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0.1. Introduction 

Nowadays the process of decision making (𝒟ℳ) is a complex issue involving 

professionals of different genre. Every organization has to take decision at one or 

another point as a part of managerial process. Therefore, every organization extensively 

needs a team of professional experts to make every kind of complex decision. Multi-

criteria decision making (ℳ𝒞𝒟ℳ) has a high potential and disciplined process to 

improve and evaluate multiple conflicting criteria in all areas of the 𝒟ℳ. In this 

competitive environment, an enterprise needs the most accurate and rapid response to 

change the customer needs. So, ℳ𝒞𝒟ℳ has the ability to handle successfully the 

evaluation process of multiple contradictory criteria. For an intelligent decision, the 

experts analyze each and every character of an alternative and then they take the 

decision. But remember, that an individual alone cannot come out with final decision 

because 𝒟ℳ problems consist of cumulative and consultative process. 𝒟ℳ plays a 

significant role and is the key component to determine both organizational and 

managerial activities. Since intellectual minds are engaged in this process, so it needs 

solid scientific knowledge coupled with experience and skills in addition to mental 

maturity. For an intelligent and successful decision, the experts require a careful 

preparation and analysis of each and every character for an alternative and they can take 

a good decision if they are armed with all the data and information they need. To handle 

this complexity Zadeh [1] originated a dominant and pioneer concept of fuzzy set (FS). 

For each domain in FS, a value is assigned from unit closed interval and called 

membership grade (ℳ𝒢). From the inception of FS it has been generalized in different 

directions from which one of the most significant concept is intuitionistic fuzzy (IF) set 

(IFS). Atanassov [2] initiated this dominant concept of IFS which is characterized by 

two mappings called ℳ𝒢 and nonmembership grade (𝒩ℳ𝒢). IFS is defined on the 

bases of restriction which means that the sum of ℳ𝒢 and 𝒩ℳ𝒢 must not exceed the 

unit interval [0, 1]. Similarly, in many situations of real life problems, usually people 

irresolute or hesitant to assign ℳ𝒢 to an alternative according to its corresponding 

attribute that make complication for experts for final decision. Therefore, Torra [3] 

initiated the notion of hesitant fuzzy set that allows a single alternative of the reference 

set which has several possible values as a ℳ𝒢. The notion of IFS appears as a hot 
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research area after its origination. Since the inception of IFS’ researches proposed 

various sources in different directions from which one of the key concept is of the 

aggregation operators. Aggregation operators have the ability to reduce the set of finite 

values in 𝒟ℳ process into a single value which was a major issue for decision makers 

that how to get the unique result from the collected information taken from different 

sources. Xu [4] investigated the series of aggregation operators such as IF weighted 

averaging (IFWA), IF ordered weighted averaging (IFOWA) and IF hybrid averaging 

(IFHA) operators under IF environment. The series of geometric operators namely IF 

weighted geometric (IFWG), IF ordered weighted geometric (IFOWG) and IF hybrid 

geometric (IFHG) operators were presented by Xu and Yager [5]. Zhao et al. [6] 

initiated the idea of generalized IFWA, generalized IFOWA and generalized IFHA 

operators by utilizing the IF information. Wang and Liu [7, 8] presented the notion of 

IF Einstein weighted averaging and geometric (IFEWA/G) aggregation operators by 

using Einstein operations. Zhao and Wei [9] investigated the idea of the IF Einstein 

hybrid averaging and the IF Einstein hybrid geometric operators, and then presented 

their application in decision making. He et al. [10] initiated the idea of IF interactive 

aggregation operators. Garg [11, 12] proposed the generalized concept of IF interactive 

operators and present novel IF operational laws. Ye [13] investigated hybrid arithmetic 

and geometric operators and initiated their applications in 𝒟ℳ by using IF 

environment. Liu et al. [14] presented the study of prioritized aggregation operator for 

hesitant IFS. In literature, different techniques were used to handle the ranking with 

score or accuracy functions but all these techniques had some drawbacks. So, Ali et al. 

[15] initiated a graphical technique for ranking the IF values. From the inception and 

appearance of the dominant concept of IFS a lot of research was done by different 

scholars in several directions. However, there exists some deficiency in this prominent 

notion due to which it fails to handle the situation and it is not always possible for the 

professional experts to provide their choices in the range of IFS. 

To cover this shortcoming, Yager [16] investigated the powerful paradigm of 

Pythagorean fuzzy set (PyFS) in which the square sum of ℳ𝒢 and 𝒩ℳ𝒢 must lie 

between the real numbers 0 𝑎𝑛𝑑 1. PyFS relaxes and widens the boundary range by 

providing additional space to the decision makers. Yager [17] originated the PyF 

weighted averaging and weighted geometric (PyFWA/ PyFWG) aggregation operators 

under the PyF environment. Peng and Yang [18] initiated the concept of subtraction 
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and division operators, and proved some of its basic properties. Peng and Yang [19] 

investigated the notion of PyF Choquet integral average and PyF Choquet integral 

geometric operators. Garg [20, 21] proposed some PyF Einstein averaging and PyF 

Einstein geometric operators and presented their basic characteristics. Garg [22] 

investigated confidence PyF weighted and ordered weighted averaging operators with 

their basic properties. The idea of symmetric PyFWA (SPyFWA) and symmetric 

PyFWG (SPyFWG) operators are initiated by Ma and Xu [23]. Wei and Lu [24] 

proposed the concept of PyF power averaging and power geometric operators and 

presented their desirable characteristics of these investigated operators. Wei [25] 

presented some interaction averaging and geometric operators by using PyF 

information. The concept of Hamacher operations for PyF averaging and geometric 

operators was presented by Wu and Wei [26]. However, PyFS also has some 

shortcomings and decision makers are restricted to their boundary limitation and they 

cannot provide their preferred values freely. 

In many scenarios of real life’s problems professional experts have diverse opinions to 

handle the 𝒟ℳ problems in which some energetic perspective are in support or against 

of some plans, entities or projects. For example, in a certain country government 

lunched a mega project to portray its achievement and performance. The ruling party 

leaders and members highly appreciate and rate their project by assigning ℳ𝒢 about 

0.92, whereas the opposition leaders depreciate the same project and have strong 

opposite point of views about it and try to defame it by providing 𝒩ℳ𝒢 may be 0.85. 

So in this case (0.92)2 + (0.85)2 > 1 but (0.92)𝑞 + (0.85)𝑞 < 1 for 𝑞 ≥ 6. Due to 

restrictions, this decisive information cannot be effectively handled by IFS and PyFS. 

Recently, some improvements have been made in the dominant notion of FS as, Yager 

[27] investigated the generalized concept of FS, IFS and PyFS and called it q-rung 

orthopair fuzzy (q-ROF) set (q-ROFS). It is observed that the parameter q is the most 

useful characteristic of this concept which has the capability to cover the boundary 

range that can be required. The input range of q-ROFS is more flexible, wider and 

suitable because when the rung increases, the orthopair provides additional space to the 

boundary constraint. In q-ROFS, the sum of 𝑞𝑡ℎ power of ℳ𝒢 and 𝑞𝑡ℎ power of 𝒩ℳ𝒢 

must be confined to the unit interval [0, 1] for 𝑞 ≥ 1. Thus, the concept of q-ROFS is 

more powerful and stronger than IFS and PyFS because these are the special cases of 

q-ROFS. The basic properties of q-ROFS are proposed by Yager and Alajlan [28] and 



 

 

xiv 
 

have been utilized in knowledge representation. Ali [29] presented another view of q-

ROFS by using the concept of orbits. The concepts of q-ROF weighted averaging (q-

ROFWA) and q-ROF weighted geometric (q-ROFWG) were proposed by Liu and 

Wang [30]. Liu and Liu [31] presented the combined study of Bonferroni mean (BM) 

operators and q-ROFS to investigate the q-ROF BM operators and also studied q-ROF 

geometric BM operators with their desirable properties. Wang et al. [32] investigated 

the combine concept of Muirhead means (MM) operators with q-ROFS to get the new 

aggregation operators that are q-ROF MM operators and give their applications in 

decision making. Joshi and Gegov [33] incorporated the confidence level of experts to 

the original information under q-ROF environment to propose some aggregation 

operators such as confidence q-ROFWA (Cq-ROFWA) and confidence q-ROFWG 

(Cq-ROFWG), Cq-ROFOWA, Cq-ROFOWG operators. Yang et al. [34] presented the 

concept of q-RO normal fuzzy sets and defined the operational laws and score function 

for it. They also initiated some aggregation operators for the same concept that are q-

RONFWA, q-RONFOWG. Furthermore, Hussain et al. [35] proposed hesitant q-

ROFWA and hesitant q-ROFWG operators and discussed their desirable properties. 

The dominant concept of rough set (RS) was first proposed by Pawlak [36] who 

generalized the classical set theory to cope with the imprecise, vague and uncertain 

information. By the definition of Pawlak’s RS, a universal set is characterized by two 

approximation sets known as upper and lower approximations. The lower 

approximation consists of those alternatives which contain a subset and the upper 

approximation consists of those alternatives having nonempty intersection with a 

subset. Further equivalence relation plays a key role in Pawlak’s RS for approximations 

but this condition too restricts the practical and theoretical aspects of RS. So, 

researchers used generalized structure by using nonequivalence structure for detail [37, 

38, 39, 40, 41, 42]. From the inception researchers used the hybrid study of rough set 

theory (RST) with different concepts. The hybrid study of RS and IFS was proposed by 

Chakrabarty [43] to obtain the notion of IF rough set (IFRS) and IFRS became the hot 

and progressive research area for the researchers, for detail see [44, 45, 46, 47]. Zhou 

and Wu [48] proposed the combined study of RS and IFS by using crisp and fuzzy 

approximation space. Zhou and Wu [49] initiated the constructive and axiomatic 

approaches under the IF rough environment. Hussain et al. [50] initiated the concept of 

rough PyF ideals by using the algebraic structure of semigroups. Zhang et al. [51] 
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proposed multigranulation rough set technique over two universes by using the PyF 

environment. Hussain et al. [52] presented the concept of covering based q-ROF rough 

set model by utilizing fuzzy 𝛽-covering and fuzzy 𝛽-covering neighborhood. 

Molodtsov [53] investigated the pioneer concept of soft set (𝑆𝑓𝑡S) which generalized 

the classical set theory and is free from inherit complexity which the contemporary 

theories faced. It is observed that 𝑆𝑓𝑡S has very close relation with fuzzy set and rough 

set. The 𝑆𝑓𝑡S theory regarded as an effective mathematical tool for handling the 

uncertain, ambiguous and imprecise data. Maji et al. [54] proposed the hybrid notion 

of 𝑆𝑓𝑡S with fuzzy set to obtain fuzzy 𝑆𝑓𝑡S (F𝑆𝑓𝑡S) which plays a bridge role between 

these two theories. Ali et al. [55] improved some existing definition and operations in 

𝑆𝑓𝑡S theory. Maji et al. [56] investigated the hybrid notion of 𝑆𝑓𝑡S and IFS to achieve 

IF soft (IF𝑆𝑓𝑡) set (IF𝑆𝑓𝑡S) which play a key role for the scholars. The concept of 

generalized IF𝑆𝑡S was proposed by Agarwal et al. [57]. Arora and Garg [58] presented 

the concept of IF𝑆𝑓𝑡 weighted averaging (IF𝑆𝑓𝑡WA) and IF𝑆𝑓𝑡 weighted geometric 

(IF𝑆𝑓𝑡WG) operators. Garg and Arora [59] proposed the notion of some power 

averaging and geometric aggregation operators by utilizing generalized IF𝑆𝑓𝑡S. Arora 

[60] initiated the notion of IF𝑆𝑓𝑡WA and IF𝑆𝑓𝑡WG by using the Einstein operations. 

Feng et al. [61] improved some existing literature related to generalized IF𝑆𝑓𝑡S and 

proposed some new operations for the developed concept. Hussain et al. [62] presented 

the combined study 𝑆𝑓𝑡S, rough set and PyFS to achieve the new concept of soft rough 

PyFS (𝑆𝑓𝑡RPyFS) and PyF soft RS (PyF𝑆𝑓𝑡RS). Riaz and Hashmi [63] presented the 

hybrid study of 𝑆𝑓𝑡S, rough set, PyFS and m-polar fuzzy set to get the new notion of 

Pythagorean m-polar fuzzy soft rough set. Hussain et al. [64] presented the hybrid 

structure of 𝑆𝑓𝑡S with q-ROFS to get the prominent concept of q-ROF soft (q-ROF𝑆𝑓𝑡) 

set (q-ROF𝑆𝑓𝑡S) and proposed some aggregation operators such as q-ROF𝑆𝑓𝑡 weighted 

averaging (q-ROF𝑆𝑓𝑡WA), q-ROF𝑆𝑓𝑡 ordered weighted averaging (q-ROF𝑆𝑓𝑡OWA) 

and q-ROF𝑆𝑓𝑡 hybrid averaging (q-ROF𝑆𝑓𝑡HA). 

Dombi [65] initiated the new concept of Dombi t-norm and Dombi t-conorm operators 

having good precedence with general operational parameter which possess the 

resilience of variability. The behaviour of operational parameter is very important to 

express the experts’ attitude in decision making. Seikh et al. [66] presented IF Dombi 
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weighted averaging (IFDWA) and IF Dombi weighted geometric (IFDWG) operators 

based on Dombi t-norm and t-conorm. Liu et al. [67] initiated the idea of IF Dombi 

bonferroni mean operators and proposed their application for decision making. Akram 

et al. [68] and Jana et al. [69] presented the concept of PyF Dombi weighted averaging 

(PyFDWA) and PyF Dombi weighted geometric (PyFDWG) aggregation operators. 

Also Khan et al. [70] initiated the Dombi operations in PyF environment. Jana et al. 

[71] gave the idea of q-ROF Dombi weighted averaging and Dombi weighted geometric 

(q-ROFDWA and q-ROFDWG) aggregation operators with their fundamental desirable 

characteristics, Zhong et al. [72] investigated the concept of power partitioned Heronian 

mean operators based on Dombi operation law for q-ROF environment. From the 

analysis of existing literature, it is observed that aggregation operators have a great 

importance in decision making to aggregate the collective evaluated information of 

different sources into a single value. According to the best of our knowledge up-till now 

no application of the aggregation operators with the hybridization of q-ROFS with soft 

set and rough set is reported in q-ROF environment. Therefore, this motivates the thesis 

towards the combined study of 𝑆𝑓𝑡S, RS, PyFS and q-ROFS to get the new concepts of  

PyF𝑆𝑓𝑡RS, q-ROFRS, q-ROF𝑆𝑓𝑡S, q-ROF𝑆𝑓𝑡S by using Dombi operations, q-ROF𝑆𝑓𝑡 

rough set (q-ROF𝑆𝑓𝑡RS) and further we investigated aggregation operators based on 

soft information and soft rough information in this thesis. Moreover, the basic desirable 

properties of these aggregation operators are investigated in detail. Different techniques 

for ℳ𝒞𝒟ℳ and step wise algorithms for 𝒟ℳ are demonstrated by utilizing the 

proposed approaches. Numerical examples for developed approaches are presented and 

comparative study of the investigated models with some existing methods are done in 

detail in chapter wise which show that the proposed models are more effective and 

applicable than existing approaches. 
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0.2. Chapter wise study 

Chapter 1 

Chapter one is devoted for the basic and rudimentary concepts and definitions 

concerning FS, IFS, PyFS, q-ROFS, RS and 𝑆𝑓𝑡S which will be helpful for our 

subsequent chapters. Furthermore, some fundamental operational laws on these 

concepts are presented. 

Chapter 2 

In this Chapter we are going to present the hybrid study of 𝑆𝑓𝑡Ss, RSs and PyFSs to get 

the new concepts of soft rough Pythagorean fuzzy sets (𝑆𝑓𝑡RPyFS) and Pythagorean 

fuzzy soft rough sets (PyF𝑆𝑓𝑡RS). The aim of this chapter is to originate the two new 

notions that are 𝑆𝑓𝑡RPyFS and PyF𝑆𝑓𝑡RS, and to investigate some important properties 

of 𝑆𝑓𝑡RPyFS and PyF𝑆𝑓𝑡RS in detail. Furthermore, classical representations of PyF𝑆𝑓𝑡R 

approximation operators are presented. Then the proposed operators are applied to 𝒟ℳ 

problem in which the experts provide their preferences in PyF𝑆𝑓𝑡R environment. 

Finally through an illustrative example, it is shown that how the proposed operators 

work in decision making problems. 

Chapter 3 

In this chapter a comprehensive model is originated to handle the 𝒟ℳ problems in 

which experts have quite different opinions in favor or against of some plans, entities 

or projects. Therefore, a new technique is adopted to investigate the hybrid notion of 

RS with q-ROFSs by using the concept of fuzzy 𝛽-covering and fuzzy 𝛽-covering 

neighborhoods to get the new notion of covering based q-ROF rough set (CBq-

ROFRS). Furthermore, by applying the developed concept of CBq-ROFRS to TOPSIS 

and its application to multi-attribute decision making (ℳ𝒜𝒟ℳ) are discussed in 

detail. In real scenario CBq-ROFRS model is an important tools to discuss the complex 

and uncertain information. This method has stronger capacity than IFS and PyFS to 

cope with uncertainty. From the analysis, it is clear that CBq-ROFRS degenerate into 

covering based IF rough set (CBIFRS) if the rung 𝑞 = 1 and degenerate into covering 
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based PyF rough set (CBq-PyFRS) if the rung 𝑞 = 2. Thus the proposed concept is 

generalization of CBIFRS and CBPyFRS. Moreover, an illustrative example is 

presented to demonstrate how the developed model helps us in 𝒟ℳ problems and a 

comparative study of the proposed model with some existing methods are presented 

whish show that the developed approach is more capable and superior than existing 

methods. 

Chapter 4 

In 1999, Molodtsov investigated the pioneer notion of 𝑆𝑓𝑡Ss which provides a general 

framework for mathematical problems by affix parameterization tools during the 

analysis as compared to FSs and q-ROFSs. From the analysis of existing literature and 

best of our knowledge, there has been no research on the hybrid model of 𝑆𝑓𝑡Ss and q-

ROFSs that is q-rung orthopair fuzzy soft set (q-ROF𝑆𝑓𝑡S). Therefore, for the scope of 

future motive, the proposed concept has enough space for the new research. The aim of 

this chapter is to investigate the notion of q-ROF𝑆𝑓𝑡S, which plays a bridge role 

between these two concepts. Therefore, our main contribution in this chapter is to 

investigate the q-ROF𝑆𝑓𝑡 weighted averaging (q-ROF𝑆𝑓𝑡WA), q-ROF𝑆𝑓𝑡 ordered 

weighted averaging (q-ROF𝑆𝑓𝑡OWA) and q-ROF𝑆𝑓𝑡 hybrid averaging (q-ROF𝑆𝑓𝑡HA) 

operators under q-ROF𝑆𝑓𝑡 environment. Further, the fundamental properties of these 

aggregation operators are studied. On the bases of developed approach an algorithm for 

ℳ𝒞𝒟ℳ is being presented. An application of medical diagnosis problems is solved on 

the proposed algorithm under the q-ROF𝑆𝑓𝑡 environment. Finally, a comparison of the 

developed operators with some existing operators are being presented showing the 

superiority and efficiency of the developed approach than the existing literature. 

Chapter 5 

This chapter consists of the combined study of the pioneer paradigm of 𝑆𝑓𝑡S and q-

ROFS that is the notion of q-ROF𝑆𝑓𝑡S. The notion of q-ROF𝑆𝑓𝑡S is free from that 

inherited complexities which are associated to the contemporary theories. In this 

chapter our main contribution is to originate the concept of q-ROF𝑆𝑓𝑡 weighted 

geometric (q-ROF𝑆𝑓𝑡WG), q-ROF𝑆𝑓𝑡 ordered weighted geometric (q-ROF𝑆𝑓𝑡OWG) 

and q-ROF𝑆𝑓𝑡 hybrid geometric (q-ROF𝑆𝑓𝑡HG) operators in q-ROF𝑆𝑓𝑡 environment. 
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Moreover, some dominant properties such as Idempotency, Boundedness, 

Monotonicity, Shift invariance and Homogeneity of these developed operators are 

studied in detail. Based on these proposed approaches, a model is build up for ℳ𝒞𝒟ℳ 

and its step wise algorithm is being presented. Finally, utilizing the developed approach 

an illustrative example is solved under q-ROF𝑆𝑓𝑡 environment. Further, a comparative 

analysis of the investigated models with existing methods is presented with detail which 

shows the competence and ability of the developed models. 

Chapter 6 

Recently, some improvement has been made in the dominant notion of fuzzy set that is 

Yager investigated the generalized concept of FS, IFS and PyFS which he called it q-

ROFS. It is observed that the rung 𝑞 is the most useful characteristic of this concept 

which has the capability to cover the boundary range that can be required. The input 

range of q-ROFS is more flexible, wider and suitable because when the rung 𝑞 increase, 

the orthopair provides additional space to the boundary constraint. The aim of this 

chapter is to present the Dombi aggregation operators using q-ROF𝑆𝑓𝑡 environments. 

Since Dombi operational parameter possess natural flexibility with resilience of 

variability. The behaviour of Dombi operational parameter is very important to express 

the experts’ attitude in decision making. In this chapter, we present q-ROF𝑆𝑓𝑡 Dombi 

average (q-ROF𝑆𝑓𝑡DA) aggregation operators including q-ROF𝑆𝑓𝑡 Dombi weighted 

average (q-ROF𝑆𝑓𝑡DWA), q-ROF𝑆𝑓𝑡 Dombi ordered weighted average (q-

ROF𝑆𝑓𝑡DOWA) and q-ROF𝑆𝑓𝑡 Dombi hybrid average (q-ROF𝑆𝑓𝑡DHA) operators. The 

basic properties of these operators are presented in detail such as Idempotency, 

Boundedness, Monotonicity, Shift invariance and Homogeneity. By applying these 

developed approaches, this chapter contains the technique and algorithm for ℳ𝒞𝒟ℳ. 

Further a numerical example is developed to illustrate the flexibility and applicability 

of the developed operators. 

Chapter 7 

The aim of this chapter is to present the notion of q-ROF𝑆𝑓𝑡S based on the Dombi 

operations. Since Dombi operational parameter possess natural flexibility with 

resilience of variability. The behaviour of Dombi operational parameter is very 

important to express the experts’ attitude in decision making. In this chapter, we 
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investigate q-ROF𝑆𝑓𝑡 Dombi geometric (q-ROF𝑆𝑓𝑡DG) aggregation operators 

including q-ROF𝑆𝑓𝑡 Dombi weighted geometric (q-ROF𝑆𝑓𝑡DWG), q-ROF𝑆𝑓𝑡 Dombi 

ordered weighted geometric (q-ROF𝑆𝑓𝑡DOWG) and q-ROF𝑆𝑓𝑡 Dombi hybrid 

geometric (q-ROF𝑆𝑓𝑡DHG) operators. The basic properties of these operators are 

presented in detail such as Idempotency, Boundedness, Monotonicity, Shift invariance 

and Homogeneity. A ℳ𝒞𝒟ℳ technique and algorithm is developed based on above 

mentioned approach. 

Chapter 8 

The aim of this chapter is to investigate the hybrid concept of 𝑆𝑓𝑡S and RS with the 

notion of q-ROFS to obtain the new notion of q-ROF soft rough set (q-ROF𝑆𝑓𝑡RS). In 

addition, some averaging aggregation operators such as q-ROF𝑆𝑓𝑡R weighted 

averaging (q-ROF𝑆𝑓𝑡RWA), q-ROF𝑆𝑓𝑡R ordered weighted averaging (q-

ROF𝑆𝑓𝑡ROWA) and q-ROF𝑆𝑓𝑡R hybrid averaging (q-ROF𝑆𝑓𝑡RHA) operators are 

presented. Then basic desirable properties of these investigated averaging operators are 

discussed in detail. Moreover, we investigated the geometric aggregation operators 

such as q-ROF𝑆𝑓𝑡R weighted geometric (q-ROF𝑆𝑓𝑡RWG), q-ROF𝑆𝑓𝑡R ordered 

weighted geometric (q-ROF𝑆𝑓𝑡ROWG) and q-ROF𝑆𝑓𝑡R hybrid geometric (q-

ROF𝑆𝑓𝑡RHG) operators, and proposed the basic desirable characteristics of 

investigated geometric operators. The technique for ℳ𝒞𝒟ℳ and step wise algorithm 

for 𝒟ℳ by utilizing the proposed approaches are demonstrated clearly. Finally, a 

numerical example for the developed approach is presented and a comparative study of 

the investigated models with some existing methods is brought to light in detail which 

shows that the proposed models are more effective and applicable than existing 

approaches. 
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Chapter 1 

    Preliminaries 

This chapter is devoted for the basic and rudimentary concepts and definitions 

concerning FS, IFS, PyFS, q-ROFS, RS and 𝑆𝑓𝑡S which will be helpful for our 

subsequent chapters. Further, some fundamental operational laws on these concepts are 

presented.  

1.1. Fuzzy sets 
Zaheh [1] initiated the pioneer and dominant concept of FS in 1965, which brought 

revolution not only in the field of mathematics and logic but also in different fields of 

science and technology. This concept nicely handles the uncertainty by assigning 

the ℳ𝒢 from the unit interval [0,1] and is defined as. 

1.1.1. Definition [1] 

Let 𝑇 be a universal set. A FS ℱ on 𝑇 is of the form 

ℱ = {< 𝓀, 𝜇ℱ(𝓀) > |𝓀 ∈ 𝑇}, 

where 𝜇ℱ(𝓀) denotes the ℳ𝒢, that is 𝜇ℱ : 𝑇 → [0,1] of an element 𝓀 ∈ 𝑇 such that 0 <

𝜇ℱ(𝓀) < 1. The collection of all FSs on the set 𝑇 is represented by 𝐹𝑆𝑇. 

Let ℱ = {< 𝓀, 𝜇ℱ(𝓀) > |𝓀 ∈ 𝑇} and ℱ1 = {< 𝓀, 𝜇ℱ1(𝓀) > |𝓀 ∈ 𝑇}  be any two fuzzy 

sets. Then the basic operations on them are given as: 

i. ℱ ⊆ ℱ1 iff  𝜇ℱ(𝓀) ≤ 𝜇ℱ1(𝓀) for all 𝓀 ∈ 𝑇; 

ii. ℱ ∪ ℱ1 = (𝓀,max (𝜇ℱ(𝓀), 𝜇ℱ1(𝓀))) for 𝓀 ∈ 𝑇; 

iii. ℱ ∩ ℱ1 = (𝓀,min(𝜇ℱ(𝓀), 𝜇ℱ1(𝓀))) for 𝓀 ∈ 𝑇; 

iv. ℱ = ℱ1 iff ℱ ⊆ ℱ1 and ℱ1 ⊆ ℱ; 

v. ℱ𝑐 = (𝓀, 1 − 𝜇ℱ(𝓀)) for 𝓀 ∈ 𝑇, where ℱ𝑐 is the complement of  ℱ.  

1.2. Intuitionistic fuzzy sets 

From the above definition it is clear that FS deals only ℳ𝒢, but in many scenario of 

real life not only the grade of ℳ𝒢, the 𝒩ℳ𝒢 also required. To cope on this 

shortcoming Atanassove [2] investigated the prominent concept of IFS, which covered 



 

 

2 
 

the deficiency of FS. The IFS consists of ℳ𝒢 and 𝒩ℳ𝒢 and their sum belongs to [0,1] 

and is defined as: 

1.2.1. Definition [2] 

Let 𝑇 be a universal of discourse. An IFS  𝒥 on 𝑇 is of the form 

𝒥 = {< 𝓀, 𝜇𝒥(𝓀),𝜓𝒥(𝓀) > |𝓀 ∈ 𝑇}, 

where  𝜇𝒥(𝓀) 𝑎𝑛𝑑 𝜓𝒥(𝓀) denotes the ℳ𝒢 and 𝒩ℳ𝒢 that is 𝜇𝒥: 𝑇 →

[0,1] 𝑎𝑛𝑑 𝜓𝒥: 𝑇 → [0,1] of an element 𝓀 ∈ 𝑇 with the constraint  0 ≤ 𝜇𝒥(𝓀) +

𝜓𝒥(𝓀) ≤ 1. Moreover, the degree of hesitancy is given as  𝜋𝒥 = 1 − (𝜇𝒥(𝓀) +

𝜓𝒥(𝓀)). If there is no confusion then 𝒥 =< 𝓀, 𝜇𝒥(𝓀),𝜓𝒥(𝓀) >, is represented by 𝒥 =

(𝜇𝒥 , 𝜓𝒥) and is known to be IF value (IFV). The collection of all IFSs on the set 𝑇 is 

represented by 𝐼𝐹𝑆𝑇. The graphical interpretation of IFS is given in Fig. 1. 

Let 𝒥, 𝒥1 ∈ 𝐼𝐹𝑆
𝑇 be any two IFSs. Then the basic operations on them are given as: 

i. 𝒥 ⊆ 𝒥1 iff  𝜇𝒥(𝓀) ≤ 𝜇𝒥1(𝓀) 𝑎𝑛𝑑 𝜓𝒥(𝓀) ≥ 𝜓𝒥1(𝓀) for all 𝓀 ∈ 𝑇; 

ii. 𝒥 ∪ 𝒥1 = (𝓀,max (𝜇𝒥(𝓀), 𝜇𝒥1(𝓀)) ,min (𝜓𝒥(𝓀),𝜓𝒥1(𝓀))) for 𝓀 ∈ 𝑇; 

iii. 𝒥 ∩ 𝒥1 = (𝓀,min(𝜇𝒥(𝓀), 𝜇𝒥1(𝓀)) ,max (𝜓𝒥(𝓀),𝜓𝒥1(𝓀))) for 𝓀 ∈ 𝑇; 

iv. 𝒥 = 𝒥1 iff 𝒥 ⊆ 𝒥1 and 𝒥1 ⊆ 𝒥; 

v. 𝒥𝑐 = (𝓀,𝜓𝒥(𝓀), 𝜇𝒥(𝓀)) for 𝓀 ∈ 𝑇, where 𝒥𝑐 is the complement of  𝒥. 

1.2.2. Definition [4, 5] 

Let 𝒥 = (𝜇𝒥(𝓀),𝜓𝒥(𝓀)) and 𝒥1 = (𝜇𝒥1(𝓀),𝜓𝒥1(𝓀))  be any two IFVs and  𝜆 > 0. 

Then the basic operations on them are given as: 

i. Ring sum operation: 

𝒥⨁ 𝒥2  = {(𝓀, 𝜇𝒥(𝓀) + 𝜇1(𝓀) − 𝜇𝒥(𝓀)𝜇𝒥1(𝓀) , 𝜓𝒥(𝓀)𝜓𝒥1(𝓀)) |𝓀 ∈ 𝑇}; 

ii. Ring product operation: 

𝒥⨂𝒥1 = {(𝓀, 𝜇𝒥(𝓀)𝜇𝒥1(𝓀) , 𝜓𝒥(𝓀) + 𝜓𝒥1(𝓀) − 𝜓𝒥(𝓀)𝜓𝒥1(𝓀)) |𝓀 ∈

𝑇}; 

iii. 𝜆 𝒥 = (1 − (1 − 𝜇𝒥(𝓀))
𝜆

, 𝜓𝒥
𝜆(𝓀)); 
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iv. 𝒥𝜆 = (𝜇𝒥
𝜆(𝓀), 1 − (1 − 𝜓𝒥(𝓀))

𝜆

). 

To make comparison between two or more IFVs various authors used several methods 

for ranking IFVs. First of all Chen and Tan [73] presented the concept of score function 

for ranking IFVs. Greater the score value better that IFV is and is defined as.   

1.2.3. Definition [72] 

Let 𝒥 = (𝜇𝒥 , 𝜓𝒥) be an IFV. Then a score function of 𝒥 can be given as below: 

𝒮𝑐(𝒥) = 𝜇𝒥 − 𝜓𝒥;         𝒮𝑐(𝒥) ∈ [−1,1]. 

Now comparing any two IFVs 𝒥𝑖 = (𝜇𝒥𝑖 , 𝜓𝒥𝑖) (𝑖 = 1,2), then 

i. 𝒥1 ≻ 𝒥2 if  𝒮𝑐(𝒥1) > 𝒮𝑐(𝒥2);  

ii. 𝒥1 ≺ 𝒥2 if  𝒮𝑐(𝒥1) < 𝒮𝑐(𝒥2); 

In case when 𝒮𝑐(𝒥1) = 𝒮𝑐(𝒥2), then two IFVs can be compared by using accuracy 

function, which is defined as: 

1.2.4. Definition [74] 

Let 𝒥 = (𝜇𝒥 , 𝜓𝒥) be an IFV. Then an accuracy function of 𝒥 can be denoted and defined 

as below: 

𝐴𝑐(𝒥) = 𝜇𝒥 + 𝜓𝒥;         𝐴𝑐(𝒥) ∈ [0,1]. 

Now comparing any two IFVs 𝒥𝑖 = (𝜇𝒥𝑖 , 𝜓𝒥𝑖) (𝑖 = 1,2), if 𝒮𝑐(𝒥1) = 𝒮𝑐(𝒥2), then we 

have 

i. 𝒥1 ≻ 𝒥2 if  𝐴𝑐(𝒥1) > 𝐴𝑐(𝒥2); 

ii. 𝒥1 ≺ 𝒥2 if  𝐴𝑐(𝒥1) < 𝐴𝑐(𝒥2); 

iii. 𝒥1 = 𝒥2 if  𝐴𝑐(𝒥1) = 𝐴𝑐(𝒥2). 

1.2.5. Theorem [4, 5] 

Let 𝒥 = (𝜇𝒥 , 𝜓𝒥) and 𝒥1 = (𝜇𝒥1 , 𝜓𝒥1) be any two IFVs and  𝜆, 𝜆1, 𝜆2 > 0. Then the 

following are holds: 

i. 𝒥⨁ 𝒥1  =  𝒥1⨁ 𝒥; 

ii. 𝜆(𝒥⨁𝒥1) = 𝜆𝒥⨁𝜆𝒥1; 

iii.  (𝜆1 + 𝜆2)𝒥 = 𝜆1𝒥 + 𝜆2𝒥; 
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iv. 𝒥⨂ 𝒥1  =  𝒥1⨂ 𝒥; 

v. (𝒥⨂𝒥1)
𝜆 = 𝒥𝜆⨂𝒥1

𝜆
; 

vi.  𝒥(𝜆1+𝜆2) = 𝒥𝜆1⨂𝒥𝜆2. 

1.3. Pythagorean fuzzy sets 
From the above analysis, it is clear that the prominent concept of IFS [2] deals with 

both ℳ𝒢 and 𝒩ℳ𝒢 with the constraint that the sum of ℳ𝒢 and 𝒩ℳ𝒢 must belongs 

to  [0,1]. However, in some scenario of real life problems the values assigned to ℳ𝒢 

and 𝒩ℳ𝒢 from  [0,1] but their sum exceeds 1. To cope on this situation Yager [16] 

investigated the dominant notion of PyFS characterized by ℳ𝒢 and 𝒩ℳ𝒢 which 

provided the more space to decision makers as compared to IFS. PyFS satisfies the 

constraint that the square sum of ℳ𝒢 and 𝒩ℳ𝒢 must not exceed the real 

numbers  0 𝑎𝑛𝑑 1. For example if the decision maker assigns the values to ℳ𝒢 = 
√3

2
 

and 𝒩ℳ𝒢 =
1

2
 , then their sum is bigger than 1, so IFS cannot handle it. PyFS is 

capable to handle this situation, that is(
√3

2
)
2

+ (
1

2
)
2

≤ 1. Therefore, PyFS provides 

more space and freedom for the experts to assign values as compared to IFS, which is 

defined as: 

1.3.1. Definition [16] 

Let 𝑇 be a universal of discourse. A PyFS ℵ on 𝑇 is of the form 

ℵ = {< 𝓀, 𝜇ℵ(𝓀),𝜓ℵ(𝓀) > |𝓀 ∈ 𝑇}, 

where  𝜇ℵ(𝓀) 𝑎𝑛𝑑 𝜓ℵ(𝓀) denotes the ℳ𝒢 and 𝒩ℳ𝒢 that is 𝜇ℵ: 𝑇 →

[0,1] 𝑎𝑛𝑑 𝜓ℵ: 𝑇 → [0,1] of an element 𝓀 ∈ 𝑇 with the constraint  0 ≤ 𝜇ℵ(𝓀)
2 +

𝜓ℵ(𝓀)
2 ≤ 1. Moreover, the degree of hesitancy is given as 𝜋ℵ =

√1 − (𝜇ℵ(𝓀)2 +𝜓ℵ(𝓀)2). If there is no confusion then ℵ =< 𝓀, 𝜇ℵ(𝓀),𝜓ℵ(𝓀) >, is 

represented by ℵ = (𝜇ℵ , 𝜓ℵ) and is known to be PyF value (PyFV). The collection of 

all PyFS on the set 𝑇 is represented by 𝑃𝑦𝐹𝑆𝑇. The graphical interpretation of PyFS is 

given in Fig. 1. 

1.3.2. Definition [17, 75] 

Let ℵ, ℵ1 ∈ 𝑃𝑦𝐹𝑆
𝑇 be two PyFSs. Then the basic operations on them are given as: 

i. ℵ ⊆ ℵ1 iff  𝜇ℵ(𝓀) ≤ 𝜇ℵ1(𝓀) 𝑎𝑛𝑑 𝜓ℵ(𝓀) ≥ 𝜓ℵ1(𝓀) for all 𝓀 ∈ 𝑇; 



 

 

5 
 

ii. ℵ ∪ ℵ2 = (𝓀,max (𝜇ℵ(𝓀), 𝜇ℵ1(𝓀)) ,min(𝜓ℵ(𝓀),𝜓ℵ1(𝓀))) for 𝓀 ∈ 𝑇; 

iii. ℵ ∩ ℵ2 = (𝓀,min (𝜇ℵ(𝓀), 𝜇ℵ1(𝓀)) ,max (𝜓ℵ(𝓀),𝜓ℵ1(𝓀))) for 𝓀 ∈ 𝑇; 

iv. ℵ1 = ℵ2 iff ℵ ⊆ ℵ1 and ℵ1 ⊆ ℵ; 

v. ℵ𝑐 = (𝓀, 𝜓ℵ(𝓀), 𝜇ℵ(𝓀)) for 𝓀 ∈ 𝑇, where ℵ𝑐 is the complement of  ℵ. 

1.3.3. Definition [76] 

Let ℵ = (𝜇ℵ, 𝜓ℵ) and ℵ1 = (𝜇ℵ1 , 𝜓ℵ1) be two PyFVs and  𝜆 > 0. Then the basic 

operations on them are given as: 

i. Ring sum operation: 

ℵ⨁ ℵ2  = {(𝓀,√𝜇ℵ
2(𝓀) + 𝜇ℵ1

2 (𝓀) − 𝜇ℵ
2(𝓀)𝜇ℵ1

2 (𝓀) ,𝜓ℵ(𝓀)𝜓ℵ1(𝓀)) |𝓀 ∈ 𝑇}; 

ii. Ring product operation: 

ℵ⨂ ℵ1  = {(𝓀, 𝜇ℵ(𝓀)𝜇ℵ1(𝓀),√𝜓ℵ
2(𝓀) + 𝜓ℵ1

2 (𝓀) − 𝜓ℵ
2(𝓀)𝜓ℵ1

2 (𝓀) ) |𝓀 ∈ 𝑇}; 

iii. 𝜆 ℵ = (√1− (1 − 𝜇ℵ
2(𝓀))

𝜆

, 𝜓ℵ
𝜆(𝓀)); 

iv. ℵ𝜆 = (𝜇ℵ
𝜆(𝓀),√1 − (1 − 𝜓ℵ

2(𝓀))
𝜆

). 

1.3.4. Definition [76] 

Let ℵ = (𝜇ℵ, 𝜓ℵ) be a PyFV. Then the score function of ℵ can be defined as follows: 

𝒮𝑐(ℵ) = (𝜇ℵ)
2 − (𝜓ℵ)

2;         𝒮𝑐(ℵ) ∈ [−1,1]. 

Now comparing any two PyFVs ℵ𝑖 = (𝜇ℵ𝑖 , 𝜓ℵ𝑖) (𝑖 = 1,2), then 

i. ℵ1 ≻ ℵ2 if  𝒮𝑐(ℵ1) > 𝒮𝑐(ℵ2); 

ii. ℵ1 ≺ ℵ2 if  𝒮𝑐(ℵ1) < 𝒮𝑐(ℵ2); 

In case when 𝒮𝑐(ℵ1) = 𝒮𝑐(ℵ2) then ℵ1 ∼ ℵ2. Further to cope on this issue Peng 

and Yang [18] initiated the accuracy function, which is defined as: 

1.3.5. Definition [18] 

Let ℵ = (𝜇ℵ, 𝜓ℵ) be a PyFV. Then an accuracy function of ℵ is given as below: 

𝐴𝑐(ℵ) = (𝜇ℵ)
2 + (𝜓ℵ)

2;         𝐴𝑐(ℵ) ∈ [0,1]. 
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Now comparing any two PyFVs ℵ𝑖 = (𝜇ℵ𝑖 , 𝜓ℵ𝑖)(𝑖 = 1,2), then 

i. If 𝒮𝑐(ℵ1) = 𝒮𝑐(ℵ2), then we have 

ii. ℵ1 ≻ ℵ2 if  𝐴𝑐(ℵ1) > 𝐴𝑐(ℵ2); 

iii. ℵ1 ≺ ℵ2 if  𝐴𝑐(ℵ1) < 𝐴𝑐(ℵ2); 

iv. ℵ1 ∼ ℵ2 if  𝐴𝑐(ℵ1) = 𝐴𝑐(ℵ2). 

1.3.6. Theorem [76] 

Let ℵ = (𝜇ℵ, 𝜓ℵ) and ℵ1 = (𝜇ℵ1 , 𝜓ℵ1) be any two PyFVs and  𝜆, 𝜆1, 𝜆2 > 0. Then the 

following results are holds: 

i. ℵ⨁ ℵ1  =  ℵ1⨁ ℵ; 

ii. 𝜆(ℵ + ℵ1) = 𝜆ℵ⨁𝜆ℵ1; 

iii. (𝜆1 + 𝜆2)ℵ = 𝜆1ℵ ⨁ 𝜆2ℵ 

iv.  ℵ⨂ ℵ1  =  ℵ1⨂ ℵ; 

v. (ℵ⨂ℵ1)
𝜆 = ℵ𝜆⨂ℵ1

𝜆; 

vi.  ℵ(𝜆1+𝜆2) = ℵ𝜆1⨂ℵ𝜆2. 

1.4. q-Rung orthopair fuzzy sets 
From the Definitions of IFS and PyFS, it is clear that in some practical problems both 

these notions fail to cope the scenario. So researchers face difficulties to handle these 

shortcomings. Yager [27] originated the generalized concept of both IFS and PyFS, 

which is known as q-ROFS. In this concept the sum 𝑞𝑡ℎ power of ℳ𝒢 and 𝑞𝑡ℎ power 

of 𝒩ℳ𝒢 must not exceed the real numbers  0 𝑎𝑛𝑑 1 for 𝑞 ≥ 1. Hence q-ROFS freely 

allows the alternative to their corresponding criteria provided by 𝒟ℳ just by adjusting 

the value of rung 𝑞, which is defined as follows: 

1.4.1. Definition [27] 

Let 𝑇 be a universal set. A q-ROFS 𝔍 on the set 𝑇 is of the form 

𝔍 = {< 𝓀, 𝜇𝔍(𝓀),𝜓𝔍(𝓀) >𝑞 |𝓀 ∈ 𝑇  𝑓𝑜𝑟 𝑞 ≥ 1}, 

where  𝜇𝔍(𝓀) 𝑎𝑛𝑑 𝜓𝔍(𝓀) denotes the ℳ𝒢 and 𝒩ℳ𝒢 that is 𝜇𝔍: 𝑇 →

[0,1] 𝑎𝑛𝑑 𝜓𝔍: 𝑇 → [0,1] of an element 𝓀 ∈ 𝑇 with the constraint  0 ≤ 𝜇𝔍(𝓀)
𝑞 +

𝜓𝔍(𝓀)
𝑞 ≤ 1 for  𝑞 ≥ 1. Moreover, the degree of hesitancy is given as  𝜋𝔍 =

√1 − (𝜇𝔍(𝓀)𝑞 + 𝜓𝔍(𝓀)𝑞)
𝑞

. If there is no confusion then 𝔍 =< 𝓀, 𝜇𝔍(𝓀),𝜓𝔍(𝓀) >𝑞, 
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is represented by 𝔍 = (𝜇𝔍, 𝜓𝔍) and is known to be q-ROF value (q-ROFV). The 

collection of all q-ROFSs is on the set 𝑇 is represented by q − ROF𝑆𝑇. The graphical 

interpretation of q-ROFS is given in Fig. 1. 

 

1.4.2. Definition [27] 

Let 𝔍, 𝔍1 ∈ q − ROF𝑆𝑇 be any two q-ROFSs. Then the basic operations on them are 

given as:  

i. 𝔍 ⊆ 𝔍1 iff  𝜇𝔍(𝓀) ≤ 𝜇𝔍1(𝓀) 𝑎𝑛𝑑 𝜓𝔍(𝓀) ≥ 𝜓𝔍1(𝓀) for all 𝓀 ∈ 𝑇; 

ii. 𝔍 ∪ 𝔍1 = (𝓀,max (𝜇𝔍(𝓀), 𝜇𝔍1(𝓀)) ,min (𝜓𝔍(𝓀),𝜓𝔍1(𝓀))) for 𝓀 ∈ 𝑇; 

iii.  𝔍 ∩ 𝔍1 = (𝓀,min(𝜇𝔍(𝓀), 𝜇𝔍1(𝓀)) ,max (𝜓𝔍(𝓀),𝜓𝔍1(𝓀))) for 𝓀 ∈ 𝑇; 

iv.  𝔍 = 𝔍1 iff 𝔍 ⊆ 𝔍1 and 𝔍1 ⊆ 𝔍; 

v. 𝔍𝑐 = (𝓀,𝜓𝔍(𝓀), 𝜇𝔍(𝓀)) for 𝓀 ∈ 𝑇, where 𝔍𝑐 is the complement of  𝔍. 

1.4.3. Definition [27] 

Let 𝔍 = (𝜇𝔍, 𝜓𝔍) and 𝔍1 = (𝜇𝔍1, 𝜓𝔍1) be any two q-ROFVs. Then the basic operations 

on them are given as:  

i. Ring sum operation: 



 

 

8 
 

𝔍⨁ 𝔍1  = {(𝓀, √𝜇𝔍
𝑞(𝓀) + 𝜇𝔍1

𝑞 (𝓀) − 𝜇𝔍
𝑞(𝓀)𝜇𝔍1

𝑞 (𝓀)
𝑞

 , 𝜓𝔍(𝓀)𝜓𝔍1(𝓀)) |𝓀

∈ 𝑇} ; 

ii. Ring product operation: 

𝔍⨂𝔍1  = {(𝓀, 𝜇𝔍(𝓀)𝜇𝔍1(𝓀), √𝜓𝔍
𝑞(𝓀) + 𝜓𝔍1

𝑞 (𝓀) − 𝜓𝔍
𝑞(𝓀)𝜓𝔍1

𝑞 (𝓀)
𝑞

 ) |𝓀 ∈

𝑇}; 

iii.  𝜆 𝔍 = (√1 − (1 − 𝜇𝔍
𝑞(𝓀))

𝜆𝑞

, 𝜓𝔍
𝜆(𝓀)); 

iv.  𝔍𝜆 = (𝜇𝔍
𝜆(𝓀), √1 − (1 − 𝜓𝔍

𝑞(𝓀))
𝜆𝑞

). 

To make comparison between two or more q-ROFVs, a score function is used to 

differentiate two or more q-ROFVs. In many cases of real problems if score function 

fails to differentiate the q-ROFVs. To solve this issue an accuracy function is 

investigated, which are defined below. 

1.4.4. Definition [30] 

Let 𝔍 = (𝜇𝔍, 𝜓𝔍) be a q-ROFV, then the score function of 𝔍 can be given as follows: 

𝒮𝑐(𝔍) = 𝜇𝔍
𝑞 −𝜓𝔍

𝑞 ;         𝒮𝑐(𝔍) ∈ [−1,1]. 

Now comparing any two q-ROFVs 𝔍𝑖 = (𝜇𝔍𝑖 , 𝜓𝔍𝑖)(𝑖 = 1,2), then 

i. 𝔍1 ≻ 𝔍2 if  𝒮𝑐(𝔍1) > 𝒮𝑐(𝔍2); 

ii. 𝔍1 ≺ 𝔍2 if  𝒮𝑐(𝔍1) < 𝒮𝑐(𝔍2); 

In case when 𝒮𝑐(𝔍1) = 𝒮𝑐(𝔍2) then 𝔍1 ∼ 𝔍2. Further two q-ROFVs can be 

compared by using accuracy function, which is defined as: 

1.4.5. Definition [30] 

Let 𝔍 = (𝜇𝔍, 𝜓𝔍) be a q-ROFV. Then the accuracy function of 𝔍 is given as: 

𝐴𝑐(𝔍) = 𝜇𝔍
𝑞 +𝜓𝔍

𝑞;         𝐴𝑐(𝔍) ∈ [0,1]. 
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Now comparing any two q-ROFVs 𝔍𝑖 = (𝜇𝔍𝑖 , 𝜓𝔍𝑖) (𝑖 = 1,2), if 𝒮𝑐(𝔍1) = 𝒮𝑐(𝔍2), 

then we have 

i. 𝔍1 ≻ 𝔍2 if  𝐴𝑐(𝔍1) > 𝐴𝑐(𝔍2); 

ii. 𝔍1 ≺ 𝔍2 if  𝐴𝑐(𝔍1) < 𝐴𝑐(𝔍2); 

iii. 𝔍1 ∼ 𝔍2 if  𝐴𝑐(𝔍1) = 𝐴𝑐(𝔍2). 

1.4.6. Theorem [30] 

Let 𝔍 = (𝜇𝔍, 𝜓𝔍) and 𝔍1 = (𝜇𝔍1, 𝜓𝔍1) be any two q-ROFVs and  𝜆, 𝜆1, 𝜆2 > 0. Then 

the following results are holds: 

(i) 𝔍⨁ 𝔍1  =  𝔍1⨁ 𝔍; 

(ii) 𝜆(𝔍 + 𝔍1) = 𝜆𝔍⨁𝜆𝔍1; 

(iii)(𝜆1 + 𝜆2)𝔍 = 𝜆1𝔍 ⨁ 𝜆2𝔍; 

(iv)  𝔍⨂ 𝔍1  =  𝔍1⨂ 𝔍;  

(v) (𝔍⨂𝔍1)
𝜆 = 𝔍𝜆⨂𝔍1

𝜆
; 

(vi)  𝔍(𝜆1+𝜆2) = 𝔍𝜆1⨂𝔍𝜆2 . 

1.5. q-Rung orthopair fuzzy weighted averaging aggregation 

operator 
Here we will define a brief concept of q-ROFWA and q-ROFWG aggregation 

operators. 

1.5.1. Definition [30] 

Let 𝔍𝑖 = (𝜇𝑖 , 𝜓𝑖) (𝑖 = 1,2… , 𝑛) be q-ROFVs. Let 𝑤̿ = (𝑤̿1, 𝑤̿2, … , 𝑤̿𝑛)
𝑇 be the weight 

vectors such that ∑ 𝑤̿𝑛
𝑖=1 = 1 with 𝑤̿𝑖 ∈ [0,1]. Then the mapping for q-ROFWA 

aggregation operator is defined as: q − ROF𝑊𝐴:ℋ𝑛 → ℋ (where ℋ𝑛 is the collection 

of q-ROFVs) 

q − ROF𝑊𝐴(𝔍1, 𝔍2, …𝔍𝑛) = ⨁𝑖=1
𝑛 𝑤̿𝑖𝔍𝑖  

= (√1 −∏(1 − 𝜇𝑖
𝑞)

𝑤̿
𝑛

𝑖=1

𝑞

,∏𝜓𝑖
𝑤̿

𝑛

𝑖=1

). 

1.5.2. Definition [30] 

Let 𝔍𝑖 = (𝜇𝑖 , 𝜓𝑖) (𝑖 = 1,2… , 𝑛) be q-ROFVs. Let 𝑤̿ = (𝑤̿1, 𝑤̿2, … , 𝑤̿𝑛)
𝑇 be the weight 

vectors such that ∑ 𝑤̿𝑛
𝑖=1 = 1 with 𝑤̿𝑖 ∈ [0, 1] respectively. Then the mapping for q-
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ROFWG aggregation operator is defined as: q − ROF𝑊𝐺:ℋ𝑛 → ℋ (where ℋ𝑛 is the 

collection of q-ROFVs). 

q − ROF𝑊𝐺(𝔍1, 𝔍2, …𝔍𝑛) = ⨂𝑖=1
𝑛 𝔍𝑖

𝑤̿𝑖 

=

(

 ∏𝜇𝑖
𝑤̿

𝑛

𝑖=1

, √1 −∏(1 − 𝜓𝑖
𝑞)

𝑤̿
𝑛̿

𝑖=1

𝑞

)

 . 

1.5.3. Remarks 

(i) If 𝑞 = 1, then q − ROF𝑊𝐴 reduced to IF𝑊𝐴 by Xu [4] and q − ROF𝑊𝐺 

reduced to IF𝑊𝐺 by Xu and Yager [5]. 

IF𝑊𝐴(𝒥1, 𝒥2, … 𝒥𝑛) = ⨁𝑖=1
𝑛 𝑤̿𝑖𝒥𝑖  

= (1 −∏(1 − 𝜇𝑖)
𝑤̿

𝑛

𝑖=1

,∏𝜓𝑖
𝑤̿

𝑛

𝑖=1

) 

and  

IF𝑊𝐺(𝒥1, 𝒥2, … 𝒥𝑛) = ⨁𝑖=1
𝑛 𝑤̿𝑖𝒥𝑖  

= (∏𝜇𝑖
𝑤̿

𝑛

𝑖=1

, 1 −∏(1 − 𝜓𝑖)
𝑤̿

𝑛

𝑖=1

 ). 

(ii) If 𝑞 = 2, then q − ROF𝑊𝐴 reduced to PyF𝑊𝐴 and q − ROF𝑊𝐺 reduced 

to PyF𝑊𝐺 given in [17, 75]. 

PyF𝑊𝐴(ℵ1, ℵ2, … ℵ𝑛) = ⨁𝑖=1
𝑛 𝑤̿𝑖ℵ𝑖  

= (√1 −∏(1− 𝜇𝑖
2)𝑤̿

𝑛

𝑖=1

2

,∏𝜓𝑖
𝑤̿

𝑛

𝑖=1

) 

and 

PyF𝑊𝐺(ℵ1, ℵ2, … ℵ𝑛) = ⨁𝑖=1
𝑛 𝑤̿𝑖ℵ𝑖  

= (∏𝜇𝑖
𝑤̿

𝑛

𝑖=1

, √1 −∏(1 − 𝜓𝑖
2)𝑤̿

𝑛

𝑖=1

2

). 

1.6. Rough set theory 
In 1982, the pioneer concept of rough set (RS) was first proposed by Pawlak [36] who 

generalized the classical set theory to cope imprecise, vague and uncertain information 

by an easy way. By definition, Pawlak’s RS of a universal set is characterized by two 
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approximation sets known as lower and upper approximations. The lower 

approximation consists of those elements which contain in the set and the upper 

approximation consists of those objects having nonempty intersection with the set. 

Further equivalence relation plays a key role in Pawlak’s RS for approximations and 

RS theory has been extensively used in various directions of theoretical as well as in 

practical applications. 

Let 𝑇1, 𝑇2 be two nonempty set and consider a Cartesian product 𝑇1 × 𝑇2 =

{(𝓀1, 𝓀2)|𝓀1 ∈ 𝑇1, 𝓀2 ∈ 𝑇2}. A subset of a Cartesian product is called binary relation 

and it is denoted by ℛ. The statements (𝓀1, 𝓀2) in ℛ is read as "𝓀1 is ℛ-related to 𝓀2" 

and is represented as 𝓀1ℛ𝓀2 or (𝓀1, 𝓀2) ∈ ℛ. 

Suppose 𝑇 be a universal set and ℛ be a binary relation over 𝑇 × 𝑇 having the following 

properties: 

(i) ℛ is reflexive, i.e. ∀ 𝓀 ∈ 𝑇, 𝓀ℛ𝓀, 

(ii) ℛ is symmetric, i.e. for any 𝓀1, 𝓀2 ∈ 𝑇, 𝑖𝑓 𝓀1ℛ𝓀2, 𝑡ℎ𝑒𝑛 𝓀2ℛ𝓀1, 

(iii) ℛ is transitive, i.e. for any  𝓀1, 𝓀2, 𝓀3 ∈ 𝑇 if 𝓀1ℛ𝓀2 and 𝓀2ℛ𝓀3, then 

𝓀1ℛ𝓀3.  

Then ℛ is called an equivalence relation. The set of those objects of 𝑇 which are related 

to 𝓀 ∈ 𝑇, is said to be equivalence class of 𝓀 and is represented as [𝓀]ℛ =

{𝑢 ∈ 𝑇|𝓀ℛ𝑢}. The pair (𝑇,ℛ) is known to be an approximation space. Consider a 

nonempty subset 𝒦 of 𝑇, then 𝒦 is definable if it can be written in the union of some 

equivalence classes of 𝑇, otherwise 𝒦 is undefinable. So in this case set 𝒦 can be 

approximated in the form of definable subsets called lower and upper approximation 

which are given as: 

ℛ(𝒦) = {𝓀 ∈ 𝑇| [𝓀]ℛ ⊆ 𝒦} 

ℛ(𝒦) = {𝓀 ∈ 𝑇| [𝓀]ℛ ∩𝒦 ≠ ∅} 

ℛ(𝒦) is the greatest definable set in 𝑇 contained in 𝒦 and ℛ(𝒦) is the least set in 𝑇 

containing 𝒦. The set ℛ(𝒦) = (ℛ(𝒦),ℛ(𝒦)) is said to RS if  ℛ(𝒦) ≠ ℛ(𝒦). The 

geometrical interpretation of RS is shown in Fig. 2. 
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1.6.1. Example 

Let 𝑇 = {𝓀1, 𝓀2, 𝓀3, 𝓀4, 𝓀5, 𝓀6} and 

ℛ = {
(𝓀1, 𝓀1), (𝓀2, 𝓀2), (𝓀3, 𝓀3), (𝓀4, 𝓀4), (𝓀5, 𝓀5), (𝓀6, 𝓀6), (𝓀1, 𝓀2), (𝓀2, 𝓀1),

(𝓀3, 𝓀5), (𝓀5, 𝓀3)
}. 

Then ℛ is an equivalence relation on 𝑇. Now the equivalence classes of ℛ are  [𝓀1]ℛ =

[𝓀2]ℛ = {𝓀1, 𝓀2}, [𝓀3]ℛ = [𝓀5]ℛ = {𝓀3, 𝓀5}, [𝓀4]ℛ = {𝓀4} 𝑎𝑛𝑑 [𝓀6]ℛ = {𝓀6}. Let 

us consider 𝒦 = {𝓀1, 𝓀3, 𝓀4, 𝓀6} ⊆ 𝑇. Then ℛ(𝒦) = {𝓀4, 𝓀6}, ℛ(𝒦) =

{𝓀1, 𝓀2, 𝓀3, 𝓀4, 𝓀5, 𝓀6}. As  ℛ(𝒦) ≠ ℛ(𝒦). Hence ℛ(𝒦) = (ℛ(𝒦),ℛ(𝒦)) is a 

rough set.  

In next definition Yao [77] presented the rough set based on set valued mapping (SVM) 

means using nonequivalence structure. 

1.6.2. Definition [77] 

Consider a universal set 𝑇. Suppose ℛ ⊆ 𝑇 × 𝑇 be the crisp relation. Suppose ℛ∗ be 

the set valued mapping (SVM) i.e. ℛ∗ = 𝑇 → 𝒫∗(𝑇) defined by ℛ∗(𝓀) = {𝑢 ∈

𝑇|(𝓀, 𝑢) ∈ ℛ 𝑎𝑛𝑑 𝓀 ∈ 𝑇}. Then the pair (𝑇, ℛ) is known to be an approximation space. 

Suppose ∅ ≠ 𝔍 ⊆ 𝑇, then the lower and upper approximation of 𝔍 w.r.t approximation 

space (𝑇, ℛ) is denoted and defined as: 

                 ℛ(𝔍) = {𝓀 ∈ 𝑇|ℛ∗(𝓀) ⊆ 𝔍} 

𝑎𝑛𝑑               ℛ̅(𝔍) = {𝓀 ∈ 𝑇|ℛ∗(𝓀) ∩ 𝔍 ≠ ∅}. 
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The pair (ℛ(𝔍), ℛ̅(𝔍)) is known to be a crisp rough set, where ℛ(𝔍) ≠ ℛ̅(𝔍). Hence 

ℛ(𝔍), ℛ̅(𝔍):𝒫∗(𝑇) → 𝒫∗(𝑇) is called crisp lower and upper approximation operators 

w.r.t (𝑇, ℛ), where 𝒫∗(𝑇) is the collection of power set of 𝑇. 

1.6.3. Theorem   

Suppose ℛ1 𝑎𝑛𝑑 ℛ2 are any two equivalence relations on set 𝑇 and 𝒦1, 𝒦2 are 

the non-empty subsets of 𝑇. Then the following are hold: 

i. ℛ(𝒦1) ⊆ 𝒦1 ⊆ ℛ(𝒦1), 

ii.  ℛ(𝒦1 ∪ 𝒦2) = ℛ(𝒦1) ∪ ℛ(𝒦2), 

iii.  ℛ(𝒦1 ∩ 𝒦2) = ℛ(𝒦1) ∩ ℛ(𝒦2), 

iv.  𝒦1 ⊆ 𝒦2 ⇒ ℛ(𝒦1) ⊆ ℛ(𝒦2), 

v.  𝒦1 ⊆ 𝒦2 ⇒ ℛ(𝒦1) ⊆ ℛ(𝒦2), 

vi.  ℛ(𝒦1 ∪ 𝒦2) ⊇ ℛ(𝒦1) ∪ ℛ(𝒦2), 

vii. ℛ(𝒦1 ∩𝒦2) ⊆ ℛ(𝒦1) ∩ ℛ(𝒦2). 

1.7. Covering based intuitionistic fuzzy rough set 
Here in this subsection we are going to present a brief structure of CBIFRS and its 

related structure. 

1.7.1. Definition [78] 

Let 𝑇 be a universal set. The set 𝒦 = {𝒞 ≠ 𝜙: 𝒞 ⊆ 𝑇} is called cover of 𝑇, if ∪ 𝒞 = 𝑇. 

So in this case the pair (𝑇,𝒦) is said to be covering approximation space (CAS).  

1.7.2. Definition [78] 

Let (𝑇,𝒦) be a CAS. Then 𝒩𝒦(𝓀) =∩ {𝒞: 𝒞 ∈ 𝒦 𝑎𝑛𝑑 𝓀 ∈ 𝒞}is known as the 

neighborhood of 𝓀 ∈ 𝑇 w.r.t (𝑇,𝒦). 

1.7.3. Definition [79] 

Let 𝑇 be a universal set. Let ℱ = {ℱ1, ℱ2, . . . , ℱ𝑚} with ℱ𝑖 ∈ 𝐹𝑆
𝑇(𝑖 = 1, . . . ,𝑚). 

If ⋁
 ℱ𝑖∈ℱ

 ℱ𝑖(𝓀) = 1 for each 𝓀 ∈ 𝑇, so in this case ℱ is called a fuzzy covering of 𝑇.  

The pair (𝑇, ℱ) is called a fuzzy CAS. 
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1.7.4. Definition [80] 

Suppose 𝑇 is a universal of discourse. For any 𝛽 ∈ (0,1] and ℱ = {ℱ1, ℱ2, . . . , ℱ𝑚} with 

ℱ𝑚 ∈ 𝐹𝑆𝑇  (𝑖 = 1, . . ., 𝑚), then ℱ is called a fuzzy 𝛽-covering of 𝑇, if ∪ ℱ𝑖(𝓀) ≽ 𝛽 for 

each 𝓀 ∈ 𝑇. The pair (𝑇, ℱ) is said to be fuzzy 𝛽-covering approximation space. 

1.7.5. Definition [80] 

Consider (𝑇,ℱ) be a fuzzy CAS and ℱ = {ℱ1, ℱ2, . . . , ℱ𝑚} be a fuzzy 𝛽-covering of 𝑇, 

for some 𝛽 ∈ (0,1]. Then fuzzy 𝛽-neighborhood is defined as 𝒩𝓀
𝛽
=∩ {ℱ𝑚 ∈

ℱ:ℱ𝑖(𝓀) ≽ 𝛽 (𝑖 = 1, 2, . . . , 𝑚)} for  𝓀 ∈ 𝑇. 

1.7.6. Definition [80] 

Let (𝑇,ℱ) be a fuzzy CAS and ℱ = {ℱ1, ℱ2, . . . , ℱ𝑚} be a fuzzy 𝛽-covering of 𝑇, for 

some 𝛽 ∈ (0,1]. Then 𝛽-neighborhood of 𝑦 is denoted and defined as (𝒩𝑦
𝛽
)∗ = {𝓀 ∈

𝑇:𝒩𝑦
𝛽
(𝓀) ≽ β} for each 𝑦 ∈ 𝑇. 

1.7.7. Definition [81] 

Let 𝑇 be any set and 𝒥 = {𝒥1, 𝒥2, . . . , 𝒥𝑚}, where 𝒥𝑖 ∈ 𝐼𝐹𝑆
𝑇 and 𝑖 = 1,2, . . . , 𝑚. For any 

IFV 𝛽 = (𝜇𝛽 , 𝜓𝛽), 𝒥 is called intuitionistic fuzzy 𝛽-covering (IF 𝛽-covering) of 𝑇, if 

(⋃ 𝒥𝑖
𝑚
𝑖=1 )(𝓀) ≽ 𝛽 for all 𝓀 ∈ 𝑇. Here (𝑇, 𝒥) is called a IF covering approximation 

space (IFCAS). 

Suppose that (𝑇, 𝒥) is a IFCAS and 𝒥 = {𝒥1, 𝒥2, … , 𝒥𝑚} be a IF 𝛽-covering of 𝑇 for 

some 𝛽 = (𝜇𝛽 , 𝜓𝛽). Then 𝒩𝒥(𝓀)
𝛽

=∩ {𝒥𝑗 ∈ 𝒥: 𝒥𝑗 ≽ 𝛽, j = 1,2, . . . , m} is the IF𝛽-

neighborhood of 𝓀 in 𝑇.  

An IF𝛽-neighborhood system is denoted and defined as 𝒩𝒥
𝛽
= {𝒩𝒥(𝓀)

𝛽
: 𝓀 ∈ 𝑇} which 

is induced by IF 𝛽-covering 𝒥. By using IF matrix to represent a IF𝛽-neighborhood 

system as follows: 

𝕄𝒥
𝛽
= [𝒩𝒥(𝓀𝑖)

𝛽
(𝓀𝑗)]

𝓀𝑖×𝓀𝑗∈𝑇×𝑇
 

1.7.8. Remarks [81] 

(i) If 𝛽 = (1,0), then in this case IF 𝛽-covering reduced to a crisp covering and 

similarly if 𝛽 = (1,0), then IF 𝛽-neighborhood reduced to a crisp 

neighborhood. 
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(ii) If 𝛽 = (𝓀, 0), such that 0 < 𝓀 < 1, then in this case IF 𝛽-covering reduced 

to a fuzzy covering and similarly if If 𝛽 = (𝓀, 0), then IF 𝛽-neighborhood 

reduced to a fuzzy 𝛽-neighborhood respectively. 

1.7.9. Definition [81] 

Consider a IFCAS (𝑇, 𝐶), where 𝒥 = {𝒥1, 𝒥2, 𝒥3, … , 𝒥m} is the set of IF 𝛽-covering 

of 𝑇 for some 𝛽 = (𝜇𝛽 , 𝜓𝛽) and 𝑇 = {𝓀1, 𝓀2, … ,𝓀𝑛}. Consider that the neighborhood 

system 𝒩𝒥
𝛽
= {𝒩𝒥(𝓀)

𝛽
: 𝓀 ∈ 𝑇} induced by IF 𝛽-covering of 𝒥 such that 

𝒩𝒥(𝓀𝑖)
𝛽

= {< 𝓀𝑗, 𝜇𝒩
𝒥(𝓀𝑖)

𝛽  (𝓀𝑖 , 𝓀𝑗), 𝜓𝒩
𝒥(𝓀𝑖)

𝛽 (𝓀𝑖, 𝓀𝑗) >𝑞 |for all 𝑖 = 1, . . . , 𝑛 𝑎𝑛𝑑 𝑗

= 1, . . .𝑚} 

Now for any 𝔍 ∈ IFS𝑇, where 𝔍 = {< 𝓀𝑗 , 𝜇𝔍(𝓀𝑗), 𝜓𝔍(𝓀𝑗)) >𝑞 |𝑗 = 1, . . . , 𝑚}, the 

lower and upper approximations of 𝔍  w.r.t 𝒩𝒥(𝓀)
𝛽

 is represented and defined by 

𝒩𝒥
𝛽(𝔍) = (𝒩𝒥

𝛽(𝔍),𝒩𝒥
𝛽(𝔍)), 

where 

𝒩𝒥
𝛽(𝔍) = {< 𝓀𝑖, 𝜇𝒩𝒥

𝛽
(𝔍)
(𝓀𝑖), 𝜓𝒩𝒥

𝛽
(𝔍)
(𝓀𝑖) >𝑞 |𝑖 = 1, . . . , 𝑛} 

and 

𝒩𝒥
𝛽(𝔍) = {< 𝓀𝑖, 𝜇

𝒩𝒥
𝛽
(𝔍)
(𝓀𝑖), 𝜓

𝒩𝒥
𝛽
(𝔍)
(𝓀𝑖) >𝑞 |𝑖 = 1, . . . , 𝑛} 

such that 

𝜇
𝒩𝒥
𝛽
(𝔍)
(𝓀𝑖) =⋀{𝜇

𝒩
𝒥(𝓀𝑖)

𝛽  (𝓀𝑖, 𝓀𝑗) ∨ 𝜇𝔍(𝓀𝑗)}

𝑚

𝑗=1

 

𝜓
𝒩𝒥
𝛽
(𝔍)
(𝓀𝑖) =⋁{𝜓

𝒩
𝒥(𝓀𝑖)

𝛽  (𝓀𝑖, 𝓀𝑗)⋀𝜓𝔍(𝓀𝑗)}

𝑚

𝑗=1
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𝜇
𝒩𝒥
𝛽
(𝔍)
(𝓀𝑖) =⋁{𝜇

𝒩
𝒥(𝓀𝑖)

𝛽  (𝓀𝑖, 𝓀𝑗)⋀𝜇𝔍(𝓀𝑗)}

𝑚

𝑗=1

 

𝜓
𝒩𝒥
𝛽
(𝔍)
(𝓀𝑖) =⋀{𝜓

𝒩
𝒥(𝓀𝑖)

𝛽  (𝓀𝑖 , 𝓀𝑗) ∨ 𝜓𝔍(𝓀𝑗)}

𝑚

𝑗=1

 

So the operators 𝒩𝒥
𝛽(𝔍),𝒩𝒥

𝛽(𝔍) ∶  𝐼𝐹𝑆𝑇 → 𝐼𝐹𝑆𝑇  are said to be lower and upper IF 

rough approximation operators w.r.t 𝒩𝒥
𝛽

. 

Therefore, the covering based IF rough set is the pair 𝒩𝒥
𝛽
(𝔍) = (𝒩𝒥

𝛽(𝔍),𝒩𝒥
𝛽(𝔍)), 

when ever 𝒩𝒥
𝛽(𝔍) ≠ 𝒩𝒥

𝛽(𝔍). 

1.8. Soft sets 
In 1999, Molodtsov [53] investigated the pioneer concept of soft set (𝑆𝑓𝑡S) which is 

defended on parameterizations tool to cope the uncertainty and vague data. Various 

traditional concepts such as fuzzy sets by Zadeh [1], rough sets theory by Pawlak [36], 

IFS by Atanassov [2] etc. are generally used by scholars to handle the complexity 

during analysis but grossly all these notions have the lack of parameterizations tool. 

Therefore, these concepts cannot be impressively applied to real life problems. So, 

Molodtsov investigated the novel concept of 𝑆𝑓𝑡S which is defined as: 

1.8.1. Definition [53] 

 Consider a fix set 𝑇 called universal and 𝔼 represents the set of parameters with 𝒦 ⊆

𝔼. The pair (ℋ,𝒦) is known to be a 𝑆𝑓𝑡S over 𝑇, where ℋ is a function given 

by ℋ:𝒦 → 𝑃(𝑇). 𝑃(𝑇) denotes the power set of 𝑇. 

1.8.2. Definition [82] 

Let (ℋ1, 𝒦1) and (ℋ2, 𝒦2) be two 𝑆𝑓𝑡Ss over a common universe 𝑇. Then (ℋ2, 𝒦2) is 

known to be a soft subset of (ℋ1,𝒦1) if 𝒦2 ⊆ 𝒦1 and ℋ2(𝑠) ⊆ ℋ1(𝑠), for all 𝑠 ∈ 𝒦2. 

1.8.3. Definition [82] 

Two 𝑆𝑓𝑡Ss (ℋ1, 𝒦1) and (ℋ2, 𝒦2) over a common universe 𝑇 are called soft equal if 

(ℋ1, 𝒦1) is a soft subset of (ℋ2, 𝒦2) and (ℋ2, 𝒦2) is a soft subset of (ℋ1, 𝒦1). 
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1.8.4. Definition [82] 

Let (ℋ1, 𝒦1) and (ℋ2, 𝒦2) be two 𝑆𝑓𝑡Ss over a common universe 𝑇. Then their union 

is a 𝑆𝑓𝑡S (𝐸, 𝐶), where 𝐶 = 𝒦1 ∪𝒦2 and for all 𝑠 ∈ 𝐶, 

𝐸(𝑠) = {

ℋ1(𝑠)                     𝑖𝑓 𝑠 ∈ 𝒦1\𝒦2

ℋ2(𝑠)                     𝑖𝑓 𝑠 ∈ 𝒦2\𝒦1

ℋ1(𝑠) ∪ℋ2(𝑠)     𝑖𝑓 𝑠 ∈ 𝒦2 ∩𝒦1

 

This relation is represented as (ℋ1, 𝒦1) ∪̃ (ℋ2, 𝒦2) = (𝐸, 𝐶). 

1.8.5. Definition [55] 

Let (ℋ1, 𝒦1) and (ℋ2, 𝒦2) be two 𝑆𝑓𝑡Ss over a same universe 𝑇. Then their extended 

intersection is a 𝑆𝑓𝑡S (𝐸, 𝐶), where 𝐶 = 𝒦1 ∪𝒦2 and for all 𝑠 ∈ 𝐶, 

𝐸(𝑠) = {

ℋ1(𝑠)                     𝑖𝑓 𝑠 ∈ 𝒦1\𝒦2

ℋ2(𝑠)                     𝑖𝑓 𝑠 ∈ 𝒦2\𝒦1

ℋ1(𝑠) ∩ℋ2(𝑠)     𝑖𝑓 𝑠 ∈ 𝒦2 ∩𝒦1

 

This relation is represented as (ℋ1, 𝒦1) ∩̃ (ℋ2, 𝒦2) = (𝐸, 𝐶). 

1.8.6. Definition [54] 

 Consider a 𝑆𝑓𝑡S (ℋ,𝔼) and 𝒦 ⊆ 𝔼. A pair (ℋ̃,𝒦) is said to be a fuzzy 𝑆𝑓𝑡S (F𝑆𝑓𝑡S) 

over 𝑇, where ℋ̃ is a function given by ℋ̃:𝒦 → ℋ(𝑇); ℋ(𝑇) represents the collection 

of all fuzzy subsets of 𝑇, and is given as 

ℋ̃𝑠𝑗
= {≺ 𝓀𝑖 , 𝜇𝑗(𝓀𝑖) ≻ |𝓀𝑖 ∈ 𝑇} 

If 𝑠𝑗 is any parameter and ℋ̃𝑠𝑗
 represents a crisp subset of a universal set 𝑋, then F𝑆𝑓𝑡S 

reduces to 𝑆𝑓𝑡S. 

1.9. Intuitionistic fuzzy soft set 

In this subsection we will present the concept of IF𝑆𝑓𝑡S and their basic operational laws. 

1.9.1. Definition [56] 

Let (ℋ, 𝔼) be a 𝑆𝑓𝑡S over 𝑇. A pair (𝒥,𝒦) over 𝑇 is said to be an IF𝑆𝑓𝑡S such that 𝒥 is 

function given by 𝒥:𝒦 → 𝐼𝐹𝑆𝑇. Then IF𝑆𝑓𝑡S denoted and defined as: 

𝒥𝑠𝑗(𝓀𝑖) = {(𝓀𝑖, 𝜇𝑗(𝓀𝑖), 𝜓𝑗(𝓀𝑖)) |𝓀𝑖 ∈ 𝑇 and 𝑠𝑗 ∈ 𝔼}, 
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where 𝜇𝑗(𝓀𝑖), 𝜓𝑗(𝓀𝑖) represents the ℳ𝒢 and 𝒩ℳ𝒢 an object 𝓀𝑖 ∈ 𝑇 to the set 𝒥𝑠𝑗with 

0 ≤ 𝜇𝑗(𝓀𝑖) + 𝜓𝑗(𝓀𝑖) ≤ 1. For the sake of simplicity 𝒥𝑠𝑗(𝓀𝑖) = (𝓀𝑖, 𝜇𝑗(𝓀𝑖), 𝜓𝑗(𝓀𝑖)) 

is denoted as 𝒥𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗), which represents IF𝑆𝑓𝑡 value (IF𝑆𝑓𝑡𝑉). Further, 𝜋𝒥𝑠𝑖𝑗
=

1 − (𝜇𝑖𝑗 +𝜓𝑖𝑗) is known as hesitancy degree. 

1.9.2. Definition [58, 60] 

Let 𝒥𝑠𝑖1 = (𝜇1(𝓀𝑖), 𝜓1(𝓀𝑖)) 𝑎𝑛𝑑 𝒥𝑠𝑖2 = (𝜇2(𝓀𝑖), 𝜓2(𝓀𝑖)), (𝑖 = 1,2,… ,𝑚) be two 

IF𝑆𝑓𝑡𝑉𝑠. Then the fundamental operations are given as: 

(i) 𝒥𝑠𝑖1 ∪ 𝒥𝑠𝑖2 = (𝓀𝑖, max(𝜇1(𝓀𝑖), 𝜇2(𝓀𝑖)) , min(𝜓1(𝓀𝑖), 𝜓2(𝓀𝑖))) for 𝓀𝑖 ∈ 𝑇; 

(ii) 𝒥𝑠𝑖1 ∩ 𝒥𝑠𝑖2 = (𝓀𝑖, min(𝜇1(𝓀𝑖), 𝜇2(𝓀𝑖)) , max(𝜓1(𝓀𝑖), 𝜓2(𝓀𝑖))) for 𝓀𝑖 ∈ 𝑇; 

(iii)𝒥𝑠𝑖1
𝑐 = (𝓀𝑖, 𝜓1(𝓀𝑖), 𝜇1(𝓀𝑖)) for 𝓀𝑖 ∈ 𝑇, where 𝒥𝑠𝑖1

𝑐  is complement of 𝒥𝑠𝑖1. 

1.9.3. Definition [58, 60] 

Let 𝒥𝑠11 = (𝜇1(𝓀1), 𝜓1(𝓀1)) 𝑎𝑛𝑑 𝒥𝑠12  = (𝜇2(𝓀1), 𝜓2(𝓀1)) be two IF𝑆𝑓𝑡𝑉𝑠. Then 

the fundamental operations are given as: 

i. 𝒥𝑠11⨁ 𝒥𝑠12  = (√𝜇1
𝑞(𝓀1) + 𝜇2

𝑞(𝓀1) − 𝜇1
𝑞(𝓀1)𝜇2

𝑞(𝓀1)
𝑞

 , 𝜓1(𝓀1)𝜓2(𝓀1)) ;   

ii. 𝒥𝑠11⨂ 𝒥𝑠12  = (𝜇1(𝓀1)𝜇2(𝓀1), √𝜓1
𝑞(𝓀1) + 𝜓2

𝑞(𝓀1) − 𝜓1
𝑞(𝓀1)𝜓2

𝑞(𝓀1)
𝑞

 ); 

iii. 𝜆 𝒥𝑠11 = (√1 − (1 − 𝜇1
𝑞(𝓀1))

𝜆𝑞

, 𝜓1
𝜆(𝓀1)) for 𝜆 > 0; 

iv. 𝒥𝑠11
𝜆 = (𝜇1

𝜆(𝓀1), √1 − (1 − 𝜓1
𝑞(𝓀1))

𝜆𝑞

) for 𝜆 > 0. 

1.9.4. Definition [58] 

Let 𝒥𝑠11 = (𝜇11, 𝜓11) be any IF𝑆𝑓𝑡V. Then the score function of 𝒥𝑠11can be given as: 

𝒮𝑐(𝒥𝑠11) = 𝜇11 −𝜓11;         𝒮𝑐(𝒥𝑠11) ∈ [−1,1]. 

Greater the score value, greater the IF𝑆𝑓𝑡V is.  
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1.10. Intuitionistic fuzzy soft weighted averaging and geometric 

aggregation operators  

Here we will discuss the detail of IF𝑆𝑓𝑡WA and IF𝑆𝑓𝑡WG aggregation operators. 

1.10.1. Definition [58] 

Let 𝒥𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗) (𝑖 = 1,2… , 𝑛, 𝑎𝑛𝑑 𝑗 = 1,2… ,𝑚) be IF𝑆𝑓𝑡𝑉𝑠. Consider 𝑤̿ =

(𝑤̿1, 𝑤̿2, … , 𝑤̿𝑛)
𝑇 and 𝑢̿ = (𝑢̿1, 𝑢̿2, … , 𝑢̿𝑚)

𝑇 be the weight vectors for experts 𝓀𝑖 and 

parameters 𝑠𝑗 such that ∑ 𝑤̿𝑛
𝑖=1 = 1 and ∑ 𝑢̿𝑚

𝑗=1 = 1 with 𝑤̿𝑖 , 𝑢̿𝑗 ∈ [0, 1] respectively. 

Then the mapping for IF𝑆𝑓𝑡𝑊𝐴 aggregation operator is defined as: IF𝑆𝑓𝑡𝑊𝐴:ℋ
𝑛 → ℋ 

(where ℋ𝑛 is the collection of IF𝑆𝑓𝑡Vs) 

IF𝑆𝑓𝑡𝑊𝐴(𝒥𝑠11 , 𝒥𝑠12, … 𝒥𝑠𝑛𝑚) = ⨁𝑗=1
𝑚 𝑢̿𝑗 (⨁𝑖=1

𝑛 𝑤̿𝑖𝒥𝑠𝑖𝑗) 

= (1 −∏(∏(1 − 𝜇𝑖𝑗)
𝑤̿

𝑛

𝑖=1

)

𝑢𝑚

𝑗=1

,∏(∏𝜓𝑖𝑗
𝑤̿

𝑛

𝑖=1

)

𝑢𝑚

𝑗=1

). 

1.10.2. Definition [58] 

Let 𝒥𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗) (𝑖 = 1,2… , 𝑛, 𝑎𝑛𝑑 𝑗 = 1,2… ,𝑚) be IF𝑆𝑡𝑉𝑠. Consider 𝑤̿ =

(𝑤̿1, 𝑤̿2, … , 𝑤̿𝑛)
𝑇 and 𝑢̿ = (𝑢̿1, 𝑢̿2, … , 𝑢̿𝑚)

𝑇 be the weight vectors for experts 𝓀𝑖 and 

parameters 𝑠𝑗 such that ∑ 𝑤̿𝑛
𝑖=1 = 1 and ∑ 𝑢̿𝑚

𝑗=1 = 1 with 𝑤̿𝑖 , 𝑢̿𝑗 ∈ [0, 1] respectively. 

Then the mapping for IF𝑆𝑓𝑡𝑊𝐺 aggregation operator is defined as: IF𝑆𝑓𝑡𝑊𝐺:ℋ
𝑛 → ℋ 

(where ℋ𝑛 is the collection of IF𝑆𝑓𝑡Vs) 

IF𝑆𝑓𝑡𝑊𝐺(𝒥𝑠11, 𝒥𝑠12, … 𝒥𝑠𝑛𝑚) = ⨂𝑗=1
𝑚 (⨂𝑖=1

𝑛 𝒥𝑠𝑖𝑗
𝑤̿𝑖)

𝑢𝑗
 

= (∏(∏𝜇𝑖𝑗
𝑤̿

𝑛

𝑖=1

)

𝑢𝑚

𝑗=1

, 1 −∏(∏(1 − 𝜓𝑖𝑗)
𝑤̿

𝑛

𝑖=1

)

𝑢𝑚

𝑗=1

). 

1.10.3. Theorem [58] 

Let 𝒥𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗) (𝑖 = 1,2… , 𝑛, 𝑎𝑛𝑑 𝑗 = 1,2… ,𝑚) be IF𝑆𝑡𝑉𝑠. Suppose 𝑤̿ =

(𝑤̿1, 𝑤̿2, … , 𝑤̿𝑛)
𝑇 and 𝑢̿ = (𝑢̿1, 𝑢̿2, … , 𝑢̿𝑚)

𝑇 be the weight vectors for experts 𝓀𝑖 and 

parameters 𝑠𝑗 such that ∑ 𝑤̿𝑛
𝑖=1 = 1 and ∑ 𝑢̿𝑚

𝑗=1 = 1 with 𝑤̿𝑖 , 𝑢̿𝑗 ∈ [0, 1] respectively. 

Then the IF𝑆𝑓𝑡𝑊𝐴 aggregation operator has the following properties. 

(i) (Idempotency): If 𝒥𝑠𝑖𝑗 = 𝔗𝑠, where 𝔗𝑠 = (𝜇𝑠 , 𝜓𝑠), then 
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IF𝑆𝑓𝑡𝑊𝐴(𝒥𝑠11 , 𝒥𝑠12, … , 𝒥𝑠𝑛𝑚) = 𝔗𝑠. 

(ii) (Boundedness): If 𝒥𝑠𝑖𝑗
− = (min

𝑗
min
𝑖
{𝜇𝑖𝑗} ,max

𝑗
max
𝑖
{𝜓𝑖𝑗}) and 

𝒥𝑠𝑖𝑗
+ = (max

𝑗
max
𝑖
{𝜇𝑖𝑗} , min

𝑗
min
𝑖
{𝜓𝑖𝑗}), then 

𝒥𝑠𝑖𝑗
− ≤ IF𝑆𝑓𝑡𝑊𝐴(𝒥𝑠11 , 𝒥𝑠12, … , 𝒥𝑠𝑛𝑚) ≤ 𝒥𝑠𝑖𝑗

+ . 

(iii) (Shift-invariance): If 𝔗𝑠 = (𝜇𝑠, 𝜓𝑠) is another IF𝑆𝑡V, then 

IF𝑆𝑓𝑡𝑊𝐴(𝒥𝑠11⨁ 𝔗𝑠, 𝒥𝑠12⨁ 𝔗𝑠,… , 𝒥𝑠𝑛𝑚⨁ 𝔗𝑠)

= IF𝑆𝑓𝑡𝑊𝐴(𝒥𝑠11, 𝒥𝑠12 , … , 𝒥𝑠𝑛𝑚) ⨁ 𝔗𝑠. 

(iv)  (Homogeneity): For 𝜆 > 0, then we have  

IF𝑆𝑓𝑡𝑊𝐴(𝜆𝒥𝑠11 , 𝜆𝒥𝑠12 , … , 𝜆𝒥𝑠𝑛𝑚) = 𝜆 IF𝑆𝑓𝑡𝑊𝐴(𝒥𝑠11 , 𝒥𝑠12 , … , 𝒥𝑠𝑛𝑚). 

1.10.4. Theorem [58] 

Let 𝒥𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗) (𝑖 = 1,2… , 𝑛, 𝑎𝑛𝑑 𝑗 = 1,2… ,𝑚) be IF𝑆𝑓𝑡Vs. Consider 𝑤̿ =

(𝑤̿1, 𝑤̿2, … , 𝑤̿𝑛)
𝑇 and 𝑢̿ = (𝑢̿1, 𝑢̿2, … , 𝑢̿𝑚)

𝑇 be the weight vectors for experts 𝓀𝑖 and 

parameters 𝑠𝑗 such that ∑ 𝑤̿𝑛
𝑖=1 = 1 and ∑ 𝑢̿𝑚

𝑗=1 = 1 with 𝑤̿𝑖 , 𝑢̿𝑗 ∈ [0, 1] respectively. 

Then the IF𝑆𝑓𝑡WG aggregation operator has the properties. 

(i) (Idempotency): If 𝒥𝑠𝑖𝑗 = 𝔗𝑠, where 𝔗𝑠 = (𝜇𝑠 , 𝜓𝑠), then 

IF𝑆𝑓𝑡𝑊𝐺(𝒥𝑠11 , 𝒥𝑠12 , … , 𝒥𝑠𝑛𝑚) = 𝔗𝑠. 

(ii) (Boundedness): If 𝒥𝑠𝑖𝑗
− = (min

𝑗
min
𝑖
{𝜇𝑖𝑗} ,max

𝑗
max
𝑖
{𝜓𝑖𝑗}) and 

𝒥𝑠𝑖𝑗
+ = (max

𝑗
max
𝑖
{𝜇𝑖𝑗} , min

𝑗
min
𝑖
{𝜓𝑖𝑗}), then 

𝒥𝑠𝑖𝑗
− ≤ IF𝑆𝑓𝑡𝑊𝐺(𝒥𝑠11 , 𝒥𝑠12, … , 𝒥𝑠𝑛𝑚) ≤ 𝒥𝑠𝑖𝑗

+ . 

(iii) (Shift-invariance): If 𝔗𝑠 = (𝜇𝑠, 𝜓𝑠) is another IF𝑆𝑓𝑡V, then 

IF𝑆𝑓𝑡𝑊𝐺(𝒥𝑠11⨁ 𝔗𝑠, 𝒥𝑠12⨁ 𝔗𝑠, … , 𝒥𝑠𝑛𝑚⨁ 𝔗𝑠)

= IF𝑆𝑓𝑡𝑊𝐺(𝒥𝑠11 , 𝒥𝑠12 , … , 𝒥𝑠𝑛𝑚) ⨁ 𝔗𝑠. 

(iv)  (Homogeneity): For 𝜆 > 0, then we have  

IF𝑆𝑓𝑡𝑊𝐺(𝜆𝒥𝑠11, 𝜆𝒥𝑠12, … , 𝜆𝒥𝑠𝑛𝑚) = 𝜆 IF𝑆𝑓𝑡𝑊𝐺(𝒥𝑠11, 𝒥𝑠12 , … , 𝒥𝑠𝑛𝑚). 
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1.11. Soft rough set 
In this section, the combine study of 𝑆𝑓𝑡S and RS are presented to get the new notion 

of 𝑆𝑓𝑡RS by based on crisp 𝑆𝑓𝑡S relation form universe 𝑇 to set of parameter 𝔼. 

1.11.1. Definition [83] 

Suppose a 𝑆𝑓𝑡S (ℋ, 𝔼) over a universal set 𝑇. The relation ℛ from 𝑇 with 𝔼 is said to 

be a crisp soft relation, whish is denoted and defined as: 

ℛ = {< (𝓀, 𝑠), 𝜇ℛ(𝓀, 𝑠) > |(𝓀, 𝑠) ∈ 𝑇 × 𝔼}, 

where 𝜇ℛ: 𝑇 × 𝔼 → {0, 1} with 𝜇ℛ(𝓀, 𝑠) = {
1   (𝓀, 𝑠) ∈ ℛ
0   (𝓀, 𝑠) ∉ ℛ

 

1.11.2. Definition [84] 

Consider a universal set 𝑇 and 𝔼 be the fixed set of parameter. Suppose ℛ ⊆ 𝑇 × 𝔼 be 

the crisp soft relation over 𝑇 × 𝔼. Suppose ℛ∗ be the set valued mapping (SVM) i.e. 

ℛ∗ = 𝑇 → 𝒫∗(𝔼) defined by ℛ∗(𝓀) = {𝑠 ∈ 𝔼|(𝓀, 𝑠) ∈ ℛ 𝑎𝑛𝑑 𝓀 ∈ 𝑇}, where 𝒫∗(𝔼) 

is the collection of power set of 𝔼. 

The relation ℛ∗ is known to be serial if ∀ 𝓀 ∈ 𝑇, ℛ∗(𝓀) ≠ ∅. Then the pair (𝑇, 𝔼, ℛ) is 

known to be a crisp soft approximation (𝑆𝑓𝑡A) space. Suppose ∅ ≠ 𝒦 ⊆ 𝔼, then the 

lower and upper soft approximation of 𝒦 w.r.t 𝑆𝑓𝑡A space (𝑇, 𝔼,ℛ) is denoted and 

defined as: 

 ℛ(𝒦) = {𝓀 ∈ 𝑇|ℛ∗(𝓀) ⊆ 𝒦}                             (1) 

𝑎𝑛𝑑    ℛ̅(𝒦) = {𝓀 ∈ 𝑇|ℛ∗(𝓀) ∩ 𝒦 ≠ ∅}           (2) 

The pair (ℛ(𝒦), ℛ̅(𝒦)) is known to be a crisp soft rough set, where ℛ(𝒦) ≠ ℛ̅(𝒦). 

Hence ℛ(𝒦), ℛ̅(𝒦):𝒫∗(𝔼) → 𝒫∗(𝑇) is called lower and upper crisp soft rough 

approximation (𝑆𝑓𝑡RA) operators w.r.t (𝑇, 𝔼,ℛ). 

1.11.3. Example 

Consider a universal set 𝑇 = {𝓀1, 𝓀2, 𝓀3, 𝓀4, 𝓀5} and let 𝔼 = {𝑠1, 𝑠2, 𝑠3, 𝑠4} be the set 

of parameters. Then the 𝑆𝑓𝑡S (ℋ, 𝔼) over 𝑇 are defined as: 

ℋ(𝑠1) = {𝓀1, 𝓀2, 𝓀3},    ℋ(𝑠2) = ∅,       ℋ(𝑠3) = {𝓀2, 𝓀4},    ℋ(𝑠4) = 𝑇, 
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Now consider a crisp soft relation ℛ over 𝑇 × 𝔼 is given as: 

ℛ = {
(𝓀1, 𝑠1), (𝓀2, 𝑠1), (𝓀3, 𝑠1), (𝓀2, 𝑠3), (𝓀4, 𝑠3), (𝓀1, 𝑠4), (𝓀2, 𝑠4), (𝓀3, 𝑠4),

(𝓀4, 𝑠4), (𝓀5, 𝑠4)
} 

Now from the definition of SVM ℛ∗, are given as 

ℛ∗(𝓀1) = {𝑠1, 𝑠4},     ℛ
∗(𝓀2) = {𝑠1, 𝑠2, 𝑠4},     ℛ

∗(𝓀3) = {𝑠1, 𝑠4},     ℛ
∗(𝓀4)

= {𝑠3, 𝑠4},     ℛ
∗(𝓀5) = {𝑠4} 

If 𝒦 = {𝑠2, 𝑠3, 𝑠4} ⊆ 𝔼 be the set of parameter then by Eqs. (1) 𝑎𝑛𝑑 (2), ℛ(𝒦), ℛ̅(𝒦) 

are given as: 

ℛ(𝒦) = {𝓀4, 𝓀5},        ℛ̅(𝒦) = {𝓀1, 𝓀2, 𝓀3, 𝓀4, 𝓀5} = 𝑇. 

1.11.4. Theorem [84] 

Suppose (𝑇, 𝔼, ℛ) be a crisp 𝑆𝑓𝑡RA space. Consider 𝒦1,𝒦2 ∈ 𝒫
∗(𝔼), then lower and 

upper approximation satisfied the following properties: 

i. ℛ(𝒦1) = ~(ℛ(~𝒦1)), where ~𝒦1 is complement of 𝒦1; 

ii. ℛ(𝒦1) = ~(ℛ(~𝒦1)); 

iii. ℛ(𝒦1 ∪𝒦2) = ℛ(𝒦1) ∪ ℛ(𝒦2); 

iv. ℛ(𝒦1 ∩𝒦2) = ℛ(𝒦1)  ∩ ℛ(𝒦2); 

v. 𝒦1 ⊆ 𝒦2 ⇒ ℛ(𝒦1) ⊆ ℛ(𝒦2); 

vi. 𝒦1 ⊆ 𝒦2 ⇒ ℛ(𝒦1) ⊆ ℛ(𝒦2); 

vii. ℛ(𝒦1 ∪𝒦2) ⊇ ℛ(𝒦1) ∪ ℛ(𝒦2); 

viii. ℛ(𝒦1 ∩𝒦2) ⊆ ℛ(𝒦1) ∩ ℛ(𝒦2). 

1.12. Intuitionistic fuzzy soft rough set 
Zhang [84] et al. originated the hybrid notion of 𝑆𝑓𝑡S and RS with IFS to initiate the 

new concept of IF𝑆𝑓𝑡RS. They have presented some desirable properties of the IF𝑆𝑓𝑡RS. 

1.12.1. Definition [83] 

Consider a 𝑆𝑓𝑡S (ℋ,𝒦) over a universal set 𝑇. Then a relation ℛ is known to be a fuzzy 

soft relation (F𝑆𝑓𝑡R) from 𝑇 × 𝔼 and denoted as: 

ℛ = {< (𝓀, 𝑠), 𝜇ℛ(𝓀, 𝑠) > |(𝓀, 𝑠) ∈ 𝑇 × 𝔼}, 
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where 𝜇ℛ: 𝑇 × 𝔼 → [0, 1]. If 𝑇 = {𝓀1, 𝓀2, … , 𝓀𝑚} and 𝔼 = {𝑠1, 𝑠2, … , 𝑠𝑛}, then the 

F𝑆𝑓𝑡R ℛ from 𝑇 𝑡𝑜 𝔼 is given in the following Table 1.1 

Table 1.1,  Tabular representation of F𝑆𝑓𝑡R 

  𝑠1 𝑠2 ⋯ 𝑠𝑛  

𝓀1 𝜇ℛ(𝓀1, 𝑠1) 𝜇ℛ(𝓀1, 𝑠2) ⋯ 𝜇ℛ(𝓀1, 𝑠𝑛) 

𝓀2 𝜇ℛ(𝓀2, 𝑠1) 𝜇ℛ(𝓀2, 𝑠2) ⋯ 𝜇ℛ(𝓀2, 𝑠𝑛) 

 ⋮ ⋮ ⋱ ⋮ 

𝓀𝑚 𝜇ℛ(𝓀𝑚 , 𝑠1) 𝜇ℛ(𝓀𝑚 , 𝑠2) ⋯ 𝜇ℛ(𝓀𝑚 , 𝑠𝑛) 

 

 

1.12.2. Definition [84] 

Consider an 𝑆𝑓𝑡A space (𝑇, 𝔼,ℛ). Now for any 𝒥 = {< 𝓀, 𝜇𝒥(𝓀),𝜓𝒥(𝓀) > |𝓀 ∈ 𝑇}, 

where 𝒥 ∈ 𝐼𝐹𝑆𝑇. Then the lower and upper approximation 𝒥 w.r.t (𝑇, 𝔼,ℛ) are denoted 

by ℛ(𝒥) 𝑎𝑛𝑑 ℛ(𝒥) and are defined as: 

ℛ(𝒥) = {< 𝓀, 𝜇ℛ(𝒥)(𝓀),𝜓ℛ(𝒥)(𝓀) > |𝓀 ∈ 𝑇} 

ℛ(𝒥) = {< 𝓀, 𝜇ℛ(𝒥)(𝓀),𝜓ℛ(𝒥)(𝓀) > |𝓀 ∈ 𝑇}, 

where 

𝜇ℛ(𝒥)(𝓀) =⋀ {(1 − 𝜇ℛ(𝓀, 𝑠))⋁𝜇𝒥(𝓀)}
𝓀∈𝔼

 

𝜓ℛ(𝒥)(𝓀) =⋁ {𝜇ℛ(𝓀, 𝑠) ∧ 𝜓𝒥(𝓀)}
𝓀∈𝔼

 

𝜇ℛ(𝒥)(𝓀) =⋁ {𝜇ℛ(𝓀, 𝑠) ∧ 𝜇𝒥(𝓀)}
𝓀∈𝔼

 

𝜓ℛ(𝒥)(𝓀) =⋀ {(1 − 𝜇ℛ(𝓀, 𝑠))⋁𝜓𝒥(𝓀)}
𝓀∈𝑇

 

The pair (ℛ(𝒥), ℛ̅(𝒥)) is called an IF𝑆𝑓𝑡RS, where ℛ(𝒥) ≠ ℛ̅(𝒥). Hence 

ℛ(𝒥), ℛ̅(𝒥): 𝐼𝐹𝑆𝔼 → 𝐼𝐹𝑆𝑇 is called lower and upper IF𝑆𝑡R approximation operators 

w.r.t (𝑇, 𝔼,ℛ). 
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The upper and lower approximation that is ℛ(𝒥) 𝑎𝑛𝑑 ℛ̅(𝒥) is again IFN. 

Therefore, ℛ(𝒥), ℛ̅(𝒥): 𝐼𝐹𝑆(𝔼) → 𝐼𝐹𝑆(𝑇) is called lower and upper IF𝑆𝑡R 

approximation operators w.r.t (𝑇, 𝔼, ℛ). 

1.12.3. Example 

 Consider a universal set 𝑇 = {𝓀1, 𝓀2, 𝓀3, 𝓀4, 𝓀5} and let 𝔼 = {𝑠1, 𝑠2, 𝑠3, 𝑠4} be the set 

of parameters.  Suppose ℛ  be the F𝑆𝑓𝑡R over 𝑇 × 𝔼 as given in Table 1.2. 

Now to define 𝒥 ∈ 𝐼𝐹𝑆𝔼 that is,  

𝒥 = {(𝑠1, 0.7, 0.2), (𝑠2, 0.6, 0.3), (𝑠3, 0.4, 0.5), (𝑠4, 0.8, 0.1)}. 

Now to calculate ℛ(𝒥), ℛ̅(𝒥) are given as: 

ℛ(𝒥) = {(𝓀1, 0.4,0.5), (𝓀2, 0.4,0.5), (𝓀3, 0.6,0.3), (𝓀4, 0.4,0.5), (𝓀5, 0.4,0.5)}, 

ℛ̅(𝒥) = {(𝓀1, 0.7,0.2), (𝓀2, 0.6,0.3), (𝓀3, 0.6,0.4), (𝓀4, 0.8,0.2), (𝓀5, 0.6,0.3)}. 

