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0.1. Introduction

Nowadays the process of decision making (DM) is a complex issue involving
professionals of different genre. Every organization has to take decision at one or
another point as a part of managerial process. Therefore, every organization extensively
needs a team of professional experts to make every kind of complex decision. Multi-
criteria decision making (M CDM) has a high potential and disciplined process to
improve and evaluate multiple conflicting criteria in all areas of the DM. In this
competitive environment, an enterprise needs the most accurate and rapid response to
change the customer needs. So, MCDM has the ability to handle successfully the
evaluation process of multiple contradictory criteria. For an intelligent decision, the
experts analyze each and every character of an alternative and then they take the
decision. But remember, that an individual alone cannot come out with final decision
because DM problems consist of cumulative and consultative process. DM plays a
significant role and is the key component to determine both organizational and
managerial activities. Since intellectual minds are engaged in this process, so it needs
solid scientific knowledge coupled with experience and skills in addition to mental
maturity. For an intelligent and successful decision, the experts require a careful
preparation and analysis of each and every character for an alternative and they can take
a good decision if they are armed with all the data and information they need. To handle
this complexity Zadeh [1] originated a dominant and pioneer concept of fuzzy set (FS).
For each domain in FS, a value is assigned from unit closed interval and called
membership grade (M'G). From the inception of FS it has been generalized in different
directions from which one of the most significant concept is intuitionistic fuzzy (IF) set
(IFS). Atanassov [2] initiated this dominant concept of IFS which is characterized by
two mappings called MG and nonmembership grade (MM G). IFS is defined on the
bases of restriction which means that the sum of M'G and N MG must not exceed the
unit interval [0, 1]. Similarly, in many situations of real life problems, usually people
irresolute or hesitant to assign MG to an alternative according to its corresponding
attribute that make complication for experts for final decision. Therefore, Torra [3]
initiated the notion of hesitant fuzzy set that allows a single alternative of the reference

set which has several possible values as a M'G. The notion of IFS appears as a hot

Xi



research area after its origination. Since the inception of IFS’ researches proposed
various sources in different directions from which one of the key concept is of the
aggregation operators. Aggregation operators have the ability to reduce the set of finite
values in DM process into a single value which was a major issue for decision makers
that how to get the unique result from the collected information taken from different
sources. Xu [4] investigated the series of aggregation operators such as IF weighted
averaging (IFWA), IF ordered weighted averaging (IFOWA) and IF hybrid averaging
(IFHA) operators under IF environment. The series of geometric operators namely IF
weighted geometric (IFWG), IF ordered weighted geometric (IFOWG) and IF hybrid
geometric (IFHG) operators were presented by Xu and Yager [5]. Zhao et al. [6]
initiated the idea of generalized IFWA, generalized IFOWA and generalized IFHA
operators by utilizing the IF information. Wang and Liu [7, 8] presented the notion of
IF Einstein weighted averaging and geometric (IFEWA/G) aggregation operators by
using Einstein operations. Zhao and Wei [9] investigated the idea of the IF Einstein
hybrid averaging and the IF Einstein hybrid geometric operators, and then presented
their application in decision making. He et al. [10] initiated the idea of IF interactive
aggregation operators. Garg [11, 12] proposed the generalized concept of IF interactive
operators and present novel IF operational laws. Ye [13] investigated hybrid arithmetic
and geometric operators and initiated their applications in DM by using IF
environment. Liu et al. [14] presented the study of prioritized aggregation operator for
hesitant IFS. In literature, different techniques were used to handle the ranking with
score or accuracy functions but all these techniques had some drawbacks. So, Ali et al.
[15] initiated a graphical technique for ranking the IF values. From the inception and
appearance of the dominant concept of IFS a lot of research was done by different
scholars in several directions. However, there exists some deficiency in this prominent
notion due to which it fails to handle the situation and it is not always possible for the

professional experts to provide their choices in the range of IFS.

