.4, 𝛽 =

0.4, 𝑄̂ = 0.5, 𝜖 = 0.3. 
 

 

 

 

 

 

 

 

 
Fig. 7.3b: The effect of Weissenberg number 𝑊𝑒 on pressure gradient for 𝛼 = 0.4,

𝛽 = 0.4, 𝑄̂ = 0.5, 𝜖 = 0.3. 
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Fig. 7.3c: The effect of Power law index 𝑛 on pressure gradient for 𝛼 = 0.4, 𝛽 =

0.4, 𝑄̂ = 0.5, 𝜖 = 0.3. 
 

 

 

 

 

 

 

 

 
Fig. 7.3d: The effect of Grashof number 𝐺𝑟 on pressure gradient for 𝛼 = 0.4, 𝛽 =

0.4, 𝑄̂ = 0.5, 𝜖 = 0.3. 
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Fig. 7.4a: The effect of Hartmann number ℳ on velocity for 𝛼 = 0.4, 𝛽 = 0.4, 𝑄̂ =
0.5, 𝜖 = 0.3. 
 

 

 

 

 

 

 

 

 

 
Fig. 7.4b: The effect of Weissenberg number 𝑊𝑒 on velocity for 𝛼 = 0.4, 𝛽 =

0.4, 𝑄̂ = 0.5, 𝜖 = 0.3. 
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Fig. 7.4c: The effect of Power law index 𝑛 on velocity for 𝛼 = 0.4, 𝛽 = 0.4, 𝑄̂ =
0.5, 𝜖 = 0.3. 
 

 

 

 

 

 

 

 

  
Fig. 7.4d: The effect of Grashof number 𝐺𝑟 on velocity for 𝛼 = 0.4, 𝛽 = 0.4, 𝑄̂ =
0.5, 𝜖 = 0.3. 
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Fig. 7.5a: The effect of Hartmann number ℳ on temperature profile for 𝛼 = 0.4,

𝛽 = 0.4, 𝑄̂ = 0.5, 𝜖 = 0.3. 
 

 

 

 

 

 

 

 

 
Fig. 7.5b: The effect of Weissenberg number 𝑊𝑒 on temperature profile for 𝛼 = 0.4,

𝛽 = 0.4, 𝑄̂ = 0.5, 𝜖 = 0.3. 
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Fig. 7.5c: The effect of Power law index 𝑛 on temperature profile for 𝛼 = 0.4, 𝛽 =

0.4, 𝑄̂ = 0.5, 𝜖 = 0.3. 
 

 

 

 

 

 

 

 

 

 
Fig. 7.5d: The effect of Brinkman 𝐵𝑟 on temperature profile for 𝛼 = 0.4, 𝛽 =

0.4, 𝑄̂ = 0.5, 𝜖 = 0.3. 
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7.4 Conclusion 

 The mathematical study has been presented for muco ciliary flow affected by the 

surrounding temperature in the presence of magnetic field. In this research for muco 

ciliary flow we have considered mixed convective flow of MHD Carreau fluid through 

a ciliated channel under the action of applied magnetic field. The flow is produced due 

to effective stroke of metachoronal wave generated by the tip of cilia. The non-

dimensional moving boundary value problem is solved by semi analytic technique, 

Adomian decomposition method and software "MATHEMATICA". The present study 

shows that results of Siddiqui et al. [43] can be deduced if 𝑊𝑒 → 0, 𝐵𝑟 → 0, and 𝐺𝑟 → 0 

which guarantees that our study is correct. The main findings of this research are 

summarized as follows: 

 Pressure rise reduces with the increasing value of Hartmann number and 

increases due to Grashof number. 

 Favorable pressure gradient increases by the increasing values of Hartmann 

number ℳ, Weissenberg number 𝑊𝑒, power law index 𝑛 and Grashof number 

𝐺𝑟. 

 Magnitude of the axial velocity decreases by the increasing value of 𝑊𝑒, 𝐺𝑟 

and 𝑛 but increases for the increasing values of ℳ. 

 Temperature profile increases by increasing magnetic strength ℳ, Weissenberg 

number 𝑊𝑒, power law index 𝑛 and Brinkman number 𝐵𝑟.  

 The present research can be beneficial for the designing of artificial cilia that 

help to propel the viscous fluid. Also, magnetic field effect decelerate and heat 

transfer effect (Grashof number) significantly accelerates the mucus flow, heat 

transfer assists whereas magnetic field resists the ciliary induced flow. The 

current study has neglected porous medium and thermophoresis effect which 

are also important in biofluid.   
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Chapter 8 

Hall and Ion-slip Effect on Convective 

Flow of Carreau Fluid in a Ciliated 

Tube with Ohmic Heating 

 This study investigates the Carreau fluid flow and heat transfer through a ciliated tube 

with the effects of Hall current, ionslip and ohmic heating. Mathematical modelling is 

done using the long wavelength and small Reynolds number approximation. The non-

linear momentum equation with Hall and ionslip effect and the non-homogeneous 

energy equation due to viscous dissipation and ohmic heating effect are solved by 

Homotopy perturbation method which are solved by software Mathematica. Impact of 

Hall and Ionslip effect show an increase in velocity profile and the pressure gradient, 

also performance of thermal energy enhances with the rise in magnetic parameter and 

power law index of Carreau fluid. Variation of velocity and temperature profile are 

observed by the graphical result plotted in software “Mathematica”. 

 

8.1 Mathematical Formulation 

 Consider the forced convective Carreau fluid flow in two dimensional axisymmetric tube 

of length 𝐿. The walls of the tube are ciliated internally which causes the fluid flow (due to 

flogging of cilia) by generating the metachronal wave with the wave speed 𝔠 and 

wavelength λ. The shape of the sinusoidal waves in laboratory frame is defined through the 

following expressions 

                                        𝑅̂ = 𝐻(𝑍̂, 𝑡̂) = ± [𝑙 + 𝜀𝑙𝑐𝑜𝑠 (
2𝜋

𝜆
) (𝑍̂ − 𝔠𝑡̂)],                         (8.1) 

 

                                         𝑍̂ = 𝐹(𝑍̂, 𝑡̂) = 𝑍0 + 𝜀𝑙𝛼𝑠𝑖𝑛 (
2𝜋

𝜆
) (𝑍̂ − 𝔠𝑡̂).                           (8.2) 
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Fig. 8.1: Geometry of problem 

 

Moreover, the tube walls are presumed to be conducted with constant 

temperature 𝑇0. To detect the plasma (Carreau fluid) flow in a ciliated tube a strong 

magnetic field is exerted normal to the flow. The shear stress near the tip of cilia is 

measured by the momentum equation and Lorentz force due to Hall effect that can be 

calculated from generalized Ohm’s law. 

                         𝑱 = 𝜎(𝑬 + 𝑽 × 𝑩) −
𝛽𝑒

𝐵0
(𝑱 × 𝑩) +

𝛽𝑒𝛽𝑖

𝐵0
((𝑱 × 𝑩) × 𝑩),             (8.3) 

                           𝑱 × 𝑩 = −
𝜎𝐵0

2

𝛼𝑒
2 + 𝛽𝑒

2 ((𝛼𝑒𝑈̂ + 𝛽𝑒𝑊̂)𝒆𝒓 + (𝛼𝑒𝑊̂ − 𝛽𝑒𝑈̂)𝒆𝒛),       (8.4) 

                                                       𝑱. 𝑱 =
𝜎2𝐵0

2

𝛼𝑒
2 + 𝛽𝑒

2 (𝑈̂2 + 𝑊̂2),                                       (8.5) 

where 𝛽𝑒 = 𝑤𝑒𝜏𝑒 and 𝛼𝑒 = 1 + 𝛽𝑒𝛽𝑖. 

The momentum and energy equations for the forced convective flow of Carreau fluid [88] 

                                                                        
𝜕𝑈̂

𝜕𝑅̂
+

𝑈̂

𝑅̂
+

𝜕𝑊̂

𝜕𝑍̂
= 0,                                                     (8.6) 

            𝜌 (
𝜕𝑈̂

𝜕𝑡
+ 𝑈̂

𝜕𝑈̂

𝜕𝑅̂
+ 𝑊̂

𝜕𝑈̂

𝜕𝑍̂
) = −

𝜕𝑃̂

𝜕𝑅̂
+

1

𝑅̂

𝜕(𝑅𝑆̂𝑅̂𝑅̂)

𝜕𝑅̂
+

𝜕𝑆̂𝑅̂𝑍̂

𝜕𝑍̂
−

𝑆̂𝜃𝜃

𝑅̂
 

                                                                                      −
𝜎𝐵0

2

𝛼𝑒
2 + 𝛽𝑒

2 (𝛼𝑒𝑈̂ + 𝛽𝑒𝑊̂),                       (8.7) 

            𝜌 (
𝜕𝑊̂

𝜕𝑡̂
+ 𝑈̂

𝜕𝑊̂

𝜕𝑅̂
+ 𝑊̂

𝜕𝑊̂

𝜕𝑍̂
)      

= −
𝜕𝑃

𝜕𝑍̂
+

1

𝑅̂

𝜕(𝑅𝑆̂𝑅̂𝑅̂)

𝜕𝑅̂
+

𝜕𝑆̂𝑅̂𝑍̂

𝜕𝑍̂
−

𝜎𝐵0
2

𝛼𝑒
2 + 𝛽𝑒

2 (𝛼𝑒𝑊̂ − 𝛽𝑒𝑈̂),                        (8.8) 
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𝜌𝑐𝑝 (
𝜕𝑇̂

𝜕𝑡̂
+ 𝑈̂

𝜕𝑇̂

𝜕𝑅̂
+ 𝑊̂

𝜕𝑇̂

𝜕𝑍̂
) = 𝑘 (

𝜕2𝑇̂

𝜕𝑅̂2
+

1

𝑅̂

𝜕𝑇̂

𝜕𝑅̂
+

𝜕2𝑇̂

𝜕𝑍̂2
) + 𝑆̂𝑅̂𝑅̂

𝜕𝑈̂

𝜕𝑅̂
+ 𝑆̂𝑅̂𝑍̂

𝜕𝑊̂

𝜕𝑅̂
 

                                                                      +𝑆̂𝑍̂𝑅̂

𝜕𝑈̂

𝜕𝑍̂
+ 𝑆̂𝑍̂𝑍̂

𝜕𝑊̂

𝜕𝑍̂
   +

𝛼2𝐵0
2

𝛼𝑒
2 + 𝛽𝑒

2 (𝑈̂2 + 𝑊̂2).   (8.9) 

 

where  𝜏𝑅𝑅 , 𝜏𝑅𝑍, 𝜏𝑍𝑅  and  𝜏𝑍𝑍 are given by the following expression 

                                                         𝑆̂𝑅̂𝑅̂ = 2(1 +
𝑛 − 1

2
𝑊𝑒2𝛾̇2)

𝜕𝑈̂

𝜕𝑅̂
,                                        (8.10) 

                                            𝑆̂𝑅̂𝑍̂ = 𝑆̂𝑍̂𝑅̂ = (1 +
𝑛 − 1

2
𝑊𝑒2𝛾̇2)(

𝜕𝑈̂

𝜕𝑍̂
+

𝜕𝑊̂

𝜕𝑅̂
),                         (8.11) 

                                                          𝑆̂𝑍̂𝑍̂ = 2(1 +
𝑛 − 1

2
𝑊𝑒2𝛾̇2)

𝜕𝑊̂

𝜕𝑍̂
,                                      (8.12) 

                                                  𝛾̇2 = 2(
𝜕𝑈̂

𝜕𝑅̂
)

2

+ 2(
𝜕𝑊̂

𝜕𝑍̂
)

2

+ (
𝜕𝑈̂

𝜕𝑍̂
+

𝜕𝑊̂

𝜕𝑅̂
)

2

.                          (8.13) 

 

The transformation from fixed to wave frame by using Galilean transformation are 

given by 

                 𝑟̂ = 𝑅,   𝑢̂ = 𝑈̂,    𝑧̂ = 𝑍̂ − 𝔠𝑡̂,    𝑤̂ = 𝑊̂ − 𝔠,   𝑝̂(𝑟̂, 𝑧̂, 𝑡̂) = 𝑃̂(𝑅̂, 𝑍̂, 𝑡̂) .    (8.14) 

The following non-dimensional variables are used in Eqs. (8.6)-(8.13). 