Table 1.2, Tabular representation of F𝑆𝑓𝑡R 

 𝑠1 𝑠2 𝑠3 𝑠4 

𝓀1 0.9 0.4 0.7 0.3 

𝓀2 0.6 0.8 0.9 0.5 

𝓀3 0.3 0.6 0.2 0.1 

𝓀4 0.7 0.3 0.6 0.8 

𝓀5 0.5 0.9 0.8 0.4 

 

 

1.12.4. Theorem [84] 

Suppose (𝑇, 𝔼, ℛ) be the fuzzy 𝑆𝑓𝑡RA space. Consider 𝒥1, 𝒥2 ∈ 𝐼𝐹𝑆
𝔼, then lower and 

upper approximation operators ℛ(𝒥1) and ℛ̅(𝒥2) satisfied the following properties: 

i. ℛ(𝒥1) = ~(ℛ(~𝒥1)), where ~𝒥1 is complement of 𝒥1, 

ii. ℛ(𝒥1) = ~(ℛ(~𝒥1)), 

iii. ℛ(𝒥1 ∪ 𝒥2) = ℛ(𝒥1) ∪ ℛ(𝒥2), 

iv. ℛ(𝒥1 ∩ 𝒥2) = ℛ(𝒥1)  ∩ ℛ(𝒥2), 
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v. 𝒥1 ⊆ 𝒥2 ⇒ ℛ(𝒥1) ⊆ ℛ(𝒥2), 

vi. 𝒥1 ⊆ 𝒥2 ⇒ ℛ(𝒥1) ⊆ ℛ(𝒥2), 

vii. ℛ(𝒥1 ∪ 𝒥2) ⊇ ℛ(𝒥1) ∪ ℛ(𝒥2), 

viii. ℛ(𝒥1 ∩ 𝒥2) ⊆ ℛ(𝒥1) ∩ ℛ(𝒥2). 

1.13. TOPSIS method with Pythagorean fuzzy information 
 

Let 𝑇 = {𝓀1, 𝓀2, . . . , 𝓀𝑛} be any set of 𝑛 feasible alternatives, 𝒫 = {𝒫1, 𝒫2, . . . , 𝒫𝑚} be 

the set of 𝑚 attributes and consider the weight vector 𝑤̿ = (𝑤̿1, 𝑤̿2, . . . , 𝑤̿𝑚)
𝑇 for all 

attributes such that 0 ≤ 𝑤̿𝑖 ≤ 1 and ∑ 𝑤̿𝑖
𝑚
𝑖=1 = 1. Decision makers 𝒟𝑚𝑒𝑚 and 

𝒟𝑛𝑜𝑛−𝑚𝑒𝑚 express their preference evaluation for alternatives 𝓀𝑖(𝑖 = 1, . . . 𝑛) 

corresponding to the set of attribute 𝒫𝑗(𝑗 = 1, . . . , 𝑚) by 𝜇𝑖𝑗  𝑎𝑛𝑑 𝜓𝑖𝑗  respectively. So 

combining these two values as a PyFVs, we have PyF decision matrix 𝒫𝑗(𝓀𝑖) =

(𝜇𝑖𝑗 , 𝜓𝑖𝑗). This means that the decision maker 𝒟𝑚𝑒𝑚 provides ℳ𝒢 𝜇𝑖𝑗  to an object 𝓀𝑖 

against to the attribute 𝒫𝑗. Whereas the expert 𝒟𝑛𝑜𝑛−𝑚𝑒𝑚 provides 𝒩ℳ𝒢 𝜓𝑖𝑗  to an 

object 𝓀𝑖 against to the attribute 𝒫𝑗 and their decision matrix is given as: 

𝒫𝑗(𝓀𝑗) =

(

 

(𝜇11,𝜓11) (𝜇12, 𝜓12) ⋯ (𝜇1𝑗 ,𝜓1𝑗)

(𝜇21,𝜓21) (𝜇22,𝜓22) ⋯ (𝜇2𝑗 ,𝜓2𝑗)

⋮ ⋮ ⋱ ⋮
(𝜇𝑖1, 𝜓𝑖1) (𝜇𝑖2, 𝜓𝑖2) ⋯ (𝜇𝑖𝑗 , 𝜓𝑖𝑗))

  

By using the PyF TOPSIS approach, we will present PyF positive ideal solution and 

PyF negative ideal solution through the score function by Definition 1.3.4, which is 

given as: 

𝑃+ = {𝒫𝑗 , 𝑚𝑎𝑥{𝑠(𝒫𝑗(𝓀𝑖))}/𝑗 = 1, . . . , 𝑚} 

= {< 𝒫1, 𝜇1
+, 𝜓1

+ >,< 𝒫2, 𝜇2
+, 𝜓2

+ >,… < 𝒫2, 𝜇𝑚
+ , 𝜓𝑚

+ >} 

𝑃− = {𝒫𝑗, 𝑚𝑖𝑛{𝑠(𝒫𝑗(𝓀𝑖))}/𝑗 = 1, . . . ,𝑚} 

= {< 𝒫1, 𝜇1
−, 𝜓1

− >,< 𝒫2, 𝜇2
−, 𝜓2

− >,… < 𝒫2, 𝜇𝑚
− , 𝜓𝑚

− >} 

Further to calculate the weighted distances 𝒟+ and 𝒟− for an object 𝓀𝑖 and PyF-PIS 

𝑃+ and PyF-NIS 𝑃− are defined as the following: 

𝒟+(𝓀𝑖, 𝑃
+) =∑𝑤̿𝑗

𝑚

𝑗=1

 𝑑 (𝒫𝑗(𝓀𝑖), 𝒫𝑗(𝑃
+)) 



 

 

26 
 

= {
1

2
∑𝑤̿𝑗 (|𝜇𝑖𝑗

2 − (𝜇𝑗
+)

2
| + |𝜓𝑖𝑗

2 − (𝜓𝑗
+)

2
| + |𝜋𝑖𝑗

2 − (𝜋𝑗
+)

2
|)

𝑚

𝑗=1

}  𝑓𝑜𝑟 (𝑖 = 1, . . . , 𝑛) 

Usually inferior the value of 𝒟+, better the alternative 𝓀𝑖 and let, 

𝒟+
𝑚𝑖𝑛(𝓀𝑖, 𝑃

+) = min
1≤𝑖≤𝑛

𝒟+(𝓀𝑖, 𝑃
+) 

and 

𝒟−(𝓀𝑖, 𝑃
−) = ∑𝑤̿𝑗

𝑚

𝑗=1

𝑑 (𝒫𝑗(𝓀𝑖),𝒫𝑗(𝑃
−)) 

= {
1

2
∑𝑤̿𝑗 (|𝜇𝑖𝑗

2 − (𝜇𝑗
+)

2
| + |𝜓𝑖𝑗

2 − (𝜓𝑗
+)

2
| + |𝜋𝑖𝑗

2 − (𝜋𝑗
+)

2
|)

𝑚

𝑗=1

}  𝑓𝑜𝑟 (𝑖 = 1, . . . , 𝑛)  

Greater the value of 𝒟−, better the alternative 𝓀𝑖 and let, 

𝒟−
𝑚ax(𝓀𝑖, 𝑃

−) = max
1≤𝑖≤𝑛

𝒟−(𝓀𝑖, 𝑃
−) 

In TOPSIS method to get the ranking of alternative 𝓀𝑖, we use  the revised closeness 

formula which is defined as: 

𝜉(𝓀𝑖) =
𝒟−(𝓀𝑖, 𝑃

−)

𝒟−
𝑚ax(𝓀𝑖, 𝑃−)

−
𝒟+(𝓀𝑖, 𝑃

+)

𝒟+
𝑚𝑖𝑛(𝓀𝑖, 𝑃+)

 

Larger the value of 𝜉(𝓀𝑖), better that alternative is.  
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Chapter 2 

Pythagorean fuzzy soft rough sets 

In this chapter we are going to present the hybrid study of 𝑆𝑓𝑡Ss, RSs and PyFSs to get 

the new concepts of soft rough Pythagorean fuzzy sets (𝑆𝑓𝑡RPyFS) and Pythagorean 

fuzzy soft rough sets (PyF𝑆𝑓𝑡RS). The aim of this chapter is to originate the two new 

notions that are 𝑆𝑓𝑡RPyFS and PyF𝑆𝑓𝑡RS, and to investigate some important properties 

of 𝑆𝑓𝑡RPyFS and PyF𝑆𝑓𝑡RS in detail. Furthermore, classical representations of PyF𝑆𝑓𝑡R 

approximation operators are presented. Then the proposed operators are applied to 𝒟ℳ 

problem in which the experts provide their preferences in PyF𝑆𝑓𝑡R environment. 

Finally through an illustrative example, it is shown that how the proposed operators 

work in 𝒟ℳ problems. 

2.1.1. Definition 

Suppose 𝑇∗ = {(𝓀1, 𝓀2): (𝓀1, 𝓀2) ∈ [0,1] × [0,1] 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝓀1
2 +𝓀2

2 ≤ 1} with the 

ordered relation ≼ represented as: 

(𝓀1, 𝓀2) ≼ (𝑔1, 𝑔2) ⇔ 𝓀1 ≤ 𝑔1  𝑎𝑛𝑑  𝑔2 ≤ 𝓀2   ∀ (𝓀1, 𝓀2), (𝑔1, 𝑔2) ∈ 𝑇
∗        (2.1) 

For an arbitrary (𝓀1, 𝓀2), (𝑔1, 𝑔2) are known to be incomparable if the Eq. (2.1) is not 

satisfied. 

2.1.2. Lemma 

The ordered set 𝑇∗ is a complete lattice w.r.t ordere d relation ≼. 

Next ∀ (𝓀1, 𝓀2), (𝑔1, 𝑔2) ∈ 𝑇
∗, the operation ∧ 𝑎𝑛𝑑 ∨ on (𝑇∗, ≼𝑇∗) are given as: 

(𝓀1, 𝓀2) ∧ (𝑔1, 𝑔2) = {min(𝓀1, 𝑔1),max(𝓀2, 𝑔2)} 

(𝓀1, 𝓀2) ∨ (𝑔1, 𝑔2) = {max(𝓀1, 𝑔1), min(𝓀2, 𝑔2)}. 

2.2. Soft rough Pythagorean fuzzy set 
In this section, we will present the concept of 𝑆𝑓𝑡RPyFS by combining the crisp soft 

relation from 𝑇 to 𝔼 with the rough PyFS. Furthermore, the concept of 𝑆𝑓𝑡RPyF 
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approximation operators are investigated, and some basic properties of proposed 

operators are also discussed.  

2.2.1. Definition 

Consider a crisp 𝑆𝑓𝑡A space (𝑇, 𝔼, ℛ).  Now for any 𝔍 = {< 𝑠, 𝜇𝔍(𝑠), 𝜓𝔍(𝑠) > |𝑠 ∈ 𝔼}, 

where 𝔍 ∈ 𝑃𝑦𝐹𝑆𝔼. Then the lower and upper soft approximations of 𝔍 w.r.t 𝑆𝑓𝑡A 

space (𝑇, 𝔼, ℛ) are represented by ℛ(𝔍) and ℛ̅(𝔍) and are defined as: 

ℛ(𝔍) = {< 𝓀, 𝜇ℛ(𝔍)(𝓀),𝜓ℛ(𝔍)(𝓀) > |𝓀 ∈ 𝑇} 

ℛ(𝔍) = {< 𝓀, 𝜇ℛ(𝔍)(𝓀),𝜓ℛ(𝔍)(𝓀) > |𝓀 ∈ 𝑇}, 

where 

𝜇ℛ(𝔍)(𝓀) =⋀ 𝜇𝔍(𝑠)
𝑠∈ℛ∗(𝓀)

 𝑎𝑛𝑑  𝜓ℛ(𝔍)(𝓀) =⋁ 𝜓𝔍(𝑠)
𝑠∈ℛ∗(𝓀)

 

with 0 ≤ (𝜇ℛ(𝔍)(𝓀))
2

+ (𝜓ℛ(𝔍)(𝓀))
2

≤ 1  and 

 𝜇ℛ(𝔍)(𝓀) =⋁ 𝜇𝔍(𝑠)
𝑠∈ℛ∗(𝓀)

 𝑎𝑛𝑑  𝜓ℛ(𝔍)(𝓀) =⋀ 𝜓𝔍(𝑠)
𝑠∈ℛ∗(𝓀)

 

 with 0 ≤ (𝜇ℛ(𝔍)(𝓀))
2

+ (𝜓ℛ(𝔍)(𝓀))
2

≤ 1 

The pair (ℛ(𝔍), ℛ̅(𝔍)) is called a 𝑆𝑓𝑡RPyFS of 𝔍 w.r.t  (𝑇, 𝔼, ℛ), where ℛ(𝔍) ≠

ℛ̅(𝔍). Hence ℛ(𝔍), ℛ̅(𝔍): 𝑃𝐹𝑆𝔼 → 𝑃𝑦𝐹𝑆𝑇 are called lower and upper 𝑆𝑓𝑡RPyF 

approximation operators w.r.t (𝑇, 𝔼, ℛ). 

2.2.2. Remark 

Consider a crisp 𝑆𝑓𝑡A space (𝑇, 𝔼,ℛ) and let for any ℱ = {< 𝑠, 𝜇ℱ(𝑠) > |𝑠 ∈ 𝔼}, 

where ℱ ∈ 𝐹𝑆𝔼. Then the defined lower and upper 𝑆𝑓𝑡RPyF operators ℛ(ℱ) and ℛ̅(ℱ) 

reduce to soft rough fuzzy operators, that is 

ℛ(ℱ) = {< 𝓀, 𝜇ℛ(ℱ)(𝓀) > |𝓀 ∈ 𝑇}     𝑎𝑛𝑑      ℛ(ℱ) = {< 𝓀, 𝜇ℛ(ℱ)(𝓀),> |𝓀 ∈ 𝑇}, 

where  

𝜇ℛ(ℱ)(𝓀) =⋀ 𝜇ℱ(𝓀1)
𝓀1∈ℛ

∗(𝓀)
   𝑎𝑛𝑑    𝜇ℛ(ℱ)(𝓀) =⋁ 𝜇ℱ(𝓀1)

𝓀1∈ℛ
∗(𝓀)
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 with 0 ≤ 𝜇ℛ(ℱ)(𝓀) ≤ 1 and 0 ≤ 𝜇ℛ(ℱ)(𝓀) ≤ 1. 

The pair (ℛ(ℱ), ℛ̅(ℱ)) is called a soft rough FS of ℱ w.r.t 𝑆𝑓𝑡A space (𝑇, 𝔼, ℛ), 

where ℛ(ℱ) ≠ ℛ̅(ℱ). 

2.2.3. Remark 

Consider a crisp 𝑆𝑓𝑡A space (𝑇, 𝔼,ℛ) and let 𝔍 ∈ 𝑃(𝔼), where 𝑃(𝔼) is a power set of 𝔼. 

Then the defined lower and upper 𝑆𝑓𝑡RPyF operators ℛ(𝔍) and ℛ̅(𝔍) reduce to crisp 

𝑆𝑓𝑡RA operators. Hence, it is observed that 𝑆𝑓𝑡RPyFS is the generalization of 𝑆𝑓𝑡RS. 

2.2.4. Example 

Consider a universal set 𝑇 = {𝓀1, 𝓀2, 𝓀3, 𝓀4, 𝓀5} let 𝔼 = {𝑠1, 𝑠2, 𝑠3, 𝑠4} be the set of 

parameters. Then a 𝑆𝑓𝑡S (ℋ, 𝔼) over 𝑇 is given as: 

ℋ(𝑠1) = {𝓀1, 𝓀2, 𝓀3},   ℋ(𝑠2) = ∅,   ℋ(𝑠3) = {𝓀2, 𝓀4},     ℋ(𝑠4) = 𝑇. 

Let ℛ be the crisp soft relation from 𝑇 to 𝔼, given by 

ℛ = {
(𝓀1, 𝑠1), (𝓀2, 𝑠1), (𝓀3, 𝑠1), (𝓀2, 𝑠3), (𝓀4, 𝑠3), (𝓀1, 𝑠4), (𝓀2, 𝑠4), (𝓀3, 𝑠4),

(𝓀4, 𝑠4), (𝓀5, 𝑠4)
}. 

Now from the above relation the SVM ℛ∗ is given as: 

ℛ∗(𝓀1) = {𝑠1, 𝑠4},      ℛ
∗(𝓀2) = {𝑠1, 𝑠3, 𝑠4},      ℛ

∗(𝓀3) = {𝑠1, 𝑠4},      ℛ
∗(𝓀4)

= {𝑠3, 𝑠4},      ℛ
∗(𝓀5) = {𝑠4}. 

Next to define an arbitrary PyFS 𝔍 that is 𝔍 ∈ 𝑃𝑦𝐹𝑆𝔼 as given below: 

𝔍 = {< 𝑠1, 0.9,0.3 >,< 𝑠2, 0.8,0.5 >,< 𝑠3, 0.4,0.7 >, < 𝑠4, 0.7,0.5 >} 

Now to determine the 𝑆𝑓𝑡RPyF lower and upper approximation operators ℛ(𝔍) and 

ℛ̅(𝔍) that are 

ℛ(𝔍) = {< 𝓀1, 0.7,0.5 >, < 𝓀2, 0.4,0.7 >,< 𝓀3, 0.7,0.5 >, < 𝓀4, 0.4,0.7 >,

< 𝓀5, 0.7,0.5 >} 

ℛ̅(𝔍) = {< 𝓀1, 0.9,0.3 >, < 𝓀2, 0.9,0.3 >,< 𝓀3, 0.9,0.3 >, < 𝓀4, 0.7,0.5 >,

< 𝓀5, 0.7,0.5 >}. 

 



 

 

30 
 

2.2.5. Theorem 

Suppose a crisp 𝑆𝑓𝑡𝐴 space (𝑇, 𝔼, ℛ). Then for any 𝔍, 𝔍1, 𝔍2 ∈ 𝑃𝐹𝑆
𝔼, the 𝑆𝑓𝑡RPyF 

approximation operators ℛ(𝔍) and ℛ̅(𝔍) hold the following characteristics: 

i. ℛ(𝔍) = ~(ℛ(~𝔍)), where ~𝔍 is complement of 𝔍, 

ii. ℛ(𝔍1 ∩ 𝔍2) = ℛ(𝔍1)  ∩ ℛ(𝔍2), 

iii. 𝔍1 ⊆ 𝔍2 ⇒ ℛ(𝔍1) ⊆ ℛ(𝔍2), 

iv. ℛ(𝔍1 ∪ 𝔍2) ⊇ ℛ(𝔍1) ∪ ℛ(𝔍2), 

v. ℛ(𝔍) = ~(ℛ(~𝔍)), 

vi. ℛ(𝔍1 ∪ 𝔍2) = ℛ(𝔍1) ∪ ℛ(𝔍2), 

vii. 𝔍1 ⊆ 𝔍2 ⇒ ℛ(𝔍1) ⊆ ℛ(𝔍2), 

viii.  ℛ(𝔍1 ∩ 𝔍2) ⊆ ℛ(𝔍1) ∩ ℛ(𝔍2). 

Proofs: i. Now by using the definition of 𝑆𝑓𝑡RPyFS, we have 

~(ℛ(~𝔍)) = {< 𝓀,𝜓ℛ(~𝔍)(𝓀), 𝜇ℛ(~𝔍)(𝓀) > |𝓀 ∈ 𝑇} 

= {< 𝓀,⋀ 𝜓(~𝔍)(𝑠)
𝑠∈ℛ∗(𝓀)

,⋁ 𝜇(~𝔍)(𝑠)
𝑠∈ℛ∗(𝓀)

> |𝓀 ∈ 𝑇} 

= {< 𝓀,⋀ 𝜇(𝔍)(𝑠)
𝑠∈ℛ∗(𝓀)

,⋁ 𝜓(𝔍)(𝑠)
𝑠∈ℛ∗(𝓀)

> |𝓀 ∈ 𝑇} 

= {< 𝓀, 𝜇ℛ(𝔍)(𝓀),𝜓ℛ(𝔍)(𝓀) > |𝓀 ∈ 𝑇} 

this implies that ~(ℛ(~𝔍)) = ℛ(𝔍). 

ii. Now to show that ℛ(𝔍1 ∩ 𝔍2) = ℛ(𝔍1)  ∩ ℛ(𝔍2) 

ℛ(𝔍1 ∩ 𝔍2) = {< 𝓀, 𝜇ℛ(𝔍1∩𝔍2)(𝓀),𝜓ℛ(𝔍1∩𝔍2)(𝓀) > |𝓀 ∈ 𝑇} 

= {< 𝓀,⋀ 𝜇(𝔍1∩𝔍2)(𝑠)
𝑠∈ℛ∗(𝓀)

,⋁ 𝜓(𝔍1∩𝔍2)(𝑠)
𝑠∈ℛ∗(𝓀)

> |𝓀 ∈ 𝑇} 

= {< 𝓀,⋀ {𝜇(𝔍1)(𝑠)⋀𝜇(𝔍2)(𝑠)}
𝑠∈ℛ∗(𝓀)

,⋁ {𝜓(𝔍1)(𝑠)⋁𝜓(𝔍2)(𝑠)}
𝑠∈ℛ∗(𝓀)

> |𝓀 ∈ 𝑇} 

= {< 𝓀, {⋀ 𝜇(𝔍1)(𝑠)
𝑠∈ℛ∗(𝓀)

 ⋀ ⋀ 𝜇(𝔍2)(𝑠)
𝑠∈ℛ∗(𝓀)

} ,

{⋁ 𝜓(𝔍1)(𝑠)
𝑠∈ℛ∗(𝓀)

 ⋁⋁ 𝜓(𝔍2)(𝑠)
𝑠∈ℛ∗(𝓀)

} > |𝓀 ∈ 𝑇} 
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= {< 𝓀, {𝜇ℛ(𝔍1)(𝓀) ⋀ 𝜇ℛ(𝔍2)(𝓀)}, {𝜓ℛ(𝔍1)(𝓀) ⋁𝜓ℛ(𝔍2)(𝓀)} > |𝓀 ∈ 𝑇} 

this implies ℛ(𝔍1 ∩ 𝔍2) = ℛ(𝔍1)  ∩ ℛ(𝔍2). 

iii.  Now to prove that if 𝔍1 ⊆ 𝔍2 𝑡ℎ𝑒𝑛 ℛ(𝔍1) ⊆ ℛ(𝔍2), 

ℛ(𝔍1) = {< 𝓀, 𝜇ℛ(𝔍1)(𝓀),𝜓ℛ(𝔍1)(𝓀) > |𝓀 ∈ 𝑇} 

= {< 𝓀,⋀ 𝜇(𝔍1)(𝑠)
𝑠∈ℛ∗(𝓀)

,⋁ 𝜓(𝔍1)(𝑠)
𝑠∈ℛ∗(𝓀)

> |𝓀 ∈ 𝑇} 

≤ {< 𝓀,⋀ 𝜇(𝔍2)(𝑠)
𝑠∈ℛ∗(𝓀)

,⋁ 𝜓(𝔍2)(𝑠)
𝑠∈ℛ∗(𝓀)

> |𝓀 ∈ 𝑇} 

= {< 𝓀, 𝜇ℛ(𝔍2)(𝓀),𝜓ℛ(𝔍2)(𝓀) > |𝓀 ∈ 𝑇} 

= ℛ(𝔍2) 

this implies ℛ(𝔍1) ⊆ ℛ(𝔍2). 

iv.  To prove that ℛ(𝔍1 ∪ 𝔍2) ⊇ ℛ(𝔍1) ∪ ℛ(𝔍2) 

ℛ(𝔍1 ∪ 𝔍2) = {< 𝓀, 𝜇ℛ(𝔍1∪𝔍2)(𝓀),𝜓ℛ(𝔍1∪𝔍2)(𝓀) > |𝓀 ∈ 𝑇} 

= {< 𝓀,⋀ 𝜇(𝔍1∪𝔍2)(𝑠)
𝑠∈ℛ∗(𝓀)

,⋁ 𝜓(𝔍1∪𝔍2)(𝑠)
𝑠∈ℛ∗(𝓀)

> |𝓀 ∈ 𝑇} 

= {< 𝓀,⋀ {𝜇(𝔍1)(𝑠) ⋁ 𝜇(𝔍2)(𝑠)}
𝑠∈ℛ∗(𝓀)

,⋁ {𝜓(𝔍1)(𝑠) ⋀ 𝜓(𝔍2)(𝑠)}
𝑠∈ℛ∗(𝓀)

> |𝓀

∈ 𝑇} 

≥ {< 𝓀, {⋀ 𝜇(𝔍1)(𝑠)
𝑠∈ℛ∗(𝓀)

 ⋁ ⋀ 𝜇(𝔍2)(𝑠)
𝑠∈ℛ∗(𝓀)

} ,

{⋁ 𝜓(𝔍1)(𝑠)
𝑠∈ℛ∗(𝓀)

 ⋀⋁ 𝜓(𝔍2)(𝑠)
𝑠∈ℛ∗(𝓀)

} > |𝓀 ∈ 𝑇} 

= {< 𝓀, {𝜇ℛ(𝔍1)(𝓀) ⋁ 𝜇ℛ(𝔍2)(𝓀)}, {𝜓ℛ(𝔍1)(𝓀) ⋀ 𝜓ℛ(𝔍2)(𝓀)} > |𝓀 ∈ 𝑇} 

this implies ℛ(𝔍1 ∩ 𝔍2) ⊇ ℛ(𝔍1)  ∩ ℛ(𝔍2). 

The proofs of v. to viii. are easy and follow the above results. 

Furthermore, by counter example it is observe that the equality does not hold in part iv. 

and viii. 
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2.2.6. Example 

Suppose the crisp soft relation ℛ on 𝑇 × 𝔼 as given in Example 2.2.4, i.e. 

 ℛ = {
(𝓀1, 𝑠1), (𝓀2, 𝑠1), (𝓀3, 𝑠1), (𝓀2, 𝑠3), (𝓀4, 𝑠3), (𝓀1, 𝑠4), (𝓀2, 𝑠4), (𝓀3, 𝑠4),

(𝓀4, 𝑠4), (𝓀5, 𝑠4)
} 

Now from the above relation the SVM ℛ∗ is given as: 

ℛ∗(𝓀1) = {𝑠1, 𝑠4},      ℛ
∗(𝓀2) = {𝑠1, 𝑠3, 𝑠4},      ℛ

∗(𝓀3) = {𝑠1, 𝑠4},      ℛ
∗(𝓀4)

= {𝑠3, 𝑠4},      ℛ
∗(𝓀5) = {𝑠4} 

Next to define an arbitrary PyFSs 𝔍1, 𝔍2 that is 𝔍1, 𝔍2 ∈ 𝑃𝐹𝑆
𝔼 as given below: 

𝔍1 = {< 𝑠1, 0.9,0.3 >,< 𝑠2, 0.8,0.5 >, < 𝑠3, 0.4,0.7 >, < 𝑠4, 0.7,0.5 >} 

𝔍2 = {< 𝑠1, 0.85,0.5 >,< 𝑠2, 0.9,0.4 >,< 𝑠3, 0.5,0.6 >,< 𝑠4, 0.4,0.3 >} 

Consider  

𝔍1 ∪ 𝔍2 = {< 𝑠1, 0.9,0.3 >, < 𝑠2, 0.9,0.4 >,< 𝑠3, 0.5,0.6 >,< 𝑠4, 0.7,0.3 >} 

Now to determine the 𝑆𝑓𝑡RPyF lower and upper approximation operators ℛ(𝔍1) and 

ℛ(𝔍2) that are 

ℛ(𝔍1) = {< 𝓀1, 0.7,0.5 >, < 𝓀2, 0.4,0.7 >, < 𝓀3, 0.7,0.5 >,< 𝓀4, 0.4,0.7 >,

< 𝓀5, 0.7,0.5 >} 

ℛ(𝔍2) = {< 𝓀1, 0.4,0.5 >, < 𝓀2, 0.4,0.6 >,< 𝓀3, 0.4,0.5 >, < 𝓀4, 0.4,0.6 >,

< 𝓀5, 0.4,0.3 >} 

Further 

ℛ(𝔍1) ∪ ℛ(𝔍2) = {
< 𝓀1, 0.7,0.5 >,< 𝓀2, 0.4,0.6 >, < 𝓀3, 0.7,0.5 >,

< 𝓀4, 0.4,0.7 >, < 𝓀5, 0.7,0.3 >
} 

and 

ℛ(𝔍1 ∪ 𝔍2) = {< 𝓀1, 0.7,0.3 >,< 𝓀2, 0.5,0.6 >, < 𝓀3, 0.7,0.3 >, < 𝓀4, 0.5,0.6 >,

< 𝓀5, 0.7,0.3 >} 

From the above analysis it is observed that ℛ(𝔍1 ∪ 𝔍2) ⊈ ℛ(𝔍1) ∪ ℛ(𝔍2) because 
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{< 𝓀, 𝜇ℛ(𝔍1∪𝔍2)(𝓀),𝜓ℛ(𝔍1∪𝔍2)(𝓀) > |𝓀 ∈ 𝑇}

⋠ {< 𝓀, 𝜇ℛ(𝔍1)∪ℛ(𝔍2)(𝓀),𝜓ℛ(𝔍1)∪ℛ(𝔍2)(𝓀) > |𝓀 ∈ 𝑇} 

This implies < 𝓀1, 0.7,0.3 > ≰ < 𝓀1, 0.7,0.5 > ⇒ 0.7 ≤ 0.7  𝑏𝑢𝑡 0.3 ≱ 0.5. 

Similarly, we can show that 

ℛ(𝔍1) ∪ ℛ(𝔍2) ⊈ ℛ(𝔍1 ∪ 𝔍2). 

2.3. Pythagorean fuzzy soft rough set 
In this section, motivated from the concept of IF 𝑆𝑓𝑡RS [84] we investigate the novel 

notion of PyF𝑆𝑓𝑡RS. Furthermore, the basic properties of PyF𝑆𝑓𝑡R approximation 

operators are also investigated in detail. 

2.3.1. Definition 

Consider the set of parameters 𝔼 and let 𝑇 be the universe of discourse. Then the pair 

(𝔍, 𝔼) is called Pythagorean fuzzy 𝑆𝑓𝑡S (PyF𝑆𝑓𝑡S) over a universe of discourse 𝑇, 

where 𝔍 is a mapping given by 𝔍: 𝔼 → 𝑃𝑦𝐹𝑆𝑇 such that ∀ 𝑠 ∈ 𝔼, 𝔍(𝑠) =

{< 𝓀, 𝜇𝔍(𝑠)(𝓀),𝜓𝔍(𝑠)(𝓀) > |𝓀 ∈ 𝑇} ∈ 𝑃𝑦𝐹𝑆𝑇 and 𝜇𝔍(𝑠), 𝜓𝔍(𝑠): 𝑇 → [0, 1] denotes the 

ℳ𝒢 and 𝒩ℳ𝒢 of an alternative 𝓀 ∈ 𝑇 to the set 𝔍(𝑠), with the constraint 0 ≤

(𝜇𝔍(𝑠)(𝓀))
2

+ (𝜓𝔍(𝑠)(𝓀))
2

≤ 1. 

2.3.2. Definition 

Consider the set of parameters 𝔼 and let 𝑇 be the universe of discourse. Let ℛ be an 

arbitrary F𝑆𝑓𝑡R over 𝑇 × 𝔼. Then the triplet (𝑇, 𝔼, ℛ) is called fuzzy 𝑆𝑓𝑡A space. 

Consider for any 𝔍 = {< 𝑠, 𝜇𝔍(𝑠), 𝜓𝔍(𝑠) > |𝑠 ∈ 𝔼} ∈ 𝑃𝑦𝐹𝑆𝔼, then the lower and 

upper approximation ℛ(𝔍) and ℛ(𝔍) of 𝔍 w.r.t fuzzy 𝑆𝑓𝑡A space (𝑇, 𝔼,ℛ) is denoted 

and defined as: 

ℛ(𝔍) = {< 𝓀, 𝜇ℛ(𝔍)(𝓀),𝜓ℛ(𝔍)(𝓀) > |𝓀 ∈ 𝑇} 

ℛ(𝔍) = {< 𝓀, 𝜇ℛ(𝔍)(𝓀),𝜓ℛ(𝔍)(𝓀) > |𝓀 ∈ 𝑇}, 

where 

𝜇ℛ(𝔍)(𝓀) =⋀ {(1 − 𝜇ℛ(𝓀, 𝑠))⋁𝜇𝔍(𝑠)}
𝑠∈𝔼

 𝑎𝑛𝑑  𝜓ℛ(𝔍)(𝓀)

=⋁ {𝜇ℛ(𝓀, 𝑠)⋀𝜓𝔍(𝑠)}
𝑠∈𝔼

 

with 0 ≤ (𝜇ℛ(𝔍)(𝓀))
2

+ (𝜓ℛ(𝔍)(𝓀))
2

≤ 1 and  
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𝜇ℛ(𝔍)(𝓀) =⋁ {𝜇ℛ(𝓀, 𝑠)⋀𝜇𝔍(𝑠)}
𝑠∈𝔼

 𝑎𝑛𝑑  𝜓ℛ(𝔍)(𝓀)

=⋀ {(1 − 𝜇ℛ(𝓀, 𝑠))⋁𝜓𝔍(𝑠)}
𝑠∈𝔼

 

with 0 ≤ (𝜇ℛ(𝔍)(𝓀))
2

+ (𝜓ℛ(𝔍)(𝓀))
2

≤ 1. 

The pair (ℛ(𝔍), ℛ̅(𝔍)) is called PyF𝑆𝑓𝑡RS of 𝔍 w.r.t fuzzy 𝑆𝑓𝑡A space (𝑇, 𝔼, ℛ), 

where ℛ(𝔍) ≠ ℛ̅(𝔍). Hence ℛ(𝔍), ℛ̅(𝔍):𝑃𝑦𝐹𝑆𝔼 → 𝑃𝑦𝐹𝑆𝑇 are called lower and 

upper PyF𝑆𝑓𝑡R approximation operators w.r.t (𝑇, 𝔼,ℛ). 

From the above analysis, it is clear that the lower and upper PyF𝑆𝑓𝑡R approximation 

operators ℛ(𝔍), ℛ̅(𝔍) are again the PyFVs implies ℛ(𝔍), ℛ̅(𝔍) ∈ 𝑃𝑦𝐹𝑆𝑇 that is: 

(𝜇ℛ(𝔍)(𝓀))
2

+ (𝜓ℛ(𝔍)(𝓀))
2

=⋀ [(1 − (𝜇ℛ(𝓀, 𝑠))
2
)⋁ (𝜇𝔍(𝑠))

2

]
𝑠∈𝔼

+⋁ [(𝜇ℛ(𝓀, 𝑠))
2
⋀ (𝜓𝔍(𝑠))

2

]
𝑠∈𝔼

 

= 1 −⋁ [(𝜇ℛ(𝓀, 𝑠))
2
⋀{1 − (𝜇𝔍(𝑠))

2

}]
𝑠∈𝔼

+⋁ [(𝜇ℛ(𝓀, 𝑠))
2
⋀ (𝜓𝔍(𝑠))

2

]
𝑠∈𝔼

 

≤ 1 −⋁ [(𝜇ℛ(𝓀, 𝑠))
2
⋀{1 − (𝜇𝔍(𝑠))

2

}]
𝑠∈𝔼

+⋁ [(𝜇ℛ(𝓀, 𝑠))
2
⋀{1 − (𝜇𝔍(𝑠))

2

}]
𝑠∈𝔼

 

= 1 

This implies (𝜇ℛ(𝔍)(𝓀))
2

+ (𝜓ℛ(𝔍)(𝓀))
2

≤ 1. 

Hence it is clear that ℛ(𝔍) ∈ 𝑃𝐹𝑆𝑇. Similarly ℛ̅(𝔍) ∈ 𝑃𝐹𝑆𝑇. Therefore, the lower and 

upper PyF𝑆𝑓𝑡R approximation operators w.r.t (𝑇, 𝔼,ℛ) is again a PyFV. 

2.3.3. Remarks 

Consider the crisp 𝑆𝑓𝑡A space (𝑇, 𝔼,ℛ) and 𝔍 ∈ 𝑃𝐹𝑆𝔼, then lower and upper PyF𝑆𝑓𝑡R 

approximation operator’s ℛ(𝔍) 𝑎𝑛𝑑 ℛ̅(𝔍) reduced into the following form. 

ℛ(𝔍) = {< 𝓀, 𝜇ℛ(𝔍)(𝓀),𝜓ℛ(𝔍)(𝓀) > |𝓀 ∈ 𝑇} 

ℛ(𝔍) = {< 𝓀, 𝜇ℛ(𝔍)(𝓀),𝜓ℛ(𝔍)(𝓀) > |𝓀 ∈ 𝑇}, 

 where  

𝜇ℛ(𝔍)(𝓀) =⋀ 𝜇𝔍(𝑠)
𝑠∈ℛ∗(𝓀)

 𝑎𝑛𝑑  𝜓ℛ(𝔍)(𝓀) =⋁ 𝜓𝔍(𝑠)
𝑠∈ℛ∗(𝓀)
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and  

𝜇ℛ(𝔍)(𝓀) =⋁ 𝜇𝔍(𝑠)
𝑠∈ℛ∗(𝓀)

 𝑎𝑛𝑑  𝜓ℛ(𝔍)(𝓀) =⋀ 𝜓𝔍(𝑠)
𝑠∈ℛ∗(𝓀)

 

Thus in this case the lower and upper PyF𝑆𝑓𝑡R approximation operators reduced to 

𝑆𝑓𝑡RPyF approximation operators. Hence it is observed that PyF𝑆𝑓𝑡RS is the 

generalization of 𝑆𝑓𝑡RPyFS. 

2.3.4. Remarks 

Consider a F𝑆𝑓𝑡A space (𝑇, 𝔼, ℛ) and 𝔍 ∈ 𝐹𝑆𝔼, then lower and upper PyF𝑆𝑓𝑡R 

approximation operator’s ℛ(𝔍) 𝑎𝑛𝑑 ℛ̅(𝔍) reduced into the following form. 

ℛ(𝔍) = {< 𝓀, 𝜇ℛ(𝔍)(𝓀) > |𝓀 ∈ 𝑇} 

ℛ(𝔍) = {< 𝓀, 𝜇ℛ(𝔍)(𝓀) > |𝓀 ∈ 𝑇}, 

where  

𝜇ℛ(𝔍)(𝓀) =⋀ 𝜇𝔍(𝑠)
𝑠∈ℛ∗(𝓀)

 𝑎𝑛𝑑  𝜓ℛ(𝔍)(𝓀) =⋁ 𝜓𝔍(𝑠)
𝑠∈ℛ∗(𝓀)

 

and  

𝜇ℛ(𝔍)(𝓀) =⋁ 𝜇𝔍(𝑠)
𝑠∈ℛ∗(𝓀)

 𝑎𝑛𝑑  𝜓ℛ(𝔍)(𝓀) =⋀ 𝜓𝔍(𝑠)
𝑠∈ℛ∗(𝓀)

 

Thus in this case the lower and upper PyF𝑆𝑓𝑡R approximation operators reduced to 

𝑆𝑓𝑡RF approximation operators. Hence it is observed that PyF𝑆𝑓𝑡RS is the 

generalization of 𝑆𝑓𝑡RFS. 

2.3.5. Example 

Suppose 𝑇 = {𝓀1, 𝓀2, 𝓀3, 𝓀4, 𝓀5} be a universal of discourse and 𝔼 = {𝑠1, 𝑠2, 𝑠3, 𝑠4} be 

the set of parameter. Consider (ℋ, 𝔼) be a F𝑆𝑓𝑡S over 𝑇. Let ℛ be the F𝑆𝑓𝑡R over 𝑇 ×

𝔼 which is given in Table 2.1. 

Next to define a PyFS 𝔍 ∈ 𝑃𝑦𝐹𝑆𝔼 as follows: 

𝔍 = {< 𝑠1, 0.8,0.4 >,< 𝑠2, 0.9,0.2 >,< 𝑠3, 0.7,0.6 >, < 𝑠4, 0.6,0.3 >} 

Now to determine the PyF𝑆𝑓𝑡R lower and upper approximation operators ℛ(𝔍) and 

ℛ(𝔍) that are 
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Table 2.1.  F𝑆𝑓𝑡R ℛ over 𝑇 × 𝔼 

ℛ 𝑠1 𝑠2 𝑠3 𝑠4 

𝓀1 0.8 0.3 0.5 0.7 

𝓀2 0.9 0.6 0.4 0.6 

𝓀3 0.7 0.1 0.8 0.3 

𝓀4 0.2 0.9 0.3 0.6 

𝓀5 0.8 0.3 0.9 0.5 

 

  

ℛ(𝔍1) = {< 𝓀1, 0.6,0.5 >, < 𝓀2, 0.6,0.4 >, < 𝓀3, 0.7,0.6 >,< 𝓀4, 0.6,0.3 >,

< 𝓀5, 0.6,0.6 >} 

ℛ̅(𝔍2) = {< 𝓀1, 0.8,0.3 >, < 𝓀2, 0.8,0.4 >,< 𝓀3, 0.7,0.4 >, < 𝓀4, 0.9,0.2 >,

< 𝓀5, 0.8,0.4 >} 

2.3.6. Theorem 

Suppose a fuzzy 𝑆𝑓𝑡𝐴 space (𝑇, 𝔼, ℛ). Then for any 𝔍, 𝔍1, 𝔍2 ∈ 𝑃𝐹𝑆
𝔼, the PyF𝑆𝑓𝑡R 

approximation operators ℛ(𝔍) and ℛ̅(𝔍) hold the following characteristics. 

i. ℛ(𝔍) = ~(ℛ(~𝔍)), where ~𝔍 is complement of 𝔍, 

ii. ℛ(𝔍1 ∩ 𝔍2) = ℛ(𝔍1)  ∩ ℛ(𝔍2), 

iii.  𝔍1 ⊆ 𝔍2 ⇒ ℛ(𝔍1) ⊆ ℛ(𝔍2), 

iv.  ℛ(𝔍1 ∪ 𝔍2) ⊇ ℛ(𝔍1) ∪ ℛ(𝔍2), 

v. ℛ(𝔍) = ~(ℛ(~𝔍)), 

vi.  ℛ(𝔍1 ∪ 𝔍2) = ℛ(𝔍1) ∪ ℛ(𝔍2), 

vii. 𝔍1 ⊆ 𝔍2 ⇒ ℛ(𝔍1) ⊆ ℛ(𝔍2), 

viii. ℛ(𝔍1 ∩ 𝔍2) ⊆ ℛ(𝔍1) ∩ ℛ(𝔍2). 

Proof: i. By applying definition of PyF𝑆𝑓𝑡R approximation operators, we have 

~(ℛ(~𝔍)) = {< 𝓀,𝜓ℛ(~𝔍)(𝓀), 𝜇ℛ(~𝔍)(𝓀) > |𝓀 ∈ 𝑇} 

= {< 𝓀,⋀ {(1 − 𝜇ℛ(𝓀, 𝑠))⋁𝜓(~𝔍)(𝑠)}
𝑠∈𝔼

,⋁ {𝜇ℛ(𝓀, 𝑠)⋀𝜇 (~𝔍)(𝑠)}
𝑠∈𝔼

> |𝓀 ∈ 𝑇} 
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= {< 𝓀,⋀ {(1 − 𝜇ℛ(𝓀, 𝑠))⋁𝜇𝔍(𝑠)}
𝑠∈𝔼

,⋁ {𝜇ℛ(𝓀, 𝑠)⋀𝜓𝔍(𝑠)}
𝑠∈𝔼

> |𝓀 ∈ 𝑇} 

= {< 𝓀, 𝜇ℛ(𝔍)(𝓀),𝜓ℛ(𝔍)(𝓀) > |𝓀 ∈ 𝑇} 

this implies ~(ℛ(~𝔍)) = ℛ(𝔍). 

ii. Now to prove that ℛ(𝔍1 ∩ 𝔍2) = ℛ(𝔍1)  ∩ ℛ(𝔍2), we have 

ℛ(𝔍1 ∩ 𝔍2) = {< 𝓀, 𝜇ℛ(𝔍1∩𝔍2)(𝓀),𝜓ℛ(𝔍1∩𝔍2)(𝓀) > |𝓀 ∈ 𝑇} 

= {< 𝓀,⋀ {(1 − 𝜇ℛ(𝓀, 𝑠))⋁𝜇(𝔍1∩𝔍2)(𝑠)}
𝑠∈𝔼

,⋁ {𝜇ℛ(𝓀, 𝑠)⋀𝜓(𝔍1∩𝔍2)(𝑠)}
𝑠∈𝔼

> |𝓀

∈ 𝑇} 

= {< 𝓀,⋀ {(1 − 𝜇ℛ(𝓀, 𝑠))⋁[𝜇𝔍1(𝑠)⋀𝜇𝔍2(𝑠)]}
𝑠∈𝔼

,

⋁ {𝜇ℛ(𝓀, 𝑠)⋀[𝜓𝔍1(𝑠)⋁𝜓𝔍2(𝑠)]}
𝑠∈𝔼

> |𝓀 ∈ 𝑇} 

= {< 𝓀, [⋀ {(1 − 𝜇ℛ(𝓀, 𝑠))⋀𝜇𝔍1(𝑠)}
𝑠∈𝔼

⋁⋀ {(1 − 𝜇ℛ(𝓀, 𝑠))⋀𝜇𝔍2(𝑠)}
𝑠∈𝔼

] ,

[⋁ {𝜇ℛ(𝓀, 𝑠)⋀𝜓𝔍1(𝑠)}
𝑠∈𝔼

⋁⋁ {𝜇ℛ(𝓀, 𝑠)⋀𝜓𝔍2(𝑠)}
𝑠∈𝔼

] > |𝓀 ∈ 𝑇} 

= {< 𝓀, 𝜇ℛ(𝔍1)(𝓀)⋀𝜇ℛ(𝔍2)(𝓀),𝜓ℛ(𝔍1)(𝓀)⋁𝜓ℛ(𝔍2)(𝓀) > |𝓀 ∈ 𝑇} 

this implies ℛ(𝔍1 ∩ 𝔍2) = ℛ(𝔍1)  ∩ ℛ(𝔍2). 

iii. If 𝔍1 ⊆ 𝔍2 then we have to prove that ℛ(𝔍1) ⊆ ℛ(𝔍2) 

ℛ(𝔍1) = {< 𝓀, 𝜇ℛ(𝔍1)(𝓀),𝜓ℛ(𝔍1)(𝓀) > |𝓀 ∈ 𝑇} 

= {< 𝓀,⋀ {(1 − 𝜇ℛ(𝓀, 𝑠))⋁𝜇(𝔍1)(𝑠)}
𝑠∈𝔼

,⋁ {𝜇ℛ(𝓀, 𝑠)⋀𝜓(𝔍1)(𝑠)}
𝑠∈𝔼

> |𝓀 ∈ 𝑇} 

≤ {< 𝓀,⋀ {(1 − 𝜇ℛ(𝓀, 𝑠))⋁𝜇(𝔍2)(𝑠)}
𝑠∈𝔼

,⋁ {𝜇ℛ(𝓀, 𝑠)⋀𝜓(𝔍2)(𝑠)}
𝑠∈𝔼

> |𝓀 ∈ 𝑇} 

= {< 𝓀, 𝜇ℛ(𝔍2)(𝓀),𝜓ℛ(𝔍2)(𝓀) > |𝓀 ∈ 𝑇} 

This implies ℛ(𝔍1) ⊆ ℛ(𝔍2). 

iv. To prove that ℛ(𝔍1 ∪ 𝔍2) ⊇ ℛ(𝔍1) ∪ ℛ(𝔍2) 

ℛ(𝔍1 ∪ 𝔍2) = {< 𝓀, 𝜇ℛ(𝔍1∪𝔍2)(𝓀),𝜓ℛ(𝔍1∪𝔍2)(𝓀) > |𝓀 ∈ 𝑇} 
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= {< 𝓀,⋀ {(1 − 𝜇ℛ(𝓀, 𝑠))⋁𝜇(𝔍1∪𝔍2)(𝑠)}
𝑠∈𝔼

,

⋁ {𝜇ℛ(𝓀, 𝑠)⋀𝜓(𝔍1∪𝔍2)(𝑠)}
𝑠∈𝔼

> |𝓀 ∈ 𝑇} 

= {< 𝓀,⋀ {(1 − 𝜇ℛ(𝓀, 𝑠))⋁[𝜇𝔍1(𝑠)⋁𝜇𝔍2(𝑠)]}
𝑠∈𝔼

,

⋁ {𝜇ℛ(𝓀, 𝑠)⋀[𝜓𝔍1(𝑠)⋀𝜓𝔍2(𝑠)]}
𝑠∈𝔼

> |𝓀 ∈ 𝑇} 

≥ {< [⋀ (1 − 𝜇ℛ(𝓀, 𝑠))⋁𝜇𝔍1(𝑠)
𝑠∈𝔼

] ⋁ [⋀ (1 − 𝜇ℛ(𝓀, 𝑠))⋁𝜇𝔍2(𝑠)
𝑠∈𝔼

] ,

[⋁ 𝜇ℛ(𝓀, 𝑠)⋀𝜓𝔍1(𝑠)
𝑠∈𝔼

] ⋀ [⋁ 𝜇ℛ(𝓀, 𝑠)⋀𝜓𝔍2(𝑠)
𝑠∈𝔼

] >} 

= {< 𝓀, 𝜇ℛ(𝔍1)(𝓀)⋁𝜇ℛ(𝔍2)(𝓀),𝜓ℛ(𝔍1)(𝓀)⋀𝜓ℛ(𝔍2)(𝓀) > |𝓀 ∈ 𝑇} 

this implies ℛ(𝔍1 ∩ 𝔍2) = ℛ(𝔍1)  ∩ ℛ(𝔍2). 

The proofs of v. to viii. are easy and follow the above results. 

2.3.7. Definition 

Suppose 𝔍 = {< 𝓀, 𝜇𝔍(𝓀),𝜓𝔍(𝓀) > |𝓀 ∈ 𝑇} ∈ 𝑃𝐹𝑆𝑇 be any PyFS and 𝛼, 𝛽 ∈ [0, 1] 

with 𝛼2 + 𝛽2 ≤ 1.Then the-(𝛼, 𝛽) level cut set on 𝔍 is defined and denoted as: 

𝔍𝛼
𝛽
= {𝓀 ∈ 𝑇|𝜇𝔍(𝓀) ≥ 𝛼, 𝜓𝔍(𝓀) ≤ 𝛽} 

Then the set 𝔍𝛼 = {𝓀 ∈ 𝑇|𝜇𝔍(𝓀) ≥ 𝛼} is known as membership set of 𝛼-level cut 

which is generated as 𝔍. Similarly, 

𝔍𝛼+ = {𝓀 ∈ 𝑇|𝜇𝔍(𝓀) > 𝛼} is known as membership set of strong 𝛼-level cut which is 

generated as 𝔍. The set 𝔍𝛽 = {𝓀 ∈ 𝑇|𝜓𝔍(𝓀) ≤ 𝛽} is known as membership set of 𝛽-

level cut which is generated as 𝔍. Similarly, 

𝔍𝛽
+
= {𝓀 ∈ 𝑇|𝜓𝔍(𝓀) < 𝛽} is known as membership set of strong 𝛽-level cut which is 

generated as 𝔍. 

On the same way the other level cut sets of PyFS 𝔍 are denoted and defined as: 

𝔍
𝛼+
𝛽
= {𝓀 ∈ 𝑇|𝜇𝔍(𝓀) > 𝛼, 𝜓𝔍(𝓀) ≤ 𝛽} is known as (𝛼+, 𝛽)-level cut set on 𝔍, 

𝔍𝛼
𝛽+

= {𝓀 ∈ 𝑇|𝜇𝔍(𝓀) ≥ 𝛼, 𝜓𝔍(𝓀) < 𝛽} is known as (𝛼, 𝛽+)-level cut set on 𝔍, 

𝔍
𝛼+
𝛽+

= {𝓀 ∈ 𝑇|𝜇𝔍(𝓀) > 𝛼, 𝜓𝔍(𝓀) < 𝛽} is known as (𝛼+, 𝛽+)-level cut set on 𝔍. 

2.3.8. Theorem 

Let 𝔍, 𝔍1, 𝔍2 be any PyFSs. Then the (𝛼, 𝛽)-level cut set for PyFS satisfied the 

following, for 𝛼, 𝛽 ∈ [0, 1] with 𝛼2 + 𝛽2 ≤ 1. 



 

 

39 
 

(i) 𝔍𝛼
𝛽
= 𝔍𝛼 ∩ 𝔍

𝛽 ; 

(ii) (~𝔍)𝛼 = ~𝔍𝛼
+
, (~𝔍)𝛽 = ~𝔍𝛽+; 

(iii) 𝔍1 ⊆ 𝔍2 ⇒ (𝔍1)𝛼
𝛽
⊆ (𝔍2)𝛼

𝛽
; 

(iv) (𝔍1 ∩ 𝔍2)𝛼 = (𝔍1)𝛼 ∩ (𝔍2)𝛼;  (𝔍1 ∩ 𝔍2)
𝛽 = (𝔍1)

𝛽 ∩ (𝔍2)
𝛽;     (𝔍1 ∩

𝔍2)𝛼
𝛽
= (𝔍1)𝛼

𝛽
∩ (𝔍2)𝛼

𝛽
; 

(v) (𝔍1 ∪ 𝔍2)𝛼 = (𝔍1)𝛼 ∪ (𝔍2)𝛼;  (𝔍1 ∪ 𝔍2)
𝛽 = (𝔍1)

𝛽 ∪ (𝔍2)
𝛽;     (𝔍1 ∪

𝔍2)𝛼
𝛽
⊇ (𝔍1)𝛼

𝛽
∪ (𝔍2)𝛼

𝛽
; 

(vi)  𝛼1 ≥ 𝛼2  𝑎𝑛𝑑  𝛽1 ≤ 𝛽2 ⇒ 𝔍𝛼1 ⊆ 𝔍𝛼2;   𝔍𝛽1 ⊆ 𝔍𝛽2 ;   𝔍𝛼1
𝛽1 ⊆ 𝔍𝛼2

𝛽2 ; 

Proof: The proof of (i) and (iii) are easy and follows from Definition 2.3.7. 

 (ii). To show that (~𝔍)𝛼 = ~𝔍𝛼
+
 

If 

𝔍 = {< 𝓀, 𝜇𝔍(𝓀),𝜓𝔍(𝓀) > |𝓀 ∈ 𝑇}, then  ~𝔍 = {< 𝓀, 𝜓𝔍(𝓀), 𝜇𝔍(𝓀) > |𝓀 ∈ 𝑇} 

Now 

(~𝔍)𝛼 = {𝓀 ∈ 𝑇|𝜓𝔍(𝓀) ≥ 𝛼}                                                     (2.2) 

Nest  

𝔍𝛼
+
= {{𝓀 ∈ 𝑇|𝜓𝔍(𝓀) < 𝛼}} 

This implies  

~𝔍𝛼
+
= {{𝓀 ∈ 𝑇|𝜓𝔍(𝓀) ≥ 𝛼}}                                                (2.3) 

Thus from Eqs. (2.2) and (2.3), we have 

(~𝔍)𝛼 = ~𝔍𝛼
+
. 

Similarly, it can be proved that  

(~𝔍)𝛽 = ~𝔍𝛽+  

(iv). To prove that (𝔍1 ∩ 𝔍2)𝛼 = (𝔍1)𝛼 ∩ (𝔍2)𝛼 

As 

𝔍1 ∩ 𝔍2 = {< 𝓀,𝑚𝑖𝑛[𝜇𝔍1(𝓀), 𝜇𝔍2(𝓀)],𝑚𝑎𝑥[𝜓𝔍1(𝓀),𝜓𝔍2(𝓀)] > |𝓀 ∈ 𝑇} 

Now 

(𝔍1 ∩ 𝔍2)𝛼 = {< 𝓀 ∈ 𝑇|𝑚𝑖𝑛[𝜇𝔍1(𝓀), 𝜇𝔍2(𝓀)] ≥ 𝛼} 

= {< 𝓀 ∈ 𝑇|𝜇𝔍1(𝓀) ≥ 𝛼} ∩ {< 𝓀 ∈ 𝑇|𝜇𝔍2(𝓀) ≥ 𝛼} 

= (𝔍1)𝛼 ∩ (𝔍2)𝛼 

Next 
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(𝔍1 ∩ 𝔍2)
𝛽 = {𝓀 ∈ 𝑇|𝑚𝑎𝑥[𝜓𝔍1(𝓀),𝜓𝔍2(𝓀)] ≤ 𝛽} 

= {𝓀 ∈ 𝑇|𝜓𝔍1(𝓀) ≤ 𝛽} ∩ {𝓀 ∈ 𝑇|𝜓𝔍2(𝓀) ≤ 𝛽} 

= (𝔍1)
𝛽 ∩ (𝔍2)

𝛽  

So, by using (i) we have  

(𝔍1 ∩ 𝔍2)𝛼
𝛽
= (𝔍1 ∩ 𝔍2)𝛼 ∩ (𝔍1 ∩ 𝔍2)

𝛽 = (𝔍1)𝛼 ∩ (𝔍2)𝛼 ∩ (𝔍1)
𝛽 ∩ (𝔍2)

𝛽 

= {(𝔍1)𝛼 ∩ (𝔍1)
𝛽} ∩ {(𝔍2)𝛼 ∩ (𝔍2)

𝛽} = (𝔍1)𝛼
𝛽
∩ (𝔍2)𝛼

𝛽
 

this implies (𝔍1 ∩ 𝔍2)𝛼
𝛽
= (𝔍1)𝛼

𝛽
∩ (𝔍2)𝛼

𝛽
. 

(v).  Consider  

𝔍1 ∪ 𝔍2 = {< 𝓀,𝑚𝑎𝑥[𝜇𝔍1(𝓀), 𝜇𝔍2(𝓀)],𝑚𝑖𝑛[𝜓𝔍1(𝓀),𝜓𝔍2(𝓀)] > |𝓀 ∈ 𝑇} 

Now 

(𝔍1 ∪ 𝔍2)𝛼 = {< 𝓀 ∈ 𝑇|𝑚𝑎𝑥[𝜇𝔍1(𝓀), 𝜇𝔍2(𝓀)] ≥ 𝛼} 

                = {< 𝓀 ∈ 𝑇|𝜇𝔍1(𝓀) ≥ 𝛼} ∪ {< 𝓀 ∈ 𝑇|𝜇𝔍2(𝓀) ≥ 𝛼} 

                = (𝔍1)𝛼 ∪ (𝔍2)𝛼  

Next 

(𝔍1 ∩ 𝔍2)
𝛽 = {𝓀 ∈ 𝑇|𝑚𝑖𝑛[𝜓𝔍1(𝓀),𝜓𝔍2(𝓀)] ≤ 𝛽} 

                    = {𝓀 ∈ 𝑇|𝜓𝔍1(𝓀) ≤ 𝛽} ∪ {𝓀 ∈ 𝑇|𝜓𝔍2(𝓀) ≤ 𝛽} 

                    = (𝔍1)
𝛽 ∪ (𝔍2)

𝛽 

As we know that 𝔍1 ⊆ 𝔍1 ∪ 𝔍2  𝑎𝑛𝑑  𝔍2 ⊆ 𝔍1 ∪ 𝔍2  

So, by using (iii) we have  

(𝔍1)𝛼
𝛽
⊆ (𝔍1 ∪ 𝔍2)𝛼

𝛽
   𝑎𝑛𝑑   (𝔍1)𝛼

𝛽
⊆ (𝔍1 ∪ 𝔍2)𝛼

𝛽
 

this implies (𝔍1 ∩ 𝔍2)𝛼
𝛽
= (𝔍1)𝛼

𝛽
∩ (𝔍2)𝛼

𝛽
. 

(vi). Consider for any 𝓀 ∈ (𝔍1)𝛼1, then by Definition 2.3.7, we get 𝜇𝔍1(𝓀) ≥ 𝛼1 ≥

𝛼2 ⇒ 𝜇𝔍1(𝓀) ≥ 𝛼2 ⇒ 𝓀 ∈ (𝔍1)𝛼2, therefore we have  (𝔍1)𝛼1 ⊆ (𝔍1)𝛼2. 

Similarly, we get (𝔍1)
𝛽1 ⊆ (𝔍2)

𝛽2. Consequently  (𝔍1)𝛼1 ∩ (𝔍2)
𝛽1 ⊆ (𝔍1)𝛼2 ∩

(𝔍2)
𝛽2, then by using (i) we have (𝔍1)𝛼1

𝛽1 ⊆ (𝔍2)𝛼2
𝛽2 . 

Suppose a F𝑆𝑓𝑡R ℛ from 𝑇 to 𝔼, denoted by 

ℛ𝛼 = {(𝓀, 𝑠) ∈ 𝑇 × 𝔼|𝜇ℛ(𝓀, 𝑠) ≥ 𝛼} 

ℛ𝛼(𝓀) = {𝑠 ∈ 𝔼|𝜇ℛ(𝓀, 𝑠) ≥ 𝛼}       𝑓𝑜𝑟 𝛼 ∈ [0,1] 

ℛ𝛼+ = {(𝓀, 𝑠) ∈ 𝑇 × 𝔼|𝜇ℛ(𝓀, 𝑠) > 𝛼} 

ℛ𝛼+(𝓀) = {𝑠 ∈ 𝔼|𝜇ℛ(𝓀, 𝑠) > 𝛼}       𝑓𝑜𝑟 𝛼 ∈ [0, 1] 

ℛ𝛼 = {(𝓀, 𝑠) ∈ 𝑇 × 𝔼|𝜓(𝓀, 𝑠) ≤ 𝛼} 
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ℛ𝛼(𝓀) = {𝑠 ∈ 𝔼|𝜓(𝓀, 𝑠) ≤ 𝛼}        𝑓𝑜𝑟 𝛼 ∈ [0, 1] 

ℛ𝛼+ = {(𝓀, 𝑠) ∈ 𝑇 × 𝔼|𝜓(𝓀, 𝑠) < 𝛼} 

ℛ𝛼+(𝓀) = {𝑠 ∈ 𝔼|𝜓(𝓀, 𝑠) < 𝛼}        𝑓𝑜𝑟 𝛼 ∈ [0,1] 

Then ℛ𝛼 , ℛ𝛼+ , ℛ
𝛼, ℛ𝛼+ are crisp 𝑆𝑓𝑡R on 𝑇 × 𝔼. 

In Theorems 2.3.9 and 2.3.10, it is shown that PyF𝑆𝑓𝑡R approximation operators can be 

represented by crisp 𝑆𝑓𝑡RA operators. 

2.3.9. Theorem  

Suppose a F𝑆𝑓𝑡A space  (𝑇, 𝔼,ℛ) and 𝔍 ∈ 𝑃𝐹𝑆𝔼. Then the upper PyF𝑆𝑓𝑡R 

approximation operator can be shown as follows, for all 𝓀 ∈ 𝑇. 

(i).  

𝜇ℛ(𝔍)(𝓀) = ⋁ [𝛼⋀ℛ𝛼(𝔍𝛼)(𝓀)]

𝛼∈[0,1]

 

= ⋁ [𝛼⋀ℛ𝛼(𝔍𝛼+)(𝓀)]

𝛼∈[0,1]

 

= ⋁ [𝛼⋀ℛ𝛼+(𝔍𝛼)(𝓀)]

𝛼∈[0,1]

 

= ⋁ [𝛼⋀ℛ𝛼+(𝔍𝛼+)(𝓀)]

𝛼∈[0,1]

 

(ii).   

𝜓ℛ(𝔍)(𝓀) = ⋀ [𝛼⋁(1 − ℛ1−𝛼(𝔍
𝛼)(𝓀))]

𝛼∈[0,1]

 

= ⋀ [𝛼⋁ (1 − ℛ1−𝛼(𝔍
𝛼+)(𝓀))]

𝛼∈[0,1]

 

= ⋀ [𝛼⋁ (1 − ℛ(1−𝛼)+(𝔍
𝛼)(𝓀))]

𝛼∈[0,1]

 

= ⋀ [𝛼⋁ (1 − ℛ(1−𝛼)+(𝔍
𝛼+)(𝓀))]

𝛼∈[0,1]

 

(iii).   

[ ℛ(𝔍)]
𝛼+
⊆ ℛ𝛼+(𝔍𝛼+) ⊆ ℛ𝛼+(𝔍𝛼) ⊆ ℛ𝛼(𝔍𝛼) ⊆ [ ℛ(𝔍)]

𝛼
 

(iv).   

[ ℛ(𝔍)]
𝛼+

⊆ ℛ(1−𝛼)+(𝔍
𝛼+) ⊆ ℛ(1−𝛼)+(𝔍

𝛼) ⊆ ℛ(1−𝛼)(𝔍
𝛼) ⊆ [ ℛ(𝔍)]

𝛼
. 

Proof: (i).  For any 𝓀 ∈ 𝑇, we have 
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⋁ [𝛼 ∧ℛ(𝛼)𝔍𝛼(𝓀)]

𝛼∈[0,1]

= 𝑆𝑢𝑝{𝛼 ∈ [0,1]|𝓀 ∈ ℛ(𝛼)𝔍𝛼} 

= 𝑆𝑢𝑝{𝛼 ∈ [0,1]|ℛ(𝛼)(𝓀) ∩ 𝔍𝛼 ≠ ∅} 

= 𝑆𝑢𝑝{𝛼 ∈ [0,1]|∃𝑠 ∈ 𝔼[𝑠 ∈ ℛ(𝛼)(𝓀), 𝑠 ∈ 𝔍𝛼]} 

= 𝑆𝑢𝑝{𝛼 ∈ [0,1]|∃𝑠 ∈ 𝔼[𝜇ℛ(𝓀, 𝑠) ≥ 𝛼, 𝜇𝔍(𝑠) ≥ 𝛼]} 

=⋁[𝜇ℛ(𝓀, 𝑠) ∧ 𝜇𝔍(𝑠)]

𝑠∈𝔼

 

= 𝜇ℛ(𝔍)(𝓀) 

On the same way we can prove that 

𝜇ℛ(𝔍)(𝓀) = ⋁ [𝛼 ∧ ℛ𝛼(𝔍𝛼+)(𝓀)]

𝛼∈[0,1]

 

= ⋁ [𝛼 ∧ ℛ𝛼+(𝔍𝛼)(𝓀)]

𝛼∈[0,1]

 

= ⋁ [𝛼 ∧ ℛ𝛼+(𝔍𝛼+)(𝓀)]

𝛼∈[0,1]

 

(ii). The upper crisp 𝑆𝑓𝑡RA operator according to definition 𝑆𝑓𝑡RS, we have 

⋀ [𝛼⋁(1 − ℛ1−𝛼(𝔍
𝛼)(𝓀))]

𝛼∈[0,1]

= inf{𝛼 ∈ [0,1]|𝓀 ∈ ℛ1−𝛼(𝔍
𝛼)} 

= inf{𝛼 ∈ [0,1]|ℛ1−𝛼(𝓀) ∩ 𝔍
𝛼 ≠ ∅} 

= inf{𝛼 ∈ [0,1]|∃𝑠 ∈ 𝔼[𝑠 ∈ ℛ1−𝛼 , 𝑠 ∈ 𝔍
𝛼]} 

= inf{𝛼 ∈ [0,1]|∃𝑠 ∈ 𝔼[𝜇ℛ(𝓀, 𝑠) ≥ 1 − 𝛼, 𝜓𝔍(𝑠) ≤ 𝛼]} 

=⋀{(1 − 𝜇ℛ(𝓀, 𝑠))⋁𝜓𝔍(𝑠)}

𝑠∈𝔼

 

= 𝜓ℛ(𝔍)(𝑠) 

On the same way we can prove that 

𝜓ℛ(𝔍)(𝑠) = ⋀ [𝛼⋁ (1 − ℛ1−𝛼(𝔍
𝛼+)(𝓀))]

𝛼∈[0,1]

 

= ⋀ [𝛼⋁(1 − ℛ(1−𝛼)+(𝔍
𝛼)(𝓀))]

𝛼∈[0,1]

 

= ⋀ [𝛼⋁(1 − ℛ(1−𝛼)+(𝔍
𝛼+)(𝓀))]

𝛼∈[0,1]

 

(iii). It is easily verified that ℛ𝛼+(𝔍𝛼+) ⊆ ℛ𝛼+(𝔍𝛼) ⊆ ℛ𝛼(𝔍𝛼). We have just to prove 

that [ℛ(𝔍)]
𝛼+
⊆ ℛ𝛼+(𝔍𝛼+) and ℛ𝛼(𝔍𝛼) ⊆ [ℛ(𝔍)]

𝛼
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Let for all 𝓀 ∈ [ ℛ(𝔍)]
𝛼+

 implies 𝜇ℛ(𝔍)(𝓀) > 𝛼. Now according to definition of 

PyF𝑆𝑓𝑡R approximation operators 

𝜇ℛ(𝔍)(𝓀) = ⋁ [𝜇ℛ(𝓀, 𝑠) ∧ 𝜇𝔍(𝑠)]𝑠∈𝔼 > 𝛼 holds. So there exist 𝑠0 ∈ 𝔼 such 

that 𝜇ℛ(𝓀, 𝑠0) ∧ 𝜇𝔍(𝑠0) > 𝛼, this implies that 𝜇ℛ(𝓀, 𝑠0) > 𝛼 and 𝜇𝔍(𝑠0) > 𝛼. So, 𝑠0 ∈

ℛ𝛼+(𝓀) and 𝑠0 ∈ 𝔍𝛼+, thus as a result we get ℛ𝛼+(𝓀) ∩ 𝔍𝛼+ ≠ ∅.Therefore, by 

definition of crisp 𝑆𝑓𝑡RS, we have 𝑠0 ∈ ℛ𝛼+  (𝔍𝛼+). Hence  [ ℛ(𝔍)]
𝛼+
⊆ ℛ𝛼+  (𝔍𝛼+). 

Next for any 𝓀 ∈ ℛ𝛼  (𝔍𝛼), we have ℛ𝛼  (𝔍𝛼)(𝓀) = 1. Since 𝜇ℛ(𝔍)(𝓀) = ⋁ [𝛽 ∧𝛽∈[0,1]

ℛ𝛽(𝔍𝛽)(𝓀)] ≥ 𝛼 ∧ ℛ𝛼(𝔍𝛼)(𝓀) = 𝛼 ⇒ 𝜇ℛ(𝔍)(𝓀) ≥ 𝛼, thus 𝓀 ∈ [ ℛ(𝔍)]
𝛼

. Therefore 

ℛ𝛼  (𝔍𝛼) ⊆ [ ℛ(𝔍)]
𝛼

. 

2.3.10.  Theorem 

Suppose a F𝑆𝑓𝑡A space (𝑇, 𝔼,ℛ)  and 𝔍 ∈ 𝑃𝑦𝐹𝑆𝔼. Then the lower PyF𝑆𝑓𝑡A operator 

can be shown as: for all 𝓀 ∈ 𝑇 

(i)  

𝜇ℛ(𝔍)(𝓀) = ⋀ [𝛼⋁ℛ1−𝛼(𝔍𝛼+)(𝓀)]

𝛼∈[0,1]

 

= ⋀ [𝛼⋁ℛ(1−𝛼)+(𝔍𝛼)(𝓀)]

𝛼∈[0,1]

 

= ⋀ [𝛼⋁ℛ(1−𝛼)+(𝔍𝛼+)(𝓀)]

𝛼∈[0,1]

 

= ⋀ [𝛼⋁ℛ1−𝛼(𝔍𝛼)(𝓀)]

𝛼∈[0,1]

 

(ii)  

𝜓ℛ(𝔍)(𝓀) = ⋁ [𝛼 ∧ (1 − ℛ𝛼(𝔍
𝛼)(𝓀))]

𝛼∈[0,1]

 

= ⋁ [𝛼 ∧ (1 − ℛ𝛼+(𝔍
𝛼)(𝓀))]

𝛼∈[0,1]

 

= ⋁ [𝛼 ∧ (1 − ℛ𝛼+(𝔍
𝛼+)(𝓀))]

𝛼∈[0,1]

 

= ⋁ [𝛼 ∧ (1 − ℛ𝛼(𝔍
𝛼+)(𝓀))]

𝛼∈[0,1]

 

(iii)  

[ ℛ(𝔍)]
𝛼+
⊆ ℛ1−𝛼(𝔍𝛼+) ⊆ ℛ(1−𝛼)+(𝔍𝛼+) ⊆ ℛ(1−𝛼)+(𝔍𝛼) ⊆ [ ℛ(𝔍)]

𝛼
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(iv)  

[ ℛ(𝔍)]
𝛼+

⊆ ℛ(1−𝛼)+(𝔍
𝛼+) ⊆ ℛ(1−𝛼)+(𝔍

𝛼) ⊆ ℛ(1−𝛼)(𝔍
𝛼) ⊆ [ℛ(𝔍)]

𝛼
 

Proof: The proof of (i) and (iii) according to Theorem 2.3.8 and 2.3.9. Now for any 𝓀 ∈

𝑇, consider 

𝜇ℛ(~𝔍)(𝓀) = ⋁ [𝛼 ∧ ℛ𝛼(~𝔍𝛼)(𝓀)]

𝛼∈[0,1]

 

                   = ⋁ [𝛼 ∧ ℛ𝛼(~𝔍
𝛼+)(𝓀)]

𝛼∈[0,1]

 

                 = ⋁ [𝛼 ∧ (~ℛ𝛼(𝔍
𝛼+)(𝓀))]

𝛼∈[0,1]

 

                = ⋁ [𝛼 ∧ (1 − ℛ𝛼(𝔍
𝛼+)(𝓀))]

𝛼∈[0,1]

 

   𝜓ℛ(~𝔍)(𝓀) = ⋀ [𝛼⋁(1 − ℛ1−𝛼(~𝔍
𝛼)(𝓀))]

𝛼∈[0,1]

 

                       = ⋀ [𝛼⋁(1 − ℛ1−𝛼(~𝔍𝛼+)(𝓀))]

𝛼∈[0,1]

 

                      = ⋀ [𝛼⋁{1 − (~ℛ1−𝛼(𝔍𝛼+)(𝓀))}]

𝛼∈[0,1]

 

                    = ⋀ [𝛼⋁ℛ1−𝛼(𝔍𝛼+)(𝓀)]

𝛼∈[0,1]

 

Therefore, by the duality of upper and lower PyF𝑆𝑓𝑡R approximation operators (see 

Theorem 2.3.6, we can get 

𝜇ℛ(𝔍)(𝓀) = 𝜓ℛ(~𝔍)(𝓀) = ⋀ [𝛼⋁ℛ1−𝛼(𝔍𝛼+)(𝓀)]

𝛼∈[0,1]

 

𝜓ℛ(𝔍)(𝓀) = 𝜇ℛ(~𝔍)(𝓀) = ⋁ [𝛼 ∧ (1 − ℛ𝛼(𝔍
𝛼+)(𝓀))]

𝛼∈[0,1]

 

Similarly, the proof of above result, we can get 

𝜇ℛ(𝔍)(𝓀) = ⋀ [𝛼⋁ℛ(1−𝛼)+(𝔍𝛼)(𝓀)]

𝛼∈[0,1]

 

                  = ⋀ [𝛼⋁ℛ(1−𝛼)+(𝔍𝛼+)(𝓀)]

𝛼∈[0,1]

 

                  = ⋀ [𝛼⋁ℛ1−𝛼(𝔍𝛼)(𝓀)]

𝛼∈[0,1]
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And 

𝜓ℛ(𝔍)(𝓀) = ⋁ [𝛼 ∧ (1 − ℛ𝛼+(𝔍
𝛼)(𝓀))]

𝛼∈[0,1]

 

                   = ⋁ [𝛼 ∧ (1 − ℛ𝛼+(𝔍
𝛼+)(𝓀))]

𝛼∈[0,1]

 

                   = ⋁ [𝛼 ∧ (1 − ℛ𝛼(𝔍
𝛼)(𝓀))]

𝛼∈[0,1]

 

The proofs of (iii) and (iv) are easy and follows form Theorem 2.3.9. 

2.4. Application of Pythagorean fuzzy soft rough set in decision 

making  

Here in this section, the technique for 𝒟ℳ process is constructed on the basis of 

proposed approaches. For this, we have used the ring sum and ring product operations 

on PyFSs. By the operation the basic concept of this method and approach to 𝒟ℳ is 

given, which is based on PyF𝑆𝑓𝑡RS approach. 

2.4.1. Ring sum and ring product 
2.4.1.1. Definition [76] 

Let 𝔍1 = {< 𝓀, 𝜇ℛ(𝔍1)(𝓀),𝜓ℛ(𝔍1)(𝓀) > |𝓀 ∈ 𝑇} and 𝔍2 = {< 𝓀, 𝜇ℛ(𝔍2)(𝓀),

𝜓ℛ(𝔍2)(𝓀) > |𝓀 ∈ 𝑇} ∈ 𝑃𝑦𝐹𝑆𝑇. Then the ring sum for 𝔍1 and 𝔍2 can be defined as: 

𝔍1 ⨁ 𝔍2 = {√(𝜇ℛ(𝔍1)(𝓀))
2

+ (𝜇ℛ(𝔍2)(𝓀))
2

− (𝜇ℛ(𝔍1)(𝓀))
2

(𝜇ℛ(𝔍2)(𝓀))
2

,

𝜓ℛ(𝔍1)(𝓀)𝜓ℛ(𝔍2)(𝓀)|𝓀 ∈ 𝑇}. 

2.4.1.2. Definition [76] 

Let 𝔍1 = {< 𝓀, 𝜇ℛ(𝔍1)(𝓀),𝜓ℛ(𝔍1)(𝓀) > |𝓀 ∈ 𝑇} and 𝔍2 = {< 𝓀, 𝜇ℛ(𝔍2)(𝓀),

𝜓ℛ(𝔍2)(𝓀) > |𝓀 ∈ 𝑇} ∈ 𝑃𝑦𝐹𝑆𝑇. Then the ring product for 𝔍1 and 𝔍2 can be defined 

as: 

𝔍1 ⨂ 𝔍2 =

{
 

 
𝜇ℛ(𝔍1)(𝓀)𝜇ℛ(𝔍2)(𝓀),√

(𝜓ℛ(𝔍1)(𝓀))
2

+ (𝜓ℛ(𝔍2)(𝓀))
2

−(𝜓ℛ(𝔍1)(𝓀))
2

(𝜓ℛ(𝔍2)(𝓀))
2|𝓀 ∈ 𝑇

}
 

 
. 

Consider a fuzzy soft approximation space(𝑇, 𝔼, ℛ) in which 𝑇 is the universal set, 𝔼 

be the initial set of parameters and ℛ be the F𝑆𝑓𝑡R on 𝑇 × 𝔼. We will initiate the general 

steps and 𝒟ℳ algorithms of the proposed concepts as follows: 
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2.4.2. Algorithm 
This subsection is devoted for the step wise algorithm of the proposed model and 

consists of the following steps: 

Step (i): First to find the F𝑆𝑓𝑡R ℛ from 𝑇 × 𝔼 or fuzzy S𝑆𝑓𝑡 (ℋ, 𝔼) over 𝑇, accordance 

to the interests of decision maker. 

Step (ii): For the evaluation of certain decision input each person has different point of 

views on the attribute of the same parameter, so to find the optimum normal decision 

object 𝔍 in accordance with the demand of expert/decision maker. 

Step (iii): From Definition PyF𝑆𝑓𝑡RS, calculate the PyF𝑆𝑓𝑡R approximation operators 

ℛ(𝔍) and ℛ̅(𝔍). 

Step (iv): By ring sum or ring product operation calculate the choice set. 

𝜉 = {ℛ̅(𝔍) ⨁ ℛ(𝔍)}  

= {√(𝜇ℛ(𝔍)(𝓀))
2

+ (𝜇ℛ(𝔍)(𝓀))
2

− (𝜇ℛ(𝔍)(𝓀))
2

(𝜇ℛ(𝔍)(𝓀))
2

,

𝜓ℛ(𝔍)(𝓀)𝜓ℛ(𝔍)(𝓀)|𝓀 ∈ 𝑇} 

𝜉 = {< 𝓀, 𝜇𝜉(𝓀),𝜓𝜉(𝓀) > |𝓀 ∈ 𝑇}. 

Step (v): Compute the top level threshold value 𝜆 = (𝜇,𝜓) such that 𝜇 = max
1≤𝑖≤𝑛

𝜇𝜉(𝓀𝑖) 

and 𝜓 = min
1≤𝑖≤𝑛

𝜓𝜉(𝓀𝑖). It is clear that in choice set 𝜉 the PyFV, 𝜆 is the maximum choice 

value. If 𝜇𝜉(𝓀𝑗) ≥𝑇∗ 𝜇 and 𝜓𝜉(𝓀𝑗) ≤𝑇∗ 𝜓 then the optimum decision value is 𝓀𝑗. 

The final decision is only one, one may go back to the second step and change the 

optimum decision object in the final step of the given algorithm, when there exist too 

many "optimal choices" to be chosen.  

The concept of the proposed algorithm is illustrated with the help of the following 

example.  

2.5. Illustrative example 

For a certain senior position of a doctor in Pakistan Institute of Medical Sciences 

(PIMS) Cardiac Centre, the appointment of new faculty has to face a very complex 

evaluation and 𝒟ℳ process. The skill and ability of a candidate may be judged with 



 

 

47 
 

respect to various attributes like "physical and surgical productivity" "managerial skill" 

"ability to work under pressure" "research productivity" etc. In order to take the right 

decision about the candidate the professional experts opinions are needed for these 

criteria. 

Consider that 𝑇 = {𝓀1, 𝓀2, 𝓀3, 𝓀4, 𝓀5} be set of five candidates who fulfil the 

requirements for the senior faculty position in PIMS. In order to appoint the most 

qualified and suitable candidates for the required position, a team of experts is 

organized and chaired by Prof. Z as a director. The team of experts will judge the 

candidates upon the criteria in the parameter set 𝔼 = {𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5, 𝑠6}, where 

𝑠1 = 𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 𝑎𝑛𝑑 𝑠𝑢𝑟𝑔𝑖𝑐𝑎𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦,        𝑠2 = 𝑚𝑎𝑛𝑎𝑔𝑒𝑟𝑖𝑎𝑙 𝑠𝑘𝑖𝑙𝑙 

𝑠3 = 𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 𝑎𝑛𝑑 𝑟𝑒𝑠𝑒𝑎𝑟𝑐ℎ 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦, 

𝑠4 = 𝑎𝑏𝑎𝑙𝑖𝑡𝑦 𝑡𝑜 𝑤𝑜𝑟𝑘 𝑢𝑛𝑑𝑒𝑟 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 

𝑠5 = 𝑎𝑐𝑎𝑑𝑒𝑚𝑖𝑐 𝑙𝑒𝑎𝑑𝑒𝑟𝑠ℎ𝑖𝑝 𝑞𝑢𝑎𝑙𝑖𝑡𝑦,                    𝑠6 = 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑡𝑜 𝑃𝐼𝑀𝑆 

According to the background and experience, the team of experts wants to appoint the 

candidate which qualifies with the parameters of 𝔼 who deserves extremely from 

candidate in 𝑇. 

Ring sum for PyF𝑺𝒇𝒕RS 

Step (i).  Consider that the experts explain the gorgeous and attractiveness of the 

candidates by calculating a F𝑆𝑓𝑡R ℛ from 𝑇 × 𝔼 which is given in the following Table 

2.2. 

Table 2.2. F𝑆𝑓𝑡R ℛ from 𝑇 × 𝔼 

ℛ 𝑠1 𝑠2 𝑠3 𝑠4 𝑠5 𝑠6 

𝓀1 0.6 0.5 0.8 0.7 0.9 0.4 

𝓀2 0.8 0.4 0.7 0.6 0.5 0.3 

𝓀3 0.6 0.3 0.4 0.5 0.1 0.6 

𝓀4 0.4 0.5 0.1 0.3 0.8 0.2 

𝓀5 0.5 0.4 0.8 0.7 0.3 0.9 
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Step (ii): Suppose a committee of professionals present the optimum normal decision 

object 𝔍 which is a PyF subset over the set of parameters 𝔼, which is given as: 

𝔍 = {< 𝑠1, 0.5,0.3 >,< 𝑠2, 0.6,0.4 >,< 𝑠3, 0.7,0.2 >, < 𝑠4, 0.4,0.5 >, < 𝑠1, 0.5,0.4

>, < 𝑠1, 0.8,0.2 >}. 

Therefore, the characteristics of the candidates upon the Criteria of the given parameters 

can be described by the PyFS. For example, the standard of the candidate under 

criteria/parameter 𝑠1 is (0.5,0.3). The value 0.5 is the degree of membership and the 

value 0.3 is the degree of non-membership of candidate under criteria 𝑠1 respectively. 

In other words, candidate is qualified for the ℳ𝒢 is 0.5 and disqualified for the 𝒩ℳ𝒢 

that is 0.3. 

Step (iii): From Definition PyF𝑆𝑓𝑡RS, calculate the PyF𝑆𝑓𝑡R approximation operators 

ℛ(𝔍) and ℛ̅(𝔍). 

ℛ(𝔍) = {< 𝓀1, 0.4,0.5 >, < 𝓀2, 0.5,0.4 >,< 𝓀3, 0.5,0.5 >, < 𝓀4, 0.2,0.5 >,

< 𝓀5, 0.5,0.4 >} 

ℛ(𝔍) = {< 𝓀1, 0.7,0.2 >, < 𝓀2, 0.7,0.3 >,< 𝓀3, 0.6,0.4 >, < 𝓀4, 0.5,0.4 >,

< 𝓀5, 0.8,0.2 >} 

Step (iv): By ring sum operation calculate the choice set. 

𝜉 = {ℛ̅(𝔍) ⨁ ℛ(𝔍)}  

= {< 𝓀1, 0.75601,0.1 >,< 𝓀2, 0.78581,0.12 >, < 𝓀3, 0.72111,0.2 >,

< 𝓀4, 0.52915,0.2 >, < 𝓀5, 0.8544,0.08 >} 

Step (v): Compute the top level threshold value 𝜆 = (𝜇,𝜓) such that 𝜇 = max
1≤𝑖≤𝑛

𝜇𝜉(𝓀𝑖) 

and 𝜓 = min
1≤𝑖≤𝑛

𝜓𝜉(𝓀𝑖). It is clear that in choice set 𝜉 the PyF value 𝜆 is the maximum 

choice value. If 𝜇𝜉(𝓀𝑗) ≥𝑇∗ 𝜇 and 𝜓𝜉(𝓀𝑗) ≤𝑇∗ 𝜓, then the optimum decision value 

is 𝓀𝑗. Hence the optimum decision is 𝜆 = 𝓀5 = (0.8544,0.08). 

Ring product for PyF𝑺𝒇𝒕RS 

Now to calculate the optimal decision through ring product operator, we have 

𝜉 = {ℛ̅(𝔍) ⨁ ℛ(𝔍)}  
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= {< 𝓀1, 0.28,0.52915 >,< 𝓀2, 0.35,0.48539 >,< 𝓀3, 0.3,0.60828 >,

< 𝓀4, 0.1,0.60828 >,< 𝓀5, 0.4,0.44 >}. 

Hence, the optimal decision is 𝜆 = 𝓀5 = (0.4,0.44). Therefore, the most qualified and 

suitable candidate for the required position is 𝓀5. 

Ring sum for 𝑺𝒇𝒕RPyFS 

Step (i).  Consider that the experts explain the gorgeous and attractiveness of the 

candidates through the proposed model of 𝑆𝑓𝑡RPyFS. Consider a 𝑆𝑓𝑡S (ℋ, 𝔼) over 𝑇 

defined as follows: 

ℋ(𝑠1) = {𝓀1, 𝓀6},     ℋ(𝑠2) = ∅,     ℋ(𝑠3) = {𝓀2, 𝓀3, 𝓀4, 𝓀5},     ℋ(𝑠4)

= {𝓀1, 𝓀3, 𝓀4},    

ℋ(𝑠5) = {𝓀2, 𝓀3, 𝓀5},     ℋ(𝑠6) = {𝓀2, 𝓀3, 𝓀5} 

Now to define crisp 𝑆𝑓𝑡R ℛ from 𝑇 × 𝔼, that is  

 ℛ =

{
(𝓀1, 𝑠1), (𝓀6, 𝑠1), (𝓀2, 𝑠3), (𝓀3, 𝑠3), (𝓀4, 𝑠3), (𝓀5, 𝑠3), (𝓀1, 𝑠4), (𝓀3, 𝑠4), (𝓀4, 𝑠4),

(𝓀2, 𝑠5), (𝓀3, 𝑠5), (𝓀5, 𝑠5), (𝓀2, 𝑠6), (𝓀3, 𝑠6), (𝓀5, 𝑠6),
} 

Furthermore, from Definition of 𝑆𝑓𝑡RS to obtain the SVM ℛ∗, that is 

ℛ∗(𝓀1) = {𝑠1, 𝑠4, 𝑠6},   ℛ
∗(𝓀2) = {𝑠3, 𝑠5},   ℛ

∗(𝓀3) = {𝑠3, 𝑠4, 𝑠5, 𝑠6},   ℛ
∗(𝓀4)

= {𝑠3, 𝑠4},   ℛ
∗(𝓀5) = {𝑠3, 𝑠5, 𝑠6}, 

Step (ii). Now consider the team of experts present the optimum normal decision object 

𝔍 which is a PyF subset over the set 𝔼 as follows: 

𝔍 = {< 𝑠1, 0.5,0.3 >, < 𝑠2, 0.6,0.4 >, < 𝑠3, 0.7,0.2 >,< 𝑠4, 0.4,0.5 >,< 𝑠5, 0.5,0.4

>,< 𝑠1, 0.8,0.2 >}. 

Therefore, the characteristics of the candidates upon the criteria of the given parameters 

can be described by the PyFSs. For example, the standard of the candidate under 

criteria/parameter 𝑠1 is (0.5,0.3). The value 0.5 is ℳ𝒢 and the value 0.3 is 𝒩ℳ𝒢 of 

candidate under criteria 𝑠1 respectively. In other words, candidates is qualified for the 

ℳ𝒢 is 0.5 and disqualified for the 𝒩ℳ𝒢 is 0.3. 

Step (iii): From Definition 𝑆𝑓𝑡RPyFS, calculate the 𝑆𝑓𝑡RPyF approximation operators 

ℛ(𝔍) and ℛ̅(𝔍). 

ℛ(𝔍) = {< 𝓀1, 0.4,0.5 >, < 𝓀2, 0.5,0.4 >,< 𝓀3, 0.4,0.5 >, < 𝓀4, 0.4,0.5 >,

< 𝓀5, 0.5,0.4 >} 
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ℛ(𝔍) = {< 𝓀1, 0.8,0.2 >, < 𝓀2, 0.7,0.2 >,< 𝓀3, 0.8,0.2 >, < 𝓀4, 0.7,0.2 >,

< 𝓀5, 0.8,0.2 >} 

Step (iv): By ring sum operation calculate the choice set. 

𝜉 = {ℛ̅(𝔍) ⨁ ℛ(𝔍)}  

= {< 𝓀1, 0.83522,0.1 >,< 𝓀2, 0.78581,0.08 >, < 𝓀3, 0.83522,0.1 >,

< 𝓀4, 0.75604,0.1 >, < 𝓀5, 0.8544,0.08 >} 

Step (v): Compute the top level threshold value 𝜆 = (𝜇,𝜓) ∈ 𝑇∗ such that 𝜇 =

max
1≤𝑖≤𝑛

𝜇𝜉(𝓀𝑖) and 𝜓 = min
1≤𝑖≤𝑛

𝜓𝜉(𝓀𝑖). It is clear that in choice set 𝜉 the PyFV, 𝜆 is the 

maximum choice value. If 𝜇𝜉(𝓀𝑗) ≥𝑇∗ 𝜇 and 𝜓𝜉(𝓀𝑗) ≤𝑇∗ 𝜓, then the optimum 

decision value is 𝓀𝑗. Hence the optimum decision is 𝜆 = 𝓀5 = (0.8544,0.08). 

Ring product for 𝑺𝒇𝒕RPyFS 

Now to calculate the optimal decision through ring product operator, we have 

𝜉 = {ℛ̅(𝔍) ⨁ ℛ(𝔍)}  

= {< 𝓀1, 0.32,0.52915 >,< 𝓀2, 0.35,0.44 >, < 𝓀3, 0.32,0.52915 >,

< 𝓀4, 0.28,0.52915 >,< 𝓀5, 0.4,0.44 >}. 

Hence, the optimal decision is 𝜆 = 𝓀5 = (0.4,0.44). Therefore, the most qualified and 

suitable candidate for the required position is 𝓀5. 

2.5.1. Comparative study 

From the above analysis it is clear, that the proposed approach is better than 

intuitionistic fuzzy rough set (IFRS) [49], soft rough intuitionistic fuzzy set (𝑆𝑓𝑡RIFS) 

and intuitionistic fuzzy soft rough set (IF𝑆𝑓𝑡RS) [84]. The advantages of the proposed 

method with existing literature are given below. 

2.5.1.1. Advantages 
(a) Consider a crisp 𝑆𝑓𝑡A space (𝑇, 𝔼, ℛ) and let 𝔍 = {< 𝑠, 𝜇𝔍(𝑠) > |𝑠 ∈ 𝑇} ∈

𝐹𝑆𝔼. Then the defined 𝑆𝑓𝑡RPyF approximation operators  ℛ(𝔍) and ℛ̅(𝔍) 

degenerate into the 𝑆𝑓𝑡R fuzzy set. 

(b) Suppose a crisp 𝑆𝑓𝑡A space (𝑇, 𝔼, ℛ) and for a crisp set 𝔍 ∈ 𝑃𝔼 of 𝔼. Then the 

defined 𝑆𝑓𝑡RPyF approximation operators ℛ(𝔍) and ℛ̅(𝔍) degenerate into 

𝑆𝑓𝑡RA operators as defined in Definition of 𝑆𝑓𝑡RS. 
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(c) By taking crisp 𝑆𝑓𝑡A space (𝑇, 𝔼, ℛ) and let 𝔍 ∈ 𝑃𝐹𝑆𝔼. Then the PyF𝑆𝑓𝑡R 

approximation operators ℛ(𝔍) and ℛ̅(𝔍) in definition of PyF𝑆𝑓𝑡RS, degenerate 

into 𝑆𝑓𝑡RPyF approximation operators ℛ(𝔍) and ℛ̅(𝔍) in definition 𝑆𝑓𝑡RPyFS. 

(d) By taking F𝑆𝑓𝑡A space (𝑇, 𝔼, ℛ) and let 𝔍 ∈ 𝐹𝑆𝔼. Then the PyF𝑆𝑓𝑡R 

approximation operators ℛ(𝔍) and ℛ̅(𝔍) in definition PyF𝑆𝑓𝑡RS, degenerate 

into soft fuzzy rough approximation operators defined by Sun and Ma [85]. 

Now to verify the effectiveness of the developed approach with some existing 

methods are presented in Table 2.3. by considering the above Illustrative Example. 

IFRS [49] having no information about parameterizations tools, so due to lake of 

this information the method developed in [86] failed to handle the proposed 

example. On the other hand, if the sum of PyF value (𝜇𝔍(𝓀),𝜓𝔍(𝓀)) is greater 

than 1, that is 𝜇𝔍(𝓀) + 𝜓𝔍(𝓀) > 1 in optimum normal decision object 𝔍 of Step 

(ii). So in this case the method presented in [84] failed to tackle the situation. Thus 

from the comparative study it is clear that the proposed method is more superior 

and provides more freedom to the decision makers for the selection of ℳ𝒢 and 

𝒩ℳ𝒢 as compare to existing literature. 

 

Table 2.3.     Comparative study of the proposed method with some existing literature 

Methods Ranking  

IFRS [49] Failed to handle 

𝑆𝑓𝑡RIFS [84] 𝓀5 > 𝓀2 > 𝓀1 ≃ 𝓀3 > 𝓀4 

IF𝑆𝑓𝑡RS [84] 𝓀5 > 𝓀2 > 𝓀1 ≃ 𝓀3 > 𝓀4 

𝑆𝑓𝑡RPyFS (proposed) 𝓀5 > 𝓀2 > 𝓀1 ≃ 𝓀3 > 𝓀4 

PyF𝑆𝑓𝑡RS (proposed) 𝓀5 > 𝓀2 > 𝓀1 ≃ 𝓀3 > 𝓀4 

 

 

2.5.2. Conclusion 

The theories of RS, 𝑆𝑓𝑡S, IFS and PyFS all are important mathematical tools for dealing 

with uncertainties. In this manuscript, we have presented two new concepts: 𝑆𝑓𝑡RPyFS 

and PyF𝑆𝑓𝑡RS, which can be seen as two new generalization of 𝑆𝑓𝑡RS models. Then 

we have investigated some important properties of 𝑆𝑓𝑡RPyFS and PyF𝑆𝑓𝑡RS with detail. 
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Moreover, ?the classical representations of PyF𝑆𝑓𝑡R approximation operators are 

presented. In addition, the validity and effectiveness of the proposed operators are 

checked by applying them to the problems of 𝒟ℳ in which the experts provide their 

preferences in PyF𝑆𝑓𝑡R environment. Finally, through a numerical example it is 

demonstrated that how the proposed operators work in 𝒟ℳ problems. By comparative 

analysis, we find that it is more effective to deal with 𝒟ℳ problem with the evaluation 

of PyF information based on 𝑆𝑓𝑡RPyFS and PyF𝑆𝑓𝑡RS models than 𝒟ℳ problem with 

the evaluation of 𝑆𝑓𝑡RIFS and IF𝑆𝑓𝑡RS models.  
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Chapter 3 

Covering based orthopair fuzzy rough set model hybrid with 

TOPSIS 

In this chapter a comprehensive model is originated to handle the 𝒟ℳ problems in 

which the experts have quite different opinions in favor or against some plans, entities 

or projects. Therefore, a new technique is applied to investigate the hybrid notions of 

RS with q-ROFS by using the concept of fuzzy 𝛽-covering and fuzzy 𝛽-covering 

neighborhoods to get the new notion of covering based q-ROF rough set (CBq-

ROFRS). Furthermore, by applying the developed concept of CBq-ROFRS on TOPSIS 

and present its application to the ℳ𝒜𝒟ℳ. In real scenario CBq-ROFRS model is an 

important tool to discuss the complex and uncertain information. This method has 

stronger capacity than IFS and PyFS to cope the uncertainty. From the analysis, it is 

clear that CBq-ROFRS degenerates into covering based IF rough set (CBIFRS) if the 

rung 𝑞 = 1 and degenerate into covering based PyF rough set (CBPyFRS) if the 

rung 𝑞 = 2. Thus the proposed concept is the generalization of both CBIFRS and 

CBPyFRS. Moreover, an illustrative example is presented to show how the developed 

model will be helpful in 𝒟ℳ problems and a comparative study of the developed 

method with some other methods is presented which show that the developed approach 

is more capable and superior than the existing methods. 

3.1.  Covering based q-rung orthopair fuzzy rough set 

Here in this section we are going to investigate the hybrid structure of q-ROFSs, fuzzy 

CAS and fuzzy RSs to get the generalized structure of CBq-ROFRS. First we define 

the PyF covering approximation space (PyFCAS). 

3.1.1. Definition 

Let 𝑇 be any set and ℵ = {ℵ1, ℵ2, . . . , ℵ𝑚}, where ℵ𝑖 ∈ 𝑃𝐹𝑆
𝑇 and 𝑖 = 1,2, . . . , 𝑚. For 

any PyFV 𝛽 = (𝜇𝛽, 𝜓𝛽), ℵ is called Pythagorean fuzzy 𝛽-covering (PyF 𝛽-covering) 

of  𝑇, if (⋃ ℵ𝑖
𝑚
𝑖=1 )(𝓀) ≽ 𝛽 for all 𝓀 ∈ 𝑇. Here (𝑇, ℵ) is called a PyFCAS. 

Suppose that (𝑇, ℵ) be a PyFCAS and ℵ = {ℵ1, ℵ2, … , ℵ𝑚} be a PyF 𝛽-covering of 𝑇 

for some 𝛽 = (𝜇𝛽 , 𝜓𝛽). Then 𝒩ℵ(𝓀)
𝛽

=∩ {ℵ𝑗 ∈ ℵ: ℵ𝑗 ≽ 𝛽, j = 1,2, . . . , m} PyF 𝛽 

neighbor-hood of 𝓀 in 𝑇.  
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A PyF 𝛽-neighborhood system is denoted and defined as 𝒩ℵ
𝛽
= {𝒩ℵ(𝓀)

𝛽
: 𝓀 ∈ 𝑇} which 

is induced by PyF 𝛽-covering ℵ. By using PyF matrix to represent a PyF 𝛽-

neighborhood system follows the structure given below: 

𝕄ℵ
𝛽
= [𝒩ℵ(𝓀𝑖)

𝛽
(𝓀𝑗)]

𝓀𝑖×𝓀𝑗∈𝑇×𝑇
 

3.1.2. Remarks  

(i) If 𝛽 = (1,0), then in this case PyF 𝛽-covering reduced to a crisp covering 

and if 𝛽 = (1,0), then PyF 𝛽-neighborhood reduced to a crisp 

neighborhood. 

(ii) If 𝛽 = (𝓀, 0) such that 0 < 𝓀 < 1, then in this case PyF 𝛽-covering 

reduced to a fuzzy covering and if 𝛽 = (𝓀, 0), then PyF 𝛽-neighborhood 

reduced to a fuzzy 𝛽-neighborhood respectively. 

3.1.3. Definition 

Let 𝑇 be any set and 𝒫 = {𝒫1, 𝒫2, … , 𝒫𝑚}, where 𝒫𝑖 ∈ 𝑞 − 𝑅𝑂𝐹
𝑇  and 𝑖 = 1,2, . . . , 𝑚. 

For any q-ROFV 𝛽 = (𝜇𝛽, 𝜓𝛽), 𝒫 is said to be q-ROF 𝛽-covering (q-ROF𝛽-covering) 

of 𝑇, if (⋃ 𝒫𝑖)(𝓀)
𝑚
𝑖=1 ≽ 𝛽 for all 𝓀 ∈ 𝑇. Here (𝑇, 𝒫) is called a q-ROF covering 

approximation space (𝑞 − 𝑅𝑂𝐹𝐶𝐴𝑆). 

Suppose that (𝑇,𝒫) be a  𝑞 − 𝑅𝑂𝐹𝐶𝐴𝑆  and 𝒫 = {𝒫1, 𝒫2, … , 𝒫𝑚} be a q-ROF𝛽-

covering of 𝑇 for some 𝛽 = (𝜇𝛽 , 𝜓𝛽).Then 𝒩𝒫(𝓀)
𝛽

=∩ {𝒫𝑗 ∈ 𝒫:𝒫𝑗(𝓀) ≽ β, j =

1, 2, . . . , m} is called q-ROF𝛽-neighborhood of 𝑇. 