To cover this shortcoming, Yager [16] investigated the powerful paradigm of
Pythagorean fuzzy set (PyFS) in which the square sum of MG and MG must lie
between the real numbers 0 and 1. PyFS relaxes and widens the boundary range by
providing additional space to the decision makers. Yager [17] originated the PyF
weighted averaging and weighted geometric (PyFWA/ PyFWG) aggregation operators

under the PyF environment. Peng and Yang [18] initiated the concept of subtraction
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and division operators, and proved some of its basic properties. Peng and Yang [19]
investigated the notion of PyF Choquet integral average and PyF Choquet integral
geometric operators. Garg [20, 21] proposed some PyF Einstein averaging and PyF
Einstein geometric operators and presented their basic characteristics. Garg [22]
investigated confidence PyF weighted and ordered weighted averaging operators with
their basic properties. The idea of symmetric PyFWA (SPyFWA) and symmetric
PYFWG (SPyFWG) operators are initiated by Ma and Xu [23]. Wei and Lu [24]
proposed the concept of PyF power averaging and power geometric operators and
presented their desirable characteristics of these investigated operators. Wei [25]
presented some interaction averaging and geometric operators by using PyF
information. The concept of Hamacher operations for PyF averaging and geometric
operators was presented by Wu and Wei [26]. However, PyFS also has some
shortcomings and decision makers are restricted to their boundary limitation and they
cannot provide their preferred values freely.

In many scenarios of real life’s problems professional experts have diverse opinions to
handle the DM problems in which some energetic perspective are in support or against
of some plans, entities or projects. For example, in a certain country government
lunched a mega project to portray its achievement and performance. The ruling party
leaders and members highly appreciate and rate their project by assigning MG about
0.92, whereas the opposition leaders depreciate the same project and have strong
opposite point of views about it and try to defame it by providing MG may be 0.85.
So in this case (0.92)% + (0.85)2 > 1 but (0.92)7 + (0.85)? < 1 for q = 6. Due to

restrictions, this decisive information cannot be effectively handled by IFS and PyFsS.

Recently, some improvements have been made in the dominant notion of FS as, Yager
[27] investigated the generalized concept of FS, IFS and PyFS and called it g-rung
orthopair fuzzy (g-ROF) set (g-ROFS). It is observed that the parameter q is the most
useful characteristic of this concept which has the capability to cover the boundary
range that can be required. The input range of q-ROFS is more flexible, wider and
suitable because when the rung increases, the orthopair provides additional space to the
boundary constraint. In g-ROFS, the sum of qth power of M'G and qth power of NMG
must be confined to the unit interval [0, 1] for g = 1. Thus, the concept of g-ROFS is
more powerful and stronger than IFS and PyFS because these are the special cases of

g-ROFS. The basic properties of g-ROFS are proposed by Yager and Alajlan [28] and
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have been utilized in knowledge representation. Ali [29] presented another view of g-
ROFS by using the concept of orbits. The concepts of g-ROF weighted averaging (g-
ROFWA) and g-ROF weighted geometric (q-ROFWG) were proposed by Liu and
Wang [30]. Liu and Liu [31] presented the combined study of Bonferroni mean (BM)
operators and g-ROFS to investigate the g-ROF BM operators and also studied g-ROF
geometric BM operators with their desirable properties. Wang et al. [32] investigated
the combine concept of Muirhead means (MM) operators with g-ROFS to get the new
aggregation operators that are g-ROF MM operators and give their applications in
decision making. Joshi and Gegov [33] incorporated the confidence level of experts to
the original information under g-ROF environment to propose some aggregation
operators such as confidence g-ROFWA (Cg-ROFWA) and confidence q-ROFWG
(Cqg-ROFWG), Cg-ROFOWA, Cg-ROFOWG operators. Yang et al. [34] presented the
concept of g-RO normal fuzzy sets and defined the operational laws and score function
for it. They also initiated some aggregation operators for the same concept that are g-
RONFWA, q-RONFOWG. Furthermore, Hussain et al. [35] proposed hesitant g-
ROFWA and hesitant g-ROFWG operators and discussed their desirable properties.