𝑟 =
𝑟̂

𝑙
,   𝑢 =

λ𝑢̂

𝑙𝔠
 ,    𝑧 =

𝑧̂

λ
,    𝑤 =

𝑤̂

𝔠
, 

𝑡 =
𝑐𝑡̂

λ
,   ℎ =

𝐿

𝑙
,    𝑝 =

𝑙2 𝑝̂

𝔠λμ
,    𝛽 =

𝑙

λ
,  

  𝑅𝑒 =
𝜌𝔠𝑙

𝜇
 ,    ℳ2 =

𝜎𝐵0
2𝑙2

𝜇
,    𝐸𝑐 =

𝔠2

𝑐𝑝𝑇0
, 

                                                 𝑃𝑟 =
𝜇𝑐𝑝

𝑘1
,    𝐵𝑟 = 𝑃𝑟𝐸𝑐  ,     𝜃 =

𝑇̂ − 𝑇0

𝑇0
 .                                   (8.15) 

The non-dimensional form of Eqs. (8.6)-(8.13) are as follows 

                                                                        
𝜕𝑢

𝜕𝑟
+

𝑢

𝑟
+

𝜕𝑤

𝜕𝑧
= 0,                                                     (8.16) 

𝛽2𝑅𝑒 (𝑢
𝜕𝑢

𝜕𝑟
+ 𝑤

𝜕𝑢

𝜕𝑧
) = −

𝜕𝑝

𝜕𝑟
− 𝛽

1

𝑟

𝜕(𝑟𝑆𝑟𝑟)

𝜕𝑟
− 𝛽2

𝜕𝑆𝑟𝑧

𝜕𝑧
+ 𝛽

𝑆𝜃𝜃

𝑟
 

                                                                         −
ℳ2𝛽

𝛼𝑒
2 + 𝛽𝑒

2 (𝛽𝛼𝑒𝑢 + 𝛽𝑒(𝑤 + 1)),                     (8.17) 

𝑅𝑒 (𝑢
𝜕𝑢

𝜕𝑟
+ 𝑤

𝜕𝑢

𝜕𝑧
) = −

𝜕𝑝

𝜕𝑧
−

1

𝑟

𝜕(𝑟𝑆𝑟𝑧)

𝜕𝑟
− 𝛽

𝜕𝑆𝑧𝑧

𝜕𝑧
−

ℳ2

𝛼𝑒
2 + 𝛽𝑒

2
(𝛼𝑒(𝑤 + 1) − 𝛽𝛽𝑒𝑢),   (8.18) 
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𝑅𝑒𝑃𝑟𝛽 (𝑢
𝜕𝜃

𝜕𝑟
+ 𝑤

𝜕𝜃

𝜕𝑧
) = (

𝜕2𝜃

𝜕𝑟2
+

1

𝑟

𝜕𝜃

𝜕𝑟
+ 𝛽2

𝜕2𝜃

𝜕𝑧2) + 𝐵𝑟𝛽

(

 
𝑆𝑟𝑟

𝜕𝑢

𝜕𝑟
+

1

𝛽
𝑆𝑟𝑧

𝜕𝑤

𝜕𝑟

+𝑆𝑧𝑟

𝜕𝑢

𝜕𝑧
+ 𝑆𝑧𝑧

𝜕𝑤

𝜕𝑧 )

  

                                                           +
𝐵𝑟ℳ2

𝛼𝑒
2 + 𝛽𝑒

2
(𝛽2𝑢2 + (𝑤 + 1)2).                                       (8.19) 

in which 

                                                   𝑆𝑟𝑟 = −2𝛽 (1 +
𝑛 − 1

2
𝑊𝑒2𝛾̇2)

𝜕𝑢

𝜕𝑟
,                                         (8.20) 

                                           𝑆𝑟𝑧 = 𝑆𝑧𝑟 = −(1 +
𝑛 − 1

2
𝑊𝑒2𝛾̇2) (𝛽2

𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑟
),                     (8.21) 

                                                    𝑆𝑧𝑧 = −2𝛽 (1 +
𝑛 − 1

2
𝑊𝑒2𝛾̇2)

𝜕𝑤

𝜕𝑧
,                                       (8.22) 

                                              𝛾̇2 = 2 (𝛽
𝜕𝑢

𝜕𝑟
)
2

+ 2(𝛽
𝜕𝑤

𝜕𝑧
)
2

+ (𝛽2
𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑟
)
2

.                      (8.23) 

 

 Where the wave number 𝛽, Weissenberg number 𝑊𝑒, Reynolds number 𝑅𝑒, Hartmann 

number ℳ, Eckert number 𝐸𝑐 and Prandtl number 𝑃𝑟  are the dimensionless numbers 

defined in Eq. (8.15). Incorporating the approximation of long wave length and small 

Reynolds number (𝜆 → ∞, 𝑅𝑒 → 0), Eq. (8.16)-(8.23) takes the following form  

                                                                                  
𝜕𝑝

𝜕𝑟
= 0,                                                              (8.24) 

                                                      
𝜕𝑝

𝜕𝑧
= −

1

𝑟

𝜕(𝑟𝑆𝑟𝑧)

𝜕𝑟
−

ℳ2𝛼𝑒

𝛼𝑒
2 + 𝛽𝑒

2
(𝑤 + 1),                              (8.25) 

                   (
𝜕2𝜃

𝜕𝑟2
+

1

𝑟

𝜕𝜃

𝜕𝑟
) = 𝐵𝑟 (𝑆𝑟𝑧

𝜕𝑤

𝜕𝑟
) +

𝐵𝑟ℳ2

𝛼𝑒
2 + 𝛽𝑒

2 (𝑤 + 1)2 + 𝐵𝑟 (
𝜕𝑤

𝜕𝑟
)
2

,                (8.26) 

where 

                                                           𝑆𝑟𝑧 = −(1 +
𝑛 − 1

2
𝑊𝑒2𝛾̇2)

𝜕𝑤

𝜕𝑟
,                                      (8.27) 

and 

                                                                               𝛾̇2 = (
𝜕𝑤

𝜕𝑟
)
2

.                                                       (8.28) 

The non-dimensional geometry of the wave is as follow 

                                                                𝑟 = ℎ = 1 + 𝜀 cos(2𝜋𝑧),                                  (8.31) 

and the associated boundary conditions can be emerge as 

              𝑤(ℎ) = −1 − 2𝜋𝜀𝛼𝛽 cos(2𝜋𝑧), 

      𝑢(ℎ) = 2𝜋𝜀 sin(2𝜋𝑧) + 𝛽(2𝜋𝜀)2𝛼 sin(2𝜋𝑧) cos(2𝜋𝑧) , 𝜃(ℎ) = 0,     
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𝜕𝑤

𝜕𝑟
= 0,   

𝜕𝜃

𝜕𝑟
= 0,    𝑎𝑡   𝑟 = 0.                                     (8.32) 

 
8.3 Solution of Problem 

We have employed Homotopy perturbation method (HPM) to evaluate the transformed 

nonlinear problem defined in Eq. (8.29) under the boundary conditions given in Eq. 

(8.32). HPM starts with the initial approximation selected by possible unknown 

constants. Thus, we take the following approximation as an initial guess 

                                                     𝑢0 = 𝑤(ℎ) + (
𝑟2 − ℎ2

4
)

𝑑𝑃

𝑑𝑧
,                                      (8.33) 

where 
𝑑𝑃

𝑑𝑧
 is initial pressure gradient. 

 HPM takes the desire solution in terms of a formal power series by using embedding 

parameter as a “small parameter”. The homotopy structure is expressed as follows 

   (1 − 𝑞)(𝐿[𝑤(𝑟, 𝑧)] − 𝐿[𝑢0(𝑟, 𝑧)]) = 𝑞(𝐿[𝑤(𝑟, 𝑧)] + 𝑁[𝑤(𝑟, 𝑧)] − 𝑔(𝑧)),      (8.34) 

where 𝑞 ∈ [0, 1] is an embedding constant. Re-writing Eq. (8.29) with the aid of Eq. 

(8.34) as follows 

(1 − 𝑞)(
1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑤

𝜕𝑟
) −

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑢0

𝜕𝑟
))                 

= 𝑞

(

 
 

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑤

𝜕𝑟
+

𝑛 − 1

2
𝑊𝑒2𝑟 (

𝜕𝑤

𝜕𝑟
)
3

)

−
ℳ2𝛼𝑒

𝛼𝑒
2 + 𝛽𝑒

2
(𝑤 + 1) −

𝜕𝑝

𝜕𝑧 )

 
 

,                                    (8.35) 

using 

                                                    𝑤 = 𝑤0 + 𝑞𝑤1 + 𝑞2𝑤2 + ⋯,                                      (8.36) 

                                                     𝜃 = 𝜃0 + 𝑞𝜃1 + 𝑞2𝜃2 + ⋯,                                         (8.37) 

                                              
𝜕𝑝

𝜕𝑧
=   

𝜕𝑝0

𝜕𝑧
+ 𝑞

𝜕𝑝1

𝜕𝑧
+ 𝑞2

𝜕𝑝2

𝜕𝑧
+ ⋯,                                  (8.38) 

                                                    𝐹 = 𝐹0 + 𝑞𝐹1 + 𝑞2𝐹2 + ⋯,                                          (8.39) 

Using Eq. (8.33), Eq. (8.36) and Eq. (8.37) into Eq. (8.35) and equating the same power 

of 𝑞 on both sides, we get the following system of equations. 
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8.3.1 Zeroth Order System 

                                                         
1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑤0

𝜕𝑟
) −

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑢0

𝜕𝑟
) = 0,                         (8.40) 

                               
1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝜃0

𝜕𝑟
)

= −𝐵𝑟

(

 
 

(
𝜕𝑤0

𝜕𝑟
)

2

+
𝑛 − 1

2
𝑊𝑒2 (

𝜕𝑤0

𝜕𝑟
)

4

+
ℳ2

𝛼𝑒
2 + 𝛽𝑒

2
(𝑤0 + 1)2 + (

𝜕𝑤0

𝜕𝑟
)
2

)

 
 

,                                (8.41) 

and the boundary conditions are 

𝑤0 = −1 − 2𝜋𝜀𝛼𝛽 cos(2𝜋𝑧),   𝜃0 = 0     𝑎𝑡   𝑟 = ℎ, 

                                                  
𝜕𝑤0

𝜕𝑟
= 0,     

𝜕𝜃0

𝜕𝑟
= 0,   𝑎𝑡   𝑟 = 0.                                 (8.42) 

8.3.2 First Order System 

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑤1

𝜕𝑟
) = −

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑢0

𝜕𝑟
) −

𝑛 − 1

2
𝑊𝑒2

1

𝑟

𝜕

𝜕𝑟
(𝑟 (

𝜕𝑤0

𝜕𝑟
)
3

) 

                                                      +
ℳ2𝛼𝑒

𝛼𝑒
2 + 𝛽𝑒

2
(𝑤0 + 1) +

𝜕𝑝0

𝜕𝑧
,                                    (8.43) 

                     
1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝜃1

𝜕𝑟
) = −𝐵𝑟

(

 
 

(
𝜕𝑤1

𝜕𝑟
)
2

+
𝑛 − 1

2
𝑊𝑒2 (

𝜕𝑤1

𝜕𝑟
)
4

+
ℳ2

𝛼𝑒
2 + 𝛽𝑒

2
(𝑤1 + 1)2 + (

𝜕𝑤1

𝜕𝑟
)
2

)

 
 

,              (8.44) 

and boundary conditions are 

𝑤1 = 0,  𝜃1 = 0   𝑎𝑡   𝑟 = ℎ, 

                                                 
𝜕𝑤1

𝜕𝑟
= 0,    

𝜕𝜃1

𝜕𝑟
= 0   𝑎𝑡   𝑟 = 0,                                    (8.45) 

8.3.3 Second Order System 

   
1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑤2

𝜕𝑟
) = −

𝑛 − 1

2
𝑊𝑒2

1

𝑟

𝜕

𝜕𝑟
(𝑟 (

𝜕𝑤1

𝜕𝑟
)
3

) 

                                                                   +
ℳ2𝛼𝑒

𝛼𝑒
2 + 𝛽𝑒

2
(𝑤1 + 1) +

𝜕𝑝1

𝜕𝑧
,                       (8.46) 
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1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝜃2

𝜕𝑟
) = −𝐵𝑟

(

 
 

(
𝜕𝑤2

𝜕𝑟
)

2

+
𝑛 − 1

2
𝑊𝑒2 (

𝜕𝑤2

𝜕𝑟
)

4

+
ℳ2

𝛼𝑒
2 + 𝛽𝑒

2
(𝑤2 + 1)2 + (

𝜕𝑤2

𝜕𝑟
)
2

)

 
 

,            (8.47) 

and boundary conditions are 

         𝑤2 = 0,    𝜃2 = 0 = 0,     𝑎𝑡   𝑟 = ℎ, 

                                                       
𝜕𝑤2

𝜕𝑟
= 0,    

𝜕𝜃2

𝜕𝑟
= 0   𝑎𝑡   𝑟 = 0.                              (8.48) 