A q-ROF𝛽-neighborhood system is denoted and defined as 𝒩𝒫
𝛽
= { 𝒩𝒫(𝓀)

𝛽
: 𝓀 ∈

𝑇} which is induced by q-ROF𝛽-covering 𝒫. By using q-ROF matrix to represent a q-

ROF𝛽-neighborhood system as follows: 

𝕄𝒫
𝛽
= [𝒩𝒫(𝓀𝑖)

𝛽
(𝓀𝑗)]

𝓀𝑖×𝓀𝑗∈𝑇×𝑇
 

3.1.4. Remark 

(i) If 𝛽 = (1,0), then q-ROF𝛽-covering reduced to a crisp covering and if 𝛽 =

(1,0), then in this case q-ROF𝛽-neighborhood reduced to a crisp 

neighborhood. 
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(ii) If 𝛽 = (𝓀, 0), such that 0 < 𝓀 < 1, then q-ROF𝛽-covering reduced to a 

fuzzy covering and if 𝛽 = (𝓀, 0), then q-ROF𝛽-neighborhood reduced to a 

fuzzy 𝛽-neighborhood respectively. 

Proof. (i) Let 𝒫 = {𝒫1, 𝒫2, . . . , 𝒫𝑚} q-ROF 𝛽-covering. Then by definition 

(⋃ 𝒫𝑖)(𝓀)
𝑚
𝑖=1 ≽ 𝛽 for all 𝓀 ∈ 𝑇. If 𝛽 = (1,0), then there exist at least a q-ROFV 𝛼 =

(𝜇𝛼 , 𝜓𝛼) = (1,0) such that (1,0) = 𝒫𝑗(𝓀), (for some 𝑗 = 1,2, . . . , 𝑚) for 𝓀 ∈ 𝑇. Thus 

⋃ 𝒫𝑖𝒫𝑖∈𝒫
= 𝑇. Hence, if 𝛽 = (1,0), then in this case q-ROF 𝛽-covering reduceds into 

crisp cover. 

Next consider 𝒩𝒫(𝓀)
𝛽

=∩ {𝒫𝑗 ∈ 𝒫:𝒫𝑗(𝓀) ≽ 𝛽, 𝑗 = 1,2, . . . ,𝑚} be a q-ROF 𝛽-covering 

neighborhood of 𝑇. If 𝛽 = (1,0), then there exists at least a q-ROFV 𝛼 = (𝜇𝛼 , 𝜓𝛼) =

(1,0) = 𝒫𝑖(𝓀) such that 𝛼 = 𝒫𝑖(𝓀) ≽ 𝛽, for 𝓀 ∈ 𝑇. Then each 𝒩𝒫(𝓀)
𝛽

 contain at least 

a q-ROFV 𝛼 = (𝜇𝛼 , 𝜓𝛼) = (1,0) for 𝓀 ∈ 𝑇. Thus 𝒩𝓀
𝛽
=∩ {𝒫𝑗: 𝒫𝑗 ∈ 𝒫 and 𝓀 ∈

𝒫𝑗 , 𝑗 = 1,2, . . . , 𝑚}. Hence, if 𝛽 = (1,0), then in this case q-ROF 𝛽-covering 

neighborhood reduced into crisp neighborhood. 

Similarly we can prove the (ii). 

3.1.5. Definition [87] 

Suppose 𝔍 = (𝜇𝔍 , 𝜓𝔍) be a q-ROFV, then score function of 𝔍 is given as 

𝒮𝑐(𝔍) =
1

2
(1 + 𝜇𝔍

𝑞
−𝜓𝔍

𝑞
),   𝒮𝑐(𝔍) ∈ [0,1], 𝑓𝑜𝑟 𝑞 ≥ 1. 

Greater the score value of 𝒮𝑐(𝔍), then superior the orthopair is. 

3.1.6. Example 

Suppose that (𝑇,𝒫) be a q-ROFCAS and 𝒫 = {𝒫1, 𝒫2, 𝒫3, 𝒫4, 𝒫5} be the set of q-

ROFSs of 𝑇 such that 𝑇 = {𝓀₁,𝓀₂, . . . , 𝓀₆} with 𝛽 = (0.8,0.7) as given in Table 3.1. 

Hence 𝒫 is a q-ROF 𝛽-covering of 𝑇. Then 

𝒩𝒫(𝓀1)
(0.8,0.7) = 𝒫1 ∩ 𝒫2 ∩ 𝒫5,             𝒩𝒫(𝓀2)

(0.8,0.7) = 𝒫1 ∩ 𝒫2,                𝒩𝒫(𝓀3)
(0.8,0.7) = 𝒫1 ∩

𝒫3,  

𝒩𝒫(𝓀4)
(0.8,0.7) = 𝒫1 ∩ 𝒫4 ∩ 𝒫5,             𝒩𝒫(𝓀5)

(0.8,0.7) = 𝒫2 ∩ 𝒫4,              𝒩𝒫(𝓀4)
(0.8,0.7) = 𝒫1 ∩ 𝒫3 
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Table 3.1.  Tabular representation of q-ROF 𝛽-covering 

𝑇
𝒫⁄   𝒫1  𝒫2 𝒫3 𝒫4 𝒫5 

𝓀1 (0.9,0.5) (0.85,0.65) (0.7,0.8) (0.5,0.9) (0.9,0.3) 

𝓀2 (0.89,0.7) (0.93,0.45) (0.79,0.65) (0.69,0.8) (0.65,0.95) 

𝓀3 (0.95,0.6) (0.69,0.85) (0.98,0.43) (0.7,0.4) (0.5,0.9) 

𝓀4 (0.85,0.7) (0.6,0.9) (0.55,0.85) (0.97,0.3) (0.89,0.4) 

𝓀5 (0.6,0.87) (0.9,0.45) (0.69,0.85) (0.92,0.6) (0.8,0.75) 

𝓀6 (0.88,0.55) (0.6,0.9) (0.9,0.63) (0.8,0.75) (0.5,0.89) 

 

 

From 𝒩𝒫
𝛽
= {𝒩𝒫(𝓀)

𝛽
:𝓀 ∈ 𝑇} is obtained the Table 3.2 given below, 

Table 3.2.  Tabular representation of 𝒩𝒫
(0.8,0.7)

 

  𝓀1 𝓀2 𝓀3 𝓀4 𝓀5 𝓀6 

𝓀1 (0.85,0.65) (0.65,0.95) (0.5,0.9) (0.6,0.9) (0.6,0.87) (0.5,0.9) 

𝓀2 (0.85,0.65) (0.89,0.7) (0.69,0.85) (0.6,0.9) (0.6,0.87) (0.6,0.9) 

𝓀3 (0.7,0.8) (0.79,0.7) (0.95,0.6) (0.55,0.85) (0.6,0.87) (0.88,0.63) 

𝓀4 (0.5,0.9) (0.65,0.95) (0.5,0.9) (0.85,0.7) (0.6,0.87) (0.5,0.89) 

𝓀5 (0.5,0.9) (0.69,0.8) (0.69,0.85) (0.92,0.6) (0.6,0.9) (0.6,0.9) 

𝓀6 (0.7,0.8) (0.79,0.7) (0.95,0.6) (0.55,0.85) (0.6,0.8) (0.88,0.63) 

 

 

Therefore, 

𝕄𝒫
(0.8,0.7)

=

[
 
 
 
 
 
(0.85,0.65) (0.65,0.95) (0.5,0.9) (0.6,0.9) (0.6,0.87) (0.5,0.9)
(0.85,0.65) (0.89,0.7) (0.69,0.85) (0.6,0.9) (0.6,0.87) (0.6,0.9)
(0.7,0.8) (0.79,0.7) (0.95,0.6)  (0.55,0.85) (0.6,0.87) (0.88,0.63)
(0.5,0.9) (0.65,0.95) (0.5,0.9) (0.85,0.7) (0.6,0.87) (0.5,0.89)
(0.5,0.9) (0.69,0.8) (0.69,0.85) (0.6,0.9) (0.9,0.6) (0.6,0.9)
(0.7,0.8) (0.79,0.7) (0.95,0.6) (0.55,0.85) (0.6,0.87) (0.88,0.63)]

 
 
 
 
 

 

 

3.1.7. Definition 

Consider a q-ROFCAS (𝑇, 𝐶), where 𝒫 = {𝒫1, 𝒫2, 𝒫3, … ,𝒫m} is the set of q-ROF 𝛽-

covering of 𝑇 for some 𝛽 = (𝜇𝛽 , 𝜓𝛽) and 𝑇 = {𝓀1, 𝓀2, … , 𝓀𝑛}. Consider that the 
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neighborhood system 𝒩𝒫
𝛽
= {𝒩𝒫(𝓀)

𝛽
:𝓀 ∈ 𝑇} induced by q-ROF 𝛽-covering of 𝒫 such 

that 

𝒩𝒫(𝓀𝑖)
𝛽

= {< 𝓀𝑗, 𝜇𝒩
𝒫(𝓀𝑖)

𝛽  (𝓀𝑖, 𝓀𝑗), 𝜓𝒩
𝒫(𝓀𝑖)

𝛽 (𝓀𝑖, 𝓀𝑗) >𝑞 |for all 𝑖 = 1, . . . , 𝑛 𝑎𝑛𝑑 𝑗

= 1, . . . 𝑚} 

Now for any 𝔍 ∈ q − ROFS𝑇, where 𝔍 = {< 𝜇𝔍(𝓀𝑗), 𝜓𝔍(𝓀𝑗)) >𝑞 |𝑗 = 1, . . . , 𝑚}, the 

lower and upper approximations of 𝔍  w.r.t 𝒩𝒫(𝓀)
𝛽

 is represented and defined by 

𝒩𝒫
𝛽(𝔍) = (𝒩𝒫

𝛽(𝔍),𝒩𝒫
𝛽(𝔍)), 

where 

𝒩𝒫
𝛽(𝔍) = {< 𝓀𝑖, 𝜇𝒩𝒫

𝛽
(𝔍)
(𝓀𝑖), 𝜓𝒩𝒫

𝛽
(𝔍)
(𝓀𝑖) >𝑞 |𝑖 = 1, . . . , 𝑛} 

and 

𝒩𝒫
𝛽(𝔍) = {< 𝓀𝑖, 𝜇

𝒩𝒫
𝛽
(𝔍)
(𝓀𝑖), 𝜓

𝒩𝒫
𝛽
(𝔍)
(𝓀𝑖) >𝑞 |𝑖 = 1, . . . , 𝑛} 

such that 

𝜇
𝒩𝒫
𝛽
(𝔍)
(𝓀𝑖) =⋀{𝜇

𝒩
𝒫(𝓀𝑖)

𝛽  (𝓀𝑖, 𝓀𝑗)⋀𝜇𝔍(𝓀𝑗)}

𝑚

𝑗=1

 

𝜓
𝒩𝒫
𝛽
(𝔍)
(𝓀𝑖) =⋁{𝜓

𝒩
𝒫(𝓀𝑖)

𝛽  (𝓀𝑖, 𝓀𝑗) ∨ 𝜓𝔍(𝓀𝑗)}

𝑚

𝑗=1

 

𝜇
𝒩𝒫
𝛽
(𝔍)
(𝓀𝑖) =⋁{𝜇

𝒩
𝒫(𝓀𝑖)

𝛽  (𝓀𝑖, 𝓀𝑗) ∨ 𝜇𝔍(𝓀𝑗)}

𝑚

𝑗=1

 

𝜓
𝒩𝒫
𝛽
(𝔍)
(𝓀𝑖) =⋀{𝜓

𝒩
𝒫(𝓀𝑖)

𝛽  (𝓀𝑖, 𝓀𝑗)⋀𝜓𝔍(𝓀𝑗)}

𝑚

𝑗=1
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So the operators 𝒩𝒫
𝛽(𝔍),𝒩𝒫

𝛽(𝔍) ∶q-ROF(𝑇) → q-ROF(𝑇) are said to be lower and 

upper q-ROF rough (q-ROFR) approximation operators with respect to 𝒩𝒫
𝛽

. 

Therefore, the CBq-ROFRSs is the pair 𝒩𝒫
𝛽
(𝔍) = (𝒩𝒫

𝛽(𝔍),𝒩𝒫
𝛽(𝔍)), when ever 

𝒩𝒫
𝛽(𝔍) ≠ 𝒩𝒫

𝛽(𝔍). 

3.1.8. Remark 

i. If the value of 𝑞 = 1, then the notion of CBq-ROFRS is reduced to CBIFRS. 

ii. If the value of 𝑞 = 2, then the notion of CBq-ROFRS is reduced to CBPyFRS. 

iii. The notion of CBq-ROFRS is the generalization of CBIFRS and CBPyFRS 

models. 

3.1.9. Example 

Consider that 𝔍 ∈ q − ROFS𝑇, that is 

𝔍 = {
(𝓀1, 0.91, 0.62), (𝓀2, 0.58, 0.83), (𝓀3, 0.8, 0.75), (𝓀4, 0.95, 0.35),

(𝓀5, 0.8, 0.7), (𝓀6, 0.98, 0.37)
} 

and if we consider 𝕄𝒫
𝛽
= [𝒩𝒫(𝓀𝑖)

𝛽
(𝓀𝑗)]

𝓀𝑖×𝓀𝑗∈𝑇×𝑇
 as given in Example 3.1.6, where 

𝛽 = (0.8,0.7). Then 

𝒩𝒫
𝛽(𝔍) = {

(𝓀1, 0.5, 0.95), (𝓀2, 0.58, 0.9), (𝓀3, 0.55, 0.87), (𝓀4, 0.5, 0.95),
(𝓀5, 0.5, 0.9), (𝓀6, 0.55, 0.87)

} 

𝒩𝒫
𝛽
 (𝔍) = {

(𝓀1, 0.98, 0.35), (𝓀2, 0.98, 0.35), (𝓀3, 0.98, 0.35), (𝓀4, 0.98, 0.35),
(𝓀5, 0.98,0.35), (𝓀6, 0.98,0.35)

} 

3.1.10. Definition [88] 

Let us consider that 𝔍1 = (𝜇𝔍1 , 𝜓𝔍1) and 𝔍2 = (𝜇𝔍2 , 𝜓𝔍2) be two q-ROFSs. Then the 

distance between 𝔍1 and 𝔍2 is defined as follows: 

𝐷(𝔍1, 𝔍2) = {
1

2𝑛
∑|𝜇(𝔍1)(𝓀) − 𝜇(𝔍2)(𝓀)|

𝑝

𝓀∈𝑇

+
1

2𝑛
∑|𝜓(𝔍1)(𝓀) − 𝜓(𝔍2)(𝓀)|

𝑝

𝓀∈𝑇

}

1
𝑝

, where 𝑝 ≥ 1. 
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3.1.11. Theorem 

Let (𝑇, 𝒫) be a q-ROFCAS and  𝒫 = {𝒫1, 𝒫2, . . . , 𝒫𝑚} be a q-ROF𝛽-covering of 𝑇 for 

some 𝛽 = (𝜇𝛽 , 𝜓𝛽). Consider that the neighborhood system 𝒩𝒫
𝛽
= {𝒩𝒫(𝓀)

𝛽
|𝓀 ∈ 𝑇} 

induced by q-ROF𝛽-covering 𝒫. Now for any 𝔍₁, 𝔍₂ ∈ q − ROFS𝑇, following are 

holds: 

i. 𝒩𝒫
𝛽(𝔍) ⊆ 𝔍 ⊆ 𝒩𝒫

𝛽(𝔍); 

ii. If 𝔍1 ⊆ 𝔍2, then 𝒩𝒫
𝛽(𝔍1) ⊆ 𝒩𝒫

𝛽(𝔍2) and 𝒩𝒫
𝛽(𝔍1)  ⊆  𝒩𝒫

𝛽(𝔍2); 

iii. ∼ 𝒩𝒫
𝛽(𝔍1) = 𝒩𝒫

𝛽(∼ 𝔍1) and ∼ 𝒩𝒫
𝛽(𝔍1) =  𝒩𝒫

𝛽(∼ 𝔍1); 

iv. 𝒩𝒫
𝛽
 (𝔍1 ∩ 𝔍2) = 𝒩𝒫

𝛽
 (𝔍1) ∩𝒩𝒫

𝛽
 (𝔍2); 

v. 𝒩𝒫
𝛽
 (𝔍1 ∪ 𝔍2) ⊇ 𝒩𝒫

𝛽
 (𝔍1) ∪𝒩𝒫

𝛽
 (𝔍2);  

vi. 𝒩𝒫
𝛽
 (𝔍1 ∪ 𝔍2) = 𝒩𝒫

𝛽
 (𝔍1) ∪𝒩𝒫

𝛽
 (𝔍2); 

vii. 𝒩𝒫
𝛽
 (𝔍1 ∩ 𝔍2) ⊆ 𝒩𝒫

𝛽
 (𝔍1) ∩𝒩𝒫

𝛽
 (𝔍2). 

Proof: Proof of i. to iii. are easy and follows the definition of CBq-ROFRS. 

iv: As we know that 

𝒩𝒫
𝛽
 (𝔍1 ∩ 𝔍2) = {< 𝓀𝑖 , 𝜇𝒩𝒫

𝛽
(𝔍1∩𝔍2)

(𝓀𝑖), 𝜓
𝒩𝒫
𝛽
𝔍1∩𝔍2

(𝓀𝑖) >𝑞 |𝑖 = 1, . . . , 𝑛} 

As  

𝒩𝒫
𝛽
 (𝔍1) = {< 𝓀𝑖, 𝜇𝒩𝒫

𝛽
(𝔍1)

(𝓀𝑖), 𝜓𝒩𝒫
𝛽
𝔍1
(𝓀𝑖) >𝑞 |𝑖 = 1,2,… 𝑛} 

In order to show 𝒩𝒫
𝛽
 (𝔍1 ∩ 𝔍2) = 𝒩𝒫

𝛽
 (𝔍1) ∩𝒩𝒫

𝛽
 (𝔍1), we have to prove 

𝜇
𝒩𝒫
𝛽
(𝔍1∩𝔍2)

(𝓀𝑖) = {𝜇
𝒩𝒫
𝛽
(𝔍1)

(𝓀𝑖) ∩ 𝜇𝒩𝒫
𝛽
(𝔍2)

(𝓀𝑖)} 

and  

𝜓
𝒩𝒫
𝛽
(𝔍1∩𝔍2)

(𝓀𝑖) = {𝜓
𝒩𝒫
𝛽
(𝔍1)

(𝓀𝑖) ∨ 𝜓𝒩𝒫
𝛽
(𝔍2)

(𝓀𝑖)} 

Now consider 
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𝜇
𝒩𝒫
𝛽
(𝔍1∩𝔍2)

(𝓀𝑖) =⋀{𝜇
𝒩
𝒫(𝓀𝑖)

𝛽  (𝓀𝑖, 𝓀𝑗)⋀𝜇𝔍1∩𝔍2(𝓀𝑗)}

𝑚

𝑗=1

 

=⋀{𝜇
𝒩
𝒫(𝓀𝑖)

𝛽  (𝓀𝑖 , 𝓀𝑗)⋀{𝜇𝔍1(𝓀𝑗) ∩ 𝜇𝔍2(𝓀𝑗)}}

𝑚

𝑗=1

 

=⋀{𝜇
𝒩
𝒫(𝓀𝑖)

𝛽  (𝓀𝑖, 𝓀𝑗)⋀𝜇𝔍1(𝓀𝑗)}

𝑚

𝑗=1

⋀ ⋀{𝜇
𝒩
𝒫(𝓀𝑖)

𝛽  (𝓀𝑖, 𝓀𝑗)⋀𝜇𝔍2(𝓀𝑗)}

𝑚

𝑗=1

 

= 𝜇
𝒩𝒫
𝛽
(𝔍1)

(𝓀𝑖)⋀𝜇𝒩𝒫
𝛽
(𝔍2)

(𝓀𝑖) 

Next 

𝜓
𝒩𝒫
𝛽
(𝔍1∩𝔍2)

(𝓀𝑖) =⋁{𝜓
𝒩
𝒫(𝓀𝑖)

𝛽  (𝓀𝑖 , 𝓀𝑗) ∨ 𝜓𝔍1∩𝔍2(𝓀𝑗)}

𝑚

𝑗=1

 

=⋁{𝜓
𝒩
𝒫(𝓀𝑖)

𝛽  (𝓀𝑖, 𝓀𝑗) ∨ {𝜓𝔍1(𝓀𝑗) ∩ 𝜓𝔍2(𝓀𝑗)}}

𝑚

𝑗=1

 

   =⋁{𝜓
𝒩
𝒫(𝓀𝑖)

𝛽  (𝓀𝑖, 𝓀𝑗) ∨ 𝜓𝔍2(𝓀𝑗)}

𝑚

𝑗=1

∨ ⋁{𝜓
𝒩
𝒫(𝓀𝑖)

𝛽  (𝓀𝑖, 𝓀𝑗) ∨ 𝜓𝔍2(𝓀𝑗)}

𝑚

𝑗=1

 

= 𝜓
𝒩𝒫
𝛽
(𝔍1)

(𝓀𝑖) ∨ 𝜓𝒩𝒫
𝛽
(𝔍2)

(𝓀𝑖) 

Therefore 

𝒩𝒫
𝛽
 (𝔍1 ∩ 𝔍2) = 𝒩𝒫

𝛽
 (𝔍1) ∩𝒩𝒫

𝛽
 (𝔍1). 

 

v:   Next to prove 

𝒩𝒫
𝛽
 (𝔍1 ∪ 𝔍2) ⊇ 𝒩𝒫

𝛽
 (𝔍1) ∪𝒩𝒫

𝛽
 (𝔍1) 

we have to show 𝓀𝑖 ∈ 𝑇 

𝜇
𝒩𝒫
𝛽
(𝔍1∪𝔍2)

(𝓀𝑖) ≥ 𝜇
𝒩𝒫
𝛽
(𝔍1)

(𝓀𝑖) ∨ 𝜇𝒩𝒫
𝛽
(𝔍2)

(𝓀𝑖) 

𝜓
𝒩𝒫
𝛽
(𝔍1∪𝔍2)

(𝓀𝑖) ≤ 𝜓
𝒩𝒫
𝛽
(𝔍1)

(𝓀𝑖) ∧ 𝜓𝒩𝒫
𝛽
(𝔍2)

(𝓀𝑖) 
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Now consider 

𝜇
𝒩𝒫
𝛽
(𝔍1∪𝔍2)

(𝓀𝑖) =  ⋀{𝜇
𝒩
𝒫(𝓀𝑖)

𝛽  (𝓀𝑖, 𝓀𝑗)⋀𝜇(𝔍1∪𝔍2)(𝓀𝑗)}

𝑚

𝑗=1

 

=⋀{𝜇
𝒩
𝒫(𝓀𝑖)

𝛽  (𝓀𝑖, 𝓀𝑗)⋀{𝜇𝔍1(𝓀𝑗) ∨ 𝜇𝔍2(𝓀𝑗)}}

𝑚

𝑗=1

 

≥⋀{𝜇
𝒩
𝒫(𝓀𝑖)

𝛽  (𝓀𝑖 , 𝓀𝑗)⋀𝜇𝔍1(𝓀𝑗)}

𝑚

𝑗=1

∨⋀{𝜇
𝒩
𝒫(𝓀𝑖)

𝛽  (𝓀𝑖, 𝓀𝑗)⋀𝜇𝔍2(𝓀𝑗)}

𝑚

𝑗=1

 

𝜇
𝒩𝒫
𝛽
(𝔍1∪𝔍2)

(𝓀𝑖)  ≥  𝜇𝒩𝒫
𝛽
(𝔍1)

(𝓀𝑖) ∨ 𝜇𝒩𝒫
𝛽
(𝔍2)

(𝓀𝑖) 

Furthermore, 

𝜓
𝒩𝒫
𝛽
(𝔍1∪𝔍2)

(𝓀𝑖) =⋁{𝜓
𝒩
𝒫(𝓀𝑖)

𝛽 (𝓀𝑖, 𝓀𝑗) ∨ 𝜓(𝔍1∪𝔍2)(𝓀𝑖)}

𝑚

𝑗=1

 

=⋁{𝜓
𝒩
𝒫(𝓀𝑖)

𝛽 (𝓀𝑖, 𝓀𝑗) ∨ {𝜓(𝔍1)(𝓀𝑖)⋀𝜓(𝔍2)(𝓀𝑖)}}

𝑚

𝑗=1

 

≤⋁{𝜓
𝒩
𝒫(𝓀𝑖)

𝛽 (𝓀𝑖, 𝓀𝑗) ∨ 𝜓(𝔍1)(𝓀𝑖)}⋀

𝑚

𝑗=1

 ⋁{𝜓
𝒩
𝒫(𝓀𝑖)

𝛽 (𝓀𝑖 , 𝓀𝑗) ∨ 𝜓(𝔍2)(𝓀𝑖)}}

𝑚

𝑗=1

 

𝜓
𝒩𝒫
𝛽
(𝔍1∪𝔍2)

(𝓀𝑖) ≤ {𝜓
𝒩𝒫
𝛽
(𝔍1)

(𝓀𝑖)⋀ 𝜓𝒩𝒫
𝛽
(𝔍2)

(𝓀𝑖)} 

Therefore, 

𝒩𝒫
𝛽(𝔍1 ∪ 𝔍2) ⊇  𝒩𝒫

𝛽(𝔍1) ∪𝒩𝒫
𝛽(𝔍2)  

Proofs of vi: and vii: are directly follows from the above proofs of iv: and v. 

3.2.  Multi-attribute decision making model by utilizing q-ROFRS 

hybrid with TOPSIS 

ℳ𝒜𝒟ℳ has a high potential and disciplined process to improve and evaluate multiple 

conflicting criteria in all areas of 𝒟ℳ. In this competitive environment an enterprise 

needs the more accurate and more repaid response to change the customer needs. So, 

ℳ𝒜𝒟ℳ has the ability to handle successfully the evaluation process of multiple 

contradictory attribute. For an intelligent decision the experts analyze each and every 
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characteristic of an alternative and then they take the decision. Further, we will present 

the model for ℳ𝒜𝒟ℳ and their basic steps of construction by utilizing the proposed 

aggregation operators under q-ROFR information. 

Let 𝑇 = {𝓀1, 𝓀2, . . . , 𝓀𝑛} be any set of 𝑛 feasible alternatives, 𝒫 = {𝒫1, 𝒫2, . . . , 𝒫𝑚} be 

the set of 𝑚 attributes and consider the weight vector 𝑤̿ = (𝑤̿1, 𝑤̿2, . . . , 𝑤̿𝑚)
𝑇 for all 

attributes such that 0 ≤ 𝑤̿𝑖 ≤ 1 and ∑ 𝑤̿𝑖
𝑚
𝑖=1 = 1. Decision makers 𝒟𝑚𝑒𝑚 and 

𝒟𝑛𝑜𝑛−𝑚𝑒𝑚 express their preference evaluation for alternatives 𝓀𝑖(𝑖 = 1, . . . 𝑛) 

corresponding to the set of attribute 𝒫𝑗(𝑗 = 1, . . . , 𝑚) by 𝜇𝑖𝑗  𝑎𝑛𝑑 𝜓𝑖𝑗  respectively. So 

combining these two values as a q-ROFV we have q-ROF decision matrix 𝒫𝑗(𝓀𝑖) =

(𝜇𝑖𝑗 , 𝜓𝑖𝑗). This means that the decision maker 𝒟𝑚𝑒𝑚 provides ℳ𝒢 𝜇𝑖𝑗  to an object 𝓀𝑖 

against to the attribute 𝒫𝑗. Whereas the expert 𝒟𝑛𝑜𝑛−𝑚𝑒𝑚 provides 𝒩ℳ𝒢 𝜓𝑖𝑗  to an 

object 𝓀𝑖 against to the attribute 𝒫𝑗 and their decision matrix is given as: 

𝒫𝑗(𝓀𝑗) =

(

 

(𝜇11,𝜓11) (𝜇12, 𝜓12) ⋯ (𝜇1𝑗 ,𝜓1𝑗)

(𝜇21,𝜓21) (𝜇22,𝜓22) ⋯ (𝜇2𝑗 ,𝜓2𝑗)

⋮ ⋮ ⋱ ⋮
(𝜇𝑖1, 𝜓𝑖1) (𝜇𝑖2, 𝜓𝑖2) ⋯ (𝜇𝑖𝑗 , 𝜓𝑖𝑗))

  

In order to tackle a ℳ𝒜𝒟ℳ problem with the help of the proposed model, first we 

will discuss the technique for proposed model and steps wise algorithm for ℳ𝒜𝒟ℳ 

problem for the proposed CBq-ROFRS model, which mainly consists of three steps. In 

the first step decision makers 𝒟𝑚𝑒𝑚 and 𝒟𝑛𝑜𝑛−𝑚𝑒𝑚  provide their input to find a q-

ROFSs as explained above. By using the q-ROF TOPSIS (q-ROF-TOPSIS) approach, 

we will present q-ROF positive ideal solution (q-ROF-PIS) 𝑃+ =

{𝒫𝑗 , 𝑚𝑎𝑥{𝒮𝑐(𝒫𝑗(𝓀𝑖))}/𝑗 = 1, . . . , 𝑚} and q-ROF negative ideal solution (q-ROF-

NIS) 𝑃− = {𝒫𝑗 ,𝑚𝑖𝑛{𝒮𝑐(𝒫𝑗(𝓀𝑖))}/𝑗 = 1, . . . , 𝑚}, through the score function by 

Definition 3.1.5. With the help of Definition 3.1.10, the distance 𝒟+ and 𝒟− are 

determined among alternatives 𝓀𝑖 and q-ROF-PIS 𝑃+ and q-ROF-NIS 𝑃−. Therefore, 

the new q-ROFS 𝒟 = {< 𝓀, 𝜇𝒟(𝓀),𝜓𝒟(𝓀) >𝑞 |𝓀 ∈ 𝑇} = (𝜇𝒟 , 𝜓𝒟)𝑞 =

(𝒟+, 𝒟−)𝑞 can be constructed. Therefore, a multi-attribute q-rung orthopair fuzzy 

decision making information system (MAq-ROFDMIS) (𝑇, 𝒫, 𝑃,𝒟) has been obtained. 

Then to find the optimal object or ranking among all the objects, they are arranged 

according to the preference evaluation. In second phase the lower and upper 

approximations of the q-ROFSs are calculated with the precision parameter 𝛽(0 < 𝛽 ≤

1) (where 𝛽 the precision parameter, which is used on the CBq-ROFRS model to 
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explain the consistency consensus threshold by the decision maker). Finally to find the 

optimal object via ranking or 𝒟ℳ process among all the alternatives and then arranged 

according the preference evaluation. 

 Here the detail of first step is presented and first suggesting the q-ROF-TOPSIS 

method. In this method the optimal alternative should have the shortest distance (that 

is the alternative should have higher score value) from q-ROF-PIS 𝑃+ and the farthest 

distance (that is the alternative should have least score value) from the q-ROF-NIS 𝑃−. 

By use of Definition 3.1.5, to identify q-ROF-PIS 𝑃+ and q-ROF-NIS 𝑃− obtains the 

following structure. 

𝑃+ = {𝒫𝑗 , 𝑚𝑎𝑥{𝑠(𝒫𝑗(𝓀𝑖))}/𝑗 = 1, . . . , 𝑚} 

= {< 𝒫1, 𝜇1
+, 𝜓1

+ >,< 𝒫2, 𝜇2
+, 𝜓2

+ >,… < 𝒫2, 𝜇𝑚
+ , 𝜓𝑚

+ >} 

and  

𝑃− = {𝒫𝑗, 𝑚𝑖𝑛{𝑠(𝒫𝑗(𝓀𝑖))}/𝑗 = 1, . . . ,𝑚} 

= {< 𝒫1, 𝜇1
−, 𝜓1

− >,< 𝒫2, 𝜇2
−, 𝜓2

− >,… < 𝒫2, 𝜇𝑚
− , 𝜓𝑚

− >} 

Further with the help of Definition 3.1.10, to calculate the weighted distances 𝒟+ and 

𝒟− for an object 𝓀𝑖 and q-ROF-PIS 𝑃+ and q-ROF-NIS 𝑃− is defined as the following: 

𝒟+ =∑𝑤̿𝑗

𝑚

𝑗=1

 𝑑 (𝒫𝑗(𝓀𝑖),𝒫𝑗(𝑃
+)) 

= {
1

2𝑛
∑ 𝑤̿𝑗|𝜇𝑖𝑗(𝓀) − 𝜇𝑗(𝓀)

+|
𝑝𝑚

𝑗=1 +
1

2𝑛
∑ 𝑤̿𝑗|𝜓𝑖𝑗(𝓀) − 𝜓𝑗(𝓀)

+|
𝑝𝑚

𝑗=1 }

1

𝑝
 𝑓𝑜𝑟 (𝑖 =

1, . . . , 𝑛)  

and 

𝒟− =∑𝑤̿𝑗

𝑚

𝑗=1

𝑑 (𝒫𝑗(𝓀𝑖),𝒫𝑗(𝑃
−)) 

= {
1

2𝑛
∑𝑤̿𝑗|𝜇𝑖𝑗(𝓀) − 𝜇𝑗(𝓀)

−|
𝑝

𝑚

𝑗=1

+
1

2𝑛
∑𝑤̿𝑗|𝜓𝑖𝑗(𝓀) − 𝜓𝑗(𝓀)

−|
𝑝

𝑚

𝑗=1

}

1
𝑝

𝑓𝑜𝑟 (𝑖

= 1, . . . , 𝑛) 
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Therefore we put together the new q-ROFS  𝒟 = (𝜇𝒟 , 𝜓𝒟) = (𝒟+, 𝒟−). 

3.2.1. Definition 

A q-ROF triangular norm (in short q-ROF t-norm) is a function 𝑇: [0,1] × [0,1] →

[0,1], having the following characteristic: 

(i) Commutative 

(ii) Associative 

(iii) Increasing 

(iv) 𝑇(𝓀, 1) = 𝓀 ∀𝓀 ∈ [0,1]. 

Similarly a q-ROF triangular t-conorm (in short q-ROF t-conorm) is a function 

𝑇: [0,1] × [0,1] → [0,1], having the following characteristic:  

(v) Commutative 

(vi) Associative 

(vii) Increasing 

(viii) 𝑇(𝓀, 0) = 𝓀 ∀𝓀 ∈ [0,1]. 

Here the q-ROF t-norm and q-ROF t-conorm are used for ℳ𝒜𝒟ℳ problem. 

𝑇𝔍(𝓀
1, 𝓀2) =

𝓀1𝓀2

√1 + (1 − 𝓀1
𝑞)(1 − 𝓀2

𝑞)
𝑞

  𝑎𝑛𝑑  𝑇𝔍(𝓀
1, 𝓀2) = √

𝓀1
𝑞
+𝓀2

𝑞

1 + 𝓀1
𝑞
𝓀2
𝑞

𝑞

 

 Further by use a definition of CBq-ROFRS, the lower and upper approximations of 

best and worst q-ROFDM alternatives are found based on consistency consensus 

threshold 𝛽(0 < 𝛽 ≤ 1) as given below. 

𝜇
𝒩𝒫
𝛽
(𝒟)
(𝓀𝑖) =⋀{𝜇

𝒩
𝒫(𝓀𝑖)

𝛽  (𝓀𝑖, 𝓀𝑗)⋀𝜇𝒟(𝓀𝑗)}

𝑚

𝑗=1

 

𝜓
𝒩𝒫
𝛽
(𝒟)
(𝓀𝑖) =⋁{𝜓

𝒩
𝒫(𝓀𝑖)

𝛽  (𝓀𝑖, 𝓀𝑗) ∨ 𝜓𝒟(𝓀𝑗)}

𝑚

𝑗=1

 

and 

𝜇
𝒩𝒫
𝛽
(𝒟)
(𝓀𝑖) =⋁{𝜇

𝒩
𝒫(𝓀𝑖)

𝛽  (𝓀𝑖, 𝓀𝑗) ∨ 𝜇𝒟(𝓀𝑗)}

𝑚

𝑗=1
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𝜓
𝒩𝒫
𝛽
(𝒟)
(𝓀𝑖) =⋀{𝜓

𝒩
𝒫(𝓀𝑖)

𝛽  (𝓀𝑖, 𝓀𝑗)⋀𝜓𝒟(𝓀𝑗)}

𝑚

𝑗=1

 

Finally based on Definition 3.2.1, to find the rank of all the alternatives and then arrange 

them according to the preference evaluation based on consistency consensus 

threshold 𝛽(0 < 𝛽 ≤ 1). 

3.2.2. Definition 

Suppose that MAq-ROFDMIS is (𝑇, 𝒫, 𝑃,𝒟). For the q-ROFDM object 𝒟 =

(𝒟+, 𝒟−) ∈ q − ROFS𝑇 represented by the preference information of decision maker 

𝒟 and risk preference threshold 𝛼(0 < 𝛼 ≤ 1). 

Now define the ranking function of alternative 𝓀𝑖 (𝑖 = 1, . . . , 𝑛) as: 

𝑇𝔍(𝓀𝑖) = 𝛼𝑇𝔍 (𝜇𝒩𝒫
𝛽
(𝒟)
(𝓀𝑖), 𝜓𝒩𝒫

𝛽
(𝒟)
(𝓀𝑖)) + (1 − 𝛼)𝑇𝔍 (𝜇

𝒩𝒫
𝛽
(𝒟)
(𝓀𝑖), 𝜓

𝒩𝒫
𝛽
(𝒟)
(𝓀𝑖)) 

The ranking function shows that 0 ≤ 𝑇𝔍(𝓀𝐼) ≤ 1. 

3.2.3. Algorithm 
By utilizing the above interpretation, the step wise decision algorithm for the developed 

model based on CBq-ROFRS is summarized as follows: 

input       MAq-ROFDMIS (U, 𝒫,P, 𝒟); 

output    The sort ordering for all alternatives; 

Step (i):  Determine the q-ROF-NIS 𝑃+ and q-ROF-NIS 𝑃−, 

Step (ii): Determine the 𝒟+ = 𝜇𝒟 and 𝒟− = 𝜓𝒟 between the alternatives and the q-

ROF-PIS 𝑃+ and q-ROF-NIS 𝑃−, 

Step (iii): Next find the lower and upper approximations 

𝜇
𝒩𝒫
𝛽
(𝒟)
(𝓀𝑖), 𝜓𝒩𝒫

𝛽
(𝒟)
(𝓀𝑖), 𝜇

𝒩𝒫
𝛽
(𝒟)
(𝓀𝑖) and η

𝒩𝒫
𝛽
(𝒟)
(𝓀𝑖),
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Step (iv): Determine the ranking function 𝑇𝔍(𝓀𝑖),  

Step (v): Finally ranking of all object in a specific ordered to get best optimum option 

of professional experts. 

The flow for TOPSIS method under q-ROFRS is given in Fig. 3.1. 

3.3.  Numerical example 
In this section we will initiate an illustrative example to prove the quality and 

Excellency of the developed model based on CBq-ROFS that relates the evaluation and 

rank of appointment of new faculty position in Universities. Then q-ROF-TOPSIS 

provides the desired ranking. 

For a certain senior position in Universities, the appointment of a new faculty has to 

face a very complex evaluation and decision making process. The skill and ability of a 

candidate may be judged with respect to various attributes like as "managerial skills" 

"ability to work under pressure" "research productivity" etc. In order to take the right 

decision about the candidate the opinions of professional experts are needed for these 

criteria. 

 

 

 

 

 

 

 

 

 

 

 

 

Decision Making  

𝐷+ 

   

𝑃𝐼𝑆+ 

 

𝑃𝐼𝑆+ 

 

𝐷− 

 

(𝒩𝒫
𝛽(𝔍),𝒩𝒫

𝛽
 (𝔍)) 

Ranking Function 𝑇𝔍(𝓀𝑖) 

 

Fig. 3.1.  Flow chart for TOPSIS method under q-ROFRS 
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Consider that 𝑇 = {𝓀1, 𝓀2, 𝓀3, 𝓀4, 𝓀5} be the set of five candidates who fulfil the 

requirements for the senior faculty position in 𝑌 University. In order to appoint the most 

qualified and suitable person for the required position, a team of experts is organized 

and chaired by Prof. 𝑍 as a director. The team of experts will judge the candidates upon 

the criteria in the set of attribute 𝒫 = {𝒫1, 𝒫2, 𝒫3, 𝒫4, 𝒫5, 𝒫6}, where 

𝒫1 = Research productivity,   𝒫2 = Managerial skill, 

𝒫3 = Impact on research community  𝒫4 = Ability to work under pressure, 

𝒫5 = Academic leadership qualities,  𝒫6 = Contribution to 𝑌 University 

According to the background and expertise, the team of experts wants to appoint the 

candidate who qualifies with the criteria of 𝒫 to the utmost extent from candidate in 𝑇. 

Suppose that the evaluation values of each alternative with respect to each attribute 

provided by the decision makers 𝒟𝑚𝑒𝑚 and 𝒟𝑛𝑜𝑛−𝑚𝑒𝑚 are presented in the decision 

matrix given in Table 3.3, and the weights of all the attributes set is given as below: 

𝑤̿1 = 0.2, 𝑤̿2 = 0.18, 𝑤̿3 = 0.22, 𝑤̿4 = 0.12, 𝑤̿5 = 0.15, 𝑤̿6 = 0.13  

Table 3.3,  Tabular representation of q-ROFSs for 𝒫 

T 𝒫⁄  𝒫1 𝒫2  𝒫3  𝒫4 𝒫5 𝒫6  

𝓀𝟏 (0.98,0.3) (0.7,0.4) (0.8,0.2) (0.9,0.1) (0.7,0.6) (0.4,0.3) 

𝓀𝟐 (0.9,0.4) (0.7,0.8) (0.7,0.5) (0.6,0.3) (0.65,0.87) (0.6,0.2) 

𝓀𝟑 (0.8,0.7) (0.7,0.2) (0.95,0.4) (0.8,0.4) (0.5,0.2) (0.8,0.3) 

𝓀𝟒 (0.8,0.3) (0.6,0.5) (0.7,0.4) (0.9,0.2) (0.8,0.65) (0.4,0.2) 

𝓀𝟓 (0.5,0.2) (0.95,0.4) (0.8,0.3) (0.7,0.1) (0.6,0.3) (0.94,0.38) 

 

 

For example, the characteristics of a candidate 𝓀1 under attribute 𝒫1 is (0.98,0.3), the 

value 0.98 is the ℳ𝒢 and the value 0.3 is the 𝒩ℳ𝒢 of candidate 𝓀1 under criterion 

𝒫1 respectively. In other words, candidate 𝓀1 is qualified and suitable on ℳ𝒢 0.98 and 

disqualified on 𝒩ℳ𝒢 of 0.3. 
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Further the step wise algorithm for the proposed ℳ𝒜𝒟ℳ approach based on CBq-

ROFRS consists of the following steps: 

Step (i): Now to compute the q-ROF-PIS 𝑃+ and q-ROF-NIS 𝑃− by use of Definition 

3.1.5, when 𝑞 = 3 as follows. 

𝑃+ = {
(𝒫1, 0.98,0.3), (𝒫2, 0.95,0.4), (𝒫3, 0.95,0.4), (𝒫4, 0.9,0.1), (𝒫5, 0.8,0.65),

(𝒫6, 0.94,0.38)
} 

𝑃− = {
(𝒫1, 0.5,0.2), (𝒫2, 0.7,0.8), (𝒫3, 0.7,0.5), (𝒫4, 0.6,0.3), (𝒫5, 0.65,0.87),

(𝒫6, 0.4,0.3)
} 

Step (ii): Furthermore, to compute the distance 𝒟+ = 𝜇𝒟 and  𝒟+ = 𝜓𝒟, between the 

alternatives and the q-ROF-PIS 𝑃+ and q-ROF-NIS 𝑃− when 𝑝 = 3; 

𝒟+ = 𝜇𝒟 =
0.12943

𝓀1
,
0.13642

𝓀2
,
0.14903

𝓀3
,
0.14129

𝓀4
,
0.13849

𝓀5
 

𝒟− = 𝜓𝒟 =
0.15782

𝓀1
,
0.10907

𝓀2
,
0.2201

𝓀3
,
0.11109

𝓀4
,
0.17627

𝓀5
 

Step (iii): Next, to determine the lower and upper approximation that is 

𝜇
𝒩𝒫
𝛽
(𝒟)
(𝓀𝑖), 𝜓𝒩𝒫

𝛽
(𝒟)
(𝓀𝑖), 𝜇

𝒩𝒫
𝛽
(𝒟)
(𝓀𝑖) and η

𝒩𝒫
𝛽
(𝒟)
(𝓀𝑖), 

First to compute q-ROF𝛽-neighborhood for each 𝓀𝑖 ∈ 𝑇 (𝑖 = 1,2, . . . ,5), and let the 

consistency threshold q-ROF 𝛽 = (0.8,0.4). Then  

𝒩𝒫(𝓀1)
(0.8,0.4) = 𝒫1 ∩ 𝒫3 ∩ 𝒫4,         𝒩𝒫(𝓀2)

(0.8,0.4) = 𝒫1,                         𝒩𝒫(𝓀3)
(0.8,0.4)

= 𝒫3 ∩ 𝒫4 ∩ 𝒫6, 

𝒩𝒫(𝓀4)
(0.8,0.4) = 𝒫1 ∩ 𝒫4,                   𝒩𝒫(𝓀5)

(0.8,0.4) = 𝒫2 ∩ 𝒫3 ∩ 𝒫6 

Further Table 3.4 for 𝒩𝒫
(0.8,0.4)

 

Now to compute  

𝜇
𝒩𝒫
𝛽
(𝒟)
(𝓀𝑖),    𝜓𝒩𝒫

𝛽
(𝒟)
(𝓀𝑖),     𝜇

𝒩𝒫
𝛽
(𝒟)
(𝓀𝑖)  𝑎𝑛𝑑   η

𝒩𝒫
𝛽
(𝒟)
(𝓀𝑖) 

𝜇
𝒩𝒫
𝛽
(𝒟)

=
0.12943

𝓀1
,
0.12943

𝓀2
,
0.12943

𝓀3
,
0.12943

𝓀4
,
0.12943

𝓀5
 

𝜓
𝒩𝒫
𝛽
(𝒟)

=
0.7

𝓀1
,
0.8

𝓀2
,
0.5

𝓀3
,
0.7

𝓀4
,
0.8

𝓀5
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Table 3.4,  Tabular representation of 𝒩𝒫
(0.8,0.4)

 

𝒩𝒫
(0.8,0.4)

 𝓀1 𝓀2 𝓀3 𝓀4 𝓀5 

𝓀1 (0.8,0.3) (0.6,0.5) (0.8,0.7) (0.7,0.4) (0.5,0.3) 

𝓀2 (0.7,0.4) (0.7,0.8) (0.7,0.2) (0.6,0.5) (0.59,0.4) 

𝓀3 (0.4,0.3) (0.6,0.5) (0.8,0.4) (0.4,0.4) (0.7,0.38) 

𝓀4 (0.9,0.3) (0.6,0.4) (0.8,0.7) (0.8,0.3) (0.5,0.2) 

𝓀5 (0.4,0.4) (0.6,0.8) (0.7,0.4) (0.4,0.5) (0.8,0.4) 

 

 

𝜇
𝒩𝒫
𝛽
(𝒟)

=
0.7

𝓀1
,
0.8

𝓀2
,
0.8

𝓀3
,
0.9

𝓀4
,
0.8

𝓀5
 

η
𝒩𝒫
𝛽
(𝒟)

=
0.10907

𝓀1
,
0.10907

𝓀2
,
0.10907

𝓀3
,
0.10907

𝓀4
,
0.10907

𝓀5
 

Step (iv): Now to compute the ranking function 𝑇𝔍(𝓀𝑖), and for this let the risk 

preference threshold 𝛼 = 0.75, where (0 < 𝛼 ≤ 1) as follows: 

𝑇𝔍 =
0.076550

𝓀1
,
0.084171

𝓀2
,
0.058484

𝓀3
,
0.080097

𝓀4
,
0.087149

𝓀5
 

Step (v): Finally, rank the obtained results and arranged them in a specific ordered to 

get the most desirable option from 𝓀𝑖. 

𝓀5 > 𝓀2 > 𝓀4 > 𝓀1 > 𝓀3 

Hence through the process of decision making finally we get most desirable applicant 

for the required position by the utilizing CBq-ROFRS model based on ℳ𝒜𝒟ℳ 

method. Hence, from the illustrative example it is observed that the 5𝑡ℎ candidate is 

the most desirable and perfect applicant for the required position. 

3.3.1. Comparative analysis 
Yager [16], developed the concept to PyFSs and presented an important model based 

on PyFWA operator to solve ℳ𝒞𝒟ℳ problems. On the same concept Zhang and Xu 

[76], presented TOPSIS to solve ℳ𝒞𝒟ℳ with PyF information. These methods fail to 

handle situations when the ℳ𝒢 is 0.9 and 𝒩ℳ𝒢 is 0.8. In this case (0.9)2 + (0.8)2 >

1 and the methods proposed in [16] and [76] fail to tackle the situation. The proposed  
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Table 3.5,  Comparative analysis of different methods 

 

𝑴𝒆𝒕𝒉𝒐𝒅𝒔 𝑺𝒄𝒐𝒓𝒆 𝒗𝒂𝒍𝒖𝒆𝒔 

𝓀1              𝓀2              𝓀3                      𝓀4                     𝓀5     
 

Ranking 

CFRSs [80]  𝐹𝑎𝑖𝑙 𝑡𝑜 ℎ𝑎𝑛𝑑𝑙𝑒 × 

CFRSs [89] 𝐹𝑎𝑖𝑙 𝑡𝑜 ℎ𝑎𝑛𝑑𝑙𝑒 × 

CIFRSs [90] 𝐹𝑎𝑖𝑙 𝑡𝑜 ℎ𝑎𝑛𝑑𝑙𝑒 × 

PyFSs [16] 𝐹𝑎𝑖𝑙 𝑡𝑜 ℎ𝑎𝑛𝑑𝑙𝑒 × 

PyFSs [76] 𝐹𝑎𝑖𝑙 𝑡𝑜 ℎ𝑎𝑛𝑑𝑙𝑒 × 

CBPyFRS(proposed) 𝐹𝑎𝑖𝑙 𝑡𝑜 ℎ𝑎𝑛𝑑𝑙𝑒 × 

CBq-ROFRS 

(proposed) 

0.076550   0.084171    0.058484      0.080097     0.087149 𝓀5 > 𝓀2 > 𝓀4

> 𝓀1 > 𝓀3 

 

method handle such situations very easily, for example (0.9)𝑞 + (0.8)𝑞 < 1 𝑓𝑜𝑟 𝑞 ≥

5. So from the analysis it is clear that the presented model is more suitable to meet a 

variety of situations by adjusting the values of 𝑞. Therefore the proposed method is the 

more superior than the methods proposed in [16] and [76] because the input range of 

developed model is more flexible, wider and suitable because when the rung increases, 

the orthopair provides additional space to the boundary constraint. Therefore the 

proposed method is more suitable because it provides more space to the decision maker 

in decision making problems. 

3.3.2. Conclusion 

ℳ𝒜𝒟ℳ has the high potential and discipline process to improve and evaluate multiple 

conflicting criteria in all areas of the decision making. A comprehensive model is 

originated to handle the 𝒟ℳ problems in which some energetic perspective are in 

support and against of some plans, entities or projects.  The investigated concept is 

interesting in that case, where the professionals have contradictions in their decision 

about some proposal or plan.  Therefore, a new technique is developed to investigate 

the hybrid notions of RS with q-ROFS by using the concept of fuzzy 𝛽-covering and 

fuzzy 𝛽- neighborhoods to get the new notion of CBq-ROFRS. Furthermore, by 

applying the developed concept of CBq-ROFRS on TOPSIS and presenting its 

application for ℳ𝒜𝒟ℳ. In real scenario CBq-ROFRS model is an important tools to 
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discuss the complex and uncertain information. This method has stronger capacity than 

IFS and PyFS to cope the uncertainty. From the analysis, it is clear that CBq-ROFRS 

degenerates into CBIFRS if the rung 𝑞 = 1 and degenerate into CBPyFRS if the 

rung 𝑞 = 2. Thus the proposed concept is generalization of CBIFRS and CBPyFyRS. 

Moreover, an illustrative example is presented to describe how the developed model 

helps us in 𝒟ℳ problems and a comparative study of the proposed model with some 

existing methods is presented which shows that the developed approach is more capable 

and superior than the existing methods. The comparative analysis of the developed 

model with existing methods is given in Table 3.5 by considering the above Illustrative 

Example. From Table 3.5 it is clear that the methods proposed in [80] and [89] are 

failed to handle situation because only handle the fuzzy ℳ𝒢 and having no information 

about 𝒩ℳ𝒢. Similarly the CIFRSs method proposed in [90] also failed to handle it due 

to the limitation on ℳ𝒢 and 𝒩ℳ𝒢 that their sum is less than or equal to 1. Analogously 

the methods proposed in [16, 76] and CPyFRSs are also failed to handle the situation 

due to the limitation on ℳ𝒢 and 𝒩ℳ𝒢 that their square sum is less than or equal to 1. 

The main advantages of the proposed method has the ability to cope these situations 

and provides a huge space and freedom to the decision makers to assign values freely 

by adjusting the value of 𝑞 and hence the method proposed in this paper is superior than 

existing methods. 
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Chapter 4 

Orthopair fuzzy soft average aggregation operators 

In 1999, Molodtsov investigated the pioneer notion of 𝑆𝑓𝑡S which provides a general 

framework for mathematical problems by affix parameterization tools during the 

analysis as compared to fuzzy set and q-ROFS. From the analysis of existing literature 

and best of our knowledge, there has been no research on the hybrid model of 𝑆𝑓𝑡S and 

q-ROFS that is q-rung orthopair fuzzy soft set (q-ROF𝑆𝑓𝑡S). Therefore, for the scope 

of future motive, the proposed concept has enough space for the new research. The aim 

of this chapter is to investigate the notion of q-ROF𝑆𝑓𝑡S, which plays a bridge role 

between these two notions. Therefore, our main contribution in this chapter is to 

investigate the q-ROF𝑆𝑓𝑡 weighted averaging (q-ROF𝑆𝑓𝑡WA), q-ROF𝑆𝑓𝑡 ordered 

weighted averaging (q-ROF𝑆𝑓𝑡OWA) and q-ROF𝑆𝑓𝑡 hybrid averaging (q-ROF𝑆𝑓𝑡HA) 

operators in q-ROF𝑆𝑓𝑡 environment. Further, the fundamental properties of these 

aggregation operators are studied. On the base of developed approach an algorithm for 

ℳ𝒞𝒟ℳ is being presented. An application of medical diagnosis problems is solved on 

the proposed algorithm under the q-ROF𝑆𝑓𝑡 environment. Finally, comparison between 

the developed operators with some existing operators are being presented showing the 

superiority and efficiency of the developed approach than the existing literature. 

4.1.  Pythagorean fuzzy soft set 

Yager [16] investigated the dominant concept of PyFS, in which the square sum of ℳ𝒢 

and 𝒩ℳ𝒢 belongs to [0,1]. The input range of PyFS is more flexible and provides 

additional space to the experts for selecting their decision choice. Here we will present 

the hybrid model of 𝑆𝑓𝑡S and PyFS that is Pythagorean fuzzy soft set (PyF𝑆𝑓𝑡S) which is 

defined as: 

4.1.1. Definition 

Consider a soft set (ℋ,𝔼) over a universe of discourse 𝑇. A pair (𝒯, 𝔼) is known to be 

a PyF𝑆𝑓𝑡S over 𝑇, where 𝒯 is a function given by 𝒯: 𝔼 → 𝑃𝑦𝐹𝑆(𝑇), which is given as 

𝒯𝑠𝑗(𝓀𝑖) = {≺ 𝓀𝑖, 𝜇𝑗(𝓀𝑖), 𝜓𝑗(𝓀𝑖) ≻ |𝓀𝑖 ∈ 𝑇 and 𝑠𝑗 ∈ 𝔼}, 

where 𝜇𝑗(𝓀𝑖), 𝜓𝑗(𝓀𝑖) denotes the ℳ𝒢 and 𝒩ℳ𝒢 of an object 𝓀𝑖 ∈ 𝑇 to the set 𝒯𝑠𝑗 

respectively, and satisfying the condition that 0 ≤ (𝜇𝑗(𝓀𝑖))
2

+ (𝜓𝑗(𝓀𝑖))
2

≤ 1. For 

simplicity 𝒯𝑠𝑗(𝓀𝑖) =≺ 𝓀𝑖, 𝜇𝑗(𝓀𝑖), 𝜓𝑗(𝓀𝑖) ≻ is denoted by ℑ𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗) is known 

as PyF soft value (PyF𝑆𝑓𝑡V). 
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4.1.2. Definition  

Let ℑ𝑠𝑖1 = (𝜇𝑖1, 𝜓𝑖1), ℑ𝑠𝑖2 = (𝜇𝑖2, 𝜓𝑖2) (𝑖 = 1, 2,… ,𝑚) be any two PyF𝑆𝑓𝑡Vs. Then 

the basic operations on them are given as follows: 

(i) ℑ𝑠𝑖1 ∪ ℑ𝑠𝑖2 = (𝓀𝑖,𝑚𝑎𝑥(𝜇1(𝓀𝑖), 𝜇2(𝓀𝑖)), 𝑚𝑖𝑛(𝜓1(𝓀𝑖), 𝜓2(𝓀𝑖))) for 𝓀𝑖 ∈

𝑇; 

(ii) ℑ𝑠11 ∩ ℑ𝑠12 = (𝓀𝑖, 𝑚𝑖𝑛(𝜇1(𝓀𝑖), 𝜇2(𝓀𝑖)),𝑚𝑎𝑥(𝜓1(𝓀𝑖), 𝜓2(𝓀𝑖))) for 𝓀𝑖 ∈

𝑇; 

(iii) ℑ𝑠𝑖1
𝑐 = (𝓀𝑖, 𝜓1(𝓀𝑖), 𝜇1(𝓀𝑖)), where ℑ𝑠𝑖1

𝑐
 denotes the complement of ℑ𝑠𝑖1; 

(iv) ℑ𝑠𝑖1 ⊆ ℑ𝑠𝑖2  𝑖𝑓 𝜇𝑖1(𝓀𝑖) ≤ 𝜇𝑖2(𝓀𝑖) 𝑎𝑛𝑑 𝜓𝑖1(𝓀𝑖) ≥ 𝜓𝑖2(𝓀𝑖) for all 𝓀𝑖 ∈ 𝑇; 

4.1.3. Definition 

Let ℑ𝑠11 = (𝜇1(𝓀1), 𝜓1(𝓀1)), ℑ𝑠12 = (𝜇2(𝓀1), 𝜓2(𝓀1)) be any two PyF𝑆𝑓𝑡Vs and 

𝜆 > 0. Then some basic operations are given below: 

(i) ℑ𝑠11⨁ℑ𝑠12 = (√𝜇1
2(𝓀1) + 𝜇2

2(𝓀1) − 𝜇1
2(𝓀1)𝜇2

2(𝓀1)  , 𝜓1(𝓀1)𝜓2(𝓀1)) ; 

(ii) ℑ𝑠11⨂ℑ𝑠12 = (𝜇1(𝓀1)𝜇2(𝓀1) , √𝜓1
2(𝓀1) + 𝜓2

2(𝓀1) − 𝜓1
2(𝓀1)𝜓2

2(𝓀1)) ; 

(iii) 𝜆ℑ𝑠11 = (√1 − [1 − 𝜇1
2(𝓀1)]𝜆, 𝜓1

𝜆(𝓀1)) ; 

(iv) ℑ𝑠11
𝜆 = (𝜇1

𝜆(𝓀1),√1 − [1 − 𝜓1
2(𝓀1)]

𝜆). 

4.2.  q-Rung orthopair fuzzy soft set 
Recently in 2017 Yager [27], investigated the prominent concepts of q-ROFS in which 

the sum of 𝑞𝑡ℎ power of ℳ𝒢 and 𝑞𝑡ℎ power of 𝒩ℳ𝒢 belongs to [0,1]. In this section, 

we will investigate the hybrid model of 𝑆𝑓𝑡S and q-ROFS that is q-ROF𝑆𝑓𝑡S and their 

desirable properties are discussed in detail. 

4.2.1. Definition 

Consider a 𝑆𝑓𝑡S (ℋ,𝔼) over a universal set 𝑇 and a pair (𝒯,𝒦) is known to be a q-

ROF𝑆𝑓𝑡S over 𝑇, where 𝒯 is a function given by 𝒯:𝔼 → 𝑞 − 𝑅𝑂𝐹𝑆(𝑇), which is defined 

as: 

𝒯𝑠𝑗(𝓀𝑖) = {≺ 𝓀𝑖, 𝜇𝑗(𝓀𝑖), 𝜓𝑗(𝓀𝑖) ≻𝑞 |𝓀𝑖 ∈ 𝑇, 𝑠𝑗 ∈ 𝔼 𝑎𝑛𝑑 𝑞 ≥ 1}, 

where 𝜇𝑗(𝓀𝑖), 𝜓𝑗(𝓀𝑖) denotes the ℳ𝒢 and 𝒩ℳ𝒢 of an object 𝓀𝑖 ∈ 𝑇 to the set 𝒯𝑠𝑗 

respectively, and satisfying the condition that 0 ≤ (𝜇𝑗(𝓀𝑖))
𝑞

+ (𝜓𝑗(𝓀𝑖))
𝑞

≤ 1 and 

𝑞 ≥ 1. For the simplicity 𝒯𝑠𝑗(𝓀𝑖) =≺ 𝓀𝑖, 𝜇𝑗(𝓀𝑖), 𝜓𝑗(𝓀𝑖) ≻𝑞, is denoted by ℑ𝑠𝑖𝑗 =

(𝜇𝑖𝑗 , 𝜓𝑖𝑗) which represents a q-ROF𝑆𝑓𝑡 value (q-ROF𝑆𝑓𝑡V). Moreover, the degree of 

hesitancy for q-ROF𝑆𝑓𝑡V is defined as 𝜋ℑ𝑠𝑖𝑗
= √1− ((𝜇𝑖𝑗)

𝑞
+ (𝜓𝑖𝑗)

𝑞
)

𝑞

 . The set of all 

q-ROF𝑆𝑓𝑡S on the set 𝑇 is represented by 𝑞 − 𝑅𝑂𝐹𝑆𝑓𝑡𝑆
(𝑇). 
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Let ℑ𝑠𝑖1 = (𝜇𝑖1, 𝜓𝑖1), ℑ𝑠𝑖2 = (𝜇𝑖2, 𝜓𝑖2) (𝑖 = 1, 2,… ,𝑚) be any two q-ROF𝑆𝑓𝑡Vs and 

𝜆 > 0. Then some basic operations on q-ROF𝑆𝑓𝑡Vs are given as follows: 

i. ℑ𝑠𝑖1 ∪ ℑ𝑠𝑖2 = (𝓀𝑖, (𝑚𝑎𝑥(𝜇1(𝓀𝑖), 𝜇2(𝓀𝑖)),𝑚𝑖𝑛(𝜓1(𝓀𝑖), 𝜓2(𝓀𝑖)))) for 𝓀𝑖 ∈

𝑇; 

ii. ℑ𝑠𝑖1 ∩ ℑ𝑠𝑖2 = (𝓀𝑖, (𝑚𝑖𝑛(𝜇1(𝓀𝑖), 𝜇2(𝓀𝑖)), 𝑚𝑎𝑥(𝜓1(𝓀𝑖), 𝜓2(𝓀𝑖)))) for 𝓀𝑖 ∈

𝑇; 

iii. ℑ𝑠𝑖1
𝑐 = (𝓀𝑖, (𝜓1(𝓀𝑖), 𝜇1(𝓀𝑖))), where ℑ𝑠𝑖1

𝑐  denotes the complement of ℑ𝑠𝑖1; 

iv. ℑ𝑠𝑖1 ≼ ℑ𝑠𝑖2  𝑖𝑓 𝜇1(𝓀𝑖) ≤ 𝜇2(𝓀𝑖), 𝜓1(𝓀𝑖) ≥ 𝜓2(𝓀𝑖) for all 𝓀𝑖 ∈ 𝑇; 

v. ℑ𝑠𝑖1⨁ℑ𝑠𝑖2 = (√𝜇1
𝑞(𝓀𝑖) + 𝜇2

𝑞(𝓀𝑖) − 𝜇1
𝑞(𝓀𝑖)𝜇2

𝑞(𝓀𝑖)
𝑞

  , 𝜓1
𝑞(𝓀𝑖)𝜓2

𝑞(𝓀𝑖)); 

vi. ℑ𝑠𝑖1⨂ℑ𝑠𝑖2 = (𝜇1(𝓀𝑖)𝜇2(𝓀𝑖) , √𝜓1
𝑞(𝓀𝑖) + 𝜓2

𝑞(𝓀𝑖) − 𝜓1
𝑞(𝓀𝑖)𝜓2

𝑞(𝓀𝑖)
𝑞

 ); 

vii. 𝜆ℑ𝑠𝑖1 = (√1− [1 − 𝜇𝑖1
𝑞 (𝓀𝑖)]

𝜆𝑞

, 𝜓𝑖1
𝜆 (𝓀𝑖)); 

viii. ℑ𝑖1
𝜆 = (𝜇𝑖1

𝜆 (𝓀𝑖) , √1 − [1 − 𝜓𝑖1
𝑞 (𝓀𝑖)]

𝜆𝑞

 ). 

4.2.2. Example 

Consider that a person wants to buy a cellphone form the set under consideration of 

five possible alternatives that is 𝑇 = {𝓀1, 𝓀2, 𝓀3, 𝓀4, 𝓀5}. Let 𝔼 = {𝑠1, 𝑠2, 𝑠3, 𝑠4} be the 

corresponding set of parameters, where 𝑠1 = high quality audio, video and voice call, 

𝑠2 = impressive design with high resolution camera, 𝑠3 = high battery timing, 𝑠4 = 

reasonable price. On the basis of above criteria a decision maker evaluate the 

alternatives with rating values and described the result in the form of q-ROF𝑆𝑓𝑡Vs as 

given in Table 4.1;  

 

Table 4.1.  tabular representation of q-ROF𝑆𝑓𝑡S (𝔍,𝒦);  for 𝑞 ≥ 3 

𝑇 𝑠1 𝑠2 𝑠3 𝑠4 

𝓀1 (0.9, 0.5) (0.8, 0.4) (0.6, 0.3) (0.95, 0.4) 

𝓀2 (0.8, 0.2) (0.5, 0.1) (0.7, 0.6) (0.8, 0.3) 

𝓀3 (0.93, 0.2) (0.7, 0.3) (0.5, 0.4) (0.75, 0.4) 

𝓀4 (0.7, 0.4) (0.8, 0.6) (0.93, 0.2) (0.7, 0.2) 

𝓀5 (0.82, 0.6) (0.9, 0.4) (0.7, 0.1) (0.92, 0.45) 
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4.2.3. Definition 

Consider ℑ𝑠11 = (𝜇11, 𝜓11) be a q-ROF𝑆𝑓𝑡V. Then the score function for ℑ𝑠11 can be 

given as,  

𝒮𝑐(ℑ𝑠11) = 𝜇11
𝑞
−𝜓11

𝑞
+ (

𝑒𝜇11
𝑞
−𝜓11

𝑞

𝑒𝜇11
𝑞
−𝜓11

𝑞
+1
−

1

2
) 𝜋ℑ𝑠11

𝑞
 for 𝑞 ≥ 1 and 𝑆(ℑ𝑠11) ∈ [−1,1]. 

Let ℑ𝑠11 = (𝜇11, 𝜓11)  𝑎𝑛𝑑   ℑ𝑠12 = (𝜇12, 𝜓12) be two q-ROF𝑆𝑓𝑡Vs. Then 

(i) If 𝒮𝑐(ℑ𝑠11) > 𝒮𝑐(ℑ𝑠12), then ℑ𝑠11 ≽ ℑ𝑠12; 

(ii) If 𝒮𝑐(ℑ𝑠11) < 𝒮𝑐(ℑ𝑠12), then ℑ𝑠11 ≼ ℑ𝑠12; 

(iii) If 𝒮𝑐(ℑ𝑠11) = 𝒮𝑐(ℑ𝑠12), then  

(a) If 𝜋ℑ𝑠11
𝑞

> 𝜋ℑ𝑠12
𝑞

 then ℑ𝑠11 ≺ ℑ𝑠12; 

(b) If 𝜋ℑ𝑠11
𝑞

= 𝜋ℑ𝑠12
𝑞

 then ℑ𝑠11 = ℑ𝑠12. 

4.2.4. Theorem 

Let ℑ𝑠11 = (𝜇11, 𝜓11), ℑ𝑠12 = (𝜇12, 𝜓12) be any two q-ROF𝑆𝑓𝑡Vs and 𝜆, 𝜆1, 𝜆2 > 0. 

Then the following properties are holds: 

(i) ℑ𝑠11⨁  ℑ𝑠12 = ℑ𝑠12⨁  ℑ𝑠11; 

(ii) ℑ𝑠11⨂  ℑ𝑠12 = ℑ𝑠12⨂  ℑ𝑠11; 

(iii) 𝜆(ℑ𝑠11 ⨁ ℑ𝑠12) = 𝜆ℑ𝑠11⨁  𝜆ℑ𝑠12; 

(iv) (𝜆1 + 𝜆2)ℑ𝑠11 = 𝜆1ℑ𝑠11  ⨁ 𝜆2ℑ𝑠11; 

(v) ℑ𝑠11
(𝜆1+𝜆2) = ℑ𝑠11

𝜆1 ⨂ ℑ𝑠11
𝜆2 ; 

(vi) ℑ𝑠11
𝜆 ⨂ ℑ𝑠12

𝜆 =  (ℑ𝑠11⨂  ℑ𝑠11)
𝜆
. 

Proof.  Proofs are straightforward. 

4.3.   q-Rung orthopair fuzzy soft average aggregation operator 

In this section, we present the detail study of q-ROF𝑆𝑓𝑡WA, q-ROF𝑆𝑓𝑡OWA and q-

ROF𝑆𝑓𝑡HA operators and also discuss some of their related properties in detail. 

4.3.1. q-Rung orthopair fuzzy soft weighted averaging operators 
In this subsection, we investigate q-ROF𝑆𝑓𝑡WA operator and some of their basic 

properties. 

4.3.1.1.  Definition 

Let ℑ𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗) 𝑓𝑜𝑟 𝑖 = 1,2,… , 𝑛 𝑎𝑛𝑑 𝑗 = 1,2,… ,𝑚, be the collection of q-

ROF𝑆𝑓𝑡Vs, and consider the weight vectors 𝑤̿ = {𝑤̿1, 𝑤̿2, … , 𝑤̿𝑛} 𝑎𝑛𝑑 𝑢̿ =

{𝑢̿1, 𝑢̿2, … , 𝑢̿𝑚} for the experts 𝓀𝑖  and for the parameters 𝑠𝑗′𝑠 respectively; and having 

the conditions that 𝑤̿𝑖 , 𝑢̿𝑗 ∈ [0,1] with ∑ 𝑤̿𝑖
𝑛
𝑖=1 = 1 𝑎𝑛𝑑 ∑ 𝑢̿𝑗

𝑚
𝑗=1 = 1. Then the 

mapping for q-ROF𝑆𝑓𝑡WA operator is defined as: q − ROF𝑆𝑓𝑡WA: X
𝑛 → 𝑋, (where 𝑋 

is the collections of all q-ROF𝑆𝑓𝑡Vs) 
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q − ROF𝑆𝑓𝑡WA(ℑ𝑠11 , ℑ𝑠12 , … , ℑ𝑠𝑛𝑚) = ⨁𝑗=1
𝑚 𝑢̿𝑗 (⨁𝑖=1

𝑛 𝑤̿𝑖ℑ𝑠𝑖𝑗). 

The aggregated result for q-ROF𝑆𝑓𝑡WA operator is described in the following Theorem 

4.3.1.2. 

 

4.3.1.2. Theorem 

Let ℑ𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗) 𝑓𝑜𝑟 𝑖 = 1,2,… , 𝑛 𝑎𝑛𝑑 𝑗 = 1,2,… ,𝑚, be the collections of q-

ROF𝑆𝑓𝑡Vs. Then the aggregated result for q-ROF𝑆𝑓𝑡WA operator is given as: 

q − ROF𝑆𝑓𝑡WA(ℑ𝑠11 , ℑ𝑠12 , … , ℑ𝑠𝑛𝑚) = ⨁𝑗=1
𝑚 𝑢̿𝑗 (⨁𝑖=1

𝑛 𝑤̿𝑖ℑ𝑠𝑖𝑗) 

=

(

 √1 −∏(∏(1− 𝜇𝑖𝑗
𝑞
)𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

𝑞

 ,∏(∏𝜓𝑖𝑗
𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1
)

 ,                                                     (4.1) 

where 𝑤̿ = {𝑤̿1, 𝑤̿2, … , 𝑤̿𝑛} be the weight vector for the experts 𝓀𝑖  and 𝑢̿ =
{𝑢̿1, 𝑢̿2, … , 𝑢̿𝑚} be the weight vector for the parameters 𝑠𝑗′𝑠 respectively; and having 

the conditions that 𝑤̿𝑖 , 𝑢̿𝑗 ∈ [0,1] with ∑ 𝑤̿𝑖
𝑛
𝑖=1 = 1 𝑎𝑛𝑑 ∑ 𝑢̿𝑗

𝑚
𝑗=1 = 1. 

Proof.  Consider mathematical induction to prove the given result. 

As we know by operation laws, that 

ℑ𝑠11⨁ℑ𝑠12 = (√(𝜇11)𝑞 + (𝜇12)𝑞 − (𝜇11)𝑞(𝜇12)𝑞
𝑞

  , 𝜓11𝜓12)   𝑎𝑛𝑑 

𝜆ℑ = (√1 − [1 − 𝜇𝑞]𝜆
𝑞

, 𝜓𝜆)      𝑓𝑜𝑟 𝜆 ≥ 1 

First we will show that the 𝐸𝑞. (4.1) is true for 𝑛 = 2  𝑎𝑛𝑑  𝑚 = 2, so we have  

q − ROF𝑆𝑓𝑡WA(ℑ𝑠11 , ℑ𝑠12) = ⨁𝑗=1
2 𝑢̿𝑗 (⨁𝑖=1

2 𝑤̿𝑖ℑ𝑠𝑖𝑗) 

= 𝑢̿1(⨁𝑖=1
2 𝑤̿𝑖ℑ𝑠𝑖1)⨁𝑢̿2(⨁𝑖=1

2 𝑤̿𝑖ℑ𝑠𝑖2) 

= 𝑢̿1(𝑤̿1ℑ𝑠11⨁𝑤̿2ℑ𝑠21)⨁𝑢̿2(𝑤̿1ℑ𝑠12⨁𝑤̿2ℑ𝑠22) 

= 𝑢̿1 {(√1 − (1 − 𝜇11
𝑞 )

𝑤̿1
𝑞

, 𝜓11
𝑤̿1  )⨁(√1 − (1 − 𝜇21

𝑞 )
𝑤̿2

𝑞

, 𝜓21
𝑤̿2)}⨁ 

𝑢̿2 {(√1 − (1 − 𝜇12
𝑞 )

𝑤̿1
𝑞

, 𝜓12
𝑤̿1  )⨁(√1 − (1 − 𝜇22

𝑞 )
𝑤̿2

𝑞

, 𝜓22
𝑤̿2)} 

= 𝑢̿1

(

 √1 −∏(1 − 𝜇𝑖1
𝑞
)
𝑤̿𝑖

2

𝑖=1

𝑞

,∏𝜓𝑖1
𝑤̿𝑖

2

𝑖=1

 

)

 ⨁𝓋2

(

 √1 −∏(1 − 𝜇𝑖2
𝑞
)
𝑤̿𝑖

2

𝑖=1

𝑞

,∏𝜓𝑖2
𝑤̿𝑖

2

𝑖=1

 

)
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=

(

 
 
√1 − (∏(1 − 𝜇𝑖1

𝑞 )
𝑤̿𝑖

2

𝑖=1

)

𝑢1𝑞

, (∏𝜓𝑖1
𝑤̿𝑖

2

𝑖=1

)

𝑢1

 

)

 
 
⨁

(

 
 
 
 
 √1 − (∏(1 − 𝜇𝑖2

𝑞 )
𝑤̿𝑖

2

𝑖=1

)

𝑢2𝑞

,

(∏𝜓𝑖2
𝑤̿𝑖

2

𝑖=1

)

𝑢2

 
)

 
 
 
 
 

 

=

(

 
 
√1 −∏(∏(1− 𝜇𝑖𝑗

𝑞
)
𝑤̿𝑖

2

𝑖=1

)

𝑢𝑗2

𝑗=1

𝑞

,∏(∏𝜓𝑖𝑗
𝑤̿𝑖

2

𝑖=1

)

𝑢𝑗2

𝑗=1

 

)

 
 

 

Hence the result is true for 𝑛 = 2  𝑎𝑛𝑑  𝑚 = 2, 

Next suppose that 𝐸𝑞. (4.1) is true for 𝑛 = 𝑘1  𝑎𝑛𝑑  𝑚 = 𝑘2 

q − ROF𝑆𝑓𝑡WA(ℑ𝑠11 , ℑ𝑠12 , … , ℑ𝑠𝑘1𝑘2
) = ⨁𝑗=1

𝑘2 𝑢̿𝑗 (⨁𝑖=1
𝑘1 𝑤̿𝑖ℑ𝑠𝑖𝑗) 

=

(

 
 
√1 −∏(∏(1− 𝜇𝑖𝑗

𝑞
)
𝑤̿𝑖

𝑘1

𝑖=1

)

𝑢𝑗𝑘2

𝑗=1

𝑞

,∏(∏𝜓𝑖𝑗
𝑤̿𝑖

𝑘1

𝑖=1

)

𝑢𝑗𝑘2

𝑗=1

 

)

 
 

 

We show that 𝐸𝑞. (4.1) is true for 𝑛 = 𝑘1 + 1  𝑎𝑛𝑑  𝑚 = 𝑘2 + 1 

q − ROF𝑆𝑓𝑡WA(ℑ𝑠11 , ℑ𝑠12 , … , ℑ𝑠𝑘1𝑘2 , ℑ𝑠(𝑘1+1)(𝑘2+1)
) =

{⨁𝑗=1
𝑘2 𝑢̿𝑗 (⨁𝑖=1

𝑘1 𝑤̿𝑖ℑ𝑠𝑖𝑗)}⨁ 𝑢̿(𝑘1+1) (𝑤̿(𝑘2+1)ℑ𝑠(𝑘1+1)(𝑘2+1)
)  

=

(

 
 
√1 −∏(∏(1− 𝜇𝑖𝑗

𝑞 )
𝑤̿𝑖

𝑘1

𝑖=1

)

𝑢̿𝑗𝑘2

𝑗=1

𝑞

,∏(∏𝜓𝑖𝑗
𝑤̿𝑖

𝑘1

𝑖=1

)

𝑢̿𝑗𝑘2

𝑗=1

 

)

 
 
⨁ 𝑢̿(𝑘1+1) (𝑤̿(𝑘2+1)ℑ𝑠(𝑘1+1)(𝑘2+1)

) 

=

(

 
 
√1 − ∏ ( ∏ (1− 𝜇𝑖𝑗

𝑞
)
𝑤̿𝑖

(𝑘1+1)

𝑖=1

)

𝑢𝑗(𝑘2+1)

𝑗=1

𝑞

, ∏ ( ∏ 𝜓𝑖𝑗
𝑤̿𝑖

(𝑘1+1)

𝑖=1

)

𝑢𝑗(𝑘2+1)

𝑗=1

 

)

 
 

 

Hence 𝐸𝑞. (4.1) is true for 𝑛 = 𝑘1 + 1  𝑎𝑛𝑑  𝑚 = 𝑘2 + 1. Therefore, by mathematical 

induction the 𝐸𝑞. (4.1) is true for all 𝑚, 𝑛 ≥ 1. 

Moreover, to show that the aggregated result achieved from q-ROF𝑆𝑓𝑡WA operator is 

also a q-ROF𝑆𝑓𝑡V. Now for any ℑ𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗), (𝑖 = 1, 2,… , 𝑛) 𝑎𝑛𝑑 (𝑗 =

1, 2, … ,𝑚), where 0 ≤ 𝜇𝑖𝑗 , 𝜓𝑖𝑗 ≤ 1, satisfying that 0 ≤ 𝜇𝑖𝑗
𝑞
+𝜓𝑖𝑗

𝑞
≤ 1, with weight 

vectors 𝑤̿ = {𝑤̿1, 𝑤̿2, … , 𝑤̿𝑛} and 𝑢̿ = {𝑢̿1, 𝑢̿2, … , 𝑢̿𝑚} for the experts 𝓀𝑖  and for the 

parameters 𝑠𝑗′𝑠 respectively; and having the conditions that 𝑤̿𝑖 , 𝑢̿𝑗 ∈ [0,1] with 

∑ 𝑤̿𝑖
𝑛
𝑖=1 = 1 𝑎𝑛𝑑 ∑ 𝑢̿𝑗

𝑚
𝑗=1 = 1. 
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As  0 ≤ 𝜇𝑖𝑗 ≤ 1 ⇒ 0 ≤ 1 − 𝜇𝑖𝑗 ≤ 1 ⇒ 0 ≤ (1 − 𝜇𝑖𝑗
𝑞 )

𝑤̿𝑖
≤ 1 

⇒ 0 ≤∏(1 − 𝜇𝑖𝑗
𝑞 )

𝑤̿𝑖

𝑛

𝑖=1

≤ 1 ⇒ 0 ≤∏(∏(1 − 𝜇𝑖𝑗
𝑞 )

𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

≤ 1 

⇒ 0 ≤ √1 −∏(∏(1− 𝜇𝑖𝑗
𝑞
)
𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

𝑞

≤ 1 

Similarly, 

0 ≤ 𝜓𝑖𝑗 ≤ 1 ⇒ 0 ≤∏𝜓𝑖𝑗
𝑤̿𝑖

𝑛

𝑖=1

≤ 1 ⇒ 0 ≤∏(∏𝜓𝑖𝑗
𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

≤ 1 

As 

𝜇𝑖𝑗
𝑞
+ 𝜓𝑖𝑗

𝑞
≤ 1 ⇒ 𝜓𝑖𝑗

𝑞
≤ 1 − 𝜇𝑖𝑗

𝑞
⇒∏(𝜓𝑖𝑗

𝑞 )
𝑤̿𝑖

𝑛

𝑖=1

≤ (∏(1 − 𝜇𝑖𝑗
𝑞 )

𝑤̿𝑖

𝑛

𝑖=1

) 

⇒ (∏(∏𝜓𝑖𝑗
𝑞

𝑛

𝑖=1

)

𝑤̿𝑖𝑚

𝑗=1

)

𝑢𝑗

≤∏(∏(1 − 𝜇𝑖𝑗
𝑞 )

𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

                      

⇒ (∏(∏𝜓𝑖𝑗
𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

)

𝑞

≤∏(∏(1 − 𝜇𝑖𝑗
𝑞 )

𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

                          (4.2) 

Now we have 

0 ≤

{
 

 
√1 −∏(∏(1− 𝜇𝑖𝑗

𝑞
)
𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

𝑞

  

}
 

 
𝑞

+ {∏(∏𝜓𝑖𝑗
𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

}

𝑞

 

by 𝐸𝑞. (4.2), we have 

≤ 1 −∏(∏(1 − 𝜇𝑖𝑗
𝑞 )

𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

+∏(∏(1 − 𝜇𝑖𝑗
𝑞 )

𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

= 1 

Therefore, 

0 ≤

{
 

 
√1 −∏(∏(1− 𝜇𝑖𝑗

𝑞
)
𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

𝑞

  

}
 

 
𝑞

+ {∏(∏𝜓𝑖𝑗
𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

}

𝑞

≤ 1 

Hence, it is proved that the aggregated result achieved from q-ROF𝑆𝑓𝑡WA operator is 

also a q-ROF𝑆𝑓𝑡V. 

4.3.1.3. Remark  
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(a) If the value of 𝑞 is fixed, that is 𝑞 = 1, then the proposed q-ROF𝑆𝑓𝑡WA operator 

reduces to IF𝑆𝑓𝑡WA operator. 

(b) If the value of 𝑞 is fixed, that is 𝑞 = 2, then the proposed q-ROF𝑆𝑓𝑡WA operator 

reduces to PyF𝑆𝑓𝑡WA operator. 

(c) If there is only one parameter, that is 𝑠1 (mean 𝑚 = 1), then the proposed q-

ROF𝑆𝑓𝑡WA operator reduces to q-ROFWA operator. 

Hence from Remark 4.3.1.3, it is clear that the developed q-ROF𝑆𝑓𝑡WA operators is 

the generalized case of IFWA, IF𝑆𝑓𝑡WA and PyF𝑆𝑓𝑡WA operators. 

4.3.1.4. Example 

Suppose Mr. X wants to purchase a house from the set of five houses in the domain 

set 𝑇 = {𝓀1, 𝓀2, 𝓀3, 𝓀4, 𝓀5} and let 𝔼 = {𝑠1, 𝑠2, 𝑠3, 𝑠4} be the set of criterion 

(parameters), i.e. 𝑠𝑖  (𝑖 = 1,2,3,4) stands for 𝑠1 = beautiful, 𝑠2 = in green surrounding, 

𝑠3 = expenxive, 𝑠4 = safety respectively. Suppose the weight vectors 𝑤̿ =
(0.24,0.23,0.22,0.15,0.16)𝑇 and 𝑢̿ = (0.28,0.19,0.3,0.23)𝑇 for the experts 𝓀𝑖  and for 

the parameters 𝑠𝑗′𝑠 respectively. The experts provide their evaluation for each house to 

their corresponding criterion (parameters) in the form of q-ROF𝑆𝑓𝑡Vs, which is 

presented in Table 4.2. 

By using 𝐸𝑞. (4.1), we have 

q − ROF𝑆𝑓𝑡WA(ℑ𝑠11 , ℑ𝑠12 , … , ℑ𝑠54)

=

(

 √1 −∏(∏(1 − 𝜇𝑖𝑗
𝑞
)𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

𝑞

 ,∏(∏𝜓𝑖𝑗
𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1
)

  

=

(

 
 
 
 
 
 
 

√
  
  
  
  
  
  
  
  
  
  

1 − {
(1 − 0.883)0.24(1 − 0.963)0.23(1 − 0.913)0.22

(1 − 0.753)0.15(1 − 0.823)0.16
}
0.28

{
(1 − 0.83)0.24(1 − 0.753)0.23(1 − 0.93)0.22(1 − 0.853)0.15

(1 − 0.93)0.16
}
0.19

{
(1 − 0.653)0.24(1 − 0.773)0.23(1 − 0.863)0.22(1 − 0.933)0.15

(1 − 0.783)0.16
}
0.3

{
(1 − 0.933)0.24(1 − 0.873)0.23(1 − 0.73)0.22(1 − 0.93)0.15

(1 − 0.943)0.16
}
0.23

,

3

 

{
(0.40.24)(0.20.23)(0.40.22)(0.60.15)

(0.50.16)
}
0.28

{
(0.40.24)(0.30.23)(0.30.22)

(0.450.15)(0.330.16)
}
0.19

{
(0.250.24)(0.40.23)(0.340.22)(0.20.15)

(0.30.16)
}
0.3

{
(0.320.24)(0.250.23)(0.50.22)

(0.20.15)(0.450.16)
}
0.23

)

 
 

 

= (0.866891, 0.334196). 
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In the following, in view of Theorem 4.3.1.2 some properties of the developed q-

ROF𝑆𝑓𝑡WA operator for the collections of q-ROF𝑆𝑓𝑡Vs ℑ𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗), (𝑖 =

1, 2, … , 𝑛) 𝑎𝑛𝑑 (𝑗 = 1, 2, … ,𝑚), is being presented. 

Table 4.2,  Tabular representation of q-ROF𝑆𝑓𝑡S (𝔍,𝒦) for q ≥ 3 

𝑇 𝑠1 𝑠2 𝑠3 𝑠4 

𝓀1 (0.88, 0.4) (0.8, 0.4) (0.65, 0.25) (0.93, 0.32) 

𝓀2 (0.96, 0.2) (0.75, 0.3) (0.77, 0.4) (0.87, 0.25) 

𝓀3 (0.91, 0.4) (0.9, 0.3) (0.86, 0.34) (0.7, 0.5) 

𝓀4 (0.7, 0.6) (0.85, 0.45) (0.93, 0.2) (0.9, 0.2) 

𝓀5 (0.82, 0.5) (0.9, 0.33) (0.78, 0.3) (0.94, 0.45) 
 

 

4.3.1.5. Theorem 

Suppose the collections of q-ROF𝑆𝑓𝑡Vs ℑ𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗), (𝑖 = 1, 2, … , 𝑛) 𝑎𝑛𝑑 (𝑗 =

1, 2, … ,𝑚), with weight vectors 𝑤̿ = (𝑤̿1, 𝑤̿2, … , 𝑤̿𝑛)
𝑇 and 𝑢̿ = (𝑢̿1, 𝑢̿2, … , 𝑢̿𝑚)

𝑇 for 

the experts 𝓀𝑖  and for the parameters 𝑠𝑗′𝑠 respectively, such that 𝑤̿𝑖 , 𝑢̿𝑗 ∈ [0,1] with 

∑ 𝑤̿𝑖
𝑛
𝑖=1 = 1 𝑎𝑛𝑑 ∑ 𝑢̿𝑗

𝑚
𝑗=1 = 1. Then the q-ROF𝑆𝑓𝑡WA operator holds the following 

properties: 

𝒊: (𝑰𝒅𝒆𝒎𝒑𝒐𝒕𝒆𝒏𝒄𝒚): If ℑ𝑠𝑖𝑗 = ℰ𝑠 , (∀ 𝑖 = 1,2,… , 𝑛 𝑎𝑛𝑑 𝑗 = 1,2,… ,𝑚), where ℰ𝑠 =

(𝑏,𝒹), then 

q − ROF𝑆𝑓𝑡WA(ℑ𝑠11 , ℑ𝑠12 , … , ℑ𝑠𝑛𝑚) = ℰ𝑠. 

𝒊𝒊: (𝑩𝒐𝒖𝒏𝒅𝒆𝒅𝒏𝒆𝒔𝒔): If ℑ𝑠𝑖𝑗
− = (min

𝑗
min
𝑖
{𝜇𝑖𝑗} , max

𝑗
max
𝑖
{𝜓𝑖𝑗}) and 

ℑ𝑠𝑖𝑗
+ = (max

𝑗
max
𝑖
{𝜇𝑖𝑗} , min

𝑗
min
𝑖
{𝜓𝑖𝑗}), then 

ℑ𝑠𝑖𝑗
− ≤  q − ROF𝑆𝑓𝑡WA(ℑ𝑠11 , ℑ𝑠12 , … , ℑ𝑠𝑛𝑚) ≤ ℑ𝑠𝑖𝑗

+ . 

𝒊𝒊𝒊: (𝑴𝒐𝒏𝒐𝒕𝒐𝒏𝒊𝒄𝒊𝒕𝒚): If ℰ𝑠𝑖𝑗 = (𝑏𝑖𝑗 , 𝒹𝑖𝑗), (𝑖 = 1, 2,… , 𝑛) 𝑎𝑛𝑑 (𝑗 = 1, 2,… ,𝑚), be 

the another collection of q-ROF𝑆𝑓𝑡Vs such that 𝜇𝑖𝑗 ≤ 𝑏𝑖𝑗  𝑎𝑛𝑑 𝜓𝑖𝑗 ≥ 𝒹𝑖𝑗 , then 

q − ROF𝑆𝑓𝑡WA(ℑ𝑠11 , ℑ𝑠12 , … , ℑ𝑠𝑛𝑚) ≤ q − ROF𝑆𝑓𝑡WA(ℰ𝑠11 , ℰ𝑠12 , … , ℰ𝑠𝑛𝑚). 

𝒊𝒗: (𝑺𝒉𝒊𝒇𝒕 𝑰𝒏𝒗𝒂𝒓𝒊𝒂𝒏𝒄𝒆): If ℰ̃𝑠 = (𝑏, 𝒹), is another q-ROF𝑆𝑓𝑡V, then 

q − ROF𝑆𝑓𝑡WA(ℑ𝑠11⨁ℰ𝑠, ℑ𝑠12⨁ℰ𝑠, … , ℑ𝑠𝑛𝑚⨁ℰ𝑠)

= q − ROF𝑆𝑓𝑡WA(ℑ𝑠11 , ℑ𝑠12 , … , ℑ𝑠𝑛𝑚)⨁ℰ𝑠. 

𝒊𝒗: (𝑯𝒐𝒎𝒐𝒈𝒆𝒏𝒆𝒊𝒕𝒚): If 𝜆 is any real number such that 𝜆 > 0, then 

q − ROF𝑆𝑓𝑡WA(𝜆ℑ𝑠11 , 𝜆ℑ𝑠12 , … , 𝜆ℑ𝑠𝑛𝑚) = 𝜆q − ROF𝑆𝑓𝑡WA(ℑ𝑠11 , ℑ𝑠12 , … , ℑ𝑠𝑛𝑚). 
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𝑷𝒓𝒐𝒐𝒇. 𝒊: (𝑰𝒅𝒆𝒎𝒑𝒐𝒕𝒆𝒏𝒄𝒚) As it is given that if for all ℑ𝑠𝑖𝑗 = ℰ𝑠 = (𝑏, 𝒹) (∀ 𝑖 =

1,2,… , 𝑛 𝑎𝑛𝑑 𝑗 = 1,2, … ,𝑚), then from Eq. 4.1, we have 

q − ROF𝑆𝑓𝑡WA(ℑ𝑠11 , ℑ𝑠12 , … , ℑ𝑠𝑛𝑚)

=

(

 √1 −∏(∏(1− 𝜇𝑖𝑗
𝑞
)
𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

𝑞

 ,∏(∏𝜓𝑖𝑗
𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1
)

  

                            =

(

 √1 −∏(∏(1− 𝑏𝑞)𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

𝑞

 ,∏(∏𝒹𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1
)

  

                           = (√1 − ((1 − 𝑏𝑞)∑ 𝑤̿𝑖
𝑛
𝑖=1 )

∑ 𝑢𝑗
𝑚
𝑗=1

𝑞

 , (𝒹∑ 𝑤̿𝑖
𝑛
𝑖=1 )

∑ 𝑢𝑗
𝑚
𝑗=1

) 

                          = (√1 − (1 − 𝑏𝑞)
𝑞

 , 𝒹) = (𝑏 , 𝒹) = ℰ̃𝑠 

Therefore, q − ROF𝑆𝑓𝑡WA(ℑ𝑠11 , ℑ𝑠12 , … , ℑ𝑠𝑛𝑚) = ℰ𝑠. 

𝒊𝒊: (𝑩𝒐𝒖𝒏𝒅𝒆𝒅𝒏𝒆𝒔𝒔) As ℑ𝑠𝑖𝑗
− = (min

𝑗
min
𝑖
{𝜇𝑖𝑗} , max

𝑗
max
𝑖
{𝜓𝑖𝑗}) and ℑ𝑠𝑖𝑗

+ =

(max
𝑗
max
𝑖
{𝜇𝑖𝑗} , min

𝑗
min
𝑖
{𝜓𝑖𝑗}). To prove that ℑ𝑠𝑖𝑗

− ≤  q − ROF𝑆𝑓𝑡WA(ℑ𝑠11 , ℑ𝑠12 , … ,

ℑ𝑠𝑛𝑚) ≤ ℑ𝑠𝑖𝑗
+ , 

Now for each 𝑖 = 1,2,… , 𝑛 𝑎𝑛𝑑 𝑗 = 1,2,… ,𝑚, we have 

min
𝑗
min
𝑖
{𝜇𝑖𝑗} ≤ 𝜇𝑖𝑗 ≤ max

𝑗
max
𝑖
{𝜇𝑖𝑗} ⇔ 1 − max

𝑗
max
𝑖
{𝜇𝑖𝑗

𝑞 } ≤ 1 − 𝜇𝑖𝑗
𝑞

≤ 1 − min
𝑗
min
𝑖
{𝜇𝑖𝑗

𝑞 } 

⇔∏(∏(1− max
𝑗
max
𝑖
{𝜇𝑖𝑗

𝑞 })
𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

≤∏(∏(1 − 𝜇𝑖𝑗
𝑞 )

𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

≤∏(∏(1 −min
𝑗
min
𝑖
{𝜇𝑖𝑗

𝑞 })
𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

 

⇔ ((1 −max
𝑗
max
𝑖
{𝜇𝑖𝑗

𝑞 })
∑ 𝑤̿𝑖
𝑛
𝑖=1

)

∑ 𝑢𝑗
𝑚
𝑗=1

≤∏(∏(1 − 𝜇𝑖𝑗
𝑞 )

𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

≤ ((1 − min
𝑗
min
𝑖
{𝜇𝑖𝑗

𝑞 })
∑ 𝑤̿𝑖
𝑛
𝑖=1

)

∑ 𝑢𝑗
𝑚
𝑗=1

 

⇔ (1 − max
𝑗
max
𝑖
{𝜇𝑖𝑗

𝑞 }) ≤∏(∏(1 − 𝜇𝑖𝑗
𝑞 )

𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

≤ (1 −min
𝑗
min
𝑖
{𝜇𝑖𝑗

𝑞 }) 
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⇔ 1− (1 − min
𝑗
min
𝑖
{𝜇𝑖𝑗

𝑞 }) ≤ 1 −∏(∏(1 − 𝜇𝑖𝑗
𝑞 )

𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

≤ 1 − (1 − max
𝑗
max
𝑖
{𝜇𝑖𝑗

𝑞
}) 

Hence 

min
𝑗
min
𝑖
{𝜇𝑖𝑗} ≤ √1 −∏(∏(1− 𝜇𝑖𝑗

𝑞
)
𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

𝑞

≤ max
𝑗
max
𝑖
{𝜇𝑖𝑗}                           (4.3) 

Next for each 𝑖 = 1,2,… , 𝑛 𝑎𝑛𝑑 𝑗 = 1,2,… ,𝑚, we have 

min
𝑗
min
𝑖
{𝜓𝑖𝑗} ≤ 𝜓𝑖𝑗 ≤ max

𝑗
max
𝑖
{𝜓𝑖𝑗} 

⇔∏(∏(min
𝑗
min
𝑖
{𝜓𝑖𝑗})

𝑤̿𝑖
𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

≤∏(∏(𝜓𝑖𝑗)
𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

≤∏(∏(max
𝑗
max
𝑖
{𝜓𝑖𝑗})

𝑤̿𝑖
𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

 

⇔ ((min
𝑗
min
𝑖
{𝜓𝑖𝑗})

∑ 𝑤̿𝑖
𝑛
𝑖=1

)

∑ 𝑢𝑗
𝑚
𝑗=1

≤∏(∏(𝜓𝑖𝑗)
𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

≤ ((max
𝑗
max
𝑖
{𝜓𝑖𝑗})

∑ 𝑤̿𝑖
𝑛
𝑖=1

)

∑ 𝑢𝑗
𝑚
𝑗=1

 

this implies that 

min
𝑗
min
𝑖
{𝜓𝑖𝑗} ≤∏(∏(𝜓𝑖𝑗)

𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

≤ max
𝑗
max
𝑖
{𝜓𝑖𝑗}                                (4.4) 

Therefore, from 𝐸𝑞𝑠. (4.3) 𝑎𝑛𝑑 (4.4), we have 

min
𝑗
min
𝑖
{𝜇𝑖𝑗} ≤ √1 −∏(∏(1− 𝜇𝑖𝑗

𝑞
)
𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

𝑞

≤ max
𝑗
max
𝑖
{𝜇𝑖𝑗} 

and 

min
𝑗
min
𝑖
{𝜓𝑖𝑗} ≤∏(∏(𝜓𝑖𝑗)

𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

≤ max
𝑗
max
𝑖
{𝜓𝑖𝑗} 

Let 𝛿 = q − ROF𝑆𝑓𝑡WA(ℑ𝑠11 , ℑ𝑠12 , … , ℑ𝑠𝑛𝑚) = (𝜇𝛿 , 𝜓𝛿), then by score function given 

in Definition 4.2.4, we have 



 

 

83 
 

𝒮𝑐(𝛿) = 𝜇𝛿
𝑞
−𝜓𝛿

𝑞
+ (

𝑒𝜇𝛿
𝑞
−𝜓𝛿

𝑞

𝑒𝜇𝛿
𝑞
−𝜓

𝛿
𝑞

+ 1
−
1

2
)𝜋𝛿

𝑞

≤ (max
𝑗
max
𝑖
{𝜇𝑖𝑗})

𝑞

− (min
𝑗
min
𝑖
{𝜓𝑖𝑗})

𝑞

+ 

+(
𝑒
(max

𝑗
max
𝑖
{𝜇𝑖𝑗})

𝑞

−(min
𝑗

min
𝑖
{𝜓𝑖𝑗})

𝑞

𝑒
(max

𝑗
max
𝑖
{𝜇𝑖𝑗})

𝑞

−(min
𝑗

min
𝑖
{𝜓𝑖𝑗})

𝑞

+ 1

−
1

2
)𝜋

ℑ𝑠𝑖𝑗
+
𝑞

= 𝒮𝑐 (ℑ𝑠𝑖𝑗
+ ) 

this implies 

𝒮𝑐(𝛿) ≤ 𝒮𝑐 (ℑ𝑠𝑖𝑗
+ ) 

and 𝒮𝑐(𝛿) = 𝜇𝛿
𝑞
−𝜓𝛿

𝑞
+ (

𝑒
𝜇
𝛿
𝑞
−𝜓

𝛿
𝑞

𝑒
𝜇
𝛿
𝑞
−𝜓

𝛿
𝑞

+1
−

1

2
)𝜋𝛿

𝑞
≥ (min

𝑗
min
𝑖
{𝜇𝑖𝑗})

𝑞

−

(max
𝑗
max
𝑖
{𝜓𝑖𝑗})

𝑞

+ 

+(
𝑒
(min

𝑗
min
𝑖
{𝜇𝑖𝑗})

𝑞

−(max
𝑗

max
𝑖
{𝜓𝑖𝑗})

𝑞

𝑒
(min

𝑗
min
𝑖
{𝜇𝑖𝑗})

𝑞

−(max
𝑗

max
𝑖
{𝜓𝑖𝑗})

𝑞

+ 1

−
1

2
)𝜋ℑ𝑠𝑖𝑗

−
𝑞

= 𝒮𝑐 (ℑ𝑠𝑖𝑗
− ) 

this implies 𝒮𝑐(𝛿) ≥ 𝒮𝑐 (ℑ𝑠𝑖𝑗
− ). 

In view of that direction, consider the following cases, 

𝑪𝒂𝒔𝒆 𝒊: If 𝒮𝑐(𝛿) < 𝒮𝑐 (ℑ𝑠𝑖𝑗
+ )  𝑎𝑛𝑑 𝒮𝑐(𝛿) > 𝒮𝑐 (ℑ𝑠𝑖𝑗

− ), by the comparison of two q-

ROF𝑆𝑓𝑡Vs, we get 

ℑ𝑠𝑖𝑗
− < q − ROF𝑆𝑓𝑡WA(ℑ𝑠11 , ℑ𝑠12 , … , ℑ𝑠𝑛𝑚) < ℑ𝑠𝑖𝑗

+  . 