The dominant concept of rough set (RS) was first proposed by Pawlak [36] who
generalized the classical set theory to cope with the imprecise, vague and uncertain
information. By the definition of Pawlak’s RS, a universal set is characterized by two
approximation sets known as upper and lower approximations. The lower
approximation consists of those alternatives which contain a subset and the upper
approximation consists of those alternatives having nonempty intersection with a
subset. Further equivalence relation plays a key role in Pawlak’s RS for approximations
but this condition too restricts the practical and theoretical aspects of RS. So,
researchers used generalized structure by using nonequivalence structure for detail [37,
38, 39, 40, 41, 42]. From the inception researchers used the hybrid study of rough set
theory (RST) with different concepts. The hybrid study of RS and IFS was proposed by
Chakrabarty [43] to obtain the notion of IF rough set (IFRS) and IFRS became the hot
and progressive research area for the researchers, for detail see [44, 45, 46, 47]. Zhou
and Wu [48] proposed the combined study of RS and IFS by using crisp and fuzzy
approximation space. Zhou and Wu [49] initiated the constructive and axiomatic
approaches under the IF rough environment. Hussain et al. [50] initiated the concept of

rough PyF ideals by using the algebraic structure of semigroups. Zhang et al. [51]
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proposed multigranulation rough set technique over two universes by using the PyF
environment. Hussain et al. [52] presented the concept of covering based g-ROF rough

set model by utilizing fuzzy B-covering and fuzzy -covering neighborhood.

Molodtsov [53] investigated the pioneer concept of soft set (S¢.S) which generalized
the classical set theory and is free from inherit complexity which the contemporary
theories faced. It is observed that S¢S has very close relation with fuzzy set and rough
set. The S¢S theory regarded as an effective mathematical tool for handling the
uncertain, ambiguous and imprecise data. Maji et al. [54] proposed the hybrid notion
of S¢S with fuzzy set to obtain fuzzy S5, S (FS;:S) which plays a bridge role between
these two theories. Ali et al. [55] improved some existing definition and operations in
S¢S theory. Maji et al. [56] investigated the hybrid notion of S¢S and IFS to achieve
IF soft (IFS.) set (IFS;.S) which play a key role for the scholars. The concept of
generalized IFS;S was proposed by Agarwal et al. [57]. Arora and Garg [58] presented
the concept of IFS;, weighted averaging (IFS;.WA) and IFS;, weighted geometric
(IFS;¢WG) operators. Garg and Arora [59] proposed the notion of some power
averaging and geometric aggregation operators by utilizing generalized IFS;.S. Arora
[60] initiated the notion of IFS;.WA and IFS;,WG by using the Einstein operations.
Feng et al. [61] improved some existing literature related to generalized IFS;.S and
proposed some new operations for the developed concept. Hussain et al. [62] presented
the combined study S, S, rough set and PyFS to achieve the new concept of soft rough
PYFS (S¢RPYFS) and PyF soft RS (PyFS.RS). Riaz and Hashmi [63] presented the
hybrid study of S¢S, rough set, PyFS and m-polar fuzzy set to get the new notion of
Pythagorean m-polar fuzzy soft rough set. Hussain et al. [64] presented the hybrid
structure of S¢S with g-ROFS to get the prominent concept of g-ROF soft (q-ROFS;,)
set (g-ROFS;.S) and proposed some aggregation operators such as g-ROFS;, weighted
averaging (q-ROFS;;WA), g-ROFS;, ordered weighted averaging (q-ROFS;.OWA)
and g-ROFSg, hybrid averaging (q-ROFS;.HA).

Dombi [65] initiated the new concept of Dombi t-norm and Dombi t-conorm operators
having good precedence with general operational parameter which possess the
resilience of variability. The behaviour of operational parameter is very important to

express the experts’ attitude in decision making. Seikh et al. [66] presented IF Dombi
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weighted averaging (IFDWA) and IF Dombi weighted geometric (IFDWG) operators
based on Dombi t-norm and t-conorm. Liu et al. [67] initiated the idea of IF Dombi
bonferroni mean operators and proposed their application for decision making. Akram
et al. [68] and Jana et al. [69] presented the concept of PyF Dombi weighted averaging
(PyFDWA) and PyF Dombi weighted geometric (PyFDWG) aggregation operators.
Also Khan et al. [70] initiated the Dombi operations in PyF environment. Jana et al.
[71] gave the idea of g-ROF Dombi weighted averaging and Dombi weighted geometric
(g-ROFDWA and g-ROFDWG) aggregation operators with their fundamental desirable
characteristics, Zhong et al. [72] investigated the concept of power partitioned Heronian
mean operators based on Dombi operation law for gq-ROF environment. From the
analysis of existing literature, it is observed that aggregation operators have a great
importance in decision making to aggregate the collective evaluated information of
different sources into a single value. According to the best of our knowledge up-till now
no application of the aggregation operators with the hybridization of g-ROFS with soft
set and rough set is reported in q-ROF environment. Therefore, this motivates the thesis
towards the combined study of S¢S, RS, PyFS and g-ROFS to get the new concepts of
PyFSsRS, q-ROFRS, g-ROFS;.S, q-ROFS;.S by using Dombi operations, q-ROF S,
rough set (g-ROFS;;RS) and further we investigated aggregation operators based on