Solving Eqs. (8.40)-(8.48) with the help of software “Mathematica” we have found 

𝑤𝑖,  𝜃𝑖 , 𝑝𝑖 (𝑖 = 0, 1, 2) and the solution for velocity, temperature and pressure gradient 

are 

                                                   𝑊 = lim
𝑞→1

(𝑤0 + 𝑞𝑤1 + 𝑞2𝑤2 + ⋯),                            (8.49) 

                                                     𝜃 = lim
𝑞→1

(𝜃0 + 𝑞𝜃1 + 𝑞2𝜃2 + ⋯),                             (8.50) 

                                             
𝜕𝑝

𝜕𝑧
=  lim

𝑞→1
(
𝜕𝑝0

𝜕𝑧
+ 𝑞

𝜕𝑝1

𝜕𝑧
+ 𝑞2

𝜕𝑝2

𝜕𝑧
+ ⋯ ) ,                        (8.51) 

The volumetric flow rate can be evaluate by the following formula 

                                                        𝑄 = 2𝜋 ∫ 𝑟(𝑤(𝑟, 𝑧) + 1)𝑑𝑟.
ℎ

0

                                 (8.52) 

and mean volumetric flow rate in a fixed frame is written as follow 

                                                     𝑄̂ =
1

𝑇
∫ 𝑄𝑑𝑡̂ =

1

0

𝐹 +
1

2
(1 +

𝜀2

2
).                             (8.53) 

 

8.4 Result and Discussion 

 This section compromise a detailed discussion on the graphs of pressure rise, pressure 

gradient, velocity and temperature distribution. The parameters ℳ,  𝛽𝑖, 𝛽𝑒 , 𝑛,𝑊𝑒 and 

𝐵𝑟 represent the Hartmann number, ion-slip parameter, Hall parameter,  power law 

index, Weissenberg number and Brinkman number, respectively. Figs. 8.2a-e show the 

impact of interested parameters on the velocity field. The consequence of interested 

parameters on the pressure gradient and pressure rise can be depicted from Fig. 8.3a-e 

and Fig. 8.4a-e. Fig. 8.5a-e exhibit the impact of selected parameters on temperature 

profile. 
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Velocity profile 

 From Fig. 8.2a it is revealed that the significant variation in velocity can be observed 

at the center of ciliated tube because in pioseuille flow velocity is high at the axis of 

tube (i.e 𝑟 = 0). The consequence of magnetic field on the velocity profile shows that 

the speed of plasma in the axial direction became slow in the region −0.45 < 𝑟 < 0.45 

for rising value of Hartmann number. The increasing values of Hartmann number 

indicate that electromagnetic forces are dominent over the viscous forces and acting 

along the radial direction therefore causes to decelerate the axial velocity also Fig. 8.2b-

c show that axial velocity increases by rising Hall parameter 𝛽𝑒 and slip parameter 𝛽𝑖. 

Increasing values of Hall parameter show that when ratio of frequency of iron particles 

in plasma and frequency of collision of electrons due to strong magnetic field increases 

then fluid flow becomes faster in axial direction i.e Hall effect assist the fluid flow in 

axial direction. Fig. 8.2d indicates that increasing values of Wessenberg number 𝑊𝑒 

show that viscous properties of fluid are dominant over the elastic properties and by 

increasing the amount of elasticity in plasma, fluid become thick and for increasing 

value of 𝑊𝑒 < 1, flow is deccelerated.  

Fig. 8.2e illustrates that increasing power law index 𝑛 < 1 make the fluid thin and in 

results axial velocity increases but for 𝑛 > 1 the fluid (plasma) become discontinouns 

which is physically not possible in continium fluid mechanics. 

Pressure gradient 

 Fig. 8.3 exhibit the consequential change in pressure gradient for rising value of 

interested parameters, i.e, Hartmann number ℳ, Hall parameter 𝛽𝑒, slip parameter 𝛽𝑖, 

Weissenberg number 𝑊𝑒 and power law index 𝑛. It is depictted that behaviour of 

pressure gradient is same for all parameters  in the region 𝑧 ∈ [−1, 1]. Fig. 8.3a 

indicates that axial pressure gradient decreases by rising Hartmann number ℳ. Since 

the flow rate is directly proportional to pressure gradient, therefore, it is clear that strong 

magnetic field opposes flow in axial direction which results a decrease in axial pressure 

gradient. Fig. 8.3b and 8.3c show that axial pressure gradient increases by increases 

Hall parameter 𝛽𝑒  and slip parameter 𝛽𝑖. It is further noted that axial pressure gradient 

is reinforced with rising value of 𝛽𝑒 and 𝛽𝑖. 
𝑑𝑝

𝑑𝑧
 is small in region 𝑧 ∈ [−0.5, −0.2] and 

𝑧 ∈ [0.2, 0.5], whereas attain its maximum at 𝑟 − 𝑎𝑥𝑖𝑠. It can be revealed that flow can 

move freely with small pressure gradient, whereas high pressure gradient is important 

to attain the same flux. Fig. 8.3d indicates the impact of Wessenberg number 𝑊𝑒 on 
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pressure gradient. Since, fluid become more thick for increasing values of weissenberg 

number 𝑊𝑒 < 1, therefore, cilia need more effort to flow the fluid which results 

increase in pressure gradient. Fig. 3e illustrates the impact of power law index 𝑛 on 

pressure gradient. For 𝑛 < 1, the fluid become thin, therefore flow that generates due 

to motion of cilia can move easily without imposing high pressure gradient. Thus 

pressure gradient decreases as power law index 𝑛  increases.  

Streamlines 

 Fig. 8.4a-c, 8.5a-c and 8.6a-c represent the streamlines pattern of cilia-induced flow 

with the effect of Hartmann number ℳ, Hall prameter 𝛽𝑒 and slip parameter 𝛽𝑖, 

respectively. Since the streamlines show the pattren of fluid flow and internal 

circulation of streamlines known as trapped bolus, also more boluses indicate fluid is 

flowing rapidly. Fig. 8.4a-c indicate the influence of magnetic field on trapped bolus. 

As the magnetic field causes reduction in fluid velocity, it decreases both the number 

and size of trapping bolus by strong magnetic field. As Hall and slip parameter 

accelerate the flow hence large size and more trapping blouses create in flow. 

Therefore, it can be observed from Fig. 8.5a-c and 8.6a-c that the size of trapping 

boluses rises by larger Hall parameter 𝛽𝑒 and slip parameter 𝛽𝑖.  

Temperature distribution 

 Fig. 8.7a-d depict the significance change in temperature profile 𝜃 for growing values 

of various parameters. The trend of temperature profile is same as velocity profile 

attains its peak at center of tube (i.e 𝑟 = 0). The impact of magnetic field can be 

observed from Fig. 8.7a. Since the magnetic field resist the fluid flow hence rise in 

Hartmann number ℳ, results to increase in temperature profile. The resistance in the 

flow due to magnetic field decreases average kinetic energy, thus from Fig. 8.7b and 

8.7c we observe the reduction in temperature with higher values of ℳ, 𝛽𝑒 and 𝛽𝑖. The 

impact of Brinkman number can be observed from Fig. 8.7d which reveals that higher 

values of Brinkman number 𝐵𝑟  increases the temperature profile. 
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Fig. 8.2a: Impact of Hartmann number ℳ on horizontal velocity for 𝛼 = 0.4, 𝛽 =

0.4, 𝜀 = 0.2, 𝑄̂ = 0.2, 𝑛 = 0.3, 𝛽𝑒 = 0.5, 𝛽𝑖 = 0.5,𝑊𝑒 = 0.2. 
 

 

 

 

 

 

 

 

 
Fig. 8.2b: Impact of Hall parameter 𝛽𝑒 on horizontal velocity for 𝛼 = 0.4, 𝛽 =

0.4, 𝜀 = 0.2, 𝑄̂ = 0.2, 𝑛 = 0.3,ℳ = 1.5, 𝛽𝑖 = 0.5,𝑊𝑒 = 0.2. 
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Fig. 8.2c: Impact of Ion-slip 𝛽𝑖 parameter on horizontal velocity for 𝛼 = 0.4, 𝛽 =

0.4, 𝜀 = 0.2, 𝑄̂ = 0.2, 𝑛 = 0.3,ℳ = 1.5, 𝛽𝑒 = 0.5, 𝑊𝑒 = 0.2. 
 

 
Fig. 8.2d: Impact of Weissenberg 𝑊𝑒 number on horizontal velocity for 𝛼 = 0.4, 𝛽 =

0.4, 𝜀 = 0.2, 𝑄̂ = 0.2, 𝑛 = 0.3,ℳ = 1.5, 𝛽𝑒 = 0.5, 𝛽𝑖 = 0.5,𝑊𝑒 = 0.2. 
 

 
Fig. 8.2e: Impact of power law index 𝑛 on horizontal velocity for 𝛼 = 0.4, 𝛽 =

0.4, 𝜀 = 0.2, 𝑄̂ = 0.2, 𝑛 = 0.3,ℳ = 1.5, 𝛽𝑒 = 0.5, 𝛽𝑖 = 0.5,𝑊𝑒 = 0.2. 
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Fig. 8.3a: Impact of Hartmann number ℳ on pressure gradient.  

 

 

 

 

 

 

 

 

 

 

 
Fig. 8.3b: Impact of Hall parameter 𝛽𝑒 on pressure gradient.  
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Fig. 8.3c: Impact of Ion-slip parameter 𝛽𝑖 on pressure gradient. 

 

 

 
Fig. 8.3d: Impact of Weissenberg number 𝑊𝑒 on pressure gradient.  

 

 

 
Fig. 8.3e: Impact of power law index 𝑛 on pressure gradient.  
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(a) ℳ = 0.5         (b) ℳ = 1.0 

 

 

 

 
 

 

 

 
        (c) ℳ = 1.5 

 

 

Fig. 8.4: Impact of Hartmann number ℳ on stream function for for  𝛼 = 0.4, 𝛽 = 0.4,

𝜀 = 0.2, 𝑄̂ = 0.5, 𝑛 = 0.3,  𝛽𝑒 = 0.5, 𝛽𝑖 = 0.5, 𝑊𝑒 = 0.2.           
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      (a) 𝛽𝑒 = 0.1       (b) 𝛽𝑒 = 1.0 

 

 

 

 

 

 

 

 
       (c) 𝛽𝑒 = 2.0 

 

 

Fig. 8.5: Impact of Hall parameter 𝛽𝑒 on stream function for for  𝛼 = 0.4, 𝛽 = 0.4,

𝜀 = 0.2, 𝑄̂ = 0.5, 𝑛 = 0.3,ℳ = 1.5, 𝛽𝑖 = 0.5, 𝑊𝑒 = 0.2.  
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.         

     (a) 𝛽𝑖 = 0.1     (b) 𝛽𝑖 = 1.0 

 

 

 

 

 

 
 

 
                                                                  (c) 𝛽𝑖 = 2.0 

 

 

Fig. 8.6: Impact of Hall parameter 𝛽𝑖 on stream function for for  𝛼 = 0.4, 𝛽 = 0.4,

𝜀 = 0.2, 𝑄̂ = 0.5, 𝑛 = 0.3,ℳ = 1.5, 𝛽𝑒 = 0.5, 𝑊𝑒 = 0.2.  

 

 
 

 



142 

 

 

 

 

Fig. 8.7a: Impact of Hartmann number on temperature profile for 𝛼 = 0.4, 𝛽 = 0.4,

𝜀 = 0.2, 𝑄̂ = 0.5, 𝑛 = 0.3, 𝛽𝑒 = 0.5, 𝛽𝑖 = 1,𝑊𝑒 = 0.2.   

 

 

 

 

 

 

Fig. 8.7b: Impact of Hall parameter on temperature profile for 𝛼 = 0.4, 𝛽 = 0.4, 𝜀 =

0.2, 𝑄̂ = 0.5, 𝑛 = 0.3, 𝛽𝑒 = 0.5, 𝛽𝑖 = 1,𝑊𝑒 = 0.2.   
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Fig. 8.7c: Impact of ionslip parameter on temperature profile for 𝛼 = 0.4, 𝛽 = 0.4,

𝜀 = 0.2, 𝑄̂ = 0.5, 𝑛 = 0.3, 𝛽𝑒 = 0.5, ,𝑊𝑒 = 0.2.   

 

 

 

 

 

 

Fig. 8.7d: Impact of Brinkmann number on temperature profile for 𝛼 = 0.4, 𝛽 = 0.4,

𝜀 = 0.2, 𝑄̂ = 0.5, 𝑛 = 0.3, 𝛽𝑒 = 0.5, 𝛽𝑖 = 1,𝑊𝑒 = 0.2.   
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8.5 Conclusion 

 This study has been presented for heat transfer analysis with Hall current, ion-slip 

effect and the Ohmic heating through a ciliary transport of Carreau fluid in a tube. The 

dimensionless boundary value problem is evaluated by semi analytic technique 

Homotopy perturbation method and software "MATHEMATICA". The outcomes are 

examined for distinct parameters. The attributes of this study are: 

 Velocity profile reduces with the larger Hartmann number ℳ and Weissenberg 

number 𝑊𝑒 whereas it rises with Hall parameter, power law index 𝑛 and ion-

slip parameter. 