𝑪𝒂𝒔𝒆 𝒊𝒊: If 𝒮𝑐(𝛿) = 𝒮𝑐 (ℑ𝑠𝑖𝑗
+ ), that is 

𝜇𝛿
𝑞
−𝜓𝛿

𝑞
+ (

𝑒𝜇𝛿
𝑞
−𝜓𝛿

𝑞

𝑒𝜇𝛿
𝑞
−𝜓

𝛿
𝑞

+ 1
−
1

2
)𝜋𝛿

𝑞
= (max

𝑗
max
𝑖
{𝜇𝑖𝑗})

𝑞

− (min
𝑗
min
𝑖
{𝜓𝑖𝑗})

𝑞

+ 

+(
𝑒
(max

𝑗
max
𝑖
{𝜇𝑖𝑗})

𝑞

−(min
𝑗

min
𝑖
{𝜓𝑖𝑗})

𝑞

𝑒
(max

𝑗
max
𝑖
{𝜇𝑖𝑗})

𝑞

−(min
𝑗

min
𝑖
{𝜓𝑖𝑗})

𝑞

+ 1

−
1

2
)𝜋

ℑ𝑠𝑖𝑗
+
𝑞
, 

then by using the above inequalities, we get 

𝜇𝛿 = max
𝑗
max
𝑖
{𝜇𝑖𝑗}  𝑎𝑛𝑑 𝜓𝛿 = min

𝑗
min
𝑖
{𝜓𝑖𝑗}. Thus 𝜋𝛿

𝑞
= 𝜋

ℑ𝑠𝑖𝑗
+
𝑞

, 

Hence by comparison of two q-ROF𝑆𝑓𝑡Vs, we have 

q − ROF𝑆𝑓𝑡WA(ℑ𝑠11 , ℑ𝑠12 , … , ℑ𝑠𝑛𝑚) = ℑ𝑠𝑖𝑗
+  . 

𝑪𝒂𝒔𝒆 𝒊𝒊𝒊: If 𝒮𝑐(𝛿) = 𝒮𝑐 (ℑ𝑠𝑖𝑗
− ), that is 
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𝜇𝛿
𝑞
−𝜓𝛿

𝑞
+ (

𝑒𝜇𝛿
𝑞
−𝜓𝛿

𝑞

𝑒𝜇𝛿
𝑞
−𝜓

𝛿
𝑞

+ 1
−
1

2
)𝜋𝛿

𝑞
= (min

𝑗
min
𝑖
{𝜇𝑖𝑗})

𝑞

− (max
𝑗
max
𝑖
{𝜓𝑖𝑗})

𝑞

+ 

+(
𝑒
(min

𝑗
min
𝑖
{𝜇𝑖𝑗})

𝑞

−(max
𝑗

max
𝑖
{𝜓𝑖𝑗})

𝑞

𝑒
(min

𝑗
min
𝑖
{𝜇𝑖𝑗})

𝑞

−(max
𝑗

max
𝑖
{𝜓𝑖𝑗})

𝑞

+ 1

−
1

2
)𝜋ℑ𝑠𝑖𝑗

−
𝑞
 , 

then by using the above inequalities, we get 

𝜇𝛿 = min
𝑗
min
𝑖
{𝜇𝑖𝑗}  𝑎𝑛𝑑 𝜓𝛿 = max

𝑗
max
𝑖
{𝜓𝑖𝑗} 

Thus 

𝜋𝛿
𝑞
= 𝜋ℑ𝑠𝑖𝑗

−
𝑞

 

this implies 

q − ROF𝑆𝑓𝑡WA(ℑ𝑠11 , ℑ𝑠12 , … , ℑ𝑠𝑛𝑚) = ℑ𝑠𝑖𝑗
−  . 

Therefore, it is proved that 

ℑ𝑠𝑖𝑗
− ≤ q − ROF𝑆𝑓𝑡WA(ℑ𝑠11 , ℑ𝑠12 , … , ℑ𝑠𝑛𝑚) ≤ ℑ𝑠𝑖𝑗

+  . 

𝒊𝒊𝒊: (𝑴𝒐𝒏𝒐𝒕𝒐𝒏𝒊𝒄𝒊𝒕𝒚) Since  𝜇𝑖𝑗 ≤ 𝑏𝑖𝑗  𝑎𝑛𝑑 𝜓𝑖𝑗 ≥ 𝒹𝑖𝑗 , (𝑖 = 1, 2,… , 𝑛) 𝑎𝑛𝑑 (𝑗 =

1, 2, … ,𝑚), then this implies that 

𝜇𝑖𝑗 ≤ 𝑏𝑖𝑗 ⇒ 1 − 𝑏𝑖𝑗 ≤ 1 − 𝜇𝑖𝑗 ⇒ 1 − 𝑏𝑖𝑗
𝑞
≤ 1 − 𝜇𝑖𝑗

𝑞
 

⇒∏(∏(1 − 𝑏𝑖𝑗
𝑞 )

𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

≤∏(∏(1 − 𝜇𝑖𝑗
𝑞 )

𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

 

⇒ 1 −∏(∏(1 − 𝜇𝑖𝑗
𝑞 )

𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

≤ 1 −∏(∏(1 − 𝑏𝑖𝑗
𝑞 )

𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

 

√1 −∏(∏(1− 𝜇𝑖𝑗
𝑞
)
𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

𝑞

≤ √1 −∏(∏(1− 𝑏𝑖𝑗
𝑞
)
𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

𝑞

                      (4.5) 

Furthermore 

𝜓𝑖𝑗 ≥ 𝒹𝑖𝑗 ⇒ (∏(𝜓𝑖𝑗)
𝑤̿𝑖

𝑛

𝑖=1

) ≥∏(𝒹𝑖𝑗)
𝑤̿𝑖

𝑛

𝑖=1

 

⇒∏(∏(𝜓𝑖𝑗)
𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

≥∏(∏(𝒹𝑖𝑗)
𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

                                                 (4.6) 

Let 𝛿ℑ = q − ROF𝑆𝑓𝑡WA(ℑ𝑠11 , ℑ𝑠12 , … , ℑ𝑠𝑛𝑚) = (𝜇𝛿ℑ , 𝜓𝛿ℑ) and 

𝛿ℰ = q − ROF𝑆𝑓𝑡WA(ℰ𝑠11 , ℰ𝑠12 , … , ℰ𝑠𝑛𝑚) = (𝑏𝛿ℰ̃ , 𝒹𝛿ℰ̃) 

From 𝐸𝑞𝑠. (4.5) 𝑎𝑛𝑑 (4.6), we have 

𝜇𝛿ℑ ≤ 𝑏𝛿ℰ  𝑎𝑛𝑑 𝜓𝛿ℑ ≥ 𝒹𝛿ℰ  
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then by score function given in Definition 4.2.4, we have 

𝒮𝑐(𝛿ℑ) ≤ 𝒮𝑐(𝛿ℰ) 

In view of that direction, consider the following cases, 

𝑪𝒂𝒔𝒆 𝒊: If 𝒮𝑐(𝛿ℑ) < 𝒮𝑐(𝛿ℰ), by the comparison of two q-ROF𝑆𝑓𝑡Vs, we get 

q − ROF𝑆𝑓𝑡WA(ℑ𝑠11 , ℑ𝑠12 , … , ℑ𝑠𝑛𝑚) < q − ROF𝑆𝑓𝑡WA(ℰ𝑠11 , ℰ𝑠12 , … , ℰ𝑠𝑛𝑚). 

𝑪𝒂𝒔𝒆 𝒊𝒊: If 𝒮𝑐(𝛿ℑ) = 𝒮𝑐(𝛿ℰ), that is 

𝒮𝑐(𝛿ℑ) = 𝜇𝛿ℑ
𝑞
−𝜓𝛿ℑ

𝑞
+(

𝑒
𝜇𝛿ℑ
𝑞
−𝜓𝛿ℑ

𝑞

𝑒
𝜇
𝛿ℑ

𝑞
−𝜓

𝛿ℑ

𝑞

+ 1
−
1

2
)𝜋𝛿ℑ

𝑞

= 𝜇𝛿ℰ
𝑞
− 𝜓𝛿ℰ

𝑞
+ (

𝑒
𝜇𝛿ℰ
𝑞
−𝜓𝛿ℰ

𝑞

𝑒
𝜇
𝛿ℰ

𝑞
−𝜓

𝛿ℰ

𝑞

+ 1
−
1

2
)𝜋𝛿ℰ

𝑞
= 𝒮𝑐(𝛿ℰ), 

then by above inequality, we have 

𝜇𝛿ℑ = 𝑏𝛿ℰ  𝑎𝑛𝑑 𝜓𝛿ℑ = 𝒹𝛿ℰ  

Hence 𝜋𝛿ℑ
𝑞
= 𝜋𝛿ℰ

𝑞
⟹ (𝜇𝛿ℑ , 𝜓𝛿ℑ) = (𝑏𝛿ℰ , 𝒹𝛿ℰ) 

Therefore, it is proved that 

q − ROF𝑆𝑓𝑡WA(ℑ𝑠11 , ℑ𝑠12 , … , ℑ𝑠𝑛𝑚) ≤ q − ROF𝑆𝑓𝑡WA(ℰ𝑠11 , ℰ𝑠12 , … , ℰ𝑠𝑛𝑚). 

𝒊𝒗: (𝑺𝒉𝒊𝒇𝒕 𝑰𝒏𝒗𝒂𝒓𝒊𝒂𝒏𝒄𝒆) Since ℰ𝑠 = (𝑏, 𝒹) and ℑ𝑠𝑖𝑗 = (𝜇𝑠𝑖𝑗 , 𝜓𝑠𝑖𝑗) are the q-

ROF𝑆𝑓𝑡Vs, so 

ℑ𝑠11⨁ ℰ𝑠 = (√1 − (1 − 𝜇11
𝑞
)(1 − 𝑏𝑞)

𝑞

  , 𝜓11𝒹) 

Therefore, 

q − ROF𝑆𝑓𝑡WA(ℑ𝑠11⨁ℰ𝑠, ℑ𝑠12⨁ℰ𝑠 , … , ℑ𝑠𝑛𝑚⨁ℰ𝑠) = ⨁𝑗=1
𝑚 𝑢̿𝑗 (⨁𝑖=1

𝑛 𝑤̿𝑖(ℑ𝑠𝑛𝑚⨁ℰ𝑠)) 

=

(

 √1 −∏(∏(1 − 𝜇𝑖𝑗
𝑞
)
𝑤̿𝑖

𝑛

𝑖=1

(1 − 𝑏𝑞)𝑤̿𝑖)

𝑢𝑗𝑚

𝑗=1

𝑞

 ,∏(∏𝜓𝑖𝑗
𝑤̿𝑖

𝑛

𝑖=1

𝒹𝑢𝑖)

𝑢𝑗𝑚

𝑗=1
)

  

=

(

 √1 − (1 − 𝑏𝑞)∏(∏(1 − 𝜇𝑖𝑗
𝑞
)
𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

𝑞

 , 𝒹∏(∏𝜓𝑖𝑗
𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1
)

  

=

(

 √1 −∏(∏(1 − 𝜇𝑖𝑗
𝑞
)
𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

𝑞

 ,∏(∏𝜓𝑖𝑗
𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1
)

 ⨁(𝑏, 𝒹) 

= q − ROF𝑆𝑓𝑡WA(ℑ𝑠11 , ℑ𝑠12 , … , ℑ𝑠𝑛𝑚)⨁ℰ𝑠 

Hence the required result is proved.  
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𝒊𝒗: (𝑯𝒐𝒎𝒐𝒈𝒆𝒏𝒆𝒊𝒕𝒚) Consider  𝜆 > 0 be any real number and ℑ𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗) be a 

q-ROF𝑆𝑓𝑡V, then 

𝜆ℑ𝑠𝑖𝑗 = (√1− (1 − 𝜇𝑖𝑗
𝑞
)
𝜆𝑞

, 𝜓𝑖𝑗
𝜆 ) 

Now 

q − ROF𝑆𝑓𝑡WA(𝜆ℑ𝑠11 , 𝜆ℑ𝑠12 , … , 𝜆ℑ𝑠𝑛𝑚)

=

(

 √1 −∏(∏(1 − 𝜇𝑖𝑗
𝑞
)
𝜆𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

𝑞

 ,∏(∏𝜓𝑖𝑗
𝜆𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1
)

  

=

(

 
 
√1 − (∏(∏(1 − 𝜇𝑖𝑗

𝑞
)
𝑤̿𝑖

𝑛

𝑖=1

)

𝑤̿𝑗𝑚

𝑗=1

)

𝜆
𝑞

 , (∏(∏𝜓𝑖𝑗
𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

)

𝜆

)

 
 

 

= 𝜆q − ROF𝑆𝑓𝑡WA(ℑ𝑠11 , ℑ𝑠12 , … , ℑ𝑠𝑛𝑚) 

Therefore, the required property is proved. 

4.3.2. q-Rung orthopair fuzzy soft ordered weighted averaging 

operators 
From the above analyses of q-ROF𝑆𝑓𝑡WA operator, it is clear that q-ROF𝑆𝑓𝑡WA 

operator just weighed the values of q-ROF𝑆𝑓𝑡N, while q-ROF𝑆𝑓𝑡OWA operator weigh 

the ordered positions via scoring the q-ROF𝑆𝑓𝑡 values rather than weighting the q-

ROF𝑆𝑓𝑡 values themselves. So, here we will present the detailed study of q-

ROF𝑆𝑓𝑡OWA operator and also studied their related properties. 

4.3.2.1. Definition 

Let ℑ𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗) (𝑓𝑜𝑟 𝑖 = 1,2,… , 𝑛 𝑎𝑛𝑑 𝑗 = 1,2,… ,𝑚), be the collections of q-

ROF𝑆𝑓𝑡Vs, and consider the weight vectors 𝑤̿ = {𝑤̿1, 𝑤̿2, … , 𝑤̿𝑛} 𝑎𝑛𝑑 𝑢̿ =

{𝑢̿1, 𝑢̿2, … , 𝑢̿𝑚} for the experts 𝓀𝑖  and for the parameters 𝑠𝑗′𝑠 respectively, and having 

the conditions that 𝑤̿𝑖 , 𝑢̿𝑗 ∈ [0,1] with ∑ 𝑤̿𝑖
𝑛
𝑖=1 = 1 𝑎𝑛𝑑 ∑ 𝑢̿𝑗

𝑚
𝑗=1 = 1. Then the 

mapping for q-ROF𝑆𝑓𝑡OWA operator is defined as: q − ROF𝑆𝑓𝑡OWA:X
𝑛 → 𝑋, (where 

𝑋 is the collections of all q-ROF𝑆𝑓𝑡Vs) 

q − ROF𝑆𝑓𝑡OWA(ℑ𝑠11 , ℑ𝑠12 , … , ℑ𝑠𝑛𝑚) = ⨁𝑗=1
𝑚 𝑢̿𝑗 (⨁𝑖=1

𝑛 𝑤̿𝑖ℑ𝜎𝑠𝑖𝑗). 

The aggregated result for q-ROF𝑆𝑓𝑡OWA operator is described in the following 

Theorem 4.3.2.2. 

4.3.2.2. Theorem 

Let ℑ𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗) (𝑓𝑜𝑟 𝑖 = 1,2,… , 𝑛 𝑎𝑛𝑑 𝑗 = 1,2,… ,𝑚), be the collections of q-

ROF𝑆𝑓𝑡Vs. Then the aggregated result for q-ROF𝑆𝑓𝑡OWA operator is given as: 
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q − ROF𝑆𝑓𝑡OWA(ℑ𝑠11 , ℑ𝑠12 , … , ℑ𝑠𝑛𝑚) = ⨁𝑗=1
𝑚 𝑢̿𝑗 (⨁𝑖=1

𝑛 𝑤̿𝑖ℑ𝜎𝑠𝑖𝑗) 

=

(

 √1 −∏(∏(1− 𝜇𝜎𝑖𝑗
𝑞
)𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

𝑞

 ,∏(∏𝜓𝜎𝑖𝑗
𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1
)

 ,                                             (4.7) 

where  ℑ𝜎𝑠𝑖𝑗 = (𝜇𝜎𝑖𝑗 , 𝜓𝜎𝑖𝑗), represents the permutations of 𝑖𝑡ℎ  𝑎𝑛𝑑 𝑗𝑡ℎ largest object 

of the collections of 𝑖 × 𝑗 q-ROF𝑆𝑓𝑡Vs ℑ𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗). 

Proof.  Proof is similar to Theorem 4.3.1.2. 

4.3.2.3. Remark 

a. If the value of 𝑞 is fixed, that is 𝑞 = 1, then the proposed q-

ROF𝑆𝑓𝑡OWA operator reduces to IF𝑆𝑓𝑡OWA operator. 

b. If the value of 𝑞 is fixed, that is 𝑞 = 2, then the proposed q-

ROF𝑆𝑓𝑡OWA operator reduces to PyF𝑆𝑓𝑡OWA operator. 

c. If there is only one parameter, that is 𝑠1 (means 𝑚 = 1), then the 

proposed q-ROF𝑆𝑓𝑡OWA operator reduces to q-ROFOWA operator. 

Hence from Remark 4.3.2.3, it is clear that IF𝑆𝑓𝑡OWA, PyF𝑆𝑓𝑡OWA and q-ROFOWA 

operators are the special cases of the proposed q-ROF𝑆𝑓𝑡OWA operator. 

4.3.2.4. Example 

Consider the collections q-ROF𝑆𝑓𝑡Vs ℑ𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗) as given in Table 4.2, of 

Example 4.3.1.4, then by using score function from Definition 4.2.4, the tabular 

representations of ℑ𝜎𝑠𝑖𝑗 = (𝜇𝜎𝑖𝑗 , 𝜓𝜎𝑖𝑗) is given in Table 4.3. 

Now by using  𝐸𝑞. (4.7), to find the q-ROF𝑆𝑓𝑡OWA operator, we have 

q − ROF𝑆𝑓𝑡OWA(ℑ𝑠11 , ℑ𝑠12 , … , ℑ𝑠𝑛𝑚) = ⨁𝑗=1
𝑚 𝑢̿𝑗 (⨁𝑖=1

𝑛 𝑤̿𝑖ℑ𝜎𝑠𝑖𝑗) 

=

(

 √1 −∏(∏(1− 𝜇𝜎𝑖𝑗
𝑞
)𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

𝑞

 ,∏(∏𝜓𝜎𝑖𝑗
𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1
)

  

Table 4.3,  Tabular representation of q-ROF𝑆𝑓𝑡S ℑ𝜎𝑠𝑖𝑗 = (𝜇
𝜎𝑖𝑗
, 𝜓

𝜎𝑖𝑗
) for q ≥ 3 

𝑇 𝑠1 𝑠2 𝑠3 𝑠4 

𝓀1 (0.96, 0.2) (0.9, 0.3) (0.93, 0.2) (0.93, 0.32) 

𝓀2 (0.91, 0.4) (0.9, 0.33) (0.86, 0.34) (0.9, 0.2) 

𝓀3 (0.88, 0.4) (0.85, 0.45) (0.78, 0.3) (0.94, 0.45) 

𝓀4 (0.82, 0.5) (0.8, 0.4) (0.77, 0.4) (0.87, 0.25) 

𝓀5 (0.75, 0.6) (0.75, 0.3) (0.65, 0.25) (0.7, 0.5) 
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=

(

 
 
 
 
 
 
 

√
  
  
  
  
  
  
  
  
  
  
1 − {

(1 − 0.963)0.24(1 − 0.913)0.23(1 − 0.883)0.22(1 − 0.823)0.15

(1 − 0.753)0.16
}
0.28

{
(1 − 0.93)0.24(1 − 0.93)0.23(1 − 0.853)0.22(1 − 0.83)0.15

(1 − 0.753)0.16
}
0.19

{
(1 − 0.933)0.24(1 − 0.863)0.23(1 − 0.783)0.22(1 − 0.773)0.15

(1 − 0.653)0.16
}
0.3

{
(1 − 0.933)0.24(1 − 0.93)0.23(1 − 0.943)0.22(1 − 0.873)0.15

(1 − 0.73)0.16
}
0.23

 ,

3

 

{
(0.20.24)(0.40.23)(0.40.22)(0.50.15)

(0.60.16)
}
0.28

{
(0.30.24)(0.330.23)(0.450.22)

(0.40.15)(0.30.16)
}
0.19

{
(0.20.24)(0.340.23)(0.30.22)(0.40.15)

(0.250.16)
}
0.3

{
(0.320.24)(0.20.23)(0.450.22)

(0.250.15)(0.50.16)
}
0.23

)

 
 

  

= (0.878279, 0.32812) 

In the following, in view of Theorem 4.3.2.2, some properties of the proposed q-

ROF𝑆𝑓𝑡OWA operator for the collections of q-ROF𝑆𝑓𝑡Vs  ℑ𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗), (𝑖 =

1, 2, … , 𝑛) 𝑎𝑛𝑑 (𝑗 = 1, 2, … , 𝑚), is being presented. 

4.3.2.5. Theorem 

Suppose the collections of q-ROF𝑆𝑓𝑡Vs  ℑ𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗), (𝑖 = 1, 2,… , 𝑛) 𝑎𝑛𝑑 (𝑗 =

1, 2, … ,𝑚), with weight vectors 𝑤̿ = (𝑤̿1, 𝑤̿2, … , 𝑤̿𝑛)
𝑇 and 𝑢̿ = (𝑢̿1, 𝑢̿2, … , 𝑢̿𝑚)

𝑇 for 

the experts 𝓀𝑖  and for the parameters 𝑠𝑗′𝑠 respectively, such that 𝑤̿𝑖 , 𝑢̿𝑗 ∈ [0,1] 

with ∑ 𝑤̿𝑖
𝑛
𝑖=1 = 1 𝑎𝑛𝑑 ∑ 𝑢̿𝑗

𝑚
𝑗=1 = 1. Then the q-ROF𝑆𝑓𝑡OWA operator has the 

following properties: 

𝒊: (𝑰𝒅𝒆𝒎𝒑𝒐𝒕𝒆𝒏𝒄𝒚): If ℑ𝑠𝑖𝑗 = ℰ𝜎𝑠 , (∀ 𝑖 = 1,2,… , 𝑛 𝑎𝑛𝑑 𝑗 = 1,2,… ,𝑚), where ℰ𝜎𝑠 =

(𝒃, 𝒹), then 

q − ROF𝑆𝑓𝑡OWA(ℑ𝑠11 , ℑ𝑠12 , … , ℑ𝑠𝑛𝑚) = ℰ𝜎𝑠. 

𝒊𝒊: (𝑩𝒐𝒖𝒏𝒅𝒆𝒅𝒏𝒆𝒔𝒔): If ℑ𝜎𝑠𝑖𝑗
− = (min

𝑗
min
𝑖
{𝜇𝜎𝑖𝑗} , max

𝑗
max
𝑖
{𝜓𝜎𝑖𝑗}) and ℑ𝜎𝑠𝑖𝑗

+ =

(max
𝑗
max
𝑖
{𝜇𝜎𝑖𝑗} , min

𝑗
min
𝑖
{𝜓𝜎𝑖𝑗}), then 

ℑ𝜎𝑠𝑖𝑗
− ≤  q − ROF𝑆𝑓𝑡OWA(ℑ𝑠11 , ℑ𝑠12 , … , ℑ𝑠𝑛𝑚) ≤ ℑ𝜎𝑠𝑖𝑗

+ . 

𝒊𝒊𝒊: (𝑴𝒐𝒏𝒐𝒕𝒐𝒏𝒊𝒄𝒊𝒕𝒚): If ℰ𝑠𝑖𝑗 = (𝑏𝑖𝑗 , 𝒹𝑖𝑗), (𝑖 = 1, 2,… , 𝑛) 𝑎𝑛𝑑 (𝑗 = 1, 2,… ,𝑚), be 

the another collection of q-ROF𝑆𝑓𝑡Vs such that 𝜇𝑖𝑗 ≤ 𝑏𝑖𝑗  𝑎𝑛𝑑 𝜓𝑖𝑗 ≥ 𝒹𝑖𝑗 , then 

q − ROF𝑆𝑓𝑡OWA(ℑ𝑠11 , ℑ𝑠12 , … , ℑ𝑠𝑛𝑚) ≤ q − ROF𝑆𝑓𝑡OWA(ℰ𝑠11 , ℰ𝑠12 , … , ℰ𝑠𝑛𝑚). 

𝒊𝒗: (𝑺𝒉𝒊𝒇𝒕 𝑰𝒏𝒗𝒂𝒓𝒊𝒂𝒏𝒄𝒆): If ℰ𝑠 = (𝑏, 𝒹), is another q-ROF𝑆𝑓𝑡V, then 

q − ROF𝑆𝑓𝑡OWA(ℑ𝑠11⨁ℰ𝑠, ℑ𝑠12⨁ℰ𝑠 , … , ℑ𝑠𝑛𝑚⨁ℰ𝑠)

= q − ROF𝑆𝑓𝑡OWA(ℑ𝑠11 , ℑ𝑠12 , … , ℑ𝑠𝑛𝑚)⨁ℰ𝑠. 

𝒊𝒗: (𝑯𝒐𝒎𝒐𝒈𝒆𝒏𝒆𝒊𝒕𝒚): If 𝜆 is any real number such that 𝜆 ≥ 0, then 

q − ROF𝑆𝑓𝑡OWA(𝜆ℑ𝑠11 , 𝜆ℑ𝑠12 , … , 𝜆ℑ𝑠𝑛𝑚) = 𝜆q − ROF𝑆𝑓𝑡OWA(ℑ𝑠11 , ℑ𝑠12 , … , ℑ𝑠𝑛𝑚). 
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Proof.  Proofs are straightforward and follows from 𝑇ℎ𝑒𝑜𝑟𝑒𝑚 4.3.1.5. 

4.3.3. q-Rung orthopair fuzzy soft hybrid averaging operators 
From the above analyses of q-ROF𝑆𝑓𝑡WA and q-ROF𝑆𝑓𝑡OWA operators, it is clear that 

q-ROF𝑆𝑓𝑡WA operator just weighed the values of q-ROF𝑆𝑓𝑡V, while q-ROF𝑆𝑓𝑡OWA 

operator weight the ordered positions via score function of the q-ROF𝑆𝑓𝑡 values rather 

than weighting the q-ROF𝑆𝑓𝑡 values themselves. So, it is clear that weights denotes 

distinct attributes in both q-ROF𝑆𝑓𝑡WA and q-ROF𝑆𝑓𝑡OWA operators. However, at the 

same time both the operators weigh only one of them. Therefore, here we will present 

the detail study of q-ROF𝑆𝑓𝑡HA operator which measure both q-ROF𝑆𝑓𝑡 values and its 

order position at the same time and also studied their related properties in detail. 

4.3.3.1. Definition 

Let ℑ𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗) (𝑓𝑜𝑟 𝑖 = 1,2,… , 𝑛 𝑎𝑛𝑑 𝑗 = 1,2,… ,𝑚), be the collections of q-

ROF𝑆𝑓𝑡Vs, and consider the weight vectors 𝑤̿ = {𝑤̿1, 𝑤̿2, … , 𝑤̿𝑛} 𝑎𝑛𝑑 𝑢̿ =

{𝑢̿1, 𝑢̿2, … , 𝑢̿𝑚} for the experts 𝓀𝑖  and for the parameters 𝑠𝑗′𝑠 respectively; and having 

the conditions that 𝑤̿𝑖 , 𝑢̿𝑗 ∈ [0,1] with ∑ 𝑤̿𝑖
𝑛
𝑖=1 = 1 𝑎𝑛𝑑 ∑ 𝑢̿𝑗

𝑚
𝑗=1 = 1. Then the 

mapping for q-ROF𝑆𝑓𝑡HA operator is defined as; q − ROF𝑆𝑓𝑡HA: X
𝑛 → 𝑋, (where 𝑋 is 

the collections of all q-ROF𝑆𝑓𝑡Vs): 

q − ROF𝑆𝑓𝑡HA(ℑ𝑠11 , ℑ𝑠12 , … , ℑ𝑠𝑛𝑚) = ⨁𝑗=1
𝑚 𝑢̿𝑗 (⨁𝑖=1

𝑛 𝑤̿𝑖ℑ̃𝑠𝑖𝑗). 

The aggregated result for q-ROF𝑆𝑓𝑡HA operator is described in the following Theorem 

4.3.3.2. 

4.3.3.2. Theorem 

Let ℑ𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗) (𝑓𝑜𝑟 𝑖 = 1,2,… , 𝑛 𝑎𝑛𝑑 𝑗 = 1,2,… ,𝑚), with 𝑣̿ = (𝑣1, 𝑣2, … , 𝑣𝑛)
𝑇 

and 𝔯 = (𝔯1, 𝔯2, … , 𝔯𝑚)
𝑇 are the weight vectors of ℑ𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗), such that 𝑣𝑖, 𝔯𝑗 ∈

[0,1] with ∑ 𝑣𝑖
𝑛
𝑖=1 = 1 𝑎𝑛𝑑 ∑ 𝔯𝑗

𝑚
𝑗=1 = 1 and 𝑛 is the known as balancing coefficient 

represents the number of elements in 𝑖𝑡ℎ 𝑟𝑜𝑤 𝑎𝑛𝑑 𝑗𝑡ℎ  𝑐𝑜𝑙𝑢𝑚𝑛 with aggregation 

associated vectors 𝑤̿ = (𝑤̿1, 𝑤̿2, … , 𝑤̿𝑛)
𝑇 and 𝑢̿ = (𝑢̿1, 𝑢̿2, … , 𝑢̿𝑚)

𝑇 for the experts 𝓀𝑖  

and for the parameters 𝑠𝑗′𝑠 respectively, such that 𝑤̿𝑖 , 𝑢̿𝑗 ∈ [0,1] with ∑ 𝑤̿𝑖
𝑛
𝑖=1 =

1 𝑎𝑛𝑑 ∑ 𝑢̿𝑗
𝑚
𝑗=1 = 1. Then the aggregated result for q-ROF𝑆𝑓𝑡HA operator is given as: 

q − ROF𝑆𝑓𝑡HA(ℑ𝑠11 , ℑ𝑠12 , … , ℑ𝑠𝑛𝑚) = ⨁𝑗=1
𝑚 𝑢̿𝑗 (⨁𝑖=1

𝑛 𝑤̿𝑖ℑ̃𝑠𝑖𝑗) 

=

(

 √1 −∏(∏(1− 𝜇̃𝑖𝑗
𝑞
)𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

𝑞

 ,∏(∏𝜓̃𝑖𝑗
𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1
)

 ,                                               (4.8) 

where ℑ̃𝑠𝑖𝑗 = 𝑛𝑣𝑖𝔯𝑗ℑ𝑠𝑖𝑗 , represents the permutation of 𝑖𝑡ℎ 𝑎𝑛𝑑 𝑗𝑡ℎ  largest object of the 

collections of 𝑖 × 𝑗 q-ROF𝑆𝑓𝑡Vs ℑ̃𝑠𝑖𝑗 = (𝜇̃𝑖𝑗 , 𝜓̃𝑖𝑗).  

Proof: Proof is similar to Theorem 4.3.1.2. 
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4.3.3.3. Remark 

a. If the value of 𝑞 is fixed, that is 𝑞 = 1, then the developed q-ROF𝑆𝑓𝑡HA 

operator reduces to IF𝑆𝑓𝑡HA operator. 

b. If the value of 𝑞 is fixed, that is 𝑞 = 2, then the proposed q-ROF𝑆𝑓𝑡HA 

operator reduces to PyF𝑆𝑓𝑡HA operator. 

c. If there is only one parameter, that is 𝑠1 (means 𝑚 = 1), then the 

proposed q-ROF𝑆𝑓𝑡HA operator reduces to q-ROFHA operator. 

d. If 𝑣𝔯 = (
1

𝑛
,
1

𝑛
, … ,

1

𝑛
)
𝑇

, then the proposed q-ROF𝑆𝑓𝑡HA operator reduces 

to q-ROF𝑆𝑓𝑡WA operator. 

e. If 𝑤̿𝑢̿ = (
1

𝑛
,
1

𝑛
, … ,

1

𝑛
)
𝑇

, then the proposed q-ROF𝑆𝑓𝑡HA operator reduces 

to q-ROF𝑆𝑓𝑡OWA operator. 

Hence from Remark 4.3.3.3, it is clear that IF𝑆𝑓𝑡HA, PyF𝑆𝑓𝑡HA, q-ROFHA, q-

ROF𝑆𝑓𝑡WA and q-ROF𝑆𝑓𝑡OWA operators are the special cases of the proposed q-

ROF𝑆𝑓𝑡HA operator. 

4.3.3.4. Example 

Consider the collections q-ROF𝑆𝑓𝑡Vs ℑ𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗) as given in Table 4.2, of 

Example 4.3.1.4, with 𝑣 = (0.26,0.22,0.1,0.27,0.15)𝑇  𝑎𝑛𝑑 𝔯 = (0.23,0.28,0.2,0.29)𝑇 

be the weight vectors of them, and having associated aggregate vectors 𝑤̿ =
(0.27,0.18,0.1,0.18,0.27)𝑇 and 𝑢̿ = (0.26,0.24,0.24,0.26)𝑇. Then by using operation 

laws as given in 𝐸𝑞. (4.9) and their score results are given in Table 4.4.  The 

corresponding q-ROF𝑆𝑓𝑡Vs ℑ̃𝑠𝑖𝑗 = 𝑛𝑣𝑖𝔯𝑗ℑ𝑠𝑖𝑗 , of the permutation of 𝑖𝑡ℎ 𝑎𝑛𝑑 𝑗𝑡ℎ  largest 

object of the collections of 𝑖 × 𝑗 q-ROF𝑆𝑓Vs ℑ̃𝑠𝑖𝑗 = 𝑛𝑣𝑖𝔯𝑗ℑ𝑠𝑖𝑗 , is given in Table 4.5. 

Since 

 ℑ̃𝑠𝑖𝑗 = 𝑛𝑣𝑖𝔯𝑗ℑ𝑠𝑖𝑗 = (√1 − (1 − 𝜇𝑖𝑗
3 )

𝑛𝑣𝑖𝔯𝑗3
, 𝜓𝑛𝑣𝑖𝔯𝑗)                                 (4.9) 

 

Table 4.4,  Tabular representation of score values of q-ROF𝑆𝑓𝑡Vs ℑ̃𝑠𝑖𝑗 = 𝑛𝑣𝑖𝔯𝑗ℑ𝑠𝑖𝑗 for q ≥ 3 

 𝑠1 𝑠2 𝑠3 𝑠4 

𝓀1    -0.16007    -0.15175    -0.29021    0.195882 

𝓀2    0.13525    -0.19738    -0.45464    0.027663 

𝓀3    -0.59745    -0.46069    -0.65469    -0.71362 

𝓀4    -0.49017    -0.10964    0.092527    0.276974 

𝓀5    -0.59292    -0.27435    -0.52888    0.048367 
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Table 4.5,  Tabular representation of q-ROF𝑆𝑓𝑡Vs ℑ̃𝑠𝑖𝑗 = 𝑛𝑣𝑖𝔯𝑗ℑ𝑠𝑖𝑗 for q ≥ 3 

 𝑠1 𝑠2 𝑠3 𝑠4 

𝓀1 (0.7495,0.6655) (0.6711, 0.7395) (0.7089, 0.6476) (0.7369, 0.5325) 

𝓀2 (0.6617, 0.7604) (0.6125, 0.7164) (0.4311, 0.6934) (0.7716, 0.6508) 

𝓀3 (0.5389, 0.8533) (0.5375, 0.6912) (0.5007, 0.8174) (0.8642, 0.8406) 

𝓀4 (0.5059, 0.8873) (0.6213, 0.7923) (0.4515, 0.8348) (0.6621, 0.6426) 

𝓀5 (0.5299, 0.9) (0.5508, 0.8449) (0.4581, 0.8977) (0.3895, 0.9044) 
 

  

Now by using 𝐸𝑞. 4.8, of 𝑇ℎ𝑒𝑜𝑟𝑒𝑚 4.3.3.2, 

q − ROF𝑆𝑓𝑡HA(ℑ𝑠11 , ℑ𝑠12 , … , ℑ𝑠𝑛𝑚) = ⨁𝑗=1
𝑚 𝑢̿𝑗 (⨁𝑖=1

𝑛 𝑤̿𝑖ℑ̃𝑠𝑖𝑗) 

=

(

 √1 −∏(∏(1− 𝜇̃ 𝑖𝑗
𝑞
)𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

𝑞

 ,∏(∏𝜓̃𝑖𝑗
𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1
)

 = (0.635733,0.753867) 

In the following, in view of Theorem 6, some properties of the developed q-ROF𝑆𝑓𝑡HA 

operator for the collections of q-ROF𝑆𝑓𝑡Vs  ℑ𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗), (𝑖 =

1, 2, … , 𝑛) 𝑎𝑛𝑑 (𝑗 = 1, 2, … ,𝑚), is being presented. 

4.3.3.5. Theorem 

Suppose the collections of q-ROF𝑆𝑓𝑡Vs  ℑ𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗), (𝑖 = 1, 2,… , 𝑛) 𝑎𝑛𝑑 (𝑗 =

1, 2, … , 𝑚), with 𝑣 = (𝑣1, 𝑣2, … , 𝑣𝑛)
𝑇  𝑎𝑛𝑑 𝔯 = (𝔯1, 𝔯2, … , 𝔯𝑚)

𝑇 be the weight vectors 

of them, such that 𝑣𝑖, 𝔯𝑗 ∈ [0,1] with ∑ 𝑣𝑖
𝑛
𝑖=1 = 1 𝑎𝑛𝑑 ∑ 𝔯𝑗

𝑚
𝑗=1 = 1 and 𝑛 is the known 

as balancing coefficient represent the number of elements in 𝑖𝑡ℎ  𝑟𝑜𝑤 𝑎𝑛𝑑 𝑗𝑡ℎ  𝑐𝑜𝑙𝑢𝑚𝑛. 

Let 𝑤̿ = (𝑤̿1, 𝑤̿2, … , 𝑤̿𝑛)
𝑇 and 𝑢̿ = (𝑢̿1, 𝑢̿2, … , 𝑢̿𝑚)

𝑇 be the aggregate associated 

weight vectors for the experts 𝓀𝑖  and for the parameters 𝑠𝑗′𝑠 respectively, such that 

𝑤̿𝑖 , 𝑢̿𝑗 ∈ [0,1] with ∑ 𝑤̿𝑖
𝑛
𝑖=1 = 1 𝑎𝑛𝑑 ∑ 𝑢̿𝑗

𝑚
𝑗=1 = 1. Then the q-ROF𝑆𝑓𝑡HA operator 

satisfy the following properties: 

𝒊: (𝑰𝒅𝒆𝒎𝒑𝒐𝒕𝒆𝒏𝒄𝒚): If ℑ𝑠𝑖𝑗 = ℰ̃𝑠, (∀ 𝑖 = 1,2,… , 𝑛 𝑎𝑛𝑑 𝑗 = 1,2,… ,𝑚), where ℰ̃𝑠 =

𝑛𝑣𝑖𝔯𝑗ℰ𝑠, then 

q − ROF𝑆𝑓𝑡HA(ℑ𝑠11 , ℑ𝑠12 , … , ℑ𝑠𝑛𝑚) = ℰ̃𝑠. 

𝒊𝒊: (𝑩𝒐𝒖𝒏𝒅𝒆𝒅𝒏𝒆𝒔𝒔): If ℑ̃𝑠𝑖𝑗
− = (min

𝑗
min
𝑖
{𝜇̃𝑖𝑗} , max

𝑗
max
𝑖
{𝜓̃𝑖𝑗}) and 

ℑ̃𝑠𝑖𝑗
+ = (max

𝑗
max
𝑖
{𝜇̃𝑖𝑗} , min

𝑗
min
𝑖
{𝜓̃𝑖𝑗}), then 

ℑ̃𝑠𝑖𝑗
− ≤  q − ROF𝑆𝑓𝑡HA(ℑ𝑠11 , ℑ𝑠12 , … , ℑ𝑠𝑛𝑚) ≤ ℑ̃𝑠𝑖𝑗

+ . 

𝒊𝒊𝒊: (𝑴𝒐𝒏𝒐𝒕𝒐𝒏𝒊𝒄𝒊𝒕𝒚): If ℰ𝑠𝑖𝑗 = (𝑏𝑖𝑗 , 𝒹𝑖𝑗), (𝑖 = 1, 2,… , 𝑛) 𝑎𝑛𝑑 (𝑗 = 1, 2,… ,𝑚), be 

the another collection of q-ROF𝑆𝑓𝑡Vs such that 𝜇𝑖𝑗 ≤ 𝑏𝑖𝑗  𝑎𝑛𝑑 𝜓𝑖𝑗 ≥ 𝒹𝑖𝑗 , then 
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q − ROF𝑆𝑓𝑡HA(ℑ𝑠11 , ℑ𝑠12 , … , ℑ𝑠𝑛𝑚) ≤ q − ROF𝑆𝑓𝑡HA(ℰ𝑠11 , ℰ𝑠12 , … , ℰ𝑠𝑛𝑚). 

𝒊𝒗: (𝑺𝒉𝒊𝒇𝒕 𝑰𝒏𝒗𝒂𝒓𝒊𝒂𝒏𝒄𝒆): If ℰ𝑠 = (𝑏, 𝒹), is another q-ROF𝑆𝑓𝑡V, then 

q − ROF𝑆𝑓𝑡HA(ℑ𝑠11⨁ℰ𝑠, ℑ𝑠12⨁ℰ𝑠, … , ℑ𝑠𝑛𝑚⨁ℰ𝑠)

= q − ROF𝑆𝑓𝑡HA(ℑ𝑠11 , ℑ𝑠12 , … , ℑ𝑠𝑛𝑚)⨁ℰ𝑠. 

𝒊𝒗: (𝑯𝒐𝒎𝒐𝒈𝒆𝒏𝒆𝒊𝒕𝒚): If 𝜆 is any real number such that 𝜆 ≥ 0, then 

q − ROF𝑆𝑓𝑡HA(𝜆ℑ𝑠11 , 𝜆ℑ𝑠12 , … , 𝜆ℑ𝑠𝑛𝑚) = 𝜆q − ROF𝑆𝑓𝑡HA(ℑ𝑠11 , ℑ𝑠12 , … , ℑ𝑠𝑛𝑚). 

Proof.  Proofs are straightforward and follows from 𝑇ℎ𝑒𝑜𝑟𝑒𝑚 4.3.1.5. 

As aggregation operators are used to create a framework for ℳ𝒞𝒟ℳ problems. So, in 

coming section we will present the application for the proposed aggregation operators.  

4.4.  Model for 𝓜𝓒𝓓𝓜 under q-rung orthopair fuzzy soft 

information 
Decision making is a pre-planned process of selecting the logical choice among several 

objects. 𝒟ℳ plays an important role in real life situation. A good decision can change 

the course of our lives. An intelligent decision maker judges the limitations, advantages 

and characteristics of each alternatives and then he could reaches to the final decision. 

Here we will present the mathematical description of the proposed model for ℳ𝒞𝒟ℳ 

under q-ROF𝑆𝑓𝑡 environment. The general concept and step wise algorithm for the 

given approach is as follows: 

Let 𝑇 = {𝓀1, 𝓀2, … ,𝓀𝑙} be the set of 𝑙 different alternatives, which is assessed by 𝑛 

senior experts 𝔇1, 𝔇2, … , 𝔇𝑛 and let 𝔼 = {𝑠1, 𝑠2, … , 𝑠𝑚} be the corresponding set 𝑚 

parameters. A team of 𝑛 senior experts has been constituted to evaluate each alternative 

𝓀𝑒 (𝑒 = 1,2,… , 𝑙) according to their corresponding parameter 𝑠𝑗 (𝑗 = 1,2,… ,𝑚). 

Assume that the committee of experts provide their assessment in terms of q-

ROF𝑆𝑓𝑡Vs ℑ𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗) with weight vectors 𝑤̿ = (𝑤̿1, 𝑤̿2, … , 𝑤̿𝑛)
𝑇 and 𝑢̿ =

(𝑢̿1, 𝑢̿2, … , 𝑢̿𝑚)
𝑇 for the experts 𝓀𝑖  and for the parameters 𝑠𝑗 respectively, such that 

𝑤̿𝑖 , 𝑢̿𝑗 ∈ [0,1] with ∑ 𝑤̿𝑖
𝑛
𝑖=1 = 1 𝑎𝑛𝑑 ∑ 𝑢̿𝑗

𝑚
𝑗=1 = 1. So the collective information are 

expressed in a decision matrix 𝕄 = [ℑ𝓀𝑖𝑗]𝑛×𝒎. In ordered to use the assessments of 

senior experts, the aggregated q-ROF𝑆𝑓𝑡V 𝜉𝑒  for alternative 𝓀𝑒 (𝑒 = 1,2,… , 𝑙) is given 

as 𝜉𝑒 = (𝜇𝑒 , 𝜓𝑒) by applying the proposed aggregation operators. Finally determine the 

score function for overall aggregated q-ROF𝑆𝑓𝑡Vs ℑ𝓀𝑒  (𝑒 = 1,2, … , 𝑙) for the 

alternatives and rank them in a specific order to get the best optimal solution. 

4.4.1. Algorithm 
In the following, the step wise algorithm for solving ℳ𝒞𝒟ℳ problems with the help 

of proposed operators consists of the following steps. 

Step 1. Collect the expert’s assessment information for each alternative to their 

corresponding parameters and then construct a decision matrix 𝕄 = [ℑ𝓀𝑖𝑗]𝑛×𝒎 as: 
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𝕄 = [

(𝜇11, 𝜓11) (𝜇12, 𝜓12) ⋯ (𝜇1𝑚 , 𝜓1𝑚)

(𝜇21, 𝜓21) (𝜇22, 𝜓22) ⋯ (𝜇2𝑚 , 𝜓2𝑚)
⋮ ⋮ ⋱ ⋮

(𝜇1𝑚 , 𝜓1𝑚) (𝜇2𝑚 , 𝜓2𝑚) ⋯ (𝜇𝑛𝑚 , 𝜓𝑛𝑚)

] 

Step 2. Normalize the q-ROF𝑆𝑓𝑡 decision matrix 𝕄 = [ℑ𝓀𝑖𝑗]𝑛×𝒎 by changing 

assessment value of cost parameter into benefit parameter if there is any, by using the 

formula from [91] that is, 

𝑝𝑖𝑗 = {
ℑ𝓀𝑖𝑗
𝑐   ;   𝑓𝑜𝑟 𝑐𝑜𝑠𝑡 𝑡𝑦𝑝𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟

ℑ𝓀𝑖𝑗   ;   𝑓𝑜𝑟 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑡𝑦𝑝𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟
, 

where ℑ𝓀𝑖𝑗
𝑐 = (𝜓𝑖𝑗 , 𝜇𝑖𝑗) represents the complement of  ℑ𝓀𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗). 

Step 3. By applying the proposed aggregation operators aggregate the q-ROF𝑆𝑓𝑡Vs 

ℑ𝓀𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗) for each alternative 𝓀𝑒 (𝑒 = 1,2,… , 𝑙) into collective decision 

matrix 𝜉𝑒 . 

Step 4. Calculate the score value for 𝜉𝑒  by using Definition 9, of the overall 

alternative 𝓀𝑒 (𝑒 = 1,2,… , 𝑙). 

Step 5. Arrange the ranking result in a specific order for alternative 𝓀𝑒 (𝑒 = 1,2,… , 𝑙) 
and chose the best optimal result. 

The flow chart of above algorithm for q-ROF𝑆𝑓𝑡WA is given in Fig. 4.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.1.  flow chart for q-ROF𝑆𝑓𝑡WA and q-ROF𝑆𝑓𝑡WG 
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4.5.  A Numerical example of the proposed model to 𝓜𝓒𝓓𝓜 
This section is devoted for the presentation of an illustrative example to demonstrate 

the effectiveness and validity of the developed model with q-ROF soft information. 

Consider a team of experts consist of five senior doctors 𝔇1, 𝔇2, 𝔇3, 𝔇4 𝑎𝑛𝑑 𝔇5, 

whose weight vectors 𝑤̿ = (0.18,0.24,0.21,0.15,0.22)𝑇, will present their evaluation 

for four different patients 𝓀1, 𝓀2, 𝓀3 𝑎𝑛𝑑 𝓀4 based on the constraint of parameters set 

𝔼 = {𝑠1 = 𝑐ℎ𝑒𝑠𝑡 𝑝𝑎𝑖𝑛, 𝑠2 = 𝑓𝑒𝑣𝑒𝑟, 𝑠3 = 𝑐𝑜𝑢𝑔ℎ, 𝑠4 = 𝑓𝑎𝑡𝑖𝑔𝑢𝑒, 𝑠5 = 𝑣𝑜𝑚𝑖𝑡} having 

weight vector 𝑢̿ = (0.26,0.22,0.1,0.27,0.15)𝑇. The doctors present their evaluation for 

each alternative to their corresponding symptom in the form of q-ROF𝑆𝑓𝑡Vs. Now we 

apply the step wise algorithm of the proposed model to diagnose the illness of desirable 

patients. 

𝑩𝒚 𝒖𝒔𝒊𝒏𝒈 𝒒 − 𝑹𝑶𝑭𝑺𝒇𝒕𝑾𝑨 𝒐𝒑𝒆𝒓𝒂𝒕𝒐𝒓 

Step 1. The doctors present their evaluation for the illness of each alternative (patient) 

to their corresponding symptoms (parameters) in the form of q-ROF𝑆𝑓𝑡Vs, which is 

given in Tables 4.6 − 4.9 respectively. 

Step 2. There is no need to normalize the given q-ROF soft matrix because all the 

parameters of the same type. 

Step 3. The experts/doctors evaluation for each patient 𝓀𝑖  (𝑖 = 1,2,3,4) is aggregated 

by applying the 𝐸𝑞. 4.1, 𝑓𝑜𝑟 𝑞 = 3, so we have 

𝜉1 = (0.715197,0.188439), 𝜉2 = (0.745295,0.189273), 

𝜉3 = (0.775728,0.164921), 𝜉4 = (0.754479,0.158639) 

Step 4. Calculate the score value by using Definition 4.2.4, for each aggregated value 

𝜉𝑖  (𝑖 = 1,2,3,4) in Step 3, that is 

𝒮𝑐(𝜉1) = 0.414877, 𝒮𝑐(𝜉2) = 0.46537, 𝒮𝑐(𝜉3) = 0.522354,

𝒮𝑐(𝜉4) = 0.484856 

Step 5. Finally rank the results in descending order to get the best optimal result. Hence 

from the score values, we get the ranking result as: 

𝒮𝑐(𝜉3) > 𝒮𝑐(𝜉4) > 𝒮𝑐(𝜉2) > 𝒮𝑐(𝜉1) 
Therefore, form overall analysis of the experts, it is observed that patient 𝓀3 has more 

serious illness than the others patients.  

𝑭𝒐𝒓 𝒒 − 𝑹𝑶𝑭𝑺𝒇𝒕𝑶𝑾𝑨 𝒐𝒑𝒆𝒓𝒂𝒕𝒐𝒓 

Step 1. Same as above.  

Step 2. Same as above. 

Step 3. The experts/doctors evaluation for each patient 𝓀𝑖  (𝑖 = 1,2,3,4) is aggregated 

by applying the 𝐸𝑞. 4.7, so we have 

𝜉1 = (0.722349,0.186069), 𝜉2 = (0.750879,0.185528), 

𝜉3 = (0.775689,0.168362), 𝜉4 = (0.75392,0.161782) 
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Step 4. Calculate the score value by using Definition 4.2.4, for each aggregated value 

𝜉𝑖  (𝑖 = 1,2,3,4) in Step 3, that is 

𝒮𝑐(𝜉1) = 0.426939, 𝒮𝑐(𝜉2) = 0.475573, 𝒮𝑐(𝜉3) = 0.521928,

𝒮𝑐(𝜉4) = 0.483572 

Step 5. Finally rank the results in descending order to get the best optimal result. Hence 

from the score values, we get the ranking result as: 

𝒮𝑐(𝜉3) > 𝒮𝑐(𝜉4) > 𝒮𝑐(𝜉2) > 𝒮𝑐(𝜉1) 

Therefore, form overall analysis of the experts, it is observed that for q-ROF𝑆𝑓𝑡OWA 

operator the best optimal solution is again same as q-ROF𝑆𝑓𝑡WA. Hence patient 𝓀3 has 

more serious illness than the others patients. 

𝑭𝒐𝒓 𝒒 − 𝑹𝑶𝑭𝑺𝒇𝒕𝑯𝑨 𝒐𝒑𝒆𝒓𝒂𝒕𝒐𝒓 

Step 1. Same as above.  

Step 2. Same as above. 

Step 3. The experts/doctors evaluation for each patient 𝓀𝑖  (𝑖 = 1,2,3,4) is aggregated 

by applying the 𝐸𝑞. 4.8, with 𝔲 = (0.15,0.2,0.17,0.3,0.18)𝑇  𝑎𝑛𝑑 𝔯 =

(0.16,0.21,0.13,0.26, 0. 24)𝑇 be the weight vectors of ℑ𝓀𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗), and 𝑛 is the 

balancing coefficient represents the number of elements in 𝑖𝑡ℎ  𝑟𝑜𝑤 𝑎𝑛𝑑 𝑗𝑡ℎ  𝑐𝑜𝑙𝑢𝑚𝑛. 

Let  𝑤̿ = (0.18,0.24,0.21, 0.15,0.22)𝑇 and 𝑢̿ = (0.26,0.22,0.1, 0.27,0.15)𝑇 be the 

aggregate associated weight vectors for the experts 𝓀𝑖  and for the parameters 𝑠𝑗′𝑠 

respectively, so we have 

𝜉1 = (0.457099,0.709743), 𝜉2 = (0.478573,0.708384), 

𝜉3 = (0.489985,0.696883), 𝜉4 = (0.474105,0.692815) 

Step 4. Calculate the score value by using Definition 4.2.4, for each aggregated value 

𝜉𝑖  (𝑖 = 1,2,3,4) in Step 3, that is 

 𝒮𝑐(𝜉1) = −0.29764, 𝒮𝑐(𝜉2) = −0.27858, 𝒮𝑐(𝜉3) = −0.2507, 𝒮𝑐(𝜉4) =

−0.25753 

Step 5. Finally rank the results in descending order to get the best optimal result. Hence 

from the score values, we get the ranking result as: 

𝒮𝑐(𝜉3) > 𝒮𝑐(𝜉4) > 𝒮𝑐(𝜉2) > 𝒮𝑐(𝜉1) 

Therefore, form overall analysis of the experts, it is observed that for q-ROF𝑆𝑓𝑡HA 

operator the best optimal solution is again same like q-ROF𝑆𝑓𝑡WA and q-

ROF𝑆𝑓𝑡OWA. Hence patient 𝓀3 has more serious illness than the others patients. 
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Table 4.6, q-ROF𝑆𝑓𝑡 matrix for patient 𝓀1 

 𝑠1 = Chest 

pain 

    𝑠2 =

 Fever 

   𝑠3 =

 Cough 

    𝑠4 = 

Fatigue 

     𝑠5 =

 Vomit 

𝔇1 (0.7,0.25) (0.7,0.22) (0.88,0.1) (0.9,0.1) (0.73,0.2) 

𝔇2 (0.6, 0.1) (0.6,0.13) (0.85,0.12) (0.65,0.25) (0.81,0.18) 

𝔇3 (0.54,0.15) (0.7,0.2) (0.75,0.24) (0.68,0.25) (0.6,0.26) 

𝔇4 (0.65,0.2) (0.8,0.18) (0.85,0.13) (0.8,0.18) (0.7,0.28) 

𝔇5 (0.6,0.3) (0.75,0.18) (0.67,0.25) (0.6,0.3) (0.45,0.15) 
 

 

Table 4.7, q-ROF𝑆𝑓𝑡 matrix for patient 𝓀2 

 𝑠1 = Chest 

pain 

   𝑠2 = Fever     𝑠3 = 

Cough 

   𝑠4 = 

Fatigue 

   𝑠5 = Vomit 

𝔇1 (0.8,0.15) (0.75,0.22) (0.76,0.1) (0.8,0.19) (0.7,0.25) 

𝔇2 (0.75, 0.18) (0.8,0.15) (0.8,0.18) (0.5,0.25) (0.8,0.16) 

𝔇3 (0.78,0.13) (0.7,0.2) (0.7,0.25) (0.76,0.21) (0.76,0.23) 

𝔇4 (0.9,0.1) (0.65,0.33) (0.76,0.15) (0.87,0.12) (0.65,0.18) 

𝔇5 (0.65,0.3) (0.55,0.2) (0.6,0.3) (0.7,0.23) (0.55,0.15) 

 

 

  Table 4.8, q-ROF𝑆𝑓𝑡  matrix for patient 𝓀3 

 𝑠1 = Chest 

pain 

    𝑠2 = Fever    𝑠3 = Cough   𝑠4 = 

Fatigue 

  𝑠5 = Vomit 

𝔇1 (0.71,0.25) (0.78,0.1) (0.88,0.11) (0.81,0.18) (0.78,0.2) 

𝔇2 (0.8,0.15) (0.85,0.12) (0.9,0.1) (0.65,0.25) (0.74,0.23) 

𝔇3 (0.76,0.1) (0.88,0.11) (0.84,0.12) (0.86,0.1) (0.79,0.2) 

𝔇4 (0.78,0.22) (0.75,0.25) (0.74,0.2) (0.75,0.25) (0.65,0.16) 

𝔇5 (0.6,0.25) (0.8,0.19) (0.75,0.16) (0.6,0.2) (0.5,0.1) 
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Table 4.9, q-ROF𝑆𝑓𝑡  matrix for patient 𝓀4 

 𝑠1 = Chest 

pain 

   𝑠2 = Fever    𝑠3 = Cough     𝑠4 = 

Fatigue 

   𝑠5 =Vomit 

𝔇1 (0.76,0.22) (0.75,0.22) (0.85,0.14) (0.78,0.2) (0.65,0.26) 

𝔇2 (0.72,0.12) (0.79,0.18) (0.6,0.12) (0.73,0.15) (0.8,0.14) 

𝔇3 (0.82,0.16) (0.83,0.1) (0.84,0.13) (0.82,0.12) (0.77,0.2) 

𝔇4 (0.6,0.27) (0.6,0.3) (0.7,0.2) (0.83,0.13) (0.6,0.25) 

𝔇5 (0.55,0.1) (0.81,0.12) (0.8,0.15) (0.72,0.17) (0.5,0.15) 
 

 

4.5.1. Comparative study 
To show the superiority and influence of proposed model, a comparative study has been 

presented of the proposed model with some existing literature, based on different 

aggregation operators (see [4, 30, 58]). If we assign the value to ℳ𝒢 0.9 and 𝒩ℳ𝒢 0.5, 

then their sum 0.9 + 0.5 > 1. So in this case the methods presented in [4, 58] will fail 

to cope the situation. Similarly, if we consider Tables 4.6 𝑡𝑜 4.9, then the methods 

developed in [4, 30] will also fail to tackle the situation, and the developed approach 

cope all these situations. For this, different parameters of q-ROF soft numbers are 

aggregated by applying weighted averaging operator having weight vectors 𝑢̿ =
(0.26,0.22,0.1,0.27,0.15)𝑇, and got the q-ROF soft matrix for different candidates 

𝓀𝑖 (𝑖 = 1,2,3,4) as summarized in Table 4.10. Then based on this evaluated matrix a 

comparative analysis of different aggregation operators has been presented, and their 

corresponding results for each candidates are given in Table 4.11. From this table, it is 

clear that patient 𝓀3 has more illness diagnosed by the expert doctors. The characteristic 

analysis of the developed approach with some existing studies is given in Table 4.12. 

So, from Table 4.12, it is clear that the methods given in [4, 30] have no information 

about parameter study. The advantages of the developed concept is that they have the 

ability to solve the real life problems by using their parameterizations properties. 

Hence, the developed concept can be utilized for solving the 𝒟ℳ problems rather than 

other existing operators in q-ROF𝑆𝑓𝑡 environment. 

Table 4.10, Aggregated values of q-ROF𝑆𝑓𝑡 matrix for patients 

 𝓀1 𝓀2 𝓀3 𝓀4 

𝔇1 (0.5137,0.1660) (0.4413,0.1751) (0.5180,0.1531) (0.4527,0.2046) 

𝔇2 (0.4224,0.1445) (0.4508,0.1764) (0.5481,0.1459) (0.4114,0.1415) 

𝔇3 (0.3308,0.2162) (0.4047,0.2015) (0.5803,0.1238) (0.5465,0.1377) 

𝔇4 (0.4768,0.1888) (0.4859,0.1696) (0.3991,0.2113) (0.3101,0.2291) 

𝔇5 (0.2881,0.2193) (0.2256,0.2246) (0.3276,0.1685) (0.3784,0.1347) 
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Table 4.11.  Comparative Studies of different methods 

Methods  𝑆𝑐𝑜𝑟𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠

𝓀1                𝓀2               𝓀3                𝓀4 
 

               Ranking 

IFWA [4] 0.258398,  0.241765,  0.31298,  0.232224 𝜉3 > 𝜉1 > 𝜉2 > 𝜉4 

IFOWA [4] 0.23115,  0.23056,  0.329916,  0.277871 𝜉3 > 𝜉4 > 𝜉1 > 𝜉2 

IFHA [4] 0.26103,  0.273152,  0.337673,   0.246599 𝜉3 > 𝜉2 > 𝜉1 > 𝜉4 

IF𝑆𝑓𝑡WA [58] 0.516859,  0.548324,  0.604673,  0.590214 𝜉3 > 𝜉4 > 𝜉2 > 𝜉1 

PyF𝑆𝑓𝑡WA (proposed) 0.522097,  0.565965,  0.621904,  0.593809 𝜉3 > 𝜉4 > 𝜉2 > 𝜉1 

PyF𝑆𝑓𝑡OWA 

(proposed) 

0.532526,  0.575719,  0.621094,  0.591066 𝜉3 > 𝜉4 > 𝜉2 > 𝜉1 

PyF𝑆𝑓𝑡HA (proposed) -0.39452, -0.37378,   -0.34634,   -0.34975 𝜉3 > 𝜉4 > 𝜉2 > 𝜉1 

q-ROFWA [30] 0.083494,  0.076265,  0.111612,  0.067345 𝜉3 > 𝜉1 > 𝜉2 > 𝜉4 

q-ROF𝑆𝑓𝑡WA 

(proposed) 

0.414877,  0.46537,    0.522354,  0.484856 𝜉3 > 𝜉4 > 𝜉2 > 𝜉1 

q-

ROF𝑆𝑓𝑡OWA(proposed) 
0.426939,  0.475573,  0.521928,  0.483572 𝜉3 > 𝜉4 > 𝜉2 > 𝜉1 

q-ROF𝑆𝑓𝑡HA 

(proposed) 

-0.29764,  -0.27858,   -0.2507,     -0.25753 𝜉3 > 𝜉4 > 𝜉2 > 𝜉1 

 

 

 

Table 4.12. Characteristic analysis of different models 

 𝐹𝑢𝑧𝑧𝑦 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛  𝐴𝑔𝑔𝑟𝑎𝑔𝑎𝑡𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑚 

IFWA [4] 𝑌𝑒𝑠 𝑁𝑜 

IFOWA [4] 𝑌𝑒𝑠 𝑁𝑜 

IFHA [4] 𝑌𝑒𝑠 𝑁𝑜 

IF𝑆𝑓𝑡WA [58] 𝑌𝑒𝑠 𝑌𝑒𝑠 

q-ROFWA [30] 𝑌𝑒𝑠 𝑁𝑜 

𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠 𝑌𝑒𝑠 𝑌𝑒𝑠 
 

 

4.5.2. Conclusion 
Decision making is a pre-planned process of selecting the logical choice among several 

objects. Therefore, 𝒟ℳ plays a significant role in real life situation. In this manuscript 

we have presented the hybrid study of 𝑆𝑓𝑡S and q-ROFS to get new concept of q-

ROF𝑆𝑓𝑡S, which provides a general framework for mathematical problems by affix 

parameterization tools during the analysis as compared to other method. Based on this 

concept we have established the aggregation operators that are q-ROF𝑆𝑓𝑡WA, q-

ROF𝑆𝑓𝑡OWA and q-ROF𝑆𝑓𝑡HA and also studied their corresponding operational laws 

in q-ROF𝑆𝑓𝑡 environment. Furthermore, we have investigated their desirable properties 

in detail. Based on proposed model a medical 𝒟ℳ problem has been presented under 
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the q-ROF𝑆𝑓𝑡 environment. Then we have shown the justification of the developed 

approach with some existing methods and a characteristic analysis showing the 

influence and superiority of the developed method than the existing literature. The 

advantages of the developed concepts are that they have the ability to solve the real life 

problems by using their parameterizations properties. Hence, the developed concept 

can be utilized for solving the 𝒟ℳ problems rather than other existing operators in q-

ROF𝑆𝑓𝑡 environment.  
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Chapter 5 

Orthopair fuzzy soft geometric aggregation operators 

Hussain et al. [64] presented the combined study of 𝑆𝑓𝑡S and q-ROFS to get the new 

notion called q-ROF𝑆𝑓𝑡S. The notion of q-ROF𝑆𝑓𝑡S is free from that inherited 

complexities which suffered the contemporary theories because parameterization tool 

is the most significant character of q-ROF𝑆𝑓𝑡S. In this chapter our main contribution is 

to originate the concept of q-ROF𝑆𝑓𝑡WG, q-ROF𝑆𝑓𝑡OWG and q-ROF𝑆𝑓𝑡HG operators 

in q-ROF𝑆𝑓𝑡 environment. Moreover, some dominant properties such as Idempotency, 

Boundedness, Monotonicity, Shift invariance and Homogeneity of these developed 

operators are studied in detail. Based on these proposed approaches, a model is built up 

for ℳ𝒞𝒟ℳ and its algorithm has being presented. Finally, utilizing the developed 

approach an illustrative example is solved under q-ROF𝑆𝑓𝑡 environment. Further a 

comparative analysis of the investigated models with existing methods are presented in 

detail which shows the competence and ability of the developed models. 

5.1. q-Rung orthopair fuzzy soft set 
In this section, a detail study of the hybrid model of 𝑆𝑓𝑡S and q-ROFS that is q-ROF𝑆𝑓𝑡S 

is being presented and their desirable operations are discussed in detail. 

5.1.1. Definition [64] 

Suppose a soft set (ℋ,𝔼) over a universal set 𝑇 and a pair (𝒯, 𝒮) is said to be a q-

ROF𝑆𝑓𝑡S over 𝑇, where 𝒯 is a mapping denoted by 𝒯: 𝔼 → 𝑞 − 𝑅𝑂𝐹𝑆(𝑆), which is 

given as: 

𝒯𝑠𝑗(𝓀𝑖) = {≺ 𝓀𝑖, 𝜇𝑗(𝓀𝑖), 𝜓𝑗(𝓀𝑖) ≻𝑞 |𝓀𝑖 ∈ 𝑇, 𝑠𝑗 ∈ 𝔼 𝑎𝑛𝑑 𝑞 ≥ 1}, 

where 𝜇𝑗(𝓀𝑖), 𝜓𝑗(𝓀𝑖) denote the ℳ𝒢 and 𝒩ℳ𝒢 of an alternative 𝓀𝑖 ∈ 𝑇 to the set 𝒯𝑠𝑗 

respectively, and hold the restriction that 0 ≤ (𝜇𝑗(𝓀𝑖))
𝑞

+ (𝜓𝑗(𝓀𝑖))
𝑞

≤ 1 and 𝑞 ≥ 1. 

For the simplicity 𝒯𝑠𝑗(𝓀𝑖) =≺ 𝓀𝑖, 𝜇𝑗(𝓀𝑖), 𝜓𝑗(𝓀𝑖) ≻𝑞 , is denoted by 𝔍𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗) 

representing a q-ROF𝑆𝑓𝑡 number (q-ROF𝑆𝑓𝑡V). Further, the hesitancy degree for q-

ROF𝑆𝑓𝑡V is given as 𝜋𝔍𝑠𝑖𝑗
= √1 − ((𝜇𝑖𝑗)

𝑞
+ (𝜓𝑖𝑗)

𝑞
)

𝑞

 . The set of all q-ROF𝑆𝑓𝑡S is 

denoted by q-ROF𝑆𝑓𝑡𝑆
(𝑇). 

For detail study of q-ROF𝑆𝑓𝑡S and its basic operations and relation see Chapter 4, 

Section 4.2. 

On the analysis of q-ROF𝑆𝑓𝑡V we presented the score function which estimates the 

ranking between two or more alternatives satisfy the desirable choice of experts. 
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5.1.2. Definition [64] 

Let 𝔍𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗) be a q-ROF𝑆𝑓𝑡V. Then score function for 𝔍𝑠𝑖𝑗  is given as 

𝒮𝑐 (𝔍𝑠𝑖𝑗) = 𝜇𝑖𝑗
𝑞
−𝜓𝑖𝑗

𝑞
+ (

𝑒
𝜇𝑖𝑗
𝑞
−𝜓𝑖𝑗

𝑞

𝑒
𝜇
𝑖𝑗
𝑞
−𝜓

𝑖𝑗
𝑞

+ 1
−
1

2
)𝜋𝔍𝑠𝑖𝑗

𝑞
   𝑓𝑜𝑟 𝑞 ≥ 1   𝑎𝑛𝑑    𝒮𝑐 (𝔍𝑠𝑖𝑗)

∈ [−1,1] 

Let 𝔍𝑠11 = (𝜇11, 𝜓11)  𝑎𝑛𝑑   𝔍𝑠12 = (𝜇12, 𝜓12) be two q-ROF𝑆𝑓𝑡Ns. Then 

(i) If 𝒮𝑐(𝔍𝑠11) > 𝒮𝑐(𝔍𝑠12), then 𝔍𝑠11 ≽ 𝔍𝑠12; 

(ii) If 𝒮𝑐(𝔍𝑠11) < 𝒮𝑐(𝔍𝑠12), then 𝔍𝑠11 ≼ 𝔍𝑠12; 

(iii) If 𝒮𝑐(𝔍𝑠11) = 𝒮𝑐(𝔍𝑠12), then  

(a) If 𝜋𝔍𝑠11 > 𝜋𝔍𝑠12  then 𝔍𝑠11 ≺ 𝔍𝑠12; 

(b) If 𝜋𝔍𝑠11 = 𝜋𝔍𝑠12  then𝔍𝑠11 = 𝔍𝑠12. 

5.2. q-Rung orthopair fuzzy soft geometric aggregation operator 
This section is allotted to the detailed study of q-ROF𝑆𝑓𝑡WG, q-ROF𝑆𝑓𝑡OWG and q-

ROF𝑆𝑓𝑡HG operators and their basic properties have been provided in detail. 

5.2.1. q-Rung orthopair fuzzy soft weighted geometric operators 
This subsection, consists of the detail study of q-ROF𝑆𝑓𝑡WG operator and discussed 

their fundamental properties. 

5.2.1.1.  Definition 

Let 𝔍𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗) 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑛 𝑎𝑛𝑑 𝑗 = 1,2,… ,𝑚, be the collection of q-

ROF𝑆𝑓𝑡Vs, and suppose the weight vectors 𝑤̿ = {𝑤̿1, 𝑤̿2, … , 𝑤̿𝑛} for the decision 

makers 𝓀𝑖 and 𝓊̿ = {𝓊̿1, 𝓊̿2, … , 𝓊̿𝑚} and for the parameters 𝑠𝑗′ respectively; and 

satisfying the restrictions that 𝑤̿𝑖 , 𝓊̿𝑗 ∈ [0,1] with ∑ 𝑤̿𝑖
𝑛
𝑖=1 = 1 𝑎𝑛𝑑 ∑ 𝓊̿𝑗

𝑚
𝑗=1 = 1. Then 

q-ROF𝑆𝑓𝑡WG operator is a mapping denoted and defined as: q − ROF𝑆𝑓𝑡WG:X
𝑛 →

𝑋, (where 𝑋 contains the collection of q-ROF𝑆𝑓𝑡Vs) 

q − ROF𝑆𝑓𝑡WG(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑛𝑚) = ⨂𝑗=1
𝑚 (⨂𝑖=1

𝑛 𝔍𝑠𝑖𝑗
𝑤̿𝑖)

𝓊̿𝑗
 

The following Theorem 5.3.1.2, describes the aggregation result for q-ROF𝑆𝑓𝑡WG 

operator. 

5.2.1.2.  Theorem 

Suppose the collections 𝔍𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗) 𝑓𝑜𝑟 𝑖 = 1,2,… , 𝑛 𝑎𝑛𝑑 𝑗 = 1,2,… ,𝑚, of q-

ROF𝑆𝑓𝑡Vs. Then the aggregation result for q-ROF𝑆𝑓𝑡WG operator is defined as: 

q − ROF𝑆𝑓𝑡WG(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑛𝑚) = ⨂𝑗=1
𝑚 (⨂𝑖=1

𝑛 𝔍𝑠𝑖𝑗
𝑤̿𝑖)

𝓊̿𝑗
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=

(

 ∏(∏𝜇𝑖𝑗
𝑤̿𝑖

𝑛

𝑖=1

)

𝓊̿𝑗𝑚

𝑗=1

, √1 −∏(∏(1− 𝜓𝑖𝑗
𝑞
)𝑤̿𝑖

𝑛

𝑖=1

)

𝓊̿𝑗𝑚

𝑗=1

𝑞

)

 ,                                 (5.1) 

where 𝑤̿ = {𝑤̿1, 𝑤̿2, … , 𝑤̿𝑛} and be weight vector for decision makers  𝑢̿ =
{𝑢̿1, 𝑢̿2, … , 𝑢̿𝑚} be the for the parameters 𝑠𝑗 respectively; which satisfying that 𝑤̿𝑖, 𝑢̿𝑗 ∈

[0,1] with ∑ 𝑤̿𝑖
𝑛
𝑖=1 = 1 𝑎𝑛𝑑 ∑ 𝑢̿𝑗

𝑚
𝑗=1 = 1. 

Proof. By utilizing mathematical induction to prove the aggregation result of Eq. 5.1. 

Consider the operation laws of q-ROF𝑆𝑓𝑡S, that is 

𝔍𝑠11⨂ 𝔍𝑠12 = (𝜇11𝜇12 , √(𝜓11)𝑞 + (𝜓12)𝑞 − (𝜓11)𝑞(𝜓12)𝑞
𝑞

)    𝑎𝑛𝑑  

𝔍𝛼 = (, 𝜇𝛼  , √1 − [1 − 𝜓𝑞]𝛼
𝑞

)    𝑓𝑜𝑟 𝛼 ≥ 1 

First we will show that the 𝐸𝑞. 5.1 is true for 𝑛 = 2  𝑎𝑛𝑑  𝑚 = 2, so we have 

q − ROF𝑆𝑓𝑡WG(𝔍𝑠𝑖𝑗, 𝔍𝑠𝑖𝑗) = ⨂𝑗=1
2 (⨂𝑖=1

2 𝔍𝑠𝑖𝑗
𝑤̿𝑖)

𝑢𝑗
 

= (⨂𝑖=1
2 𝔍𝑠𝑖1

𝑤̿𝑖 )
𝑢1
⨂(⨂𝑖=1

2 𝔍𝑠𝑖2
𝑤̿𝑖 )

𝑢2
 

= (𝔍𝑠11
𝑤̿1⨂ 𝔍𝑠21

𝑤̿2 )
𝑢1
⨂ (𝔍𝑠12

𝑤̿1⨂ 𝔍𝑠22
𝑤̿2 )

𝑢2
 

=

{
 
 

 
 (𝜇11

𝑤̿1  , √1 − (1 − 𝜓11
𝑞 )

𝑤̿1
𝑞

)⨂

(𝜇21
𝑤̿2  , √1 − (1 − 𝜓21

𝑞 )
𝑤̿2

𝑞

)
}
 
 

 
 
𝑢1

⨂

{
 
 

 
 (𝜇12

𝑤̿1  , √1 − (1 − 𝜓12
𝑞 )

𝑤̿1
𝑞

)⨂

(𝜇22
𝑤̿2  , √1 − (1 − 𝜓22

𝑞 )
𝑤̿2

𝑞

)
}
 
 

 
 
𝑢2

 

=

{
 

 

(

 ∏𝜇𝑖1
𝑤̿𝑖

2

𝑖=1

, √1 −∏(1 − 𝜓𝑖1
𝑞 )

𝑤̿𝑖

2

𝑖=1

𝑞

)

 

}
 

 
𝑢1

⨂

{
 

 

(

 ∏𝜇𝑖2
𝑤̿𝑖

2

𝑖=1

 , √1 −∏(1 − 𝜓𝑖2
𝑞 )

𝑤̿𝑖

2

𝑖=1

𝑞

)

 

}
 

 
𝑢2

 

=

(

 
 
(∏𝜇𝑖1

𝑤̿𝑖

2

𝑖=1

)

𝑢1

 , √1 − (∏(1 − 𝜓𝑖1
𝑞 )

𝑤̿𝑖

2

𝑖=1

)

𝑢1𝑞

)

 
 
⨂ 

(

 
 
(∏𝜇𝑖1

𝑤̿𝑖

2

𝑖=1

)

𝑢2

 , √1 − (∏(1 − 𝜓𝑖1
𝑞 )

𝑤̿𝑖

2

𝑖=1

)

𝑢2𝑞

)

 
 

 

=

(

 
 
∏(∏𝜇𝑖𝑗

𝑤̿𝑖

2

𝑖=1

)

𝑢𝑗2

𝑗=1

 , √1 −∏(∏(1−𝜓𝑖𝑗
𝑞
)
𝑤̿𝑖

2

𝑖=1

)

𝑢𝑗2

𝑗=1

𝑞

)

 
 

 

Hence the result is true for 𝑛 = 2  𝑎𝑛𝑑  𝑚 = 2, 
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Next suppose that 𝐸𝑞. 5.1 is true for 𝑛 = 𝑘1  𝑎𝑛𝑑  𝑚 = 𝑘2 

q − ROF𝑆𝑓𝑡WG(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑘1𝑘2) = ⨂𝑗=1
𝑘2 (⨂𝑖=1

𝑘1 𝔍𝑠𝑖𝑗
𝑤̿𝑖)

𝑢𝑗
 

=

(

 
 
∏(∏𝜇𝑖𝑗

𝑤̿𝑖

𝑘1

𝑖=1

)

𝑢𝑗𝑘2

𝑗=1

, √1 −∏(∏(1 −𝜓𝑖𝑗
𝑞
)
𝑤̿𝑖

𝑘1

𝑖=1

)

𝑢𝑗𝑘2

𝑗=1

𝑞

)

 
 

 

We show that 𝐸𝑞. 5.1 is true for 𝑛 = 𝑘1 + 1  𝑎𝑛𝑑  𝑚 = 𝑘2 + 1 

q − ROF𝑆𝑓𝑡WG(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑘1𝑘2 , 𝔍𝑠(𝑘1+1)(𝑘2+1)
)

= q − ROF𝑆𝑓𝑡WG((𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑘1𝑘2) , 𝔍𝑠(𝑘1+1)(𝑘2+1)
) 

= {⨂𝑗=1
𝑘2 (⨂𝑖=1

𝑘1 𝔍𝑠𝑖𝑗
𝑤̿𝑖)

𝑢𝑗
}⨂ (𝔍𝑠(𝑘1+1)(𝑘2+1)

𝑤̿(𝑘2+1) )
𝑢(𝑘1+1)

 

=

(

 
 
∏(∏𝜇𝑖𝑗

𝑤̿𝑖

𝑘1

𝑖=1

)

𝑢𝑗𝑘2

𝑗=1

 , √1 −∏(∏(1− 𝜓𝑖𝑗
𝑞
)
𝑤̿𝑖

𝑘1

𝑖=1

)

𝑢𝑗𝑘2

𝑗=1

𝑞

)

 
 
⨂ (𝔍𝑠(𝑘1+1)(𝑘2+1)

𝑤̿(𝑘2+1) )
𝑢(𝑘1+1)

 

=

(

 
 
∏ ( ∏ 𝜇𝑖𝑗

𝑤̿𝑖

(𝑘1+1)

𝑖=1

)

𝑢𝑗(𝑘2+1)

𝑗=1

 , √1 − ∏ ( ∏ (1− 𝜓𝑖𝑗
𝑞
)
𝑤̿𝑖

(𝑘1+1)

𝑖=1

)

𝑢𝑗(𝑘2+1)

𝑗=1

𝑞

)

 
 

 

Hence 𝐸𝑞. 5.1 is true for  𝑛 = 𝑘1 + 1  𝑎𝑛𝑑  𝑚 = 𝑘2 + 1. Therefore, by induction 

process 𝐸𝑞. 5.1 is true for all values of  𝑚, 𝑛 ≥ 1. 

Moreover, to prove the aggregated result achieved from q-ROF𝑆𝑓𝑡WG operator is again 

a q-ROF𝑆𝑓𝑡V. Now for any 𝔍𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗), (𝑖 = 1, 2,… , 𝑛) 𝑎𝑛𝑑 (𝑗 = 1, 2, … ,𝑚), 

where 0 ≤ 𝜇𝑖𝑗 , 𝜓𝑖𝑗 ≤ 1, satisfying that 0 ≤ 𝜇𝑖𝑗
𝑞
+ 𝜓𝑖𝑗

𝑞
≤ 1, with weight vectors 𝑤̿ =

{𝑤̿1, 𝑤̿2, … , 𝑤̿𝑛} and 𝑢̿ = {𝑢̿1, 𝑢̿2, … , 𝑢̿𝑚} for the decision maker 𝓀𝑖  and for the 

parameters 𝑠𝑗 respectively; which satisfying that 𝑤̿𝑖 , 𝑢̿𝑗 ∈ [0,1] with ∑ 𝑤̿𝑖
𝑛
𝑖=1 =

1 𝑎𝑛𝑑 ∑ 𝑢̿𝑗
𝑚
𝑗=1 = 1. 

 As, 

0 ≤ 𝜇𝑖𝑗 ≤ 1 ⇒ 0 ≤∏𝜇𝑖𝑗
𝑤̿𝑖

𝑛

𝑖=1

≤ 1 ⇒ 0 ≤∏(∏𝜇𝑖𝑗
𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

≤ 1 

Similarly, 0 ≤ 𝜓𝑖𝑗 ≤ 1 ⇒ 0 ≤ 1 − 𝜓𝑖𝑗 ≤ 1 ⇒ 0 ≤ (1 − 𝜓𝑖𝑗
𝑞 )

𝑤̿𝑖
≤ 1 

⇒ 0 ≤∏(1 − 𝜓𝑖𝑗
𝑞 )

𝑤̿𝑖

𝑛

𝑖=1

≤ 1 ⇒ 0 ≤∏(∏(1 − 𝜓𝑖𝑗
𝑞 )

𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

≤ 1 
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⇒ 0 ≤ √1 −∏(∏(1− 𝜓𝑖𝑗
𝑞
)
𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

𝑞

≤ 1 

As 

𝜇𝑖𝑗
𝑞
+𝜓𝑖𝑗

𝑞
≤ 1 ⇒ 𝜇𝑖𝑗

𝑞
≤ 1 − 𝜓𝑖𝑗

𝑞
⇒∏(𝜇𝑖𝑗

𝑞 )
𝑤̿𝑖

𝑛

𝑖=1

≤ (∏(1 − 𝜓𝑖𝑗
𝑞 )

𝑤̿𝑖

𝑛

𝑖=1

) 

⇒ (∏(∏𝜇𝑖𝑗
𝑞

𝑛

𝑖=1

)

𝑤̿𝑖𝑚

𝑗=1

)

𝑢𝑗

≤∏(∏(1 −𝜓𝑖𝑗
𝑞
)
𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

 

⇒ (∏(∏𝜇𝑖𝑗
𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

)

𝑞

≤∏(∏(1 − 𝜓𝑖𝑗
𝑞 )

𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

                                (5.2) 

Now we have 

0 ≤ {∏(∏𝜇𝑖𝑗
𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

}

𝑞

+

{
 

 
√1 −∏(∏(1− 𝜓𝑖𝑗

𝑞
)
𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

𝑞

}
 

 
𝑞

 

by 𝐸𝑞. 5.2, wehave 

≤∏(∏(1 −𝜓𝑖𝑗
𝑞 )

𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

+ 1−∏(∏(1 − 𝜓𝑖𝑗
𝑞 )

𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

= 1 

Therefore, 

0 ≤ {∏(∏𝜇𝑖𝑗
𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

}

𝑞

+

{
 

 
√1 −∏(∏(1 −𝜓𝑖𝑗

𝑞
)
𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

𝑞

}
 

 
𝑞

≤ 1 

Therefore, from the above analysis we observed that the aggregation result obtained 

from q-ROF𝑆𝑓𝑡WG operator is again a q-ROF𝑆𝑓𝑡V. 

5.2.1.3.  Remark 

a. When rung 𝑞 = 1, then in this case the developed q-ROF𝑆𝑓𝑡WG 

operator degenerates into IF𝑆𝑓𝑡WG operator. 

b. When rung 𝑞 = 2, then in this case the investigated q-ROF𝑆𝑓𝑡WG 

operator degenerates into PyF𝑆𝑓𝑡WG operator. 

c. If the parameter set contain just one element, i.e. 𝑠1(mean 𝑚 = 1), then 

in this case the developed q-ROF𝑆𝑓𝑡WG operator degenerates to q-

ROFWG operator. 

It is clear from Remark 5.3.1.3, that IFWG, IF𝑆𝑓𝑡WG, PyF𝑆𝑓𝑡WG and q-ROFWG 

operators are the special cases of the developed operator. 
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5.2.1.4.  Example 

Consider a decision maker Mr. Z purchase a house in the domain set 𝑇 =
{𝓀1, 𝓀2, 𝓀3, 𝓀4, 𝓀5} and let 𝔼 = {𝑠1, 𝑠2, 𝑠3, 𝑠4} be the criterion (parameters) set, i.e. 

𝑠𝑖  (𝑖 = 1,2,3,4) stands for 𝑠1 = beautiful, 𝑠2 = in green surrounding, 𝑠3 = expenxive, 

𝑠4 = safety respectively. Suppose 𝑤̿ = {0.26,0.12,0.23,0.2,0.19} be the weight vectors 

for expert 𝓀𝑖 and 𝑢̿ = {0.26,0.21,0.29,0.24} be the weight vector for parameters 𝑠𝑗 

respectively. The decision maker gives their assessment for each alternative against his 

parameters in the form of q-ROF𝑆𝑓𝑡Vs, which is given in Table 5.2. 

By using 𝐸𝑞. 5.1, we have 

q − ROF𝑆𝑓𝑡WG(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠54)

=

(

 
 
∏(∏𝜇𝑖𝑗

𝑤̿𝑖

5

𝑖=1

)

𝑢𝑗4

𝑗=1

 , √1 −∏(∏(1 − 𝜓𝑖𝑗
3 )𝑤̿𝑖

6

𝑖=1

)

𝑢𝑗4

𝑗=1

3

)

 
 

 

Table 5.2,  Tabular notation of q-ROF𝑆𝑓𝑡S (𝑇, 𝒮) for q = 3 

𝑆 𝑠1 𝑠2 𝑠3 𝑠4 

𝓀1 (0.78, 0.34) (0.86, 0.42) (0.72, 0.26) (0.93, 0.4) 

𝓀2 (0.93, 0.25) (0.76, 0.36) (0.87, 0.41) (0.87, 0.5) 

𝓀3 (0.91, 0.24) (0.92, 0.35) (0.86, 0.42) (0.77, 0.25) 

𝓀4 (0.75, 0.26) (0.85, 0.34) (0.93, 0.25) (0.94, 0.28) 

𝓀5 (0.85, 0.35) (0.94, 0.35) (0.78, 0.3) (0.92, 0.46) 

 

=

(

 
 
{
(0.780.26)(0.930.12)(0.910.23)

(0.750.2)(0.850.19)
}
0.26

 {
(0.860.26)(0.760.12)(0.920.23)

(0.850.2)(0.940.19)
}
0.21

{
(0.720.26)(0.870.12)(0.860.23)

(0.930.2)(0.780.19)
}
0.29

{
(0.930.26)(0.870.12)(0.770.23)

(0.940.2)(0.920.19)
}
0.24  , 

√
 
  
  
  
  
  
  
  
  
  
1 − {

(1 − 0.343)0.26(1 − 0.253)0.12(1 − 0.243)0.23

(1 − 0.263)0.2(1 − 0.353)0.19
}
0.26

{
(1 − 0.423)0.26(1 − 0.363)0.12(1 − 0.353)0.23

(1 − 0.343)0.2(1 − 0.353)0.19
}
0.21

{
(1 − 0.263)0.26(1 − 0.413)0.12(1 − 0.423)0.23

(1 − 0.253)0.2(1 − 0.33)0.19
}
0.29

{
(1 − 0.43)0.26(1 − 0.53)0.12(1 − 0.253)0.23

(1 − 0.283)0.2(1 − 0.463)0.19
}
0.24

3

)

 
 
 
 
 
 
 

 

= (0.849189,0.350549). 

From the analysis of Theorem 5.3.1.2, the q-ROF𝑆𝑓𝑡WG operator fulfill the following 

properties for the collection q-ROF𝑆𝑓𝑡Vs 𝔍𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗), (𝑖 = 1, 2,… , 𝑛) 𝑎𝑛𝑑 (𝑗 =

1, 2, … ,𝑚), is being presented. 
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5.2.1.5.  Theorem 

Let 𝔍𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗), (𝑖 = 1, 2,… , 𝑛) 𝑎𝑛𝑑 (𝑗 = 1, 2,… ,𝑚), the collections of q-

ROF𝑆𝑓𝑡Vs with weight vectors 𝑤̿ = (𝑤̿1, 𝑤̿2, … , 𝑤̿𝑛)
𝑇 and 𝑢̿ = (𝑢̿1, 𝑢̿2, … , 𝑢̿𝑚)

𝑇 for the 

decision makers 𝓀𝑖  and for the parameters 𝑠𝑗 respectively, such that 𝑤̿𝑖, 𝑢̿𝑗 ∈ [0,1] 

with ∑ 𝑤̿𝑖
𝑛
𝑖=1 = 1 𝑎𝑛𝑑 ∑ 𝑢̿𝑗

𝑚
𝑗=1 = 1. Then the q-ROF𝑆𝑓𝑡WG operator satisfying the 

following properties; 

𝒊: (𝑰𝒅𝒆𝒎𝒑𝒐𝒕𝒆𝒏𝒄𝒚): If 𝔍𝑠𝑖𝑗 = ℰ𝑠, (∀ 𝑖 = 1,2,… , 𝑛 𝑎𝑛𝑑 𝑗 = 1,2, … ,𝑚), where ℰ𝑠 =

(𝑏,𝒹), then 

q − ROF𝑆𝑓𝑡WG(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑛𝑚) = ℰ𝑠. 

𝒊𝒊: (𝑩𝒐𝒖𝒏𝒅𝒆𝒅𝒏𝒆𝒔𝒔): If 𝔍𝑠𝑖𝑗
− = (min

𝑗
min
𝑖
{𝜇𝑖𝑗} ,max

𝑗
max
𝑖
{𝜓𝑖𝑗}) and 

𝔍𝑠𝑖𝑗
+ = (max

𝑗
max
𝑖
{𝜇𝑖𝑗} , min

𝑗
min
𝑖
{𝜓𝑖𝑗}), then 

𝔍𝑠𝑖𝑗
− ≤  q − ROF𝑆𝑓𝑡WG(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑛𝑚) ≤ 𝔍𝑠𝑖𝑗

+ . 

𝒊𝒊𝒊: (𝑴𝒐𝒏𝒐𝒕𝒐𝒏𝒊𝒄𝒊𝒕𝒚): If ℰ𝑠𝑖𝑗 = (𝑏𝑖𝑗 , 𝒹𝑖𝑗), (𝑖 = 1, 2,… , 𝑛) 𝑎𝑛𝑑 (𝑗 = 1, 2,… ,𝑚), be 

the another collection of q-ROF𝑆𝑓𝑡Vs such that 𝜇𝑖𝑗 ≤ 𝑏𝑖𝑗  𝑎𝑛𝑑 𝜓𝑖𝑗 ≥ 𝒹𝑖𝑗 , then 

q − ROF𝑆𝑓𝑡WG(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑛𝑚) ≤ q − ROF𝑆𝑓𝑡WG(ℰ𝑠11 , ℰ𝑠12 , … , ℰ𝑠𝑛𝑚). 

𝒊𝒗: (𝑺𝒉𝒊𝒇𝒕 𝑰𝒏𝒗𝒂𝒓𝒊𝒂𝒏𝒄𝒆): If ℰ̃𝑠 = (𝑏,𝒹), is another q-ROF𝑆𝑓𝑡V, then 

q − ROF𝑆𝑓𝑡WG(𝔍𝑠11⨂ℰ𝑠, 𝔍𝑠12⨂ℰ𝑠, … , 𝔍𝑠𝑛𝑚⨂ℰ𝑠)

= q − ROF𝑆𝑓𝑡WG(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑛𝑚)⨂ℰ𝑠. 

𝒊𝒗: (𝑯𝒐𝒎𝒐𝒈𝒆𝒏𝒆𝒊𝒕𝒚): For a real number  𝜆 > 0, then 

q − ROF𝑆𝑓𝑡WG(𝜆𝔍𝑠11 , 𝜆𝔍𝑠12 , … , 𝜆𝔍𝑠𝑛𝑚) = 𝜆q − ROF𝑆𝑓𝑡WG(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑛𝑚). 

𝑷𝒓𝒐𝒐𝒇. 𝒊: (𝑰𝒅𝒆𝒎𝒑𝒐𝒕𝒆𝒏𝒄𝒚): As it is given that if for all 𝔍𝑠𝑖𝑗 = ℰ𝑠 = (𝑏, 𝒹)(∀ 𝑖 =

1,2,… , 𝑛 𝑎𝑛𝑑 𝑗 = 1,2, … ,𝑚), then from Theorem 5.3.1.2, we have 

q − ROF𝑆𝑓𝑡WG(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑛𝑚)

=

(

 ∏(∏𝜇𝑖𝑗
𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

, √1 −∏(∏(1− 𝜓𝑖𝑗
𝑞
)
𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

𝑞

)

  

                            =

(

 ∏(∏𝑏𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

, √1 −∏(∏(1− 𝒹𝑞)𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

𝑞

)

  

                           = ((𝑏∑ 𝑤̿𝑖
𝑛
𝑖=1 )

∑ 𝑢𝑗
𝑚
𝑗=1

, √1 − ((1 − 𝒹𝑞)∑ 𝑤̿𝑖
𝑛
𝑖=1 )

∑ 𝑢𝑗
𝑚
𝑗=1

𝑞

) 

                          = (𝑏, √1 − (1 − 𝒹𝑞)
𝑞

) = (𝑏 , 𝒹) = ℰ̃𝑠 

Therefore, q − ROF𝑆𝑓𝑡WG(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑛𝑚) = ℰ𝑠. 
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𝒊𝒊: (𝑩𝒐𝒖𝒏𝒅𝒆𝒅𝒏𝒆𝒔𝒔): As 𝔍𝑠𝑖𝑗
− = (min

𝑗
min
𝑖
{𝜇𝑖𝑗} , max

𝑗
max
𝑖
{𝜓𝑖𝑗}) and 

𝔍𝑠𝑖𝑗
+ = (max

𝑗
max
𝑖
{𝜇𝑖𝑗} ,min

𝑗
min
𝑖
{𝜓𝑖𝑗}). To prove that 

𝔍𝑠𝑖𝑗
− ≤  q − ROF𝑆𝑓𝑡WG(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑛𝑚) ≤ 𝔍𝑠𝑖𝑗

+ , 

Now for every 𝑖 = 1,2,… , 𝑛 𝑎𝑛𝑑 𝑗 = 1,2, … ,𝑚, we have 

min
𝑗
min
𝑖
{𝜇𝑖𝑗} ≤ 𝜇𝑖𝑗 ≤ max

𝑗
max
𝑖
{𝜇𝑖𝑗} 

⇔∏(∏(min
𝑗
min
𝑖
{𝜇𝑖𝑗})

𝑤̿𝑖
𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

≤∏(∏(𝜇𝑖𝑗)
𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

≤∏(∏(max
𝑗
max
𝑖
{𝜇𝑖𝑗})

𝑤̿𝑖
𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

 

⇔ ((min
𝑗
min
𝑖
{𝜇𝑖𝑗})

∑ 𝑤̿𝑖
𝑛
𝑖=1

)

∑ 𝑢𝑗
𝑚
𝑗=1

≤∏(∏(𝜇𝑖𝑗)
𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

≤ ((max
𝑗
max
𝑖
{𝜇𝑖𝑗})

∑ 𝑤̿𝑖
𝑛
𝑖=1

)

∑ 𝑢𝑗
𝑚
𝑗=1

 

this implies that 

min
𝑗
min
𝑖
{𝜇𝑖𝑗} ≤∏(∏(𝜇𝑖𝑗)

𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

≤ max
𝑗
max
𝑖
{𝜇𝑖𝑗}                                     (5.3) 

Next for each 𝑖 = 1,2,… , 𝑛 𝑎𝑛𝑑 𝑗 = 1,2,… ,𝑚, we have 

min
𝑗
min
𝑖
{𝜓𝑖𝑗} ≤ 𝜓𝑖𝑗 ≤ max

𝑗
max
𝑖
{𝜓𝑖𝑗} ⇔ 1 −max

𝑗
max
𝑖
{𝜓𝑖𝑗

𝑞
} ≤ 1 − 𝜓𝑖𝑗

𝑞

≤ 1− min
𝑗
min
𝑖
{𝜓𝑖𝑗

𝑞 } 

⇔∏(∏(1− max
𝑗
max
𝑖
{𝜓𝑖𝑗

𝑞 })
𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

≤∏(∏(1 − 𝜓𝑖𝑗
𝑞 )

𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

≤∏(∏(1− min
𝑗
min
𝑖
{𝜓𝑖𝑗

𝑞 })
𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

 

⇔ ((1 − max
𝑗
max
𝑖
{𝜓𝑖𝑗

𝑞 })
∑ 𝑤̿𝑖
𝑛
𝑖=1

)

∑ 𝑢𝑗
𝑚
𝑗=1

≤∏(∏(1 − 𝜓𝑖𝑗
𝑞 )

𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

≤ ((1 −min
𝑗
min
𝑖
{𝜓𝑖𝑗

𝑞 })
∑ 𝑤̿𝑖
𝑛
𝑖=1

)

∑ 𝑢𝑗
𝑚
𝑗=1

 

⇔ (1 − max
𝑗
max
𝑖
{𝜓𝑖𝑗

𝑞 }) ≤∏(∏(1 − 𝜓𝑖𝑗
𝑞 )

𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

≤ (1 −min
𝑗
min
𝑖
{𝜓𝑖𝑗

𝑞 }) 
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⇔ 1− (1 −min
𝑗
min
𝑖
{𝜓𝑖𝑗

𝑞 }) ≤ 1 −∏(∏(1 − 𝜓𝑖𝑗
𝑞 )

𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

≤ 1− (1 − max
𝑗
max
𝑖
{𝜓𝑖𝑗

𝑞
}) 

Hence 

min
𝑗
min
𝑖
{𝜓𝑖𝑗} ≤ √1 −∏(∏(1 −𝜓𝑖𝑗

𝑞
)
𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

𝑞

≤ max
𝑗
max
𝑖
{𝜓𝑖𝑗}                                     (5.4) 

Therefore, from 𝐸𝑞𝑠. (5.3) 𝑎𝑛𝑑 (5.4), we have 

min
𝑗
min
𝑖
{𝜇𝑖𝑗} ≤∏(∏(𝜇𝑖𝑗)

𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

≤ max
𝑗
max
𝑖
{𝜇𝑖𝑗} 

and 

min
𝑗
min
𝑖
{𝜓𝑖𝑗} ≤ √1 −∏(∏(1− 𝜓𝑖𝑗

𝑞
)
𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

𝑞

≤ max
𝑗
max
𝑖
{𝜓𝑖𝑗} 

Let 𝛿 = q − ROF𝑆𝑓𝑡WG (𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑛𝑚) = (𝜇𝛿 , 𝜓𝛿), then by using score 

function, we have  

𝒮𝑐(𝛿) = 𝜇𝛿
𝑞
− 𝜓𝛿

𝑞
+ (

𝑒𝜇𝛿
𝑞
−𝜓𝛿

𝑞

𝑒𝜇𝛿
𝑞
−𝜓

𝛿
𝑞

+ 1
−
1

2
)𝜋𝛿

𝑞

≤ (max
𝑗
max
𝑖
{𝜇𝑖𝑗})

𝑞

− (min
𝑗
min
𝑖
{𝜓𝑖𝑗})

𝑞

+ 

+(
𝑒
(max

𝑗
max
𝑖
{𝜇𝑖𝑗})

𝑞

−(min
𝑗

min
𝑖
{𝜓𝑖𝑗})

𝑞

𝑒
(max

𝑗
max
𝑖
{𝜇𝑖𝑗})

𝑞

−(min
𝑗

min
𝑖
{𝜓𝑖𝑗})

𝑞

+ 1

−
1

2
)𝜋

𝔍𝑠𝑖𝑗
+
𝑞

= 𝒮𝑐 (𝔍𝑠𝑖𝑗
+ )    ⇒ 𝒮𝑐(𝛿)

≤ 𝒮𝑐 (𝔍𝑠𝑖𝑗
+ ) 

and 

𝒮𝑐(𝛿) = 𝜇𝛿
𝑞
−𝜓𝛿

𝑞
+ (

𝑒𝜇𝛿
𝑞
−𝜓𝛿

𝑞

𝑒𝜇𝛿
𝑞
−𝜓

𝛿
𝑞

+ 1
−
1

2
)𝜋𝛿

𝑞

≥ (min
𝑗
min
𝑖
{𝜇𝑖𝑗})

𝑞

− (max
𝑗
max
𝑖
{𝜓𝑖𝑗})

𝑞

+ 

+(
𝑒
(min

𝑗
min
𝑖
{𝜇𝑖𝑗})

𝑞

−(max
𝑗

max
𝑖
{𝜓𝑖𝑗})

𝑞

𝑒
(min

𝑗
min
𝑖
{𝜇𝑖𝑗})

𝑞

−(max
𝑗

max
𝑖
{𝜓𝑖𝑗})

𝑞

+ 1

−
1

2
)𝜋𝔍𝑠𝑖𝑗

−
𝑞

= 𝒮𝑐 (𝔍𝑠𝑖𝑗
− )   ⇒ 𝒮𝑐(𝛿)

≥ 𝒮𝑐 (𝔍𝑠𝑖𝑗
− ) . 

From the above study, the following cases arises, 
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𝑪𝒂𝒔𝒆 𝒊: If 𝒮𝑐(𝛿) < 𝒮𝑐 (𝔍𝑠𝑖𝑗
+ )  𝑎𝑛𝑑 𝒮𝑐(𝛿) > 𝒮𝑐 (𝔍𝑠𝑖𝑗

− ), by comparing two q-

ROF𝑆𝑓𝑡Vs, we get 

𝔍𝑠𝑖𝑗
− < q − ROF𝑆𝑓𝑡WG(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑛𝑚) < 𝔍𝑠𝑖𝑗

+  . 