soft information and soft rough information in this thesis. Moreover, the basic desirable
properties of these aggregation operators are investigated in detail. Different techniques
for MCDM and step wise algorithms for DM are demonstrated by utilizing the
proposed approaches. Numerical examples for developed approaches are presented and
comparative study of the investigated models with some existing methods are done in
detail in chapter wise which show that the proposed models are more effective and

applicable than existing approaches.
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0.2. Chapter wise study

Chapter 1

Chapter one is devoted for the basic and rudimentary concepts and definitions
concerning FS, IFS, PyFS, g-ROFS, RS and SS which will be helpful for our
subsequent chapters. Furthermore, some fundamental operational laws on these
concepts are presented.

Chapter 2

In this Chapter we are going to present the hybrid study of S, Ss, RSs and PyFSs to get
the new concepts of soft rough Pythagorean fuzzy sets (S;.RPYFS) and Pythagorean
fuzzy soft rough sets (PyFSy.RS). The aim of this chapter is to originate the two new
notions that are S, RPYFS and PyFS;;RS, and to investigate some important properties
of 5, RPYFS and PyFS;;RS in detail. Furthermore, classical representations of PyFS;.R
approximation operators are presented. Then the proposed operators are applied to DM
problem in which the experts provide their preferences in PyFS;.R environment.

Finally through an illustrative example, it is shown that how the proposed operators

work in decision making problems.

Chapter 3

In this chapter a comprehensive model is originated to handle the DM problems in
which experts have quite different opinions in favor or against of some plans, entities
or projects. Therefore, a new technique is adopted to investigate the hybrid notion of
RS with q-ROFSs by using the concept of fuzzy f-covering and fuzzy [B-covering
neighborhoods to get the new notion of covering based gq-ROF rough set (CBg-
ROFRS). Furthermore, by applying the developed concept of CBg-ROFRS to TOPSIS
and its application to multi-attribute decision making (M ADM) are discussed in
detail. In real scenario CBq-ROFRS model is an important tools to discuss the complex
and uncertain information. This method has stronger capacity than IFS and PyFS to
cope with uncertainty. From the analysis, it is clear that CBg-ROFRS degenerate into

covering based IF rough set (CBIFRS) if the rung g = 1 and degenerate into covering
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based PyF rough set (CBqg-PyFRS) if the rung g = 2. Thus the proposed concept is
generalization of CBIFRS and CBPyFRS. Moreover, an illustrative example is
presented to demonstrate how the developed model helps us in DM problems and a
comparative study of the proposed model with some existing methods are presented
whish show that the developed approach is more capable and superior than existing

methods.
Chapter 4

In 1999, Molodtsov investigated the pioneer notion of S¢,Ss which provides a general
framework for mathematical problems by affix parameterization tools during the
analysis as compared to FSs and g-ROFSs. From the analysis of existing literature and
best of our knowledge, there has been no research on the hybrid model of S¢,Ss and g-
ROFSs that is g-rung orthopair fuzzy soft set (q-ROFS,,S). Therefore, for the scope of
future motive, the proposed concept has enough space for the new research. The aim of
this chapter is to investigate the notion of g-ROFS.S, which plays a bridge role
between these two concepts. Therefore, our main contribution in this chapter is to
investigate the g-ROFS;, weighted averaging (g-ROFS; WA), q-ROFS;, ordered
weighted averaging (g-ROFS;;OWA) and g-ROFS;, hybrid averaging (q-ROFS;HA)
operators under g-ROFS;, environment. Further, the fundamental properties of these
aggregation operators are studied. On the bases of developed approach an algorithm for
MCDM is being presented. An application of medical diagnosis problems is solved on
the proposed algorithm under the g-ROFS;, environment. Finally, a comparison of the

developed operators with some existing operators are being presented showing the

superiority and efficiency of the developed approach than the existing literature.
Chapter 5