 Pressure gradient decreases for larger Hartmann number ℳ and power law 

index n and increases with Hall parameter, ion-slip parameter and Weissenberg 

number 𝑊𝑒. 

 The size of trapping bolus increases with the rise in Hall current 𝛽𝑒  and ion-slip 

parameter 𝛽𝑖 while reduces with rising Hartmann number ℳ. 

 Temperature profile is enhanced by increasing Hartmann number ℳ and power 

law index 𝑛 and diminished by increasing Weissenberg number 𝑊𝑒, Hall 

current 𝛽𝑒 and ion-slip parameter 𝛽𝑖. 
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Chapter 9  

Conclusion 

This thesis presents the effect of heat transfer in transport of magnetohydronamic flow 

of two dimensional ciliated channel/tube. It is found that cilia has to work more 

efficiently in the existence of magnetic field and heat transport in the fluid.  

In chapter 1, introduction to cilia and review of literature is discussed regarding to the 

contribution of various authors in ciliary transport.   

In chapter 2, applications of ciliary propulsion is explained by mathematical model of 

magnetohydrodynamic (MHD) flow through the infinite length of ciliated porous 

planer surface. Influence of magnetic field and porous medium is higher near the 

boundary and vanishes away from boundary.  

 Influence of Hall and ion-slip effect on the ciliary propulsion of viscous incompressible 

flow in infinite length model embedded in porous medium is evaluated in chapter 3. 

Impact of Hall and ionslip parameter showed the significant effect on longitudinal 

velocity as compared to transverse velocity. It is also noted that porosity, Hall and 

ionslip effect are required to accelerate the ciliary flow. 

Chapter 4 presents the mathematical modeling of electrically conducting viscoelastic 

physiological Johnson-Segalman fluid flow in a ciliated channel. With increase in fluid 

parameter larger pressure gradient is required to maintain the same flux through a center 

region of channel, whereas smaller pressure gradient is required with rise in magnetic 

parameter. 

 In chapter 5, mathematical modeling of ciliary transport of electrically conducting 

inertial flow of second grade fluid model is discussed in a two dimensional channel 

implanted in a porous medium. It is investigated that larger inertial forces caused to 

accelerate the flow, whereas magnetic forces reduce the longitudinal velocity but dual 

behavior can be seen through transverse velocity. 

Basically, it is concluded that magnetic field decelerated cilia induced flow if it is 

applied normal to the direction of fluid flow. The impact of electromagnetic forces on 

incompressible viscoelastic Johnson Segalman fluid and second grade fluid  show that 

magnetic field retarded the flow quickly in second grade fluid as compared to Johnson 

Segalman fluid. 
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In chapter 6, influence of porous medium and magnetohydrodynamic (MHD) on the 

convective viscoelastic physiological Jeffrey fluid model is anticipated through the 

ciliated channel. It is depicted that larger values of Hartmann number and Jeffrey first 

viscoelastic parameter reduced  the speed in core section of the channel whereas it is 

elevated with rising permeability parameter and Jeffrey second  viscoelastic parameter 

(retardation parameter) in the core zone. Temperature is enhanced with rising Hartmann 

number and second Jeffrey parameter whereas it is reduced with permeability parameter 

and Jeffrey first parameter. 

In chapter 7, mixed convective flow of electrically conducting Carreau fluid model is 

discussed in a vertical ciliated channel. Electromagnetic forces revived whereas heat 

transfer significantly accelerated the cilia induced flow. 

In chapter 8, the impact of Hall current and ion-slip on the convective flow of Carreau 

fluid is discussed through the two dimensional ciliated tube with ohmic heating. The 

flow is accelerated in the presence of Hall and ionslip effect but heat transfer in ciliary 

flow show the decreasing behavior.  

 Finally, it is concluded that the magnetic field resists the ciliated flow which result the 

strong elevation in temperature profile. The magnitude of velocity is greater in Jeffrey 

fluid flow thus more heat can be transfer through Jeffrey fluid compared for Carreau 

fluid flow in tube or in channel. However, Carreau fluid flow in channel moves with 

faster speed as compared with tube in the existence of magnetic field thus temperature 

profile attains maximum rate in channel. This thesis is beneficial to discuss problem 

occur in mucus in trachea, blood in fallopian tube, cholesterol in veins and arteries and 

in designing the artificial cilia.    
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Appendix 

  𝐴₁(𝑥) =
1

1008000ℎ
(1512000𝐹 + ℎ(−504000𝑢₀ + 𝐺ℎ(25200 + 𝐺ℎ2² 

× (−1320 + 67𝐺ℎ²))(𝐹 + ℎ𝑢₀))) +
1

84000ℎ3
𝛽𝜆₂((15 

× (2520 + 𝐺ℎ²(−228 + 5𝐺ℎ²))𝐹² − 9ℎ(7000 + 3𝐺ℎ2² 

× (−180 + 7𝐺ℎ²))𝐹𝓊₀ + 2ℎ²(12600 + 𝐺ℎ²(−1770 

+167𝐺ℎ²))𝓊₀²)ℎ′ + ℎ²(12600(𝐹 − ℎ𝓊₀) − 60𝐺ℎ²(33𝐹 

+2ℎ𝑢₀) + 𝐺²ℎ⁴(181𝐹 + 39ℎ𝓊₀))𝓊₀′), 
 

𝐴₂(𝑥)   =  −
1

756000ℎ³
(−378000 + 𝐺ℎ²(37800 + 𝐺ℎ²(−2430 + 133𝐺ℎ²))) 

  × (𝐹 + ℎ𝑢₀) −
1

21000ℎ⁵
𝛽𝜆₂((15(−15 + 𝐺ℎ²)(−84 + 5𝐺ℎ²) 

  × 𝐹² − ℎ(31500 + 𝐺ℎ²(−3555 + 167𝐺ℎ²))𝐹𝓊₀ 
  +ℎ²(12600 + 𝐴ℎ²(−2220 + 227𝐺ℎ²))𝓊₀²)ℎ′ + ℎ²((6300 

  +𝐺ℎ²(−1215 + 118𝐺ℎ²))𝐹 + ℎ(−15 + 𝐺ℎ²) 
  × (420 + 17𝐺ℎ²)𝓊₀)𝓊₀′)), 

 

𝐴₃(𝑥)   =  
1

56000ℎ³
𝐺(1400 + 𝐺ℎ²(−140 + 9𝐺ℎ²))(𝐹 + ℎ𝑢₀) 

  −
1

14000ℎ⁷
𝛽𝜆₂((−15(420 + 𝐺ℎ²(−98 + 5𝐺ℎ²))𝐹² 

  +ℎ(10500 + 𝐺ℎ²(−2310 + 149𝐺ℎ²))𝐹𝑢₀ − 2ℎ²(2100 
  +𝐺ℎ²(−595 + 72𝐺ℎ²))𝓊₀²)ℎ′ + ℎ²(𝐺²ℎ⁴(−71𝐹 + ℎ𝓊₀) 

  +2100(−𝐹 + ℎ𝓊₀) − 70𝐺ℎ²(−9𝐹 + 4ℎ𝑢₀))𝓊₀′)), 
 

𝐴4(𝑥)  =  −
1

16800ℎ3
𝐺2(−10 + 𝐺ℎ2)(−𝐹 + ℎ𝓊₀) −

1

(4200ℎ7
 

× 𝐺𝛽𝜆2((15(−9 + 𝐺ℎ2)𝐹 − 9ℎ(−25 + 3𝐺ℎ2)𝐹𝓊₀ + ℎ2² 

× (−90 + 17𝐺ℎ²)𝑢₀²)ℎ′ + ℎ²(𝐺ℎ²(8𝐹 − 3ℎ𝑢₀] 
+45(−𝐹 + ℎ𝓊₀))𝓊₀′), 

 

𝐴₅(𝑥)   =  
1

120960ℎ³
𝐺³(−𝐹 + ℎ𝓊₀) −

1

3360ℎ⁷
(𝐺²(−𝐹 

  +ℎ𝑢₀)𝛽𝜆₂((3𝐹 − 2ℎ𝓊₀)ℎ′ + ℎ²𝓊₀′)), 
 

 

𝐵₁(𝑥)   =  −
1

10710470950058880000000000ℎ⁴(1 + 𝜆₁)
× [𝐵𝑟(21420941900117760000000000ℎ⁶ 

  +(−𝐹 + ℎ𝑢₀)𝛽𝜆₂((𝐴⁹ℎ¹⁸(10233330719421𝐹 
  −13415170239448ℎ𝑢₀)(𝐹 − ℎ𝑢₀) − 1486674000𝐺⁶ℎ¹² 

× (7370113𝐹 − 19503891ℎ𝑢₀)(𝐹 − ℎ𝓊₀) 

−1159141877712000000𝐺³ℎ⁶(𝐹 + ℎ𝑢₀)(−256𝐹 + 255ℎ𝑢0) 

+3213141285017664000000000(9𝐹² − 5ℎ𝐹𝑢₀ + ℎ²𝑢₀²))ℎ′ 
+7ℎ²(165591696816000000𝐺³ℎ⁶(−𝐹 + ℎ𝑢₀) 
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  −2576996039196000𝐺6ℎ12(𝐹 + ℎ𝑢0) + 454548502861𝐺9ℎ18 

× (𝐹 + ℎ𝓊₀) + 459020183573952000000000(3𝐹 + 2ℎ𝑢₀))𝓊₀′)], 
 

𝐵₂(𝑥)   =  
1

48009024000000000ℎ⁸(1 + 𝜆₁)
[𝐵𝑟(𝐹 − ℎ𝑢₀) 

  × 𝛽𝜆₂((36006768000000𝐺³ℎ⁶(𝐹 + ℎ𝓊₀)² 
  −7794468000𝐺⁶ℎ¹²(−𝐹 + ℎ𝓊₀)² + 1185163𝐺⁹ℎ¹⁸(−𝐹 + ℎ𝑢₀)² 

  −72013536000000000(3𝐹²(2 + ℎ𝓊₀) + ℎ𝑢₀(3 + ℎ𝓊₀)))ℎ′ 
  −72013536000000000ℎ²𝐹𝓊₀′], 

 

  𝐵₃(𝑥) =
1

360067680000000000ℎ¹⁰(1 + 𝜆₁)
[𝐵𝑟(−𝐹 + ℎ𝑢₀)²𝛽𝜆₂ 

  × ((−216040608000000000(−3𝐹 + 2ℎ𝓊₀) 
  +36006768000000𝐺³ℎ⁶(−26𝐹 + 25ℎ𝓊₀) 
  −78732000𝐺⁶ℎ¹²(−3891𝐹 + 3932ℎ𝓊₀) 
  +133𝐺⁹ℎ¹⁸(−438972𝐹 + 449621ℎ𝓊₀))ℎ′ 

  +ℎ²(216040608000000000 − 36006768000000𝐺³ℎ⁶ 
  −3228012000𝐺⁶ℎ¹² + 1416317𝐺⁹ℎ¹⁸)𝓊₀′], 

 

  𝐵₄(𝑥) =
1

24893568000000000ℎ⁶(1 + 𝜆₁)
[𝐺³𝐵𝑟(−𝐹 + ℎ𝑢₀)²𝛽𝜆₂ 

  × ((𝐺⁶ℎ¹²(10685101𝐹 − 10831802ℎ𝓊₀) 
  −444528000000(−204𝐹 + 181ℎ𝓊₀) 

  +5292000𝐺³ℎ⁶(−8767(𝐹 + 8625ℎ𝓊₀))ℎ′ 
  +ℎ²(10224144000000 − 751464000𝐺3ℎ6⁶ 

−146701𝐺⁶ℎ¹²)𝓊₀′], 
 

𝐵₅(𝑥)   =  
1

6001128000000000ℎ⁸(1 + 𝜆₁)
[𝐺³𝐵𝑟(−𝐹 + ℎ𝓊₀)₂²𝛽𝜆₂ 

  × ((1000188000000(−𝐹 + 11ℎ𝓊₀) 
  −81000𝐺³ℎ⁶(−165937𝐹 + 156106ℎ𝓊₀) 
  +7𝐺⁶ℎ¹²(−558740𝐹 + 554657ℎ𝓊₀))ℎ′ 

  −3ℎ²(1000188000000 − 265437000𝐺3ℎ6⁶ 
+9527𝐺⁶ℎ¹²)𝓊₀′)], 

 