𝑪𝒂𝒔𝒆 𝒊𝒊: If 𝒮𝑐(𝛿) = 𝒮𝑐 (𝔍𝑠𝑖𝑗
+ ), that is 

𝜇𝛿
𝑞
−𝜓𝛿

𝑞
+ (

𝑒𝜇𝛿
𝑞
−𝜓𝛿

𝑞

𝑒𝜇𝛿
𝑞
−𝜓

𝛿
𝑞

+ 1
−
1

2
)𝜋𝛿

𝑞
= (max

𝑗
max
𝑖
{𝜇𝑖𝑗})

𝑞

− (min
𝑗
min
𝑖
{𝜓𝑖𝑗})

𝑞

+ 

+(
𝑒
(max

𝑗
max
𝑖
{𝜇𝑖𝑗})

𝑞

−(min
𝑗

min
𝑖
{𝜓𝑖𝑗})

𝑞

𝑒
(max

𝑗
max
𝑖
{𝜇𝑖𝑗})

𝑞

−(min
𝑗

min
𝑖
{𝜓𝑖𝑗})

𝑞

+ 1

−
1

2
)𝜋

𝔍𝑠𝑖𝑗
+
𝑞
, 

then by using the above inequalities, we get 

𝜇𝛿 = max
𝑗
max
𝑖
{𝜇𝑖𝑗}  𝑎𝑛𝑑 𝜓𝛿 = min

𝑗
min
𝑖
{𝜓𝑖𝑗}. Thus 𝜋𝛿

𝑞
= 𝜋

𝔍𝑠𝑖𝑗
+
𝑞

, 

Thus from the comparison of two q-ROF𝑆𝑓𝑡Vs, we have 

q − ROF𝑆𝑓𝑡WG(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑛𝑚) = 𝔍𝑠𝑖𝑗
+  . 

𝑪𝒂𝒔𝒆 𝒊𝒊𝒊: If 𝒮𝑐(𝛿) = 𝒮𝑐 (𝔍𝑠𝑖𝑗
− ), that is 

𝜇𝛿
𝑞
−𝜓𝛿

𝑞
+ (

𝑒𝜇𝛿
𝑞
−𝜓𝛿

𝑞

𝑒𝜇𝛿
𝑞
−𝜓

𝛿
𝑞

+ 1
−
1

2
)𝜋𝛿

𝑞
= (min

𝑗
min
𝑖
{𝜇𝑖𝑗})

𝑞

− (max
𝑗
max
𝑖
{𝜓𝑖𝑗})

𝑞

+ 

+(
𝑒
(min

𝑗
min
𝑖
{𝜇𝑖𝑗})

𝑞

−(max
𝑗

max
𝑖
{𝜓𝑖𝑗})

𝑞

𝑒
(min

𝑗
min
𝑖
{𝜇𝑖𝑗})

𝑞

−(max
𝑗

max
𝑖
{𝜓𝑖𝑗})

𝑞

+ 1

−
1

2
)𝜋𝔍𝑠𝑖𝑗

−
𝑞
 , 

then by using the above inequalities, we get 

𝜇𝛿 = min
𝑗
min
𝑖
{𝜇𝑖𝑗}  𝑎𝑛𝑑 𝜓𝛿 = max

𝑗
max
𝑖
{𝜓𝑖𝑗} 

Thus 

𝜋𝛿
𝑞
= 𝜋𝔍𝑠𝑖𝑗

−
𝑞

 

this implies q − ROF𝑆𝑓𝑡WG(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑛𝑚) = 𝔍𝑠𝑖𝑗
−  . 

Therefore, it is proved that 

𝔍𝑠𝑖𝑗
− ≤ q − ROF𝑆𝑓𝑡WG(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑛𝑚) ≤ 𝔍𝑠𝑖𝑗

+  . 

𝒊𝒊𝒊: (𝑴𝒐𝒏𝒐𝒕𝒐𝒏𝒊𝒄𝒊𝒕𝒚): Since 𝜇𝑖𝑗 ≤ 𝑏𝑖𝑗  𝑎𝑛𝑑 𝜓𝑖𝑗 ≥ 𝒹𝑖𝑗 , (𝑖 = 1, 2,… , 𝑛) 𝑎𝑛𝑑 (𝑗 =

1, 2, … ,𝑚), then this implies that 

𝜇𝑖𝑗 ≤ 𝑏𝑖𝑗 ⇒ (∏(𝜇𝑖𝑗)
𝑤̿𝑖

𝑛

𝑖=1

) ≤∏(𝑏𝑖𝑗)
𝑤̿𝑖

𝑛

𝑖=1
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⇒∏(∏(𝜇𝑖𝑗)
𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

≤∏(∏(𝑏𝑖𝑗)
𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

                                                              (5.5) 

Furthermore, 

𝜓𝑖𝑗 ≥ 𝒹𝑖𝑗 ⇒ 1− 𝒹𝑖𝑗 ≥ 1 − 𝜓𝑖𝑗 ⇒ 1 − 𝒹𝑖𝑗
𝑞
≥ 1 − 𝜓𝑖𝑗

𝑞
 

⇒∏(∏(1 − 𝒹𝑖𝑗
𝑞
)
𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

≥∏(∏(1 − 𝜓𝑖𝑗
𝑞
)
𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

 

⇒ 1 −∏(∏(1 − 𝜓𝑖𝑗
𝑞 )

𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

≥ 1−∏(∏(1 − 𝒹𝑖𝑗
𝑞 )

𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

 

√1 −∏(∏(1− 𝜓𝑖𝑗
𝑞
)
𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

𝑞

≥ √1 −∏(∏(1 − 𝒹𝑖𝑗
𝑞
)
𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

𝑞

                                  (5.6) 

Let  𝛿𝔍 = q − ROF𝑆𝑓𝑡WG(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑛𝑚) = (𝜇𝛿𝔍 , 𝜓𝛿𝔍) and 

𝛿ℰ = q − ROF𝑆𝑓𝑡WG(ℰ𝑠11 , ℰ𝑠12 , … , ℰ𝑠𝑛𝑚) = (𝑏𝛿ℰ , 𝒹𝛿ℰ) 

From 𝐸𝑞𝑠. (5.5) 𝑎𝑛𝑑 (5.6), we have 

𝜇𝛿𝔍 ≤ 𝑏𝛿ℰ  𝑎𝑛𝑑 𝜓𝛿𝔍 ≥ 𝒹𝛿ℰ  

then from a score function, we have 

𝒮𝑐(𝛿𝔍) ≤ 𝒮𝑐(𝛿ℰ) 

In view of above condition, the following cases arises, 

𝑪𝒂𝒔𝒆 𝒊: If 𝒮𝑐(𝛿𝔍) < 𝒮𝑐(𝛿ℰ), by comparing two q-ROF𝑆𝑓𝑡Vs, we get 

q − ROF𝑆𝑓𝑡WG(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑛𝑚) < q − ROF𝑆𝑓𝑡WG(ℰ𝑠11 , ℰ𝑠12 , … , ℰ𝑠𝑛𝑚). 

𝑪𝒂𝒔𝒆 𝒊𝒊: If 𝒮𝑐(𝛿𝔍) = 𝒮𝑐(𝛿ℰ), that is 

𝒮𝑐(𝛿𝔍) = 𝜇𝛿𝔍
𝑞
−𝜓𝛿𝔍

𝑞
+ (

𝑒
𝜇𝛿𝔍
𝑞
−𝜓𝛿𝔍

𝑞

𝑒
𝜇
𝛿𝔍

𝑞
−𝜓

𝛿𝔍

𝑞

+ 1

−
1

2
)𝜋𝛿𝔍

𝑞

= 𝜇𝛿ℰ
𝑞
− 𝜓𝛿ℰ

𝑞
+ (

𝑒
𝜇𝛿ℰ
𝑞
−𝜓𝛿ℰ

𝑞

𝑒
𝜇
𝛿ℰ

𝑞
−𝜓

𝛿ℰ

𝑞

+ 1
−
1

2
)𝜋𝛿ℰ

𝑞
= 𝒮𝑐(𝛿ℰ), 

then by above inequality, we have 

𝜇𝛿𝔍 = 𝑏𝛿ℰ  𝑎𝑛𝑑 𝜓𝛿𝔍 = 𝒹𝛿ℰ  
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Hence  

𝜋𝛿𝔍
𝑞
= 𝜋𝛿ℰ

𝑞
⟹ (𝜇𝛿𝔍 , 𝜓𝛿𝔍) = (𝑏𝛿ℰ , 𝒹𝛿ℰ) 

Therefore, it is proved that 

q − ROF𝑆𝑓𝑡WG(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑛𝑚) ≤ q − ROF𝑆𝑓𝑡WG(ℰ𝑠11 , ℰ𝑠12 , … , ℰ𝑠𝑛𝑚). 

𝒊𝒗: (𝑺𝒉𝒊𝒇𝒕 𝑰𝒏𝒗𝒂𝒓𝒊𝒂𝒏𝒄𝒆) Since ℰ𝑠 = (𝑏, 𝒹) and 𝔍𝑠𝑖𝑗 = (𝜇𝑠𝑖𝑗 , 𝜓𝑠𝑖𝑗) are the q-

ROF𝑆𝑓𝑡Vs, so  

𝔍𝑠11⨂ℰ𝑠 = (𝜇11𝑏, √1 − (1 − 𝜓11
𝑞
)(1 − 𝒹𝑞)

𝑞

) 

Therefore, 

q − ROF𝑆𝑓𝑡WG(𝔍𝑠11⨂ℰ𝑠, 𝔍𝑠12⨂ℰ𝑠 , … , 𝔍𝑠𝑛𝑚⨂ℰ𝑠) = ⨂𝑗=1
𝑚 (⨂𝑖=1

𝑛 (𝔍𝑠𝑛𝑚⨂ℰ𝑠)
𝑤̿𝑖
)
𝑢𝑗

 

=

(

 ∏(∏𝜇𝑖𝑗
𝑤̿𝑖

𝑛

𝑖=1

𝑏𝑤̿𝑖)

𝑢𝑗𝑚

𝑗=1

, √1 −∏(∏(1− 𝜓𝑖𝑗
𝑞
)
𝑤̿𝑖

𝑛

𝑖=1

(1 − 𝒹𝑞)𝑤̿𝑖)

𝑢𝑗𝑚

𝑗=1

𝑞

)

  

=

(

 𝑏∏(∏𝜇𝑖𝑗
𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

, √1 − (1 − 𝒹𝑞)∏(∏(1− 𝜓𝑖𝑗
𝑞
)
𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

𝑞

)

  

=

(

 ∏(∏𝜇𝑖𝑗
𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

, √1 −∏(∏(1−𝜓𝑖𝑗
𝑞
)
𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

𝑞

)

 ⨂(𝑏,𝒹) 

= q − ROF𝑆𝑓𝑡WG(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑛𝑚)⨂ℰ𝑠 

Thus we get required proof.  

𝒊𝒗: (𝑯𝒐𝒎𝒐𝒈𝒆𝒏𝒆𝒊𝒕𝒚) Consider for real number  𝜆 > 0 and 𝔍𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗) be a q-

ROF𝑆𝑓𝑡V, then 

𝔍𝑠𝑖𝑗
𝜆 = (𝜇𝑖𝑗

𝜆  , √1 − (1 − 𝜓𝑖𝑗
𝑞
)
𝜆𝑞

) 

Now 

q − ROF𝑆𝑓𝑡WG(𝜆𝔍𝑠11 , 𝜆𝔍𝑠12 , … , 𝜆𝔍𝑠𝑛𝑚)

=

(

 ∏(∏𝜇𝑖𝑗
𝜆𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

, √1 −∏(∏(1− 𝜓𝑖𝑗
𝑞
)
𝜆𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

𝑞

)
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=

(

 
 
(∏(∏𝜇𝑖𝑗

𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

)

𝜆

, √1 − (∏(∏(1− 𝜓𝑖𝑗
𝑞
)
𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

)

𝜆
𝑞

)

 
 

 

= 𝜆q − ROF𝑆𝑓𝑡WG(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑛𝑚) 

Hence, the proof is completed. 

5.2.2. q-Rung orthopair fuzzy soft ordered weighted geometric 

operators 
From the analysis of q-ROF𝑆𝑓𝑡WG operator, it is observed that q-ROF𝑆𝑓𝑡WG operator 

only weights the values of q-ROF𝑆𝑓𝑡V, while q-ROF𝑆𝑓𝑡OWG operator weights the 

ordered positions of q-ROF𝑆𝑓𝑡V through scoring instead of weighting the q-ROF𝑆𝑓𝑡 

values itself. So, in this subsection we will investigate the detailed study of q-

ROF𝑆𝑓𝑡OWG operator and its related properties. 

5.2.2.1.  Definition 

Let 𝔍𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗) (𝑓𝑜𝑟 𝑖 = 1,2,… , 𝑛 𝑎𝑛𝑑 𝑗 = 1,2, … ,𝑚), be the collections of q-

ROF𝑆𝑓𝑡Vs, and suppose the weight vectors 𝑤̿ = (𝑤̿1, 𝑤̿2, … , 𝑤̿𝑛)
𝑇  for the decision 

makers 𝓀𝑖  and 𝑢̿ = (𝑢̿1, 𝑢̿2, … , 𝑢̿𝑚)
𝑇  for the parameters 𝑠𝑗 respectively, and satisfying 

the restrictions that 𝑤̿𝑖  , 𝑢̿𝑗 ∈ [0,1] with ∑ 𝑤̿𝑖
𝑛
𝑖=1 = 1 𝑎𝑛𝑑 ∑ 𝑢̿𝑗

𝑚
𝑗=1 = 1. Then q-

ROF𝑆𝑓𝑡OWG operator is a mapping denoted and defined as: q − ROF𝑆𝑓𝑡OWG:X
𝑛 →

𝑋, (where 𝑋 contains the collections of q-ROF𝑆𝑓𝑡Vs) 

q − ROF𝑆𝑓𝑡OWG(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑛𝑚) = ⨂𝑗=1
𝑚 (⨂𝑖=1

𝑛 𝔍𝜎𝑠𝑖𝑗
𝓊𝑖 )

𝓏𝑗
. 

The following Theorem 5.3.2.2, described the aggregation result for q-ROF𝑆𝑓𝑡OWA 

operator. 

5.2.2.2.  Theorem 

Consider the collections 𝔍𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗) (𝑓𝑜𝑟 𝑖 = 1,2,… , 𝑛 𝑎𝑛𝑑 𝑗 = 1,2,… ,𝑚), of q-

ROF𝑆𝑓𝑡Vs. Then the aggregation result using q-ROF𝑆𝑓𝑡OWG operator is defined as: 

q − ROF𝑆𝑓𝑡OWG(𝔍𝑠11 , 𝔍 𝑠12 , … , 𝔍𝑠𝑛𝑚) = ⨂𝑗=1
𝑚 (⨂𝑖=1

𝑛 𝔍𝜎𝑠𝑖𝑗
𝑤̿𝑖 )

𝑢𝑗
 

=

(

 ∏(∏𝜇𝜎𝑖𝑗
𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

,

√1 −∏(∏(1 − 𝜓𝜎𝑖𝑗
𝑞
)𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

𝑞

)

 ,                                    (5.7) 
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where 𝔍𝜎𝑠𝑖𝑗 = (𝜇𝜎𝑖𝑗 , 𝜓𝜎𝑖𝑗), denotes the permutations of 𝑖𝑡ℎ 𝑎𝑛𝑑 𝑗𝑡ℎ  largest value of an 

alternative of the collections of 𝑖𝑡ℎ 𝑟𝑜𝑤 𝑎𝑛𝑑 𝑗𝑡ℎ 𝑐𝑜𝑙𝑢𝑚𝑛 of q-ROF𝑆𝑓𝑡Vs 𝔍𝑠𝑖𝑗 =

(𝜇𝑖𝑗 , 𝜓𝑖𝑗). 

Proof.  Proof is easy and directly follows from Theorem 5.3.1.2. 

5.2.2.3.  Remark 

a. When rung 𝑞 = 1, then the investigated q-ROF𝑆𝑓𝑡OWG operator 

degenerate into IF𝑆𝑓𝑡OWG operator. 

b. When rung 𝑞 = 2, then the investigated q-ROF𝑆𝑓𝑡OWG operator 

degenerate into PyF𝑆𝑓𝑡OWG operator. 

c. If the parameter set contains just one parameter that is 𝑠1 (means 𝑚 =

1), then the developed q-ROF𝑆𝑓𝑡OWG operator in this manuscript 

reduces to q-ROFOWG operator. 

Thus from the analysis of Remark 5.3.2.3, we observed that IF𝑆𝑓𝑡OWG, PyF𝑆𝑓𝑡OWG 

and q-ROFOWG operators are the specially derived from the developed q-

ROF𝑆𝑓𝑡OWG operator. 

5.2.2.4.  Example 

Suppose that 𝔍𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗) be the collection q-ROF𝑆𝑓𝑡Vs. Take the values of q-

ROF𝑆𝑓𝑡Vs from Table 5.2 of Example 5.3.1.4, then by utilizing score function, the 

tabular notations of 𝔍𝜎𝑠𝑖𝑗 = (𝜇𝜎𝑖𝑗 , 𝜓𝜎𝑖𝑗) is given in Table 5.3. Now by  𝐸𝑞. (5.7), we 

have 

q − ROF𝑆𝑓𝑡OWG(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑛𝑚) = ⨂𝑗=1
𝑚 (⨂𝑖=1

𝑛 𝔍𝜎𝑠𝑖𝑗
𝑤̿𝑖 )

𝑢𝑗
 

=

(

 ∏(∏𝜇𝜎𝑖𝑗
𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

, √1 −∏(∏(1 −𝜓𝜎𝑖𝑗
𝑞
)
𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

𝑞

)

  

 

Table 5.3,  Tabular notation of q-ROF𝑆𝑓𝑡S 𝔍𝜎𝑠𝑖𝑗 =
(𝜇

𝜎𝑖𝑗
, 𝜓

𝜎𝑖𝑗
) for q = 3 

𝑆 𝑠1 𝑠2 𝑠3 𝑠4 

𝓀1 (0.93, 0.25) (0.94, 0.35) (0.93, 0.25) (0.94, 0.28) 

𝓀2 (0.91, 0.24) (0.92, 0.35) (0.87, 0.41) (0.93, 0.4) 

𝓀3 (0.85, 0.35) (0.85, 0.34) (0.86, 0.42) (0.92, 0.46) 

𝓀4 (0.78, 0.34) (0.86, 0.42) (0.78, 0.3) (0.87, 0.5) 

𝓀5 (0.75, 0.26) (0.76, 0.36) (0.72, 0.26) (0.77, 0.25) 
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=

(

 
 
 
 
 
 
 
 
 
 
 
 
{
(0.930.26)(0.910.12)(0.850.23)

(0.780.2)(0.750.19)
}
0.26

{
(0.940.26)(0.920.12)(0.850.23)

(0.860.2)(0.760.19)
}
0.21

{
(0.930.26)(0.870.12)(0.860.23)

(0.780.2)(0.720.19)
}
0.29

{
(0.940.26)(0.930.12)(0.920.23)

(0.870.2)(0.770.19)
}
0.24  ,

√
  
  
  
  
  
  
  
  
  
  
1 − {

(1 − 0.253)0.26(1 − 0.243)0.12(1 − 0.353)0.23

(1 − 0.343)0.2(1 − 0.263)0.19
}
0.26

{
(1 − 0.353)0.26(1 − 0.353)0.12(1 − 0.343)0.23

(1 − 0.423)0.2(1 − 0.363)0.19
}
0.21

{
(1 − 0.253)0.26(1 − 0.413)0.12(1 − 0.423)0.23

(1 − 0.33)0.2(1 − 0.263)0.19
}
0.29

{
(1 − 0.283)0.26(1 − 0.43)0.12(1 − 0.463)0.23

(1 − 0.53)0.2(1 − 0.253)0.19
}
0.24

3

)

 
 
 
 
 
 
 
 
 
 
 
 

 

= (0.854398,0.353285) 

From the analysis of Theorem 5.3.2.2, the q-ROF𝑆𝑓𝑡OWG operator fulfill the 

following properties for the collection q-ROF𝑆𝑓𝑡Vs  𝔍𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗), (𝑖 =

1, 2, … , 𝑛) 𝑎𝑛𝑑 (𝑗 = 1, 2, … ,𝑚), have been initiated. 

5.2.2.5.  Theorem 

Let 𝔍𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗), (𝑖 = 1, 2,… , 𝑛) 𝑎𝑛𝑑 (𝑗 = 1, 2, … ,𝑚) be the collection of q-

ROF𝑆𝑓𝑡Vs with weight vector 𝑤̿ = (𝑤̿1, 𝑤̿2, … , 𝑤̿𝑛)
𝑇 for experts 𝓀𝑖 and 𝑢̿ =

(𝑢̿1, 𝑢̿2, … , 𝑢̿𝑚)
𝑇 be weight vector the parameters 𝑠𝑗 respectively, such that 𝑤̿𝑖 , 𝑢̿𝑗 ∈

[0,1] with ∑ 𝑤̿𝑖
𝑛
𝑖=1 = 1 𝑎𝑛𝑑 ∑ 𝑢̿𝑗

𝑚
𝑗=1 = 1. Then the q-ROF𝑆𝑓𝑡OWG operator satisfied 

the following: 

𝒊: (𝑰𝒅𝒆𝒎𝒑𝒐𝒕𝒆𝒏𝒄𝒚): If 𝔍𝑠𝑖𝑗 = ℰ𝜎𝑠, (∀ 𝑖 = 1,2,… , 𝑛 𝑎𝑛𝑑 𝑗 = 1,2, … ,𝑚), where ℰ𝜎𝑠 =

(𝑏,𝒹), then 

q − ROF𝑆𝑓𝑡OWG(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑛𝑚) = ℰ𝜎𝑠. 

𝒊𝒊: (𝑩𝒐𝒖𝒏𝒅𝒆𝒅𝒏𝒆𝒔𝒔): If 𝔍𝜎𝑠𝑖𝑗
− = (min

𝑗
min
𝑖
{𝜇𝜎𝑖𝑗} ,max

𝑗
max
𝑖
{𝜓𝜎𝑖𝑗}) and 

𝔍𝜎𝑠𝑖𝑗
+ = (max

𝑗
max
𝑖
{𝜇𝜎𝑖𝑗} ,min

𝑗
min
𝑖
{𝜓𝜎𝑖𝑗}), then 

𝔍𝜎𝑠𝑖𝑗
− ≤  q − ROF𝑆𝑓𝑡OWG(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑛𝑚) ≤ 𝔍𝜎𝑠𝑖𝑗

+ . 

𝒊𝒊𝒊: (𝑴𝒐𝒏𝒐𝒕𝒐𝒏𝒊𝒄𝒊𝒕𝒚): If ℰ𝑠𝑖𝑗 = (𝑏𝑖𝑗 , 𝒹𝑖𝑗), (𝑖 = 1, 2,… , 𝑛) 𝑎𝑛𝑑 (𝑗 = 1, 2,… ,𝑚), be 

the another collection of q-ROF𝑆𝑓𝑡Vs such that 𝜇𝑖𝑗 ≤ 𝑏𝑖𝑗  𝑎𝑛𝑑 𝜓𝑖𝑗 ≥ 𝒹𝑖𝑗 , then 

q − ROF𝑆𝑓𝑡OWG(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑛𝑚) ≤ q − ROF𝑆𝑓𝑡OWG(ℰ𝑠11 , ℰ𝑠12 , … , ℰ𝑠𝑛𝑚). 

𝒊𝒗: (𝑺𝒉𝒊𝒇𝒕 𝑰𝒏𝒗𝒂𝒓𝒊𝒂𝒏𝒄𝒆): If ℰ𝑠 = (𝑏, 𝒹), is another q-ROF𝑆𝑓𝑡V, then 

q − ROF𝑆𝑓𝑡OWG(𝔍𝑠11⨂ℰ𝑠, 𝔍𝑠12⨂ℰ𝑠 , … , 𝔍𝑠𝑛𝑚⨂ℰ𝑠)

= q − ROF𝑆𝑓𝑡OWG(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑛𝑚)⨂ℰ𝑠. 

𝒊𝒗: (𝑯𝒐𝒎𝒐𝒈𝒆𝒏𝒆𝒊𝒕𝒚): If any  𝜆 > 0, then 
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q − ROF𝑆𝑓𝑡OWG(𝜆𝔍𝑠11 , 𝜆𝔍𝑠12 , … , 𝜆𝔍𝑠𝑛𝑚) = 𝜆q − ROF𝑆𝑓𝑡OWG(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑛𝑚). 

Proof.  Proofs are straightforward like Theorem 5.3.1.5. 

5.2.3. q-Rung orthopair fuzzy soft hybrid geometric operators 
In this subsection, we will initiate the detailed study of q-ROF𝑆𝑓𝑡HG operator and it is 

observe that q-ROF𝑆𝑓𝑡HG operator weights q-ROF𝑆𝑓𝑡Vs and its order position as well. 

Here we will discuss its fundamental properties of q-ROF𝑆𝑓𝑡HG operators such as 

Idempotency, Boundedness, Monotonicity, etc. with detail.  

5.2.3.1.  Definition 

Let𝔍𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗) (𝑓𝑜𝑟 𝑖 = 1,2,… , 𝑛 𝑎𝑛𝑑 𝑗 = 1,2, … ,𝑚), be the collections of q-

ROF𝑆𝑓𝑡Vs, and consider the weight vectors 𝑤̿ = {𝑤̿1, 𝑤̿2, … , 𝑤̿𝑛} 𝑎𝑛𝑑 𝑢̿ =

{𝑢̿1, 𝑢̿2, … , 𝑢̿𝑚} for the professional experts 𝓀𝑖  and for the parameters 𝑠𝑗′𝑠 respectively; 

and satisfying that 𝑤̿𝑖, 𝑢̿𝑗 ∈ [0,1] with ∑ 𝑤̿𝑖
𝑛
𝑖=1 = 1 𝑎𝑛𝑑 ∑ 𝑢̿𝑗

𝑚
𝑗=1 = 1. Then q-

ROF𝑆𝑓𝑡HG operator is a mapping denoted and defined as;  q − ROF𝑆𝑓𝑡HG: X
𝑛 →

𝑋, (where 𝑋 contains the collections of all q-ROF𝑆𝑓𝑡Vs) 

q − ROF𝑆𝑓𝑡HG(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑛𝑚) = ⨂𝑗=1
𝑚 (⨂𝑖=1

𝑛 𝔍̃𝑠𝑖𝑗
𝑤̿𝑖)

𝑢𝑗
. 

Based on Definition 5.3.3.1, the following Theorem 5.3.3.2, described the aggregation 

result for q-ROF𝑆𝑓𝑡HG operator. 

5.2.3.2.  Theorem 

Suppose the collection  𝔍𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗) (𝑓𝑜𝑟 𝑖 = 1,2,… , 𝑛 𝑎𝑛𝑑 𝑗 = 1,2,… ,𝑚) of q-

ROFVs, with 𝑣 = (𝑣1, 𝑣2, … , 𝑣𝑛)
𝑇  𝑎𝑛𝑑 𝔯 = (𝔯1, 𝔯2, … , 𝔯𝑚)

𝑇 are the weight vectors of 

𝔍𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗), such that 𝑣𝑖, 𝔯𝑗 ∈ [0,1] with  ∑ 𝑣𝑖
𝑛
𝑖=1 = 1 𝑎𝑛𝑑 ∑ 𝔯𝑗

𝑚
𝑗=1 = 1 and 𝑛 

denotes the number of elements and is called the balancing coefficient in 

𝑖𝑡ℎ 𝑟𝑜𝑤 𝑎𝑛𝑑 𝑗𝑡ℎ  𝑐𝑜𝑙𝑢𝑚𝑛 with aggregation associated vectors 𝑤̿ = (𝑤̿1, 𝑤̿2, … , 𝑤̿𝑛)
𝑇 

and 𝑢̿ = (𝑢̿1, 𝑢̿2, … , 𝑢̿𝑚)
𝑇 for the decision makers 𝓀𝑖  and for the parameters 𝑠𝑗′𝑠 

respectively, with 𝑤̿𝑖 , 𝑢̿𝑗 ∈ [0,1] such that ∑ 𝑤̿𝑖
𝑛
𝑖=1 = 1 𝑎𝑛𝑑 ∑ 𝑢̿𝑗

𝑚
𝑗=1 = 1.Then the 

aggregated result for q-ROF𝑆𝑓𝑡HG operator is given as: 

q − ROF𝑆𝑓𝑡HG(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑛𝑚) = ⨂𝑗=1
𝑚 (⨂𝑖=1

𝑛 𝔍̃𝑠𝑖𝑗
𝑤̿𝑖)

𝑢𝑗
 

=

(

 ∏(∏𝜇̃𝑖𝑗
𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

, √1 −∏(∏(1 − 𝜓̃𝑖𝑗
𝑞
)𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

𝑞

 

)

 ,                                                   (5.8) 

where 𝔍̃𝑠𝑖𝑗 = (𝔍𝑠𝑖𝑗)
𝑛𝑣𝑖𝔯𝑗

, represents the largest alternative of permutation of 

𝑖𝑡ℎ 𝑎𝑛𝑑 𝑗𝑡ℎ  of the collections of 𝑖 × 𝑗 q-ROF𝑆𝑓𝑡Ns 𝔍̃𝑠𝑖𝑗 = (𝜇̃𝑖𝑗 , 𝜓̃𝑖𝑗). 

Proof: Proof is straightforward like Theorem 5.3.1.2. 
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5.2.3.3.  Remark  

(a) When 𝑞 = 1, then the investigated q-ROF𝑆𝑓𝑡HG operator degenerates 

into IF𝑆𝑓𝑡HG operator. 

(b) When 𝑞 = 2, then in this case the investigated q-ROF𝑆𝑓𝑡HG operator 

degenerates into PyF𝑆𝑓𝑡HG operator. 

(c) When the parameter set contains just one alternative that is 𝑠1 

(means 𝑚 = 1), then the investigated q-ROF𝑆𝑓𝑡HG operator 

degenerates to q-ROFHG operator. 

(d) When 𝑣𝔯 = (
1

𝑛
,
1

𝑛
, … ,

1

𝑛
)
𝑇

, then the investigated q-ROF𝑆𝑓𝑡HG operator 

degenerates into q-ROF𝑆𝑓𝑡WG operator. 

(e) When 𝑤̿𝑢̿ = (
1

𝑛
,
1

𝑛
, … ,

1

𝑛
)
𝑇

, then in this case the investigated q-

ROF𝑆𝑓𝑡HG operator degenerates into q-ROF𝑆𝑓𝑡OWG operator. 

Thus from the analysis of Remark 5.3.3.3, we analyzed that IF𝑆𝑓𝑡HG, PyF𝑆𝑓𝑡HG, q-

ROFHG, q-ROF𝑆𝑓𝑡WG and q-ROF𝑆𝑓𝑡OWG operators are the special derived cases of 

the developed q-ROF𝑆𝑓𝑡HG operator. 

5.2.3.4.  Example 

Suppose that 𝔍𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗) be the collection of q-ROF𝑆𝑓𝑡Vs as described in Table 

5.2, of Example 5.3.1.4, with 𝑣 = (0.26,0.22,0.1,0.27,0.15)𝑇  be the weight vectors of 

experts   𝔯 = (0.23,0.28,0.2,0.29)𝑇 be the weight vector for parameter. Let the 

associated aggregate vectors 𝑤̿ = (0.27,0.18,0.1,0.18,0.27)𝑇and 𝑢̿ =
(0.26,0.24,0.24,0.26)𝑇.By applying 𝐸𝑞. (5.9) and their score values are express in 

Table 5.4. The permutation of largest values of the collection q-ROF𝑆𝑓𝑡Vs 𝔍̃𝑠𝑖𝑗 =

𝑛𝑣𝑖𝔯𝑗𝔍𝑠𝑖𝑗 , of 𝑖𝑡ℎ row and 𝑗𝑡ℎ  column are expressed in Table 5.5. Since 

𝔍̃𝑠𝑖𝑗 = 𝑛𝑣𝑖𝔯𝑗𝔍𝑠𝑖𝑗 = (√1 − (1 − 𝜇𝑖𝑗
3 )

𝑛𝑣𝑖𝔯𝑗3
, 𝜓𝑛𝑣𝑖𝔯𝑗)                                              (5.9) 

Table 5.4,  The score values of q-ROF𝑆𝑓𝑡Vs 𝔍̃𝑠𝑖𝑗 = 𝑛𝑣𝑖𝔯𝑗𝔍𝑠𝑖𝑗 for q ≥ 3 

 𝑠1 𝑠2 𝑠3 𝑠4 

𝓀1 -0.22765 -0.08604 -0.26668 0.109494 

𝓀2 -0.01185 -0.25119 -0.36466 -0.23585 

𝓀3 -0.48968 -0.47161 -0.69634 -0.50436 

𝓀4  -0.14662 0.008862 0.03341 0.295625 

𝓀5 -0.45766 -0.21373 -0.52886 -0.33226 
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Table 5.5,  Tabular description of q-ROF𝑆𝑓𝑡Vs 𝔍̃𝑠𝑖𝑗
= 𝑛𝑣𝑖𝔯𝑗𝔍𝑠𝑖𝑗

 for q ≥ 3 

  𝑠1 𝑠2 𝑠3 𝑠4 

𝓀1 (0.6967,0.7042) (0.6711, 0.6651) (0.7089, 0.6878) (0.7942, 0.6075) 

𝓀2 (0.5389, 0.6582) (0.6752, 0.7292) (0.4854, 0.7045) (0.7716, 0.7079) 

𝓀3 (0.5594, 0.7243) (0.6777, 0.8022) (0.5949, 0.8219) (0.6621, 0.8016) 

𝓀4 (0.5331, 0.8344) (0.5463, 0.7301) (0.4515, 0.8348) (0.654, 0.8446) 

𝓀5 (0.5299, 0.8486) (0.5752, 0.8633) (0.4581, 0.9167) (0.439, 0.8179) 
 

 

Now by using 𝐸𝑞. 5.8, of 𝑇ℎ𝑒𝑜𝑟𝑒𝑚 5.3.3.2, 

q − ROF𝑆𝑓𝑡HG(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑛𝑚) = ⨂𝑗=1
𝑚 (⨂𝑖=1

𝑛 𝔍̃𝜎𝑠𝑖𝑗
𝑤̿𝑖 )

𝑢𝑗
 

=

(

 
 
∏(∏𝜇̃𝑖𝑗

𝑤̿𝑖

5

𝑖=1

)

𝑢𝑗4

𝑗=1

, √1 −∏(∏(1− 𝜓̃𝑖𝑗
3 )𝑤̿𝑖

5

𝑖=1

)

𝑢𝑗4

𝑗=1

3

 

)

 
 

 

= (0.595792,0.630295) 
Based on Theorem 5.3.3.2, the investigated q-ROF𝑆𝑓𝑡HG operator satisfied some basic 

properties.  

5.2.3.5.  Theorem 

Suppose 𝔍𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗), (𝑖 = 1, 2, … , 𝑛) 𝑎𝑛𝑑 (𝑗 = 1, 2,… ,𝑚), be the collection of 

q-ROF𝑆𝑓𝑡Vs with 𝑣 = (𝑣1, 𝑣2, … , 𝑣𝑛)
𝑇 be the weight vectors of 𝓀𝑖 and 𝔯 =

(𝔯1, 𝔯2, … , 𝔯𝑚)
𝑇 be the weight vectors of 𝑠𝑗, with 𝑣𝑖 , 𝔯𝑗 ∈ [0,1] such that  ∑ 𝑣𝑖

𝑛
𝑖=1 =

1 𝑎𝑛𝑑 ∑ 𝔯𝑗
𝑚
𝑗=1 = 1. Here 𝑛 represent the number of alternatives in 𝑖𝑡ℎ 𝑟𝑜𝑤 and 

 𝑗𝑡ℎ  𝑐𝑜𝑙𝑢𝑚𝑛 and is called balancing coefficient. Let 𝑤̿ = (𝑤̿1, 𝑤̿2, … , 𝑤̿𝑛)
𝑇 and 𝑢̿ =

(𝑢̿1, 𝑢̿2, … , 𝑢̿𝑚)
𝑇 be the aggregate associated weight vectors for the experts 𝓀𝑖  and for 

the parameters 𝑠𝑗′𝑠 respectively, with 𝑤̿𝑖, 𝑢̿𝑗 ∈ [0,1] such that ∑ 𝑤̿𝑖
𝑛
𝑖=1 =

1 𝑎𝑛𝑑 ∑ 𝑢̿𝑗
𝑚
𝑗=1 = 1. Then the following properties are held for q-ROF𝑆𝑓𝑡HG operator: 

𝒊: (𝑰𝒅𝒆𝒎𝒑𝒐𝒕𝒆𝒏𝒄𝒚): If 𝔍𝑠𝑖𝑗 = ℰ𝑠, (∀ 𝑖 = 1,2,… , 𝑛 𝑎𝑛𝑑 𝑗 = 1,2, … ,𝑚), where ℰ𝑠 =

(𝜇𝑠, 𝜓𝑠), then 

q − ROF𝑆𝑓𝑡HG(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑛𝑚) = ℰ𝑠. 

𝒊𝒊: (𝑩𝒐𝒖𝒏𝒅𝒆𝒅𝒏𝒆𝒔𝒔): If 𝔍𝑠𝑖𝑗
− = (min

𝑗
min
𝑖
{𝜇𝑖𝑗} ,max

𝑗
max
𝑖
{𝜓𝑖𝑗}) and 

𝔍𝑠𝑖𝑗
+ = (max

𝑗
max
𝑖
{𝜇𝑖𝑗} , min

𝑗
min
𝑖
{𝜓𝑖𝑗}), then 

𝔍𝑠𝑖𝑗
− ≤  q − ROF𝑆𝑓𝑡HG(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑛𝑚) ≤ 𝔍𝑠𝑖𝑗

+ . 
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𝒊𝒊𝒊: (𝑴𝒐𝒏𝒐𝒕𝒐𝒏𝒊𝒄𝒊𝒕𝒚): If ℰ𝑠𝑖𝑗 = (𝑏𝑖𝑗 , 𝒹𝑖𝑗), (𝑖 = 1, 2,… , 𝑛) 𝑎𝑛𝑑 (𝑗 = 1, 2,… ,𝑚), be 

the another collection of q-ROF𝑆𝑓𝑡Vs such that 𝜇𝑖𝑗 ≤ 𝑏𝑖𝑗  𝑎𝑛𝑑 𝜓𝑖𝑗 ≥ 𝒹𝑖𝑗 , then 

q − ROF𝑆𝑓𝑡HG(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑛𝑚) ≤ q − ROF𝑆𝑓𝑡HG(ℰ𝑠11 , ℰ𝑠12 , … , ℰ𝑠𝑛𝑚). 

𝒊𝒗: (𝑺𝒉𝒊𝒇𝒕 𝑰𝒏𝒗𝒂𝒓𝒊𝒂𝒏𝒄𝒆): If ℰ𝑠 = (𝑏, 𝒹), is another q-ROF𝑆𝑓𝑡V, then 

q − ROF𝑆𝑓𝑡HG(𝔍𝑠11⨂ℰ𝑠, 𝔍𝑠12⨂ℰ𝑠, … , 𝔍𝑠𝑛𝑚⨂ℰ𝑠)

= q − ROF𝑆𝑓𝑡HG(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑛𝑚)⨂ℰ𝑠. 

𝒊𝒗: (𝑯𝒐𝒎𝒐𝒈𝒆𝒏𝒆𝒊𝒕𝒚): For any 𝜆 > 0, then 

q − ROF𝑆𝑓𝑡HG(𝜆𝔍𝑠11 , 𝜆𝔍𝑠12 , … , 𝜆𝔍𝑠𝑛𝑚) = 𝜆q − ROF𝑆𝑓𝑡HG(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑛𝑚). 

Proof.  Proofs are easy and follow the Theorem 5.3.1.5. 

5.3. An approach for 𝓜𝓒𝓓𝓜 under q-rung orthopair fuzzy soft 

information 

This section is allotted for the 𝒟ℳ process for the developed aggregation operators. In 

𝒟ℳ aggregation operators plays an important role because it aggregates the several 

evaluation values of experts into a single value. 𝒟ℳ is a pre-planned process of 

identifying and selecting the best choice out of many alternatives. 𝒟ℳ is a hard process 

because it can vary so obviously from one scenario to the next. Therefore, it is very 

important to judge the characteristics and limitations of alternative. Also 𝒟ℳ is a better 

approach to increase the chance of selecting most appropriate alternative of the choice. 

It is essential to know that how much truly background information is required for 

decision maker and the best effective strategy in 𝒟ℳ is to keep an eye and focus on 

your goal. 

Suppose the set 𝑇 = {𝓀1, 𝓀2, … , 𝓀𝑙} of different objects and consider 𝔼 =
{𝑠1, 𝑠2, … , 𝑠𝑛} be set of parameter against alternatives 𝓀𝑒 (𝑒 = 1,2,… , 𝑙). The team of 

𝑚 professional experts 𝒟1, 𝒟2, … , 𝒟𝑚 is going to evaluate each object 𝓀𝑠 against their 

given parameter 𝑠𝑗. The group of professional experts describe its evaluation in the form 

of 𝔍𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗) with weight vector 𝑤̿ = (𝑤̿1, 𝑤̿2, … , 𝑤̿𝑚)
𝑇 for senior experts 𝒟𝑖 and 

let 𝑢̿ = (𝑢̿1, 𝑢̿2, … , 𝑢̿𝑛)
𝑇 be the weight vector for the parameters 𝑠𝑗 with 𝑤̿𝑖, 𝑢̿𝑗 ∈ [0,1] 

such that ∑ 𝑤̿𝑖
𝑚
𝑖=1 = 1 𝑎𝑛𝑑 ∑ 𝑢̿𝑗

𝑛
𝑗=1 = 1. The collective evaluation of professional 

experts are described in a decision matrix 𝕄 = [𝔍𝓀𝑖𝑗]𝑚×𝒏. By applying the developed 

model on evaluated decision matrix 𝕄 = [𝔍𝓀𝑖𝑗]𝑚×𝒏 we will get an aggregated q-

ROF𝑆𝑓𝑡V 𝜉𝑒 = (𝜇𝑒, 𝜓𝑒) for every object to against parameters. Finally by applying the 

score function on each aggregated q-ROF𝑆𝑓𝑡V 𝜉𝑒 = (𝜇𝑒, 𝜓𝑒) for each object 𝓀𝑒 and 

rank them in a specific ordered to the most desirable option out of total.  

5.3.1. Algorithm 
Based on above analysis, the algorithm for the proposed model for solving MCDM 

application is given below. 

Step 1. Collect the evaluation information of professional experts for every object to 

corresponding parameters and then established the decision matrix 𝕄 = [𝔍𝓀𝑖𝑗]𝑚×𝒏 as: 
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𝕄 = [

(𝜇11, 𝜓11) (𝜇12, 𝜓12) ⋯ (𝜇1𝑛 , 𝜓1𝑛)

(𝜇21 , 𝜓21) (𝜇22, 𝜓22) ⋯ (𝜇2𝑛 , 𝜓2𝑛)
⋮ ⋮ ⋱ ⋮

(𝜇𝑚1, 𝜓𝑚1) (𝜇𝑚2, 𝜓𝑚2) ⋯ (𝜇𝑚𝑛 , 𝜓𝑚𝑛)

] 

Step 2. Normalize the decision matrix by interchanging the cost and benefit parameters 

if there is any by applying the formula from [91] that is, 

𝑝𝑖𝑗 = {
𝔍𝓀𝑖𝑗
𝑐   ; 𝑓𝑜𝑟 𝑐𝑜𝑠𝑡 𝑡𝑦𝑝𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟

𝔍𝓀𝑖𝑗   ; 𝑓𝑜𝑟 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑡𝑦𝑝𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟
, 

where 𝔍𝓀𝑖𝑗
𝑐 = (𝜓𝑖𝑗 , 𝜇𝑖𝑗) represents the complement of  𝔍𝓀𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗). 

Step 3. By applying the developed model on evaluated decision matrix 𝕄 = [𝔍𝓀𝑖𝑗]𝑚×𝒏 

we will get an aggregated q-ROF𝑆𝑓𝑡V 𝜉𝑒 = (𝜇𝑒 , 𝜓𝑒) for each alternative 𝓀𝑒(𝑒 =

1,2,… , 𝑙) to their corresponding parameters. 

Step 4. Determine the score value on each aggregated q-ROF𝑆𝑓𝑡V 𝜉𝑒 = (𝜇𝑒 , 𝜓𝑒) for 

each alternative  𝓀𝑒. 

Step 5. Finally rank the score value in a specific ordered to get best choice out of total. 

The flow chart of above algorithm for q-ROF𝑆𝑓𝑡WG operator is given in Fig. 4.1. 

5.4. An Illustrative example for the proposed model to 𝓜𝓒𝓓𝓜 
In this subsection through an illustrative example we will present the medical diagnose 

problem by applying the developed model to determine the applicability and superiority 

of the developed methods based on q-ROF soft information adopted from [64]. 

Suppose a team of five professional Doctors 𝒟1, 𝒟2, 𝒟3, 𝒟4 𝑎𝑛𝑑 𝒟5 are going to 

describe their assessment report for four different under medical treatment 

patients 𝓀1, 𝓀2, 𝓀3 𝑎𝑛𝑑 𝓀4 having weight vector 𝑤̿ = (0.18,0.24,0.21,0.15,0.22)𝑇. 

Let 𝔼 = {𝑠1 = 𝑐ℎ𝑒𝑠𝑡 𝑝𝑎𝑖𝑛, 𝑠2 = 𝑓𝑒𝑣𝑒𝑟, 𝑠3 = 𝑐𝑜𝑢𝑔ℎ, 𝑠4 = 𝑓𝑎𝑡𝑖𝑔𝑢𝑒, 𝑠5 = 𝑣𝑜𝑚𝑖𝑡} be 

the set of parameters having weight vector 𝑢̿ = (0.26,0.22,0.1,0.27,0.15)𝑇. The 

experts mean professional Doctors present their assessment report for each under 

medical treatment patient against their symptom in the form of q-ROF𝑆𝑓𝑡 decision 

matrix. Based on above analysis, to diagnose the most illness patient via the algorithm 

for the proposed model is given below. 

𝐁𝐲 𝐮𝐬𝐢𝐧𝐠 𝐪 − 𝐑𝐎𝐅𝑺𝒇𝒕𝐖𝐆 𝐨𝐩𝐞𝐫𝐚𝐭𝐨𝐫 

Step 1. The collective evaluation information of professional experts for each patient 

to oppose parameters (symptoms) and their established the decision matrix 𝕄 =

[𝔍𝓀𝑖𝑗]𝑚×𝒏  are given in Tables 5.6 − 5.9 respectively:  

Step 2. All the parameters are the same type so no need to normalize the assessment 

information in decision matrix. 

Step 3. By applying the developed model on each evaluated decision matrix 𝕄 =

[𝔍𝓀𝑖𝑗]𝑚×𝒏 for each patient 𝓀𝑖 by using 𝐸𝑞. 5.1, 𝑓𝑜𝑟 𝑞 = 3, and the aggregated result 

is given below: 
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𝜉1 = (0.676098,0.217227), 𝜉2 = (0.711392, 0.213948), 

𝜉3 = (0.745244,0.192632), 𝜉4 =  (0.726185, 0.183019) 

Step 4. Determine the score function on each aggregated q-ROFV 𝜉𝑒 = (𝜇𝑒, 𝜓𝑒) for 

each alternative  𝓀𝑒 in Step 3, that is 

𝑆(𝜉1) = 0.349273, 𝑆(𝜉2) = 0.404847, 𝑆(𝜉3) = 0.464826,

𝑆(𝜉4) = 0.4337 

Step 5. In final step rank the score value in a specific ordered to get best choice out of 

total.  

𝑆(𝜉3) > 𝑆(𝜉4) > 𝑆(𝜉2) > 𝑆(𝜉1) 

Hence, form the analysis of above calculation it is clear that under medical treatment 

patient 𝓀3 has diagnose more illness in list.  

𝐁𝐲 𝐪 − 𝐑𝐎𝐅𝑺𝒇𝒕𝐎𝐖𝐆 𝐨𝐩𝐞𝐫𝐚𝐭𝐨𝐫 

Step 1. Similar as above. 

Step 2. Similar as above. 

Step 3. By applying the developed model on each evaluated decision matrix 𝕄 =

[𝔍𝓀𝑖𝑗]𝑚×𝒏 for each patient 𝓀𝑖 by using 𝐸𝑞. 5.7, 𝑓𝑜𝑟 𝑞 = 3, and the aggregated result 

is given below: 

𝜉1 = (0.682695,0.212683), 𝜉2 = (0.716155, 0.210147), 

𝜉3 = (0.747071,0.194893), 𝜉4 =  (0.726911, 0.188214) 

Step 4. Determine the score value on each aggregated q-ROFV 𝜉𝑒 = (𝜇𝑒 , 𝜓𝑒) for each 

alternative  𝓀𝑒 in Step 3, that 

𝑆(𝜉1) = 0.360011, 𝑆(𝜉2) = 0.41323, 𝑆(𝜉3) = 0.467677,

𝑆(𝜉4) = 0.434245 

Step 5. In final step rank the score value in a specific ordered to get best choice out of 

total. 

𝑆(𝜉3) > 𝑆(𝜉4) > 𝑆(𝜉2) > 𝑆(𝜉1) 

Hence, form the analysis of above calculation it is clear that under medical treatment 

patient 𝓀3 has diagnose more illness in list. 

𝐅𝐨𝐫 𝐪 − 𝐑𝐎𝐅𝑺𝒇𝒕𝐇𝐆 𝐨𝐩𝐞𝐫𝐚𝐭𝐨𝐫 

Step 1. Similar as above. 

Step 2. Similar as above. 

Step 3. By applying the developed model on each evaluated decision matrix 𝕄 =

[𝔍𝓀𝑖𝑗]𝑚×𝒏 for each patient 𝓀𝑖 by using 𝐸𝑞. 5.8, 𝑓𝑜𝑟 𝑞 = 3, with 𝑣 =

(0.15,0.2,0.17,0.3,0.18)𝑇 𝑎𝑛𝑑 𝔯 = (0.16,0.21,0.13,0.26,0.24)𝑇 be the weight vectors 

of 𝔍𝓀𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗), and 𝑛 represent the number of alternatives 

in 𝑖𝑡ℎ 𝑟𝑜𝑤 𝑎𝑛𝑑 𝑗𝑡ℎ  𝑐𝑜𝑙𝑢𝑚𝑛 and is called balancing coefficient. Let  𝑤̿ =
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(0.18,0.24,0.21,0.15,0.22)𝑇 and 𝑢̿ = (0.26,0.22,0.1,0.27,0.15)𝑇 be the aggregate 

associated weight vectors for professional Doctor 𝒟𝑖 and for the parameters 𝑠𝑗′𝑠 

respectively, the aggregated result is given below:  

𝜉1 = (0.418696, 0.732854), 𝜉2 = (0.444599, 0.735594), 

𝜉3 = (0.469079,0.715699), 𝜉4 = (0.450482,0.71448) 

Step 4. Determine the score value on each aggregated q-ROFV 𝜉𝑒 = (𝜇𝑒 , 𝜓𝑒) for each 

alternative  𝓀𝑒 in Step 3, that  

𝑆(𝜉1) = −0.3625, 𝑆(𝜉2) = −0.34969, 𝑆(𝜉3) = −0.2981, 𝑆(𝜉4) = −0.31024  

Table 5.6. q-ROF𝑆𝑓𝑡 matrix for patient 𝓀1 

  𝑠1 = Chest 

pain 

𝑠2 = Fever 𝑠3 = Cough 𝑠4 =Fatigue 𝑠5 = Vomit 

𝒟1 (0.7,0.25) (0.7,0.22) (0.88,0.1) (0.9,0.1) (0.73,0.2) 

𝒟2 (0.6, 0.1) (0.6,0.13) (0.85,0.12) (0.65,0.25) (0.81,0.18) 

𝒟3 (0.54,0.15) (0.7,0.2) (0.75,0.24) (0.68,0.25) (0.6,0.26) 

𝒟4 (0.65,0.2) (0.8,0.18) (0.85,0.13) (0.8,0.15) (0.7,0.28) 

𝒟5 (0.6,0.3) (0.75,0.18) (0.67,0.25) (0.6,0.3) (0.45,0.15) 
 

 

 

Table 5.7. q-ROF𝑆𝑓𝑡 matrix for patient 𝓀2 

 𝑠1 =Chest pain 𝑠2 =Fever 𝑠3 =Cough 𝑠4 =Fatigue 𝑠5 =Vomit 

𝒟1 (0.8,0.15) (0.75,0.22) (0.76,0.1) (0.8,0.19) (0.7,0.25) 

𝒟2 (0.75, 0.18) (0.8,0.15) (0.8,0.18) (0.5,0.25) (0.8,0.16) 

𝒟3 (0.78,0.13) (0.7,0.2) (0.7,0.25) (0.76,0.21) (0.76,0.23) 

𝒟4 (0.9,0.1) (0.65,0.33) (0.76,0.15) (0.87,0.12) (0.65,0.18) 

𝒟5 (0.65,0.3) (0.55,0.2) (0.6,0.3) (0.7,0.23) (0.55,0.15) 
 

 

 

Table 5.8. q-ROF𝑆𝑓𝑡 matrix for patient 𝓀3 

 𝑠1 =Chest pain 𝑠2 =Fever 𝑠3 =Cough 𝑠4 =Fatigue 𝑠5 =Vomit 

𝒟1 (0.71,0.25) (0.78,0.1) (0.88,0.11) (0.81,0.18) (0.78,0.2) 

𝒟2 (0.8,0.15) (0.85,0.12) (0.9,0.1) (0.65,0.25) (0.74,0.23) 

𝒟3 (0.76,0.1) (0.88,0.11) (0.84,0.12) (0.86,0.1) (0.79,0.2) 

𝒟4 (0.78,0.22) (0.75,0.25) (0.74,0.2) (0.75,0.25) (0.65,0.16) 

𝒟5 (0.6,0.25) (0.8,0.19) (0.75,0.16) (0.6,0.2) (0.5,0.1) 
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Step 5. In final step rank the score value in a specific ordered to get best choice out of 

total: 

𝑆(𝜉3) > 𝑆(𝜉4) > 𝑆(𝜉2) > 𝑆(𝜉1) 

Hence, form the analysis of above calculation it is clear that under medical treatment 

patient 𝓀3 has diagnose more illness in list. 

5.4.1. Comparative analysis 
To present the applicability and superiority of the investigated aggregation models, a 

comparative study is being given in the following (see [5, 7, 21, 30, 58]). If we consider 

PyFVs, so in this case the methods investigated in [5, 7, 21, 58] are failed to handle the 

decision makers prefer choice. Similarly, if we acknowledge Tables 5.6 𝑡𝑜 5.9, then the 

methods initiated in [5, 7, 21, 30] are failed to handle the experts prefer evaluations and 

the methods investigated in this manuscript still handle  

 

Table 5.9. q-ROF𝑆𝑓𝑡 matrix for patient 𝓀4 

 𝑠1 =Chest pain 𝑠2 =Fever 𝑠3 =Cough 𝑠4 =Fatigue 𝑠5 =Vomit 

𝒟1 (0.76,0.22) (0.75,0.22) (0.85,0.14) (0.78,0.2) (0.65,0.26) 

𝒟2 (0.72,0.12) (0.79,0.18) (0.6,0.12) (0.73,0.15) (0.8,0.14) 

𝒟3 (0.82,0.16) (0.83,0.1) (0.84,0.13) (0.82,0.12) (0.77,0.2) 

𝒟4 (0.6,0.27) (0.6,0.3) (0.7,0.2) (0.83,0.13) (0.6,0.25) 

𝒟5 (0.55,0.1) (0.81,0.12) (0.8,0.15) (0.72,0.17) (0.55,0.15) 
 

 

all these scenarios. By applying proposed weighted geometric operators on Tables 

5.6 𝑡𝑜 5.9 to aggregate the different parameters of q-ROF𝑆𝑓𝑡Ns with weigh vector 𝑢̿ =

(0.26,0.22,0.1,0.27,0.15)𝑇 to achieve the decision matrix as summarized in Table 5.10 

for different patients 𝓀𝑖 (𝑖 = 1,2,3,4). Based on Table 5.10, a comparative study of the 

different existing models have been presented and their summarized results for each 

patient 𝓀𝑖 are given Table 5.11. Hence, form the above calculation of Table 5.11, it is 

clear that under medical treatment patient 𝑏3 has diagnose more illness in list. The 

Characteristic summery of proposed models with some existing literatures are 

presented in Table 5.12. Thus from the analysis of Table 5.12, it is observed that 

existing models give in [5, 7, 21, 30] having no information about parameterization 

tools. The main advantage of the investigated model is the capability to solve real 

problems by utilizing parameterization properties. Therefore, the proposed approach is 

more capable and superior than existing methods under q-ROF𝑆𝑓𝑡 environment. 

5.4.2. Conclusion 
Decision making is a pre-plan process of identifying and choosing the logical choice 

out of several alternatives. 𝒟ℳ is a hard process because it can vary so obviously from 

one scenario to the next. Therefore, it is very important to judge the characteristics and 
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limitations of alternative. Also 𝒟ℳ is a batter approach to increase the chance of 

selecting most appropriate alternative of the choice. It is essential to know that how 

much truly background information is required for decision maker and the best effective 

strategy in 𝒟ℳ is to keep an eye and focus on your goal. The pioneer paradigm of 𝑆𝑓𝑡S 

was investigated by Molodtsov by affixing parameterization tools in ordinary sets. 𝑆𝑓𝑡S 

theory is free from inherit complexity and a nice mathematical tool to cope uncertainties 

in parametric manner. The aim of this manuscript is to initiate the combine study of 

𝑆𝑓𝑡S and q-ROFS to get the new notion called q-ROF𝑆𝑓𝑡S. The notion of q-ROF𝑆𝑓𝑡S is 

free from those complexities which suffering the ordinary theories because 

parameterization tool is the most significant character of q-ROF𝑆𝑓𝑡S. In this manuscript 

our main contribution to originate the concept of q-ROF𝑆𝑓𝑡WG, q-ROF𝑆𝑓𝑡OWG and 

q-ROF𝑆𝑓𝑡HG operators in q-ROF𝑆𝑓𝑡S environment. Moreover, some dominant 

properties of these developed operators are studied with detail. Based on these proposed 

approach, a model is build up for ℳ𝒞𝒟ℳ and their step wise algorithm is being 

presented. Finally, utilizing the developed approach an illustrative example is solved 

under q-ROF𝑆𝑓𝑡 environment. Further a comparative analysis of the investigated 

models with existing methods are presented in detail which shows the competence and 

ability of the developed models. The main advantage of the investigated model is the 

capability to solve real problems by utilizing parameterization properties. Therefore, 

the proposed approach is more capable and superior than existing methods under q-

ROF𝑆𝑓𝑡 environment. 

 

Table 5.10, Aggregated values of q-ROF𝑆𝑓𝑡 matrix for patients 

 𝓀1 𝓀2 𝓀3 𝓀4 

𝒟1 (0.7713, 0.1999) (0.7691,0.1960) (0.7783,0.1932) (0.7538,0.2168) 

𝒟2 (0.6641, 0.1820) (0.6929,0.1974) (0.7666,0.1951) (0.7358,0.1478) 

𝒟3 (0.6388, 0.2267) (0.7453,0.2019) (0.8245,0.1301) (0.8164,0.1470) 

𝒟4 (0.7474, 0.1984) (0.7774,0.2151) (0.7406,0.2280) (0.6651,0.2457) 

𝒟5 (0.6103, 0.2607) (0.6184,0.2483) (0.6360,0.2015) (0.6687,0.1411) 
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Table 5.11.  Comparative Studies of different methods 

Methods  𝑆𝑐𝑜𝑟𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠

𝓀1                𝓀2               𝓀3                𝓀4 
 

               Ranking 

IFWG [5] 0.46119,    0.49917,       0.5572,          0.55418 𝜉
3
> 𝜉

4
> 𝜉

2
> 𝜉

1
 

IFOWG [5] 0.47123,   0.50500,       0.55447,          0.54260 𝜉
3
> 𝜉

4
> 𝜉

2
> 𝜉

1
 

IFHG [5] 0.44665,   0.48839,       0.53872,          0.52907 𝜉
3
> 𝜉

4
> 𝜉

2
> 𝜉

1
 

IF𝑆𝑓WG [58] 0.47536,   0.51160,       0.56806,          0.55816 𝜉
3
> 𝜉

4
> 𝜉

2
> 𝜉

1
 

IFEWG [7] 0.44290,   0.50071,       0.55935,          0.55612 𝜉
3
> 𝜉

4
> 𝜉

2
> 𝜉

1
 

PyFWG [21] 0.41024,   0.46069,       0.51919,          0.49886 𝜉
3
> 𝜉

4
> 𝜉

2
> 𝜉

1
 

PyFEWG [21] 0.16317,   0.21196,       0.25247,          0.25114 𝜉
3
> 𝜉

4
> 𝜉

2
> 𝜉

1
 

PyF𝑆𝑓𝑡WG (proposed) 0.46427,   0.51474,       0.57343,          0.55374 𝜉
3
> 𝜉

4
> 𝜉

2
> 𝜉

1
 

PyF𝑆𝑓𝑡OWG 

(proposed) 

0.47513,   0.52336,       0.57502,          0.54971 𝜉
3
> 𝜉

4
> 𝜉

2
> 𝜉

1
 

PyF𝑆𝑓𝑡HG (proposed) -0.44065,  -0.435,       -0.38704,         -0.39273   

q-ROFWG [30] 0.29865,   0.35021,       0.40678,          0.38045 𝜉
3
> 𝜉

4
> 𝜉

2
> 𝜉

1
 

q-ROF𝑆𝑓𝑡WG 

(proposed) 

0.349273,  0.404847,   0.464826,          0.4337 𝜉
3
> 𝜉

4
> 𝜉

2
> 𝜉

1
 

q-ROF𝑆𝑓𝑡OWG 

(proposed) 

0.360011,   0.41323,  0.467677,      0.434245 𝜉
3
> 𝜉

4
> 𝜉

2
> 𝜉

1
 

q-ROF𝑆𝑓𝑡HG 

(proposed) 

-0.3625,   -0.34969,  -0.2981,            -0.31024 𝜉
3
> 𝜉

4
> 𝜉

2
> 𝜉

1
 

 

 

 

Table 5.12. Characteristic analysis of different models 

 𝐹𝑢𝑧𝑧𝑦 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛  𝐴𝑔𝑔𝑟𝑎𝑔𝑎𝑡𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑚 

IFWG [5] 𝑌𝑒𝑠 𝑁𝑜 

IFOWG [5] 𝑌𝑒𝑠 𝑁𝑜 

IFHG [5] 𝑌𝑒𝑠 𝑁𝑜 

IFEWG [7] 𝑌𝑒𝑠 𝑁𝑜 

IF𝑆𝑓𝑡WG [58] 𝑌𝑒𝑠 𝑌𝑒𝑠 

PyFWG [21] 𝑌𝑒𝑠 𝑁𝑜 

PyFEWG [21] 𝑌𝑒𝑠 𝑁𝑜 

q-ROFWG [30] 𝑌𝑒𝑠 𝑁𝑜 

Proposed Operators 𝑌𝑒𝑠 𝑌𝑒𝑠 
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Chapter 6 

Orthopair fuzzy soft Dombi averaging aggregation operators 

Recently, some improvement has been suggested in the dominant notion of fuzzy set, 

by Yager. He investigated the generalized concept of FS, IFS and PyFS and called it q-

ROFS. It is observed that the rung q is the most useful characteristic of this concept 

which has the capability to cover the boundary range that can be required. The input 

range of q-ROFS is more flexible, wider and suitable because when the rung 𝑞 increase, 

the orthopair provides additional space to the boundary constraint. The aim of this 

chapter is to present the Dombi aggregation operators using q-ROF𝑆𝑓𝑡 environments. 

Since Dombi operational parameter possess natural flexibility with resilience of 

variability. The behaviour of Dombi operational parameter is very important to express 

the experts’ attitude in 𝒟ℳ. In this chapter, we present q-ROF𝑆𝑓𝑡DA aggregation 

operators including q-ROF𝑆𝑓𝑡DWA, q-ROF𝑆𝑓𝑡DOWA and q-ROF𝑆𝑓𝑡DHA operators. 

The basic properties of these operators are presented in detail such as Idempotency, 

Boundedness, Monotonicity, Shift invariance and Homogeneity. By applying 

developed approach, this chapter contains the technique and algorithm for ℳ𝒞𝒟ℳ. 

Further a numerical example is given to illustrative the flexibility and applicability of 

the developed operators. 

6.1.  q-Rung orthopair fuzzy soft set 
This section is devoted for the detail and hybrid study of the prominent paradigm of 

𝑆𝑓𝑡S and the recent developed pioneer notion of q-ROFS to obtain the new concept of 

q-ROF𝑆𝑓𝑡S. For a detail study of q-ROF𝑆𝑓𝑡S and its basic operations and relations see 

Chapter 4, Section 4.2. 

To rank two or more q-ROF𝑆𝑓𝑡Vs score function plays an important role which 

estimates the ranking values of alternatives satisfy the desirable choice of experts 

6.1.1. Definition 

Let 𝔍𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗) be a q-ROF𝑆𝑓𝑡V. Then the score function of 𝔍𝑠𝑖𝑗 is denoted and 

defined as: 
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𝒮𝑐 (𝔍𝑠𝑖𝑗) =
1

2
(1 + 𝜇𝑖𝑗

𝑞
− 𝜓𝑖𝑗

𝑞 ),     𝒮𝑐 (𝔍𝑠𝑖𝑗) ∈ [0,1]. 

Greater the score value superior that orthopair is.  

6.1.2. Definition 

Let 𝔍𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗) be a q-ROF𝑆𝑓𝑡V. Then the accuracy function of 𝔍𝑠𝑖𝑗  is denoted 

and defined as: 

𝐴𝑐 (𝔍𝑠𝑖𝑗) = 𝜇𝑖𝑗
𝑞
+𝜓𝑖𝑗

𝑞
,     𝐴𝑐 (𝔍𝑠𝑖𝑗) ∈ [0,1], 

Let 𝔍𝑠1𝑗 = (𝜇1𝑗 , 𝜓1𝑗)  𝑓𝑜𝑟 (𝑗 = 1,2) be two q-ROF𝑆𝑓𝑡V and 𝒮𝑐(𝔍𝑠11), 𝒮𝑐(𝔍𝑠12) be the 

score functions of 𝔍𝑠11  and 𝔍𝑠12 , and 𝐴𝑐(𝔍𝑠11), 𝐴𝑐(𝔍𝑠11) be the accuracy functions of 

𝔍𝑠11 , 𝔍𝑠12  respectively. Then 

(i) If 𝒮𝑐(𝔍𝑠11) >  𝒮𝑐(𝔍𝑠12), then 𝔍𝑠11 ≻  𝔍𝑠12 , 

(ii) If 𝒮𝑐(𝔍𝑠11) =  𝒮𝑐(𝔍𝑠12), then 

a) If 𝐴𝑐(𝔍𝑠11) >  𝐴𝑐(𝔍𝑠11), then 𝔍𝑠11 ≻  𝔍𝑠12, 

b) If 𝐴𝑐(𝔍𝑠11) =  𝐴𝑐(𝔍𝑠11), then 𝔍𝑠11 =  𝔍𝑠12. 

6.2.  Dombi operations on q-rung orthopair fuzzy soft set 
In 1982 Dombi [65] initiated the new type of sum and product operators which is known 

as Dombi t-norm and Dombi t-conorm and is given below: 

6.2.1. Definition [65] 

Let 𝑓 𝑎𝑛𝑑 𝑔 be any two real numbers and 𝛽 ≥ 1. Then the Dombi norms for them are 

defined in the subsequent expression: 

𝑇𝐷(𝑓, 𝑔) =
1

1 + {(
1 − 𝑓
𝑓 )

𝛽

+ (
1 − 𝑔
𝑔 )

𝛽

}

1
𝛽

 , 

𝑇𝐷
∗(𝑓, 𝑔) = 1 −

1

1 + {(
𝑓

1 − 𝑓)
𝛽

+ (
𝑔

1 − 𝑔)
𝛽

}

1
𝛽

 . 
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In view of above definition we can establish the new operation laws for q-ROF𝑆𝑓𝑡Ns 

as follows: 

6.2.2. Definition 

Consider 𝔍𝑠11 = (𝜇11, 𝜓11) 𝑎𝑛𝑑 𝔍𝑠12 = (𝜇12, 𝜓12)  be any two q-ROF𝑆𝑓𝑡Vs, 𝛽 ≥ 1 

and 𝜌 > 0. Then the Dombi operations of t-norm and t-conorm for q-ROF𝑆𝑓𝑡Vs are 

defined as follows: 

(i) 𝔍𝑠11⨁𝔍𝑠12 =

(

  
 

√
1 −

1

1+{(
𝜇11

𝑞

1−𝜇11
𝑞)

𝛽

+(
𝜇12

𝑞

1−𝜇12
𝑞)
𝛽

}

1
𝛽

𝑞 ,
1

1+{(
1−𝜓11
𝜓11

)
𝛽
+(

1−𝜓12
𝜓12

)
𝛽
}

1
𝛽

)

  
 

; 

(ii) 𝔍𝑠11⨂𝔍𝑠12 =

(

  
 

1

1+{(
1−𝜇11
𝜇11

)
𝛽
+(

1−𝜇12
𝜇12

)
𝛽
}

1
𝛽

,
√
1 −

1

1+{(
𝜓11

𝑞

1−𝜓11
𝑞)

𝛽

+(
𝜓12

𝑞

1−𝜓12
𝑞)

𝛽

}

1
𝛽

𝑞

)

  
 
; 

(iii) 𝜌𝔍𝑠11 =

(

  
 

√
1 −

1

1+{𝜌(
𝜇11

𝑞

1−𝜇11
𝑞)

𝛽

}

1
𝛽

𝑞 ,
1

1+{𝜌(
1−𝜓11
𝜓11

)
𝛽
}

1
𝛽

)

  
 
; 

(iv) 𝔍𝑠11
𝜌

=

(

  
 

1

1+{𝜌(
1−𝜇11
𝜇11

)
𝛽
}

1
𝛽

,
√
1 −

1

1+{𝜌(
𝜓11

𝑞

1−𝜓11
𝑞)

𝛽

}

1
𝛽

𝑞

)

  
 

. 

By using the above operation laws we can easily obtain the following results 

for 𝜌, 𝜌1, 𝜌2 > 0: 

(𝑖)  𝔍𝑠11⨁ 𝔍𝑠12 = 𝔍𝑠12⨁ 𝔍𝑠11; 

(𝑖𝑖)  𝔍𝑠11⨂ 𝔍𝑠12 = 𝔍𝑠12⨁ 𝔍𝑠11; 

(𝑖𝑖𝑖)  𝜌(𝔍𝑠11⨁ 𝔍𝑠12) = 𝜌𝔍𝑠12⨁ 𝜌𝔍𝑠11 ; 

(𝑖𝑣)   𝜌1𝔍𝑠11  ⨁ 𝜌1𝔍𝑠11 = (𝜌1 + 𝜌2)𝔍𝑠11; 

(𝑣)  𝔍𝑠11
𝜌
⨂ 𝔍𝑠12

𝜌
= (𝔍𝑠11⨂ 𝔍𝑠12)

𝜌
; 

(𝑣𝑖)  𝔍𝑠11
𝜌1 ⨂ 𝔍𝑠11

𝜌2 = 𝔍𝑠11
(𝜌1+𝜌2). 

Proofs are easy and straightforward. 



 

 

128 
 

6.3. q-Rung orthopair fuzzy soft Dombi average aggregation 

operators 
In this section, in view of defined Dombi operation laws we will extend Dombi 

operators to q-ROF𝑆𝑓𝑡 environment such as q-ROF𝑆𝑓𝑡WA, q-ROF𝑆𝑓𝑡DOWA and q-

ROF𝑆𝑓𝑡DHA operators and investigate their fundamental properties with details. 

6.3.1. q- Rung orthopair fuzzy soft Dombi weighted averaging 

operators 
This subsection is devoted for the study of q-ROF𝑆𝑓𝑡DWA operator and discuss their 

basic properties in details. 

6.3.1.1. Definition 

Let 𝔍𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗) 𝑓𝑜𝑟 (𝑖 = 1,2,… ,m and 𝑗 = 1, 2,… , n) be the collection of q-

ROF𝑆𝑓𝑡Vs. Suppose 𝑤̿ = (𝑤̿1, 𝑤̿2, … , 𝑤̿𝑚)
𝑇  be the weight vectors for expert 𝓀𝑖 

and 𝓊̿ = (𝓊̿1, 𝓊̿2, … , 𝓊̿𝑛)
𝑇 be the weight vectors for parameters 𝑠𝑗 having the 

conditions that 𝑤̿𝑖 , 𝓊̿𝑗 ∈ [0,1] with ∑ 𝑤̿𝑖
𝑚
𝑖=1 = 1 and ∑ 𝓊̿𝑗

𝑛
𝑗=1 = 1. Then q-

ROF𝑆𝑓𝑡DWA operator is a mapping denoted and define as: 𝑞 − ROF𝑆𝑡DWA: 𝑋
𝑛 → 𝑋, 

(where 𝑋 represents the collection of q-ROF𝑆𝑓𝑡Vs) such that 

𝑞 − ROF𝑆𝑓𝑡DWA(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑚𝑛
) = ⨁𝑗=1

𝑛 𝓊̿𝑗(⨁𝑖=1
𝑚 𝑤̿𝑖𝔍𝑠𝑖𝑗)                             (6.1) 

Based on Eq. (6.1) we can obtain the aggregated result for q-ROF𝑆𝑓𝑡DWA operator as 

described in Theorem 6.3.1.2. 

6.3.1.2.  Theorem 

Suppose the collection 𝔍𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗) 𝑓𝑜𝑟 (𝑖 = 1,2,… ,𝑚 𝑎𝑛𝑑 𝑗 = 1, 2,… , 𝑛) of q-

ROF𝑆𝑓𝑡Vs. Consider 𝑤̿ = (𝑤̿1, 𝑤̿2, … , 𝑤̿𝑚)
𝑇  be the weight vectors for experts 𝓀𝑖 

and 𝓊̿ = (𝓊̿1, 𝓊̿2, … , 𝓊̿𝑛)
𝑇 be the weight vectors for parameters 𝑠𝑗 having the 

conditions that 𝑤̿𝑖 , 𝓊̿𝑗 ∈ [0,1] with ∑ 𝑤̿𝑖
𝑚
𝑖=1 = 1 and ∑ 𝓊̿𝑗

𝑛
𝑗=1 = 1. Then the aggregated 

result for q-ROF𝑆𝑓𝑡DWA operator is stated as: 

𝑞 − ROF𝑆𝑓𝑡DWA(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑚𝑛
) = ⨁𝑗=1

𝑛 𝓊̿𝑗(⨁𝑖=1
𝑚 𝑤̿𝑖𝔍𝑠𝑖𝑗) 
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=

(

  
 

√
1 −

1

1+{∑ 𝓊̿𝑗
𝑛
𝑗=1 (∑ 𝑤̿𝑖

𝑚
𝑖=1 (

𝜇𝑖𝑗
𝑞

1−𝜇𝑖𝑗
𝑞)

𝛽

)}

1
𝛽

𝑞 ,
1

1+{∑ 𝓊̿𝑗
𝑛
𝑗=1 (∑ 𝑤̿𝑖

𝑚
𝑖=1 (

1−𝜓𝑖𝑗

𝜓𝑖𝑗
)

𝛽

)}

1
𝛽

)

  
 
    (6.2)  

Proof: The required proof can be obtained by using mathematical induction. 

From Dombi operational laws, we have 

𝔍𝑠11⨁𝔍𝑠12 =

(

  
 

√
1 −

1

1+{(
𝜇11

𝑞

1−𝜇11
𝑞)

𝛽

+(
𝜇12

𝑞

1−𝜇12
𝑞)
𝛽

}

1
𝛽

𝑞 ,
1

1+{(
1−𝜓11
𝜓11

)
𝛽
+(

1−𝜓12
𝜓12

)
𝛽
}

1
𝛽

)

  
 
        𝑎𝑛𝑑  

            𝜌𝔍𝑠 =

(

  
 

√
1 −

1

1+{𝜌(
𝜇𝔍𝑠

𝑞

1−𝜇𝔍𝑠
𝑞)

𝛽

}

1
𝛽

𝑞 ,
1

1+{𝜌(
1−𝜓𝔍𝑠
𝜓𝔍𝑠

)

𝛽

}

1
𝛽

)

  
 

  

Now first we show that Eq. 6.2 holds for  𝑚 = 2 𝑎𝑛𝑑 𝑛 = 2, 

 𝑞 − ROF𝑆𝑓𝑡DWA(𝔍𝑠11 , 𝔍𝑠12) = ⨁𝑗=1
2 𝓊̿𝑗 (⨁𝑖=1

2 𝑤̿𝑖𝔍𝑠𝑖𝑗) 

= 𝓊̿1(𝑤̿1𝔍𝑠11⨁𝑤̿2𝔍𝑠21)⨁𝓊̿2(𝑤̿1𝔍𝑠12⨁𝑤̿2𝔍𝑠22) 

= 𝓏1

(

  
 

√
1 −

1

1+{𝓊1(
𝜇11

𝑞

1−𝜇11
𝑞)

𝛽

+𝓊2(
𝜇21

𝑞

1−𝜇21
𝑞)

𝛽

}

1
𝛽

𝑞 ,
1

1+{𝓊1(
1−𝜓11
𝜓11

)
𝛽
+𝓊2(

1−𝜓21
𝜓21

)
𝛽
}

1
𝛽

)

  
 
 ⨁  

𝓏2

(

  
 

√
1 −

1

1+{𝑤̿1(
𝜇12

𝑞

1−𝜇12
𝑞)

𝛽

+𝑤̿2(
𝜇22

𝑞

1−𝜇22
𝑞)

𝛽

}

1
𝛽

𝑞 ,
1

1+{𝑤̿1(
1−𝜓12
𝜓12

)
𝛽
+𝑤̿2(

1−𝜓22
𝜓22

)
𝛽
}

1
𝛽

)

  
 

  

= 𝓊̿1

(

  
 

√
1 −

1

1+{∑ 𝑤̿𝑖
2
𝑖=1 (

𝜇𝑖1
𝑞

1−𝜇𝑖1
𝑞)
𝛽

}

1
𝛽

𝑞 ,
1

1+{∑ 𝑤̿𝑖
2
𝑖=1 (

1−𝜓𝑖1
𝜓𝑖1

)
𝛽

}

1
𝛽

)

  
 
⨁  
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𝓊̿2

(

  
 

√
1 −

1

1+{∑ 𝑤̿𝑖
2
𝑖=1 (

𝜇𝑖2
𝑞

1−𝜇𝑖2
𝑞)

𝛽

}

1
𝛽

𝑞 ,
1

1+{∑ 𝑤̿𝑖
𝑚
𝑖=1 (

1−𝜓𝑖2
𝜓𝑖2

)
𝛽

}

1
𝛽

)

  
 

  

=

(

 
 
 
 √

1 −
1

1+{𝓊̿1(∑ 𝑤̿𝑖
2
𝑖=1 (

𝜇𝑖1
𝑞

1−𝜇𝑖1
𝑞)

𝛽

)+𝓊̿2(∑ 𝑤̿𝑖
2
𝑖=1 (

𝜇𝑖2
𝑞

1−𝜇𝑖2
𝑞)
𝛽

)}

1
𝛽

𝑞  ,

1

1+{𝓊̿1(∑ 𝑤̿𝑖
2
𝑖=1 (

1−𝜓𝑖1
𝜓𝑖1

)
𝛽

)+𝓊̿2(∑ 𝑤̿𝑖
𝑚
𝑖=1 (

1−𝜓𝑖2
𝜓𝑖2

)
𝛽

)}

1
𝛽

)

 
 
 
 

  

=

(

  
 

√
1 −

1

1+{∑ 𝓊̿𝑗
2
𝑗=1 (∑ 𝑤̿𝑖

2
𝑖=1 (

𝜇𝑖𝑗
𝑞

1−𝜇𝑖𝑗
𝑞)

𝛽

)}

1
𝛽

𝑞  ,
1

1+{∑ 𝓊̿𝑗
2
𝑗=1 (∑ 𝑤̿𝑖

2
𝑖=1 (

1−𝜓𝑖𝑗

𝜓𝑖𝑗
)

𝛽

)}

1
𝛽

)

  
 

  

Hence the result is true for 𝑚 = 2 𝑎𝑛𝑑 𝑛 = 2. 

Further, let Eq. 6.2, is true for 𝑚 = 𝑘1 𝑎𝑛𝑑 𝑛 = 𝑘2, 

𝑞 − ROF𝑆𝑓𝑡DWA(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑘1𝑘2) = ⨁𝑗=1
𝑘2 𝓊̿𝑗 (⨁𝑖=1

𝑘1 𝑤̿𝑖𝔍𝑠𝑖𝑗) 

=

(

  
 

√
1 −

1

1+{∑ 𝓊̿𝑗
𝑘2
𝑗=1

(∑ 𝑤̿𝑖
𝑘1
𝑖=1

(
𝜇𝑖𝑗

𝑞

1−𝜇𝑖𝑗
𝑞)

𝛽

)}

1
𝛽

𝑞  ,
1

1+{∑ 𝓊̿𝑗
𝑘2
𝑗=1

(∑ 𝑤̿𝑖
𝑘1
𝑖=1

(
1−𝜓𝑖𝑗

𝜓𝑖𝑗
)

𝛽

)}

1
𝛽

)

  
 

  

Next we show that Eq. 6.2 is true for 𝑚 = 𝑘1 + 1 𝑎𝑛𝑑 𝑛 = 𝑘2 + 1 

𝑞 − ROF𝑆𝑓𝑡DWA(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑘1𝑘2 , 𝔍𝑠(𝑘1+1)(𝑘2+1))

= (⨁𝑗=1
𝑘2 𝓊̿𝑗 (⨁𝑖=1

𝑘1 𝑤̿𝑖𝔍𝑠𝑖𝑗))⨁(𝓊̿𝑘2+1 (𝑤̿𝑘1+1𝓊𝑖𝔍𝑠𝑖𝑗)) 
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=

(

  
 

√
1 −

1

1+{∑ 𝓊̿𝑗
𝑘2
𝑗=1

(∑ 𝑤̿𝑖
𝑘1
𝑖=1

(
𝜇𝑖𝑗

𝑞

1−𝜇𝑖𝑗
𝑞)

𝛽

)}

1
𝛽

𝑞  ,
1

1+{∑ 𝓊̿𝑗
𝑘2
𝑗=1

(∑ 𝑤̿𝑖
𝑘1
𝑖=1

(
1−𝜓𝑖𝑗

𝜓𝑖𝑗
)

𝛽

)}

1
𝛽

)

  
 
 ⨁  

(

  
 

√
1 −

1

1+{𝓊̿𝑘2+1(𝑤̿𝑘1+1
(

𝜇𝑖𝑗
𝑞

1−𝜇𝑖𝑗
𝑞)

𝛽

)}

1
𝛽

𝑞  ,
1

1+{𝓊̿𝑘2+1(𝑤̿𝑘1+1
(
1−𝜓𝑖𝑗

𝜓𝑖𝑗
)

𝛽

)}

1
𝛽

)

  
 

  

=

(

 
 
 
 
 √

1 −
1

1+{∑ 𝓊̿𝑗
𝑘2
𝑗=1

(∑ 𝑤̿𝑖
𝑘1
𝑖=1

(
𝜇𝑖𝑗

𝑞

1−𝜇𝑖𝑗
𝑞)

𝛽

)+𝓊̿𝑘2+1(𝑤̿𝑘1+1
(

𝜇𝑖𝑗
𝑞

1−𝜇𝑖𝑗
𝑞)

𝛽

)}

1
𝛽

𝑞  ,

1

1+{∑ 𝓊̿𝑗
𝑘2
𝑗=1

(∑ 𝑤̿𝑖
𝑘1
𝑖=1

(
1−𝜓𝑖𝑗

𝜓𝑖𝑗
)

𝛽

)+𝓊̿𝑘2+1(𝑤̿𝑘1+1
(
1−𝜓𝑖𝑗

𝜓𝑖𝑗
)

𝛽

)}

1
𝛽

)

 
 
 
 
 

   

=

(

  
 

√
1 −

1

1+{∑ 𝓊̿𝑗
𝑘2+1
𝑗=1

(∑ 𝑤̿𝑖
𝑘1+1
𝑖=1

(
𝜇𝑖𝑗

𝑞

1−𝜇𝑖𝑗
𝑞)

𝛽

)}

1
𝛽

𝑞 ,
1

1+{∑ 𝓊̿𝑗
𝑘2+1
𝑗=1

(∑ 𝑤̿𝑖
𝑘1+1
𝑖=1

(
1−𝜓𝑖𝑗

𝜓𝑖𝑗
)

𝛽

)}

1
𝛽

)

  
 

  

Hence that Eq. 6.2, is true for 𝑚 = 𝑘1 + 1 𝑎𝑛𝑑 𝑛 = 𝑘2 + 1. Therefore, by process of 

mathematical induction, we conclude that Eq. 6.2 is true for all 𝑚, 𝑛 ≥ 1. 

Further to verify that the aggregated result obtained from 𝑞 − ROF𝑆𝑓𝑡DWA(𝔍𝑠11 ,

𝔍𝑠12 , … , 𝔍𝑠𝑘1𝑘2) is again a 𝑞 − ROF𝑆𝑓𝑡V. 

Let 𝛾 =
√
1 −

1

1+{∑ 𝓊̿𝑗
𝑘2+1
𝑗=1

(∑ 𝑤̿𝑖
𝑘1+1
𝑖=1

(
𝜇𝑖𝑗

𝑞

1−𝜇𝑖𝑗
𝑞)

𝛽

)}

1
𝛽

𝑞    𝑎𝑛𝑑   𝜆 =

1

1+{∑ 𝓊̿𝑗
𝑘2+1
𝑗=1

(∑ 𝑤̿𝑖
𝑘1+1
𝑖=1

(
1−𝜓𝑖𝑗

𝜓𝑖𝑗
)

𝛽

)}

1
𝛽

 

As 0 ≤ 𝜇𝑖𝑗 ≤ 1 ⇒ 0 ≤ 1−
1

1+
𝜇𝑖𝑗

1−𝜇𝑖𝑗

≤ 1 ⇒ 0 ≤

√
1 −

1

1+{∑ 𝓊̿𝑗
𝑘2+1
𝑗=1

(∑ 𝑤̿𝑖
𝑘1+1
𝑖=1

(
𝜇𝑖𝑗

𝑞

1−𝜇𝑖𝑗
𝑞)

𝛽

)}

1
𝛽

𝑞 ≤ 1 ⇒ 0 ≤ 𝛾 ≤ 1 
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Similarly 

0 ≤ 𝜓𝑖𝑗 ≤ 1 ⇒ 0 ≤
1

1 +
1 − 𝜓𝑖𝑗
𝜓𝑖𝑗

≤ 1 ⇒ 0

≤
1

1 + {∑ 𝓊̿𝑗
𝑘2+1
𝑗=1 (∑ 𝑤̿𝑖

𝑘1+1
𝑖=1 (

1 − 𝜓𝑖𝑗
𝜓𝑖𝑗

)
𝛽

)}

1
𝛽

≤ 1 ⇒ 0 ≤ 𝜆 ≤ 1 

As 

𝛾𝑞 + 𝜆𝑞 ≤ 1 ⇒ 𝜆𝑞 ≤ 1 − 𝛾𝑞 

⇒

(

 
 1

1+{∑ 𝓊̿𝑗
𝑘2+1
𝑗=1

(∑ 𝓊̿𝑖
𝑘1+1
𝑖=1

(
1−𝜓𝑖𝑗

𝜓𝑖𝑗
)

𝛽

)}

1
𝛽

)

 
 

𝑞

≤ 1 −

(

  
 

√
1 −

1

1+{∑ 𝓊̿𝑗
𝑘2+1
𝑗=1

(∑ 𝑤̿𝑖
𝑘1+1
𝑖=1

(
𝜇𝑖𝑗

𝑞

1−𝜇𝑖𝑗
𝑞)

𝛽

)}

1
𝛽

𝑞

)

  
 

𝑞

  

Next 

0 ≤ 𝛾𝑞 + 𝜆𝑞 ⇒

(

  
 

√
1 −

1

1+{∑ 𝓊̿𝑗
𝑘2+1
𝑗=1

(∑ 𝑤̿𝑖
𝑘1+1
𝑖=1

(
𝜇𝑖𝑗

𝑞

1−𝜇𝑖𝑗
𝑞)

𝛽

)}

1
𝛽

𝑞

)

  
 

𝑞

+

(

 
 1

1+{∑ 𝓊̿𝑗
𝑘2+1
𝑗=1

(∑ 𝑤̿𝑖
𝑘1+1
𝑖=1

(
1−𝜓𝑖𝑗

𝜓𝑖𝑗
)

𝛽

)}

1
𝛽

)

 
 

𝑞
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≤

(

  
 

√
1 −

1

1+{∑ 𝓊̿𝑗
𝑘2+1
𝑗=1

(∑ 𝑤̿𝑖
𝑘1+1
𝑖=1

(
𝜇𝑖𝑗

𝑞

1−𝜇𝑖𝑗
𝑞)

𝛽

)}

1
𝛽

𝑞

)

  
 

𝑞

+ 1−

(

  
 

√
1 −

1

1+{∑ 𝓊̿𝑗
𝑘2+1
𝑗=1

(∑ 𝑤̿𝑖
𝑘1+1
𝑖=1

(
𝜇𝑖𝑗

𝑞

1−𝜇𝑖𝑗
𝑞)

𝛽

)}

1
𝛽

𝑞

)

  
 

𝑞

  

⇒ 0 ≤ 𝛾𝑞 + 𝜆𝑞 ≤ 1  

Therefore, it is verified that the aggregated result obtained from 𝑞 −

ROF𝑆𝑓𝑡DWA(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑘1𝑘2) is again a 𝑞 − ROF𝑆𝑓𝑡V. 

6.3.1.3. Example 

 Suppose 𝑇 = {𝓀1, 𝓀2, 𝓀3, 𝓀4} be the set of expert teachers who want to judge the 

ability of a student 𝑍 under the set of parameters 𝔼 = {𝑠1, 𝑠2, 𝑠3}, where 𝑠𝑗(𝑗 = 1,2,3) 

stands for 𝑠1 = 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑎𝑏𝑙𝑒, 𝑠2 = 𝑐𝑜𝑢𝑟𝑒𝑠 𝑐𝑜𝑚𝑚𝑎𝑛𝑑 𝑎𝑛𝑑 𝑠3 = 𝑝𝑢𝑛𝑐𝑡𝑢𝑎𝑙. The 

experts provides their estimated values in the form of q-ROF𝑆𝑓𝑡Vs which are given in 

Table 6.1. Let 𝑤̿ = (0.26,0.3,0.23,0.21)𝑇  be the weight vectors for expert 𝓀𝑖, 𝓊̿ =

(0.35,0.31, 0.34)𝑇 be the weight vectors for parameters 𝑠𝑗 and operational parameter 

𝛽 = 2 for 𝑞 = 3. Now to calculate the aggregated result by applying Eq. 6.2, we have 

𝑞 − ROF𝑆𝑓𝑡DWA(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠43) =

(

  
 

√
1 −

1

1+{∑ 𝓊̿𝑗
3
𝑗=1 (∑ 𝑤̿𝑖

4
𝑖=1 (

𝜇𝑖𝑗
3

1−𝜇𝑖𝑗
3)

2

)}

1
2

3 ,
1

1+{∑ 𝓊̿𝑗
3
𝑗=1 (∑ 𝑤̿𝑖

4
𝑖=1 (

1−𝜓𝑖𝑗

𝜓𝑖𝑗
)

2

)}

1
2

)

  
 

  

Therefore, 𝑞 − ROF𝑆𝑓𝑡DWA(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠43) = (0.941368, 0.271102).  

6.3.1.4. Remarks 

(a) If we consider that the value of parameter 𝑞 = 1 is fixed, then the proposed 𝑞 −

ROF𝑆𝑓𝑡DWA operator reduced to IF𝑆𝑓𝑡DWA operator. 
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Table 6.1, Tabular represent of  q-ROF𝑆𝑓𝑡S (𝔍, 𝔼) for 𝛽 = 2 𝑎𝑛𝑑 𝑞 = 3  > 

𝑇  𝑠1 𝑠2 𝑠3 

𝓀1 (0.9, 0.3) (0.85, 0.4) (0.7, 0.2) 

𝓀2 (0.85, 0.6) (0.75, 0.25) (0.6, 0.3) 

𝓀3 (0.98, 0.38) (0.92, 0.3) (0.8, 0.15) 

𝓀4 (0.7, 0.4) (0.95, 0.45) (0.82, 0.32) 

 

 

(b) If we consider that the value of parameter 𝑞 = 1 is fixed, then the proposed 𝑞 −

ROF𝑆𝑓𝑡DWA operator reduced to IF𝑆𝑓𝑡DWA operator. 

(c) If we consider that the value of parameter 𝑞 = 2 is fixed, then the proposed 𝑞 −

ROF𝑆𝑓𝑡DWA operator reduced to PyF𝑆𝑓𝑡DWA operator. 

(d) If the set contain only parameter that is 𝑠1 (means 𝑚 = 1), in this case the 

proposed 𝑞 − ROF𝑆𝑓𝑡DWA operator reduced to 𝑞 − ROFDWA operator. 

Thus from the analysis of Remark 6.3.1.4, it is clear that IF𝑆𝑓𝑡DWA, PyF𝑆𝑓𝑡DWA and 

𝑞 − ROFDWA operators are the special cases of the developed 𝑞 − ROF𝑆𝑓𝑡DWA 

operator. 

Based on Theorem 6.3.1.2, some properties of the 𝑞 − ROF𝑆𝑓𝑡DWA operators are 

investigated which are described below: 

6.3.1.5. Theorem 

Suppose the collection 𝔍𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗) 𝑓𝑜𝑟 (𝑖 = 1,2,… ,𝑚 𝑎𝑛𝑑 𝑗 = 1, 2,… , 𝑛) of q-

ROF𝑆𝑓𝑡Vs. Consider 𝑤̿ = (𝑤̿1, 𝑤̿2, … , 𝑤̿𝑚)
𝑇  be the weight vectors for experts 𝓀𝑖 

and 𝓊̿ = (𝓊̿1, 𝓊̿2, … , 𝓊̿𝑛)
𝑇 be the weight vectors for parameters 𝑠𝑗 having the 

restriction that 𝑤̿𝑖, 𝓊̿𝑛 ∈ [0,1] with ∑ 𝑤̿𝑖
𝑚
𝑖=1 = 1 and ∑ 𝓊̿𝑛

𝑚
𝑖=1 = 1. Then the following 

properties are holds for q-ROF𝑆𝑓𝑡DWA operator: 

i: (Idempotency): Let 𝔍𝑠𝑖𝑗 = ℰ𝑠 𝑓𝑜𝑟 𝑎𝑙𝑙 (𝑖 = 1,2, … ,𝑚 𝑎𝑛𝑑 𝑗 = 1,2,… , 𝑛), 

where ℰ𝑠 = (𝑏, 𝒹). Then 

𝑞 − ROF𝑆𝑓𝑡DWA(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑚𝑛
) = ℰ𝑠 . 
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𝒊𝒊: (Boundedness): Let 𝔍𝑠𝑖𝑗
− = (min

𝑗
min
𝑖
(𝜇𝑖𝑗), max

𝑗
max
𝑖
(𝜓𝑖𝑗)) and 

𝔍𝑠𝑖𝑗
+ = (max

𝑗
max
𝑖
(𝜇𝑖𝑗),min

𝑗
min
𝑖
(𝜓𝑖𝑗)). Then 

𝔍𝑠𝑖𝑗
− ≤ 𝑞 − ROF𝑆𝑓𝑡DWA(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑚𝑛

) ≤ 𝔍𝑠𝑖𝑗
+  . 

𝒊𝒊𝒊: (Monotonicity): Let another collection ℰ𝑠𝑖𝑗 = (𝑏𝑖𝑗 , d𝑖𝑗) 𝑓𝑜𝑟 (i =

1,2,… ,m and j = 1, 2,… , n) of q-ROF𝑆𝑓𝑡Vs such that 𝜇𝑖𝑗 ≤ 𝑏𝑖𝑗  𝑎𝑛𝑑 𝜓𝑖𝑗 ≥ d𝑖𝑗 . Then 

𝑞 − ROF𝑆𝑓𝑡DWA(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑚𝑛
) ≤ 𝑞 − ROF𝑆𝑓𝑡DWA(ℰ𝑠11 , ℰ𝑠12 , … , ℰ𝑠𝑚𝑛

). 

𝒊𝒗: (Shift Invariance): Let ℰ𝑠 = (𝑏, 𝑑) be a q-ROF𝑆𝑓𝑡V. Then 

𝑞 − ROF𝑆𝑓𝑡DWA(𝔍𝑠11⨁ ℰ𝑠, 𝔍𝑠12⨁ ℰ𝑠 , … , 𝔍𝑠𝑚𝑛
⨁ ℰ𝑠)

= 𝑞 − ROF𝑆𝑓𝑡DWA(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑚𝑛
) ⨁ ℰ𝑠. 

𝒗: (Homogeneity): Let 𝜌 > 0 be any real number. Then 

𝑞 − ROF𝑆𝑓𝑡DWA(𝜌𝔍𝑠11 , 𝜌𝔍𝑠12 , … , 𝜌𝔍𝑠𝑚𝑛
)

= 𝜌 𝑞 − ROF𝑆𝑓𝑡DWA(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑚𝑛
). 

Proof: i: (Idempotency): Since 𝔍𝑠𝑖𝑗 = ℰ𝑠 𝑓𝑜𝑟 𝑎𝑙𝑙 (𝑖 = 1,2, … ,𝑚 𝑎𝑛𝑑 𝑗 = 1,2,… , 𝑛), 

where ℰ𝑠 = (𝑏, 𝒹). Then by Theorem 1, we have 

𝑞 − ROF𝑆𝑓𝑡DWA(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑚𝑛
) =

(

  
 

√
1 −

1

1+{∑ 𝓊̿𝑗
𝑛
𝑗=1 (∑ 𝑤̿𝑖

𝑚
𝑖=1 (

𝜇𝑖𝑗
𝑞

1−𝜇𝑖𝑗
𝑞)

𝛽

)}

1
𝛽

𝑞 ,
1

1+{∑ 𝓊̿𝑗
𝑛
𝑗=1 (∑ 𝑤̿𝑖

𝑚
𝑖=1 (

1−𝜓𝑖𝑗

𝜓𝑖𝑗
)

𝛽

)}

1
𝛽

)

  
 

  

=

(

  
 

√
1 −

1

1+{∑ 𝓊̿𝑗
𝑛
𝑗=1 (∑ 𝑤̿𝑖

𝑚
𝑖=1 (

𝑏𝑞

1−𝑏𝑞
)
𝛽

)}

1
𝛽

𝑞 ,
1

1+{∑ 𝓊̿𝑗
𝑛
𝑗=1 (∑ 𝑤̿𝑖

𝑚
𝑖=1 (

1−𝑑

𝑑
)
𝛽
)}

1
𝛽

)
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=

(

 
 
 
 

√

1 −
1

1 + {(
𝜇𝑖𝑗𝑞

1 − 𝜇𝑖𝑗
𝑞)

𝛽

}

1
𝛽

𝑞 ,
1

1 + {(
1 − 𝜓𝑖𝑗
𝜓𝑖𝑗

)
𝛽

}

1
𝛽

)

 
 
 
 

 

=

(

 
 

√
1 −

1

1 +
𝜇𝑖𝑗𝑞

1 − 𝜇𝑖𝑗
𝑞

𝑞 ,
1

1 +
1 − 𝜓𝑖𝑗
𝜓𝑖𝑗 )

 
 

 

= (𝑏,𝒹) = ℰ𝑠 

Hence, the proof is complete. 

𝒊𝒊: (Boundedness): Consider for each 𝑖 = 1,2,… ,𝑚 𝑎𝑛𝑑 𝑗 = 1,2,… , 𝑛, we have  

min
𝑗
min
𝑖
(𝜇𝑖𝑗) ≤ 𝜇𝑖𝑗 ≤ max

𝑗
max
𝑖
(𝜇𝑖𝑗) 

⇒ 1 +
min
𝑗
min
𝑖
(𝜇𝑖𝑗

𝑞
)

1 −min
𝑗
min
𝑖
(𝜇𝑖𝑗

𝑞
)
≤ 1 +

𝜇𝑖𝑗
𝑞

1 − 𝜇𝑖𝑗
𝑞 ≤ 1 +

max
𝑗
max
𝑖
(𝜇𝑖𝑗

𝑞
)

1 − max
𝑗
max
𝑖
(𝜇𝑖𝑗

𝑞
)

 

1

1 +
max
𝑗
max
𝑖
(𝜇𝑖𝑗

𝑞 )

1 −max
𝑗
max
𝑖
(𝜇𝑖𝑗

𝑞 )

≤
1

1 +
𝜇𝑖𝑗
𝑞

1 − 𝜇𝑖𝑗
𝑞

≤
1

1 +
min
𝑗
min
𝑖
(𝜇𝑖𝑗

𝑞
)

1 −min
𝑗
min
𝑖
(𝜇𝑖𝑗

𝑞
)

 

⇒
1

1 +
max
𝑗
max
𝑖
(𝜇𝑖𝑗

𝑞 )

1 −max
𝑗
max
𝑖
(𝜇𝑖𝑗

𝑞
)

≤
1

1 +
𝜇𝑖𝑗
𝑞

1 − 𝜇𝑖𝑗
𝑞

≤
1

1 +
min
𝑗
min
𝑖
(𝜇𝑖𝑗

𝑞
)

1 −min
𝑗
min
𝑖
(𝜇𝑖𝑗

𝑞
)
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⇒
1

1 + {∑ 𝓊̿𝑗
𝑛
𝑗=1 (∑ 𝑤̿𝑖

𝑚
𝑖=1 (

max
𝑗
max
𝑖
(𝜇𝑖𝑗

𝑞 )

1 −max
𝑗
max
𝑖
(𝜇𝑖𝑗

𝑞
)
)

𝛽

)}

1
𝛽

≤
1

1 + {∑ 𝓊̿𝑗
𝑛
𝑗=1 (∑ 𝑤̿𝑖

𝑚
𝑖=1 (

𝜇𝑖𝑗
𝑞

1 − 𝜇𝑖𝑗
𝑞 )

𝛽

)}

1
𝛽

≤
1

1 + {∑ 𝓊̿𝑗
𝑛
𝑗=1 (∑ 𝑤̿𝑖

𝑚
𝑖=1 (

min
𝑗
min
𝑖
(𝜇𝑖𝑗

𝑞
)

1 −min
𝑗
min
𝑖
(𝜇𝑖𝑗

𝑞
)
)

𝛽

)}

1
𝛽

 

⇒
1

1 +
max
𝑗
max
𝑖
(𝜇𝑖𝑗

𝑞 )

1 − max
𝑗
max
𝑖
(𝜇𝑖𝑗

𝑞 )

≤
1

1 + {∑ 𝓊̿𝑗
𝑛
𝑗=1 (∑ 𝑤̿𝑖

𝑚
𝑖=1 (

𝜇𝑖𝑗
𝑞

1 − 𝜇𝑖𝑗
𝑞 )

𝛽

)}

1
𝛽

≤
1

1 +
min
𝑗
min
𝑖
(𝜇𝑖𝑗

𝑞
)

1 − min
𝑗
min
𝑖
(𝜇𝑖𝑗

𝑞
)

 

⇒
√
1 −

1

1+
min
𝑗

min
𝑖
(𝜇
𝑖𝑗
𝑞
)

1−min
𝑗

min
𝑖
(𝜇
𝑖𝑗
𝑞
)

𝑞 ≤

√

1 −
1

1+{∑ 𝓊̿𝑗
𝑛
𝑗=1 (∑ 𝑤̿𝑖

𝑚
𝑖=1 (

𝜇
𝑖𝑗
𝑞

1−𝜇
𝑖𝑗
𝑞 )

𝛽

)}

1
𝛽

𝑞 ≤
√
1 −

1

1+
max
𝑗

max
𝑖

(𝜇
𝑖𝑗
𝑞
)

1−max
𝑗

max
𝑖

(𝜇
𝑖𝑗
𝑞
)

𝑞   

Similarly we can show for 𝒩ℳ𝒢 

1

1 +
1 −min

𝑗
min
𝑖
(𝜓𝑖𝑗)

min
𝑗
min
𝑖
(𝜓𝑖𝑗)

≥
1

1 + {∑ 𝓊̿𝑗
𝑛
𝑗=1 (∑ 𝑤̿𝑖

𝑚
𝑖=1 (

1 − 𝜓𝑖𝑗
𝜓𝑖𝑗

)
𝛽

)}

1
𝛽

≥
1

1 +
1 − max

𝑗
max
𝑖
(𝜓𝑖𝑗)

max
𝑗
max
𝑖
(𝜓𝑖𝑗)

  

Therefore, from above equations we have 
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𝔍𝑠𝑖𝑗
− ≤ 𝑞 − ROF𝑆𝑓𝑡DWA(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑚𝑛

) ≤ 𝔍𝑠𝑖𝑗
+  . 