This chapter consists of the combined study of the pioneer paradigm of S¢S and g-
ROFS that is the notion of g-ROFS,,S. The notion of g-ROFS;.S is free from that

inherited complexities which are associated to the contemporary theories. In this

chapter our main contribution is to originate the concept of g-ROFS;, weighted
geometric (q-ROFS; WG), q-ROFS;, ordered weighted geometric (q-ROFS;.OWG)
and g-ROFS;; hybrid geometric (q-ROFS;HG) operators in g-ROFS;; environment.
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Moreover, some dominant properties such as Idempotency, Boundedness,
Monotonicity, Shift invariance and Homogeneity of these developed operators are
studied in detail. Based on these proposed approaches, a model is build up for MCDM
and its step wise algorithm is being presented. Finally, utilizing the developed approach
an illustrative example is solved under q-ROFS;, environment. Further, a comparative
analysis of the investigated models with existing methods is presented with detail which

shows the competence and ability of the developed models.
Chapter 6

Recently, some improvement has been made in the dominant notion of fuzzy set that is
Yager investigated the generalized concept of FS, IFS and PyFS which he called it g-
ROFS. It is observed that the rung g is the most useful characteristic of this concept
which has the capability to cover the boundary range that can be required. The input
range of g-ROFS is more flexible, wider and suitable because when the rung q increase,
the orthopair provides additional space to the boundary constraint. The aim of this
chapter is to present the Dombi aggregation operators using q-ROFS;, environments.
Since Dombi operational parameter possess natural flexibility with resilience of
variability. The behaviour of Dombi operational parameter is very important to express
the experts’ attitude in decision making. In this chapter, we present g-ROFS;, Dombi
average (q-ROFS;,DA) aggregation operators including q-ROFS;, Dombi weighted
average (q-ROFS;.DWA), q-ROFS;, Dombi ordered weighted average (-
ROFS;.DOWA) and g-ROFS;, Dombi hybrid average (q-ROFS;.DHA) operators. The
basic properties of these operators are presented in detail such as ldempotency,
Boundedness, Monotonicity, Shift invariance and Homogeneity. By applying these
developed approaches, this chapter contains the technique and algorithm for MCDM .
Further a numerical example is developed to illustrate the flexibility and applicability

of the developed operators.
Chapter 7

The aim of this chapter is to present the notion of q-ROFS;,S based on the Dombi

operations. Since Dombi operational parameter possess natural flexibility with
resilience of variability. The behaviour of Dombi operational parameter is very

important to express the experts’ attitude in decision making. In this chapter, we

XiX



investigate g-ROFS;, Dombi geometric (q-ROFS;.DG) aggregation operators
including g-ROFS;, Dombi weighted geometric (q-ROFS;.DWG), g-ROFS;, Dombi
ordered weighted geometric (q-ROFS;,DOWG) and ¢-ROFS;, Dombi hybrid
geometric (q-ROFS;.DHG) operators. The basic properties of these operators are
presented in detail such as Idempotency, Boundedness, Monotonicity, Shift invariance
and Homogeneity. A M CDM technique and algorithm is developed based on above

mentioned approach.
Chapter 8

The aim of this chapter is to investigate the hybrid concept of S¢S and RS with the
notion of g-ROFS to obtain the new notion of g-ROF soft rough set (g-ROFS;.RS). In
addition, some averaging aggregation operators such as ¢-ROFS;R weighted
averaging (g-ROFS;.RWA), q-ROFS;,R ordered weighted averaging (-
ROFS;.ROWA) and g-ROFSR hybrid averaging (q-ROFS;RHA) operators are
presented. Then basic desirable properties of these investigated averaging operators are