  𝐵₆(𝑥) =
1

158429779200000000ℎ¹⁰(1 + 𝜆₁)
[𝐺³𝐵𝑟(−𝐹 + ℎ𝓊₀)²𝛽𝜆₂ 

  × ((𝐺⁶ℎ¹²(101393121𝐹 − 98073227ℎ𝓊₀) 
  −30005640000000(−3𝐹 + 2ℎ𝓊₀) 

  +10206000𝐺³ℎ⁶(−24819𝐹 + 22055ℎ𝑢₀))ℎ′ 
+2ℎ²(15002820000000 − 14104692000𝐺3ℎ6⁶ 

+1659947𝐺⁶ℎ¹²)𝓊₀′)], 
 

𝐵₇(𝑥)   =  
1

107872128000000ℎ⁶(1 + 𝜆₁)
[𝐺⁶𝐵𝑟(−𝐹 + ℎ𝓊₀)²𝛽𝜆₂ 

  × ((−25200(−2893𝐹 + 2400ℎ𝑢₀) + 𝐺³ℎ⁶(−45924𝐹 

+43127ℎ𝓊₀))ℎ′ + ℎ²(12423600 − 2797𝐺³ℎ⁶)𝑢₀′)], 
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𝐵₈(𝑥)   =  
1

426746880000000ℎ⁸(1 + 𝜆₁)
[𝐺⁶𝐵𝑟(−𝐹 + ℎ𝑢₀)²𝛽𝜆₂ 

  × ((𝐴³ℎ⁶(82529𝐹 − 74860ℎ𝓊₀) + 2646000(−25𝐹 

+19ℎ𝓊₀))ℎ′ + ℎ²(−15876000 + 7669𝐴³ℎ⁶)𝓊₀′)],   

 

𝐵₉(𝑥)   =  
1

2448460224000000ℎ¹⁰(1 + 𝜆₁)
[𝐺⁶𝐵𝑟(−𝐹 + ℎ𝓊₀)²𝛽𝜆₂ 

  × ((−11907000(−3𝐹 + 2ℎ𝓊₀) + 𝐺³ℎ⁶(−144084 − 𝐹 
  +125069ℎ𝓊₀))ℎ′ + 5ℎ²(2381400 − 3803𝐴³ℎ⁶)𝓊₀′)], 

 

𝐵₁₀(𝑥)   =  
1

90091008000000ℎ⁶(1 + 𝜆₁)
[𝐺⁹𝐵𝑟(−𝐹 + ℎ𝓊₀)² 

  × 𝛽𝜆₂((1029𝐹 − 841ℎ𝑢₀)ℎ′ + 188ℎ²𝓊₀′)], 
 

𝐵₁₁(𝑥)   =  −
1

3129477120000ℎ⁸(1 + 𝜆₁)
[𝐺⁹𝐵𝑟(−𝐹 + ℎ𝓊₀)² 

  × 𝛽𝜆₂((4𝐹 − 3ℎ𝑢₀)ℎ′ + ℎ²𝓊₀′)], 
 

𝐵₁₂(𝑥)   =  
1

47112855552000ℎ¹⁰(1 + 𝜆₁)
[𝐺⁹𝐵𝑟(−𝐹 + ℎ𝓊₀)² 

  × 𝛽𝜆₂((3𝐹 − 2ℎ𝓊₀)ℎ′ + ℎ²𝓊₀′)]. 
 

𝐶₁(𝑥, 𝑦)   =  +2√𝐺𝑦𝑠𝑖𝑛ℎ[2√𝐺𝑦](−1 + 3𝐺ℎ²) + √𝐺𝑦𝑠𝑖𝑛ℎ[4√𝐺𝑦](1 + 3𝐺ℎ²) 

  +𝑐𝑜𝑠 ℎ[√𝐺(𝑦 − ℎ)](−3 + 3𝐺ℎ²) + 𝑐𝑜𝑠 ℎ[√𝐺(𝑦 + ℎ)](3 − 3𝐺ℎ²) 

  +𝑐𝑜𝑠 ℎ[√𝐺(𝑦 − 3ℎ)](1 + 3𝐺ℎ²) − 𝑐𝑜𝑠 ℎ[√𝐺(𝑦 + 3ℎ)](1 + 3𝐺ℎ²) 

  +3√𝐺ℎ(√𝐺𝑦 − √𝐺𝑦𝐶𝑜𝑠ℎ[4√𝐺ℎ] + 𝑆𝑖𝑛ℎ[√𝐺(𝑦 − 3ℎ)] 

  −𝑆𝑖𝑛ℎ[√𝐺(𝑦 − ℎ)] − 𝑆𝑖𝑛ℎ[√𝐺(𝑦 + ℎ)] + 𝑆𝑖𝑛ℎ[√𝐺(𝑦 + 3ℎ)]), 
 

𝐶₂(𝑥, 𝑦)   =  −72√𝐺
𝑑𝑃0

𝑑𝑥
𝑦 + 112√𝐺 (

𝑑𝑃0

𝑑𝑥
)
2

ℎ² + 192√𝐺
𝑑𝑃0

𝑑𝑥
ℎ 

  −128𝐺
3
2
𝑑𝑃0

𝑑𝑥
ℎ³ − 144𝐺

3
2 (

𝑑𝑃0

𝑑𝑥
)
2

ℎ⁴ + 76𝐺
3
2 (

𝑑𝑃0

𝑑𝑥
)
2

ℎ³𝑦 

  +120𝐺
5
2
𝑑𝑃0

𝑑𝑥
ℎ⁴𝑦 + 20𝐺² (

𝑑𝑃0

𝑑𝑥
)
2

ℎ⁵ + 60√𝐺 (
𝑑𝑃0

𝑑𝑥
)
2

ℎ𝑦 

  +56𝐺
3
2
𝑑𝑃0

𝑑𝑥
ℎ²𝑦 − 96𝐺

5
2
𝑑𝑃0

𝑑𝑥
ℎ³𝑦𝐹₀ + 96𝐺

𝑑𝑃0

𝑑𝑥
𝑦𝐹₀ 

  −32𝐺
3
2
𝑑𝑃0

𝑑𝑥
ℎ²𝐹₀ − 28𝐺

3
2𝑦𝐹₀ − 64𝐺

3
2
𝑑𝑃0

𝑑𝑥
ℎ𝑦𝐹₀ 

  +24𝐺
5
2 (

𝑑𝑃0

𝑑𝑥
)
2

ℎ²𝑦𝐹₀ + 48𝐺𝐺
5
2ℎ𝑦𝐹₀² − 4𝐺

5
2 (

𝑑𝑃0

𝑑𝑥
)
2

 

  × ℎ6 (4√𝐺𝑦𝐶𝑜𝑠ℎ[√𝐺𝑦](𝐶𝑜𝑠ℎ[√𝐺𝑦])
2
𝑆𝑖𝑛ℎ [𝐶𝑜𝑠ℎ[√𝐺𝑦]]) , 

 

𝐶₃(𝑥, 𝑦)   =  52√𝐺
𝑑𝑃0

𝑑𝑥
𝑦 − 14(8 + 𝐺𝑦²)√𝐺 (

𝑑𝑃0

𝑑𝑥
)
2

ℎ² − 24(8 + 𝐺𝑦²)√𝐺
𝑑𝑃0

𝑑𝑥
ℎ 

  +16(8 + 𝐺𝑦²)𝐺
3
2
𝑑𝑃0

𝑑𝑥
ℎ³ + 18(8 + 𝐺𝑦²)𝐺

3
2 (

𝑑𝑃0

𝑑𝑥
)
2

ℎ⁴ 
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  +24𝐺
3
2 (

𝑑𝑃0

𝑑𝑥
)
2

ℎ³𝑦 − 16𝐺
5
2 (

𝑑𝑃0

𝑑𝑥
)
2

ℎ⁵𝑦 − 100√𝐺√𝐺 (
𝑑𝑃0

𝑑𝑥
)
2

ℎ𝑦 

  +132𝐺
3
2
𝑑𝑃0

𝑑𝑥
ℎ²𝑦 + 32𝐺

5
2
𝑑𝑃0

𝑑𝑥
ℎ³𝑦𝐹₀ − 12(8 + 𝐺𝑦²)√𝐺

𝑑𝑃0

𝑑𝑥
𝐹₀ 

  +4(8 + 𝐺𝑦²)𝐺
3
2
𝑑𝑃0

𝑑𝑥
ℎ²𝐹₀ − 152𝐺

3
2
𝑑𝑃0

𝑑𝑥
ℎ𝑦𝐹₀, 

 

𝐶₄(𝑥, 𝑦)   =  72√𝐺
𝑑𝑃0

𝑑𝑥
𝑦 + 64√𝐺 (

𝑑𝑃0

𝑑𝑥
)
2

ℎ² − 192√𝐺
𝑑𝑃0

𝑑𝑥
ℎ − 64𝐺

3
2
𝑑𝑃0

𝑑𝑥
ℎ³ 

  +64𝐺
3
2
𝑑𝑃0

𝑑𝑥
ℎ³ + 128𝐺

3
2 (

𝑑𝑃0

𝑑𝑥
)
2

ℎ⁴ − 272𝐺
3
2 (

𝑑𝑃0

𝑑𝑥
)
2

ℎ³𝑦 

  −32𝐺
5
2
𝑑𝑃0

𝑑𝑥
ℎ⁴𝑦 − 4𝐺

3
2 (

𝑑𝑃0

𝑑𝑥
)
2

ℎ³𝑦 − 48√𝐺 (
𝑑𝑃0

𝑑𝑥
)
2

ℎ𝑦 

  −248𝐺
3
2
𝑑𝑃0

𝑑𝑥
ℎ²𝑦 − 72𝐺

5
2
𝑑𝑃0

𝑑𝑥
ℎ³𝑦𝐹₀ − 128√𝐺

𝑑𝑃0

𝑑𝑥
𝐹₀ 

  −128𝐺
3
2
𝑑𝑃0

𝑑𝑥
ℎ²𝐹₀ − 16𝐺

3
2
𝑑𝑃0

𝑑𝑥
ℎ𝑦𝐹₀, 

 

𝐶₅(𝑥, 𝑦)   =  48√𝐺
𝑑𝑃0

𝑑𝑥
𝑦 − 192√𝐺 (

𝑑𝑃0

𝑑𝑥
)
2

ℎ² − 128√𝐺
𝑑𝑃0

𝑑𝑥
ℎ − 128𝐺

3
2
𝑑𝑃0

𝑑𝑥
ℎ³ 

  −128𝐺
3
2 (

𝑑𝑃0

𝑑𝑥
)
2

ℎ⁴ + 304𝐺
3
2 (

𝑑𝑃0

𝑑𝑥
)
2

ℎ³𝑦 − 40𝐺
5
2
𝑑𝑃0

𝑑𝑥
ℎ⁴𝑦 

  −20𝐺
3
2 (

𝑑𝑃0

𝑑𝑥
)
2

ℎ³𝑦 − 48√𝐺 (
𝑑𝑃0

𝑑𝑥
)
2

ℎ𝑦 + 224𝐺
3
2
𝑑𝑃0

𝑑𝑥
ℎ²𝑦 

  −32𝐺
5
2
𝑑𝑃0

𝑑𝑥
ℎ³𝑦𝐹₀ − 128√𝐺

𝑑𝑃0

𝑑𝑥
𝐹₀ + 96𝐺

3
2
𝑑𝑃0

𝑑𝑥
ℎ𝑦𝐹₀ 

  −16𝐺
5
2 (

𝑑𝑃0

𝑑𝑥
)
2

ℎ²𝑦𝐹₀ − 48𝐺
5
2ℎ𝑦𝐹₀², 

 

𝐶₆(𝑥, 𝑦)   =  −72√𝐺
𝑑𝑃0

𝑑𝑥
𝑦 − 64√𝐺 (

𝑑𝑃0

𝑑𝑥
)
2

ℎ² + 124√𝐺
𝑑𝑃0

𝑑𝑥
ℎ + 192𝐺

3
2
𝑑𝑃0

𝑑𝑥
ℎ³ 

  +128𝐺
3
2 (

𝑑𝑃0

𝑑𝑥
)
2

ℎ⁴ − 112𝐺
3
2 (

𝑑𝑃0

𝑑𝑥
)
2

ℎ³𝑦 + 4𝐺
3
2 (

𝑑𝑃0

𝑑𝑥
)
2

ℎ³𝑦 

  +48√𝐺 (
𝑑𝑃0

𝑑𝑥
)
2

ℎ𝑦 − 20𝐺
3
2
𝑑𝑃0

𝑑𝑥
ℎ²𝑦 + 8𝐺

5
2
𝑑𝑃0

𝑑𝑥
ℎ³𝑦𝐹₀ 

  +128𝐺
3
2
𝑑𝑃0

𝑑𝑥
ℎ²𝐹₀ + 16𝐺

3
2
𝑑𝑃0

𝑑𝑥
ℎ𝑦𝐹₀, 

 