𝒊𝒊𝒊: (Monotonicity): Since 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 = 1,2,… ,𝑚 𝑎𝑛𝑑 𝑗 = 1, 2, … , 𝑛, we have 𝜇𝑖𝑗 ≤

𝑏𝑖𝑗  𝑎𝑛𝑑 𝜓𝑖𝑗 ≥ d𝑖𝑗. 

As 

𝜇𝑖𝑗 ≤ 𝑏𝑖𝑗 ⇒ 1 +
𝜇𝑖𝑗
𝑞

1 − 𝜇𝑖𝑗
𝑞 ≤ 1 +

𝑏𝑖𝑗
𝑞

1 − 𝑏𝑖𝑗
𝑞 ⇒

1

1+
𝑏𝑖𝑗
𝑞

1 − 𝑏𝑖𝑗
𝑞

≤
1

1 +
𝜇𝑖𝑗
𝑞

1 − 𝜇𝑖𝑗
𝑞

 

⇒
1

1+{∑ 𝓊̿𝑗
𝑛
𝑗=1 (∑ 𝑤̿𝑖

𝑚
𝑖=1 (

𝑏
𝑖𝑗
𝑞

1−𝑏
𝑖𝑗
𝑞 )

𝛽

)}

1
𝛽

≤
1

1+{∑ 𝓊̿𝑗
𝑛
𝑗=1 (∑ 𝑤̿𝑖

𝑚
𝑖=1 (

𝜇
𝑖𝑗
𝑞

1−𝜇
𝑖𝑗
𝑞 )

𝛽

)}

1
𝛽

  

⇒

√

1 −
1

1+{∑ 𝓊̿𝑗
𝑛
𝑗=1 (∑ 𝑤̿𝑖

𝑚
𝑖=1 (

𝜇
𝑖𝑗
𝑞

1−𝜇
𝑖𝑗
𝑞 )

𝛽

)}

1
𝛽

𝑞 ≤

√

1 −
1

1+{∑ 𝓊̿𝑗
𝑛
𝑗=1 (∑ 𝑤̿𝑖

𝑚
𝑖=1 (

𝑏
𝑖𝑗
𝑞

1−𝑏
𝑖𝑗
𝑞 )

𝛽

)}

1
𝛽

𝑞   

Similarly, we can show for 𝒩ℳ𝒢 

1

1 + {∑ 𝓊̿𝑗
𝑛
𝑗=1 (∑ 𝑤̿𝑖

𝑚
𝑖=1 (

1 − 𝜓𝑖𝑗
𝜓𝑖𝑗

)
𝛽

)}

1
𝛽

≥
1

1 + {∑ 𝓊̿𝑗
𝑛
𝑗=1 (∑ 𝑤̿𝑖

𝑚
𝑖=1 (

1 − d𝑖𝑗
d𝑖𝑗

)
𝛽

)}

1
𝛽

 

Hence from above equations we have 

𝑞 − ROF𝑆𝑓𝑡DWA(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑚𝑛
) ≤ 𝑞 − ROF𝑆𝑓𝑡DWA(ℰ𝑠11 , ℰ𝑠12 , … , ℰ𝑠𝑚𝑛

). 

𝒊𝒗: (Shift Invariance): Since ℰ𝑠 = (𝑏, 𝑑) 𝑎𝑛𝑑 𝔍𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗) (𝑖 =

1,2,… ,𝑚 𝑎𝑛𝑑 𝑗 = 1, 2,… , 𝑛) are q-ROF𝑆𝑓𝑡Vs. Then 

𝔍𝑠11⨁ ℰ𝑠

=

(

 
 
 
 

√

1 −
1

1 + {(
𝜇11
𝑞

1 − 𝜇11
𝑞 )

𝛽

+ (
𝑏𝑞

1 − 𝑏𝑞)
𝛽

}

1
𝛽

𝑞  ,
1

1 + {(
1 − 𝜓11
𝜓11

)
𝛽

+ (
1 − 𝑑
𝑑 )

𝛽

}

1
𝛽

)

 
 
 
 

 

Now consider 
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𝑞 − ROF𝑆𝑓𝑡DWA(𝔍𝑠11⨁ ℰ𝑠, 𝔍𝑠12⨁ ℰ𝑠, … , 𝔍𝑠𝑚𝑛
⨁ ℰ𝑠) =

(

 
 
 
 
 √

1 −
1

1+{∑ 𝓊̿𝑗
𝑛
𝑗=1 (∑ 𝑤̿𝑖

𝑚
𝑖=1 (

𝜇
𝑖𝑗
𝑞

1−𝜇
𝑖𝑗
𝑞 )

𝛽

)+∑ 𝓊̿𝑗
𝑛
𝑗=1 (∑ 𝑤̿𝑖

𝑚
𝑖=1 (

𝑏𝑞

1−𝑏𝑞
)
𝛽

)}

1
𝛽

𝑞  ,

1

1+{∑ 𝓊̿𝑗
𝑛
𝑗=1 (∑ 𝑤̿𝑖

𝑚
𝑖=1 (

1−𝜓𝑖𝑗

𝜓𝑖𝑗
)

𝛽

)+∑ 𝓊̿𝑗
𝑛
𝑗=1 (∑ 𝑤̿𝑖

𝑚
𝑖=1 (

1−𝑑

𝑑
)
𝛽
)}

1
𝛽

)

 
 
 
 
 

  

=

(

 
 
 

√

1 −
1

1+{∑ 𝓊̿𝑗
𝑛
𝑗=1 (∑ 𝑤̿𝑖

𝑚
𝑖=1 (

𝜇
𝑖𝑗
𝑞

1−𝜇
𝑖𝑗
𝑞 )

𝛽

)+(
𝑏𝑞

1−𝑏𝑞
)
𝛽

}

1
𝛽

𝑞  ,
1

1+{∑ 𝓊̿𝑗
𝑛
𝑗=1 (∑ 𝑤̿𝑖

𝑚
𝑖=1 (

1−𝜓𝑖𝑗

𝜓𝑖𝑗
)

𝛽

)+(
1−𝑑

𝑑
)
𝛽
}

1
𝛽

)

 
 
 

  

= 𝑞 − ROF𝑆𝑓𝑡DWA(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑚𝑛
) ⨁ ℰ𝑠 

Therefore, the proof is completed. 

𝒗: (Homogeneity) Let 𝜌 > 0 be any real number and  𝔍𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗) (𝑖 =

1,2,… ,𝑚 𝑎𝑛𝑑 𝑗 = 1, 2,… , 𝑛) are q-ROF𝑆𝑡Vs. Then  

𝜌𝔍𝑠𝑖𝑗 =

(

 
 
 
 
 

√
  
  
  
  
  
1 −

1

1 + {𝜌 (
𝜇𝑖𝑗
𝑞

1 − 𝜇𝑖𝑗
𝑞 )

𝛽

}

1
𝛽

𝑞  ,
1

1 + {𝜌 (
1 − 𝜓𝑖𝑗
𝜓𝑖𝑗

)
𝛽

}

1
𝛽

)

 
 
 
 
 

 

Further consider 

𝑞 − ROF𝑆𝑓𝑡DWA(𝜇𝔍𝑠11 , 𝜇𝔍𝑠12 , … , 𝜇𝔍𝑠𝑚𝑛
) =

(

 
 
 

√

1 −
1

1+{∑ 𝓊̿𝑗
𝑛
𝑗=1 (∑ 𝜌𝑤̿𝑖

𝑚
𝑖=1 (

𝜇
𝑖𝑗
𝑞

1−𝜇
𝑖𝑗
𝑞 )

𝛽

)}

1
𝛽

𝑞  ,
1

1+{∑ 𝓊̿𝑛
𝑛
𝑗=1 (∑ 𝜌𝑤̿𝑖

𝑚
𝑖=1 (

1−𝜓𝑖𝑗

𝜓𝑖𝑗
)

𝛽

)}

1
𝛽

)
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=

(

 
 
 

√

1 −
1

1+{𝜌[∑ 𝓊̿𝑗
𝑛
𝑗=1 (∑ 𝑤̿𝑖

𝑚
𝑖=1 (

𝜇
𝑖𝑗
𝑞

1−𝜇
𝑖𝑗
𝑞 )

𝛽

)]}

1
𝛽

𝑞  ,
1

1+{𝜌[∑ 𝓊̿𝑗
𝑛
𝑗=1 (∑ 𝑤̿𝑖

𝑚
𝑖=1 (

1−𝜓𝑖𝑗

𝜓𝑖𝑗
)

𝛽

)]}

1
𝛽

)

 
 
 

  

= 𝜌 𝑞 − ROF𝑆𝑓𝑡DWA(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑚𝑛
) 

Therefore, the proof is completed. 

6.3.2. q- Rung orthopair fuzzy soft Dombi ordered weighted averaging 

operators 
In this subsection, in view of defined Dombi operation laws we will present the q-

ROF𝑆𝑓𝑡DOWA operator and investigate their fundamental characteristics in details. 

6.3.2.1. Definition 

Let 𝔍𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗) 𝑓𝑜𝑟 (i = 1,2,… ,m and j = 1, 2,… , n) be the collection of q-

ROF𝑆𝑓𝑡Fs. Suppose 𝑤̿ = (𝑤̿1, 𝑤̿2, … , 𝑤̿𝑚)
𝑇  be the weight vectors for expert 𝓀𝑖 

and 𝓊̿ = (𝓊̿1, 𝓊̿2, … , 𝓊̿𝑛)
𝑇 be the weight vectors for parameters 𝑠𝑗 having the 

conditions that 𝑤̿𝑖 , 𝓊̿𝑗 ∈ [0,1] with ∑ 𝑤̿𝑖
𝑚
𝑖=1 = 1 and ∑ 𝓊̿𝑗

𝑛
𝑗=1 = 1. Then q-

ROF𝑆𝑡DOWA operator is a mapping denoted and define as: 𝑞 − ROF𝑆𝑓𝑡DOWA:𝑋
𝑛 →

𝑋 such that 

𝑞 − ROF𝑆𝑓𝑡DOWA(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑚𝑛
)

= ⨁𝑗=1
𝑛 𝓊̿𝑗(⨁𝑖=1

𝑚 𝑤̿𝑖𝔍𝑠𝛿𝑖𝑗),                             (6.3) 

where 𝔍𝑠𝛿𝑖𝑗 = (𝜇𝛿𝑖𝑗 , 𝜓𝛿𝑖𝑗) is the permutation of 𝑖𝑡ℎ row and 𝑗𝑡ℎ  largest elements of the 

collections from 𝑖 × 𝑗 𝑞 − ROF𝑆𝑓𝑡V𝑠 𝔍𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗) 𝑓𝑜𝑟 (𝑖 = 1,2,… ,𝑚 𝑎𝑛𝑑 𝑗 =

1, 2, … , 𝑛). 

Based on Eq. (6.3) we can obtain the aggregated result for q-ROF𝑆𝑓𝑡DOWA operator 

as described in Theorem 6.3.2.2. 

6.3.2.2. Theorem 

Suppose the collection 𝔍𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗) 𝑓𝑜𝑟 (𝑖 = 1,2,… ,𝑚 𝑎𝑛𝑑 𝑗 = 1, 2,… , 𝑛) of q-

ROF𝑆𝑓𝑡Vs. Consider 𝑤̿ = (𝑤̿1, 𝑤̿2, … , 𝑤̿𝑚)
𝑇  be the weight vectors for experts 𝓀𝑖 

and 𝓊̿ = (𝓊̿1, 𝓊̿2, … , 𝓊̿𝑛)
𝑇 be the weight vectors for parameters 𝑠𝑗 having the 
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conditions that 𝑤̿𝑖 , 𝑢̿𝑗 ∈ [0,1] with ∑ 𝑤̿𝑖
𝑚
𝑖=1 = 1 and ∑ 𝑤̿𝑗

𝑛
𝑗=1 = 1. Then the aggregated 

result for q-ROF𝑆𝑓𝑡DOWA operator is stated as: 

𝑞 − ROF𝑆𝑓𝑡DOWA(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑚𝑛
) = ⨁𝑗=1

𝑛 𝑢̿𝑗(⨁𝑖=1
𝑚 𝑤̿𝑖𝔍𝑠𝛿𝑖𝑗) 

=

(

  
 

√
1 −

1

1+{∑ 𝑢𝑗
𝑛
𝑗=1 (∑ 𝑤̿𝑖

𝑚
𝑖=1 (

𝜇𝛿𝑖𝑗
𝑞

1−𝜇𝛿𝑖𝑗
𝑞)

𝛽

)}

1
𝛽

𝑞 ,
1

1+{∑ 𝑢𝑗
𝑛
𝑗=1 (∑ 𝑤̿𝑖

𝑚
𝑖=1 (

1−𝜓𝛿𝑖𝑗

𝜓𝛿𝑖𝑗
)

𝛽

)}

1
𝛽

)

  
 
,                      (6.4)  

where 𝔍𝑠𝛿𝑖𝑗 = (𝜇𝛿𝑖𝑗 , 𝜓𝛿𝑖𝑗) is the permutation of 𝑖𝑡ℎ row and 𝑗𝑡ℎ  largest elements of the 

collections from 𝑖 × 𝑗 𝑞 − ROF𝑆𝑓𝑡Vs 𝔍𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗) 𝑓𝑜𝑟 (𝑖 = 1,2,… ,𝑚 𝑎𝑛𝑑 𝑗 =

1, 2, … , 𝑛). 

Proof: Proof is straightforward like Theorem 6.3.1.2. 

6.3.2.3. Example 

Let 𝔍𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗) 𝑓𝑜𝑟 (𝑖 = 1,… ,4 and 𝑗 = 1, 2,3) be the collection of 𝑞 −

ROF𝑆𝑓𝑡Vs as mention in Table 6.1 of Example 6.3.1.3. Now by utilizing the 

Definition 6.1.2.2, the tabular description of 𝔍𝑠𝛿𝑖𝑗 = (𝜇𝛿𝑖𝑗 , 𝜓𝛿𝑖𝑗) is given in Table 6.2. 

𝑞 − ROF𝑆𝑓𝑡DOWA(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠43) = ⨁𝑗=1
3 𝑢̿𝑗(⨁𝑖=1

4 𝑤̿𝑖𝔍𝑠𝛿𝑖𝑗)  =

(

  
 

√
1 −

1

1+{∑ 𝑢𝑗
3
𝑗=1 (∑ 𝑤̿𝑖

4
𝑖=1 (

𝜇𝛿𝑖𝑗
3

1−𝜇𝛿𝑖𝑗
3)

2

)}

1
2

3 ,
1

1+{∑ 𝑢𝑗
3
𝑗=1 (∑ 𝑤̿𝑖

4
𝑖=1 (

1−𝜓𝛿𝑖𝑗

𝜓𝛿𝑖𝑗
)

2

)}

1
2

)

  
 

  

Therefore 𝑞 − ROF𝑆𝑓𝑡DOWA(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠43) = (0.944704, 0.274876). 

6.3.2.4. Remarks 

(a) If we consider that the value of parameter 𝑞 = 1 is fixed, then the proposed 𝑞 −

ROF𝑆𝑡DOWA operator reduced to IF𝑆𝑓𝑡DOWA operator. 

(b) If we consider that the value of parameter 𝑞 = 2 is fixed, then the proposed 𝑞 −

ROF𝑆𝑓𝑡DOWA operator reduced to PyF𝑆𝑓𝑡DOWA operator. 
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Table 2, Tabular represent of  q-ROF𝑆𝑓𝑡S 𝔍𝑠𝛿𝑖𝑗 = (𝜇𝛿𝑖𝑗 , 𝜓𝛿𝑖𝑗) for 𝛽 = 2 𝑎𝑛𝑑 𝑞 = 3  > 

𝑇  𝑠𝛿1  𝑠𝛿2 𝑠𝛿3 

𝓀1 (0.98, 0.38) (0.95, 0.45) (0.82, 0.32) 

𝓀2 (0.9, 0.3) (0.92, 0.3) (0.8, 0.15) 

𝓀3 (0.85, 0.6) (0.86, 0.4) (0.7, 0.2) 

𝓀4 (0.7, 0.4) (0.75, 0.25) (0.6, 0.3) 

 

 

(c) If we consider that the value of parameter 𝑞 = 1 is fixed, then the proposed 𝑞 −

ROF𝑆𝑡DOWA operator reduced to IF𝑆𝑓𝑡DOWA operator. 

(d) If we consider that the value of parameter 𝑞 = 2 is fixed, then the proposed 𝑞 −

ROF𝑆𝑓𝑡DOWA operator reduced to PyF𝑆𝑓𝑡DOWA operator. 

(e) If the set contain only parameter that is 𝑠1 (means 𝑚 = 1), in this case the 

proposed 𝑞 − ROF𝑆𝑓𝑡DOWA operator reduced to 𝑞 − ROFDOWA operator. 

Thus from the analysis of Remark 6.3.2.4, it is clear that IF𝑆𝑓𝑡DOWA, PyF𝑆𝑓𝑡DOWA 

and 𝑞 − ROFDOWA operators are the special cases of the developed 𝑞 −

ROF𝑆𝑓𝑡DOWA operator. 

Based on the analysis of Theorem 6.3.2.2, some properties of the 𝑞 − ROF𝑆𝑓𝑡DOWA 

operators are investigated which are described below: 

6.3.2.5. Theorem 

Suppose the collection 𝔍𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗) 𝑓𝑜𝑟 (𝑖 = 1,2,… ,𝑚 𝑎𝑛𝑑 𝑗 = 1, 2,… , 𝑛) of q-

ROF𝑆𝑡Vs. Consider 𝑤̿ = (𝑤̿1, 𝑤̿2, … , 𝑤̿𝑚)
𝑇  be the weight vectors for experts 𝓀𝑖 

and 𝑢̿ = (𝑢̿1, 𝑢̿2, … , 𝑢̿𝑛)
𝑇 be the weight vectors for parameters 𝑠𝑗 having the restriction 

that 𝑤̿𝑖 , 𝑢̿𝑗 ∈ [0,1] with ∑ 𝑤̿𝑖
𝑚
𝑖=1 = 1 and ∑ 𝑢̿𝑗

𝑛
𝑗=1 = 1. Then the following properties 

are holds for q-ROF𝑆𝑓𝑡DOWA operator: 

i: (Idempotency): Let 𝔍𝑠𝑖𝑗 = ℰ𝑠 𝑓𝑜𝑟 𝑎𝑙𝑙 (𝑖 = 1,2, … ,𝑚 𝑎𝑛𝑑 𝑗 = 1,2,… , 𝑛), 

where ℰ𝑠 = (𝑏, 𝒹). Then 

𝑞 − ROF𝑆𝑓𝑡DOWA(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑚𝑛
) = ℰ𝑠 . 
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𝒊𝒊: (Boundedness): Let 𝔍𝑠𝑖𝑗
− = (min

𝑗
min
𝑖
(𝜇𝑖𝑗), max

𝑗
max
𝑖
(𝜓𝑖𝑗)) and 

𝔍𝑠𝑖𝑗
+ = (max

𝑗
max
𝑖
(𝜇𝑖𝑗),min

𝑗
min
𝑖
(𝜓𝑖𝑗)). Then 

𝔍𝑠𝑖𝑗
− ≤ 𝑞 − ROF𝑆𝑓𝑡DOWA(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑚𝑛

) ≤ 𝔍𝑠𝑖𝑗
+  . 

𝒊𝒊𝒊: (Monotonicity): Let another collection ℰ𝑠𝑖𝑗 = (𝑏𝑖𝑗 , d𝑖𝑗) 𝑓𝑜𝑟 (i =

1,2,… ,m and j = 1, 2,… , n) of q-ROF𝑆𝑡Vs such that 𝜇𝑖𝑗 ≤ 𝑏𝑖𝑗  𝑎𝑛𝑑 𝜓𝑖𝑗 ≥ d𝑖𝑗. Then 

𝑞 − ROF𝑆𝑓𝑡DOWA(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑚𝑛
) ≤ 𝑞 − ROF𝑆𝑓𝑡DOWA(ℰ𝑠11 , ℰ𝑠12 , … , ℰ𝑠𝑚𝑛

). 

𝒊𝒗: (Shift Invariance): Let ℰ𝑠 = (𝑏, 𝑑) be a q-ROF𝑆𝑓𝑡V. Then 

𝑞 − ROF𝑆𝑓𝑡DOWA(𝔍𝑠11⨁ ℰ𝑠, 𝔍𝑠12⨁ ℰ𝑠, … , 𝔍𝑠𝑚𝑛
⨁ ℰ𝑠)

= 𝑞 − ROF𝑆𝑓𝑡DOWA(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑚𝑛
) ⨁ ℰ𝑠. 

𝒗: (Homogeneity): Let 𝜌 > 0 be any real number. Then 

𝑞 − ROF𝑆𝑓𝑡DOWA(𝜌𝔍𝑠11 , 𝜌𝔍𝑠12 , … , 𝜌𝔍𝑠𝑚𝑛
)

= 𝜌 𝑞 − ROF𝑆𝑓𝑡DOWA(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑚𝑛
). 

Proof: Proofs are directly follows from Theorem 6.3.1.5. 

6.3.3. q- Rung orthopair fuzzy soft Dombi hybrid averaging operators 
In this subsection, in view of defined Dombi operations we will present the study of q-

ROF𝑆𝑓𝑡DHA operator and investigate their fundamental characteristics with details. 

6.3.3.1. Definition 

Let 𝔍𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗) 𝑓𝑜𝑟 (𝑖 = 1,2,… ,𝑚 𝑎𝑛𝑑 𝑗 = 1, 2,… , 𝑛) be the collection of q-

ROF𝑆𝑓𝑡Vs with 𝓋 = (𝓋1, 𝓋2, … , 𝓋𝑚)
𝑇 and 𝑟 = (𝑟1, 𝑟2, … , 𝑟𝑛)

𝑇 be the weight vector 

of  𝔍𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗) such that 𝓋𝑖, 𝑟𝑗 ∈ [0,1] with ∑ 𝓋𝑖
𝑚
𝑖=1 = 1 and ∑ 𝑟𝑗

𝑛
𝑗=1 = 1. 

Suppose 𝑤̿ = (𝑤̿1, 𝑤̿2, … , 𝑤̿𝑚)
𝑇  and 𝑢̿ = (𝑢̿1, 𝑢̿2, … , 𝑢̿𝑛)

𝑇 be the aggregation 

associated weight vectors for expert 𝓀𝑖 and parameters 𝑠𝑗 having the conditions 

that 𝑤̿𝑖 , 𝑢̿𝑗 ∈ [0,1] with ∑ 𝑤̿𝑖
𝑚
𝑖=1 = 1 and ∑ 𝑢̿𝑗

𝑛
𝑗=1 = 1. Then q-ROF𝑆𝑓𝑡DHA operator is 

a mapping denoted and define as: 𝑞 − ROF𝑆𝑓𝑡DHA: 𝑋
𝑛 → 𝑋 such that 
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𝑞 − ROF𝑆𝑓𝑡DHA(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑚𝑛
)

= ⨁𝑗=1
𝑛 𝑢̿𝑗 (⨁𝑖=1

𝑚 𝑤̿𝑖𝔍̃𝑠𝛿𝑖𝑗),                              (6.5) 

where 𝔍̃𝑠𝛿𝑖𝑗 = 𝑛𝓋𝑖𝑟𝑗𝔍𝑠𝑖𝑗  is the permutation of 𝑖𝑡ℎ row and 𝑗𝑡ℎ  column largest elements 

of the collections from 𝑞 − ROF𝑆𝑡Vs 𝔍𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗) and 𝑛 is called the balancing 

coefficient.  

Based on Eq. (6.5), we can obtain the aggregated result for q-ROF𝑆𝑓𝑡DHA operator as 

described in Theorem 6.3.3.2. 

6.3.3.2. Theorem 

Suppose the collection 𝔍𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗) 𝑓𝑜𝑟 (𝑖 = 1,2,… ,𝑚 𝑎𝑛𝑑 𝑗 = 1, 2,… , 𝑛) of q-

ROF𝑆𝑓𝑡Vs. Consider 𝑤̿ = (𝑤̿1, 𝑤̿2, … , 𝑤̿𝑚)
𝑇  and 𝑢̿ = (𝑢̿1, 𝑢̿2, … , 𝑢̿𝑛)

𝑇 be the 

aggregation associated weight vectors for experts 𝓀𝑖  and parameters 𝑠𝑗 having the 

conditions that 𝑤̿𝑖 , 𝑢̿𝑗 ∈ [0,1] with ∑ 𝑤̿𝑖
𝑚
𝑖=1 = 1 and ∑ 𝑢̿𝑗

𝑛
𝑗=1 = 1. Then the aggregated 

result for q-ROF𝑆𝑓𝑡DHA operator is stated as: 

𝑞 − ROF𝑆𝑓𝑡DHA(𝔍𝛿𝑠11 , 𝔍𝛿𝑠12 , … , 𝔍𝛿𝑠𝑚𝑛
) = ⨁𝑗=1

𝑛 𝑢̿𝑗(⨁𝑖=1
𝑚 𝑤̿𝑖𝔍̃𝑠𝛿𝑖𝑗) 

=

(

 
 
 

√
1 −

1

1+{∑ 𝑢𝑗
𝑛
𝑗=1 (∑ 𝑤̿𝑖

𝑚
𝑖=1 (

𝜇̃𝛿𝑖𝑗
𝑞

1−𝜇̃𝛿𝑖𝑗
𝑞)

𝛽

)}

1
𝛽

𝑞 ,
1

1+{∑ 𝑢𝑗
𝑛
𝑗=1 (∑ 𝑤̿𝑖

𝑚
𝑖=1 (

1−𝜓̃𝛿𝑖𝑗

𝜓̃𝛿𝑖𝑗
)

𝛽

)}

1
𝛽

)

 
 
 
            (6.6)  

where 𝔍̃𝑠𝛿𝑖𝑗 = 𝑛𝓋𝑖𝑟𝑗𝔍𝑠𝑖𝑗  is the permutation of 𝑖𝑡ℎ row and 𝑗𝑡ℎ  column largest elements 

of the collections from  𝑞 − ROF𝑆𝑓𝑡Vs 𝔍𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗) with 𝓋 =

(𝓋1, 𝓋2, … , 𝓋𝑚)
𝑇  𝑎𝑛𝑑 𝑟 = (𝑟1, 𝑟2, … , 𝑟𝑛)

𝑇   be the weight vector and n is a balancing 

coefficient. 

Proof: Proof is straightforward like Theorem 6.3.1.2. 

6.3.3.3. Example 

Let 𝔍𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗) 𝑓𝑜𝑟 (𝑖 = 1,… ,4 and 𝑗 = 1, 2,3) be the collection of 𝑞 −

ROF𝑆𝑓𝑡Vs as mention in Table 6.1 of Example 6.3.1.3. Let 𝓋 =

(0.25, 0.28, 0.29,0.18)𝑇   𝑎𝑛𝑑  𝑟 = (0.36,0.29, 0.35 )𝑇  be the weight vector of expert 

𝓀𝑖 and parameter 𝑠𝑗, and their corresponding aggregation associated weight vector 𝑤̿ =



 

 

145 
 

(0.26,0.3,0.23,0.21)𝑇  for expert 𝓀𝑖 and 𝑢̿ = (0.35,0.31,0.34)𝑇 for parameter 𝑠𝑗. Now 

by utilizing the operation mentioned in Eq. 6.7 and their corresponding results are given 

in Table 6.3, similarly by using score function as given in Definitions 6.1.2.2  and their 

results are given in Table 6.4. The tabular description for new ordering of 𝔍̃𝑠𝛿𝑖𝑗 =

𝑛𝓋𝑖𝑟𝑗𝔍𝑠𝑖𝑗  is given in Table 6.4. 

𝜌𝔍𝑠 =

(

 
 
 
 

√

1 −
1

1 + {𝜌 (
𝜇𝔍𝑠

𝑞

1 − 𝜇𝔍𝑠
𝑞)

𝛽

}

1
𝛽

𝑞 ,
1

1 + {𝜌 (
1 − 𝜓𝔍𝑠
𝜓𝔍𝑠

)
𝛽

}

1
𝛽

)

 
 
 
 

                             (6.7) 

𝑞 − ROF𝑆𝑓𝑡DHA(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠43) = ⨁𝑗=1
3 𝑢̿𝑗(⨁𝑖=1

4 𝑤̿𝑖𝔍̃𝑠𝛿𝑖𝑗)  

=

(

 
 
 

√
1 −

1

1+{∑ 𝑢𝑗
3
𝑗=1 (∑ 𝑤̿𝑖

4
𝑖=1 (

𝜇̃𝛿𝑖𝑗
3

1−𝜇̃𝛿𝑖𝑗
3)

2

)}

1
2

3 ,
1

1+{∑ 𝑢𝑗
3
𝑗=1 (∑ 𝑤̿𝑖

4
𝑖=1 (

1−𝜓̃𝛿𝑖𝑗

𝜓̃𝛿𝑖𝑗
)

2

)}

1
2

)

 
 
 

  

Therefore, 

𝑞 − ROF𝑆𝑓𝑡DHA(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠43) = (0.916853,0.381134). 

Table 6.3, Tabular represent of  q-ROF𝑆𝑓𝑡S 𝔍̃𝑠𝛿𝑖𝑗 = 𝑛𝓋𝑖𝑟𝑗𝔍𝑠𝑖𝑗  for 𝛽 = 2 𝑎𝑛𝑑 𝑞 = 3 

𝑇  𝑠𝛿1  𝑠𝛿2 𝑠𝛿3 

𝓀1 (0.85153, 0.41667) (0.7856, 0.55317) (0.61795, 0.29705) 

𝓀2 (0.79509, 0.70258) (0.66473, 0.36904) (0.52791, 0.40636) 

𝓀3 (0.0.9697, 0.48677) (0.87553, 0.42493) (0.73722, 0.21689) 

𝓀4 (0.59438, 0.567) (0.90169, 0.64165) (0.7253, 0.48385) 
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Table 6.4, Tabular description of score values for 𝔍̃𝑠𝛿𝑖𝑗 = 𝑛𝓋𝑖𝑟𝑗𝔍𝑠𝑖𝑗  for 𝛽 = 2 𝑎𝑛𝑑 𝑞 = 3 

𝑇  𝑠𝛿1  𝑠𝛿2 𝑠𝛿3 

𝓀1 (0.772555) (0.657789) (0.604883) 

𝓀2 (0.57791) (0.621733) (0.54001) 

𝓀3 (0.898249) (0.797202) (0.695232) 

𝓀4 (0.41385) (0.734469) (0.634138) 
 

 

Table 6.4, New ordered for  q-ROF𝑆𝑓𝑡S 𝔍̃𝑠𝛿𝑖𝑗 = 𝑛𝓋𝑖𝑟𝑗𝔍𝑠𝑖𝑗 for 𝛽 = 2 𝑎𝑛𝑑 𝑞 = 3 

𝑇  𝑠𝛿1  𝑠𝛿2 𝑠𝛿3 

𝓀1 (0.9697, 0.48677) (0.87553, 0.42493) (0.73722, 0.21689) 

𝓀2 (0.85153, 0.41667) (0.90169, 0.64165) (0.7253, 0.48385) 

𝓀3 (0.79509, 0.70258) (0.7856, 0.55317) (0.61795, 0.29705) 

𝓀4 (0.59438, 0.567) (0.66473, 0.36904) (0.52791, 0.40636) 

 

 

6.3.3.4. Remarks 

(a) If we consider that the value of 𝑞 = 1 is fixed, then the proposed 𝑞 −

ROF𝑆𝑓𝑡DHA operator reduced to IF𝑆𝑓𝑡DHA operator. 

(b) If we consider that the value of 𝑞 = 2 is fixed, then the proposed 𝑞 −

ROF𝑆𝑓𝑡DHA operator reduced to PyF𝑆𝑓𝑡DHA operator. 

(c) If the set contain only parameter that is 𝑠1 (means 𝑚 = 1), in this case the 

proposed 𝑞 − ROF𝑆𝑓𝑡DHA operator reduced to 𝑞 − ROFDHA operator. 

Thus from the analysis of Remark 6.3.3.4, it is clear that IF𝑆𝑓𝑡DHA, PyF𝑆𝑓𝑡DHA and 

𝑞 − ROFDHA operators are the special cases of the developed 𝑞 − ROF𝑆𝑓𝑡DHA 

operator. 

Based on the analysis of Theorem 6.3.3.2, some properties of the 𝑞 − ROF𝑆𝑓𝑡DHA 

operators are investigated which are described below: 

6.3.3.5. Theorem 

Suppose the collection 𝔍𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗) 𝑓𝑜𝑟 (𝑖 = 1,2,… ,𝑚 𝑎𝑛𝑑 𝑗 = 1, 2,… , 𝑛) of q-

ROF𝑆𝑓𝑡Vs with 𝓋 = (𝓋1, 𝓋2, … , 𝓋𝑚)
𝑇  𝑎𝑛𝑑 𝑟 = (𝑟1, 𝑟2, … , 𝑟𝑛)

𝑇 be the weight vector 
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of  𝔍𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗) such that 𝓋𝑖, 𝑟𝑗 ∈ [0,1] with ∑ 𝓋𝑖
𝑚
𝑖=1 = 1 and ∑ 𝑟𝑗

𝑛
𝑗=1 = 1. 

Suppose 𝑤̿ = (𝑤̿1, 𝑤̿2, … , 𝑤̿𝑚)
𝑇  and 𝑢̿ = (𝑢̿1, 𝑢̿2, … , 𝑢̿𝑛)

𝑇 be the aggregation 

associated weight vectors for expert 𝓀𝑖 and parameters 𝑠𝑗 having the conditions 

that 𝑤̿𝑖 , 𝑢̿𝑗 ∈ [0,1] with ∑ 𝑤̿𝑖
𝑚
𝑖=1 = 1 and ∑ 𝑢̿𝑗

𝑛
𝑗=1 = 1. Then the following properties 

are holds for q-ROF𝑆𝑓𝑡DHA operator: 

(i): (Idempotency) Let 𝔍𝑠𝑖𝑗 = ℰ𝑠  𝑓𝑜𝑟 𝑎𝑙𝑙 (𝑖 = 1,2,… ,𝑚 𝑎𝑛𝑑 𝑗 = 1,2,… , 𝑛), 

where ℰ𝑠 = (𝑏, 𝒹). Then 

𝑞 − ROF𝑆𝑓𝑡DHA(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑚𝑛
) = ℰ𝑠 . 

(𝒊𝒊): (Boundedness) Let 𝔍𝑠𝑖𝑗
− = (min

𝑗
min
𝑖
(𝜇𝑖𝑗), max

𝑗
max
𝑖
(𝜓𝑖𝑗)) and 

𝔍𝑠𝑖𝑗
+ = (max

𝑗
max
𝑖
(𝜇𝑖𝑗),min

𝑗
min
𝑖
(𝜓𝑖𝑗)). Then 

𝔍𝑠𝑖𝑗
− ≤ 𝑞 − ROF𝑆𝑓𝑡DHA(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑚𝑛

) ≤ 𝔍𝑠𝑖𝑗
+  . 

𝒊𝒊𝒊: (Monotonicity) Let another collection ℰ𝑠𝑖𝑗 = (𝑏𝑖𝑗 , d𝑖𝑗) 𝑓𝑜𝑟 (i = 1,2,… ,m and j =

1, 2, … , n) of q-ROF𝑆𝑓𝑡Vs such that 𝜇𝑖𝑗 ≤ 𝑏𝑖𝑗  𝑎𝑛𝑑 𝜓𝑖𝑗 ≥ d𝑖𝑗 . Then 

𝑞 − ROF𝑆𝑓𝑡DHA(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑚𝑛
) ≤ 𝑞 − ROF𝑆𝑓𝑡DHA(ℰ𝑠11 , ℰ𝑠12 , … , ℰ𝑠𝑚𝑛

). 

𝒊𝒗: (Shift Invariance)  Let ℰ𝑠 = (𝑏, 𝑑) be a q-ROF𝑆𝑡V. Then 

𝑞 − ROF𝑆𝑓𝑡DHA(𝔍𝑠11⨁ ℰ𝑠, 𝔍𝑠12⨁ ℰ𝑠 , … , 𝔍𝑠𝑚𝑛
⨁ ℰ𝑠)

= 𝑞 − ROF𝑆𝑓𝑡DHA(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑚𝑛
) ⨁ ℰ𝑠. 

𝒗: (Homogeneity) Let 𝜌 > 0 be any real number. Then 

𝑞 − ROF𝑆𝑓𝑡DHA(𝜌𝔍𝑠11 , 𝜌𝔍𝑠12 , … , 𝜌𝔍𝑠𝑚𝑛
) = 𝜌 𝑞 − ROF𝑆𝑓𝑡DHA(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑚𝑛

). 

Proof: Proofs are easy and directly follows Theorem 6.3.1.5. 

6.4.  An approach to 𝓜𝓒𝓓𝓜 under Dombi operations using q-rung 

orthopair fuzzy soft information 
This section describes a ℳ𝒞𝒟ℳ techniques by using the applicability of developed 

operators for handling ℳ𝒞𝒟ℳ problems. Here criteria and parameter weights are real 

numbers and criteria values are q-ROFVs. The techniques of mathematical descriptions 

and their general steps wise algorithm under q-ROF environment is given as follows. 
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Suppose 𝑇 = {𝓀1, 𝓀2, 𝓀3, … , 𝓀𝑘} be the collection of alternatives in which the most 

desirable alternative is going to evaluated by the senior decision makers 𝑑 =

{𝑑1, 𝑑2, 𝑑3, … , 𝑑𝑚} against their corresponding parameters 𝔼 = {𝑠1, 𝑠2, 𝑠3, … , 𝑠𝑛}. Let 

𝑤̿ = (𝑤̿1, 𝑤̿2, … , 𝑤̿𝑚)
𝑇  and 𝑢̿ = (𝑢̿1, 𝑢̿2, … , 𝑢̿𝑛)

𝑇 be the aggregation associated weight 

vectors for expert 𝓀𝑖 and parameters 𝑠𝑗 having the conditions that 𝑤̿𝑖 , 𝑢̿𝑛 ∈ [0,1] 

with ∑ 𝑤̿𝑖
𝑚
𝑖=1 = 1 and ∑ 𝑢̿𝑗

𝑛
𝑗=1 = 1. The senior decision makers gives their assessment 

for best alternative 𝓀𝑘 against to parameter 𝑠𝑛 in the form of q-ROF𝑆𝑓𝑡Vs 𝔍𝑠𝑖𝑗 =

(𝜇𝑖𝑗 , 𝜓𝑖𝑗) such that0 ≤ 𝜇𝑖𝑗
𝑞
+ 𝜓𝑖𝑗

𝑞
≤ 1 𝑓𝑜𝑟 𝑞 ≥ 1. The decision makers describe their 

collective evaluated information in the form of q-ROF𝑆𝑓𝑡 decision matrix 𝕄 =

[𝔍𝑠𝑖𝑗]𝑚×𝑛. Using the preferences values of senior experts the aggregated result 𝜉𝑖 for 

alternative 𝓀𝑖  (𝑖 = 1,2,… , 𝑘) is 𝜉𝑖 = (𝜇𝑖 , 𝜓𝑖) by applying the q-ROF𝑆𝑓𝑡DW averaging 

operations which is given in Eqs. 6.2, 6.4 and 6.6. Finally to get the most desirable 

alternative apply the score function on aggregated result 𝜉𝑖 and rank them to get the 

best option.  

6.4.1. Algorithm 
The step wise decision algorithm for the developed operators are summarized as 

follows: 

Step i: Extract the collective evaluated information of senior experts in the form of q-

ROF𝑆𝑓𝑡 decision matrix 𝕄 = [𝔍𝑠𝑖𝑗]𝑚×𝑛  for each alternative against their parameter. 

 𝕄 = [

(𝜇11, 𝜓11) (𝜇12, 𝜓12) ⋯ (𝜇1𝑛 , 𝜓1𝑛)

(𝜇21, 𝜓21) (𝜇22, 𝜓22) ⋯ (𝜇2𝑛 , 𝜓2𝑛)
⋮ ⋮ ⋱ ⋮

(𝜇𝑚1, 𝜓𝑚1) (𝜇𝑚2, 𝜓𝑚2) ⋯ (𝜇𝑚𝑛 , 𝜓𝑚𝑛)

] 

Step ii: Using the preferences values of senior experts, aggregate the q-ROF𝑆𝑓𝑡 𝔍𝑠𝑖𝑗 for 

alternative 𝓀𝑖  (𝑖 = 1,2,… , 𝑘) into collective decision matrix 𝜉𝑖 = (𝜇𝑖, 𝜓𝑖) by applying 

the developed q-ROF𝑆𝑓𝑡D averaging and q-ROF𝑆𝑓𝑡D geometric operations. 

Step iii: Applying the definition of score function determine the score values of 𝜉𝑖 for 

each object 𝓀𝑖 𝑓𝑜𝑟 𝑖 = (1,2,… , 𝑘). 

Step iv: Finally rank the obtained results and arranged them in a specific ordered to get 

the most desirable option from 𝓀𝑖. 
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6.5.  Numerical example 
In ordered to demonstrate the applicability and validity of the proposed method, a 

decision making process has been illustrated with the Constructional engineering 

projects (CEP) adopted from [92]. 

Suppose a particular example about the four potential CEP (alternatives) 𝑇 =

{𝓀1, 𝓀2, 𝓀3, 𝓀4} and the committee of expert engineers 𝑑 = {𝑑1, 𝑑2, 𝑑3, 𝑑4, 𝑑5} whose 

weight vector is 𝑢̿ = (0.24,0.26,0.23,0.15,0.12)𝑇  will give their assessment for the 

project against some parameter 𝔼 = {𝑠1, 𝑠2, 𝑠3, 𝑠4} and weight vector 𝑢̿ =

(0.27,0.22,0.23,0.28)𝑇, where 𝑠1 = the construction work environment, 𝑠2 = the 

construction site safety protection measure 𝑠3 = the safety production responsibility 

system, 𝑠4 = the safety management ability of the engineering project. The expert 

engineers 𝑑𝑖(𝑖 = 1,… ,5) provides their assessment for each project against their 

parameter in the form of q-ROFVs. Following steps followed for finding the most 

desirable CEP by applying the developed approach. 

By applying q-ROF𝑺𝒇𝒕DWA operator 

Step i: The five expert engineers 𝑑𝑖 will evaluate the construction of four CEP in terms 

of q-ROFVs, parameters and their rating results are given in Tables 6.5 − 6.8 

respectively. 

Step ii: Applying the preferences values of senior engineers, the aggregated result for 

each alternative 𝓀𝑖 (𝑖 = 1,… ,4) by applying the developed q-ROF𝑆𝑓𝑡DWA operator 

for  𝑞 = 3 𝑎𝑛𝑑 𝛽 = 2 are gives as: 

𝜉1 = (0.808828, 0.110937),   𝜉2 = (0.758981, 0.165394), 

 𝜉3 = (0.743415,0.14901),   𝜉4 = (0.746606,0.111174) 

 Step iii: Applying the definition of score function and determine the score values of  𝜉𝑖 

for each object 𝓀𝑖 𝑓𝑜𝑟 𝑖 = (1,… ,4). 

 𝒮𝑐(𝜉1) = 0.763886,   𝒮𝑐(𝜉2) = 0.716344,   𝒮𝑐(𝜉3) = 0.703776,   𝒮𝑐(𝜉4)

= 0.7074  

Step iv: Finally rank the obtained results and arranged them in a specific ordered to get 

the most desirable option from 𝓀𝑖. 

𝓀1 ≽ 𝓀2 ≽ 𝓀4 ≽ 𝓀3 
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From the ranking result, it is clear that 𝓀1 is the most desirable and profitable CEP 

among all. 

By applying q-ROF𝐒𝐟𝐭DOWA operator 

Step i: Same as above. 

Step ii: Applying the preferences values of senior engineers, the aggregated result for 

each alternative 𝓀𝑖 (𝑖 = 1,… ,4) by applying the developed q-ROF𝑆𝑓𝑡DOWA operator 

for  𝑞 = 3 𝑎𝑛𝑑 𝛽 = 2 are gives as: 

𝜉1 = (0.806913, 0.113117), 𝜉2 = (0.762272,0.162736), 

𝜉3 = (0.77327, 0.151224), 𝜉4 = (0.7564,0.122431) 

Step iii: Applying the definition of score function and determine the score values of  𝜉𝑖 

for each object 𝓀𝑖 𝑓𝑜𝑟 𝑖 = (1,… ,4). 

𝒮𝑐(𝜉1) = 0.76197, 𝒮𝑐(𝜉2) = 0.719308, 𝒮𝑐(𝜉3) = 0.729458,

𝒮𝑐(𝜉4) = 0.715466, 

Step iv: Finally rank the obtained results and arranged them in a specific ordered to get 

the most desirable option from 𝓀𝑖. 

𝓀1 ≽ 𝓀3 ≽ 𝓀2 ≽ 𝓀4 

From the ranking result, it is clear that 𝓀1 is the most desirable and profitable CEP 

among all. 

By applying q-ROF𝐒𝐟𝐭DHA operator 

Step i: Same as above. 

Step ii: Applying the preferences values of senior engineers, the aggregated result for 

each alternative 𝓀𝑖 (𝑖 = 1,… ,4) by applying the developed q-ROF𝑆𝑓𝑡DHA operator 

for  𝑞 = 3 𝑎𝑛𝑑 𝛽 = 2. Let 𝓋 = (0.22,0.16,0.2,0.24,0.18)𝑇 and 𝑟 =

(0.32, 0.29,0.18,0.21 )𝑇  be the weight vector of expert 𝓀𝑖 and parameter 𝑠𝑗. Let 𝑤̿ =

(0.24,0.26,0.23,0.15, 0.12)𝑇  and 𝑢̿ = (0.27,0.22,0.23,0.28)𝑇 be the corresponding 

aggregation associated weight vector for expert 𝓀𝑖 and parameter 𝑠𝑗 for 𝑞 = 3 and 𝛽 =

2. Then 

𝜉1 = (0.709337, 0.213582), 𝜉2 = (0.653017,0.280623), 
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𝜉3 = (0.678549, 0.25099),            𝜉4 = (0.659497, 0.206046) 

Step iii: Applying the definition of score function and determine the score values of  𝜉𝑖 

for each object 𝓀𝑖 𝑓𝑜𝑟 𝑖 = (1,… ,4). 

𝒮𝑐(𝜉1) = 0.673583, 𝒮𝑐(𝜉2) = 0.628184,   𝒮𝑐(𝜉3) = 0.64306,

𝒮𝑐(𝜉4) = 0.639046 

Step iv: Finally rank the obtained results and arranged them in a specific ordered to get 

the most desirable option from 𝓀𝑖. 

𝓀1 ≽ 𝓀3 ≽ 𝓀4 ≽ 𝓀2 

From the ranking result, it is clear that 𝓀1 is the most desirable and profitable CEP 

among all. 

Therefore, from the analysis of illustrative example, it is evident that the ranking order 

of the alternatives are slightly different but the ranking concerning the most suitable 

and desirable alternative is identical that is 𝓀1 for overall introduced operators. 

Table 6.5, q-ROF𝑆𝑓𝑡  matrix for CEP 𝓀1 

 𝑠1 𝑠2 𝑠3 𝑠4 

𝑑1 (0.8,0.2) (0.9,0.1) (0.76,0.13) (0.71,0.23) 

𝑑2 (0.7,0.15) (0.6,0.2) (0.8,0.18) (0.9,0.05) 

𝑑3 (0.5,0.2) (0.81,0.14) (0.4,0.1) (0.65,0.32) 

𝑑4 (0.72,0.23) (0.75,0.13) (0.55,0.22) (0.74,0.17) 

𝑑5 (0.65,0.25) (0.5,0.12) (0.66,0.23) (0.45,0.05) 

 

6.5.1. Comparative analysis 
To present the efficiency and applicability of the proposed method with some existing 

methods, a comparative study has been made based on different aggregation operators 

(see [4, 30, 68, 69, 71, 75]) under IF, PyF and q-ROF environment. For collective 

information different parameters of q-ROF𝑆𝑡Vs are aggregated by utilizing weighted 

averaging operator against to their weight vector 𝑢̿ = (0.27,0.22,0.23,0.28)𝑇, to obtain 

the aggregated q-ROF𝑆𝑡 decision matrix for different alternative 𝓀𝑖 (𝑖 = 1, …4) as 

summarized in Table 6.9. From the evident of this decision matrix a comparative study 
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has been made of the proposed methods with some existing methods and their 

simultaneous results are depicted in Table 6.10. From Table 6.10, it is clear that the 

ranking orders are  

Table 6.6, q-ROF𝑆𝑓𝑡  matrix for CEP 𝓀2 

 𝑠1 𝑠2 𝑠3 𝑠4 

𝑑1 (0.6,0.13) (0.85,0.14) (0.8,0.18) (0.81,0.16) 

𝑑2 (0.73,0.25) (0.74,0.25) (0.63,0.22) (0.77,0.15) 

𝑑3 (0.45,0.32) (0.4,0.12) (0.54,0.31) (0.84,0.11) 

𝑑4 (0.7,0.2) (0.6,0.3) (0.65,0.28) (0.76,0.19) 

𝑑5 (0.62,0.35) (0.5,0.1) (0.74,0.12) (0.65,0.25) 

 

 

Table 6.7. q-ROF𝑆𝑓𝑡  matrix for CEP 𝓀3 

 𝑠1 𝑠2 𝑠3 𝑠4 

𝑑1 (0.74,0.23) (0.55,0.12) (0.48,0.1) (0.42,0.15) 

𝑑2 (0.6,0.15) (0.66,0.31) (0.78,0.12) (0.64,0.22) 

𝑑3 (0.82,0.16) (0.74,0.25) (0.5,0.3) (0.3,0.1) 

𝑑4 (0.65,0.34) (0.58,0.28) (0.73,0.25) (0.48,0.26) 

𝑑5 (0.9,0.08) (0.6,0.2) (0.4,0.1) (0.61,0.35) 

 

 

Table 6.8, q-ROF𝑆𝑓𝑡  matrix for CEP 𝓀4 

 𝑠1 𝑠2 𝑠3 𝑠4 

𝑑1 (0.63,0.14) (0.45,0.13) (0.55,0.25) (0.62,0.15) 

𝑑2 (0.35,0.05) (0.65,0.18) (0.75,0.18) (0.48,0.22) 

𝑑3 (0.7,0.17) (0.9,0.09) (0.6,0.3) (0.52,0.16) 

𝑑4 (0.39,0.25) (0.25,0.1) (0.56,0.16) (0.67,0.26) 

𝑑5 (0.8,0.12) (0.76,0.23) (0.34,0.05) (0.38,0.1) 
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slightly different but their best optimal alternative remain same for all operators that 

is 𝓀1. However, in many situations of real life IFS and PyFS cannot provide the 

additional space to the decision makers to describe the attribute evaluation value due to 

its restricted constraints. Obviously in q-ROF environment the experts fully express the 

decision information. From characteristic analysis the existing methods in [4, 30, 75] 

are best for fuzzy data and these methods having no information about soft 

parameterization tools and Dombi operational parameter. Similarly the methods in [68, 

69, 71] have just Dombi operational parameter. Therefore, from the characteristic point 

of view the methods proposed in this chapter are more superior and practical for real 

life information to describe the fuzzy data under soft parameterizations information by 

using Dombi operational law. 

6.5.2. Influence of operational parameter 𝛃 
To express the influence and potential of operational parameter 𝛽 on ℳ𝒞𝒟ℳ, different 

values of 𝛽 are utilized to rank the alternatives. For different input of 𝛽 in the range 

of 1 ≤ 𝛽 ≤ 30, the score values and their ranking order of alternatives 𝓀𝑖(𝑖 = 1, … ,5) 

based on q-ROF𝑆𝑓𝑡 DWA operators are depicted in Tables 6.11. From the analysis of 

Tables 11, it is clear that for different input values of 𝛽 the ranking order is slightly 

different but the best optimal option remain identical that is 𝓀1 for q-ROF𝑆𝑓𝑡 DWA 

operators. By increasing the value of 𝛽 cause gradual increase in score values for q-

ROF𝑆𝑓𝑡 DWA operators. This show that increasing the values of 𝛽 from smaller to 

bigger cause the decision makers’ attitude from pessimism to optimism for q-ROF𝑆𝑓𝑡 

DWA operators. Thus the behaviour of operational parameter 𝛽 is very important to 

express the experts’ attitude in decision making problems. Therefore, from overall 

analysis it is concluded that the proposed method is more superior and resilience than 

existing methods to solve the real life decisions by using parameterization tools under 

Dombi operational law. 

6.5.3. Conclusion 
The process of 𝒟ℳ is a complex issue involves professionals of different genre. Every 

organization have to take decision at one point or another as a part of managerial 

process. Therefore, every organization extensively needs a team of professional experts 

to make all sorts of complex decision. But remember, that an individual alone cannot 
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come out with final decision because decision making problems consist of cumulative 

and consultative 

Table 6.9, Aggregated values of q-ROF𝑆𝑓𝑡  matrix for CEP for 𝓀𝑖 

 𝓀1 𝓀2 𝓀3 𝓀4 

𝑑1 (0.839983,0.143578) (0.805096,0.148488) (0.647834,0.133022) (0.592306,0.152046) 

𝑑2 (0.846328,0.084283) (0.735176,0.198556) (0.70186,0.164896) (0.658083,0.086928) 

𝑑3 (0.714504,0.149203) (0.759122,0.149169) (0.747558,0.147595) (0.826828,0.139741) 

𝑑4 (0.719443,0.174289) (0.705968,0.223092) (0.653149,0.277035) (0.585882,0.156939) 

𝑑5 (0.607438,0.084324) (0.666902,0.147059) (0.836595,0.115345) (0.734921,0.082803) 

 

 

Table 6.10, Comparative analysis of existing methods with proposed methods 

 Methods 𝑆𝑐𝑜𝑟𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑠

𝓀1                    𝓀2                  𝓀3                   𝓀4            
 

Ranking 

IFWA [4] 0.659028        0.578421       0.557667      0.575095 𝓀1 ≻ 𝓀2 ≻ 𝓀4 ≻ 𝓀3 

PyFWA [75] 0.598381        0.532558       0.489755      0.474926 𝓀1 ≻ 𝓀2 ≻ 𝓀3 ≻ 𝓀4 

PyFDWA [69] 0.640947        0.54832         0.527668      0.538915 𝓀1 ≻ 𝓀2 ≻ 𝓀4 ≻ 𝓀3 

PyDFWA [68] 0.639334        0.547267       0.526257      0.538347 𝓀1 ≻ 𝓀2 ≻ 𝓀3 ≻ 𝓀4 

q-ROFDWA [71] 0.765043         0.720637       0.706817      0.65305 𝓀1 ≻ 𝓀2 ≻ 𝓀3 ≻ 𝓀4 

q-ROFWA [30] 0.482652        0.417154       0.368254      0.347148 𝓀1 ≻ 𝓀2 ≻ 𝓀3 ≻ 𝓀4 

q-ROF𝑆𝑡DWA 

(proposed) 

0.763886         0.716344       0.703776      0.7074 𝓀1 ≻ 𝓀2 ≻ 𝓀4 ≻ 𝓀3 

q-ROF𝑆𝑡DOWA 

(proposed) 

0.76197           0.719308       0.729458      0.715466 𝓀1 ≻ 𝓀3 ≻ 𝓀2 ≻ 𝓀4 

q-ROF𝑆𝑡DHA 

(proposed) 

0.673583         0.628184          0.64306        0.639046 𝓀1 ≻ 𝓀2 ≻ 𝓀3 ≻ 𝓀4 
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Table 6.11, Ranking order based on different operational parameter of q-ROF𝑆𝑓𝑡  DWA operator 

Operational 

parameter 𝛽 

𝑆𝑐𝑜𝑟𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑠

𝓀1                𝓀2                     𝓀3                     𝓀4            
 

Ranking 

𝛽 = 1 0.722591      0.691494        0.656704        0.645816 𝓀1 ≻ 𝓀2 ≻ 𝓀3 ≻ 𝓀4 

𝛽 = 2 0.763886      0.716344        0.703776        0.7074 𝓀1 ≻ 𝓀2 ≻ 𝓀4 ≻ 𝓀3 

𝛽 = 3 0.791403      0.733061        0.741876        0.752795 𝓀1 ≻ 𝓀4 ≻ 𝓀3 ≻ 𝓀2 

𝛽 = 5 0.820077      0.75353          0.787956        0.798473 𝓀1 ≻ 𝓀4 ≻ 𝓀3 ≻ 𝓀2 

𝛽 = 8 0.837303      0.769509        0.817705        0.824584 𝓀1 ≻ 𝓀4 ≻ 𝓀3 ≻ 𝓀2 

𝛽 = 12 0.846658      0.780173        0.833981        0.838489 𝓀1 ≻ 𝓀4 ≻ 𝓀3 ≻ 𝓀2 

𝛽 = 16 0.851226      0.786025        0.84187          0.845221 𝓀1 ≻ 𝓀4 ≻ 𝓀3 ≻ 𝓀2 

𝛽 = 20 0.853929      0.789728        0.846506        0.849184 𝓀1 ≻ 𝓀4 ≻ 𝓀3 ≻ 𝓀2 

𝛽 = 25 0.856068      0.792719        0.85016          0.852313 𝓀1 ≻ 𝓀4 ≻ 𝓀3 ≻ 𝓀2 

𝛽 = 30 0.857484      0.79496          0.852567        0.854377 𝓀2 ≻ 𝓀4 ≻ 𝓀3 ≻ 𝓀2 

 

 

process. Since intellectual minds are engage in this process, so it needs solid scientific 

knowledge couple with experience and skills in addition to mental maturity. Recently, 

Yager investigated the generalized concept of FS, IFS and PyFS and called it q-ROFS. 

It is observed that the parameter q is the most useful characteristic of this concept which 

has the capability to cover the boundary range that can be required. The input range of 

q-ROFS is more flexible, wider and suitable because when the rung increase, the 

orthopair provides additional space to the boundary constraint. The aim of this chapter 

is to present the notion of q-ROF𝑆𝑓𝑡S based on the Dombi operations. Since Dombi 

operational parameter possess natural flexibility with resilience of variability. The 

behaviour of Dombi operational parameter is very important to express the experts’ 

attitude in decision making. Further we present q-ROF𝑆𝑓𝑡DA aggregation operators 

including q-ROF𝑆𝑓𝑡DWA, q-ROF𝑆𝑓𝑡DOWA and q-ROF𝑆𝑓𝑡DHA operators. The basic 

properties of these operators are presented in detail such as Idempotency, Boundedness, 

Monotonicity, Shift invariance and Homogeneity. By applying develop approach, this 

manuscript contains the technique and algorithm for ℳ𝒞𝒟ℳ. Further a numerical 

example is developed to illustrative the flexibility and applicability of the developed 

operators.  
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Chapter 7 

Orthopair fuzzy soft Dombi geometric aggregation operators 

The aim of this chapter is to present the notion of Dombi operation in q-ROF𝑆𝑓𝑡S. Since 

Dombi operational parameter possess natural flexibility with resilience of variability. 

The behaviour of Dombi operational parameter is very important to express the experts’ 

attitude in 𝒟ℳ. In this chapter, we will present the concept of q-ROF𝑆𝑓𝑡DG 

aggregation operators including q-ROF𝑆𝑓𝑡DWG, q-ROF𝑆𝑓𝑡DOWG and q-

ROF𝑆𝑓𝑡DHG operators. The basic properties of these operators are presented in detail 

such as Idempotency, Boundedness, Monotonicity, Shift invariance and Homogeneity. 

A ℳ𝒞𝒟ℳ technique and algorithm is developed based on above mentioned approach. 

Further a numerical example is developed to illustrative the flexibility and applicability 

of the developed operators. 

7.1.  q-Rung orthopair fuzzy soft set 

The detailed study of PyF𝑆𝑓𝑡Ss, q-ROF𝑆𝑓𝑡Ss and their fundamental operations and 

relations are presented in Sections 4.1 𝑎𝑛𝑑 4.2 of Chapter  4. The score function and 

accuracy function for q-ROF𝑆𝑓𝑡Ss are given in Definitions 6.1.1 and 6.1.2. 

7.2.  Dombi operations on q-rung orthopair fuzzy soft set 
For a detail study of Dombi sum and Dombi product and its basic operations and 

relations are given in Chapter 6 Section 6.2. 

7.3.   q-Rung orthopair fuzzy soft Dombi geometric operators 
In this section, in view of defined Dombi operation laws we will extend Dombi 

operators to q-ROF𝑆𝑓𝑡 environment such as q-ROF𝑆𝑓𝑡WG, q-ROF𝑆𝑓𝑡DOWG and q-

ROF𝑆𝑓𝑡DHG operators and investigate their fundamental properties in details. 

7.3.1. q-Rung orthopair fuzzy soft Dombi weighted geometric 

operators 
 

This subsection is devoted for the study of q-ROF𝑆𝑓𝑡DWG operator and discuss their 

basic properties in details. 
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7.3.1.1. Definition 

Let 𝔍𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗) 𝑓𝑜𝑟 (𝑖 = 1,2,… ,m and 𝑗 = 1, 2,… , n) be the collection of q-

ROF𝑆𝑓𝑡Vs. Suppose 𝑤̿ = (𝑤̿1, 𝑤̿2, … , 𝑤̿𝑚)
𝑇  be the weight vectors for expert 𝓀𝑖 

and 𝑢̿ = (𝑢̿1, 𝑢̿2, … , 𝑢̿𝑛)
𝑇 be the weight vectors for parameters 𝑠𝑗 having the conditions 

that 𝑤̿𝑖 , 𝑢̿𝑗 ∈ [0,1] with ∑ 𝑤̿𝑖
𝑚
𝑖=1 = 1 and ∑ 𝑢̿𝑗

𝑛
𝑗=1 = 1. Then q-ROF𝑆𝑓𝑡DWG operator is 

a mapping denoted and define as: 𝑞 − ROF𝑆𝑡DWG:𝑋
𝑛 → 𝑋, (where 𝑋 represents the 

collection of q-ROF𝑆𝑓𝑡Vs) such that 

𝑞 − ROF𝑆𝑓𝑡DWG(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑚𝑛
) = ⨂𝑗=1

𝑛 (⨂𝑖=1
𝑚 (𝔍𝑠𝑖𝑗

𝑤̿𝑖)
𝑢𝑗
)          (7.1) 

Based on Eq. (7.1) we can obtain the aggregated result for q-ROF𝑆𝑓𝑡DWG operator as 

described in Theorem 7.3.1.2. 

7.3.1.2. Theorem 

Suppose the collection 𝔍𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗) 𝑓𝑜𝑟 (𝑖 = 1,2,… ,𝑚 𝑎𝑛𝑑 𝑗 = 1, 2,… , 𝑛) of q-

ROF𝑆𝑓𝑡Vs. Consider 𝑤̿ = (𝑤̿1, 𝑤̿2, … , 𝑤̿𝑚)
𝑇  be the weight vectors for experts 𝓀𝑖 

and 𝑢̿ = (𝑢̿1, 𝑢̿2, … , 𝑢̿𝑛)
𝑇 be the weight vectors for parameters 𝑠𝑗 having the conditions 

that 𝑤̿𝑖 , 𝑢̿𝑗 ∈ [0,1] with ∑ 𝑤̿𝑖
𝑚
𝑖=1 = 1 and ∑ 𝑢̿𝑗

𝑛
𝑗=1 = 1. Then the aggregated result for q-

ROF𝑆𝑓𝑡DWG operator is stated as: 

𝑞 − ROF𝑆𝑓𝑡DWG(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑚𝑛
) = ⨂𝑗=1

𝑛 (⨂𝑖=1
𝑚 (𝔍𝑠𝑖𝑗

𝑤̿𝑖)
𝑢𝑗
) 

=

(

 
 
 

1

1+{∑ 𝑢𝑗
𝑛
𝑗=1 (∑ 𝑤̿𝑖

𝑚
𝑖=1 (

1−𝜇𝑖𝑗

𝜇𝑖𝑗
)

𝛽

)}

1
𝛽

,
√
1 −

1

1+{∑ 𝑢𝑗
𝑛
𝑗=1 (∑ 𝑤̿𝑖

𝑚
𝑖=1 (

𝜓𝑖𝑗
𝑞

1−𝜓𝑖𝑗
𝑞)

𝛽

)}

1
𝛽

𝑞

)

 
 
 
                  (7.2)  

Proof: The required proof can be obtained by using mathematical induction. 

From Dombi operational laws, we have 
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𝔍𝑠11⨂𝔍𝑠12 =

(

  
 

1

1+{(
1−𝜇11

𝑞

𝜇11
𝑞 )

𝛽

+(
1−𝜇12
𝜇12

)
𝛽
}

1
𝛽

,
√
1 −

1

1+{(
𝜓11

𝑞

1−𝜓11
𝑞)

𝛽

+(
𝜓12

𝑞

1−𝜓12
𝑞)

𝛽

}

1
𝛽

𝑞

)

  
 
        𝑎𝑛𝑑  

            𝜌𝔍𝑠 =

(

 
 
 

1

1+{𝜌(
1−𝜇𝔍𝑠
𝜇𝔍𝑠

)

𝛽

}

1
𝛽

,
√
1 −

1

1+{𝜌(
𝜓𝔍𝑠

𝑞

1−𝜓𝔍𝑠
𝑞)

𝛽

}

1
𝛽

𝑞

)

 
 
 

  

Now first we show that Eq. 7.2, holds for  𝑚 = 2 𝑎𝑛𝑑 𝑛 = 2, 

 𝑞 − ROF𝑆𝑓𝑡DWG(𝔍𝑠11 , 𝔍𝑠12) = ⨂𝑗=1
2 (⨂𝑖=1

2 (𝔍𝑠𝑖𝑗
𝑤̿𝑖)

𝑢𝑗
) 

= (𝔍𝑠11
𝑤̿1  ⨂ 𝔍𝑠21

𝑤̿2 )
𝑢1
 ⨂ (𝔍𝑠12

𝑤̿1  ⨂ 𝔍𝑠22
𝑤̿2 )

𝑢2
 

=

(

  
 

1

1+{𝑤̿1(
1−𝜇11
𝜇11

)
𝛽
+𝑤̿2(

1−𝜇21
𝜇21

)
𝛽
}

1
𝛽

,
√
1 −

1

1+{𝑤̿1(
𝜓11

𝑞

1−𝜓11
𝑞)
𝛽

+𝑤̿2(
𝜓21

𝑞

1−𝜓21
𝑞)
𝛽

}

1
𝛽

𝑞

)

  
 

𝑢1

⨂  

(

  
 

1

1+{𝑤̿1(
1−𝜇12
𝜇12

)
𝛽
+𝑤̿2(

1−𝜇22
𝜇22

)
𝛽
}

1
𝛽

,
√
1 −

1

1+{𝑤̿1(
𝜓12

𝑞

1−𝜓12
𝑞)
𝛽

+𝑤̿2(
𝜓22

𝑞

1−𝜓22
𝑞)
𝛽

}

1
𝛽

𝑞

)

  
 

𝑢2

  

=

(

  
 

1

1+{∑ 𝑤̿𝑖
2
𝑖=1 (

1−𝜇𝑖1
𝜇𝑖1

)
𝛽

}

1
𝛽

,
√
1 −

1

1+{∑ 𝑤̿𝑖
2
𝑖=1 (

𝜓𝑖1
𝑞

1−𝜓𝑖1
𝑞)

𝛽

}

1
𝛽

𝑞

)

  
 

𝑢1

⨂  

(

  
 

1

1+{∑ 𝑤̿𝑖
𝑚
𝑖=1 (

1−𝜇𝑖2
𝜇𝑖2

)
𝛽

}

1
𝛽

,
√
1 −

1

1+{∑ 𝑤̿𝑖
2
𝑖=1 (

𝜓𝑖2
𝑞

1−𝜓𝑖2
𝑞)

𝛽

}

1
𝛽

𝑞

)

  
 

𝑢2
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=

(

 
 
 
 

1

1+{𝑢1(∑ 𝑤̿𝑖
2
𝑖=1 (

1−𝜇𝑖1
𝜇𝑖1

)
𝛽

)+𝑢2(∑ 𝑤̿𝑖
𝑚
𝑖=1 (

1−𝜇𝑖2
𝜇𝑖2

)
𝛽

)}

1
𝛽

,

√
1 −

1

1+{𝑢1(∑ 𝑤̿𝑖
2
𝑖=1 (

𝜓𝑖1
𝑞

1−𝜓𝑖1
𝑞)

𝛽

)+𝑢2(∑ 𝑤̿𝑖
2
𝑖=1 (

𝜓𝑖2
𝑞

1−𝜓𝑖2
𝑞)

𝛽

)}

1
𝛽

𝑞

)

 
 
 
 

  

=

(

 
 
 

1

1+{∑ 𝑢𝑗
2
𝑗=1 (∑ 𝑤̿𝑖

2
𝑖=1 (

1−𝜇𝑖𝑗

𝜇𝑖𝑗
)

𝛽

)}

1
𝛽

,
√
1 −

1

1+{∑ 𝑢𝑗
2
𝑗=1 (∑ 𝑤̿𝑖

2
𝑖=1 (

𝜓𝑖𝑗
𝑞

1−𝜓𝑖𝑗
𝑞)

𝛽

)}

1
𝛽

𝑞  

)

 
 
 

  

Hence the result is true for 𝑚 = 2 𝑎𝑛𝑑 𝑛 = 2. 

Further, let Eq. 7.2, is true for 𝑚 = 𝑘1 𝑎𝑛𝑑 𝑛 = 𝑘2, 

𝑞 − ROF𝑆𝑓𝑡DWG(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑘1𝑘2) = ⨂𝑗=1
𝑘2 (⨂𝑖=1

𝑘1 (𝔍𝑠𝑖𝑗
𝑤̿𝑖)

𝑢𝑗
) 

=

(

 
 
 

1

1+{∑ 𝑢𝑗
𝑘2
𝑗=1

(∑ 𝑤̿𝑖
𝑘1
𝑖=1

(
1−𝜇𝑖𝑗

𝜇𝑖𝑗
)

𝛽

)}

1
𝛽

,
√
1 −

1

1+{∑ 𝑢𝑗
𝑘2
𝑗=1

(∑ 𝑤̿𝑖
𝑘1
𝑖=1

(
𝜓𝑖𝑗

𝑞

1−𝜓𝑖𝑗
𝑞)

𝛽

)}

1
𝛽

𝑞  

)

 
 
 

  

Next to show that Eq. 7.2, is true for 𝑚 = 𝑘1 + 1 𝑎𝑛𝑑 𝑛 = 𝑘2 + 1 

𝑞 − ROF𝑆𝑓𝑡DWG(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑘1𝑘2
, 𝔍𝑠(𝑘1+1)(𝑘2+1)

)

= ⨂𝑗=1
𝑘2 (⨂𝑖=1

𝑘1 (𝔍𝑠𝑖𝑗
𝑤̿𝑖)

𝑢𝑗
)⨂(𝔍𝑠𝑖𝑗

𝑤̿𝑘1+1)
𝑢𝑘2+1

 

=

(

 
 
 

1

1+{∑ 𝑢𝑗
𝑘2
𝑗=1

(∑ 𝑤̿𝑖
𝑘1
𝑖=1

(
1−𝜇𝑖𝑗

𝜇𝑖𝑗
)

𝛽

)}

1
𝛽

,
√
1 −

1

1+{∑ 𝑢𝑗
𝑘2
𝑗=1

(∑ 𝑤̿𝑖
𝑘1
𝑖=1

(
𝜓𝑖𝑗

𝑞

1−𝜓𝑖𝑗
𝑞)

𝛽

)}

1
𝛽

𝑞  

)

 
 
 

  

⨂

(

 
 
 

1

1+{𝑢𝑘2+1(𝑤̿𝑘1+1
(
1−𝜇𝑖𝑗

𝜇𝑖𝑗
)

𝛽

)}

1
𝛽

,
√
1 −

1

1+{𝑢𝑘2+1(𝑤̿𝑘1+1
(

𝜓𝑖𝑗
𝑞

1−𝜓𝑖𝑗
𝑞)

𝛽

)}

1
𝛽

𝑞  

)
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=

(

 
 
 
 
 

1

1+{∑ 𝑢𝑗
𝑘2
𝑗=1

(∑ 𝑤̿𝑖
𝑘1
𝑖=1

(
1−𝜇𝑖𝑗

𝜇𝑖𝑗
)

𝛽

)+𝑢𝑘2+1(𝑤̿𝑘1+1
(
1−𝜇𝑖𝑗

𝜇𝑖𝑗
)

𝛽

)}

1
𝛽

 ,

√
1 −

1

1+{∑ 𝑢𝑗
𝑘2
𝑗=1

(∑ 𝑤̿𝑖
𝑘1
𝑖=1

(
𝜓𝑖𝑗

𝑞

1−𝜓𝑖𝑗
𝑞)

𝛽

)+𝑢𝑘2+1(𝑤̿𝑘1+1
(

𝜓𝑖𝑗
𝑞

1−𝜓𝑖𝑗
𝑞)

𝛽

)}

1
𝛽

𝑞

)

 
 
 
 
 

   

=

(

 
 
 

1

1+{∑ 𝑢𝑗
𝑘2+1
𝑗=1

(∑ 𝑤̿𝑖
𝑘1+1
𝑖=1

(
1−𝜇𝑖𝑗

𝜇𝑖𝑗
)

𝛽

)}

1
𝛽

,
√
1 −

1

1+{∑ 𝑢𝑗
𝑘2+1
𝑗=1

(∑ 𝑤̿𝑖
𝑘1+1
𝑖=1

(
𝜓𝑖𝑗

𝑞

1−𝜓𝑖𝑗
𝑞)

𝛽

)}

1
𝛽

𝑞

)

 
 
 

  

Hence that Eq. 7.2, is true for 𝑚 = 𝑘1 + 1 𝑎𝑛𝑑 𝑛 = 𝑘2 + 1. Therefore, by process of 

mathematical induction, we conclude that Eq. 7.2, is true for all 𝑚, 𝑛 ≥ 1. 

Further to verify that the aggregated result obtained from 𝑞 −

ROF𝑆𝑓𝑡DWG(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑘1𝑘2) is again a 𝑞 − ROF𝑆𝑓𝑡V. 

Let 

𝜇 =
1

1+{∑ 𝑢𝑗
𝑘2+1
𝑗=1

(∑ 𝑤̿𝑖
𝑘1+1
𝑖=1

(
1−𝜇𝑖𝑗

𝜇𝑖𝑗
)

𝛽

)}

1
𝛽

   𝑎𝑛𝑑   𝜆 =
√
1 −

1

1+{∑ 𝑢𝑗
𝑘2+1
𝑗=1

(∑ 𝑤̿𝑖
𝑘1+1
𝑖=1

(
𝜓𝑖𝑗

𝑞

1−𝜓𝑖𝑗
𝑞)

𝛽

)}

1
𝛽

𝑞   

As 

0 ≤ 𝜇𝑖𝑗 ≤ 1 ⇒ 0 ≤
1

1 +
1 − 𝜇𝑖𝑗
𝜇𝑖𝑗

≤ 1 ⇒ 0 ≤
1

1 + {∑ 𝑢̿𝑗
𝑘2+1
𝑗=1 (∑ 𝑤̿𝑖

𝑘1+1
𝑖=1 (

1 − 𝜇𝑖𝑗
𝜇𝑖𝑗

)
𝛽

)}

1
𝛽

≤ 1 ⇒ 0 ≤ 𝜇 ≤ 1 

Similarly 

0 ≤ 𝜓𝑖𝑗 ≤ 1 ⇒ 0 ≤ 1 −
1

1+
𝜓𝑖𝑗

𝑞

1−𝜓𝑖𝑗
𝑞

≤ 1 ⇒ 0 ≤

√
1 −

1

1+{∑ 𝑢𝑗
𝑘2+1
𝑗=1

(∑ 𝑤̿𝑖
𝑘1+1
𝑖=1

(
𝜓𝑖𝑗

𝑞

1−𝜓𝑖𝑗
𝑞)

𝛽

)}

1
𝛽

𝑞 ≤ 1  

⇒ 0 ≤ 𝜆 ≤ 1 
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As 

𝜇𝑞 + 𝜆𝑞 ≤ 1 ⇒ 𝜆𝑞 ≤ 1 − 𝜇𝑞  

⇒

(

 
 
 

√
1 −

1

1+{∑ 𝑢𝑗
𝑘2+1
𝑗=1

(∑ 𝑤̿𝑖
𝑘1+1
𝑖=1

(
𝜓𝑖𝑗

𝑞

1−𝜓𝑖𝑗
𝑞)

𝛽

)}

1
𝛽

𝑞

)

 
 
 

𝑞

≤ 1 −

(

 
 1

1+{∑ 𝑢𝑗
𝑘2+1
𝑗=1

(∑ 𝑤̿𝑖
𝑘1+1
𝑖=1

(
1−𝜇𝑖𝑗

𝜇𝑖𝑗
)

𝛽

)}

1
𝛽

)

 
 

𝑞

  

Next 

0 ≤ 𝜇𝑞 + 𝜆𝑞 ⇒

(

 
 1

1+{∑ 𝑢𝑗
𝑘2+1
𝑗=1

(∑ 𝑤̿𝑖
𝑘1+1
𝑖=1

(
1−𝜇𝑖𝑗

𝜇𝑖𝑗
)

𝛽

)}

1
𝛽

)

 
 

𝑞

+

(

 
 
 

√
1 −

1

1+{∑ 𝑢𝑗
𝑘2+1
𝑗=1

(∑ 𝑤̿𝑖
𝑘1+1
𝑖=1

(
𝜓𝑖𝑗

𝑞

1−𝜓𝑖𝑗
𝑞)

𝛽

)}

1
𝛽

𝑞

)

 
 
 

𝑞

  

≤

(

 
 1

1+{∑ 𝑢𝑗
𝑘2+1
𝑗=1

(∑ 𝑤̿𝑖
𝑘1+1
𝑖=1

(
1−𝜇𝑖𝑗

𝜇𝑖𝑗
)

𝛽

)}

1
𝛽

)

 
 

𝑞

+ 1 −

(

 
 1

1+{∑ 𝑢𝑗
𝑘2+1
𝑗=1

(∑ 𝑤̿𝑖
𝑘1+1
𝑖=1

(
1−𝜇𝑖𝑗

𝜇𝑖𝑗
)

𝛽

)}

1
𝛽

)

 
 

𝑞

  

⇒ 0 ≤ 𝜇𝑞 + 𝜆𝑞 ≤ 1 

Therefore, it is verified that the aggregated result obtained from 𝑞 −

ROF𝑆𝑓𝑡DWG(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑘1𝑘2) is again a 𝑞 − ROF𝑆𝑓𝑡V. 

7.3.1.3. Example 

Suppose 𝑇 = {𝓀1, 𝓀2, 𝓀3, 𝓀4} be the set of expert Professors who want to judge the 

ability of a student 𝑍 under the set of parameters 𝔼 = {𝑠1, 𝑠2, 𝑠3}, where 𝑠𝑗(𝑗 = 1,2,3) 

stands for 𝑠1 = 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑎𝑏𝑙𝑒, 𝑠2 = 𝑐𝑜𝑢𝑟𝑒𝑠 𝑐𝑜𝑚𝑚𝑎𝑛𝑑 𝑎𝑛𝑑 𝑠3 = 𝑝𝑢𝑛𝑐𝑡𝑢𝑎𝑙. The 

experts provides their estimated values in the form of q-ROF𝑆𝑓𝑡Vs which are given in 
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Table 7.1. Let 𝓊 = (0.26,0.3,0.23,0.21)𝑇  be the weight vectors for expert 𝓀𝑖, 𝓏 =

(0.35,0.31,0.34)𝑇 be the weight vectors for parameters 𝑠𝑗 and operational parameter 

𝛽 = 2 for 𝑞 = 3. Now to calculate the aggregated result by applying Eq. 7.2, we have 

𝑞 − ROF𝑆𝑡DWG(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑚𝑛
) = ⨂𝑗=1

3 (⨂𝑖=1
4 (𝔍𝑠𝑖𝑗

𝑤̿𝑖)
𝑢𝑗
) 

=

(

 
 
 

1

1+{∑ 𝑢𝑗
3
𝑗=1 (∑ 𝑤̿𝑖

4
𝑖=1 (

1−𝜇𝑖𝑗

𝜇𝑖𝑗
)

2

)}

1
2

,
√
1 −

1

1+{∑ 𝑢𝑗
3
𝑖=1 (∑ 𝑤̿𝑖

4
𝑖=1 (

𝜓𝑖𝑗
3

1−𝜓𝑖𝑗
3)

2

)}

1
2

3

)

 
 
 

  

= (0.754181,0.449179) 

Therefore, 

𝑞 − ROF𝑆𝑓𝑡DWG(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠43) = (0.754181, 0.449179). 

Table 7.1, Tabular represent of  q-ROF𝑆𝑓𝑡S (𝔍, 𝔼) for 𝛽 = 2 𝑎𝑛𝑑 𝑞 = 3 

𝑇  𝑠1 𝑠2 𝑠3 

𝓀1 (0.9, 0.3) (0.85, 0.4) (0.7, 0.2) 

𝓀2 (0.85, 0.6) (0.75, 0.25) (0.6, 0.3) 

𝓀3 (0.98, 0.38) (0.92, 0.3) (0.8, 0.15) 

𝓀4 (0.7, 0.4) (0.95, 0.45) (0.82, 0.32) 

 

 

7.3.1.4. Remarks  

(a) If we consider that the value of parameter 𝑞 = 1 is fixed, then the proposed 𝑞 −

ROF𝑆𝑓𝑡DWG operator reduced to IF𝑆𝑓𝑡DWG operator. 

(b) If we consider that the value of parameter 𝑞 = 2 is fixed, then the proposed 𝑞 −

ROF𝑆𝑓𝑡DWG operator reduced to PyF𝑆𝑓𝑡DWG operator. 

(c) If the set contain only parameter that is 𝑠1 (means 𝑚 = 1), in this case the 

proposed 𝑞 − ROF𝑆𝑓𝑡DWG operator reduced to 𝑞 − ROFDWG operator. 
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Thus from the analysis of Remark 7.3.1.4, it is clear that IF𝑆𝑓𝑡DWG, PyF𝑆𝑓𝑡DWG and 

𝑞 − ROFDWG operators are the special cases of the developed 𝑞 − ROF𝑆𝑓𝑡DWG 

operator. 

Based on Theorem 7.3.1.2, some properties of the 𝑞 − ROF𝑆𝑓𝑡DWG operators are 

investigated which are described below: 

7.3.1.5. Theorem 

Suppose the collection 𝔍𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗) 𝑓𝑜𝑟 (𝑖 = 1,2,… ,𝑚 𝑎𝑛𝑑 𝑗 = 1, 2,… , 𝑛) of q-

ROF𝑆𝑓𝑡Vs. Consider 𝑤̿ = (𝑤̿1, 𝑤̿2, … , 𝑤̿𝑚)
𝑇  be the weight vectors for experts 𝓀𝑖 

and 𝑢̿ = (𝑢̿1, 𝑢̿2, … , 𝑢̿𝑛)
𝑇 be the weight vectors for parameters 𝑠𝑗 having the restriction 

that 𝑤̿𝑖 , 𝑢̿𝑛 ∈ [0,1] with ∑ 𝑤̿𝑖
𝑚
𝑖=1 = 1 and ∑ 𝑢̿𝑛

𝑚
𝑖=1 = 1. Then the following properties 

are holds for q-ROF𝑆𝑓𝑡DWG operator: 

i: (Idempotency) Let 𝔍𝑠𝑖𝑗 = ℰ𝑠 𝑓𝑜𝑟 𝑎𝑙𝑙 (𝑖 = 1,2,… ,𝑚 𝑎𝑛𝑑 𝑗 = 1,2, … , 𝑛), 

where ℰ𝑠 = (𝑏, 𝒹). Then 

𝑞 − ROF𝑆𝑓𝑡DWG(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑚𝑛
) = ℰ𝑠  . 

𝒊𝒊: (Boundedness) Let 𝔍𝑠𝑖𝑗
− = (min

𝑗
min
𝑖
(𝜇𝑖𝑗),max

𝑗
max
𝑖
(𝜓𝑖𝑗)) and 

𝔍𝑠𝑖𝑗
+ = (max

𝑗
max
𝑖
(𝜇𝑖𝑗),min

𝑗
min
𝑖
(𝜓𝑖𝑗)). Then 

𝔍𝑠𝑖𝑗
− ≤ 𝑞 − ROF𝑆𝑓𝑡DWG(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑚𝑛

) ≤ 𝔍𝑠𝑖𝑗
+  . 

𝒊𝒊𝒊: (Monotonicity) Let another collection ℰ𝑠𝑖𝑗 = (𝑏𝑖𝑗 , d𝑖𝑗) 𝑓𝑜𝑟 (i = 1,2,… ,m and j =

1, 2, … , n) of q-ROF𝑆𝑓𝑡Vs such that 𝜇𝑖𝑗 ≤ 𝑏𝑖𝑗  𝑎𝑛𝑑 𝜓𝑖𝑗 ≥ d𝑖𝑗 . Then 

𝑞 − ROF𝑆𝑓𝑡DWG(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑚𝑛
) ≤ 𝑞 − ROF𝑆𝑓𝑡DWG(ℰ𝑠11 , ℰ𝑠12 , … , ℰ𝑠𝑚𝑛

). 

𝒊𝒗: (Shift Invariance) Let ℰ𝑠 = (𝑏ℰ𝑠 , dℰ𝑠) be a q-ROF𝑆𝑓𝑡V. Then 

𝑞 − ROF𝑆𝑓𝑡DWG(𝔍𝑠11⨂ ℰ𝑠, 𝔍𝑠12⨂ ℰ𝑠 , … , 𝔍𝑠𝑚𝑛
⨂ ℰ𝑠)

= 𝑞 − ROF𝑆𝑓𝑡DWG(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑚𝑛
) ⨂ ℰ𝑠. 

𝒗: (Homogeneity) Let 𝜌 > 0 be any real number. Then 
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𝑞 − ROF𝑆𝑓𝑡DWG(𝜌𝔍𝑠11 , 𝜌𝔍𝑠12 , … , 𝜌𝔍𝑠𝑚𝑛
)

= 𝜌 𝑞 − ROF𝑆𝑓𝑡DWG(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑚𝑛
). 

Proof: i: (Idempotency) Since 𝔍𝑠𝑖𝑗 = ℰ𝑠 𝑓𝑜𝑟 𝑎𝑙𝑙 (𝑖 = 1,2,… ,𝑚 𝑎𝑛𝑑 𝑗 = 1,2, … , 𝑛), 

where ℰ𝑠 = (𝑏, 𝒹). Then by Theorem 7.3.1.2, we have 

𝑞 − ROF𝑆𝑓𝑡DWG(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑚𝑛
) =

(

 
 
 

1

1+{∑ 𝑢𝑗
𝑛
𝑗=1 (∑ 𝑤̿𝑖

𝑚
𝑖=1 (

1−𝜇𝑖𝑗

𝜇𝑖𝑗
)

𝛽

)}

1
𝛽

,
√
1 −

1

1+{∑ 𝑢𝑗
𝑛
𝑗=1 (∑ 𝑤̿𝑖

𝑚
𝑖=1 (

𝜓𝑖𝑗
𝑞

1−𝜓𝑖𝑗
𝑞)

𝛽

)}

1
𝛽

𝑞

)

 
 
 

  

=

(

 
 
 

1

1+{∑ 𝑢𝑗
𝑛
𝑗=1 (∑ 𝑤̿𝑖

𝑚
𝑖=1 (

1−𝑏𝑖𝑗

𝑏𝑖𝑗
)

𝛽

)}

1
𝛽

,
√
1 −

1

1+{∑ 𝑢𝑗
𝑛
𝑗=1 (∑ 𝑤̿𝑖

𝑚
𝑖=1 (

𝑑𝑖𝑗
𝑞

1−𝑑𝑖𝑗
𝑞)

𝛽

)}

1
𝛽

𝑞

)

 
 
 

  

=

(

 
 
 

1

1+{(
1−𝑏𝑖𝑗

𝑏𝑖𝑗
)

𝛽

}

1
𝛽

,
√
1 −

1

1+{(
𝑑𝑖𝑗

𝑞

1−𝑑𝑖𝑗
𝑞)

𝛽

}

1
𝛽

𝑞

)

 
 
 

  

= (
1

1+(
1−𝑏𝑖𝑗

𝑏𝑖𝑗
)

,
√
1 −

1

1+(
𝑑𝑖𝑗

𝑞

1−𝑑𝑖𝑗
𝑞)

𝑞 )  

= (𝑏, 𝒹) = ℰ𝑠  

Hence, the proof is complete. 

𝒊𝒊: (Boundedness) Consider for each 𝑖 = 1,2,… ,𝑚 𝑎𝑛𝑑 𝑗 = 1,2,… , 𝑛, we have  

min
𝑗
min
𝑖
(𝜇𝑖𝑗) ≤ 𝜇𝑖𝑗 ≤ max

𝑗
max
𝑖
(𝜇𝑖𝑗) 

⇒ 1 +
1 − min

𝑗
min
𝑖
(𝜇𝑖𝑗)

min
𝑗
min
𝑖
(𝜇𝑖𝑗)

≥ 1 +
1 − 𝜇𝑖𝑗
𝜇𝑖𝑗

≥ 1 +
1− max

𝑗
max
𝑖
(𝜇𝑖𝑗)

max
𝑗
max
𝑖
(𝜇𝑖𝑗)
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⇒
1

1 +
1 − min

𝑗
min
𝑖
(𝜇𝑖𝑗)

min
𝑗
min
𝑖
(𝜇𝑖𝑗)

≤
1

1 +
1 − 𝜇𝑖𝑗
𝜇𝑖𝑗

≤
1

1 +
1 − max

𝑗
max
𝑖
(𝜇𝑖𝑗)

max
𝑗
max
𝑖
(𝜇𝑖𝑗)

 

⇒
1

1+[∑ 𝑢𝑗
𝑛
𝑗=1 {∑ 𝑤̿𝑖

𝑚
𝑖=1 (

1−min
𝑗

min
𝑖
(𝜇𝑖𝑗)

min
𝑗

min
𝑖
(𝜇𝑖𝑗)

)

𝛽

}]

1
𝛽

≤
1

1+[∑ 𝑢𝑗
𝑛
𝑗=1 {∑ 𝑤̿𝑖

𝑚
𝑖=1 (

1−𝜇𝑖𝑗

𝜇𝑖𝑗
)

𝛽

}]

1
𝛽

≤

1

1+[∑ 𝑢𝑗
𝑛
𝑗=1 {∑ 𝑤̿𝑖

𝑚
𝑖=1 (

1−max
𝑗

max
𝑖

(𝜇𝑖𝑗)

max
𝑗

max
𝑖

(𝜇𝑖𝑗)
)

𝛽

}]

1
𝛽

  

⇒
1

1+(
1−min

𝑗
min
𝑖
(𝜇𝑖𝑗)

min
𝑗

min
𝑖
(𝜇𝑖𝑗)

)

≤
1

1+[∑ 𝑢𝑗
𝑛
𝑗=1 {∑ 𝑤̿𝑖

𝑚
𝑖=1 (

1−𝜇𝑖𝑗

𝜇𝑖𝑗
)

𝛽

}]

1
𝛽

≤
1

1+(
1−max

𝑗
max
𝑖

(𝜇𝑖𝑗)

max
𝑗

max
𝑖

(𝜇𝑖𝑗)
)

  

Similarly we can show for nonmembership 

√
1 −

1

1+
min
𝑗

min
𝑖
(𝜓

𝑖𝑗
𝑞
)

1−min
𝑗

min
𝑖
(𝜓

𝑖𝑗
𝑞
)

𝑞 ≥

√

1 −
1

1+{∑ 𝑢𝑗
𝑛
𝑗=1 (∑ 𝑤̿𝑖

𝑚
𝑖=1 (

𝜓
𝑖𝑗
𝑞

1−𝜓
𝑖𝑗
𝑞 )

𝛽

)}

1
𝛽

𝑞 ≥
√
1 −

1

1+
max
𝑗

max
𝑖

(𝜓
𝑖𝑗
𝑞
)

1−max
𝑗

max
𝑖

(𝜓
𝑖𝑗
𝑞
)

𝑞    

Therefore, from above analysis we have 

𝔍𝑠𝑖𝑗
− ≤ 𝑞 − ROF𝑆𝑓𝑡DWG(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑚𝑛

) ≤ 𝔍𝑠𝑖𝑗
+  . 

𝒊𝒊𝒊: (Monotonicity) Since 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 = 1,2,… ,𝑚 𝑎𝑛𝑑 𝑗 = 1, 2,… , 𝑛, we have 𝜇𝑖𝑗 ≤

𝑏𝑖𝑗  𝑎𝑛𝑑 𝜓𝑖𝑗 ≥ d𝑖𝑗.  

As 

𝜇𝑖𝑗 ≤ 𝑏𝑖𝑗 ⇒ 1 +
1 − 𝜇𝑖𝑗
𝜇𝑖𝑗

≥ 1 +
1 − 𝑏𝑖𝑗
𝑏𝑖𝑗

 

⇒
1

1 +
1 − 𝜇𝑖𝑗
𝜇𝑖𝑗

≤
1

1 +
1 − 𝑏𝑖𝑗
𝑏𝑖𝑗

 

⇒
1

1 + {∑ 𝑢̿𝑗
𝑛
𝑗=1 (∑ 𝑤̿𝑖

𝑚
𝑖=1 (

1 − 𝜇𝑖𝑗
𝜇𝑖𝑗

)
𝛽

)}

1
𝛽

≤
1

1 + {∑ 𝑢̿𝑗
𝑛
𝑗=1 (∑ 𝑤̿𝑖

𝑚
𝑖=1 (

1 − 𝑏𝑖𝑗
𝑏𝑖𝑗

)
𝛽

)}

1
𝛽
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Similarly, we can show for 𝒩ℳ𝒢 

⇒

√

1 −
1

1+{∑ 𝑢𝑗
𝑛
𝑗=1 (∑ 𝑤̿𝑖

𝑚
𝑖=1 (

𝜓
𝑖𝑗
𝑞

1−𝜓
𝑖𝑗
𝑞 )

𝛽

)}

1
𝛽

𝑞 ≥

√

1 −
1

1+{∑ 𝑢𝑗
𝑛
𝑗=1 (∑ 𝑤̿𝑖

𝑚
𝑖=1 (

𝑑
𝑖𝑗
𝑞

1−𝑑
𝑖𝑗
𝑞 )

𝛽

)}

1
𝛽

𝑞   

Hence from above equations we have 

𝑞 − ROF𝑆𝑓𝑡DWG(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑚𝑛
) ≤ 𝑞 − ROF𝑆𝑓𝑡DWG(ℰ𝑠11 , ℰ𝑠12 , … , ℰ𝑠𝑚𝑛

). 

𝒊𝒗: (Shift Invariance) Since ℰ𝑠 = (𝑏, 𝑑) 𝑎𝑛𝑑 𝔍𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗) (𝑖 =

1,2,… ,𝑚 𝑎𝑛𝑑 𝑗 = 1, 2,… , 𝑛) are q-ROF𝑆𝑓𝑡Vs. Then 

𝔍𝑠11⨂ ℰ𝑠 =

(

 
 
 

1

1+{(
1−𝜇11
𝜇11

)
𝛽
+(

1−𝑏

𝑏
)
𝛽
}

1
𝛽

,
√
1 −

1

1+{(
𝜓11
𝑞

1−𝜓11
𝑞 )

𝛽

+(
𝑑𝑞

1−𝑑𝑞
)
𝛽

}

1
𝛽

𝑞  

)

 
 
 

  

Now consider 

𝑞 − ROF𝑆𝑓𝑡DWG(𝔍𝑠11⨂ ℰ𝑠, 𝔍𝑠12⨂ ℰ𝑠, … , 𝔍𝑠𝑚𝑛
⨂ ℰ𝑠) =

(

 
 
 
 
 

1

1+{∑ 𝑢𝑗
𝑛
𝑗=1 (∑ 𝑤̿𝑖

𝑚
𝑖=1 (

1−𝜇𝑖𝑗

𝜇𝑖𝑗
)

𝛽

)+∑ 𝑢𝑗
𝑛
𝑗=1 (∑ 𝑤̿𝑖

𝑚
𝑖=1 (

1−𝑏

𝑏
)
𝛽
)}

1
𝛽

 ,

√

1 −
1

1+{∑ 𝑢𝑗
𝑛
𝑗=1 (∑ 𝑤̿𝑖

𝑚
𝑖=1 (

𝜓
𝑖𝑗
𝑞

1−𝜓
𝑖𝑗
𝑞 )

𝛽

)+∑ 𝑢𝑗
𝑛
𝑗=1 (∑ 𝑤̿𝑖

𝑚
𝑖=1 (

𝑑𝑞

1−𝑑𝑞
)
𝛽

)}

1
𝛽

𝑞

)

 
 
 
 
 

  

=

(

 
 
 

1

1+{∑ 𝑢𝑗
𝑛
𝑗=1 (∑ 𝑤̿𝑖

𝑚
𝑖=1 (

1−𝜇𝑖𝑗

𝜇𝑖𝑗
)

𝛽

)+(
1−𝑏

𝑏
)
𝛽
}

1
𝛽

 ,

√

1 −
1

1+{∑ 𝑢𝑗
𝑛
𝑗=1 (∑ 𝑤̿𝑖

𝑚
𝑖=1 (

𝜓
𝑖𝑗
𝑞

1−𝜓
𝑖𝑗
𝑞 )

𝛽

)+(
𝑑𝑞

1−𝑑𝑞
)
𝛽

}

1
𝛽

𝑞

)

 
 
 

  

= 𝑞 − ROF𝑆𝑓𝑡DWG(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑚𝑛
) ⨂ ℰ𝑠 

Therefore, the proof is completed.  

𝒗: (Homogeneity) Let 𝜌 > 0 be any real number and  𝔍𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗) (𝑖 =

1,2,… ,𝑚 𝑎𝑛𝑑 𝑗 = 1, 2,… , 𝑛) are q-ROF𝑆𝑓𝑡Vs. Then  
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𝔍𝑠𝑖𝑗
𝜌
=

(

 
 
 

1

1+{𝜌(
1−𝜇𝑖𝑗

𝜇𝑖𝑗
)

𝛽

}

1
𝛽

,

√

1 −
1

1+{𝜌(
𝜓
𝑖𝑗
𝑞

1−𝜓
𝑖𝑗
𝑞 )

𝛽

}

1
𝛽

𝑞

)

 
 
 

  

Further consider 

𝑞 − ROF𝑆𝑓𝑡DWG(𝜌𝔍𝑠11 , 𝜌𝔍𝑠12 , … , 𝜌𝔍𝑠𝑚𝑛
) =

(

 
 
 

1

1+{∑ 𝑢𝑛
𝑛
𝑗=1 (∑ 𝜌𝑤̿𝑖

𝑚
𝑖=1 (

1−𝜇𝑖𝑗

𝜇𝑖𝑗
)

𝛽

)}

1
𝛽

,

√

1 −
1

1+{∑ 𝑢𝑗
𝑛
𝑗=1 (∑ 𝜌𝑤̿𝑖

𝑚
𝑖=1 (

𝜓
𝑖𝑗
𝑞

1−𝜓
𝑖𝑗
𝑞 )

𝛽

)}

1
𝛽

𝑞  

)

 
 
 

  

=

(

 
 
 

1

1+{𝜌[∑ 𝑢𝑗
𝑛
𝑗=1 (∑ 𝑤̿𝑖

𝑚
𝑖=1 (

1−𝜇𝑖𝑗

𝜇𝑖𝑗
)

𝛽

)]}

1
𝛽

,

√

1 −
1

1+{𝜌[∑ 𝑢𝑗
𝑛
𝑗=1 (∑ 𝑤̿𝑖

𝑚
𝑖=1 (

𝜓
𝑖𝑗
𝑞

1−𝜓
𝑖𝑗
𝑞 )

𝛽

)]}

1
𝛽

𝑞

)

 
 
 

  

= 𝜌 𝑞 − ROF𝑆𝑓𝑡DWG(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑚𝑛
) 

Therefore, the proof is completed. 

7.3.2. q-Rung orthopair fuzzy soft Dombi ordered weighted geometric 

operator 
In this subsection, in view of defined Dombi operation laws we will present the q-

ROF𝑆𝑓𝑡DOWG operator and investigate their fundamental characteristics in details. 