discussed in detail. Moreover, we investigated the geometric aggregation operators
such as g-ROFS;.R weighted geometric (q-ROFS;RWG), g-ROFS;.R ordered
weighted geometric (q-ROFS;,ROWG) and ¢-ROFS;R hybrid geometric (g-
ROFS;.RHG) operators, and proposed the basic desirable characteristics of
investigated geometric operators. The technique for MCDM and step wise algorithm
for DM by utilizing the proposed approaches are demonstrated clearly. Finally, a
numerical example for the developed approach is presented and a comparative study of
the investigated models with some existing methods is brought to light in detail which
shows that the proposed models are more effective and applicable than existing

approaches.
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Chapter 1

Preliminaries

This chapter is devoted for the basic and rudimentary concepts and definitions
concerning FS, IFS, PyFS, g-ROFS, RS and S;S which will be helpful for our

subsequent chapters. Further, some fundamental operational laws on these concepts are
presented.

1.1. Fuzzy sets
Zaheh [1] initiated the pioneer and dominant concept of FS in 1965, which brought

revolution not only in the field of mathematics and logic but also in different fields of
science and technology. This concept nicely handles the uncertainty by assigning
the MG from the unit interval [0,1] and is defined as.

1.1.1. Definition [1]
Let T be a universal set. AFS F on T is of the form

where ur(#£) denotes the MG, that is us: T — [0,1] of an element £ € T such that 0 <
ur(£) < 1. The collection of all FSs on the set T is represented by FST.

LetF = {< £, us(£) > |# € TYand F, = {< £,z (£) > |#£ € T} be any two fuzzy
sets. Then the basic operations on them are given as:
i. FCFiff uyp(£) < pug,(R)forall £ €T,
i FUF, = (& max(us(£),us,())) for £ € T;
i F 0 Fy = (& min(us(#), uz,(£))) for £ € T;
iv. F=F Iiff FSF,and F, € F,

V. F¢ = (#,1— ur(#)) for £ € T, where F€ is the complement of F.

1.2. Intuitionistic fuzzy sets
From the above definition it is clear that FS deals only MG, but in many scenario of

real life not only the grade of MG, the NMG also required. To cope on this

shortcoming Atanassove [2] investigated the prominent concept of IFS, which covered
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the deficiency of FS. The IFS consists of M'G and MG and their sum belongs to [0,1]
and is defined as:

1.2.1. Definition [2]

Let T be a universal of discourse. An IFS 7 on T is of the form

where  u;(#£) and ,(#) denotes the MG and NMG that is pu;:T —
[0,1] and y;: T — [0,1] of an element % € T with the constraint 0 < u;(£) +

Y,(#£) < 1. Moreover, the degree of hesitancy is given as my =1 — (yg(k) +
Yy (/a)). If there is no confusion then J =< %, u;(#), Y 5(%) >, is represented by J =

(ug,gbg) and is known to be IF value (IFV). The collection of all IFSs on the set T is
represented by IFST. The graphical interpretation of IFS is given in Fig. 1.

Let J,J, € IFST be any two IFSs. Then the basic operations on them are given as:
. J € Jy iff pg(R) < py, (£) and 1y (£) =y, (R) forall £ € T;
i, J U Jy = (# max (ug(£), g, (£)), min (15 (), s, (#))) for £ € T
i, J 0 gy = (& min (g (£), g, (£)), max (1 (), s, (#))) for £ € T
iv. J=Jg,ifftgc Jg,and g, € J,

V. J¢ = (k Y (#), 1y (/&)) for £ € T, where J¢ is the complement of .
1.2.2. Definition [4, 5]

Let J = (,ug(/&),tljg(/c)) and J, = (ugl (#), )y, (/f’a)) be any two IFVs and A > 0.
Then the basic operations on them are given as:

I. Ring sum operation:

Iz = {(# g (R) + 1y (R) — g (R)pag, () , 1y (R)P, (R)) | € T):

ii. Ring product operation:

I8Fs = {(# 1ty R, (&) 1y (R) + g, (£ — (R, () 14 €
T};
i 1J = (1 - (1 - ug(/&))l,lpg’l(k)>;
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iv. Jt = (ug(/a), 1— (1 - I,DJ(/&))A)

To make comparison between two or more IFVs various authors used several methods
for ranking IFVs. First of all Chen and Tan [73] presented the concept of score function
for ranking IFVs. Greater the score value better that IFV is and is defined as.