𝐶₇(𝑥, 𝑦)   =  24√𝐺
𝑑𝑃0

𝑑𝑥
𝑦 + 80√𝐺 (

𝑑𝑃0

𝑑𝑥
)
2

ℎ² − 64√𝐺
𝑑𝑃0

𝑑𝑥
ℎ + 16𝐺

3
2 (

𝑑𝑃0

𝑑𝑥
)
2

ℎ⁴ 

  +4𝐺
3
2 (

𝑑𝑃0

𝑑𝑥
)
2

ℎ³𝑦 − 12√𝐺 (
𝑑𝑃0

𝑑𝑥
)
2

ℎ𝑦 + 18
𝑑𝑃0

𝑑𝑥
ℎ²𝑦 + 32

𝑑𝑃0

𝑑𝑥
ℎ³𝑦𝐹₀ 

  +32√𝐺
𝑑𝑃0

𝑑𝑥
𝐹₀ + 32𝐺

3
2
𝑑𝑃0

𝑑𝑥
ℎ²𝐹₀ + 28𝐺

3
2𝑦𝐹₀ − 32𝐺

3
2
𝑑𝑃0

𝑑𝑥
ℎ𝑦𝐹₀, 

 

𝐶₈(𝑥, 𝑦)   =  −4(40 + 𝐺𝑦²)
𝑑𝑃0

𝑑𝑥
+ 70𝐺 (

𝑑𝑃0

𝑑𝑥
)
2

ℎ²𝑦 + 120𝐺
𝑑𝑃0

𝑑𝑥
ℎ𝑦 − 40𝐺²

𝑑𝑃0

𝑑𝑥
ℎ³𝑦 
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  −90𝐺² (
𝑑𝑃0

𝑑𝑥
)
2

ℎ⁴𝑦 − 8𝐺² (
𝑑𝑃0

𝑑𝑥
)
2

ℎ³𝑦 + 224𝐺²
𝑑𝑃0

𝑑𝑥
ℎ⁴ 

  −152𝐺² (
𝑑𝑃0

𝑑𝑥
)
2

ℎ⁵ + 4(40 + 5𝐺𝑦²) (
𝑑𝑃0

𝑑𝑥
)
2

ℎ + 72𝐺²
𝑑𝑃0

𝑑𝑥
ℎ³𝐹₀ 

  +60𝐺²
𝑑𝑃0

𝑑𝑥
𝑦𝐹₀ + 60𝐺

𝑑𝑃0

𝑑𝑥
𝑦𝐹₀ − 20𝐺²

𝑑𝑃0

𝑑𝑥
ℎ²𝑦𝐹₀ − 4(48 + 6𝐺𝑦²) 

  × 𝐺
𝑑𝑃0

𝑑𝑥
ℎ𝐹₀ − 32𝐺³ℎ⁵𝑐𝑜𝑠ℎ[√𝐺ℎ] + 4𝐺³

𝑑𝑃0

𝑑𝑥
(−5𝐶𝑜𝑠ℎ[√𝐺ℎ] 

  +𝐶𝑜𝑠ℎ[3√𝐺ℎ]])ℎ⁶ − 2(6𝑆𝑖𝑛ℎ[√𝐺ℎ] + 𝑆𝑖𝑛ℎ[2√𝐺ℎ]) 

  −32𝐺³(𝐶𝑜𝑠ℎ[√𝐺ℎ])³ℎ⁴𝐹₀ − 16𝐺
5
2
𝑑𝑃0

𝑑𝑥
ℎ⁴(−10𝑆𝑖𝑛ℎ[√𝐺ℎ] 

  +𝑆𝑖𝑛ℎ[√𝐺ℎ])𝐹₀, 
 

𝐶₉(𝑥, 𝑦)   =  192
𝑑𝑃0

𝑑𝑥
+ 228𝐺 (

𝑑𝑃0

𝑑𝑥
)
2

ℎ²𝑦 + 168
𝑑𝑃0

𝑑𝑥
ℎ − 232𝐺²

𝑑𝑃0

𝑑𝑥
ℎ³𝑦 − 112𝐺

3
2 

  × (
𝑑𝑃0

𝑑𝑥
)
2

ℎ⁴ + 32𝐺² (
𝑑𝑃0

𝑑𝑥
)
2

ℎ⁴𝑦 − 64𝐺²
𝑑𝑃0

𝑑𝑥
ℎ⁴ − 32𝐺² (

𝑑𝑃0

𝑑𝑥
)
2

ℎ⁵ 

  −192 (
𝑑𝑃0

𝑑𝑥
)
2

ℎ − 64𝐺²
𝑑𝑃0

𝑑𝑥
ℎ³𝐹₀ + 72𝐺

𝑑𝑃0

𝑑𝑥
𝑦𝐹₀ − 144𝐺²

𝑑𝑃0

𝑑𝑥
ℎ²𝑦𝐹₀ 

  +192𝐺
𝑑𝑃0

𝑑𝑥
ℎ𝐹₀, 

 

𝐶₁₀(𝑥, 𝑦)   =  −64
𝑑𝑃0

𝑑𝑥
− 132𝐺 (

𝑑𝑃0

𝑑𝑥
)
2

ℎ²𝑦 − 176
𝑑𝑃0

𝑑𝑥
ℎ − 52𝐺²

𝑑𝑃0

𝑑𝑥
ℎ³𝑦 − 128𝐺² 

  ×
𝑑𝑃0

𝑑𝑥
ℎ²𝑦 + 18𝐺

3
2 (

𝑑𝑃0

𝑑𝑥
)
2

ℎ⁴ + 256𝐺² (
𝑑𝑃0

𝑑𝑥
)
2

ℎ⁴𝑦 − 32𝐺² 

  × (
𝑑𝑃0

𝑑𝑥
)
2

ℎ⁵ + 64 (
𝑑𝑃0

𝑑𝑥
)
2

ℎ + 320𝐺
𝑑𝑃0

𝑑𝑥
ℎ² − 32𝐺³ℎ³𝑦𝐹₀ 

  −16𝐺³
𝑑𝑃0

𝑑𝑥
ℎ⁴𝑦𝐹₀ − 248𝐺²ℎ𝑦𝐹₀ + 72𝐺²

𝑑𝑃0

𝑑𝑥
𝑦𝐹₀ − 24𝐺

𝑑𝑃0

𝑑𝑥
𝑦𝐹₀ 

  −48𝐺2
𝑑𝑃0
𝑑𝑥 ℎ2𝑦𝐹₀ + 128𝐺

𝑑𝑃0

𝑑𝑥
ℎ𝐹₀ − 40𝐺2𝑦𝐹₀² − 32𝐺3ℎ2𝑦𝐹₀² − 16𝐺𝑦, 

 

𝐶₁₁(𝑥, 𝑦)   =  −64
𝑑𝑃0

𝑑𝑥
− 12𝐺 (

𝑑𝑃0

𝑑𝑥
)
2

ℎ²𝑦 + 136
𝑑𝑃0

𝑑𝑥
ℎ + 56𝐺²

𝑑𝑃0

𝑑𝑥
ℎ³𝑦 + 32𝐺𝐺

3
2 

  × (
𝑑𝑃0

𝑑𝑥
)
2

ℎ⁴ − 96𝐺² (
𝑑𝑃0

𝑑𝑥
)
2

ℎ⁴𝑦 − 64𝐺²
𝑑𝑃0

𝑑𝑥
ℎ⁴ + 64 (

𝑑𝑃0

𝑑𝑥
)
2

ℎ 

  −256𝐺
𝑑𝑃0

𝑑𝑥
ℎ² − 64𝐺²

𝑑𝑃0

𝑑𝑥
ℎ³𝐹₀ + 80𝐺²

𝑑𝑃0

𝑑𝑥
ℎ²𝑦𝐹₀ + 64𝐺

𝑑𝑃0

𝑑𝑥
ℎ𝐹₀, 

 

𝐶₁₂(𝑥, 𝑦)   =  32
𝑑𝑃0

𝑑𝑥
+ 𝐺 (

𝑑𝑃0

𝑑𝑥
)
2

ℎ²𝑦 − 56
𝑑𝑃0

𝑑𝑥
ℎ − 6𝐺²

𝑑𝑃0

𝑑𝑥
ℎ³𝑦 − 5𝐺

3
2 (

𝑑𝑃0

𝑑𝑥
)
2

ℎ⁴ 

  −64𝐺² (
𝑑𝑃0

𝑑𝑥
)
2

ℎ⁴𝑦 − 32 (
𝑑𝑃0

𝑑𝑥
)
2

ℎ + 32𝐺
𝑑𝑃0

𝑑𝑥
ℎ² + 12𝐺²ℎ𝑦𝐹₀ 

  +24𝐺
𝑑𝑃0

𝑑𝑥
𝑦𝐹₀ + 64𝐺

𝑑𝑃0

𝑑𝑥
ℎ𝐹₀² + 20𝐺2𝑦𝐹₀² + 8𝐺𝑦, 
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𝐶₁₃(𝑥, 𝑦)   =  −92𝐺
5
2ℎ⁴ − 88𝐺

5
2ℎ³𝑦 − 88

𝑑𝑃0

𝑑𝑥
𝑦 − 272√𝐺 (

𝑑𝑃0

𝑑𝑥
)
2

ℎ² − 14𝐺
5
2 

  × (
𝑑𝑃0

𝑑𝑥
)
2

ℎ²𝑦² − 94𝐺
5
2
𝑑𝑃0

𝑑𝑥
ℎ⁵ − 32√𝐺

𝑑𝑃0

𝑑𝑥
ℎ − 8𝐺

5
2
𝑑𝑃0

𝑑𝑥
ℎ𝑦² 

  +2(16 + 4𝐺𝑦²)𝐺
3
2
𝑑𝑃0

𝑑𝑥
ℎ³ + 4𝐺

3
2𝑦ℎ + 4𝐺

3
2ℎ²(−6 + 5𝐺𝑦²) 

  +𝐺
3
2 (

𝑑𝑃0

𝑑𝑥
)
2

ℎ⁴(28 − 7𝐺𝑦²) + 54𝐺
3
2 (

𝑑𝑃0

𝑑𝑥
)
2

ℎ³𝑦 − 34𝐺
5
2
𝑑𝑃0

𝑑𝑥
ℎ⁴𝑦 

  +11𝐺
5
2
𝑑𝑃0

𝑑𝑥
ℎ⁵𝑦 + 100√𝐺 (

𝑑𝑃0

𝑑𝑥
)
2

ℎ𝑦 + 58𝐺
3
2
𝑑𝑃0

𝑑𝑥
ℎ²𝑦 − 148𝐺

5
2ℎ³𝐹₀ 

  −32𝐺
5
2
𝑑𝑃0

𝑑𝑥
ℎ³𝑦𝐹₀ + 32𝐺

5
2𝑦²ℎ𝐹₀ − 4(24 + 3𝐺𝑦²)√𝐺

𝑑𝑃0

𝑑𝑥
𝐹₀ 

  +4(44 + 4𝐺𝑦²)𝐺
3
2
𝑑𝑃0

𝑑𝑥
ℎ²𝐹₀ + 28𝐺

3
2𝑦𝐹₀ − 68𝐺

3
2
𝑑𝑃0

𝑑𝑥
ℎ𝑦𝐹₀ 

  −121𝐺
5
2ℎ²𝑦𝐹₀ + 12𝐺

5
2𝑦²𝐹₀² − 48𝐺

5
2ℎ²𝐹₀² − 12𝐺

5
2ℎ𝑦𝐹₀², 

 

𝐶₁₄(𝑥, 𝑦)   =  92𝐺
5
2ℎ⁴ − 88𝐺

5
2ℎ³𝑦 + 24√𝐺

𝑑𝑃0

𝑑𝑥
𝑦 + 208√𝐺 (

𝑑𝑃0

𝑑𝑥
)
2

ℎ² − 9𝐺
3
2 

  × (
𝑑𝑃0

𝑑𝑥
)
2

ℎ³𝑦 + 6𝐺
5
2 (

𝑑𝑃0

𝑑𝑥
)
2

ℎ²𝑦² + 94𝐺
5
2
𝑑𝑃0

𝑑𝑥
ℎ⁵ + 224√𝐺

𝑑𝑃0

𝑑𝑥
ℎ 

  +32𝐺
5
2
𝑑𝑃0

𝑑𝑥
ℎ𝑦² − 2(48 + 8𝐺𝑦²)𝐺

3
2
𝑑𝑃0

𝑑𝑥
ℎ³ + 4𝐺

3
2𝑦ℎ + 4𝐺

3
2ℎ² 

  × (6 − 5𝐺𝑦²) − 𝐺
3
2 (

𝑑𝑃0

𝑑𝑥
)
2

ℎ⁴(156 + 9𝐺𝑦²) + 74𝐺
3
2 (

𝑑𝑃0

𝑑𝑥
)
2

ℎ³𝑦 

  −74𝐺
5
2
𝑑𝑃0

𝑑𝑥
ℎ⁴𝑦 − 9𝐺

5
2
𝑑𝑃0

𝑑𝑥
ℎ⁵𝑦 − 20 (

𝑑𝑃0

𝑑𝑥
)
2

ℎ𝑦 + 58𝐺
3
2
𝑑𝑃0

𝑑𝑥
ℎ²𝑦 

  +148𝐺
5
2ℎ³𝐹₀ − 72𝐺

5
2
𝑑𝑃0

𝑑𝑥
ℎ³𝑦𝐹₀ − 32𝐺

5
2𝑦²ℎ𝐹₀ + 4(24 + 3𝐺𝑦²) 