7.3.2.1. Definition 

Let 𝔍𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗) 𝑓𝑜𝑟 (i = 1,2,… ,m and j = 1, 2,… , n) be the collection of q-

ROF𝑆𝑡Vs. Suppose 𝑤̿ = (𝑤̿1, 𝑤̿2, … , 𝑤̿𝑚)
𝑇  be the weight vectors for expert 𝓀𝑖 and 𝑢̿ =

(𝑢̿1, 𝑢̿2, … , 𝑢̿𝑛)
𝑇 be the weight vectors for parameters 𝑠𝑗 having the conditions 

that 𝑤̿𝑖 , 𝑢̿𝑗 ∈ [0,1] with ∑ 𝑤̿𝑖
𝑚
𝑖=1 = 1 and ∑ 𝑢̿𝑗

𝑛
𝑗=1 = 1. Then q-ROF𝑆𝑡DOWG operator 

is a mapping denoted and define as: 𝑞 − ROF𝑆𝑓𝑡DOWG:𝑋
𝑛 → 𝑋 such that 

𝑞 − ROF𝑆𝑓𝑡DOWG(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑚𝑛
) = ⨂𝑗=1

𝑛 (⨂𝑖=1
𝑚 (𝔍𝑠𝛿𝑖𝑗

𝑤̿𝑖 )
𝑢𝑗
),          (7.3) 
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where 𝔍𝑠𝛿𝑖𝑗 = (𝜇𝛿𝑖𝑗 , 𝜓𝛿𝑖𝑗) is the permutation of 𝑖𝑡ℎ row and 𝑗𝑡ℎ  largest elements of the 

collections from 𝑖 × 𝑗 𝑞 − ROF𝑆𝑡Ns 𝔍𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗) 𝑓𝑜𝑟 (𝑖 = 1,2, … ,𝑚 𝑎𝑛𝑑 𝑗 =

1, 2, … , 𝑛).  

Based on Eq. (7.3) we can obtain the aggregated result for q-ROF𝑆𝑓𝑡DOWG operator 

as described in Theorem 7.3.2.2. 

7.3.2.2. Theorem 

Suppose the collection 𝔍𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗) 𝑓𝑜𝑟 (𝑖 = 1,2,… ,𝑚 𝑎𝑛𝑑 𝑗 = 1, 2,… , 𝑛) of q-

ROF𝑆𝑓𝑡Vs. Consider 𝑤̿ = (𝑤̿1, 𝑤̿2, … , 𝑤̿𝑚)
𝑇  be the weight vectors for experts 𝓀𝑖 

and 𝑢̿ = (𝑢̿1, 𝑢̿2, … , 𝑢̿𝑛)
𝑇 be the weight vectors for parameters 𝑠𝑗 having the conditions 

that 𝑤̿𝑖 , 𝑢̿𝑗 ∈ [0,1] with ∑ 𝑤̿𝑖
𝑚
𝑖=1 = 1 and ∑ 𝑢̿𝑗

𝑛
𝑗=1 = 1. Then the aggregated result for q-

ROF𝑆𝑓𝑡DOWG operator is stated as: 

𝑞 − ROF𝑆𝑓𝑡DOWG(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑚𝑛
) = ⨂𝑗=1

𝑛 (⨂𝑖=1
𝑚 (𝔍𝑠𝛿𝑖𝑗

𝑤̿𝑖 )
𝑢𝑗
) 

=

(

 
 
 

1

1+{∑ 𝑢𝑗
𝑛
𝑗=1 (∑ 𝑤̿𝑖

𝑚
𝑖=1 (

1−𝜇𝛿𝑖𝑗

𝜇𝛿𝑖𝑗
)

𝛽

)}

1
𝛽

,
√
1 −

1

1+{∑ 𝑢𝑗
𝑛
𝑗=1 (∑ 𝑤̿𝑖

𝑚
𝑖=1 (

𝜓𝛿𝑖𝑗
𝑞

1−𝜓𝛿𝑖𝑗
𝑞)

𝛽

)}

1
𝛽

𝑞

)

 
 
 
,                    (7.4)  

where 𝔍𝑠𝛿𝑖𝑗 = (𝜇𝛿𝑖𝑗 , 𝜓𝛿𝑖𝑗) is the permutation of 𝑖𝑡ℎ row and 𝑗𝑡ℎ  largest elements of the 

collections from 𝑖 × 𝑗 𝑞 − ROF𝑆𝑓𝑡Ns 𝔍𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗) 𝑓𝑜𝑟 (𝑖 = 1,2,… ,𝑚 𝑎𝑛𝑑 𝑗 =

1, 2, … , 𝑛). 

Proof: Proof is straightforward like Theorem 7.3.1.2. 

7.3.2.3. Example 

Let 𝔍𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗) 𝑓𝑜𝑟 (𝑖 = 1,… ,4 and 𝑗 = 1, 2,3) be the collection of 𝑞 −

ROF𝑆𝑓𝑡Vs as mention in Table 7.1 of Example 7.3.1.3. Now by utilizing the Definition 

7.1.2.2, the tabular description of 𝔍𝑠𝛿𝑖𝑗 = (𝜇𝛿𝑖𝑗 , 𝜓𝛿𝑖𝑗) is given in Table 7.2. 
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𝑞 − ROF𝑆𝑓𝑡DOWG(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠43) = ⨂𝑗=1
3 (⨂𝑖=1

4 (𝔍𝑠𝛿𝑖𝑗
𝑤̿𝑖 )

𝑢𝑗
)  =

(

 
 
 

1

1+{∑ 𝑢𝑗
3
𝑗=1 (∑ 𝑤̿𝑖

4
𝑖=1 (

1−𝜇𝛿𝑖𝑗

𝜇𝛿𝑖𝑗
)

2

)}

1
2

,
√
1 −

1

1+{∑ 𝑢𝑗
3
𝑗=1 (∑ 𝑤̿𝑖

4
𝑖=1 (

𝜓𝛿𝑖𝑗
3

1−𝜓𝛿𝑖𝑗
3)

2

)}

1
2

3

)

 
 
 

  

Therefore 𝑞 − ROF𝑆𝑓𝑡DOWG(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠43) = (0.775171, 0.436559). 

 

 

Table 7.2, Tabular represent of  q-ROF𝑆𝑓𝑡S 𝔍𝑠𝛿𝑖𝑗 = (𝜇𝛿𝑖𝑗 , 𝜓𝛿𝑖𝑗) for 𝛽 = 2 𝑎𝑛𝑑 𝑞 = 3 

𝑋  𝑠𝛿1  𝑠𝛿2 𝑠𝛿3 

𝓀1 (0.98, 0.38) (0.95, 0.45) (0.82, 0.32) 

𝓀2 (0.9, 0.3) (0.92, 0.3) (0.8, 0.15) 

𝓀3 (0.85, 0.6) (0.86, 0.4) (0.7, 0.2) 

𝓀4 (0.7, 0.4) (0.75, 0.25) (0.6, 0.3) 

 

 

7.3.2.4. Remarks 

(a) If we consider that the value of parameter 𝑞 = 1 is fixed, then the proposed 𝑞 −

ROF𝑆𝑡DOWG operator reduced to IF𝑆𝑓𝑡DOWG operator. 

(b) If we consider that the value of parameter 𝑞 = 2 is fixed, then the proposed 𝑞 −

ROF𝑆𝑓𝑡DOWG operator reduced to PyF𝑆𝑓𝑡DOWG operator. 

(c) If the set contain only parameter that is 𝑠1 (means 𝑚 = 1), in this case the 

proposed 𝑞 − ROF𝑆𝑓𝑡DOWG operator reduced to 𝑞 − ROFDOWG operator. 

Thus from the analysis of Remark 7.3.2.4, it is clear that IF𝑆𝑓𝑡DOWG, PyF𝑆𝑓𝑡DOWG 

and 𝑞 − ROFDOWG operators are the special cases of the developed 𝑞 − ROF𝑆𝑓𝑡DOWG 

operator. 

Based on the analysis of Theorem 7.3.2.2, some properties of the 𝑞 − ROF𝑆𝑓𝑡DOWG 

operators are investigated which are described below: 
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7.3.2.5. Theorem 

Suppose the collection 𝔍𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗) 𝑓𝑜𝑟 (𝑖 = 1,2,… ,𝑚 𝑎𝑛𝑑 𝑗 = 1, 2,… , 𝑛) of q-

ROF𝑆𝑡Vs. Consider 𝑤̿ = (𝑤̿1, 𝑤̿2, … , 𝑤̿𝑚)
𝑇  be the weight vectors for experts 𝓀𝑖 

and 𝑢̿ = (𝑢̿1, 𝑢̿2, … , 𝑢̿𝑛)
𝑇 be the weight vectors for parameters 𝑠𝑗 having the restriction 

that 𝑤̿𝑖 , 𝑢̿𝑗 ∈ [0,1] with ∑ 𝑤̿𝑖
𝑚
𝑖=1 = 1 and ∑ 𝑢̿𝑗

𝑛
𝑗=1 = 1. Then the following properties 

are holds for q-ROF𝑆𝑓𝑡DOWG operator: 

i: (Idempotency) Let 𝔍𝑠𝑖𝑗 = ℰ𝑠 𝑓𝑜𝑟 𝑎𝑙𝑙 (𝑖 = 1,2,… ,𝑚 𝑎𝑛𝑑 𝑗 = 1,2, … , 𝑛), 

where ℰ𝑠 = (𝑏, 𝒹). Then 

𝑞 − ROF𝑆𝑓𝑡DOWG(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑚𝑛
) = ℰ𝑠 . 

𝒊𝒊: (Boundedness) Let 𝔍𝑠𝑖𝑗
− = (min

𝑗
min
𝑖
(𝜇𝑖𝑗),max

𝑗
max
𝑖
(𝜓𝑖𝑗)) and 

𝔍𝑠𝑖𝑗
+ = (max

𝑗
max
𝑖
(𝜇𝑖𝑗),min

𝑗
min
𝑖
(𝜓𝑖𝑗)). Then 

𝔍𝑠𝑖𝑗
− ≤ 𝑞 − ROF𝑆𝑓𝑡DOWG(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑚𝑛

) ≤ 𝔍𝑠𝑖𝑗
+  . 

𝒊𝒊𝒊: (Monotonicity) Let another collection ℰ𝑠𝑖𝑗 = (𝑏𝑖𝑗 , d𝑖𝑗) 𝑓𝑜𝑟 (i = 1,2,… ,m and j =

1, 2, … , n) of q-ROF𝑆𝑡Vs such that 𝜇𝑖𝑗 ≤ 𝑏𝑖𝑗  𝑎𝑛𝑑 𝜓𝑖𝑗 ≥ d𝑖𝑗. Then 

𝑞 − ROF𝑆𝑓𝑡DOWG(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑚𝑛
) ≤ 𝑞 − ROF𝑆𝑓𝑡DOWG(ℰ𝑠11 , ℰ𝑠12 , … , ℰ𝑠𝑚𝑛

). 

𝒊𝒗: (Shift Invariance) Let ℰ𝑠 = (𝑏, 𝑑) be a q-ROF𝑆𝑓𝑡V. Then 

𝑞 − ROF𝑆𝑓𝑡DOWG(𝔍𝑠11⨂ ℰ𝑠, 𝔍𝑠12⨂ ℰ𝑠, … , 𝔍𝑠𝑚𝑛
⨂ ℰ𝑠)

= 𝑞 − ROF𝑆𝑓𝑡DOWG(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑚𝑛
) ⨂ ℰ𝑠. 

𝒗: (Homogeneity) Let 𝜌 > 0 be any real number. Then 

𝑞 − ROF𝑆𝑓𝑡DOWA(𝜌𝔍𝑠11 , 𝜌𝔍𝑠12 , … , 𝜌𝔍𝑠𝑚𝑛
)

= 𝜌 𝑞 − ROF𝑆𝑓𝑡DOWA(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑚𝑛
). 

Proof: Proofs are directly follows from Theorem 7.3.2.5. 

7.3.3. q-Rung orthopair fuzzy soft Dombi hybrid geometric operators 
In this subsection, in view of defined Dombi operation laws we will present the study 

q-ROF𝑆𝑓𝑡DHG operator and investigate their fundamental characteristics with details. 
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The basic advantage of q-ROF𝑆𝑓𝑡DHG operator is that, on the same it measures both 

the weight of q-ROF𝑆𝑓𝑡Vs and the ordered position of q-ROF𝑆𝑓𝑡Vs under the opinions 

of same experts. 

7.3.3.1. Definition 

Let 𝔍𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗) 𝑓𝑜𝑟 (𝑖 = 1,2,… ,𝑚 𝑎𝑛𝑑 𝑗 = 1, 2,… , 𝑛) be the collection of q-

ROF𝑆𝑓𝑡Vs with 𝓋 = (𝓋1, 𝓋2, … , 𝓋𝑚)
𝑇 and 𝑟 = (𝑟1, 𝑟2, … , 𝑟𝑛)

𝑇 be the weight vector 

of  𝔍𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗) such that 𝓋𝑖, 𝑟𝑗 ∈ [0,1] with ∑ 𝓋𝑖
𝑚
𝑖=1 = 1 and ∑ 𝑟𝑗

𝑛
𝑗=1 = 1. 

Suppose 𝑤̿ = (𝑤̿1, 𝑤̿2, … , 𝑤̿𝑚)
𝑇  and 𝑢̿ = (𝑢̿1, 𝑢̿2, … , 𝑢̿𝑛)

𝑇 be the aggregation 

associated weight vectors for expert 𝓀𝑖 and parameters 𝑠𝑗 having the conditions 

that 𝑤̿𝑖 , 𝑢̿𝑗 ∈ [0,1] with ∑ 𝑤̿𝑖
𝑚
𝑖=1 = 1 and ∑ 𝑢̿𝑗

𝑛
𝑗=1 = 1. Then q-ROF𝑆𝑓𝑡DHG operator is 

a mapping denoted and define as: 𝑞 − ROF𝑆𝑓𝑡DHG:𝑋
𝑛 → 𝑋 such that 

𝑞 − ROF𝑆𝑓𝑡DHG(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑚𝑛
)

= ⨂𝑗=1
𝑛 (⨂𝑖=1

𝑚 (𝔍̃𝑠𝛿𝑖𝑗
𝑤̿𝑖 )

𝑢𝑗
),                                (7.5) 

where 𝔍̃𝑠𝛿𝑖𝑗 = (𝔍𝑠𝑖𝑗)
𝑛𝓋𝑖𝑟𝑗

 is the permutation of 𝑖𝑡ℎ row and 𝑗𝑡ℎ  column largest 

elements of the collections from 𝑞 − ROF𝑆𝑡Vs 𝔍𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗) and 𝑛 is called the 

balancing coefficient.  

Based on Eq. (7.5), we can obtain the aggregated result for q-ROF𝑆𝑓𝑡DHG operator as 

described in Theorem 7.3.3.2. 

7.3.3.2. Theorem 

Suppose the collection 𝔍𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗) 𝑓𝑜𝑟 (𝑖 = 1,2,… ,𝑚 𝑎𝑛𝑑 𝑗 = 1, 2,… , 𝑛) of q-

ROF𝑆𝑓𝑡Vs. Consider 𝑤̿ = (𝑤̿1, 𝑤̿2, … , 𝑤̿𝑚)
𝑇  and 𝑢̿ = (𝑢̿1, 𝑢̿2, … , 𝑢̿𝑛)

𝑇 be the 

aggregation associated weight vectors for experts 𝓀𝑖  and parameters 𝑠𝑗 having the 

conditions that 𝑤̿𝑖 , 𝑢̿𝑗 ∈ [0,1] with ∑ 𝑤̿𝑖
𝑚
𝑖=1 = 1 and ∑ 𝑢̿𝑗

𝑛
𝑗=1 = 1. Then the aggregated 

result for q-ROF𝑆𝑓𝑡DHG operator is stated as: 

𝑞 − ROF𝑆𝑓𝑡DHG(𝔍𝛿𝑠11 , 𝔍𝛿𝑠12 , … , 𝔍𝛿𝑠𝑚𝑛
) = ⨂𝑗=1

𝑛 (⨂𝑖=1
𝑚 (𝔍̃𝑠𝛿𝑖𝑗

𝑤̿𝑖 )
𝑢𝑗
) 
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=

(

 
 
 

1

1+{∑ 𝑢𝑗
𝑛
𝑗=1 (∑ 𝑤̿𝑖

𝑚
𝑖=1 (

1−𝜇̃𝛿𝑖𝑗

𝜇̃𝛿𝑖𝑗
)

𝛽

)}

1
𝛽

,

√

1 −
1

1+{∑ 𝑢𝑗
𝑛
𝑗=1 (∑ 𝑤̿𝑖

𝑚
𝑖=1 (

𝜓̃𝛿𝑖𝑗
𝑞

1−𝜓̃𝛿𝑖𝑗
𝑞)

𝛽

)}

1
𝛽

𝑞

)

 
 
 
,       (7.6)  

where 𝔍̃𝑠𝛿𝑖𝑗 = 𝑛𝓋𝑖𝑟𝑗𝔍𝑠𝑖𝑗  is the permutation of 𝑖𝑡ℎ row and 𝑗𝑡ℎ  column largest elements 

of the collections from  𝑞 − ROF𝑆𝑓𝑡Vs 𝔍𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗) with 𝓋 = (𝓋1, 𝓋2, … ,𝓋𝑚)
𝑇 

and 𝑟 = (𝑟1, 𝑟2, … , 𝑟𝑛)
𝑇 be the weight vector and 𝑛 is a balancing coefficient. 

Proof: Proof is straightforward like Theorem 7.3.1.2. 

7.3.3.3. Example 

Let 𝔍𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗) 𝑓𝑜𝑟 (𝑖 = 1,… ,4 and 𝑗 = 1, 2,3) be the collection of 𝑞 −

ROF𝑆𝑓𝑡Vs as mention in Table 7.1 of Example 7.3.1.3. Let 𝓋 =

(0.25, 0.28, 0.29,0.18)𝑇   𝑎𝑛𝑑  𝑟 = (0.36,0.29, 0.35 )𝑇  be the weight vector of expert 

𝓀𝑖 and parameter 𝑠𝑗, and their corresponding aggregation associated weight vectors 

𝑤̿ = (0.26,0.3,0.23,0.21)𝑇  for expert 𝓀𝑖 and 𝑢̿ = (0.35,0.31,0.34)𝑇 for parameter 𝑠𝑗. 

Now by utilizing the operation law mention in Eq. 7.7 and related results are given in 

Table 7.3. Furthermore the score results by using Definitions 7.1.2.2 are given in 

Table 7.4. The tabular description for 𝔍̃𝑠𝛿𝑖𝑗 = 𝑛𝓋𝑖𝑟𝑗𝔍𝑠𝑖𝑗 is given in Table 7.5. 

𝜌𝔍𝑠 =

(

 
 
 

1

1+{𝜌(
1−𝜇𝔍𝑠
𝜇𝔍𝑠

)

𝛽

}

1
𝛽

,
√
1 −

1

1+{𝜌(
𝜓𝔍𝑠

𝑞

1−𝜓𝔍𝑠
𝑞)

𝛽

}

1
𝛽

𝑞

)

 
 
 
                                            (7.7)  

𝑞 − ROF𝑆𝑓𝑡DHG(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠43) = ⨂𝑗=1
3 (⨂𝑖=1

4 (𝔍̃𝑠𝛿𝑖𝑗
𝑤̿𝑖 )

𝑢𝑗
)  =

(

 
 
 

1

1+{∑ 𝑢𝑗
3
𝑗=1 (∑ 𝑤̿𝑖

4
𝑖=1 (

1−𝜇̃𝛿𝑖𝑗

𝜇̃𝛿𝑖𝑗
)

2

)}

1
2

,

√

1 −
1

1+{∑ 𝑢𝑗
3
𝑗=1 (∑ 𝑤̿𝑖

4
𝑖=1 (

𝜓̃𝛿𝑖𝑗
3

1−𝜓̃𝛿𝑖𝑗
3)

2

)}

1
2

3

)

 
 
 

  

Therefore,  𝑞 − ROF𝑆𝑓𝑡DHG(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠43) = (0.701933, 0.561573). 
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Table 7.3, Tabular represent of  q-ROF𝑆𝑓𝑡S 𝔍̃𝑠𝛿𝑖𝑗 = 𝑛𝓋𝑖𝑟𝑗𝔍𝑠𝑖𝑗  for 𝛽 = 2 𝑎𝑛𝑑 𝑞 = 3 

𝑇  𝑠𝛿1  𝑠𝛿2 𝑠𝛿3 

𝓀1 (0.85153, 0.41667) (0.7856, 0.55317) (0.61795, 0.29705) 

𝓀2 (0.79509, 0.70258) (0.66473, 0.36904) (0.52791, 0.40636) 

𝓀3 (0.0.9697, 0.48677) (0.87553, 0.42493) (0.73722, 0.21689) 

𝓀4 (0.59438, 0.567) (0.90169, 0.64165) (0.7253, 0.48385) 

 

 

Table 7.4, Tabular description of score values for 𝔍̃𝑠𝛿𝑖𝑗 = 𝑛𝓋𝑖𝑟𝑗𝔍𝑠𝑖𝑗 for 𝛽 = 2 𝑎𝑛𝑑 𝑞 = 3 

𝑇  𝑠𝛿1  𝑠𝛿2 𝑠𝛿3 

𝓀1 (0.772555) (0.657789) (0.604883) 

𝓀2 (0.57791) (0.621733) (0.54001) 

𝓀3 (0.898249) (0.797202) (0.695232) 

𝓀4 (0.41385) (0.734469) (0.634138) 

 

 

Table 7.5, New ordered for  q-ROF𝑆𝑓𝑡S 𝔍̃𝑠𝛿𝑖𝑗 = 𝑛𝓋𝑖𝑟𝑗𝔍𝑠𝑖𝑗 for 𝛽 = 2 𝑎𝑛𝑑 𝑞 = 3 

𝑇  𝑠𝛿1 𝑠𝛿2 𝑠𝛿3 

𝓀1 (0.9697, 0.48677) (0.87553, 0.42493) (0.73722, 0.21689) 

𝓀2 (0.85153, 0.41667) (0.90169, 0.64165) (0.7253, 0.48385) 

𝓀3 (0.79509, 0.70258) (0.7856, 0.55317) (0.61795, 0.29705) 

𝓀4 (0.59438, 0.567) (0.66473, 0.36904) (0.52791, 0.40636) 

 

 

7.3.3.4. Remarks 

(a) If we consider that the value of parameter 𝑞 = 1 is fixed, then the proposed 𝑞 −

ROF𝑆𝑓𝑡DHG operator reduced to IF𝑆𝑓𝑡DHG operator 

(b) If we consider that the value of parameter 𝑞 = 2 is fixed, then the proposed 𝑞 −

ROF𝑆𝑓𝑡DHG operator reduced to PyF𝑆𝑓𝑡DHG operator. 
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(c) If the set contain only parameter that is 𝑠1 (means 𝑚 = 1), in this case the 

proposed 𝑞 − ROF𝑆𝑓𝑡DHG operator reduced to 𝑞 − ROFDHG operator. 

Thus from the analysis of Remark 7.3.3.4, it is clear that IF𝑆𝑓𝑡DHG, PyF𝑆𝑓𝑡DHG and 

𝑞 − ROFDHG operators are the special cases of the developed 𝑞 − ROF𝑆𝑓𝑡DHG 

operator. 

Based on the analysis of Theorem 7.3.3.2, some properties of the 𝑞 − ROF𝑆𝑓𝑡DHG 

operators are investigated which are described below: 

7.3.3.5. Theorem 

Suppose the collection 𝔍𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗) 𝑓𝑜𝑟 (𝑖 = 1,2,… ,𝑚 𝑎𝑛𝑑 𝑗 = 1, 2,… , 𝑛) of q-

ROF𝑆𝑓𝑡Vs with 𝓋 = (𝓋1, 𝓋2, … , 𝓋𝑚)
𝑇 and 𝑟 = (𝑟1, 𝑟2, … , 𝑟𝑛)

𝑇 be the weight vector 

of  𝔍𝑠𝑖𝑗 = (𝜇𝑖𝑗 , 𝜓𝑖𝑗) such that 𝓋𝑖, 𝑟𝑗 ∈ [0,1] with ∑ 𝓋𝑖
𝑚
𝑖=1 = 1 and ∑ 𝑟𝑗

𝑛
𝑗=1 = 1. 

Suppose 𝑤̿ = (𝑤̿1, 𝑤̿2, … , 𝑤̿𝑚)
𝑇  and 𝑢̿ = (𝑢̿1, 𝑢̿2, … , 𝑢̿𝑛)

𝑇 be the aggregation 

associated weight vectors for expert 𝓀𝑖 and parameters 𝑠𝑗 having the conditions 

that 𝑤̿𝑖 , 𝑢̿𝑗 ∈ [0,1] with ∑ 𝑤̿𝑖
𝑚
𝑖=1 = 1 and ∑ 𝑢̿𝑗

𝑛
𝑗=1 = 1. Then the following properties 

are holds for q-ROF𝑆𝑓𝑡DHG operator: 

i: (Idempotency) Let 𝔍𝑠𝑖𝑗 = ℰ𝑠 𝑓𝑜𝑟 𝑎𝑙𝑙 (𝑖 = 1,2,… ,𝑚 𝑎𝑛𝑑 𝑗 = 1,2, … , 𝑛), 

where ℰ𝑠 = (𝑏, 𝒹). Then 

𝑞 − ROF𝑆𝑓𝑡DHG(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑚𝑛
) = ℰ𝑠 . 

𝒊𝒊: (Boundedness) Let 𝔍𝑠𝑖𝑗
− = (min

𝑗
min
𝑖
(𝜇𝑖𝑗),max

𝑗
max
𝑖
(𝜓𝑖𝑗)) and 

  𝔍𝑠𝑖𝑗
+ = (max

𝑗
max
𝑖
(𝜇𝑖𝑗),min

𝑗
min
𝑖
(𝜓𝑖𝑗)). Then 

𝔍𝑠𝑖𝑗
− ≤ 𝑞 − ROF𝑆𝑓𝑡DHG(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑚𝑛

) ≤ 𝔍𝑠𝑖𝑗
+  . 

𝒊𝒊𝒊: (Monotonicity) Let another collection ℰ𝑠𝑖𝑗 = (𝑏𝑖𝑗 , d𝑖𝑗) 𝑓𝑜𝑟 (i = 1,2,… ,m and j =

1, 2, … , n) of q-ROF𝑆𝑓𝑡Vs such that 𝜇𝑖𝑗 ≤ 𝑏𝑖𝑗  𝑎𝑛𝑑 𝜓𝑖𝑗 ≥ d𝑖𝑗 . Then 

𝑞 − ROF𝑆𝑓𝑡DHG(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑚𝑛
) ≤ 𝑞 − ROF𝑆𝑓𝑡DHG(ℰ𝑠11 , ℰ𝑠12 , … , ℰ𝑠𝑚𝑛

). 

𝒊𝒗: (Shift Invariance) Let ℰ𝑠 = (𝑏, 𝑑) be a q-ROF𝑆𝑡V. Then 
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𝑞 − ROF𝑆𝑓𝑡DHG(𝔍𝑠11⨂ ℰ𝑠, 𝔍𝑠12⨂ ℰ𝑠 , … , 𝔍𝑠𝑚𝑛
⨂ ℰ𝑠)

= 𝑞 − ROF𝑆𝑓𝑡DHG(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑚𝑛
) ⨂ ℰ𝑠. 

𝒗: (Homogeneity) Let 𝜌 > 0 be any real number. Then 

𝑞 − ROF𝑆𝑓𝑡DHG(𝜌𝔍𝑠11 , 𝜌𝔍𝑠12 , … , 𝜌𝔍𝑠𝑚𝑛
) = 𝜌 𝑞 − ROF𝑆𝑓𝑡DHG(𝔍𝑠11 , 𝔍𝑠12 , … , 𝔍𝑠𝑚𝑛

). 

Proof: Proofs are easy and directly follows Theorem 7.3.1.5. 

7.4.   An approach to 𝓜𝓒𝓓𝓜 under Dombi operations using q-rung 

orthopair fuzzy soft information 
This section describes a ℳ𝒞𝒟ℳ techniques by using the applicability of developed 

operators for handling ℳ𝒞𝒟ℳ problems. Here criteria and parameter weights are real 

numbers and criteria values are q-ROFVs. The techniques of mathematical descriptions 

and their general steps wise algorithm under q-ROF environment is given as follows. 

Suppose 𝑇 = {𝓀1, 𝓀2, 𝓀3, … , 𝓀𝑘} be the collection of alternatives in which the most 

desirable alternative is going to evaluated by the senior decision makers 𝑑 =

{𝑑1, 𝑑2, 𝑑3, … , 𝑑𝑚} against their corresponding parameters 𝔼 = {𝑠1, 𝑠2, 𝑠3, … , 𝑠𝑛}. Let 

𝑤̿ = (𝑤̿1, 𝑤̿2, … , 𝑤̿𝑚)
𝑇  and 𝑢̿ = (𝑢̿1, 𝑢̿2, … , 𝑢̿𝑛)

𝑇 be the aggregation associated weight 

vectors for expert 𝓀𝑖 and parameters 𝑠𝑗 having the conditions that 𝑤̿𝑖 , 𝑢̿𝑛 ∈ [0,1] 

with ∑ 𝑤̿𝑖
𝑚
𝑖=1 = 1 and ∑ 𝑢̿𝑗

𝑛
𝑗=1 = 1. The senior decision makers gives their assessment 

for best alternative 𝓀𝑘 against to parameter 𝑠𝑛 in the form of q-ROF𝑆𝑓𝑡Vs 𝔍𝑠𝑖𝑗 =

(𝜇𝑖𝑗 , 𝜓𝑖𝑗) such that0 ≤ 𝜇𝑖𝑗
𝑞
+ 𝜓𝑖𝑗

𝑞
≤ 1 𝑓𝑜𝑟 𝑞 ≥ 1. The decision makers describe their 

collective evaluated information in the form of q-ROF𝑆𝑓𝑡 decision matrix 𝕄 =

[𝔍𝑠𝑖𝑗]𝑚×𝑛. Using the preferences values of senior experts the aggregated result 𝜉𝑖 for 

alternative 𝓀𝑖  (𝑖 = 1,2,… , 𝑘) is 𝜉𝑖 = (𝜇𝑖 , 𝜓𝑖) by applying the q-ROF𝑆𝑓𝑡DW geometric 

operations which is given in Eqs. 7.2, 7.4 and 7.6. Finally to get the most desirable 

alternative apply the score function on aggregated result 𝜉𝑖 and rank them to get the 

best option.  

7.4.1.  Algorithm 
The step wise decision algorithm for the developed operators are summarized as 

follows: 

Step i: Extract the collective evaluated information of senior experts in the form of q-

ROF𝑆𝑓𝑡 decision matrix 𝕄 = [𝔍𝑠𝑖𝑗]𝑚×𝑛  for each alternative against their parameter. 
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 𝕄 = [

(𝜇11, 𝜓11) (𝜇12, 𝜓12) ⋯ (𝜇1𝑛 , 𝜓1𝑛)

(𝜇21, 𝜓21) (𝜇22, 𝜓22) ⋯ (𝜇2𝑛 , 𝜓2𝑛)
⋮ ⋮ ⋱ ⋮

(𝜇𝑚1, 𝜓𝑚1) (𝜇𝑚2, 𝜓𝑚2) ⋯ (𝜇𝑚𝑛 , 𝜓𝑚𝑛)

] 

Step ii: Using the preferences values of senior experts, aggregate the q-ROF𝑆𝑓𝑡 𝔍𝑠𝑖𝑗 for 

alternative 𝓀𝑖  (𝑖 = 1,2,… , 𝑘) into collective decision matrix 𝜉𝑖 = (𝜇𝑖, 𝜓𝑖) by applying 

the developed q-ROF𝑆𝑓𝑡D averaging and q-ROF𝑆𝑓𝑡D geometric operations. 

Step iii: Applying the definition of score function determine the score values of 𝜉𝑖 for 

each object 𝓀𝑖 𝑓𝑜𝑟 𝑖 = (1,2,… , 𝑘). 

Step iv: Finally rank the obtained results and arranged them in a specific ordered to get 

the most desirable option from 𝓀𝑖. 

7.5.   Numerical example 
In ordered to demonstrate the applicability and validity of the proposed method, a 

decision making process has been illustrated with the Constructional engineering 

projects (CEP) adopted from [92]. 

Suppose a particular example about the four potential CEP (alternatives) 𝑇 =

{𝓀1, 𝓀2, 𝓀3, 𝓀4} and the committee of expert engineers 𝑑 = {𝑑1, 𝑑2, 𝑑3, 𝑑4, 𝑑5} whose 

weight vector is 𝑤̿ = (0.24,0.26,0.23,0.15,0.12)𝑇  will give their assessment for the 

project against some parameter 𝔼 = {𝑠1, 𝑠2, 𝑠3, 𝑠4} and weight vector 𝑢̿ =

(0.27,0.22,0.23,0.28)𝑇, where 𝑠1 = the construction work environment, 𝑠2 = the 

construction site safety protection measure, 𝑠3 = the safety production responsibility 

system, 𝑠4 = the safety management ability of the engineering project. The expert 

engineers 𝑑𝑖(𝑖 = 1,… ,5) provides their assessment for each project against their 

parameter in the form of q-ROFVs. Following steps followed for finding the most 

desirable CEP by applying the developed approach. 

By applying q-ROF𝐒𝐭DWG operator 

Step i: The five expert engineers 𝑑𝑖 will evaluate the construction of four CEP in terms 

of q-ROFVs, parameters and their rating results are given in Tables 7.6 − 7.9 

respectively. 
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Step ii: Applying the preferences values of senior engineers, the aggregated result for 

each alternative 𝓀𝑖 (𝑖 = 1,… ,4) by applying the developed q-ROF𝑆𝑡DWG operator 

for  𝑞 = 3 𝑎𝑛𝑑 𝛽 = 2 are gives as: 

𝜉1 = (0.613069,0.222324),   𝜉2 = (0.607699, 0.252647), 

 𝜉3 = (0.513969,0.257883),   𝜉3 = (0.474117, 0.214605) 

 Step iii: Applying the definition of score function and determine the score values of  𝜉𝑖 

for each object 𝓀𝑖 𝑓𝑜𝑟 𝑖 = (1,… ,4). 

 𝒮𝑐(𝜉1) = 0.609718,   𝒮𝑐(𝜉2) = 0.604148,   𝒮𝑐(𝜉3) = 0.559311,   𝒮𝑐(𝜉4)

= 0.548346  

Step iv: Finally rank the obtained results and arranged them in a specific ordered to get 

the most desirable option from 𝓀𝑖. 

𝓀1 > 𝓀2 > 𝓀4 > 𝓀3 

From the ranking result, it is clear that 𝓀1 is the most desirable and profitable CEP 

among all. 

By applying q-ROF𝐒𝐭DOWG operator 

Step i: Same as above. 

Step ii: Applying the preferences values of senior engineers, the aggregated result for 

each alternative 𝓀𝑖 (𝑖 = 1,… ,4) by applying the developed q-ROF𝑆𝑡DOWG operator 

for  𝑞 = 3 𝑎𝑛𝑑 𝛽 = 2 are gives as: 

𝜉1 = (0.64151,0.216409), 𝜉2 = (0.638415, 0.252054), 

𝜉3 = (0.548416,0.267736), 𝜉4 = (0.501656, 0.217831) 

Step iii: Applying the definition of score function and determine the score values of  𝜉𝑖 

for each object 𝓀𝑖 𝑓𝑜𝑟 𝑖 = (1,… ,4). 

𝒮𝑐(𝜉1) = 0.626935, 𝒮𝑐(𝜉2) = 0.622094, 𝒮𝑐(𝜉3) = 0.572875, 𝒮𝑐(𝜉4) =

0.557955  

Step iv: Finally rank the obtained results and arranged them in a specific ordered to get 

the most desirable option from 𝓀𝑖. 

𝓀1 > 𝓀2 > 𝓀3 > 𝓀4 
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From the ranking result, it is clear that 𝓀1 is the most desirable and profitable CEP 

among all. 

By applying q-ROF𝐒𝐭DHG operator 

Step i: Same as above. 

Step ii: Applying the preferences values of senior engineers, the aggregated result for 

each alternative 𝓀𝑖 (𝑖 = 1,… ,4) by applying the developed q-ROF𝑆𝑡DHG operator 

for  𝑞 = 3 𝑎𝑛𝑑 𝛽 = 2. Let 𝓋 = (0.22,0.16,0.2,0.24,0.18)𝑇 and 𝑟 =

(0.32, 0.29,0.18,0.21 )𝑇  be the weight vector of expert 𝓀𝑖 and parameter 𝑠𝑗. Let 𝑤̿ =

(0.24,0.26,0.23,0.15, 0.12)𝑇  and 𝑢̿ = (0.27,0.22,0.23,0.28)𝑇 be the corresponding 

aggregation associated weight vector for expert 𝓀𝑖 and parameter 𝑠𝑗 for 𝑞 = 3 and 𝛽 =

2. Then 

𝜉1 = (0.531966,0.352165), 𝜉2 = (0.536842, 0.392825), 

𝜉3 = (0.418437,0.394779),          𝜉4 = (0.399859, 0.349697) 

Step iii: Applying the definition of score function and determine the score values of  𝜉𝑖 

for each object 𝓀𝑖 𝑓𝑜𝑟 𝑖 = (1,… ,4). 

𝒮𝑐(𝜉1) = 0.553432, 𝒮𝑐(𝜉2) = 0.54705, 𝒮𝑐(𝜉3) = 0.505869,   𝒮𝑐(𝜉4) = 0.510584  

Step iv: Finally rank the obtained results and arranged them in a specific ordered to get 

the most desirable option from 𝓀𝑖. 

𝓀1 > 𝓀2 > 𝓀4 > 𝓀3 

From the ranking result, it is clear that 𝓀1 is the most profitable CEP among all. 

Therefore, from the analysis of illustrative example, it is evident that the ranking order 

of the alternatives are slightly different but the ranking concerning the most suitable 

alternative is identical that is 𝓀1 for overall introduced operators. 

7.5.1. Comparative analysis 
To present the efficiency and applicability of the proposed method with some existing 

methods, a comparative study has been made based on different aggregation operators 

(see [5, 30, 68, 69, 71, 75]) under IF, PyF and q-ROF environment. For collective 

information different parameters of q-ROF𝑆𝑓𝑡Vs are aggregated by utilizing weighted 

geometric operator against to their weight vector 𝑢̿ = (0.27,0.22,0.23,0.28)𝑇, to obtain 
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Table 7.6. q-ROF𝑆𝑓𝑡  matrix for CEP 𝓀1 

 𝑠1 𝑠2 𝑠3 𝑠4 

𝑑1 (0.8,0.2) (0.9,0.1) (0.76,0.13) (0.71,0.23) 

𝑑2 (0.7,0.15) (0.6,0.2) (0.8,0.18) (0.9,0.05) 

𝑑3 (0.5,0.2) (0.81,0.14) (0.4,0.1) (0.65,0.32) 

𝑑4 (0.72,0.23) (0.75,0.13) (0.55,0.22) (0.74,0.17) 

𝑑5 (0.65,0.25) (0.5,0.12) (0.66,0.23) (0.45,0.05) 

 

 

Table 7.7. q-ROF𝑆𝑓𝑡  matrix for CEP 𝓀2 

 𝑠1 𝑠2 𝑠3 𝑠4 

𝑑1 (0.6,0.13) (0.85,0.14) (0.8,0.18) (0.81,0.16) 

𝑑2 (0.73,0.25) (0.74,0.25) (0.63,0.22) (0.77,0.15) 

𝑑3 (0.45,0.32) (0.4,0.12) (0.54,0.31) (0.84,0.11) 

𝑑4 (0.7,0.2) (0.6,0.3) (0.65,0.28) (0.76,0.19) 

𝑑5 (0.62,0.35) (0.5,0.1) (0.74,0.12) (0.65,0.25) 

 

 

Table 7.8. q-ROF𝑆𝑓𝑡  matrix for CEP 𝓀3 

 𝑠1 𝑠2 𝑠3 𝑠4 

𝑑1 (0.74,0.23) (0.55,0.12) (0.48,0.1) (0.42,0.15) 

𝑑2 (0.6,0.15) (0.66,0.31) (0.78,0.12) (0.64,0.22) 

𝑑3 (0.82,0.16) (0.74,0.25) (0.5,0.3) (0.3,0.1) 

𝑑4 (0.65,0.34) (0.58,0.28) (0.73,0.25) (0.48,0.26) 

𝑑5 (0.9,0.08) (0.6,0.2) (0.4,0.1) (0.61,0.35) 
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Table 7.9, q-ROF𝑆𝑓𝑡  matrix for CEP 𝓀4 

 𝑠1 𝑠2 𝑠3 𝑠4 

𝑑1 (0.63,0.14) (0.45,0.13) (0.55,0.25) (0.62,0.15) 

𝑑2 (0.35,0.05) (0.65,0.18) (0.75,0.18) (0.48,0.22) 

𝑑3 (0.7,0.17) (0.9,0.09) (0.6,0.3) (0.52,0.16) 

𝑑4 (0.39,0.25) (0.25,0.1) (0.56,0.16) (0.67,0.26) 

𝑑5 (0.8,0.12) (0.76,0.23) (0.34,0.05) (0.38,0.1) 

 

 

Table 7.10. Aggregated values of q-ROF𝑆𝑓𝑡  matrix for CEP for 𝓀𝑖 

 𝓀1 𝓀2 𝓀3 𝓀4 

𝑑1 (0.839983,0.143578) (0.805096,0.148488) (0.647834,0.133022) (0.592306,0.152046) 

𝑑2 (0.846328,0.084283) (0.735176,0.198556) (0.70186,0.164896) (0.658083,0.086928) 

𝑑3 (0.714504,0.149203) (0.759122,0.149169) (0.747558,0.147595) (0.826828,0.139741) 

𝑑4 (0.719443,0.174289) (0.705968,0.223092) (0.653149,0.277035) (0.585882,0.156939) 

𝑑5 (0.607438,0.084324) (0.666902,0.147059) (0.836595,0.115345) (0.734921,0.082803) 

 

 

the aggregated q-ROF𝑆𝑓𝑡 decision matrix for different alternative 𝓀𝑖 (𝑖 = 1,… 4) as 

summarized in Table 7.10. From the evident of this decision matrix a comparative study 

has been made of the proposed methods with some existing methods and their 

simultaneous results are depicted in Table 7.11. From Table 7.11, it is clear that the 

ranking orders are slightly different but their best optimal alternative remain same for 

all operators that is 𝓀1. However, in many situations of real life IFS and PyFS cannot 

provide the additional space to the decision makers to describe the attribute evaluation 

value due to its restricted constraints. Obviously in q-ROF environment the experts 

fully express the decision information. From characteristic analysis the existing 

methods in [5, 30, 75] are best for fuzzy data and these methods having no information 

about soft parameterization tools and Dombi operational parameter. Similarly the 

methods in [68, 69, 71] have just Dombi operational parameter. Therefore, from the 

characteristic point of view the methods proposed in this chapter are more superior and 
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practical for real life information to describe the fuzzy data under soft parameterizations 

information by using Dombi operational law. 

7.5.2. Influence of operational parameter 𝛃 
To express the influence and potential of operational parameter 𝛽 on ℳ𝒞𝒟ℳ, different 

values of 𝛽 are utilized to rank the alternatives. For different input of 𝛽 in the range 

of 1 ≤ 𝛽 ≤ 30, the score values and their ranking order of alternatives 𝓀𝑖(𝑖 = 1, … ,5) 

based on q-ROF𝑆𝑓𝑡 DWG operators are depicted in Tables 7.12. From the analysis of 

Tables 7.12, it is clear that for different input values of 𝛽 the ranking order is slightly 

different but the best optimal option remain identical that is 𝓀1 for q-ROF𝑆𝑓𝑡 DWG 

operators. By increasing the value of 𝛽 cause gradual decrease in score values for q-

ROF𝑆𝑓𝑡 DWG operators. This show that increasing the values of 𝛽 from smaller to 

bigger cause the decision makers’ attitude from optimism to pessimism for q-ROF𝑆𝑓𝑡 

DWG operators. Thus the behaviour of operational parameter 𝛽 is very important to 

express the experts’ attitude in decision making problems. Therefore, from overall 

analysis it is concluded that the proposed method is more superior and resilience than 

existing methods to solve the real life decisions by using parameterization tools under 

Dombi operational law.  

7.5.3. Conclusion 
The aim of this chapter is to present the notion of q-ROF𝑆𝑓𝑡S based on the Dombi 

operations. Since Dombi operational parameter possess natural flexibility with 

resilience of variability. The behaviour of Dombi operational parameter is very 

important to express the experts’ attitude in decision making. Further we present q-

ROF𝑆𝑓𝑡DG aggregation operators including q-ROF𝑆𝑓𝑡DWG, q-ROF𝑆𝑓𝑡DOWG and q-

ROF𝑆𝑓𝑡DHA operators. The basic properties of these operators are presented in detail 

such as Idempotency, Boundedness, Monotonicity, Shift invariance and Homogeneity. 

By applying develop approach, this manuscript contains the technique and algorithm 

for ℳ𝒞𝒟ℳ. Further a numerical example is developed to illustrative the flexibility 

and applicability of the developed operators. 
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Table 7.11. Comparative analysis of existing methods with proposed methods 

 Methods 𝑆𝑐𝑜𝑟𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑠

𝓀1                 𝓀2                 𝓀3                 𝓀4            
 

Ranking 

IFWG [5] 0.634397,    0.570364,    0.540043,    0.548168 𝓀1 ≻ 𝓀2 ≻ 𝓀4 ≻ 𝓀3 

PyFWG [75] 0.563338,    0.522164,    0.468469,    0.436953 𝓀1 ≻ 𝓀2 ≻ 𝓀3 ≻ 𝓀4 

PyFDWG [69] 0.512353,    0.507842,    0.443545,    0.398963 𝓀1 ≻ 𝓀2 ≻ 𝓀3 ≻ 𝓀4 

PyDFWG [68] 0.524211,    0.510858,    0.447564,    0.407124 𝓀1 ≻ 𝓀2 ≻ 𝓀3 ≻ 𝓀4 

q-ROFDWG [71] 0.688855,    0.700147,    0.66887,      0.632511 𝓀2 ≻ 𝓀1 ≻ 𝓀3 ≻ 𝓀4 

q-ROFWG [30] 0.440017,    0.405538,    0.345699,    0.30311 𝓀1 ≻ 𝓀2 ≻ 𝓀3 ≻ 𝓀4 

q-ROF𝑆𝑓𝑡DWG 

(proposed) 

0.609718,    0.604148,    0.559311,    0.548346 𝓀1 ≻ 𝓀2 ≻ 𝓀3 ≻ 𝓀4 

q-ROF𝑆𝑓𝑡DOWG 

(proposed) 

0.626935,    0.622094,    0.572875,    0.557955 𝓀1 ≻ 𝓀2 ≻ 𝓀3 ≻ 𝓀4 

q-ROF𝑆𝑓𝑡DHG 

(proposed) 

0.553432,    0.54705,      0.505869,    0.510548 𝓀1 ≻ 𝓀2 ≻ 𝓀4 ≻ 𝓀3 

 

 

Table 7.12. Ranking order based on different operational parameter of q-ROF𝑆𝑡  DWG operator 

 Operational 

parameter 𝛽 

𝑆𝑐𝑜𝑟𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑠

𝓀1                 𝓀2                 𝓀3                 𝓀4            
 

Ranking 

𝛽 = 1 0.640044,    0.631482,    0.583387,    0.568217 𝓀1 ≻ 𝓀2 ≻ 𝓀3 ≻ 𝓀4 

𝛽 = 2 0.609718,    0.604148,    0.559311,    0.548346 𝓀1 ≻ 𝓀2 ≻ 𝓀4 ≻ 𝓀3 

𝛽 = 3 0.587973,    0.58367,      0.54252,      0.534942 𝓀1 ≻ 𝓀2 ≻ 𝓀3 ≻ 𝓀4 

𝛽 = 5 0.562564,    0.559175,    0.523482,    0.519643 𝓀1 ≻ 𝓀2 ≻ 𝓀3 ≻ 𝓀4 

𝛽 = 8 0.545262,    0.54215,      0.511291,    0.509427 𝓀1 ≻ 𝓀2 ≻ 𝓀3 ≻ 𝓀4 

𝛽 = 12 0.5351,        0.531866,    0.504628,    0.503796 𝓀1 ≻ 𝓀2 ≻ 𝓀3 ≻ 𝓀4 

𝛽 = 16 0.530003,    0.526516,    0.501413,    0.501167 𝓀1 ≻ 𝓀2 ≻ 𝓀3 ≻ 𝓀4 

𝛽 = 20 0.526982,    0.52326,      0.499524,    0.499673 𝓀1 ≻ 𝓀2 ≻ 𝓀4 ≻ 𝓀3 

𝛽 = 25 0.524602,    0.520651,    0.498028,    0.498525 𝓀1 ≻ 𝓀4 ≻ 𝓀4 ≻ 𝓀3 

𝛽 = 30 0.523041,    0.51892,      0.497034,    0.497782 𝓀2 ≻ 𝓀4 ≻ 𝓀4 ≻ 𝓀3 
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Chapter 8 

Orthopair fuzzy soft rough aggregation operators 

The aim of this chapter is to investigate the hybrid concept of 𝑆𝑓𝑡S and RS with the 

notion of q-ROFS to obtain the new notion of q-ROF𝑆𝑓𝑡RS. In addition, some averaging 

aggregation operators such as q-ROF𝑆𝑓𝑡RWA, q-ROF𝑆𝑓𝑡ROWA) and q-ROF𝑆𝑡RHA 

operators are presented. Then basic desirable properties of these investigated averaging 

operators are discussed in detail. Moreover, we investigated the geometric aggregation 

operators such as q-ROF𝑆𝑓𝑡RWG, q-ROF𝑆𝑓𝑡ROWG and q-ROF𝑆𝑓𝑡RHG operators, and 

proposed the basic desirable characteristics of investigated geometric operators. The 

technique for ℳ𝒞𝒟ℳ and step wise algorithm for 𝒟ℳ by utilizing the proposed 

approaches are demonstrated. Finally, a numerical example for the developed approach 

is presented and a comparative study of the investigated models with some existing 

methods is brought to light in detail which shows that the proposed models are more 

effective and applicable than existing approaches. 

8.1. q-Rung orthopair fuzzy soft set 
In Chapters 4 we have discussed the basic definitions and the desirable operations and 

relations of PyF𝑆𝑓𝑡S and q-ROF𝑆𝑓𝑡S. For detail see Chapter 4, Sections 4.1 and 4.2. 

8.2. q-Rung orthopair fuzzy soft rough set 
This section is devoted to the hybrid study of q-ROFS with 𝑆𝑓𝑡S and RS to obtain the 

new concept of q-ROF𝑆𝑓𝑡RS. Some basic operations, a new score function and some 

basic properties of the developed concept are investigated in detail.  

8.2.1. Definition 

Let (𝒯, 𝔼) be a q-ROF𝑆𝑓𝑡S over 𝑇. Any subset ℒ of 𝑇 × 𝔼 is said to a q-ROF𝑆𝑓𝑡 relation 

from 𝑇 𝑡𝑜 𝔼 and is defined as: 

ℒ = {〈(𝓀𝑖, 𝑠𝑗), 𝜇(𝓀𝑖, 𝑠𝑗), 𝜓(𝓀𝑖, 𝑠𝑗)〉|(𝓀𝑖, 𝑠𝑗) ∈ 𝑇 × 𝔼}, 

where 𝜇: 𝑇 × 𝔼 → [0, 1] 𝑎𝑛𝑑 𝜓: 𝑇 × 𝔼 → [0, 1] denotes the ℳ𝒢 and 𝒩ℳ𝒢 with 0 ≤

[𝜇(𝓀𝑖, 𝑠𝑗)]
𝑞
+ [𝜓(𝓀𝑖, 𝑠𝑗)]

𝑞
≤ 1 for all (𝓀𝑖, 𝑠𝑗) ∈ 𝑇 × 𝔼. 
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Table 8.1, Tabular form of q-ROF𝑆𝑓𝑡  relation ℒ from 𝑇 𝑡𝑜 𝔼 

ℒ 𝑠1 𝑠2 ⋯ 𝑠𝑛  

𝓀1 (𝜇(𝓀1, 𝑠1), 𝜓(𝓀1, 𝑠1)) (𝜇(𝓀1, 𝑠2), 𝜓(𝓀1, 𝑠2)) ⋯ (𝜇(𝓀1, 𝑠𝑛), 𝜓(𝓀1, 𝑠𝑛)) 

𝓀2 (𝜇(𝓀2, 𝑠1), 𝜓(𝓀2, 𝑠1)) (𝜇(𝓀2, 𝑠2), 𝜓(𝓀2, 𝑠2)) ⋯ (𝜇(𝓀2, 𝑠𝑛), 𝜓(𝓀2, 𝑠𝑛)) 

⋮ ⋮ ⋮ ⋱ ⋮ 

𝓀𝑚 (𝜇(𝓀𝑚 , 𝑠1), 𝜓(𝓀𝑚 , 𝑠1)) (𝜇(𝓀𝑚 , 𝑠2), 𝜓(𝓀𝑚 , 𝑠2)) ⋯ (𝜇(𝓀𝑚 , 𝑠𝑛), 𝜓(𝓀𝑚 , 𝑠𝑛)) 

 

If 𝑇 = {𝓀1, 𝓀2, … , 𝓀𝑚} 𝑎𝑛𝑑 𝔼 = {𝑠1, 𝑠2, … , 𝑠𝑛},  then q-ROF𝑆𝑓𝑡 relation ℒ from 𝑇 𝑡𝑜 𝔼 

can be presented in the following Table 8.1. In view of above definition of q-ROF𝑆𝑓𝑡 

relation, we can define the q-ROF𝑆𝑓𝑡RS as: 

8.2.2. Definition 

Consider a universal set 𝑇, 𝔼 be the set of parameter and (𝒯, 𝔼) be a q-ROF𝑆𝑓𝑡S. Let ℒ 

be an arbitrary q-ROF𝑆𝑓𝑡 relation from set 𝑇 to 𝔼. The pair (𝑇, 𝔼, ℒ) is said to be q-

ROF𝑆𝑓𝑡 approximation space. For any optimum decision normal object ℳ ∈

𝑞 − 𝑅𝑂𝐹𝑆(𝔼), then the lower and upper approximation of ℳ w.r.t approximation 

space (𝑇, 𝔼, ℒ), are represented and defined as: 

ℒ(ℳ) = {(𝓀𝑖, 𝜇𝑗(𝓀𝑖), 𝜓𝑗(𝓀𝑖)) |𝓀𝑖 ∈ 𝑇}                                       (8.2) 

ℒ(ℳ) = {(𝓀𝑖, 𝜇𝑗(𝓀𝑖), 𝜓𝑗(𝓀𝑖)) |𝓀𝑖 ∈ 𝑇},                                       (8.3) 

where 

𝜇𝑗(𝓀𝑖) = ⋀[𝜇ℒ(𝓀𝑖, 𝑠𝑗) ∧ 𝜇ℳ(𝑠𝑗)]

𝑠𝑗∈𝔼

, 𝜓𝑗(𝓀𝑖) = ⋁[𝜓ℒ(𝓀𝑖 , 𝑠𝑗)⋁𝜓ℳ(𝑠𝑗)]

𝑠𝑗∈𝔼

 

𝜇𝑗(𝓀𝑖) = ⋁[𝜇ℒ(𝓀𝑖, 𝑠𝑗)⋁𝜇ℳ(𝑠𝑗)]

𝑠𝑗∈𝔼

, 𝜓𝑗(𝓀𝑖) = ⋀[𝜓ℒ(𝓀𝑖, 𝑠𝑗) ∧ 𝜓ℳ(𝑠𝑗)]

𝑠𝑗∈𝔼

 

such that 

0 ≤ [ 𝜇𝑗(𝓀𝑖)]
𝑞

+ [ 𝜓𝑗(𝓀𝑖)]
𝑞

≤ 1  𝑎𝑛𝑑 0 ≤ [ 𝜇𝑗(𝓀𝑖)]
𝑞
+ [ 𝜓𝑗(𝓀𝑖)]

𝑞
≤ 1 
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It is clear that ℒ(ℳ) and ℒ(ℳ) are two q-ROFSs in 𝑇. Thus the operators 

ℒ(ℳ),ℒ(ℳ) ∶  q − ROF𝑆𝑓𝑡
𝔼 → q − ROF𝑆𝑓𝑡

𝑇
 are respectively known as lower and 

upper q-ROF𝑆𝑓𝑡R approximation operators. Therefore q-ROF𝑆𝑓𝑡RS is a pair ℒ(ℳ) =

(ℒ(ℳ), ℒ(ℳ)) = (𝓀𝑖, (𝜇𝑗(𝓀𝑖), 𝜓𝑗(𝓀𝑖)) , (𝜇𝑗(𝓀𝑖), 𝜓𝑗(𝓀𝑖))). 

For simplicity we can write ℒ(ℳ) = (ℒ(ℳ), ℒ(ℳ)) = (𝓀𝑖, (𝜇𝑗(𝓀𝑖), 𝜓𝑗(𝓀𝑖)) ,

(𝜇𝑗(𝓀𝑖), 𝜓𝑗(𝓀𝑖))) as ℒ𝑠𝑗(ℳ𝑖) = (ℒ𝑠𝑗(ℳ𝑖), ℒ𝑠𝑗(ℳ𝑖)) = (( 𝜇𝑖𝑗 , 𝜓𝑖𝑗  ) , (𝜇𝑖𝑗 , 𝜓𝑖𝑗)) 

and called q-ROF𝑆𝑓𝑡R value (q-ROF𝑆𝑓𝑡RV), if there is no confusion. 

8.2.3. Remark 

(a) If 𝑞 = 1, is fixed then the developed q-ROF𝑆𝑓𝑡R approximation 

operators reduced to IF𝑆𝑓𝑡R approximation operators. 

(b) If 𝑞 = 2, is fixed then the developed q-ROF𝑆𝑓𝑡R approximation 

operators reduced to PyF𝑆𝑓𝑡R approximation operators. 

Consider the following example for better understanding the concept of q-ROF𝑆𝑓𝑡R 

approximation operators. 

8.2.4. Example 

Suppose a decision maker 𝑍 purchase a house from the set of five houses 𝑇 =

{𝓀1, 𝓀2, 𝓀3, 𝓀4, 𝓀5} under consideration. Let the parameter set 𝔼 = {𝑠1, 𝑠2, 𝑠3, 𝑠4}, 

where 𝑠1 = 𝑏𝑒𝑎𝑢𝑡𝑖𝑓𝑢𝑙, 𝑠2 = 𝑙𝑎𝑟𝑔𝑒 𝑖𝑛 𝑠𝑖𝑧𝑒,  𝑠3 = 𝑒𝑥𝑝𝑒𝑛𝑠𝑖𝑣𝑒 and 𝑠4 = 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛. A 

decision maker 𝑍 wants to purchase a house from the available houses which fulfill the 

utmost extent of given parameters. Consider the decision maker 𝑍 presents the gorgeous 

of houses in form of q-ROF𝑆𝑓𝑡 relation ℒ from set 𝑇 𝑡𝑜 𝔼 and is given in Table 8.2. 

Consider a decision maker 𝑍 presents the optimum normal decision object ℳ which is 

a q-ROF subset over parameter set 𝔼, that is: 

ℳ = {(𝑠1, 0.9,0.2), (𝑠2, 0.4,0.6), (𝑠3, 0.8,0.4), (𝑠4, 0.5,0.1)} 

Now by using Eqs. (8.2)  𝑎𝑛𝑑  (8.3), we have 



 

 

186 
 

Table 8.2, q-ROF𝑆𝑓𝑡  relation from set 𝑇 𝑡𝑜 𝔼 for 𝑞 = 3 

ℒ 𝑠1 𝑠2 𝑠3 𝑠4 

𝓀1 (0.9, 0.4) (0.8, 0.2) (0.7, 0.3) (0.65, 0.2) 

𝓀2 (0.8, 0.5) (0.5, 0.1) (0.85, 0.2) (0.3, 0.7) 

𝓀3 (0.6, 0.9) (0.2, 0.6) (0.6, 0.1) (0.95, 0.3) 

𝓀4 (0.7, 0.4) (0.93, 0.4) (0.4, 0.2) (0.5, 0.1) 

𝓀5 (0.3, 0.7) (0.78, 0.25) (0.8, 0.15) (0.7, 0.4) 

 

 

𝜇1(𝓀1) = 0.4, 𝜓1(𝓀1) = 0.6, 𝜇2(𝓀2) = 0.3, 𝜓2(𝓀2) = 0.7, 𝜇3(𝓀3) = 0.2,

𝜓3(𝓀3) = 0.9, 𝜇4(𝓀4) = 0.4, 𝜓4(𝓀4) = 0.6, 𝜇5(𝓀5) = 0.3, 𝜓5(𝓀5) = 0.7  

 𝜇1(𝓀1) = 0.9, 𝜓1(𝓀1) = 0.1, 𝜇2(𝓀2) = 0. 9, 𝜓2(𝓀2) = 0.1, 𝜇3(𝓀3) = 0.95,

𝜓3(𝓀3) = 0.1, 𝜇4(𝓀4) = 0.93, 𝜓4(𝓀4) = 0.1, 𝜇5(𝓀5) = 0.9, 𝜓5(𝓀5) = 0.1  

Now to get the lower and upper q-ROF𝑆𝑓𝑡R approximation operators; 

ℒ(ℳ) = {(𝓀1, 0.7, 0.6), (𝓀2, 0.3, 0.7), (𝓀3, 0.2, 0.9), (𝓀4, 0.4, 0.6), (𝓀5, 0.3, 0.7)} 

ℒ(ℳ) = {(𝓀1, 0.9, 0.1), (𝓀2, 0.9, 0.1), (𝓀3, 0.95, 0.1), (𝓀4, 0.93, 0.1), (𝓀5, 0.9, 0.1)} 

Therefore, ℒ(ℳ) = (ℒ(ℳ), ℒ(ℳ)) 

= {
(𝓀1, (0.7, 0.6), (0.9, 0.1)), (𝓀2, (0.3, 0.7), (0.9, 0.1)), (𝓀3, (0.2, 0.9), (0.95, 0.1)),

(𝓀4, (0.4, 0.6), (0.93, 0.1)), (𝓀5, (0.3, 0.7), (0.9, 0.1))
} 

 

8.2.5. Definition 

Consider ℒ𝑠𝑗(ℳ1) = (ℒ𝑠𝑗(ℳ1), ℒ𝑠𝑗(ℳ1)) for (𝑗 = 1,2) are the two q-ROF𝑆𝑓𝑡RVs. 

Then the following operation are defined. 

(i) ℒ𝑠1(ℳ1) ∪ ℒ𝑠2(ℳ1) = {(ℒ𝑠1(ℳ1) ∪ ℒ𝑠2(ℳ1)) , (ℒ𝑠1(ℳ1) ∪

ℒ𝑠2(ℳ1))}; 
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(ii) ℒ𝑠1(ℳ1) ∩ ℒ𝑠2(ℳ1) = {(ℒ𝑠1(ℳ1) ∩ ℒ𝑠2(ℳ1)) , (ℒ𝑠1(ℳ1) ∩

ℒ𝑠2(ℳ1))}; 

(iii) ℒ𝑠1(ℳ1)⨁ ℒ𝑠2(ℳ1) =

{(ℒ𝑠1(ℳ1)⨁ ℒ𝑠2(ℳ1)) , (ℒ𝑠1(ℳ1)⨁ ℒ𝑠2(ℳ1))}; 

(iv) ℒ𝑠1(ℳ1)⨂ ℒ𝑠2(ℳ1) =

{(ℒ𝑠1(ℳ1)⨂ ℒ𝑠2(ℳ1)) , (ℒ𝑠1(ℳ1)⨂ ℒ𝑠2(ℳ1))} ; 

(v) ℒ𝑠1(ℳ1) ⊆ ℒ𝑠2(ℳ1) = (ℒ𝑠1(ℳ1) ⊆ ℒ𝑠2(ℳ1))  𝑎𝑛𝑑 (ℒ𝑠1(ℳ1) ⊆

ℒ𝑠2(ℳ1)); 

(vi) 𝛼ℒ𝑠1(ℳ1) = (𝛼ℒ𝑠1(ℳ1), 𝜆ℒ𝑠1(ℳ1)) for 𝛼 ≥ 1; 

(vii) (ℒ𝑠1(ℳ1))
𝛼

= ((ℒ𝑠1(ℳ1))

𝛼

, (ℒ𝑠1(ℳ1))
𝛼

 ) for  𝛼 ≥ 1. 

(viii) ℒ𝑠1(ℳ1)
𝑐 = (ℒ𝑠𝑗(ℳ1)

𝑐 , ℒ𝑠𝑗(ℳ1)
𝑐), where ℒ𝑠𝑗(ℳ1)

𝑐  𝑎𝑟𝑒  ℒ𝑠𝑗(ℳ1)
𝑐 the 

complements of q-ROF𝑆𝑓𝑡R approximation operators 

ℒ𝑠𝑗(ℳ1) 𝑎𝑛𝑑  ℒ𝑠𝑗(ℳ1), i.e. ℒ𝑠𝑗(ℳ1) = (𝜓𝑖𝑗 , 𝜇𝑖𝑗). 

(ix) ℒ(ℳ1) = ℒ(ℳ2) iff ℒ(ℳ1) = ℒ(ℳ2) 𝑎𝑛𝑑  ℒ(ℳ1) = ℒ(ℳ2); 

8.2.6. Definition  

Let ℒ𝑠1(ℳ1) = (ℒ𝑠1(ℳ1), ℒ𝑠1(ℳ1)) = ((𝜇11, 𝜓11) , (𝜇11, 𝜓11)) be a q-ROF𝑆𝑓𝑡RV. 

Then the score function for ℒ𝑠1(ℳ1) is given as. 

𝒮𝑐 (ℒ𝑠1(ℳ1)) =
1

2
(𝜇11

𝑞 + 𝜇11
 𝑞
− 𝜓11

 𝑞 −𝜓11
 𝑞
) ,      𝒮𝑐 (ℒ𝑠1(ℳ1))

∈ [−1, 1]  𝑎𝑛𝑑 𝑞 ≥ 1 . 

Greater the score value, greater the q-ROF𝑆𝑓𝑡RV is. 
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8.2.7. Proposition 

Let (𝑇, 𝔼, ℒ) be q-ROF𝑆𝑓𝑡 approximation space. For any two ℒ(ℳ1) =

(ℒ(ℳ1), ℒ(ℳ1)) and ℒ(ℳ2) = (ℒ(ℳ2), ℒ(ℳ2)) q-ROF𝑆𝑓𝑡RSs over a common 

universe set 𝑇. Then the following properties are holds. 

(i) ∼ (∼ ℒ(ℳ1)) = ℳ1, where ∼ ℒ(ℳ1) is the complement of ℒ(ℳ1) ;  

(ii) ℒ(ℳ1) ∪ ℒ(ℳ2) = ℒ(ℳ2) ∪ ℒ(ℳ1), ℒ(ℳ1) ∩ ℒ(ℳ2) = ℒ(ℳ2) ∩

ℒ(ℳ1) 

(iii) ∼ (ℒ(ℳ1) ∪ ℒ(ℳ2)) = (∼ ℒ(ℳ1)) ∩ (∼ ℒ(ℳ2)); 

(iv) ∼ (ℒ(ℳ1) ∩ ℒ(ℳ2)) = (∼ ℒ(ℳ1)) ∪ (∼ ℒ(ℳ2)); 

(v) If ℳ1 ⊆ℳ2, then ℒ(ℳ1) ⊆ ℒ(ℳ2); 

(vi) ℒ(ℳ1 ∪ℳ2) ⊇ ℒ(ℳ1) ∪ ℒ(ℳ2); 

(vii) ℒ(ℳ1 ∩ℳ2) ⊆ ℒ(ℳ1) ∩ ℒ(ℳ2). 

8.3. q-Rung orthopair fuzzy soft rough averaging aggregation 

operator 

This section is devoted for the study of q-ROF𝑆𝑓𝑡RA aggregation operators such as q-

ROF𝑆𝑓𝑡RWA, q-ROF𝑆𝑓𝑡ROWA and q-ROF𝑆𝑓𝑡RHA operators. We will present the 

fundamental properties of these operators in detail.  

8.3.1. q-Rung orthopair fuzzy soft rough weighted averaging operator 
In this subsection the detail study of q-ROF𝑆𝑓𝑡RWA operator and their basic properties 

such as Idempotency, Boundedness and Monotonicity etc. are investigated. 

8.3.1.1.  Definition 

Let ℒ𝑠𝑗(ℳ𝑖) = (ℒ𝑠𝑗(ℳ𝑖), ℒ𝑠𝑗(ℳ𝑖)) (𝑖 = 1,2, … ,𝑚, 𝑗 = 1,2,… , 𝑛) be the collection 

of q-ROF𝑆𝑓𝑡RVs. Let 𝑤̿ = (𝑤̿1, 𝑤̿2, … , 𝑤̿𝑚)
𝑇   𝑎𝑛𝑑  𝑢̿ = (𝑢̿1, 𝑢̿2, … , 𝑢̿𝑛)

𝑇  be the weight 

vectors of experts 𝓀𝑖 and parameters 𝑠𝑗 with ∑ 𝑤̿𝑖
𝑚
𝑖=1 = 1, ∑ 𝑢̿𝑗

𝑛
𝑗=1 = 1 and 0 ≤

𝑤̿𝑖 , 𝑢̿𝑗 ≤ 1 respectively. The q-ROF𝑆𝑓𝑡RWA operator is defined as: 

q − ROF𝑆𝑓𝑡RWA(ℒ𝑠1(ℳ1),… , ℒ𝑠𝑛(ℳ𝑚))

= (⨁𝑗=1
𝑛 𝑢̿𝑗 (⨁𝑖=1

𝑚 𝑤̿𝑖ℒ𝑠𝑗(ℳ𝑖)) ,⨁𝑗=1
𝑛 𝑢̿𝑗 (⨁𝑖=1

𝑚 𝑤̿𝑖ℒ𝑠𝑗(ℳ𝑖))  ) 
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In view of above definition the aggregated result for q-ROF𝑆𝑓𝑡RWA is given in the 

following Theorem 8.3.1.2. 

8.3.1.2.  Theorem 

Let ℒ𝑠𝑗(ℳ𝑖) = (ℒ𝑠𝑗(ℳ𝑖), ℒ𝑠𝑗(ℳ𝑖)) (𝑖 = 1,2, … ,𝑚, 𝑗 = 1,2,… , 𝑛) be the collection 

of q-ROF𝑆𝑓𝑡RVs. Let 𝑤̿ = (𝑤̿1, 𝑤̿2, … , 𝑤̿𝑚)
𝑇   𝑎𝑛𝑑  𝑢̿ = (𝑢̿1, 𝑢̿2, … , 𝑢̿𝑛)

𝑇  be the weight 

vectors of experts 𝓀𝑖 and parameters 𝑠𝑗 with ∑ 𝑤̿𝑖
𝑚
𝑖=1 = 1, ∑ 𝑢̿𝑗

𝑛
𝑗=1 = 1 and 0 ≤

𝑤̿𝑖 , 𝑢̿𝑗 ≤ 1 respectively. Then q-ROF𝑆𝑓𝑡RWA operator is given as: 

q − ROF𝑆𝑓𝑡RWA(ℒ𝑠1(ℳ1), … , ℒ𝑠𝑛(ℳ𝑚))

= [⨁𝑗=1
𝑛 𝑢̿𝑗 (⨁𝑖=1

𝑚 𝑤̿𝑖ℒ𝑠𝑗(ℳ𝑖)) ,⨁𝑗=1
𝑛 𝑢̿𝑗 (⨁𝑖=1

𝑚 𝑤̿𝑖ℒ𝑠𝑗(ℳ𝑖))] 

=

[
 
 
 
 
 
 
 
 

{
 

 
√1 −∏(∏(1− 𝜇𝑖𝑗𝑞)

𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1

𝑞

 ,∏(∏𝜓𝑖𝑗
𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1
}
 

 

,

{
 

 
√1 −∏(∏(1 − 𝜇𝑖𝑗

 𝑞
)
𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1

𝑞

 ,∏(∏𝜓𝑖𝑗
 𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1
}
 

 

]
 
 
 
 
 
 
 
 

 

Proof: By using Mathematical induction to prove the result. 

As by operational law 

ℒ𝑠1(ℳ1) ⨁ ℒ𝑠1(ℳ2) = ((𝜇11, 𝜓11)⨁(𝜇12, 𝜓12) , (𝜇11, 𝜓11)⨁(𝜇12 , 𝜓12))

= [(√𝜇11𝑞 + 𝜇12𝑞 + 𝜇11𝑞𝜇12𝑞
𝑞

 , 𝜓11 𝜓12) , (√𝜇11
 𝑞
+ 𝜇12

 𝑞
+ 𝜇11

 𝑞
𝜇12

 𝑞𝑞

 , 𝜓11 𝜓12)] 

and 

𝛼ℒ𝑠1(ℳ1) = [(√1 − (1 − 𝜇11𝑞)
𝛼𝑞

 , 𝜓11
𝛼) , (√1 − (1 − 𝜇11

 𝑞
)
𝛼𝑞

 , 𝜓11
 𝛼
)] 

Suppose the result is true for 𝑚 = 2 𝑎𝑛𝑑 𝑛 = 2, that is  
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q − ROF𝑆𝑓𝑡RWA(ℒ𝑠𝑗(ℳ𝑖), ℒ𝑠𝑗(ℳ𝑖), )

= [⨁𝑗=1
2 𝑢̿𝑗 (⨁𝑖=1

2 𝑤̿𝑖ℒ𝑠𝑗(ℳ𝑖 )) ,⨁𝑗=1
2 𝑢̿𝑗 (⨁𝑖=1

2 𝑤̿𝑖ℒ𝑠𝑗(ℳ𝑖)) ] 

Now consider  

q − ROF𝑆𝑓𝑡RWA(ℒ𝑠𝑗(ℳ𝑖), ℒ𝑠𝑗(ℳ𝑖), )

= [⨁𝑗=1
2 𝑢̿𝑗 (⨁𝑖=1

2 𝑤̿𝑖ℒ𝑠𝑗(ℳ𝑖)) ,⨁𝑗=1
2 𝑢̿𝑗 (⨁𝑖=1

2 𝑤̿𝑖ℒ𝑠𝑗(ℳ𝑖))] 

=

[
 
 
 {𝑢̿1 (𝑤̿1ℒ𝑠1(ℳ1 )⨁𝑤̿2ℒ𝑠1(ℳ2 ))⨁𝑢̿2 (𝑤̿1ℒ𝑠2(ℳ1 )⨁𝑤̿2ℒ𝑠2(ℳ2 ))} ,

{𝑢̿1 (𝑤̿1ℒ𝑠𝑗(ℳ1 )⨁𝑤̿2ℒ𝑠𝑗(ℳ2 ))⨁𝑢̿2 (𝑤̿1ℒ𝑠𝑗(ℳ1 )⨁𝑤̿2ℒ𝑠𝑗(ℳ2 ))} ]
 
 
 

 

q − ROF𝑆𝑓𝑡RWA(ℒ𝑠𝑗(ℳ𝑖), ℒ𝑠𝑗(ℳ𝑖), )

=

[
 
 
 
 
 
 
 
 
 

{
 

 
√1 −∏(∏(1− 𝜇𝑖𝑗𝑞)

𝑤̿𝑖

2

𝑖=1

)

𝑢𝑗2

𝑗=1

𝑞

 ,∏(∏𝜓𝑖𝑗
𝑤̿𝑖

2

𝑖=1

)

𝑢𝑗2

𝑗=1
}
 

 

,

{
 
 

 
 

(

 
 
√1 −∏(∏(1 − 𝜇𝑖𝑗

𝑞
)
𝑤̿𝑖

2

𝑖=1

)

𝑢𝑗2

𝑗=1

𝑞

 ,∏(∏𝜓𝑖𝑗
𝑤̿𝑖

2

𝑖=1

)

𝑢𝑗2

𝑗=1

)

 
 

}
 
 

 
 

]
 
 
 
 
 
 
 
 
 

 

The result is true for 𝑚 = 2 𝑎𝑛𝑑 𝑛 = 2. 

Now consider the result is for 𝑛 = 𝑘1  𝑎𝑛𝑑  𝑚 = 𝑘2 

q − ROF𝑆𝑓𝑡RWA(ℒ𝑠𝑗(ℳ𝑖), ℒ𝑠𝑗(ℳ𝑖),… , ℒ𝑠𝑘1
(ℳ𝑘2

))

=

[
 
 
 
 
 
 
 
 
 

{
 
 

 
 

√1 −∏(∏(1 − 𝜇𝑖𝑗𝑞)
𝑤̿𝑖

𝑘2

𝑖=1

)

𝑢𝑗𝑘1

𝑗=1

𝑞

 ,∏(∏𝜓𝑖𝑗
𝑤̿𝑖

𝑘2

𝑖=1

)

𝑢𝑗𝑘1

𝑗=1

}
 
 

 
 

,

{
 
 

 
 

(

 
 
√1 −∏(∏(1 − 𝜇𝑖𝑗

𝑞
)
𝑤̿𝑖

𝑘2

𝑖=1

)

𝑢𝑗𝑘1

𝑗=1

𝑞

 ,∏(∏𝜓𝑖𝑗
 𝑤̿𝑖

𝑘2

𝑖=1

)

𝑢𝑗𝑘1

𝑗=1

)

 
 

}
 
 

 
 

]
 
 
 
 
 
 
 
 
 

 

Next to show that the result hold for 𝑛 = 𝑘1 + 1  𝑎𝑛𝑑  𝑚 = 𝑘2 + 1, so we have 
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q − ROF𝑆𝑓𝑡RWA[(ℒ𝑠𝑗(ℳ𝑖), ℒ𝑠𝑗(ℳ𝑖), … , ℒ𝑠𝑘1
(ℳ𝑘2

)) , ℒ𝑠𝑘1+1
(ℳ𝑘2+1

)]  

=

[
 
 
 ⨁𝑗=1

𝑘1 𝑢̿𝑗 (⨁𝑖=1
𝑘2 𝑤̿𝑖ℒ𝑠𝑗(ℳ𝑖))⨁𝑢̿𝑘1+1 (𝑤̿𝑘2+1ℒ𝑠𝑘1+1

(ℳ𝑘2+1
)) ,

⨁𝑗=1
𝑘1 𝑢̿𝑗 (⨁𝑖=1

𝑘2 𝑤̿𝑖ℒ𝑠𝑗(ℳ𝑖))⨁𝑢̿𝑘1+1 (𝑤̿𝑘2+1ℒ𝑠𝑘1+1
(ℳ𝑘2+1

)) ]
 
 
 

 

= 

[
 
 
 
 
 
 
 
 
 

{
 
 

 
 

√1 − ∏ (∏ (1− 𝜇𝑖𝑗
𝑞)

𝑤̿𝑖

𝑘2+1

𝑖=1

)

𝑢𝑗𝑘1+1

𝑗=1

𝑞

 , ∏ (∏𝜓𝑖𝑗
𝑤̿𝑖

𝑘2+1

𝑖=1

)

𝑢𝑗𝑘1+1

𝑗=1

}
 
 

 
 

,

{
 
 

 
 

(

 
 
√1 − ∏(∏(1 − 𝜇𝑖𝑗

𝑞
)
𝑤̿𝑖

𝑘2+1

𝑖=1

)

𝑢𝑗𝑘1+1

𝑗=1

𝑞

 , ∏ (∏𝜓𝑖𝑗
𝑤̿𝑖

𝑘2+1

𝑖=1

)

𝑢𝑗𝑘1+1

𝑗=1

)

 
 

}
 
 

 
 

]
 
 
 
 
 
 
 
 
 

 

This implies the result is true for 𝑛 = 𝑘1 + 1 𝑎𝑛𝑑 𝑚 = 𝑘2 + 1. Therefore the result 

hold for all 𝑚, 𝑛 ≥ 1. 

Since it is clear that ℒ𝑠𝑗(ℳ𝑖) 𝑎𝑛𝑑 ℒ𝑠𝑗(ℳ𝑖) are q-ROFVs. So by Definition 8.2.7, we 

have ⨁𝑗=1
𝑛 𝑢̿𝑗 (⨁𝑖=1

𝑚 𝑤̿𝑖ℒ𝑠𝑗(ℳ𝑖)) and ⨁𝑗=1
𝑛 𝑢̿𝑗 (⨁𝑖=1

𝑚 𝑤̿𝑖ℒ𝑠𝑗(ℳ𝑖)) are also q-ROFVs. 

Therefore, q − ROF𝑆𝑓𝑡RWA(ℒ𝑠1(ℳ1),… , ℒ𝑠𝑛(ℳ𝑚)) is also a q-ROF𝑆𝑓𝑡RV in 

approximation space (𝑇, 𝔼, ℒ). 

8.3.1.3.  Example 

Let 𝑇 = {𝓀1, 𝓀2, 𝓀3} be the set and ℳ = {𝑠1, 𝑠2} ⊆ 𝔼 be the set of parameter with 

weight vector 𝑤̿ = (0.25,0.3,0.45)𝑇 for 𝓀𝑖 (𝑖 = 1,2,3) and 𝑢̿ = (0.55,0.45) for 

𝑠𝑗 (𝑗 = 1,2). Then q-ROF𝑆𝑓𝑡RVs is given in Table 8.3. 

Table 8.3, Tabular representation of  ℒ𝑠𝑗(ℳ𝑖) = (ℒ𝑠𝑗(ℳ𝑖), ℒ𝑠𝑗(ℳ𝑖)) 

ℒ 𝑠1 𝑠2 

𝓀1 ((0.9,0.3), (0.8,0.4)) ((0.55,0.2), (0.76,0.14)) 

𝓀2 ((0.7,0.1), (0.2,0.75)) ((0.92,0.3), (0.6,0.3)) 

𝓀3 ((0.92,0.25), (0.65,0.15)) ((0.4,0.85), (0.88,0.12)) 

 



 

 

192 
 

q − ROF𝑆𝑓𝑡RWA(ℒ𝑠1(ℳ1), … , ℒ𝑠𝑛(ℳ𝑚))

= [⨁𝑗=1
2 𝑢̿𝑗 (⨁𝑖=1

3 𝑤̿𝑖ℒ𝑠𝑗(ℳ𝑖)) ,⨁𝑗=1
2 𝑢̿𝑗 (⨁𝑖=1

3 𝑤̿𝑖ℒ𝑠𝑗(ℳ𝑖))] 

=

[
 
 
 
 
 
 
 
 

{
 

 
√1 − (

[(1 − 0.93)0.25(1 − 0.73)0.25(1 − 0.293)0.45]0.55

[(1 − 0.553)0.25(1 − 0.923)0.25(1 − 0.43)0.45]0.45
)

3

,

 (0.30.250.10.30.250.45)0.55(0.20.250.30.30.850.45)0.45 }
 

 
,

{
 

 
√1 − (

[(1 − 0.43)0.25(1 − 0.23)0.25(1 − 0.653)0.45]0.55

[(1 − 0.763)0.25(1 − 0.63)0.25(1 − 0.883)0.45]0.45
)

3

,

(0.40.250.750.30.150.45)0.55(0.140.250.30.30.120.45)0.45 }
 

 

]
 
 
 
 
 
 
 
 

 

= [(0.831432,0.255487), (0.72581,0.26258)]. 

From the analysis of Theorem 8.3.1.2, q-ROF𝑆𝑓𝑡RWA operator has the following 

properties. 

8.3.1.4.  Theorem 

Let ℒ𝑠𝑗(ℳ𝑖) = (ℒ𝑠𝑗(ℳ𝑖), ℒ𝑠𝑗(ℳ𝑖)) (𝑖 = 1,2, … ,𝑚, 𝑗 = 1,2,… , 𝑛) be the collection 

of q-ROF𝑆𝑓𝑡RVs. Let 𝑤̿ = (𝑤̿1, 𝑤̿2, … , 𝑤̿𝑚)
𝑇   𝑎𝑛𝑑  𝑢̿ = (𝑢̿1, 𝑢̿2, … , 𝑢̿𝑛)

𝑇  be the weight 

vectors of experts 𝓀𝑖 and parameters 𝑠𝑗 with ∑ 𝑤̿𝑖
𝑚
𝑖=1 = 1, ∑ 𝑢̿𝑗

𝑛
𝑗=1 = 1 and 0 ≤

𝑤̿𝑖 , 𝑢̿𝑗 ≤ 1 respectively. Then the following properties hold for q-ROF𝑆𝑓𝑡RWA 

operator: 

(i) (Idempotency) If ℒ𝑠𝑗(ℳ𝑖) = ℰ𝑠(𝒩) (for all 𝑖 = 1,2,… ,𝑚  𝑎𝑛𝑑 𝑗 =

1,2,… 𝑛), where ℰ𝑠(ℳ) = (ℰ𝑠(ℳ), ℰ𝑠(ℳ)) = ((𝑏 , 𝑑), (𝑏 , 𝑑)). Then 

𝑞 − 𝑅𝑂𝐹𝑆𝑓𝑡𝑅𝑊𝐴 (ℒ𝑠1(ℳ1), ℒ𝑠2(ℳ2), … , ℒ𝑠𝑛(ℳ𝑚)) = ℰ𝑠(ℳ). 

(ii) (Boundedness) Let (ℒ𝑠𝑗(ℳ𝑖))
−

=

(min
𝑗
min
𝑖
ℒ𝑠𝑗(ℳ𝑖) ,max

𝑗
max
𝑖
ℒ𝑠𝑗(ℳ𝑖)) and (ℒ𝑠𝑗(ℳ𝑖))

+

=

(max
𝑗
max
𝑖
ℒ𝑠𝑗(ℳ𝑖) , min

𝑗
min
𝑖
ℒ𝑠𝑗(ℳ𝑖)). Then 
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(ℒ𝑠𝑗(ℳ𝑖))
−

≤ 𝑞 − 𝑅𝑂𝐹𝑆𝑓𝑡𝑅𝑊𝐴 (ℒ𝑠1(ℳ1), ℒ𝑠2(ℳ2), … , ℒ𝑠𝑛(ℳ𝑚))

≤ (ℒ𝑠𝑗(ℳ𝑖))
+

. 

(iii) (Monotonicity) Let ℰ𝑠𝑗(𝒩𝑖) = (ℰ𝑠𝑗(𝒩𝑖), ℰ𝑠𝑗(𝒩𝑖)) (𝑖 = 1,2,… ,𝑚, 𝑗 =

1,2,… , 𝑛) be another collection of q-ROF𝑆𝑓𝑡RVs such that ℰ𝑠𝑗(𝒩𝑖) ≤

 ℒ𝑠𝑗(ℳ𝑖) and ℰ𝑠𝑗(𝒩𝑖) ≤ ℒ𝑠𝑗(ℳ𝑖). Then 

𝑞 − 𝑅𝑂𝐹𝑆𝑓𝑡𝑅𝑊𝐴 (ℰ𝑠1(ℳ1), ℰ𝑠2(ℳ2), … , ℰ𝑠𝑛(ℳ𝑚))

≤  𝑞 − 𝑅𝑂𝐹𝑆𝑓𝑡𝑅𝑊𝐴 (ℒ𝑠1(ℳ1), ℒ𝑠2(ℳ2), … , ℒ𝑠𝑛(ℳ𝑚)). 

(iv) (Shift invariance) Let ℰ𝑠(𝒩) = (ℰ𝑠(𝒩), ℰ𝑠(𝒩)) = ((𝑏 , 𝑑), (𝑏 , 𝑑)) be 

any other 𝑞 − 𝑅𝑂𝐹𝑆𝑓𝑡𝑅𝑉. Then 

𝑞 − 𝑅𝑂𝐹𝑆𝑓𝑡𝑅𝑊𝐴 (ℒ𝑠1(ℳ1)⨁ℰ𝑠(𝒩), ℒ𝑠2(ℳ2)⨁ℰ𝑠(𝒩),… , ℒ𝑠𝑛(ℳ𝑚)⨁ℰ𝑠(𝒩))

= 𝑞 − 𝑅𝑂𝐹𝑆𝑓𝑡𝑅𝑊𝐴(ℒ𝑠1(ℳ1), ℒ𝑠2(ℳ2), … , ℒ𝑠𝑛(ℳ𝑚))⨁ℰ𝑠(𝒩). 

(v) (Homogeneity) For any real number 𝜆 > 0; 

𝑞 − 𝑅𝑂𝐹𝑆𝑓𝑡𝑅𝑊 𝐴 (𝜆ℒ𝑠1(ℳ1), 𝜆ℒ𝑠2(ℳ2), … , 𝜆ℒ𝑠𝑛(ℳ𝑚))

= 𝜆 𝑞 − 𝑅𝑂𝐹𝑆𝑓𝑡𝑅𝑊𝐴 (ℒ𝑠1(ℳ1), ℒ𝑠2(ℳ2),… , ℒ𝑠𝑛(ℳ𝑚)). 

Proof: (i) (Idempotency) Given that ℒ𝑠𝑗(ℳ𝑖) = ℰ𝑠(𝒩) (for all 𝑖 =

1,2,… ,𝑚  𝑎𝑛𝑑 𝑗 = 1,2,… 𝑛), where ℰ𝑠(ℳ) = (ℰ𝑠(ℳ), ℰ𝑠(ℳ)) = ((𝑏 , 𝑑), (𝑏 , 𝑑)) 

q − ROF𝑆𝑓𝑡RWA(ℒ𝑠1(ℳ1),… , ℒ𝑠𝑛(ℳ𝑚))

= (⨁𝑗=1
𝑛 𝑢̿𝑗 (⨁𝑖=1

𝑚 𝑤̿𝑖ℒ𝑠𝑗(ℳ𝑖)) ,⨁𝑗=1
𝑛 𝑢̿𝑗 (⨁𝑖=1

𝑚 𝑤̿𝑖ℒ𝑠𝑗(ℳ𝑖))  ) 

=

[
 
 
 
 
 
 
 
 

(

 √1 −∏(∏(1− 𝜇𝑖𝑗
𝑞)

𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1

𝑞

 ,∏(∏𝜓𝑖𝑗
𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1
)

 ,

(

 √1 −∏(∏(1 − 𝜇𝑖𝑗
𝑞
)
𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1

𝑞

 ,∏(∏𝜓𝑖𝑗
𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1
)

 

]
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For all 𝑖, 𝑗 ℒ𝑠𝑗(ℳ𝑖) = ℰ𝑠(𝒩) = (ℰ𝑠(ℳ), ℰ𝑠(ℳ)) = ((𝑏 , 𝑑), (𝑏 , 𝑑)). Therefore,  

=

[
 
 
 
 
 
 
 
 

(

 √1 −∏(∏(1 − 𝑏𝑞)
𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝓋𝑗𝑛

𝑗=1

𝑞

 ,∏(∏𝑑𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1
)

 ,

(

 √1 −∏(∏(1− 𝑏
𝑞
)
𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1

𝑞

 ,∏(∏𝑑
𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1
)

 

]
 
 
 
 
 
 
 
 

 

= [(√1 − (1 − 𝑏𝑞)
𝑞

 , 𝑑) , (√1 − (1 − (1 − 𝑏
𝑞
))

𝑞

 , 𝑑)] 

= (ℰ𝑠(ℳ), ℰ𝑠(ℳ)) = ℰ𝑠(𝒩) 

Hence 

q − ROF𝑆𝑓𝑡RWA(ℒ𝑠1(ℳ1),… , ℒ𝑠𝑛(ℳ𝑚)) = ℰ𝑠(𝒩) 

(ii) (Boundedness) As (ℒ𝑠𝑗(ℳ𝑖))

−

= [(min
𝑗
min
𝑖
{𝜇𝑖𝑗} , max

𝑗
max
𝑖
{𝜓𝑖𝑗}) ,

(min
𝑗
min
𝑖
{𝜇𝑖𝑗} ,max

𝑗
max
𝑖
{𝜓𝑖𝑗})] and  

(ℒ𝑠𝑗(ℳ𝑖))

+

= [(max
𝑗
max
𝑖
{𝜇𝑖𝑗} ,min

𝑗
min
𝑖
{𝜓𝑖𝑗}) , (max

𝑗
max
𝑖
{𝜇𝑖𝑗} , min

𝑗
min
𝑖
{𝜓𝑖𝑗})],  

ℒ𝑠𝑗(ℳ𝑖) = [(𝜇𝑖𝑗 , 𝜓𝑖𝑗) , (𝜇𝑖𝑗 , 𝜓𝑖𝑗)]. To prove that 

(ℒ𝑠𝑗(ℳ𝑖))
−

≤ 𝑞 − 𝑅𝑂𝐹𝑆𝑓𝑡𝑅𝑊𝐴 (ℒ𝑠1(ℳ1), ℒ𝑠2(ℳ2),… , ℒ𝑠𝑛(ℳ𝑚)) ≤ (ℒ𝑠𝑗(ℳ𝑖))
+

 

Since for each 𝑖 = 1,2,… ,𝑚 𝑎𝑛𝑑 𝑗 = 1,2,… , 𝑛, we have 

min
𝑗
min
𝑖
{𝜇𝑖𝑗} ≤ 𝜇𝑖𝑗 ≤ max

𝑗
max
𝑖
{𝜇𝑖𝑗} ⇔ 1 − max

𝑗
max
𝑖
{𝜇𝑖𝑗

𝑞} ≤ 1 − 𝜇𝑖𝑗
𝑞 ≤ 1 −

min
𝑗
min
𝑖
{𝜇𝑖𝑗

𝑞} 
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⇔∏(∏(1−max
𝑗
max
𝑖
{𝜇𝑖𝑗

𝑞})
𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1

≤∏(∏(1− 𝜇𝑖𝑗
𝑞)

𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1

≤∏(∏(1−min
𝑗
min
𝑖
{𝜇𝑖𝑗

𝑞})
𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1

 

⇔ ((1 − max
𝑗
max
𝑖
{𝜇𝑖𝑗

𝑞})
∑ 𝑤̿𝑖
𝑛
𝑖=1

)

∑ 𝑢𝑗
𝑚
𝑗=1

≤∏(∏(1 − 𝜇𝑖𝑗
𝑞)

𝑤̿𝑡𝑖
𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1

≤ ((1 −min
𝑗
min
𝑖
{𝜇𝑖𝑗

𝑞})
∑ 𝑤̿𝑖
𝑛
𝑖=1

)

∑ 𝑢𝑗
𝑚
𝑗=1

 

⇔ (1 − max
𝑗
max
𝑖
{𝜇𝑖𝑗

𝑞}) ≤∏(∏(1 − 𝜇𝑖𝑗
𝑞)

𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1

≤ (1 − min
𝑗
min
𝑖
{𝜇𝑖𝑗

𝑞}) 

⇔ 1 − (1 −min
𝑗
min
𝑖
{𝜇𝑖𝑗

𝑞}) ≤ 1 −∏(∏(1 − 𝜇𝑖𝑗
𝑞)

𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1

≤ 1− (1 − max
𝑗
max
𝑖
{𝜇𝑖𝑗

𝑞}) 

Hence 

min
𝑗
min
𝑖
{𝜇𝑖𝑗} ≤ √1 −∏(∏(1− 𝜇𝑖𝑗𝑞)

𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

𝑞

≤ max
𝑗
max
𝑖
{𝜇𝑖𝑗}                                                      (8.4) 

Now for each 𝑖 = 1,2,… , 𝑛 𝑎𝑛𝑑 𝑗 = 1,2,… ,𝑚, we have  

min
𝑗
min
𝑖
{𝜓𝑖𝑗} ≤ 𝜓𝑖𝑗 ≤ max

𝑗
max
𝑖
{𝜓𝑖𝑗} 

⇔∏(∏(min
𝑗
min
𝑖
{𝜓𝑖𝑗})

𝑤̿𝑖
𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1

≤∏(∏(𝜓𝑖𝑗)
𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1

≤∏(∏(max
𝑗
max
𝑖
{𝜓𝑖𝑗})

𝑤̿𝑖
𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1
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⇔ ((min
𝑗
min
𝑖
{𝜓𝑖𝑗})

∑ 𝑤̿𝑖
𝑚
𝑖=1

)

∑ 𝑢𝑗
𝑛
𝑗=1

≤∏(∏(𝜓𝑖𝑗)
𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1

≤ ((max
𝑗
max
𝑖
{𝜓𝑖𝑗})

∑ 𝑤̿𝑖
𝑚
𝑖=1

)

∑ 𝑢𝑗
𝑛
𝑗=1

 

this implies that 

min
𝑗
min
𝑖
{𝜓𝑖𝑗} ≤∏(∏(𝜓𝑖𝑗)

𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1

≤ max
𝑗
max
𝑖
{𝜓𝑖𝑗}                                     (8.5) 

Similarly we can show that  

min
𝑗
min
𝑖
{𝜇𝑖𝑗} ≤ √1 −∏(∏(1 − 𝜇𝑖𝑗

𝑞
)
𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1

𝑞

≤ max
𝑗
max
𝑖
{𝜇𝑖𝑗}                         (8.6) 

and 

min
𝑗
min
𝑖
{𝜓𝑖𝑗} ≤∏(∏(𝜓𝑖𝑗)

𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1

≤ max
𝑗
max
𝑖
{𝜓𝑖𝑗}                                        (8.7) 

So from 𝐸𝑞𝑠. (8.4), (8.5), (8.6) 𝑎𝑛𝑑 (8.7) we have 

min
𝑗
min
𝑖
{𝜇𝑖𝑗} ≤ √1 −∏(∏(1− 𝜇𝑖𝑗𝑞)

𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1

𝑞

≤ max
𝑗
max
𝑖
{𝜇𝑖𝑗} ; 

min
𝑗
min
𝑖
{𝜓𝑖𝑗} ≤∏(∏(𝜓𝑖𝑗)

𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1

≤ max
𝑗
max
𝑖
{𝜓𝑖𝑗} ; 

min
𝑗
min
𝑖
{𝜇𝑖𝑗} ≤ √1 −∏(∏(1 − 𝜇𝑖𝑗

𝑞
)
𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1

𝑞

≤ max
𝑗
max
𝑖
{𝜇𝑖𝑗}     𝑎𝑛𝑑 

min
𝑗
min
𝑖
{𝜓𝑖𝑗} ≤∏(∏(𝜓𝑖𝑗)

𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1

≤ max
𝑗
max
𝑖
{𝜓𝑖𝑗} 
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This implies that (ℒ𝑠𝑗(ℳ𝑖))
−

≤ 𝑞 −

𝑅𝑂𝐹𝑆𝑓𝑡𝑅𝑊𝐴 (ℒ𝑠1(ℳ1), ℒ𝑠2(ℳ2), … , ℒ𝑠𝑛(ℳ𝑚)) ≤ (ℒ𝑠𝑗(ℳ𝑖))
+

 

(iii) Monotonicity: Since ℰ𝑠𝑗(𝒩𝑖) = (ℰ𝑠𝑗(𝒩𝑖), ℰ𝑠𝑗(𝒩𝑖)) = ((𝑏𝑖𝑗, 𝑑𝑖𝑗) , (𝑏𝑖𝑗 , 𝑑𝑖𝑗))   

and 

ℒ𝑠𝑗(ℳ𝑖) = (ℒ𝑠𝑗(ℳ𝑖), ℒ𝑠𝑗(ℳ𝑖)) = ((𝜇𝑖𝑗 , 𝜓𝑖𝑗) , (𝜇𝑖𝑗 , 𝜓𝑖𝑗)). To show that ℰ𝑠𝑗(𝒩𝑖) ≤

 ℒ𝑠𝑗(ℳ𝑖) and ℰ𝑠𝑗(𝒩𝑖) ≤ ℒ𝑠𝑗(ℳ𝑖)(𝑖 = 1, 2, … ,𝑚) 𝑎𝑛𝑑 (𝑗 = 1, 2,… , 𝑛), so 

 𝑏𝑖𝑗 ≤ 𝜇𝑖𝑗 ⇒ 1 − 𝜇𝑖𝑗 ≤ 1− 𝑏𝑖𝑗 ⇒ 1− 𝜇𝑖𝑗
𝑞 ≤ 1 − 𝑏𝑖𝑗

𝑞  

⇒∏(∏(1− 𝜇𝑖𝑗
𝑞)

𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

≤∏(∏(1− 𝑏𝑖𝑗
𝑞)

𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

 

⇒ 1 −∏(∏(1− 𝑏𝑖𝑗
𝑞)

𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

≤ 1 −∏(∏(1− 𝜇𝑖𝑗
𝑞)

𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

 

√1 −∏(∏(1− 𝑏𝑖𝑗
𝑞)

𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

𝑞

≤ √1 −∏(∏(1− 𝜇𝑖𝑗𝑞)
𝑤̿𝑖

𝑛

𝑖=1

)

𝑢𝑗𝑚

𝑗=1

𝑞

                  (8.8) 

Next 

𝑑𝑖𝑗 ≥ 𝜓𝑖𝑗 ⇒ (∏(𝑑𝑖𝑗)
𝑤̿𝑖

𝑚

𝑖=1

) ≥∏(𝜓𝑖𝑗)
𝑤̿𝑖

𝑚

𝑖=1

 

⇒∏(∏(𝑑𝑖𝑗)
𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1

≥∏(∏(𝜓𝑖𝑗)
𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1

                                                    (8.9) 

Similarly, we can show that 

√1 −∏(∏(1− 𝑏𝑖𝑗
 𝑞
)
𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1

𝑞

≤ √1 −∏(∏(1 − 𝜇𝑖𝑗
 𝑞
)
𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1

𝑞

                  (8.10) 
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∏(∏(𝑑𝑖𝑗)
𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1

≥∏(∏(𝜓𝑖𝑗)
𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1

                                                          (8.11) 

Hence from Eqs. (8.8), (8.9), (8.10) 𝑎𝑛𝑑 (8.11), we get  

ℰ𝑠𝑗(𝒩𝑖) ≤  ℒ𝑠𝑗(ℳ𝑖)  𝑎𝑛𝑑  ℰ𝑠𝑗(𝒩𝑖) ≤ ℒ𝑠𝑗(ℳ𝑖) 

Therefore, 

𝑞 − 𝑅𝑂𝐹𝑆𝑓𝑡𝑅𝑊𝐴 (ℰ𝑠1(ℳ1), ℰ𝑠2(ℳ2),… , ℰ𝑠𝑛(ℳ𝑚))

≤  𝑞 − 𝑅𝑂𝐹𝑆𝑓𝑡𝑅𝑊𝐴 (ℒ𝑠1(ℳ1), ℒ𝑠2(ℳ2),… , ℒ𝑠𝑛(ℳ𝑚)) 

𝒊𝒗: (𝑺𝒉𝒊𝒇𝒕 𝑰𝒏𝒗𝒂𝒓𝒊𝒂𝒏𝒄𝒆) As ℰ𝑠(ℳ) = (ℰ𝑠(ℳ), ℰ𝑠(ℳ)) = ((𝑏 , 𝑑), (𝑏 , 𝑑)) is any 

q-ROF𝑆𝑓𝑡RV and ℒ𝑠𝑗(ℳ𝑖) = (ℒ𝑠𝑗(ℳ𝑖), ℒ𝑠𝑗(ℳ𝑖)) = ((𝜇𝑖𝑗 , 𝜓𝑖𝑗) , (𝜇𝑖𝑗 , 𝜓𝑖𝑗)) are the 

collection of q-ROF𝑆𝑓𝑡RVs, so 

ℒ𝑠1(ℳ1) ⨁ ℰ𝑠(ℳ) = [(ℒ𝑠1(ℳ1) ⨁ ℰ𝑠(ℳ),ℒ𝑠𝑗(ℳ𝑖) ⨁ ℰ𝑠(ℳ))] 

As 

ℒ𝑠1(ℳ1) ⨁ ℰ𝑠(ℳ) = (√1 − (1 − 𝜇11
𝑞)(1 − 𝑏 𝑞)

𝑞
  , 𝜓11𝑑) 

Therefore, 

q − ROF𝑆𝑓𝑡RWA(ℒ𝑠1(ℳ1)⨁ℰ𝑠(ℳ), ℒ𝑠2(ℳ2)⨁ℰ𝑠(ℳ),… , ℒ𝑠3(ℳ3)⨁ℰ𝑠(ℳ))

= [⨁𝑗=1
𝑛 𝓋𝑗 {⨁𝑖=1

𝑚 𝑡𝑖 (ℒ𝑠𝑗(ℳ𝑖)⨁ℰ𝑠(ℳ))} ,⨁𝑗=1
𝑛 𝓋𝑗 {⨁𝑖=1

𝑚 𝑡𝑖 (ℒ𝑠𝑗(ℳ𝑖)⨁ℰ𝑠(ℳ))}] 

=

[
 
 
 
 
 
 
 
 

(

 √1 −∏(∏(1− 𝜇𝑖𝑗𝑞)
𝑤̿𝑖
(1 − 𝑏𝑞)

𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1

𝑞

 ,∏(∏𝜓𝑖𝑗
𝑤̿𝑖𝑑𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1
)

 ,

(

 √1 −∏(∏(1 − 𝜇𝑖𝑗
 𝑞
)
𝑤̿𝑖
(1 − 𝑏

 𝑞
)
𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1

𝑞

 ,∏(∏𝜓𝑖𝑗
 𝑤̿𝑖
𝑑
 𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1
)

 

]
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=

[
 
 
 
 
 
 
 
 

(

 √1 − (1 − 𝑏𝑞)∏(∏(1 − 𝜇𝑖𝑗𝑞)
𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1

𝑞

 , 𝑑∏(∏𝜓𝑖𝑗
𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1
)

 ,

(

 √1 − (1 − 𝑏
 𝑞
)∏(∏(1 − 𝜇𝑖𝑗

 𝑞
)
𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1

𝑞

 , 𝑑∏(∏𝜓𝑖𝑗
 𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1
)

 

]
 
 
 
 
 
 
 
 

 

=

[
 
 
 
 
 
 
 
 

(

 √1 −∏(∏(1− 𝜇𝑖𝑗𝑞)
𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1

𝑞

 ,∏(∏𝜓𝑖𝑗
𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1
)

 ⨁(𝑏, 𝑑),

(

 √1 −∏(∏(1 − 𝜇𝑖𝑗
 𝑞
)
𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1

𝑞

 ,∏(∏𝜓𝑖𝑗
 𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1
)

 ⨁(𝑏, 𝑑)

]
 
 
 
 
 
 
 
 

 

=

[
 
 
 
 
 
 
 
 

(

 √1 −∏(∏(1− 𝜇𝑖𝑗𝑞)
𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1

𝑞

 ,∏(∏𝜓𝑖𝑗
𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1
)

 ,

(

 √1 −∏(∏(1 − 𝜇𝑖𝑗
 𝑞
)
𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1

𝑞

 ,∏(∏𝜓𝑖𝑗
 𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1
)

 

]
 
 
 
 
 
 
 
 

⨁[(𝑏, 𝑑), (𝑏, 𝑑)] 

= q − ROF𝑆𝑓𝑡RWA(ℒ𝑠1(ℳ1), ℒ𝑠2(ℳ2), … , ℒ𝑠3(ℳ3))⨁ℰ𝑠(ℳ) 

Therefore proved is completed. 