1.2.3. Definition [72]

Let J = (ug,¥7) be an IFV. Then a score function of J can be given as below:

Sc(@=py—vg  Sc(d)e[-11].
Now comparing any two IFVs J; = (., ¥,) (i = 1,2), then
i Ju > Jp 0F Sc(Jy) > Sc(Jy);
i J1 < Jpif Sc(Jy) < Sc(J,);

In case when Sc¢(J;) = Sc(J,), then two IFVs can be compared by using accuracy

function, which is defined as:
1.2.4. Definition [74]

LetJ = (uy,) be an IFV. Then an accuracy function of J can be denoted and defined

as below:
Ac(J) = py + g Ac(J) € [0,1].

Now comparing any two IFVs J; = (ug,¥5,) (i = 1,2), if Sc(J;) = Sc(J), then we

have

i J1>J20F Ac(J1) > Ac(J2);
i Jy <Jy if Ac(J1) < Ac(T);
ii.  Jy =Jpif Ac(J1) = Ac(J2).

1.2.5. Theorem [4, 5]

Let J = (ug, ) and J; = (ug,,¥4,) be any two IFVs and A,44,4, > 0. Then the

following are holds:

L J®J = .8 J,
i AJDJI1) = AJBATy;
iii. (ﬂ'l + Az)J == AIJ + /12(7;



iv. J®J1 = dh®dJ;

V. (I®ID* = JrJ

Vi JA+1z) = gl g2,
1.3. Pythagorean fuzzy sets
From the above analysis, it is clear that the prominent concept of IFS [2] deals with
both MG and VMG with the constraint that the sum of MG and VMG must belongs
to [0,1]. However, in some scenario of real life problems the values assigned to MG
and NMG from [0,1] but their sum exceeds 1. To cope on this situation Yager [16]
investigated the dominant notion of PyFS characterized by MG and NMG which
provided the more space to decision makers as compared to IFS. PyFS satisfies the
constraint that the square sum of MG and NMG must not exceed the real

V3

numbers 0 and 1. For example if the decision maker assigns the values to MG = .

and N MG =% , then their sum is bigger than 1, so IFS cannot handle it. PyFS is

2 2
capable to handle this situation, that is(ﬁ) + (%) < 1. Therefore, PyFS provides

2
more space and freedom for the experts to assign values as compared to IFS, which is

defined as:

1.3.1. Definition [16]

Let T be a universal of discourse. A PyFS X on T is of the form
R = {< £, ux(£), Px(£) > |£ € T},

where usx (%) and Yx(£) denotes the MG and NMG that is ug:T -
[0,1] and Yx: T - [0,1] of an element £ € T with the constraint 0 < uy(£)? +
Ye(#£)? < 1. Moreover, the degree of hesitancy is given as my=
V1= (ux(£)2 + Py (£)?). If there is no confusion then X =< £, ux (£), Y (£) >, is
represented by X = (ug,Px) and is known to be PyF value (PyFV). The collection of

all PyFS on the set T is represented by PyFST. The graphical interpretation of PyFS is
given in Fig. 1.

1.3.2. Definition [17, 75]
Let X, X, € PyFST be two PyFSs. Then the basic operations on them are given as:

i. R S Ry iff uy(£) < g, (R) and Py(£) = Py, (£) forall £ € T,
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i. KUK, = (/a, max (ux(/fé), i, (/&)),min (lpx(/&),lpxl(/&))) for £ € T;

i XK, = (4, min (ug(£), py, (£) ), max (e (), y, (£)) ) or £ € T;

iv. N, =R, Iff XS X, and X; € N;

V. RS = (&, (#), ux(#)) for £ € T, where X€ is the complement of X.
1.3.3. Definition [76]

Let X = (uy, ) and 8y = (uy,, Px,) be two PyFVs and A > 0. Then the basic

operations on them are given as:

I Ring sum operation:

RO R, = {(fé \/ uR () + pg () — pg(Rug, () , P (R)x, (/a)> €T };

ii. Ring product operation:

X@ Ny = (s i, (), [WRCR) + 3, () — w(RIWE, ) ) A € T);
i AR = (\[1— (1—u§(k))l,¢§(&)>;

iv., R = (,JQ(&), \/ 1-(1- ng(f&))l).