  × √𝐺
𝑑𝑃0

𝑑𝑥
𝐹₀ − 48𝐺

3
2
𝑑𝑃0

𝑑𝑥
ℎ²𝐹₀ + 28𝐺𝐺

3
2𝑦𝐹₀ + 52𝐺

3
2
𝑑𝑃0

𝑑𝑥
ℎ𝑦𝐹₀ 

  −121𝐺
5
2ℎ²𝑦𝐹₀ − 12𝐺

5
2𝑦²𝐹₀² + 48𝐺

5
2ℎ²𝐹₀² − 12𝐺

5
2ℎ𝑦𝐹₀², 

 

𝐶₁₅(𝑥, 𝑦)   =  4√𝐺
𝑑𝑃0

𝑑𝑥
𝑦 + 2(88 + 3𝐺𝑦²)√𝐺 (

𝑑𝑃0

𝑑𝑥
)
2

ℎ² − 8𝐺
5
2
𝑑𝑃0

𝑑𝑥
ℎ⁵

+ 256√𝐺
𝑑𝑃0

𝑑𝑥
ℎ 

  +16𝐺
5
2
𝑑𝑃0

𝑑𝑥
ℎ𝑦² + 2(100 + 12𝐺𝑦²)𝐺

3
2
𝑑𝑃0

𝑑𝑥
ℎ³ + 𝐺

3
2 (

𝑑𝑃0

𝑑𝑥
)
2

ℎ⁴(160 

  +14𝐺𝑦²) − 176𝐺
3
2 (

𝑑𝑃0

𝑑𝑥
)
2

ℎ³𝑦 − 8𝐺
5
2
𝑑𝑃0

𝑑𝑥
ℎ⁵𝑦 + 20√𝐺 (

𝑑𝑃0

𝑑𝑥
)
2

ℎ𝑦 

  −268𝐺
3
2
𝑑𝑃0

𝑑𝑥
ℎ²𝑦 + 16𝐺

5
2
𝑑𝑃0

𝑑𝑥
ℎ³𝑦𝐹₀ + 4(24 + 3𝐺𝑦²)√𝐺

𝑑𝑃0

𝑑𝑥
𝐹₀ 

  +4(24 + 3𝐺𝑦2)𝐺
3
2
𝑑𝑃0

𝑑𝑥
ℎ2𝐹₀ − 136𝐺

3
2
𝑑𝑃0

𝑑𝑥
ℎ𝑦, 
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𝐶₁₆(𝑥, 𝑦)   =  −36√𝐺
𝑑𝑃0

𝑑𝑥
𝑦 + 2(8 + 9𝐺𝑦²)√𝐺 (

𝑑𝑃0

𝑑𝑥
)
2

ℎ² + 8𝐺
5
2
𝑑𝑃0

𝑑𝑥
ℎ⁵

− 128√𝐺
𝑑𝑃0

𝑑𝑥
ℎ 

  −128𝐺
5
2
𝑑𝑃0

𝑑𝑥
ℎ𝑦² − 2(36 + 4𝐺𝑦²)𝐺

3
2
𝑑𝑃0

𝑑𝑥
ℎ³ + 𝐺

3
2 (

𝑑𝑃0

𝑑𝑥
)
2

ℎ⁴(−32 + 2𝐺𝑦²) 

  −16𝐺
3
2 (

𝑑𝑃0

𝑑𝑥
)
2

ℎ³𝑦 − 8𝐺
5
2
𝑑𝑃0

𝑑𝑥
ℎ⁵𝑦 + 60√𝐺 (

𝑑𝑃0

𝑑𝑥
)
2

ℎ𝑦 − 68𝐺
3
2
𝑑𝑃0

𝑑𝑥
ℎ²𝑦 

  +16𝐺𝐺
5
2
𝑑𝑃0

𝑑𝑥
ℎ³𝑦𝐹₀ + 4(8 + 𝐺𝑦²)√𝐺

𝑑𝑃0

𝑑𝑥
𝐹₀ − 4(24 + 3𝐺𝑦²)𝐺

3
2
𝑑𝑃0

𝑑𝑥
ℎ²𝐹₀ 

  −56𝐺
3
2
𝑑𝑃0

𝑑𝑥
ℎ𝑦𝐹₀, 

 

𝐶₁₇(𝑥, 𝑦)   =  4𝐺
5
2ℎ⁴ + 𝐺

5
2𝑦 + 48√𝐺

𝑑𝑃0

𝑑𝑥
𝑦 + 112√𝐺 (

𝑑𝑃0

𝑑𝑥
)
2

ℎ²

+ 18𝐺
5
2 (

𝑑𝑃0

𝑑𝑥
)
2

ℎ²𝑦² 

  +2𝐺
5
2
𝑑𝑃0

𝑑𝑥
ℎ⁵ − 224√𝐺

𝑑𝑃0

𝑑𝑥
ℎ − 16𝐺

5
2
𝑑𝑃0

𝑑𝑥
ℎ𝑦² − 2(104 + 8𝐺𝑦²)𝐺

3
2
𝑑𝑃0

𝑑𝑥
ℎ³ 

  −4𝐺
3
2𝑦ℎ + 4𝐺

3
2ℎ²(2 + 𝐺𝑦²) − 𝐺

3
2 (

𝑑𝑃0

𝑑𝑥
)
2

ℎ⁴(148 + 11𝐺𝑦²) + 30𝐺
3
2 

  × (
𝑑𝑃0

𝑑𝑥
)
2

ℎ³𝑦 + 50𝐺
5
2
𝑑𝑃0

𝑑𝑥
ℎ⁴𝑦 + 25𝐺

5
2
𝑑𝑃0

𝑑𝑥
ℎ⁵𝑦 − 60√𝐺 (

𝑑𝑃0

𝑑𝑥
)
2

ℎ𝑦 

  +134𝐺𝐺
3
2
𝑑𝑃0

𝑑𝑥
ℎ²𝑦 + 12𝐺

5
2ℎ³𝐹₀ + 40𝐺

5
2
𝑑𝑃0

𝑑𝑥
ℎ³𝑦𝐹₀ + 4(8 + 𝐺𝑦²) 

  × √𝐺
𝑑𝑃0

𝑑𝑥
𝐹₀ − 4(36 + 4𝐺𝑦²)𝐺

3
2
𝑑𝑃0

𝑑𝑥
ℎ²𝐹₀ − 28𝐺

3
2𝑦𝐹₀ + 28𝐺

3
2 

  ×
𝑑𝑃0

𝑑𝑥
ℎ𝑦𝐹₀ + 12𝐺

5
2ℎ²𝑦𝐹₀ − 4𝐺

5
2𝑦²𝐹₀² + 16𝐺

5
2ℎ²𝐹₀² + 12𝐺

5
2ℎ𝑦𝐹₀², 

 

𝐶₁₈(𝑥, 𝑦)   =  −4𝐺
5
2ℎ⁴ + 𝐺

5
2𝑦 − 8√𝐺

𝑑𝑃0

𝑑𝑥
𝑦 − 48√𝐺 (

𝑑𝑃0

𝑑𝑥
)
2

ℎ² − 10𝐺
5
2 (

𝑑𝑃0

𝑑𝑥
)
2

ℎ²𝑦² 

  −2𝐺
5
2
𝑑𝑃0

𝑑𝑥
ℎ⁵ + 32√𝐺

𝑑𝑃0

𝑑𝑥
ℎ − 8𝐺

5
2
𝑑𝑃0

𝑑𝑥
ℎ𝑦² + 2(8 − 4𝐺𝑦²)𝐺

3
2
𝑑𝑃0

𝑑𝑥
ℎ³ 

  −4𝐺
3
2𝑦ℎ − 4𝐺

3
2ℎ²(2 + 𝐺𝑦²) + 𝐺

3
2 (

𝑑𝑃0

𝑑𝑥
)
2

ℎ⁴(20 + 5𝐺𝑦²) − 30𝐺
3
2 

  × (
𝑑𝑃0

𝑑𝑥
)
2

ℎ³𝑦 + 10𝐺
5
2
𝑑𝑃0

𝑑𝑥
ℎ⁴𝑦 + 5𝐺

5
2
𝑑𝑃0

𝑑𝑥
ℎ⁵𝑦 − 20√𝐺 (

𝑑𝑃0

𝑑𝑥
)
2

ℎ𝑦 

  −26𝐺
3
2
𝑑𝑃0

𝑑𝑥
ℎ²𝑦 − 12𝐺

5
2ℎ³𝐹₀ − 4(8 + 𝐺𝑦²)√𝐺

𝑑𝑃0

𝑑𝑥
𝐹₀ + 16𝐺

3
2 

  ×
𝑑𝑃0

𝑑𝑥
ℎ²𝐹₀ − 28𝐺

3
2𝑦𝐹₀ − 12𝐺

3
2
𝑑𝑃0

𝑑𝑥
ℎ𝑦𝐹₀ − 12𝐺

5
2ℎ²𝑦𝐹₀ + 4𝐺

5
2𝑦²𝐹₀² 

  −16𝐺
5
2ℎ²𝐹₀² + 12𝐺

5
2ℎ𝑦𝐹₀², 

 

𝐶₁₉(𝑥, 𝑦)   =  −20√𝐺
𝑑𝑃0

𝑑𝑥
𝑦 − 10(8 + 𝐺𝑦²)√𝐺 (

𝑑𝑃0

𝑑𝑥
)
2

ℎ² + 8(8 + 𝐺𝑦²)√𝐺
𝑑𝑃0

𝑑𝑥
ℎ 
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  −2𝐺
3
2 (

𝑑𝑃0

𝑑𝑥
)
2

ℎ⁴(8 + 𝐺𝑦²) + 40𝐺
3
2 (

𝑑𝑃0

𝑑𝑥
)
2

ℎ³𝑦 + 20𝐺
1
2 (

𝑑𝑃0

𝑑𝑥
)
2

ℎ𝑦 

  −20𝐺
3
2
𝑑𝑃0

𝑑𝑥
ℎ²𝑦 − 4(8 + 𝐺𝑦²)√𝐺

𝑑𝑃0

𝑑𝑥
𝐹₀ − 4(8 + 𝐺𝑦²)𝐺

3
2
𝑑𝑃0

𝑑𝑥
ℎ²𝐹₀ 

  +40𝐺
3
2
𝑑𝑃0

𝑑𝑥
ℎ𝑦𝐹₀, 

 

𝐶₂₀(𝑥, 𝑦)   =  8𝐺²ℎ³ + 16𝐺
5
2𝑦²ℎ³ + 24𝐺𝑦 − 𝐺³ (

𝑑𝑃0

𝑑𝑥
)
2

ℎ⁷ − 160
𝑑𝑃0

𝑑𝑥
+ 16𝐺

𝑑𝑃0

𝑑𝑥
𝑦² 

  +110𝐺² (
𝑑𝑃0

𝑑𝑥
)
2

ℎ²𝑦 + 4𝐺³
𝑑𝑃0

𝑑𝑥
ℎ⁵𝑦 + 𝐺

𝑑𝑃0

𝑑𝑥
ℎ𝑦 − 44𝐺²

𝑑𝑃0

𝑑𝑥
ℎ³𝑦 

  −4𝐺²𝑦²ℎ − 116𝐺²ℎ²𝑦 + 39𝐺² (
𝑑𝑃0

𝑑𝑥
)
2

ℎ⁴𝑦 − 2(96 + 𝐺𝑦²)𝐺 (
𝑑𝑃0

𝑑𝑥
)
2

ℎ³ 

  −2(22 − 3𝐺𝑦²)𝐺²
𝑑𝑃0

𝑑𝑥
ℎ⁴ − (54 + 𝐺𝑦²)𝐺²

𝑑𝑃0

𝑑𝑥
ℎ⁵ − 4(40 + 5𝐺𝑦²) 