𝒊𝒗: (𝑯𝒐𝒎𝒐𝒈𝒆𝒏𝒆𝒊𝒕𝒚) For a real number 𝜆 > 0 and ℒ𝑠𝑗(ℳ𝑖) = (ℒ𝑠𝑗(ℳ𝑖), ℒ𝑠𝑗(ℳ𝑖)) 

be a q-ROF𝑆𝑓𝑡RVs, then 

𝜆ℒ𝑠𝑗(ℳ𝑖) = (𝜆 ℒ𝑠𝑗(ℳ𝑖), 𝜆 ℒ𝑠𝑗(ℳ𝑖)) 

As 

𝜆 ℒ𝑠1(ℳ1) = [(√1 − (1 − 𝜇11𝑞)
𝜆𝑞

, 𝜓11
𝜆) , (√1 − (1 − 𝜇11

 𝑞
)
𝜆𝑞

, 𝜓11
 𝜆
)] 

Now 
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q − ROF𝑆𝑓𝑡RWA(𝜆ℑℯ11 , 𝜆ℑℯ12 , … , 𝜆ℑℯ𝑛𝑚)

=

[
 
 
 
 
 
 
 
 

(

 √1 −∏(∏(1− 𝜇𝑖𝑗𝑞)
𝜆𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1

𝑞

 ,∏(∏𝜓𝑖𝑗
𝜆𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1
)

 ,

(

 √1 −∏(∏(1 − 𝜇𝑖𝑗
 𝑞
)
𝜆𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1

𝑞

 ,∏(∏𝜓𝑖𝑗
 𝜆𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1
)

 

]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 

(

 
 
√1 − {∏(∏(1− 𝜇𝑖𝑗𝑞)

𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1

}

𝜆
𝑞

 , {∏(∏𝜓𝑖𝑗
𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1

}

𝜆

)

 
 
,

(

 
 
√1 − {∏(∏(1 − 𝜇𝑖𝑗

 𝑞
)
𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1

}

𝜆
𝑞

 , {∏(∏𝜓𝑖𝑗
 𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1

}

𝜆

)

 
 

]
 
 
 
 
 
 
 
 
 

= 𝜆 q − ROF𝑆𝑓𝑡RWA(ℑℯ11 , ℑℯ12 , … , ℑℯ𝑛𝑚) 

Hence, the proof is completed. 

8.3.1.5.  Remark 

(a) If the value of rung 𝑞 = 1, then the proposed q-ROF𝑆𝑓𝑡RWA operator 

reduced to IF𝑆𝑓𝑡RWA operator. 

(b) If the value of rung 𝑞 = 2, then the proposed q-ROF𝑆𝑓𝑡RWA operator 

reduced to PyF𝑆𝑓𝑡RWA operator. 

(c) If there is only one soft parameter 𝑠1; (𝑚𝑒𝑎𝑛𝑠 𝑛 = 1), then the 

proposed q-ROF𝑆𝑓𝑡RWA operator reduced to q-ROFRWA operator. 

8.3.2. q-Rung orthopair fuzzy soft rough ordered weighted averaging 

operator 
In this subsection the detail study of q-ROF𝑆𝑓𝑡ROWA operator and their basic 

properties such as Idempotency, Boundedness and Monotonicity etc. are investigated. 

8.3.2.1.  Definition 

Let ℒ𝑠𝑗(ℳ𝑖) = (ℒ𝑠𝑗(ℳ𝑖), ℒ𝑠𝑗(ℳ𝑖)) (𝑖 = 1,2, … ,𝑚, 𝑗 = 1,2,… , 𝑛) be the collection 

of q-ROF𝑆𝑓𝑡RVs. Let 𝑤̿ = (𝑤̿1, 𝑤̿2, … , 𝑤̿𝑚)
𝑇   𝑎𝑛𝑑  𝑢̿ = (𝑢̿1, 𝑢̿2, … , 𝑢̿𝑛)

𝑇  be the weight 
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vectors of experts 𝓀𝑖 and parameters 𝑠𝑗 with ∑ 𝑤̿𝑖
𝑚
𝑖=1 = 1, ∑ 𝑢̿𝑗

𝑛
𝑗=1 = 1 and 0 ≤

𝑤̿𝑖 , 𝑢̿𝑗 ≤ 1 respectively. The q-ROF𝑆𝑓𝑡ROWA operator is defined as: 

q − ROF𝑆𝑓𝑡ROWA(ℒ𝑠1(ℳ1),… , ℒ𝑠𝑛(ℳ𝑚))

= (⨁𝑗=1
𝑛 𝑢̿𝑗 (⨁𝑖=1

𝑚 𝑤̿𝑖ℒ𝛿𝑠𝑗(ℳ𝑖)) ,⨁𝑗=1
𝑛 𝑢̿𝑗 (⨁𝑖=1

𝑚 𝑤̿𝑖ℒ𝛿𝑠𝑗(ℳ𝑖))  ) 

In view of above Definition 8.3.2.1, the aggregated result for q-ROF𝑆𝑓𝑡ROWA is given 

in the following Theorem 8.3.2.2. 

8.3.2.2.  Theorem 

Let ℒ𝑠𝑗(ℳ𝑖) = (ℒ𝑠𝑗(ℳ𝑖), ℒ𝑠𝑗(ℳ𝑖)) (𝑖 = 1,2, … ,𝑚, 𝑗 = 1,2,… , 𝑛) be the collection 

of q-ROF𝑆𝑓𝑡RVs. Let 𝑤̿ = (𝑤̿1, 𝑤̿2, … , 𝑤̿𝑚)
𝑇   𝑎𝑛𝑑  𝑢̿ = (𝑢̿1, 𝑢̿2, … , 𝑢̿𝑛)

𝑇  be the weight 

vectors of experts 𝓀𝑖 and parameters 𝑠𝑗 with ∑ 𝑤̿𝑖
𝑚
𝑖=1 = 1, ∑ 𝑢̿𝑗

𝑛
𝑗=1 = 1 and 0 ≤

𝑤̿𝑖 , 𝑢̿𝑗 ≤ 1 respectively. Then q-ROF𝑆𝑓𝑡ROWA operator is given as: 

q − ROF𝑆𝑓𝑡ROWA(ℒ𝑠1(ℳ1),… , ℒ𝑠𝑛(ℳ𝑚))

= (⨁𝑗=1
𝑛 𝑢̿𝑗 (⨁𝑖=1

𝑚 𝑤̿𝑖ℒ𝛿𝑠𝑗(ℳ𝑖)) ,⨁𝑗=1
𝑛 𝑢̿𝑗 (⨁𝑖=1

𝑚 𝑤̿𝑖ℒ𝛿𝑠𝑗(ℳ𝑖))  ) 

=

[
 
 
 
 
 
 
 
 

(

 √1 −∏(∏(1− 𝜇𝛿𝑖𝑗𝑞)
𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1

𝑞

 ,∏(∏𝜓𝛿𝑖𝑗
𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1
)

 ,

(

 √1 −∏(∏(1 − 𝜇𝛿𝑖𝑗
𝑞
)
𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1

𝑞

 ,∏(∏𝜓𝛿𝑖𝑗
 𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1
)

 

]
 
 
 
 
 
 
 
 

, 

where ℒ𝛿𝑠𝑗(ℳ𝑖) = (ℒ𝛿𝑠𝑗(ℳ𝑖), ℒ𝛿𝑠𝑗(ℳ𝑖)) denotes the largest value of the permutation 

from 𝑖𝑡ℎ 𝑟𝑜𝑤 and 𝑗𝑡ℎ  𝑐𝑜𝑙𝑢𝑚𝑛 of the collection 𝑖 × 𝑗 q-ROF𝑆𝑓𝑡RNs ℒ𝑠𝑗(ℳ𝑖) =

(ℒ𝑠𝑗(ℳ𝑖), ℒ𝑠𝑗(ℳ𝑖)). 
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8.3.2.3.  Example 

Consider the above Table 8.3 of Example 8.3.1.3, for the collection q-ROF𝑆𝑓𝑡RVs 

ℒ𝑠𝑗(ℳ𝑖) = (ℒ𝑠𝑗(ℳ𝑖), ℒ𝑠𝑗(ℳ𝑖)) and the new ordered of tabular representation of 

ℒ𝑠𝑗(ℳ𝑖) through score function is given in Table 8.4, that is 

Table 8.4,  Tabular representation of  ℒ𝛿𝑠𝑗(ℳ𝑖) = (ℒ𝛿𝑠𝑗(ℳ𝑖), ℒ𝛿𝑠𝑗(ℳ𝑖)) 

ℒ 𝑠1 𝑠2 

𝓀1 ((0.9,0.2), (0.8,0.4)) ((0.92,0.3), (0.6,0.3)) 

𝓀2 ((0.92,0.25), (0.65,0.15)) ((0.55,0.2), (0.76,0.14)) 

𝓀3 ((0.7,0.1), (0.2,0.75)) ((0.4,0.85), (0.88,0.12)) 

 

Now 

q − ROF𝑆𝑓𝑡ROWA(ℒ𝑠1(ℳ1),… , ℒ𝑠𝑛(ℳ𝑚))

= [⨁𝑗=1
2 𝑢̿𝑗 (⨁𝑖=1

3 𝑤̿𝑖ℒ𝛿𝑠𝑗(ℳ𝑖)) ,⨁𝑗=1
2 𝑢̿𝑗 (⨁𝑖=1

3 𝑤̿𝑖ℒ𝛿𝑠𝑗(ℳ𝑖))  ] 

q − ROF𝑆𝑓𝑡ROWA (ℒ𝑠1(ℳ1), … , ℒ𝑠𝑛(ℳ𝑚))

= [(0.838595,0.261642), (0.727318,0.255189)]. 

From the analysis of Theorem 8.3.2.2, q-ROF𝑆𝑓𝑡ROWA operator has the following 

properties. 

8.3.2.4.  Theorem 

Let ℒ𝑠𝑗(ℳ𝑖) = (ℒ𝑠𝑗(ℳ𝑖), ℒ𝑠𝑗(ℳ𝑖)) (𝑖 = 1,2, … ,𝑚, 𝑗 = 1,2,… , 𝑛) be the collection 

of q-ROF𝑆𝑓𝑡RVs. Let 𝑤̿ = (𝑤̿1, 𝑤̿2, … , 𝑤̿𝑚)
𝑇   𝑎𝑛𝑑  𝑢̿ = (𝑢̿1, 𝑢̿2, … , 𝑢̿𝑛)

𝑇  be the weight 

vectors of experts 𝓀𝑖 and parameters 𝑠𝑗 with ∑ 𝑤̿𝑖
𝑚
𝑖=1 = 1, ∑ 𝑢̿𝑗

𝑛
𝑗=1 = 1 and 0 ≤

𝑤̿𝑖 , 𝑢̿𝑗 ≤ 1 respectively. Then the following properties hold for q-ROF𝑆𝑓𝑡ROWA 

operator: 
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(i) (Idempotency) If ℒ𝛿𝑠𝑗(ℳ𝑖) = ℰ𝑠(𝒩) (for all 𝑖 = 1,2,… ,𝑚  𝑎𝑛𝑑 𝑗 =

1,2,… 𝑛), where ℰ𝑠(ℳ) = (ℰ𝑠(ℳ), ℰ𝑠(ℳ)) = ((𝑏 , 𝑑), (𝑏 , 𝑑)). Then 

𝑞 − 𝑅𝑂𝐹𝑆𝑓𝑡𝑅𝑂𝑊𝐴(ℒ𝑠1(ℳ1), ℒ𝑠2(ℳ2), … , ℒ𝑠𝑛(ℳ𝑚)) = ℰ𝑠(ℳ) 

(ii) (Boundedness)  

Let (ℒ𝛿𝑠𝑗(ℳ𝑖))
−

= (min
𝑗
min
𝑖
ℒ𝛿𝑠𝑗(ℳ𝑖) , max

𝑗
max
𝑖
ℒ𝛿𝑠𝑗(ℳ𝑖)) and 

(ℒ𝛿𝑠𝑗(ℳ𝑖))
+

= (max
𝑗
max
𝑖
ℒ𝛿𝑠𝑗(ℳ𝑖) , min

𝑗
min
𝑖
ℒ𝛿𝑠𝑗(ℳ𝑖)). Then 

(ℒ𝛿𝑠𝑗(ℳ𝑖))
−

≤ 𝑞 − 𝑅𝑂𝐹𝑆𝑓𝑡𝑅𝑂𝑊𝐴(ℒ𝑠1(ℳ1), ℒ𝑠2(ℳ2), … , ℒ𝑠𝑛(ℳ𝑚))

≤ (ℒ𝛿𝑠𝑗(ℳ𝑖))
+

. 

(iii) (Monotonicity) Let ℰ𝑠𝑗(𝒩𝑖) = (ℰ𝑠𝑗(𝒩𝑖), ℰ𝑠𝑗(𝒩𝑖)) (𝑖 = 1,2,… ,𝑚, 𝑗 =

1,2,… , 𝑛) be another collection of q-ROF𝑆𝑓𝑡RVs such that ℰ𝑠𝑗(𝒩𝑖) ≤

 ℒ𝑠𝑗(ℳ𝑖) and ℰ𝑠𝑗(𝒩𝑖) ≤ ℒ𝑠𝑗(ℳ𝑖). Then 

𝑞 − 𝑅𝑂𝐹𝑆𝑓𝑡𝑅𝑂𝑊𝐴 (ℰ𝑠1(ℳ1), ℰ𝑠2(ℳ2), … , ℰ𝑠𝑛(ℳ𝑚))

≤  𝑞 − 𝑅𝑂𝐹𝑆𝑓𝑡𝑅𝑂𝑊𝐴(ℒ𝑠1(ℳ1), ℒ𝑠2(ℳ2), … , ℒ𝑠𝑛(ℳ𝑚)). 

(iv) (Shift invariance) Let ℰ𝑠(𝒩) = (ℰ𝑠(𝒩), ℰ𝑠(𝒩)) = ((𝑏 , 𝑑), (𝑏 , 𝑑)) be 

any other 𝑞 − 𝑅𝑂𝐹𝑆𝑓𝑡𝑅𝑉. Then 

𝑞 − 𝑅𝑂𝐹𝑆𝑓𝑡𝑅𝑂𝑊𝐴(ℒ𝑠1(ℳ1)⨁ℰ𝑠(𝒩), ℒ𝑠2(ℳ2)⨁ℰ𝑠(𝒩),… , ℒ𝑠𝑛(ℳ𝑚)⨁ℰ𝑠(𝒩))

= 𝑞 − 𝑅𝑂𝐹𝑆𝑓𝑡𝑅𝑂𝑊𝐴(ℒ𝑠1(ℳ1), ℒ𝑠2(ℳ2), … , ℒ𝑠𝑛(ℳ𝑚))⨁ℰ𝑠(𝒩). 

(v) (Homogeneity): For any real number 𝜆 > 0; 

𝑞 − 𝑅𝑂𝐹𝑆𝑓𝑡𝑅𝑂𝑊𝐴 (𝜆ℒ𝑠1(ℳ1), 𝜆ℒ𝑠2(ℳ2), … , 𝜆ℒ𝑠𝑛(ℳ𝑚))

= 𝜆 𝑞

− 𝑅𝑂𝐹𝑆𝑓𝑡𝑅𝑂𝑊𝐴(ℒ𝑠1(ℳ1), ℒ𝑠2(ℳ2), … , ℒ𝑠𝑛(ℳ𝑚)). 

Proof: Proof follows from Theorem 8.3.1.4. 

8.3.2.5.  Remark 
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(a) If the value of rung 𝑞 = 1, then the proposed q-ROF𝑆𝑓𝑡ROWA operator 

reduced to IF𝑆𝑓𝑡ROWA operator. 

(b) If the value of rung 𝑞 = 2, then the proposed q-ROF𝑆𝑓𝑡ROWA operator 

reduced to PyF𝑆𝑓𝑡ROWA operator. 

(c) If there is only one soft parameter 𝑠1; (𝑚𝑒𝑎𝑛𝑠 𝑛 = 1), then the proposed 

q-ROF𝑆𝑓𝑡ROWA operator reduced to q-ROFROWA operator. 

8.3.3. q-Rung orthopair fuzzy soft rough hybrid averaging operator 
From the analysis of q-ROF𝑆𝑓𝑡RWA and q-ROF𝑆𝑓𝑡ROWA operators, it is observed 

that q-ROF𝑆𝑓𝑡RWA operator weight the q-ROFVs while utilizing the score function q-

ROF𝑆𝑓𝑡ROWA operator weight the order position as well. However, q-ROF𝑆𝑓𝑡RHA 

operator do the both on the same time means weighting the numbers and order. The 

basic properties such as Idempotency, Boundedness and Monotonicity etc. are also 

presented in the same section with detail. 

8.3.3.1.  Definition 

Let ℒ𝑠𝑗(ℳ𝑖) = (ℒ𝑠𝑗(ℳ𝑖), ℒ𝑠𝑗(ℳ𝑖)) (𝑖 = 1,2, … ,𝑚, 𝑗 = 1,2,… , 𝑛) be the collection 

of q-ROF𝑆𝑓𝑡RVs. Let 𝓋 = (𝓋1, 𝓋2, … ,𝓋𝑚)
𝑇   𝑎𝑛𝑑  𝑟 = (𝑟1, 𝑟2, … , 𝑟𝑛)

𝑇  be the weight 

vectors of experts 𝓀𝑖 and parameters 𝑠𝑗 with ∑ 𝓋𝑖
𝑚
𝑖=1 = 1, ∑ 𝑟𝑗

𝑛
𝑗=1 = 1 and 0 ≤ 𝓋𝑖 , 𝑟𝑗 ≤

1. Consider 𝑤̿ = (𝑤̿1, 𝑤̿2, … , 𝑤̿𝑚)
𝑇  𝑎𝑛𝑑  𝑢̿ = (𝑢̿1, 𝑢̿2, … , 𝑢̿𝑛)

𝑇 be the associated 

weight vectors of experts 𝓀𝑖 and parameters 𝑠𝑗 with ∑ 𝑤̿𝑖
𝑚
𝑖=1 = 1, ∑ 𝑢̿𝑗

𝑛
𝑗=1 = 1 and 0 ≤

𝑤̿𝑖 , 𝑢̿𝑗 ≤ 1 respectively. The q-ROF𝑆𝑓𝑡RHA operator is defined as:  

q − ROF𝑆𝑓𝑡RHA (ℒ𝑠1(ℳ1),… , ℒ𝑠𝑛(ℳ𝑚))

= (⨁𝑗=1
𝑛 𝑢̿𝑗 (⨁𝑖=1

𝑚 𝑤̿𝑖ℒ𝛿𝑠𝑗
∗ (ℳ𝑖)) ,⨁𝑗=1

𝑛 𝑢̿𝑗 (⨁𝑖=1
𝑚 𝑤̿𝑖ℒ𝛿𝑠𝑗

∗ (ℳ𝑖))  ) 

From the above definition the aggregated result for q-ROF𝑆𝑓𝑡RHA operator is given in 

the following Theorem 8.3.3.1. 
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8.3.3.2.  Theorem 

Let ℒ𝑠𝑗(ℳ𝑖) = (ℒ𝑠𝑗(ℳ𝑖), ℒ𝑠𝑗(ℳ𝑖)) (𝑖 = 1,2, … ,𝑚, 𝑗 = 1,2,… , 𝑛) be the collection 

of q-ROF𝑆𝑓𝑡RVs. Let 𝓋 = (𝓋1, 𝓋2, … ,𝓋𝑚)
𝑇   𝑎𝑛𝑑  𝑟 = (𝑟1, 𝑟2, … , 𝑟𝑛)

𝑇  be the weight 

vectors of experts 𝓀𝑖 and parameters 𝑠𝑗 with ∑ 𝓋𝑖
𝑚
𝑖=1 = 1, ∑ 𝑟𝑗

𝑛
𝑗=1 = 1 and 0 ≤ 𝓋𝑖 , 𝑟𝑗 ≤

1. Consider 𝑤̿ = (𝑤̿1, 𝑤̿2, … , 𝑤̿𝑚)
𝑇  𝑎𝑛𝑑  𝑢̿ = (𝑢̿1, 𝑢̿2, … , 𝑢̿𝑛)

𝑇 be the associated 

weight vectors of experts 𝓀𝑖 and parameters 𝑠𝑗 with ∑ 𝑤̿𝑖
𝑚
𝑖=1 = 1, ∑ 𝑢̿𝑗

𝑛
𝑗=1 = 1 and 0 ≤

𝑤̿𝑖 , 𝑢̿𝑗 ≤ 1 respectively. Then q-ROF𝑆𝑓𝑡RHA operator is given as: 

q − ROF𝑆𝑓𝑡RHA (ℒ𝑠1(ℳ1),… , ℒ𝑠𝑛(ℳ𝑚))

= (⨁𝑗=1
𝑛 𝑢̿𝑗 (⨁𝑖=1

𝑚 𝑤̿𝑖ℒ𝛿𝑠𝑗
∗ (ℳ𝑖)) ,⨁𝑗=1

𝑛 𝑢̿𝑗 (⨁𝑖=1
𝑚 𝑤̿𝑖ℒ𝛿𝑠𝑗

∗ (ℳ𝑖))  ) 

=

[
 
 
 
 
 
 
 
 

(

 √1 −∏(∏(1− 𝜇𝛿𝑖𝑗
∗ 𝑞)

𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1

𝑞

 ,∏(∏𝜓𝛿𝑖𝑗
∗ 𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1
)

 ,

(

 √1 −∏(∏(1− 𝜇𝛿𝑖𝑗
∗

𝑞
)
𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1

𝑞

 ,∏(∏𝜓𝛿𝑖𝑗
∗

 𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1
)

 

]
 
 
 
 
 
 
 
 

, 

Where  ℒ𝛿𝑠𝑗
∗ (ℳ𝑖) = (ℒ𝛿𝑠𝑗

∗ (ℳ𝑖), ℒ𝛿𝑠𝑗
∗ (ℳ𝑖)) = (𝑛𝓋𝑖𝑟𝑗ℒ𝑠𝑗(ℳ𝑖), 𝑛𝓋𝑖𝑟𝑗ℒ𝑠𝑗(ℳ𝑖)) denotes 

the largest value of the permutation from 𝑖𝑡ℎ 𝑟𝑜𝑤 and 𝑗𝑡ℎ  𝑐𝑜𝑙𝑢𝑚𝑛 of the collection 𝑖 ×

𝑗 q-ROF𝑆𝑓𝑡RVs ℒ𝑠𝑗(ℳ𝑖) = (ℒ𝑠𝑗(ℳ𝑖), ℒ𝑠𝑗(ℳ𝑖)) and 𝑛 represent the balancing 

coefficient. 

 

8.3.3.3.  Example 

Consider the above Table 8.3 of Example 8.3.1.3, for the collection q-ROF𝑆𝑓𝑡RVs 

ℒ𝑠𝑗(ℳ𝑖) = (ℒ𝑠𝑗(ℳ𝑖), ℒ𝑠𝑗(ℳ𝑖)) with 𝓋 = (0.33,0.37,0.3)𝑇   𝑎𝑛𝑑  𝑟 =

(0.42,0.58)𝑇  be the weight vectors of experts 𝓀𝑖 and parameters  𝑠𝑗. Consider 𝑤̿ =

(0.36,0.34,0.3)𝑇   𝑎𝑛𝑑  𝑢̿ = (0.55,0.45)𝑇  be the associated weight vectors of experts 
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𝓀𝑖 and parameters  𝑠𝑗. The tabular representation of ℒ𝛿𝑠𝑗
∗ (ℳ𝑖) through operation law 

and score function are given in Tables 8.5 𝑎𝑛𝑑 8.6 as ℒ𝛿𝑠𝑗
∗ (ℳ𝑖) = (ℒ𝛿𝑠𝑗

∗ (ℳ𝑖), ℒ𝛿𝑠𝑗
∗ (ℳ𝑖)) =

(𝑛𝓋𝑖𝑟𝑗ℒ𝑠𝑗(ℳ𝑖), 𝑛𝓋𝑖𝑟𝑗ℒ𝑠𝑗(ℳ𝑖)): 

Table 8.5, Tabular representation by using operation law  for ℒ𝛿𝑠𝑗
∗ (ℳ𝑖) = (ℒ𝛿𝑠𝑗

∗ (ℳ𝑖), ℒ𝛿𝑠𝑗
∗ (ℳ𝑖)) 

ℒ 𝑠1 𝑠2 

𝓀1 ((0.7483,0.1247), (0.6366,0.1663)) ((0.4629,0.1148), (0.6561,0.0804)) 

𝓀2 ((0.5624,0.0466), (0.1551,0.3497)) ((0.8533,0.1931), (0.5254,0.1931)) 

𝓀3 ((0.7574,0.0945), (0.4853,0.0567)) ((0.3238,0.4437), (0.7661,0.0626)) 

 

 

Table 8.6, Tabular representation after using Score function ℒ𝛿𝑠𝑗
∗ (ℳ𝑖) = (ℒ𝛿𝑠𝑗

∗ (ℳ𝑖), ℒ𝛿𝑠𝑗
∗ (ℳ𝑖)) 

ℒ 𝑠1 𝑠2 

𝓀1 ((0.7483,0.1247), (0.6366,0.1663)) ((0.8533,0.1931), (0.5254,0.1931)) 

𝓀2 ((0.7574,0.0945), (0.4853,0.0567)) ((0.3238,0.4437), (0.7661,0.0626)) 

𝓀3 ((0.5624,0.0466), (0.1551,0.3497)) ((0.4629,0.1148), (0.6561,0.0804)) 

 

 

Now q − ROF𝑆𝑓𝑡RHA (ℒ𝑠1(ℳ1),… , ℒ𝑠𝑛(ℳ𝑚)) = (⨁𝑗=1
2 𝑢̿𝑗 (⨁𝑖=1

3 𝑤̿𝑖ℒ𝛿𝑠𝑗
∗ (ℳ𝑖)) ,

⨁𝑗=1
2 𝑢̿𝑗 (⨁𝑖=1

3 𝑤̿𝑖ℒ𝛿𝑠𝑗
∗ (ℳ𝑖))  ) 

q − ROF𝑆𝑓𝑡RHA (ℒ𝑠1(ℳ1),… , ℒ𝑠𝑛(ℳ𝑚))

= [(0.701609,0.129765), (0.600425,0.122969)]. 

From the analysis of Theorem 8.3.3.2, q-ROF𝑆𝑓𝑡RHA operator has the following 

properties.  
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8.3.3.4.  Theorem 

Let ℒ𝑠𝑗(ℳ𝑖) = (ℒ𝑠𝑗(ℳ𝑖), ℒ𝑠𝑗(ℳ𝑖)) (𝑖 = 1,2, … ,𝑚, 𝑗 = 1,2,… , 𝑛) be the collection 

of q-ROF𝑆𝑓𝑡RVs. Let 𝓋 = (𝓋1, 𝓋2, … ,𝓋𝑚)
𝑇   𝑎𝑛𝑑  𝑟 = (𝑟1, 𝑟2, … , 𝑟𝑛)

𝑇  be the weight 

vectors of experts 𝓀𝑖 and parameters 𝑠𝑗 with ∑ 𝓋𝑖
𝑚
𝑖=1 = 1, ∑ 𝑟𝑗

𝑛
𝑗=1 = 1 and 0 ≤ 𝓋𝑖, 𝑟𝑗 ≤

1. Consider 𝑤̿ = (𝑤̿1, 𝑤̿2, … , 𝑤̿𝑚)
𝑇  𝑎𝑛𝑑  𝑢̿ = (𝑢̿1, 𝑢̿2, … , 𝑢̿𝑛)

𝑇 be the associated 

weight vectors of experts 𝓀𝑖 and parameters 𝑠𝑗 with ∑ 𝑤̿𝑖
𝑚
𝑖=1 = 1, ∑ 𝑢̿𝑗

𝑛
𝑗=1 = 1 and 0 ≤

𝑤̿𝑖 , 𝑢̿𝑗 ≤ 1 respectively. Then the following properties hold for q-ROF𝑆𝑓𝑡RHA 

operator: 

(i) (Idempotency) If ℒ𝛿𝑠𝑗
∗ (ℳ𝑖) = ℰ𝑠(𝒩) (for all 𝑖 = 1,2,… ,𝑚  𝑎𝑛𝑑 𝑗 =

1,2,… 𝑛), where ℰ𝑠(ℳ) = (ℰ𝑠(ℳ), ℰ𝑠(ℳ)) = ((𝑏 , 𝑑), (𝑏 , 𝑑)). Then 

𝑞 − 𝑅𝑂𝐹𝑆𝑓𝑡𝑅𝐻𝐴 (ℒ𝑠1(ℳ1), ℒ𝑠2(ℳ2),… , ℒ𝑠𝑛(ℳ𝑚)) = ℰ𝑠(ℳ) 

(ii) (Boundedness) Let (ℒ𝑠𝑗(ℳ𝑖))
−

= (min
𝑗
min
𝑖
ℒ𝑠𝑗(ℳ𝑖) , max

𝑗
max
𝑖
ℒ𝑠𝑗(ℳ𝑖)) and 

(ℒ𝑠𝑗(ℳ𝑖))
+

= (max
𝑗
max
𝑖
ℒ𝑠𝑗(ℳ𝑖) ,min

𝑗
min
𝑖
ℒ𝑠𝑗(ℳ𝑖)). Then 

(ℒ𝑠𝑗(ℳ𝑖))
−

≤ 𝑞 − 𝑅𝑂𝐹𝑆𝑓𝑡𝑅𝐻𝐴 (ℒ𝑠1(ℳ1), ℒ𝑠2(ℳ2),… , ℒ𝑠𝑛(ℳ𝑚))

≤ (ℒ𝑠𝑗(ℳ𝑖))
+

. 

(iii) (Monotonicity): Let ℰ𝑠𝑗(𝒩𝑖) = (ℰ𝑠𝑗(𝒩𝑖), ℰ𝑠𝑗(𝒩𝑖)) (𝑖 = 1,2, … ,𝑚, 𝑗 =

1,2, … , 𝑛) be another collection of q-ROF𝑆𝑓𝑡RVs such that ℰ𝑠𝑗(𝒩𝑖) ≤

 ℒ𝑠𝑗(ℳ𝑖) and ℰ𝑠𝑗(𝒩𝑖) ≤ ℒ𝑠𝑗(ℳ𝑖). Then 

𝑞 − 𝑅𝑂𝐹𝑆𝑓𝑡𝑅𝐻𝐴 (ℰ𝑠1(ℳ1), ℰ𝑠2(ℳ2),… , ℰ𝑠𝑛(ℳ𝑚))

≤  𝑞 − 𝑅𝑂𝐹𝑆𝑓𝑡𝑅𝐻𝐴 (ℒ𝑠1(ℳ1), ℒ𝑠2(ℳ2),… , ℒ𝑠𝑛(ℳ𝑚)). 

(iv) (Shift invariance): Let ℰ𝑠(𝒩) = (ℰ𝑠(𝒩), ℰ𝑠(𝒩)) = ((𝑏 , 𝑑), (𝑏 , 𝑑)) be 

any other 𝑞 − 𝑅𝑂𝐹𝑆𝑓𝑡𝑅𝑉. Then 
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𝑞 − 𝑅𝑂𝐹𝑆𝑓𝑡𝑅𝐻𝐴 (ℒ𝑠1(ℳ1)⨁ℰ𝑠(𝒩), ℒ𝑠2(ℳ2)⨁ℰ𝑠(𝒩),… , ℒ𝑠𝑛(ℳ𝑚)⨁ℰ𝑠(𝒩))

= 𝑞 − 𝑅𝑂𝐹𝑆𝑓𝑡𝑅𝐻𝐴 (ℒ𝑠1(ℳ1), ℒ𝑠2(ℳ2),… , ℒ𝑠𝑛(ℳ𝑚))⨁ℰ𝑠(𝒩). 

(v) (Homogeneity): For any real number 𝜆 > 0; 

𝑞 − 𝑅𝑂𝐹𝑆𝑓𝑡𝑅𝐻𝐴(𝜆ℒ𝑠1(ℳ1), 𝜆ℒ𝑠2(ℳ2),… , 𝜆ℒ𝑠𝑛(ℳ𝑚))

= 𝜆 𝑞 − 𝑅𝑂𝐹𝑆𝑓𝑡𝑅𝐻𝐴(ℒ𝑠1(ℳ1), ℒ𝑠2(ℳ2), … , ℒ𝑠𝑛(ℳ𝑚)). 

Proof: Proof follows from Theorem 8.3.1.4. 

8.3.3.5.  Remark 

(a) If the value of rung 𝑞 = 1, then the proposed q-ROF𝑆𝑓𝑡RHA operator 

reduced to IF𝑆𝑓𝑡RHA operator. 

(b) If the value of rung 𝑞 = 2, then the proposed q-ROF𝑆𝑓𝑡RHA operator 

reduced to PyF𝑆𝑓𝑡RHA operator. 

(c) If there is only one soft parameter 𝑠1; (𝑚𝑒𝑎𝑛𝑠 𝑛 = 1), then the proposed 

q-ROF𝑆𝑓𝑡RHA operator reduced to q-ROFRHA operator. 

8.4. q-Rung orthopair fuzzy soft rough geometric aggregation 

operator 
This section is devoted for the study of q-ROF𝑆𝑓𝑡R geometric aggregation operators 

such as q-ROF𝑆𝑓𝑡RWG, q-ROF𝑆𝑓𝑡ROWG and q-ROF𝑆𝑓𝑡RHG operators. We will 

present the fundamental properties of these operators in detail.  

8.4.1. q-Rung orthopair fuzzy soft rough weighted geometric operator 
In this subsection the detail study of q-ROF𝑆𝑓𝑡RWG operator and their basic properties 

such as Idempotency, Boundedness and Monotonicity etc. are investigated. 

8.4.1.1.  Definition 

Let ℒ𝑠𝑗(ℳ𝑖) = (ℒ𝑠𝑗(ℳ𝑖), ℒ𝑠𝑗(ℳ𝑖)) (𝑖 = 1,2, … ,𝑚, 𝑗 = 1,2,… , 𝑛) be the collection 

of q-ROF𝑆𝑡RVs. Let 𝑤̿ = (𝑤̿1, 𝑤̿2, … , 𝑤̿𝑚)
𝑇   𝑎𝑛𝑑  𝑢̿ = (𝑢̿1, 𝑢̿2, … , 𝑢̿𝑛)

𝑇  be the weight 

vectors of experts 𝓀𝑖 and parameters 𝑠𝑗 with ∑ 𝑤̿𝑖
𝑚
𝑖=1 = 1, ∑ 𝑢̿𝑗

𝑛
𝑗=1 = 1 and 0 ≤

𝑤̿𝑖 , 𝑢̿𝑗 ≤ 1 respectively. The q-ROF𝑆𝑓𝑡RWG operator is defined as: 
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q − ROF𝑆𝑓𝑡RWG(ℒ𝑠1(ℳ1),… , ℒ𝑠𝑛(ℳ𝑚))

= [⨂𝑗=1
𝑛 {⨂𝑖=1

𝑚 (ℒ𝑠𝑗(ℳ𝑖))

𝑤̿𝑖

}

𝑢𝑗

,⨂𝑗=1
𝑛 {⨂𝑖=1

𝑚 (ℒ𝑠𝑗(ℳ𝑖))
𝑤̿𝑖

}

𝑢𝑗

] 

Based on above Definition 8.4.1.1, the aggregated result for q-ROF𝑆𝑓𝑡RWG operator 

is given in the following Theorem 8.4.1.2. 

8.4.1.2.  Theorem 

Let ℒ𝑠𝑗(ℳ𝑖) = (ℒ𝑠𝑗(ℳ𝑖), ℒ𝑠𝑗(ℳ𝑖)) (𝑖 = 1,2, … ,𝑚, 𝑗 = 1,2,… , 𝑛) be the collection 

of q-ROF𝑆𝑓𝑡RVs. Let 𝑤̿ = (𝑤̿1, 𝑤̿2, … , 𝑤̿𝑚)
𝑇   𝑎𝑛𝑑  𝑢̿ = (𝑢̿1, 𝑢̿2, … , 𝑢̿𝑛)

𝑇  be the weight 

vectors of experts 𝓀𝑖 and parameters 𝑠𝑗 with ∑ 𝑤̿𝑖
𝑚
𝑖=1 = 1, ∑ 𝑢̿𝑗

𝑛
𝑗=1 = 1 and 0 ≤

𝑤̿𝑖 , 𝑢̿𝑗 ≤ 1 respectively. Then q-ROF𝑆𝑓𝑡RWG operator is given as: 

q − ROF𝑆𝑓𝑡RWG(ℒ𝑠1(ℳ1),… , ℒ𝑠𝑛(ℳ𝑚))

= [⨂𝑗=1
𝑛 {⨂𝑖=1

𝑚 (ℒ𝑠𝑗(ℳ𝑖))

𝑤̿𝑖

}

𝑢𝑗

,⨂𝑗=1
𝑛 {⨂𝑖=1

𝑚 (ℒ𝑠𝑗(ℳ𝑖))
𝑤̿𝑖

}

𝑢𝑗

] 

=

[
 
 
 
 
 
 
 
 

{
 

 

∏(∏𝜇𝑖𝑗
𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1

, √1 −∏(∏(1− 𝜓𝑖𝑗
𝑞)

𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1

𝑞

}
 

 

,

{
 

 

∏(∏𝜇𝑖𝑗
 𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1

, √1 −∏(∏(1− 𝜓𝑖𝑗
 𝑞
)
𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1

𝑞

}
 

 

]
 
 
 
 
 
 
 
 

 

Proof: Proof directly follows from Theorem 8.3.1.2. 

Since it is clear that ℒ𝑠𝑗(ℳ𝑖) 𝑎𝑛𝑑 ℒ𝑠𝑗(ℳ𝑖) are q-ROFVs. So by Definition 8.2.5, we 

have ⨂𝑗=1
𝑛 {⨂𝑖=1

𝑚 (ℒ𝑠𝑗(ℳ𝑖))

𝑤̿𝑖

}

𝑢𝑗

 and ⨂𝑗=1
𝑛 {⨂𝑖=1

𝑚 (ℒ𝑠𝑗(ℳ𝑖))
𝑤̿𝑖

}

𝑢𝑗

 are also q-

ROFVs. Therefore, q − ROF𝑆𝑓𝑡RWG(ℒ𝑠1(ℳ1),… , ℒ𝑠𝑛(ℳ𝑚)) is also a q-ROF𝑆𝑓𝑡RN 

in approximation space (𝑇, 𝔼, ℒ). 

8.4.1.3.  Example  
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Consider the above Table 8.3 of Example 8.3.1.3, for the collection q-ROF𝑆𝑓𝑡RVs 

ℒ𝑠𝑗(ℳ𝑖) = (ℒ𝑠𝑗(ℳ𝑖), ℒ𝑠𝑗(ℳ𝑖)). Then the aggregated result for q − ROF𝑆𝑓𝑡RWG is 

given as: 

q − ROF𝑆𝑓𝑡RWG(ℒ𝑠1(ℳ1),… , ℒ𝑠𝑛(ℳ𝑚))

= [⨂𝑗=1
2 {⨂𝑖=1

3 (ℒ𝑠𝑗(ℳ𝑖))

𝑤̿𝑖

}

𝑢𝑗

,⨂𝑗=1
2 {⨂𝑖=1

3 (ℒ𝑠𝑗(ℳ𝑖))
𝑤̿𝑖

}

𝑢𝑗

] 

=

[
 
 
 
 
 
 
 
 

{
 

 
(0.90.250.70.30.920.45)0.55(0.550.250.920.30.40.45)0.45,

√1 − (
[(1 − 0.33)0.25(1 − 0.13)0.25(1 − 0.253)0.45]0.55

[(1 − 0.23)0.25(1 − 0.33)0.25(1 − 0.853)0.45]0.45
)

3

}
 

 
,

{
 

 
(0.80.250.20.30.650.45)0.55(0.760.250.60.30.880.45)0.45,

√1 − (
[(1 − 0.43)0.25(1 − 0.753)0.25(1 − 0.153)0.45]0.55

[(1 − 0.143)0.25(1 − 0.33)0.25(1 − 0.123)0.45]0.45
)

3

}
 

 

]
 
 
 
 
 
 
 
 

 

= [(0.715607,0.509925), (0.573442,0.484819)]. 

From the analysis of Theorem 8.4.1.2, q-ROF𝑆𝑓𝑡RWG operator has the following 

properties.  

8.4.1.4.  Theorem 

Let ℒ𝑠𝑗(ℳ𝑖) = (ℒ𝑠𝑗(ℳ𝑖), ℒ𝑠𝑗(ℳ𝑖)) (𝑖 = 1,2, … ,𝑚, 𝑗 = 1,2,… , 𝑛) be the collection 

of q-ROF𝑆𝑓𝑡RVs. Let 𝑤̿ = (𝑤̿1, 𝑤̿2, … , 𝑤̿𝑚)
𝑇   𝑎𝑛𝑑  𝑢̿ = (𝑢̿1, 𝑢̿2, … , 𝑢̿𝑛)

𝑇  be the weight 

vectors of experts 𝓀𝑖 and parameters 𝑠𝑗 with ∑ 𝑤̿𝑖
𝑚
𝑖=1 = 1, ∑ 𝑢̿𝑗

𝑛
𝑗=1 = 1 and 0 ≤

𝑤̿𝑖 , 𝑢̿𝑗 ≤ 1 respectively. Then the following properties hold for q-ROF𝑆𝑓𝑡RWG 

operator: 

(i) (Idempotency) If ℒ𝑠𝑗(ℳ𝑖) = ℰ𝑠(𝒩) (for all 𝑖 = 1,2,… ,𝑚  𝑎𝑛𝑑 𝑗 =

1,2,… 𝑛), where ℰ𝑠(ℳ) = (ℰ𝑠(ℳ), ℰ𝑠(ℳ)) = ((𝑏 , 𝑑), (𝑏 , 𝑑)). Then 

𝑞 − 𝑅𝑂𝐹𝑆𝑓𝑡𝑅𝑊𝐺 (ℒ𝑠1(ℳ1), ℒ𝑠2(ℳ2),… , ℒ𝑠𝑛(ℳ𝑚)) = ℰ𝑠(ℳ). 
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(ii) (Boundedness)  

Let (ℒ𝑠𝑗(ℳ𝑖))
−

= (min
𝑗
min
𝑖
ℒ𝑠𝑗(ℳ𝑖) , max

𝑗
max
𝑖
ℒ𝑠𝑗(ℳ𝑖)) and 

(ℒ𝑠𝑗(ℳ𝑖))
+

= (max
𝑗
max
𝑖
ℒ𝑠𝑗(ℳ𝑖) ,min

𝑗
min
𝑖
ℒ𝑠𝑗(ℳ𝑖)). Then 

(ℒ𝑠𝑗(ℳ𝑖))
−

≤ 𝑞 − 𝑅𝑂𝐹𝑆𝑓𝑡𝑅𝑊𝐺 (ℒ𝑠1(ℳ1), ℒ𝑠2(ℳ2),… , ℒ𝑠𝑛(ℳ𝑚))

≤ (ℒ𝑠𝑗(ℳ𝑖))
+

. 

(iii) (Monotonicity) Let ℰ𝑠𝑗(𝒩𝑖) = (ℰ𝑠𝑗(𝒩𝑖), ℰ𝑠𝑗(𝒩𝑖)) (𝑖 = 1,2,… ,𝑚, 𝑗 =

1,2,… , 𝑛) be another collection of q-ROF𝑆𝑓𝑡RVs such that ℰ𝑠𝑗(𝒩𝑖) ≤

 ℒ𝑠𝑗(ℳ𝑖) and ℰ𝑠𝑗(𝒩𝑖) ≤ ℒ𝑠𝑗(ℳ𝑖). Then 

𝑞 − 𝑅𝑂𝐹𝑆𝑓𝑡𝑅𝑊𝐺 (ℰ𝑠1(ℳ1), ℰ𝑠2(ℳ2), … , ℰ𝑠𝑛(ℳ𝑚))

≤  𝑞 − 𝑅𝑂𝐹𝑆𝑓𝑡𝑅𝑊𝐺 (ℒ𝑠1(ℳ1), ℒ𝑠2(ℳ2), … , ℒ𝑠𝑛(ℳ𝑚)). 

(iv) (Shift invariance) Let ℰ𝑠(𝒩) = (ℰ𝑠(𝒩), ℰ𝑠(𝒩)) = ((𝑏 , 𝑑), (𝑏 , 𝑑)) be 

any other 𝑞 − 𝑅𝑂𝐹𝑆𝑓𝑡𝑅𝑉. Then 

𝑞 − 𝑅𝑂𝐹𝑆𝑓𝑡𝑅𝑊𝐺 (ℒ𝑠1(ℳ1)⨁ℰ𝑠(𝒩),ℒ𝑠2(ℳ2)⨁ℰ𝑠(𝒩),… , ℒ𝑠𝑛(ℳ𝑚)⨁ℰ𝑠(𝒩))

= 𝑞 − 𝑅𝑂𝐹𝑆𝑓𝑡𝑅𝑊𝐺 (ℒ𝑠1(ℳ1), ℒ𝑠2(ℳ2), … , ℒ𝑠𝑛(ℳ𝑚))⨁ℰ𝑠(𝒩). 

(v) (Homogeneity) For any real number 𝜆 > 0; 

𝑞 − 𝑅𝑂𝐹𝑆𝑡𝑅𝑊𝐺 (𝜆ℒ𝑠1(ℳ1), 𝜆ℒ𝑠2(ℳ2), … , 𝜆ℒ𝑠𝑛(ℳ𝑚))

= 𝜆 𝑞 − 𝑅𝑂𝐹𝑆𝑡𝑅𝑊𝐺 (ℒ𝑠1(ℳ1), ℒ𝑠2(ℳ2),… , ℒ𝑠𝑛(ℳ𝑚)). 

Proof: Proof are easy and follows from Theorem 8.3.1.4. 

8.4.1.5.  Remark 

(a) If the value of rung 𝑞 = 1, then the proposed q-ROF𝑆𝑓𝑡RWG operator 

reduced to IF𝑆𝑓𝑡RWG operator. 

(b) If the value of rung 𝑞 = 2, then the proposed q-ROF𝑆𝑓𝑡RWG operator 

reduced to PyF𝑆𝑓𝑡RWG operator. 

(c) If there is only one soft parameter 𝑠1; (𝑚𝑒𝑎𝑛𝑠 𝑛 = 1), then the proposed 

q-ROF𝑆𝑓𝑡RWG operator reduced to q-ROFRWG operator. 
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8.4.2. q-Rung orthopair fuzzy soft rough ordered weighted geometric 

operator 
In this subsection the detail study of q-ROF𝑆𝑓𝑡ROWG operator and their basic 

properties such as Idempotency, Boundedness and Monotonicity etc. are investigated 

with detail. 

8.4.2.1.  Definition 

Let ℒ𝑠𝑗(ℳ𝑖) = (ℒ𝑠𝑗(ℳ𝑖), ℒ𝑠𝑗(ℳ𝑖)) (𝑖 = 1,2, … ,𝑚, 𝑗 = 1,2,… , 𝑛) be the collection 

of q-ROF𝑆𝑓𝑡RVs. Let 𝑤̿ = (𝑤̿1, 𝑤̿2, … , 𝑤̿𝑚)
𝑇   𝑎𝑛𝑑  𝑢̿ = (𝑢̿1, 𝑢̿2, … , 𝑢̿𝑛)

𝑇  be the weight 

vectors of experts 𝓀𝑖 and parameters 𝑠𝑗 with ∑ 𝑤̿𝑖
𝑚
𝑖=1 = 1, ∑ 𝑢̿𝑗

𝑛
𝑗=1 = 1 and 0 ≤

𝑤̿𝑖 , 𝑢̿𝑗 ≤ 1 respectively. The q-ROF𝑆𝑓𝑡ROWG operator is defined as: 

q − ROF𝑆𝑓𝑡ROWG(ℒ𝑠1(ℳ1),… , ℒ𝑠𝑛(ℳ𝑚))

= [⨂𝑗=1
𝑛 {⨂𝑖=1

𝑚 (ℒ𝛿𝑠𝑗(ℳ𝑖))

𝑤̿𝑖

}

𝑢𝑗

,⨂𝑗=1
𝑛 {⨂𝑖=1

𝑚 (ℒ𝛿𝑠𝑗(ℳ𝑖))
𝑤̿𝑖

}

𝑢𝑗

] 

In view of above definition the aggregated result for q-ROF𝑆𝑓𝑡ROWG operator is given 

in the following Theorem 8.4.2.2. 

8.4.2.2.  Theorem 

Let ℒ𝑠𝑗(ℳ𝑖) = (ℒ𝑠𝑗(ℳ𝑖), ℒ𝑠𝑗(ℳ𝑖)) (𝑖 = 1,2, … ,𝑚, 𝑗 = 1,2,… , 𝑛) be the collection 

of q-ROF𝑆𝑓𝑡RVs. Let 𝑤̿ = (𝑤̿1, 𝑤̿2, … , 𝑤̿𝑚)
𝑇   𝑎𝑛𝑑  𝑢̿ = (𝑢̿1, 𝑢̿2, … , 𝑢̿𝑛)

𝑇  be the weight 

vectors of experts 𝓀𝑖 and parameters 𝑠𝑗 with ∑ 𝑤̿𝑖
𝑚
𝑖=1 = 1, ∑ 𝑢̿𝑗

𝑛
𝑗=1 = 1 and 0 ≤

𝑤̿𝑖 , 𝑢̿𝑗 ≤ 1 respectively. Then q-ROF𝑆𝑓𝑡ROWG operator is given as: 

q − ROF𝑆𝑓𝑡ROWG(ℒ𝑠1(ℳ1),… , ℒ𝑠𝑛(ℳ𝑚))

= [⨂𝑗=1
𝑛 {⨂𝑖=1

𝑚 (ℒ𝛿𝑠𝑗(ℳ𝑖))

𝑤̿𝑖

}

𝑢𝑗

,⨂𝑗=1
𝑛 {⨂𝑖=1

𝑚 (ℒ𝛿𝑠𝑗(ℳ𝑖))
𝑤̿𝑖

}

𝑢𝑗

] 
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=

[
 
 
 
 
 
 
 
 

{
 

 

∏(∏𝜇𝛿𝑖𝑗
𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1

, √1 −∏(∏(1−𝜓𝛿𝑖𝑗
𝑞)

𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1

𝑞

}
 

 

,

{
 

 

∏(∏𝜇𝛿𝑖𝑗
 𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1

, √1 −∏(∏(1− 𝜓𝛿𝑖𝑗
 𝑞
)
𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1

𝑞

}
 

 

]
 
 
 
 
 
 
 
 

, 

where ℒ𝛿𝑠𝑗(ℳ𝑖) = (ℒ𝛿𝑠𝑗(ℳ𝑖), ℒ𝛿𝑠𝑗(ℳ𝑖)) denotes the largest value of the permutation 

from 𝑖𝑡ℎ 𝑟𝑜𝑤 and 𝑗𝑡ℎ  𝑐𝑜𝑙𝑢𝑚𝑛 of the collection 𝑖 × 𝑗 q-ROF𝑆𝑓𝑡RVs ℒ𝑠𝑗(ℳ𝑖) =

(ℒ𝑠𝑗(ℳ𝑖), ℒ𝑠𝑗(ℳ𝑖)). 

Proof: Proof follows from Theorem 8.3.1.2. 

8.4.2.3.  Example 

Consider the Table 8.3 of Example 8.3.1.3, and Table 8.4 of Example 8.3.2.3, for the 

collection q-ROF𝑆𝑓𝑡RVs ℒ𝑠𝑗(ℳ𝑖) = (ℒ𝑠𝑗(ℳ𝑖), ℒ𝑠𝑗(ℳ𝑖)) and their aggregated is 

given as: 

q − ROF𝑆𝑓𝑡ROWG(ℒ𝑠1(ℳ1),… , ℒ𝑠𝑛(ℳ𝑚))

= [⨂𝑗=1
2 {⨂𝑖=1

3 (ℒ𝛿𝑠𝑗(ℳ𝑖))

𝑤̿𝑖

}

𝑢𝑗

,⨂𝑗=1
2 {⨂𝑖=1

3 (ℒ𝛿𝑠𝑗(ℳ𝑖))
𝑤̿𝑖

}

𝑢𝑗

] 

=

[
 
 
 
 
 
 
 
 

{
 

 
(0.90.250.920.30.70.45)0.55(0.920.250.550.30.40.45)0.45,

√1 − (
[(1 − 0.23)0.25(1 − 0.253)0.25(1 − 0.13)0.45]0.55

[(1 − 0.33)0.25(1 − 0.23)0.25(1 − 0.853)0.45]0.45
)

3

}
 

 
,

{
 

 
(0.80.250.650.30.20.45)0.55(0.60.250.760.30.880.45)0.45,

√1 − (
[(1 − 0.43)0.25(1 − 0.153)0.25(1 − 0.753)0.45]0.55

[(1 − 0.33)0.25(1 − 0.143)0.25(1 − 0.123)0.45]0.45
)

3

}
 

 

]
 
 
 
 
 
 
 
 

 

Therefore, 

q − ROF𝑆𝑓𝑡ROWA (ℒ𝑠1(ℳ1), … , ℒ𝑠𝑛(ℳ𝑚))

= [(0.723264,0.510479), (0.587255,0.469476)]. 
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From the analysis of Theorem 8.4.2.2, q-ROF𝑆𝑓𝑡ROWG operator has the following 

properties.  

8.4.2.4.  Theorem 

Let ℒ𝑠𝑗(ℳ𝑖) = (ℒ𝑠𝑗(ℳ𝑖), ℒ𝑠𝑗(ℳ𝑖)) (𝑖 = 1,2, … ,𝑚, 𝑗 = 1,2,… , 𝑛) be the collection 

of q-ROF𝑆𝑓𝑡RVs. Let 𝑤̿ = (𝑤̿1, 𝑤̿2, … , 𝑤̿𝑚)
𝑇   𝑎𝑛𝑑  𝑢̿ = (𝑢̿1, 𝑢̿2, … , 𝑢̿𝑛)

𝑇  be the weight 

vectors of experts 𝓀𝑖 and parameters 𝑠𝑗 with ∑ 𝑤̿𝑖
𝑚
𝑖=1 = 1, ∑ 𝑢̿𝑗

𝑛
𝑗=1 = 1 and 0 ≤

𝑤̿𝑖 , 𝑢̿𝑗 ≤ 1 respectively. Then the following properties hold for q-ROF𝑆𝑓𝑡ROWG 

operator: 

(i) (Idempotency) If ℒ𝛿𝑠𝑗(ℳ𝑖) = ℰ𝑠(𝒩) (for all 𝑖 = 1,2,… ,𝑚  𝑎𝑛𝑑 𝑗 = 1,2,

… 𝑛), where ℰ𝑠(ℳ) = (ℰ𝑠(ℳ), ℰ𝑠(ℳ)) = ((𝑏 , 𝑑), (𝑏 , 𝑑)). Then 

𝑞 − 𝑅𝑂𝐹𝑆𝑓𝑡𝑅𝑂𝑊𝐺 (ℒ𝑠1(ℳ1), ℒ𝑠2(ℳ2),… , ℒ𝑠𝑛(ℳ𝑚)) = ℰ𝑠(ℳ) 

(ii) (Boundedness) Let (ℒ𝛿𝑠𝑗(ℳ𝑖))
−

= (min
𝑗
min
𝑖
ℒ𝛿𝑠𝑗(ℳ𝑖) ,

max
𝑗
max
𝑖
ℒ𝛿𝑠𝑗(ℳ𝑖)) and (ℒ𝛿𝑠𝑗(ℳ𝑖))

+

= (max
𝑗
max
𝑖
ℒ𝛿𝑠𝑗(ℳ𝑖) ,

min
𝑗
min
𝑖
ℒ𝛿𝑠𝑗(ℳ𝑖)). Then 

(ℒ𝛿𝑠𝑗(ℳ𝑖))
−

≤ 𝑞 − 𝑅𝑂𝐹𝑆𝑓𝑡𝑅𝑂𝑊𝐺 (ℒ𝑠1(ℳ1), ℒ𝑠2(ℳ2), … , ℒ𝑠𝑛(ℳ𝑚))

≤ (ℒ𝛿𝑠𝑗(ℳ𝑖))
+

. 

(iii) (Monotonicity) Let ℰ𝑠𝑗(𝒩𝑖) = (ℰ𝑠𝑗(𝒩𝑖), ℰ𝑠𝑗(𝒩𝑖)) (𝑖 = 1,2,… ,𝑚, 𝑗 =

1,2, … , 𝑛) be another collection of q-ROF𝑆𝑓𝑡RVs such that ℰ𝑠𝑗(𝒩𝑖) ≤

 ℒ𝑠𝑗(ℳ𝑖) and ℰ𝑠𝑗(𝒩𝑖) ≤ ℒ𝑠𝑗(ℳ𝑖). Then 

𝑞 − 𝑅𝑂𝐹𝑆𝑓𝑡𝑅𝑂𝑊𝐺 (ℰ𝑠1(ℳ1), ℰ𝑠2(ℳ2), … , ℰ𝑠𝑛(ℳ𝑚))

≤  𝑞 − 𝑅𝑂𝐹𝑆𝑓𝑡𝑅𝑂𝑊𝐺 (ℒ𝑠1(ℳ1), ℒ𝑠2(ℳ2), … , ℒ𝑠𝑛(ℳ𝑚)). 

(iv) (Shift invariance) Let ℰ𝑠(𝒩) = (ℰ𝑠(𝒩), ℰ𝑠(𝒩)) = ((𝑏 , 𝑑), (𝑏 , 𝑑)) be 

any other 𝑞 − 𝑅𝑂𝐹𝑆𝑓𝑡𝑅𝑉. Then 



 

 

215 
 

𝑞 − 𝑅𝑂𝐹𝑆𝑓𝑡𝑅𝑂𝑊𝐺 (ℒ𝑠1(ℳ1)⨁ℰ𝑠(𝒩), ℒ𝑠2(ℳ2)⨁ℰ𝑠(𝒩),… , ℒ𝑠𝑛(ℳ𝑚)⨁ℰ𝑠(𝒩))

= 𝑞 − 𝑅𝑂𝐹𝑆𝑓𝑡𝑅𝑂𝑊𝐺 (ℒ𝑠1(ℳ1), ℒ𝑠2(ℳ2),… , ℒ𝑠𝑛(ℳ𝑚))⨁ℰ𝑠(𝒩). 

(v) (Homogeneity) For any real number 𝜆 > 0; 

𝑞 − 𝑅𝑂𝐹𝑆𝑓𝑡𝑅𝑂𝑊𝐺 (𝜆ℒ𝑠1(ℳ1), 𝜆ℒ𝑠2(ℳ2), … , 𝜆ℒ𝑠𝑛(ℳ𝑚))

= 𝜆 𝑞

− 𝑅𝑂𝐹𝑆𝑓𝑡𝑅𝑂𝑊𝐺 (ℒ𝑠1(ℳ1), ℒ𝑠2(ℳ2), … , ℒ𝑠𝑛(ℳ𝑚)). 

Proof: Proof follows from Theorem 8.3.1.4. 

8.4.2.5.  Remark 

(a) If the value of rung 𝑞 = 1, then the proposed q-ROF𝑆𝑓𝑡ROWG operator 

reduced to IF𝑆𝑓𝑡ROWG operator. 

(b) If the value of rung 𝑞 = 2, then the proposed q-ROF𝑆𝑓𝑡ROWG operator 

reduced to PyF𝑆𝑓𝑡ROWG operator. 

(c) If there is only one soft parameter 𝑠1; (𝑚𝑒𝑎𝑛𝑠 𝑛 = 1), then the proposed 

q-ROF𝑆𝑓𝑡ROWG operator reduced to q-ROFROWG operator. 

8.4.3. q-Rung orthopair fuzzy soft rough hybrid geometric operator 
From the analysis of q-ROF𝑆𝑓𝑡RWG and q-ROF𝑆𝑓𝑡ROWG operators, it is observed 

that q-ROF𝑆𝑓𝑡RWG operator weight the q-ROFVs while utilizing the score function q-

ROF𝑆𝑓𝑡ROWG operator weight the order position as well. However, q-ROF𝑆𝑓𝑡RHG 

operator do the both on the same time means weighting the numbers and their order. 

The basic properties such as Idempotency, Boundedness and Monotonicity etc. are also 

presented in the same section with detail. 

8.4.3.1.  Definition 

Let ℒ𝑠𝑗(ℳ𝑖) = (ℒ𝑠𝑗(ℳ𝑖), ℒ𝑠𝑗(ℳ𝑖)) (𝑖 = 1,2, … ,𝑚, 𝑗 = 1,2,… , 𝑛) be the collection 

of q-ROF𝑆𝑓𝑡RVs. Let 𝓋 = (𝓋1, 𝓋2, … ,𝓋𝑚)
𝑇   𝑎𝑛𝑑  𝑟 = (𝑟1, 𝑟2, … , 𝑟𝑛)

𝑇  be the weight 

vectors of experts 𝓀𝑖 and parameters 𝑠𝑗 with ∑ 𝓋𝑖
𝑚
𝑖=1 = 1, ∑ 𝑟𝑗

𝑛
𝑗=1 = 1 and 0 ≤ 𝓋𝑖 , 𝑟𝑗 ≤

1. Consider 𝑤̿ = (𝑤̿1, 𝑤̿2, … , 𝑤̿𝑚)
𝑇  𝑎𝑛𝑑  𝑢̿ = (𝑢̿1, 𝑢̿2, … , 𝑢̿𝑛)

𝑇 be the associated 

weight vectors of experts 𝓀𝑖 and parameters 𝑠𝑗 with ∑ 𝑤̿𝑖
𝑚
𝑖=1 = 1, ∑ 𝑢̿𝑗

𝑛
𝑗=1 = 1 and 0 ≤

𝑤̿𝑖 , 𝑢̿𝑗 ≤ 1 respectively. The q-ROF𝑆𝑓𝑡RHG operator is defined as:  
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q − ROF𝑆𝑓𝑡RHG (ℒ𝑠1(ℳ1), … , ℒ𝑠𝑛(ℳ𝑚))

= [⨂𝑗=1
𝑛 {⨂𝑖=1

𝑚 (ℒ𝛿𝑠𝑗
∗ (ℳ𝑖))

𝑤̿𝑖

}

𝑢𝑗

,⨂𝑗=1
𝑛 {⨂𝑖=1

𝑚 (ℒ𝛿𝑠𝑗
∗ (ℳ𝑖))

𝑤̿𝑖

}

𝑢𝑗

] 

From the above Definition 8.4.3.1, the aggregated result for q-ROF𝑆𝑓𝑡RHG operator is 

given in the following Theorem 8.4.3.2. 

 

8.4.3.2.  Theorem 

Let ℒ𝑠𝑗(ℳ𝑖) = (ℒ𝑠𝑗(ℳ𝑖), ℒ𝑠𝑗(ℳ𝑖)) (𝑖 = 1,2, … ,𝑚, 𝑗 = 1,2,… , 𝑛) be the collection 

of q-ROF𝑆𝑓𝑡RVs. Let 𝓋 = (𝓋1, 𝓋2, … ,𝓋𝑚)
𝑇   𝑎𝑛𝑑  𝑟 = (𝑟1, 𝑟2, … , 𝑟𝑛)

𝑇  be the weight 

vectors of experts 𝓀𝑖 and parameters 𝑠𝑗 with ∑ 𝑡𝑖
𝑚
𝑖=1 = 1, ∑ 𝑣𝑗

𝑛
𝑗=1 = 1 and 0 ≤ 𝑘𝑖, 𝑙𝑗 ≤

1. Consider 𝑤̿ = (𝑤̿1, 𝑤̿2, … , 𝑤̿𝑚)
𝑇  𝑎𝑛𝑑  𝑢̿ = (𝑢̿1, 𝑢̿2, … , 𝑢̿𝑛)

𝑇 be the associated 

weight vectors of experts 𝓀𝑖 and parameters 𝑠𝑗 with ∑ 𝑤̿𝑖
𝑚
𝑖=1 = 1, ∑ 𝑢̿𝑗

𝑛
𝑗=1 = 1 and 0 ≤

𝑤̿𝑖 , 𝑢̿𝑗 ≤ 1 respectively. Then q-ROF𝑆𝑓𝑡RHG operator is given as: 

q − ROF𝑆𝑓𝑡RHG (ℒ𝑠1(ℳ1), … , ℒ𝑠𝑛(ℳ𝑚))

= [⨂𝑗=1
𝑛 {⨂𝑖=1

𝑚 (ℒ𝛿𝑠𝑗
∗ (ℳ𝑖))

𝑤̿𝑖

}

𝑢𝑗

,⨂𝑗=1
𝑛 {⨂𝑖=1

𝑚 (ℒ𝛿𝑠𝑗
∗ (ℳ𝑖))

𝑤̿𝑖

}

𝑢𝑗

] 

=

[
 
 
 
 
 
 
 
 

{
 

 

∏(∏𝜇𝛿𝑖𝑗
∗ 𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1

, √1 −∏(∏(1−𝜓𝛿𝑖𝑗
∗ 𝑞)

𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1

𝑞

}
 

 

,

{
 

 

∏(∏𝜇𝛿𝑖𝑗
∗

 𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1

, √1 −∏(∏(1− 𝜓𝛿𝑖𝑗
∗

 𝑞
)
𝑤̿𝑖

𝑚

𝑖=1

)

𝑢𝑗𝑛

𝑗=1

𝑞

}
 

 

]
 
 
 
 
 
 
 
 

, 

where ℒ𝛿𝑠𝑗
∗ (ℳ𝑖) = (ℒ𝑠𝑗)

𝑛𝓋𝑖𝑟𝑗
= ((ℒ𝑠𝑗(ℳ𝑖))

𝑛𝓋𝑖𝑟𝑗

, (ℒ𝑠𝑗(ℳ𝑖))
𝑛𝓋𝑖𝑟𝑗

) denotes the 

largest value of the permutation from 𝑖𝑡ℎ 𝑟𝑜𝑤 and 𝑗𝑡ℎ  𝑐𝑜𝑙𝑢𝑚𝑛 of the collection 𝑖 × 𝑗 q-

ROF𝑆𝑓𝑡RVs ℒ𝑠𝑗(ℳ𝑖) = (ℒ𝑠𝑗(ℳ𝑖), ℒ𝑠𝑗(ℳ𝑖)) and 𝑛 represent the balancing 

coefficient. 
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8.4.3.3.  Example 

Consider the above Tables 8.3, 8.5 𝑎𝑛𝑑 8.6 of Examples 8.3.1.3 and   8.3.3.3, for the 

collection q-ROF𝑆𝑓𝑡RVs ℒ𝑠𝑗(ℳ𝑖) = (ℒ𝑠𝑗(ℳ𝑖), ℒ𝑠𝑗(ℳ𝑖)) with 𝓋 =

(0.33,0.37,0.3)𝑇  and 𝑟 = (0.42,0.58)𝑇 be the weight vectors of experts 𝓀𝑖 and 

parameters  𝑠𝑗. Consider 𝑤̿ = (0.36,0.34,0.3)𝑇  𝑎𝑛𝑑  𝑢̿ = (0.55,0.45)𝑇  be the 

associated weight vectors of experts 𝓀𝑖 and parameters  𝑠𝑗. Then the aggregated result 

for ℒ𝛿𝑠𝑗
∗ (ℳ𝑖) is given as: 

q − ROF𝑆𝑓𝑡RHG (ℒ𝑠1(ℳ1), … , ℒ𝑠𝑛(ℳ𝑚))

= [⨂𝑗=1
2 {⨂𝑖=1

3 (ℒ𝛿𝑠𝑗(ℳ𝑖))

𝑤̿𝑖

}

𝑢𝑗

,⨂𝑗=1
2 {⨂𝑖=1

3 (ℒ𝛿𝑠𝑗(ℳ𝑖))
𝑤̿𝑖

}

𝑢𝑗

] 

q − ROF𝑆𝑓𝑡RHG (ℒ𝑠1(ℳ1), … , ℒ𝑠𝑛(ℳ𝑚))

= ((0.602629,0.250898), (0.479995,0.210973)). 

From the analysis of Theorem 8.4.3.2, q-ROF𝑆𝑓𝑡RHG operator has the following 

properties. 

8.4.3.4. Theorem 

Let ℒ𝑠𝑗(ℳ𝑖) = (ℒ𝑠𝑗(ℳ𝑖), ℒ𝑠𝑗(ℳ𝑖)) (𝑖 = 1,2, … ,𝑚, 𝑗 = 1,2,… , 𝑛) be the collection 

of q-ROF𝑆𝑓𝑡RVs. Let 𝓋 = (𝓋1, 𝓋2, … ,𝓋𝑚)
𝑇   𝑎𝑛𝑑  𝑟 = (𝑟1, 𝑟2, … , 𝑟𝑛)

𝑇  be the weight 

vectors of experts 𝓀𝑖 and parameters 𝑠𝑗 with ∑ 𝓋𝑖
𝑚
𝑖=1 = 1, ∑ 𝑟𝑗

𝑛
𝑗=1 = 1 and 0 ≤ 𝓋𝑖, 𝑟𝑗 ≤

1. Consider 𝑤̿ = (𝑤̿1, 𝑤̿2, … , 𝑤̿𝑚)
𝑇  𝑎𝑛𝑑  𝑢̿ = (𝑢̿1, 𝑢̿2, … , 𝑢̿𝑛)

𝑇 be the associated 

weight vectors of experts 𝓀𝑖 and parameters 𝑠𝑗 with ∑ 𝑤̿𝑖
𝑚
𝑖=1 = 1, ∑ 𝑢̿𝑗

𝑛
𝑗=1 = 1 and 0 ≤

𝑤̿𝑖 , 𝑢̿𝑗 ≤ 1 respectively. Then the following properties hold for q-ROF𝑆𝑓𝑡RHG 

operator: 

(i) (Idempotency) If ℒ𝛿𝑠𝑗
∗ (ℳ𝑖) = ℰ𝑠(𝒩) (for all 𝑖 = 1,2,… ,𝑚  𝑎𝑛𝑑 𝑗 =

1,2,… 𝑛), where ℰ𝑠(ℳ) = (ℰ𝑠(ℳ), ℰ𝑠(ℳ)) = ((𝑏 , 𝑑), (𝑏 , 𝑑)). Then 

𝑞 − 𝑅𝑂𝐹𝑆𝑓𝑡𝑅𝐻𝐺 (ℒ𝑠1(ℳ1), ℒ𝑠2(ℳ2),… , ℒ𝑠𝑛(ℳ𝑚)) = ℰ𝑠(ℳ) 
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(ii) (Boundedness) Let (ℒ𝑠𝑗(ℳ𝑖))
−

= (min
𝑗
min
𝑖
ℒ𝑠𝑗(ℳ𝑖) ,

max
𝑗
max
𝑖
ℒ𝑠𝑗(ℳ𝑖)) and (ℒ𝑠𝑗(ℳ𝑖))

+

= (max
𝑗
max
𝑖
ℒ𝑠𝑗(ℳ𝑖) ,

min
𝑗
min
𝑖
ℒ𝑠𝑗(ℳ𝑖)). Then 

(ℒ𝑠𝑗(ℳ𝑖))
−

≤ 𝑞 − 𝑅𝑂𝐹𝑆𝑓𝑡𝑅𝐻𝐺 (ℒ𝑠1(ℳ1), ℒ𝑠2(ℳ2), … , ℒ𝑠𝑛(ℳ𝑚))

≤ (ℒ𝑠𝑗(ℳ𝑖))
+

. 

(iii) (Monotonicity) Let ℰ𝑠𝑗(𝒩𝑖) = (ℰ𝑠𝑗(𝒩𝑖), ℰ𝑠𝑗(𝒩𝑖)) (𝑖 = 1,2,… ,𝑚, 𝑗 =

1,2,… , 𝑛) be another collection of q-ROF𝑆𝑓𝑡RVs such that ℰ𝑠𝑗(𝒩𝑖) ≤

 ℒ𝑠𝑗(ℳ𝑖) and ℰ𝑠𝑗(𝒩𝑖) ≤ ℒ𝑠𝑗(ℳ𝑖). Then 

𝑞 − 𝑅𝑂𝐹𝑆𝑓𝑡𝑅𝐻𝐺 (ℰ𝑠1(ℳ1), ℰ𝑠2(ℳ2),… , ℰ𝑠𝑛(ℳ𝑚))

≤  𝑞 − 𝑅𝑂𝐹𝑆𝑓𝑡𝑅𝐻𝐺 (ℒ𝑠1(ℳ1), ℒ𝑠2(ℳ2),… , ℒ𝑠𝑛(ℳ𝑚)). 

(iv) (Shift invariance) Let ℰ𝑠(𝒩) = (ℰ𝑠(𝒩), ℰ𝑠(𝒩)) = ((𝑏 , 𝑑), (𝑏 , 𝑑)) be 

any other 𝑞 − 𝑅𝑂𝐹𝑆𝑓𝑡𝑅𝑉. Then 

𝑞 − 𝑅𝑂𝐹𝑆𝑓𝑡𝑅𝐻𝐺 (ℒ𝑠1(ℳ1)⨁ℰ𝑠(𝒩), ℒ𝑠2(ℳ2)⨁ℰ𝑠(𝒩),… , ℒ𝑠𝑛(ℳ𝑚)⨁ℰ𝑠(𝒩))

= 𝑞 − 𝑅𝑂𝐹𝑆𝑓𝑡𝑅𝐻𝐺 (ℒ𝑠1(ℳ1), ℒ𝑠2(ℳ2),… , ℒ𝑠𝑛(ℳ𝑚))⨁ℰ𝑠(𝒩). 

(v) (Homogeneity) For any real number 𝜆 > 0; 

𝑞 − 𝑅𝑂𝐹𝑆𝑓𝑡𝑅𝐻𝐺 (𝜆ℒ𝑠1(ℳ1), 𝜆ℒ𝑠2(ℳ2),… , 𝜆ℒ𝑠𝑛(ℳ𝑚))

= 𝜆 𝑞 − 𝑅𝑂𝐹𝑆𝑓𝑡𝑅𝐻𝐺 (ℒ𝑠1(ℳ1), ℒ𝑠2(ℳ2),… , ℒ𝑠𝑛(ℳ𝑚)). 

Proof: Proof follows from Theorem 8.3.1.4. 

8.4.3.5.  Remark 

(a) If the value of rung 𝑞 = 1, then the proposed q-ROF𝑆𝑓𝑡RHG operator 

reduced to IF𝑆𝑓𝑡RHG operator. 

(b) If the value of rung 𝑞 = 2, then the proposed q-ROF𝑆𝑓𝑡RHG operator 

reduced to PyF𝑆𝑓𝑡RHG operator. 
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(c) If there is only one soft parameter 𝑠1; (𝑚𝑒𝑎𝑛𝑠 𝑛 = 1), then the proposed 

q-ROF𝑆𝑓𝑡RHG operator reduced to q-ROFRHG operator. 

8.5. 𝓜𝓒𝓓𝓜 based on soft rough aggregation operator by using q-

rung orthopair fuzzy information 
ℳ𝒞𝒟ℳ has the high potential and discipline process to improve and evaluate multiple 

conflicting criteria in all areas of 𝒟ℳ. In this competitive environment an enterprise 

needs the more accurate and more repaid response to change the customer needs. So, 

ℳ𝒞𝒟ℳ has the ability to handle successfully the evaluation process of multiple 

contradictory criteria. For an intelligent decision the experts analyze each and every 

character of an alternative and the he takes the decision. Further, we will present the 

model for ℳ𝒞𝒟ℳ and their basic steps of construction by utilizing the proposed 

aggregation operators under q-ROF soft rough information. 

Suppose that 𝑇 = {𝓀1, 𝓀2, 𝓀3, … ,𝓀𝑝} be the initial set of various alternatives and 𝔼 =

{𝑠1, 𝑠2, 𝑠3, … , 𝑠𝑛} be the set of 𝑛 parameters. Consider 𝒟 = {𝒟1, 𝒟2, 𝒟3, … , 𝒟𝑚} be the 

set of 𝑚 professional experts of this area who presents their assessment expertise for 

each alternative 𝓀𝑙(𝑙 = 1,2,… , 𝑝) corresponding to 𝑛 paramters. Let 𝑤̿ =

(𝑤̿1, 𝑤̿2, … , 𝑤̿𝑚)
𝑇 be the weight vectors of experts 𝒟𝑖 and 𝑢̿ = (𝑢̿1, 𝑢̿2, … , 𝑢̿𝑛)

𝑇  be the 

weight vectors of parameters 𝑠𝑗 with ∑ 𝑤̿𝑖
𝑚
𝑖=1 = 1, ∑ 𝑢̿𝑗

𝑛
𝑗=1 = 1 and 0 ≤ 𝑤̿𝑖 , 𝑢̿𝑗 ≤ 1 

respectively. The professional experts express their preference evaluation for 

alternative 𝓀𝑙 with respect to parameter 𝑠𝑗 in the form of q-ROF𝑆𝑓𝑡RVs. The collective 

preference information given by the professionals are manage in q-ROF𝑆𝑓𝑡R decision 

matrix, which is 𝕄 = [ℒ𝑠𝑗(ℳ𝑖)]𝑛×𝑚, where ℳ ⊆ 𝔼. Further, using the proposed 

aggregation operators aggregate the preferences of experts to get the aggregated results 

𝜉𝑙  (𝑙 = 1, … , 𝑝) for each alternative 𝓀𝑙 against their parameter 𝑠𝑗. Finally utilize the 

score function on the aggregated results 𝜉𝑙 = [(𝜇, 𝜓) , ( 𝜇, 𝜓 )] and rank all the result 

in a specific order to the get the most desirable option. 

8.5.1. Algorithm 
The step wise decision algorithm for the investigated operators. 

𝑺𝒕𝒆𝒑 (𝒊): The professional experts express their preference evaluation for alternative 

𝓀𝑘 with respect to parameter 𝑠𝑗 in the form of q-ROF𝑆𝑓𝑡RVs. Then collect the 
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preference information given by the professionals and manage them in q-ROF𝑆𝑓𝑡R 

decision matrix, which is 𝕄 = [ℒ𝑠𝑗(ℳ𝑖)]𝑛×𝑚, where ℳ ⊆ 𝔼. 

𝑺𝒕𝒆𝒑 (𝒊𝒊): Applying the presented aggregation operators of each decision matrix 𝕄 =

[ℒ𝑠𝑗(ℳ𝑖)]𝑛×𝑚 for each alternative 𝓀𝑙 (𝑙 = 1,2,… , 𝑝) against parameter 𝑠𝑗 to get the 

aggregated results 𝜉𝑙 = [(𝜇, 𝜓) , ( 𝜇, 𝜓 )]. 

𝑺𝒕𝒆𝒑 (𝒊𝒊𝒊): Calculate the score value of aggregated results 𝜉𝑙 = [(𝜇, 𝜓) , ( 𝜇, 𝜓 )] for 

each object 𝓀𝑙. 

𝑺𝒕𝒆𝒑 (𝒊𝒗): Rank the score value of 𝜉𝑙 in a specific order to get optimum option of 

professional experts.  

8.6. Numerical example 
In this section we will initiate the illustrative example to prove the quality and 

Excellency of the developed operators. 

Let Higher Education Commission (HEC) in Pakistan plans to introduce a selection 

board of four high potential and professional Professors 𝒟 = {𝒟1, 𝒟2, 𝒟3, 𝒟4} from 

home and abroad to select a most desirable applicant. Out of many applicants, three 

applicants 𝑇 = {𝓀1, 𝓀2, 𝓀3} were called for interviews. The interview mainly judges 

the applicants against some parameters ℳ = {𝑠1 = 𝑎𝑐𝑎𝑑𝑒𝑚𝑖𝑐 𝑙𝑒𝑣𝑒𝑙, 𝑠2 =

𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙, 𝑠3 = 𝑝𝑟𝑜𝑓𝑒𝑠𝑠𝑖𝑜𝑛𝑎𝑙 𝑒𝑡ℎ𝑖𝑐𝑠, 𝑠4 =

𝑟𝑒𝑠𝑒𝑎𝑟𝑐ℎ 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 } ⊆ 𝔼. Let 𝑤̿ = (0.3,0.28,0.24, 0.18)𝑇 be the weight vectors 

for professional experts 𝒟𝑖 (𝑖 = 1,… ,4) and 𝑢̿ = (0.32,0.17,0.31,0.2)𝑇 be the weight 

vectors for parameters 𝑠𝑗  (𝑗 = 1,2,3) respectively. The professional experts express 

their preference evaluation for candidate 𝓀𝑙 with respect to parameter 𝑠𝑗 in the form of 

q-ROF𝑆𝑓𝑡RVs. Finally, followed the following steps by utilize the proposed models to 

select the most desirable and suitable applicant 𝓀𝑙. 

By using q-ROF𝑺𝒇𝒕RWA 

𝑺𝒕𝒆𝒑 (𝒊): The professional experts express their preference evaluation for alternative 

𝓀𝑙 with respect to parameter 𝑠𝑗 in the form of q-ROF𝑆𝑓𝑡RVs. Then collect the 

preference information given by the professionals and manage them in q-ROF𝑆𝑡R 
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decision matrix, which is 𝕄 = [ℒ𝑠𝑗(ℳ𝑖)]𝑛×𝑚, where ℳ ⊆ 𝔼 which is given in Tables 

8.7-8.9. 

𝑺𝒕𝒆𝒑 (𝒊𝒊): Applying the presented q-ROFSftRWA aggregation operators on each 

decision matrix 𝕄 = [ℒ𝑠𝑗(ℳ𝑖)]𝑛×𝑚 for each alternative 𝓀𝑙  (𝑙 = 1,2,3) against 

parameter 𝑠𝑗 to get the aggregated results 𝜉𝑙 = [(𝜇, 𝜓) , ( 𝜇, 𝜓 )], that is; 

𝜉1 = [(0.640506, 0.218382), (0.600249,0.254431)],

𝜉2 = [(0.607809, 0.217229), (0.730645,0.202415)],

𝜉3 = [(0.606198, 0.198551), (0.649417,0.183108)] 

𝑺𝒕𝒆𝒑 (𝒊𝒊𝒊): Calculate the score value of aggregated results 𝜉𝑙 = [(𝜇, 𝜓) , ( 𝜇, 𝜓 )] for 

each object 𝓀𝑙, that is 

𝒮𝑐(𝜉1) = 0.226074, 𝒮𝑐(𝜉2) = 0.298025, 𝒮𝑐(𝜉3) = 0.241341. 

𝑺𝒕𝒆𝒑 (𝒊𝒗): Rank the score value of 𝜉𝑙 in a specific order to get optimum option of 

professional experts, that is 

𝒮𝑐(𝜉2) > 𝒮𝑐(𝜉3) > 𝒮𝑐(𝜉1) 

Therefore, from the above analysis it is observed that  𝓀2 is more suitable and desirable 

candidate against the given position. 

For q-ROF𝑺𝒇𝒕RWG 

𝑺𝒕𝒆𝒑 (𝒊): Similar as above. 

𝑺𝒕𝒆𝒑 (𝒊𝒊): Applying the presented q-ROF𝑆𝑓𝑡RWG aggregation operators on each 

decision matrix 𝕄 = [ℒ𝑠𝑗(ℳ𝑖)]𝑛×𝑚 for each alternative 𝓀𝑙  (𝑙 = 1,2,3) against 

parameter 𝑠𝑗 to get the aggregated results 𝜉𝑙 = [(𝜇, 𝜓) , ( 𝜇, 𝜓 )], that is; 

𝜉1 = [(0.540892,0.29117), (0.446263,0.448329)],

𝜉2 = [(0.50166,0.321735), (0.598613,0.331553)],

𝜉3 = [(0.491017, 0.291113), (0.545527,0.264822)] 

𝑺𝒕𝒆𝒑 (𝒊𝒊𝒊): Calculate the score value of proposed q-ROF𝑆𝑓𝑡RWG aggregated 

results 𝜉𝑙 = [(𝜇, 𝜓) , ( 𝜇, 𝜓 )] for each object 𝓀𝑙, that is 
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𝒮𝑐(𝜉1) = 0.06616, 𝒮𝑐(𝜉2) = 0.135502, 𝒮𝑐(𝜉3) = 0.118744. 

𝑺𝒕𝒆𝒑 (𝒊𝒗): Rank the score value of 𝜉𝑙 in a specific order to get optimum option of 

professional experts, that is 

𝒮𝑐(𝜉2) > 𝒮𝑐(𝜉3) > 𝒮𝑐(𝜉1) 

Therefore, from the above analysis it is observed that  𝓀2 is more suitable and desirable 

candidate against the given position. 

For q-ROF𝑺𝒇𝒕ROWA 

𝑺𝒕𝒆𝒑 (𝒊): Similar as above. 

𝑺𝒕𝒆𝒑 (𝒊𝒊)   𝜉1 = [(0.657933, 0.217542), (0.621125,0.234448)], 

𝜉2 = [(0.612743,0.216413), (0.744755,0.193923)], 

   𝜉3 = [(0.621268, 0.203392), (0.677814,0.180796)] 

𝑺𝒕𝒆𝒑 (𝒊𝒊𝒊):      𝒮𝑐(𝜉1) = 0.250625, 𝒮𝑐(𝜉2) = 0.312857, 𝒮𝑐(𝜉3) = 0.26844. 

𝑺𝒕𝒆𝒑 (𝒊𝒗):       𝒮𝑐(𝜉2) > 𝒮𝑐(𝜉3) > 𝒮𝑐(𝜉1) 

Therefore, from the above analysis it is observed that  𝓀2 is more suitable and desirable 

candidate against the given position. 

For q-ROF𝑺𝒇𝒕ROWG 

𝑺𝒕𝒆𝒑 (𝒊): Similar as above. 

𝑺𝒕𝒆𝒑 (𝒊𝒊):  𝜉1 = [(0.562833,0.293072), (0.473363,0.418793)], 

 𝜉2 = [(0.517595, 0.319441), (0.614971,0.321818)], 

𝜉3 = [(0.49826, 0.296096), (0.583543,0.259781)] 

𝑺𝒕𝒆𝒑 (𝒊𝒊𝒊):     𝒮𝑐(𝜉1) = 0.09287, 𝒮𝑐(𝜉2) = 0.152658, 𝒮𝑐(𝜉3) = 0.139459. 

𝑺𝒕𝒆𝒑 (𝒊𝒗):      𝒮𝑐(𝜉2) > 𝒮𝑐(𝜉3) > 𝒮𝑐(𝜉1) 

Therefore, from the above analysis it is observed that  𝓀2 is more suitable and desirable 

candidate against the given position. 
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For q-ROF𝑺𝒇𝒕RHA 

𝑺𝒕𝒆𝒑 (𝒊): Similar as above. 

𝑺𝒕𝒆𝒑 (𝒊𝒊): Applying the presented q-ROF𝑆𝑓𝑡RHA aggregation operators on each 

decision matrix 𝕄 = [ℒ𝛿𝑠𝑗
∗ (ℳ𝑖)]𝑛×𝑚 for each alternative 𝓀𝑙 (𝑙 = 1,2,3) against 

parameter 𝑠𝑗 to get the aggregated results 𝜉𝑙 = [(𝜇𝛿
∗ , 𝜓𝛿

∗) , ( 𝜇𝛿
∗ , 𝜓𝛿

∗  )], with 𝓋 =

(0.25,0.29,0.3,0.16)𝑇 and  𝑟 = (0.27,0.23,0.32,0.18)𝑇  be the weight vectors of 

experts 𝓀𝑖 and parameters  𝑠𝑗. Then the aggregated result for ℒ𝛿𝑠𝑗
∗ (ℳ𝑖) is given as: 

      𝜉1 = [(0.432025, 0.669215), (0.408108,0.691652)],  

𝜉2 = [(0.417457, 0.662671), (0.503394,0.6509)], 

𝜉3 = [(0.392067,0.655437), (0.442525,0.635251)] 

𝑺𝒕𝒆𝒑 (𝒊𝒊𝒊):      𝒮𝑐(𝜉1) = − 0.24099,         𝒮𝑐(𝜉2) = − 0.18323,       𝒮𝑐(𝜉3) =

− 0.1955. 

𝑺𝒕𝒆𝒑 (𝒊𝒗):       𝒮𝑐(𝜉2) > 𝒮𝑐(𝜉3) > 𝒮𝑐(𝜉1) 

Therefore, from the above analysis it is observed that  𝓀2 is more suitable and desirable 

candidate against the given position. 

For q-ROF𝑺𝒇𝒕RHG 

𝑺𝒕𝒆𝒑 (𝒊): Similar as above. 

𝑺𝒕𝒆𝒑 (𝒊𝒊): Applying the presented q-ROF𝑆𝑓𝑡RHG aggregation operators on each 

decision matrix 𝕄 = [ℒ𝛿𝑠𝑗
∗ (ℳ𝑖)]𝑛×𝑚 for each alternative 𝓀𝑙 (𝑙 = 1,2,3) against 

parameter 𝑠𝑗 to get the aggregated results 𝜉𝑙 = [(𝜇𝛿
∗ , 𝜓𝛿

∗) , ( 𝜇𝛿
∗ , 𝜓𝛿

∗  )], with 𝓋 =

(0.25,0.29,0.3,0.16)𝑇 and 𝑟 = (0.27,0.23,0.32,0.18)𝑇  be the weight vectors of experts 

𝓀𝑖 and parameters  𝑠𝑗. Then the aggregated result for ℒ𝛿𝑠𝑗
∗ (ℳ𝑖) is given as: 

      𝜉1 = [(0.365745, 0.709626), (0.308693, 0.751049)],  

𝜉2 = [(0.332518,0.713922), (0.407739,0.706165)], 

𝜉3 = [(0.318639, 0.693983), (0.36813,0.673448)] 

𝑺𝒕𝒆𝒑 (𝒊𝒊𝒊):      𝒮𝑐(𝜉1) = − 0.35133, 𝒮𝑐(𝜉2) = − 0.30573, 𝒮𝑐(𝜉3) = − 0.27871. 
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𝑺𝒕𝒆𝒑 (𝒊𝒗):       𝒮𝑐(𝜉3) > 𝒮𝑐(𝜉2) > 𝒮𝑐(𝜉1) 

Therefore, from the above analysis it is observed that  𝓀3 is more suitable and desirable 

candidate against the given position. 

Table 8.7,   q-ROF𝑆𝑓𝑡R  matrix for candidate 𝓀1 

 𝑠1 𝑠2 𝑠3 𝑠4 

𝒟1 [(0.7,0.2), (0.8,0.1)] [(0.65,0.25), (0.3,0.6)] [(0.82,0.18), (0.6,0.4)] [(0.5,0.2), (0.4,0.1)] 

𝒟2 [(0.6,0.1), (0.5,0.3)] [(0.5,0.1), (0.7,0.15)] [(0.3,0.2), (0.2,0.7)] [(0.2,0.3), (0.6,0.2)] 

𝒟3 [(0.4,0.5), (0.6,0.2)] [(0.75,0.2), (0.4,0.1)] [(0.65,0.3), (0.7,0.25)] [(0.5,0.4), (0.1,0.5)] 

𝒟4 [(0.5,0.3), (0.3,0.7)] [(0.6,0.4), (0.9,0.1)] [(0.78,0.22), (0.45,0.4)] [(0.8,0.1), (0.3,0.1)] 
 

 

Table 8.8,   q-ROF𝑆𝑓𝑡R  matrix for candidate 𝓀2 

 𝑠1 𝑠2 𝑠3 𝑠4 

𝒟1 [(0.6,0.3), (0.9,0.1)] [(0.2,0.4), (0.6,0.1)] [(0.5,0.2), (0.9,0.1)] [(0.6,0.2), (0.7,0.2)] 

𝒟2 [(0.4,0.25), (0.3,0.5)] [(0.5,0.15), (0.7,0.3)] [(0.77,0.1), (0.6,0.35)] [(0.4,0.3), (0.5,0.1)] 

𝒟3 [(0.3,0.6), (0.65,0.25)] [(0.66,0.2), (0.8,0.17)] [(0.8,0.15), (0.55,0.2)] [(0.7,0.1), (0.3,0.6)] 

𝒟4 [(0.5,0.15), (0.55,0.2)] [(0.8,0.1), (0.4,0.5)] [(0.62,0.3), (0.9,0.1)] [(0.2,0.4), (0.5,0.3)] 

 

 

Table 8.9,   q-ROF𝑆𝑓𝑡R  matrix for candidate 𝓀3 

 𝑠1 𝑠2 𝑠3 𝑠4 

𝒟1 [(0.8,0.13), (0.8,0.1)] [(0.5,0.2), (0.6,0.1)] [(0.4,0.1), (0.7,0.2)] [(0.7,0.1), (0.6,0.3)] 

𝒟2 [(0.5,0.16), (0.4,0.2)] [(0.8,0.12), (0.3,0.4)] [(0.6,0.2), (0.4,0.3)] [(0.5,0.2), (0.4,0.1)] 

𝒟3 [(0.4,0.5), (0.7,0.3)] [(0.5,0.4), (0.5,0.12)] [(0.2,0.4), (0.8,0.14)] [(0.3,0.4), (0.2,0.5)] 

𝒟4 [(0.3,0.2), (0.5,0.15)] [(0.6,0.25), (0.7,0.3)] [(0.8,0.18), (0.75,0.1)] [(0.6,0.2), (0.8,0.1)] 

 

 

8.6.1. Comparative study 
To compare the investigated methods with some existing methods based on IFS, PyFS 

and q-ROFS. For this purpose different parameters of the above numerical example are 

aggregated by utilizing the proposed aggregation operators having weight vectors      
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Table 8.10;   aggregated matrix for candidate 

 𝓀1 𝓀2 𝓀3 

𝒟1 [(0.719, 0.201), (0.651, 0.208)] [(0.538,0.256), (0.849,0.115)] [(0.670,0.122), (0.713,0.154)] 

𝒟2 [(0.471, 0.154), (0.534, 0.320)] [(0.602,0.179), (0.550,0.298)] [(0.616,0.171), (0.387,0.222)] 

𝒟3 [(0.598, 0.350), (0.582, 0.229)] [(0.678,0.226), (0.629,0.260)] [(0.370,0.430), (0.682,0.225)] 

𝒟4 [(0.703, 0.230), (0.616, 0.287)] [(0.605,0.211), (0.733,0.205)] [(0.650,0.201), (0.703,0.137)] 

 

 

 𝑢̿ = (0.32,0.17,0.31,0.2)𝑇, and their collective aggregated decision matrix for each 

candidates 𝓀𝑙 (𝑙 = 1,2,3) is given in Table 8.10. Now based on this evaluated matrix a 

comparative analysis of the investigated models with some existing aggregation 

operators are presented in Table 8.11. From Table 8.11, it is observed that the existing 

methods have lake of rough information and they are not capable to solve and rank the 

given illustrative example. Therefore, from these analysis it is clear that the developed 

methods is more superior and capable than existing methods.  

8.6.2. Conclusion 
ℳ𝒞𝒟ℳ has the high potential and discipline process to improve and evaluate multiple 

conflicting criteria in all areas of the 𝒟ℳ. In this competitive environment, an 

enterprise needs the most accurate and rapid response to change the customer needs. 

So, ℳ𝒞𝒟ℳ has the ability to handle successfully the evaluation process of multiple 

contradictory criteria. For an intelligent decision, the experts analyze each and every 

character of an alternative and then they take the decision. For an intelligent and 

successful decision, the experts require a careful preparation and analysis of each and 

every character for an alternative and then they can take a good decision if they are 

armed with all the data and information that they need. The dominant concepts of FSs, 

𝑆𝑓𝑡Ss and RSs generalized the classical set theory to cope with imprecise, vague and 

uncertain information. Molodtsov investigated the pioneer concept of 𝑆𝑓𝑡S which is free 

from the inherit complexity which the contemporary theories faced. It is observed that 

𝑆𝑓𝑡S has too close relation with FSs and RSs. The 𝑆𝑓𝑡S theory regarded as an effective 

mathematical tools for handling the uncertain ambiguous and imprecise data.  Recently, 

Yager presented the new concept of q-ROFS which emerged the most significant 

generalization of PyFS. From the analysis of q-ROFS, it is clear that the rung 𝑞 is the  
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Table 8.11,  Comparative study of different methods 

        Methods 𝑆𝑐𝑜𝑟𝑒 𝑣𝑎𝑙𝑢𝑒𝑠

𝜉1                   𝜉2                         𝜉3
 

        Ranking  

IFWA [4] Unapproachable × 

IF𝑆𝑓𝑡WA [58] Unapproachable × 

PyF𝑆𝑓𝑡WA [64] Unapproachable × 

q-ROFWA [30] Unapproachable × 

q-ROF𝑆𝑓𝑡WA [64] Unapproachable × 

Cq-ROFWA [69]  Unapproachable × 

q-RONFWA [34] Unapproachable × 

q-ROF𝑆𝑓𝑡RWA (proposed) 0.226074,        0.298025,        0.241341  𝜉2 ≽ 𝜉3 ≽ 𝜉1 

q-ROF𝑆𝑓𝑡ROWA 

(proposed) 

0.250625,        0.312857,        0.26844  𝜉2 ≽ 𝜉3 ≽ 𝜉1 

q-ROF𝑆𝑓𝑡RHA (proposed) −0.24099,   − 0.18323,     − 0.1955   𝜉2 ≽ 𝜉3 ≽ 𝜉1 

IFWG [5] Unapproachable × 

IF𝑆𝑓𝑡WG [58] Unapproachable × 

q-ROFWG [30] Unapproachable × 

Cq-ROFWG [33] Unapproachable × 

q-RONFWG [34] Unapproachable × 

q-ROF𝑆𝑓𝑡RWG (proposed) 0.06616,          0.135502,        0.118744  𝜉2 ≽ 𝜉3 ≽ 𝜉1 

q-ROF𝑆𝑓𝑡ROWG 

(proposed) 

0.09287,          0.152658,        0.139459  𝜉2 ≽ 𝜉3 ≽ 𝜉1 

q-ROF𝑆𝑓𝑡RHG (proposed) −0.35133,   − 0.30573,    − 0.27871    𝜉3 ≽ 𝜉2 ≽ 𝜉1 
 

 

most significant feature of this notion for when rung 𝑞 increases the orthopair adjust in 

the boundary range which is needed. Thus the input range of q-ROFS is more flexible, 

resilience and suitable than the IFS and PyFS. The aim of this manuscript is to 

investigate the hybrid concept of 𝑆𝑓𝑡S and RS with the notion of q-ROFS to obtain the 

new notion of q-ROF𝑆𝑓𝑡RS. In addition, some averaging aggregation operators such as 

q-ROF𝑆𝑓𝑡RWA, q-ROF𝑆𝑓𝑡ROWA and q-ROF𝑆𝑓𝑡RHA operators are presented. Then 

basic desirable properties of these investigated averaging operators are discussed in 

detail. Moreover, we investigated the geometric aggregation operators such as q-

ROF𝑆𝑓𝑡RWG, q-ROF𝑆𝑓𝑡ROWG and q-ROF𝑆𝑓𝑡RHG operators, and proposed the basic 

desirable characteristics of investigated geometric operators. The technique for 

ℳ𝒞𝒟ℳ and step wise algorithm for decision making by utilizing the proposed 

approaches are demonstrated clearly. Finally, a numerical example for the developed 
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approach is presented and a comparative study of the investigated models with some 

existing methods is brought to light in detail which shows that the proposed models are 

more effective and applicable than existing approaches. 
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