  × (
𝑑𝑃0

𝑑𝑥
)
2

ℎ − 2(68 + 7𝐺𝑦²)𝐺
𝑑𝑃0

𝑑𝑥
ℎ² − 8𝐺³ℎ³𝑦𝐹₀ − 4𝐺²

𝑑𝑃0

𝑑𝑥
ℎ³𝐹₀ 

  −20𝐺²𝑦ℎ𝐹₀ + 60𝐺
𝑑𝑃0

𝑑𝑥
𝑦𝐹₀ − 104𝐺²

𝑑𝑃0

𝑑𝑥
ℎ²𝑦𝐹₀ − 4𝐺²𝑦²𝐹₀ 

  +4(24 + 3𝐺𝑦²)𝐺
𝑑𝑃0

𝑑𝑥
ℎ𝐹₀ + 4(6 + 5𝐺𝑦²)𝐺²ℎ²𝐹₀ + 4𝐺³ℎ³𝐹₀² 

  −60𝐺²𝑦𝐹₀² − 8𝐺³ℎ²𝑦𝐹₀² − 4𝐺³ℎ𝑦²𝐹₀², 
 

𝐶₂₁(𝑥, 𝑦)   =  8𝐺²ℎ³ + 16𝐺
5
2𝑦²ℎ³ + 24𝐺𝑦 − 𝐺³ (

𝑑𝑃0

𝑑𝑥
)
2

ℎ⁷ + 32
𝑑𝑃0

𝑑𝑥
− 8𝐺

𝑑𝑃0

𝑑𝑥
𝑦² 

  −70𝐺² (
𝑑𝑃0

𝑑𝑥
)
2

ℎ²𝑦 − 4𝐺³
𝑑𝑃0

𝑑𝑥
ℎ⁵𝑦 − 95𝐺

𝑑𝑃0

𝑑𝑥
ℎ𝑦 + 84𝐺²

𝑑𝑃0

𝑑𝑥
ℎ³𝑦 

  −4𝐺²𝑦²ℎ + 116𝐺²ℎ²𝑦 + 41𝐺² (
𝑑𝑃0

𝑑𝑥
)
2

ℎ⁴𝑦 − 2(112 + 3𝐺𝑦²) 

  × 𝐺 (
𝑑𝑃0

𝑑𝑥
)
2

ℎ³ + 2(10 + 7𝐺𝑦²)𝐺²
𝑑𝑃0

𝑑𝑥
ℎ⁴ − (22 − 3𝐺𝑦²)𝐺²

𝑑𝑃0

𝑑𝑥
ℎ⁵ 

  +4(8 + 𝐺𝑦²) (
𝑑𝑃0

𝑑𝑥
)
2

ℎ − 2(68 + 7𝐺𝑦²)𝐺
𝑑𝑃0

𝑑𝑥
ℎ² + 8𝐺³ℎ³𝑦𝐹₀ 

  +4(15 + 2𝐺𝑦²)𝐺²
𝑑𝑃0

𝑑𝑥
ℎ³𝐹₀ + 20𝐺²𝑦ℎ𝐹₀ − 60𝐺

𝑑𝑃0

𝑑𝑥
𝑦𝐹₀ + 24𝐺² 

  ×
𝑑𝑃0

𝑑𝑥
ℎ²𝑦𝐹₀ − 4𝐺²𝑦²𝐹₀ − 4(24 + 3𝐺𝑦²)𝐺

𝑑𝑃0

𝑑𝑥
ℎ𝐹₀ − 4(6 + 5𝐺𝑦²) 

  × 𝐺²ℎ²𝐹₀ + 8𝐺³ℎ³𝑦𝐹₀ + 4𝐺³ℎ³𝐹₀² + 60𝐺²𝑦𝐹₀² + 8𝐺³ℎ²𝑦𝐹₀² + 4𝐺³ℎ𝑦²𝐹₀², 
 

𝐶₂₂(𝑥, 𝑦)   =  −4(−8 + 𝐺𝑦²)
𝑑𝑃0

𝑑𝑥
− 62𝐺 (

𝑑𝑃0

𝑑𝑥
)
2

ℎ²𝑦 − 112𝐺
𝑑𝑃0

𝑑𝑥
ℎ𝑦

− 152𝐺²
𝑑𝑃0

𝑑𝑥
ℎ³𝑦 

  −102𝐺² (
𝑑𝑃0

𝑑𝑥
)
2

ℎ⁴𝑦 + 2(208 + 12𝐺𝑦²)𝐺 (
𝑑𝑃0

𝑑𝑥
)
2

ℎ³ − 64𝐺²
𝑑𝑃0

𝑑𝑥
ℎ⁴ 

  −12𝐺²
𝑑𝑃0

𝑑𝑥
ℎ⁵ − 4(8 + 𝐺𝑦²) (

𝑑𝑃0

𝑑𝑥
)
2

ℎ + 2(200 + 22𝐺𝑦²)𝐺
𝑑𝑃0

𝑑𝑥
ℎ² 
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  −72𝐺²
𝑑𝑃0

𝑑𝑥
ℎ³𝐹₀ − 60𝐺

𝑑𝑃0

𝑑𝑥
𝑦𝐹₀ − 60𝐺²

𝑑𝑃0

𝑑𝑥
ℎ²𝑦𝐹₀ + 4(48 + 6𝐺𝑦²)𝐺

𝑑𝑃0

𝑑𝑥
ℎ𝐹₀, 

 

𝐶₂₃(𝑥, 𝑦)   =  4(24 + 𝐺𝑦²)
𝑑𝑃0

𝑑𝑥
− 58𝐺 (

𝑑𝑃0

𝑑𝑥
)
2

ℎ²𝑦 + 32𝐺
𝑑𝑃0

𝑑𝑥
ℎ𝑦 + 72𝐺²

𝑑𝑃0

𝑑𝑥
ℎ³𝑦 

  +22𝐺² (
𝑑𝑃0

𝑑𝑥
)
2

ℎ⁴𝑦 − 2(−80 + 4𝐺𝑦²)𝐺 (
𝑑𝑃0

𝑑𝑥
)
2

ℎ³ − 64𝐺²
𝑑𝑃0

𝑑𝑥
ℎ⁴ 

  −12𝐺²
𝑑𝑃0

𝑑𝑥
ℎ⁵ + 2(40 + 2𝐺𝑦²)𝐺

𝑑𝑃0

𝑑𝑥
ℎ² − 72𝐺²

𝑑𝑃0

𝑑𝑥
ℎ³𝐹₀ 

  −20𝐺
𝑑𝑃0

𝑑𝑥
𝑦𝐹₀ + 60𝐺²

𝑑𝑃0

𝑑𝑥
ℎ²𝑦𝐹₀ + 4(16 + 2𝐺𝑦²)𝐺

𝑑𝑃0

𝑑𝑥
ℎ𝐹₀, 

 
 

𝐶₂₄(𝑥, 𝑦)   =  −8𝐺²ℎ³ + 8𝐺𝑦 + 𝐺³ (
𝑑𝑃0

𝑑𝑥
)
2

ℎ⁷ − 96
𝑑𝑃0

𝑑𝑥
− 8𝐺

𝑑𝑃0

𝑑𝑥
𝑦²

− 82𝐺² (
𝑑𝑃0

𝑑𝑥
)
2

ℎ²𝑦 

  +4𝐺³
𝑑𝑃0

𝑑𝑥
ℎ⁵𝑦 + 104𝐺

𝑑𝑃0

𝑑𝑥
ℎ𝑦 + 124𝐺²

𝑑𝑃0

𝑑𝑥
ℎ³𝑦 + 4𝐺²ℎ𝑦² − 4𝐺²ℎ²𝑦 

  +75𝐺² (
𝑑𝑃0

𝑑𝑥
)
2

ℎ⁴𝑦 − 2(48 + 𝐺𝑦²)𝐺 (
𝑑𝑃0

𝑑𝑥
)
2

ℎ³ − 2(34 + 3𝐺𝑦²)𝐺²
𝑑𝑃0

𝑑𝑥
ℎ⁴ 

  −(42 + 3𝐺𝑦²)𝐺²
𝑑𝑃0

𝑑𝑥
ℎ⁵ + 4(24 + 3𝐺𝑦²) (

𝑑𝑃0

𝑑𝑥
)
2

ℎ − 2(124 + 9𝐺𝑦²)𝐺
𝑑𝑃0

𝑑𝑥
ℎ² 

  −8𝐺³ℎ³𝑦𝐹₀ − 4(15 + 2𝐺𝑦²)𝐺²
𝑑𝑃0

𝑑𝑥
ℎ³𝐹₀ − 8𝐺²𝑦ℎ𝐹₀ − 20𝐺

𝑑𝑃0

𝑑𝑥
𝑦𝐹₀ + 44𝐺² 

  ×
𝑑𝑃0

𝑑𝑥
ℎ²𝑦𝐹₀ + 4𝐺²𝑦²𝐹₀ − 4(8 + 𝐺𝑦²)𝐺

𝑑𝑃0

𝑑𝑥
ℎ𝐹₀ − 4(6 + 𝐺𝑦²)𝐺²ℎ²𝐹₀ 

  −4𝐺³ℎ³𝐹₀² + 20𝐺²𝑦𝐹₀² − 8𝐺³ℎ²𝑦𝐹₀² − 4𝐺³ℎ𝑦²𝐹₀², 
 

 

𝐶₂₅(𝑥, 𝑦)   =  8𝐺²ℎ³ − 8𝐺𝑦 + 𝐺³ (
𝑑𝑃0

𝑑𝑥
)
2

ℎ⁷ + 32
𝑑𝑃0

𝑑𝑥
+ 8√𝐺

𝑑𝑃0

𝑑𝑥
𝑦

+ 42𝐺² (
𝑑𝑃0

𝑑𝑥
)
2

ℎ²𝑦 

  −4𝐺³((𝑑𝑃₀)/(𝑑𝑥))ℎ⁵𝑦 + 16𝐺
𝑑𝑃0

𝑑𝑥
ℎ𝑦 − 4𝐺²

𝑑𝑃0

𝑑𝑥
ℎ³𝑦 + 4𝐺²𝑦²ℎ + 4𝐺²ℎ²𝑦 

  +5𝐺² (
𝑑𝑃0

𝑑𝑥
)
2

ℎ⁴𝑦 + 10𝐺² (
𝑑𝑃0

𝑑𝑥
)
2

ℎ³𝑦² − 2(2 − 𝐺𝑦²)𝐺²
𝑑𝑃0

𝑑𝑥
ℎ⁴ 

  −(10 − 𝐺𝑦²)𝐺²
𝑑𝑃0

𝑑𝑥
ℎ⁵ − 4(24 + 3𝐺𝑦²) (

𝑑𝑃0

𝑑𝑥
)
2

ℎ + 4(8 + 𝐺𝑦²) (
𝑑𝑃0

𝑑𝑥
)
2

ℎ 

  +2(4 + 7𝐺𝑦²)𝐺
𝑑𝑃0

𝑑𝑥
ℎ² + 4(1 + 2𝐺𝑦)𝐺²

𝑑𝑃0

𝑑𝑥
ℎ³𝐹₀ + 8𝐺²𝑦ℎ𝐹₀ + 20𝐺

𝑑𝑃0

𝑑𝑥
𝑦𝐹₀ 

  −8𝐺²
𝑑𝑃0

𝑑𝑥
ℎ²𝑦𝐹₀ + 4𝐺²𝑦²𝐹₀ − 4(6 + 𝐺𝑦²)𝐺²ℎ²𝐹₀ − 4𝐺³ℎ³𝐹₀² − 20𝐺²𝑦𝐹₀² 

  +8𝐺³ℎ²𝑦𝐹₀² + 4𝐺³ℎ𝑦²𝐹₀². 
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𝐶₂₆(𝑥, 𝑦)   =  4(8 + 𝐺𝑦²)
𝑑𝑃0

𝑑𝑥
+ 50𝐺 (

𝑑𝑃0

𝑑𝑥
)
2

ℎ²𝑦 − 40𝐺
𝑑𝑃0

𝑑𝑥
ℎ𝑦 + 10𝐺² (

𝑑𝑃0

𝑑𝑥
)
2

ℎ⁴𝑦 

  −2(32 + 4𝐺𝑦²)𝐺 (
𝑑𝑃0

𝑑𝑥
)
2

ℎ³ − 4(8 + 𝐺𝑦²) (
𝑑𝑃0

𝑑𝑥
)
2

ℎ + 2(16 + 2𝐺𝑦²) 

  × 𝐺
𝑑𝑃0

𝑑𝑥
ℎ² + 5𝐺

𝑑𝑃0

𝑑𝑥
𝑦𝐹₀ + 20𝐺²

𝑑𝑃0

𝑑𝑥
ℎ²𝑦𝐹₀ − 4(16 + 2𝐺𝑦²)𝐺

𝑑𝑃0

𝑑𝑥
ℎ𝐹₀ 

  +4(8 + 𝐺𝑦2)𝐺
𝑑𝑃0

𝑑𝑥
ℎ𝐹₀. 
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