1.3.4. Definition [76]

Let X = (uyx, Yy) be a PyFV. Then the score function of X can be defined as follows:
Sc(®) = () — WP)?% Sc(®) € [-1,1].
Now comparing any two PyFVs &; = (ux,,¥x,) (i = 1,2), then

i N >R, if Sc(Ry) > Sc(R,);
i Ny <N, if Sc(R)) < Sc(Ry);

In case when Sc(X;) = Sc(X,) then 8, ~ R,. Further to cope on this issue Peng

and Yang [18] initiated the accuracy function, which is defined as:

1.3.5. Definition [18]
Let X = (ux, Yx) be a PyFV. Then an accuracy function of X is given as below:

Ac(R) = (u)* + (PYn)?; Ac(X) € [0,1].



Now comparing any two PyFVs X; = (uy,, ¥x,) (i = 1,2), then

i.  IfSc(R;) = 8c(R,), then we have
i Ny >N, if Ac(Ry) > Ac(Ry);
. N, <N, if Ac(Ry) < Ac(Ry);
iv.  N; ~ R, if Ac(R;) = Ac(R,).
1.3.6. Theorem [76]

Let R = (uy, ¥y) and 8y = (uy,, ¥y, ) be any two PyFVs and 4,1;,1, > 0. Then the

following results are holds:

. ROR, = X OK;

il AR+ Ry) = ARGAR;;

. (A + )R =4 RD AN

iv. RQN; = N;QK;

V.  (R®R ) = RA®@K, Y

vi. Rt = RL @Rz,
1.4. g-Rung orthopair fuzzy sets
From the Definitions of IFS and PyFsS, it is clear that in some practical problems both
these notions fail to cope the scenario. So researchers face difficulties to handle these
shortcomings. Yager [27] originated the generalized concept of both IFS and PyFS,
which is known as g-ROFS. In this concept the sum gth power of MG and gth power
of MM G must not exceed the real numbers 0 and 1 for g = 1. Hence g-ROFS freely
allows the alternative to their corresponding criteria provided by DM just by adjusting

the value of rung g, which is defined as follows:
1.4.1. Definition [27]
Let T be a universal set. A g-ROFS  on the set T is of the form
S ={< £ u5(R), Y5(R) >, | €T forq=1},

where  ux(#£) and Px(£) denotes the MG and NMG that is ux:T —
[0,1] and ¥5:T — [0,1] of an element £ € T with the constraint 0 < ux(#£)? +

Ps(£)? <1 for ¢ > 1. Moreover, the degree of hesitancy is given as mg =

V1= (ug(£)9 + 5 (£)9). If there is no confusion then I =< £, ux(£), 5 (£) >,



is represented by J = (us,¥s) and is known to be g-ROF value (g-ROFV). The
collection of all g-ROFSs is on the set T is represented by g — ROFST. The graphical
interpretation of g-ROFS is given in Fig. 1.
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Fig. 1, Graphical Interpretation of g-ROFS

1.4.2. Definition [27]

Let 3,5, € q — ROFST be any two q-ROFSs. Then the basic operations on them are

given as:

L JE3

i. JUJ, = (k, max (;13(/&),;131 (/&)),min (zps(/é),lpsl (/&))) forz €T;

ff uy () < py, (R) and P5(£) = P, (£) forall £ € T;

=

]

iii. ING, = (k, min (us(/&),u31(k)),max (lps(/é),lpsl (/&))) for#2 €T;

iv. F=3,iffFSJ,andJ,; € 5;
V. €= (/c Py (£), us (/a)) for £ € T, where 3¢ is the complement of .
1.4.3. Definition [27]
Let S = (us,¥5) and 3y = (us,, P, ) be any two g-ROFVs. Then the basic operations

on them are given as:

i.  Ring sum operation:



IDJI; = {(ia q\[u% (#) + pg, () — ug(Rug, (#) s (/a)lljsl(/a)> |4

ET};

ii.  Ring product operation:

IV = {(/a us (R p, (f), "\[zp;i (R) + g () — s (R)pg (#) ) | €
g

i. A3 = i[1—(1—u§(&))l,¢§(k) :

iﬂ

iv. = (,,l%(&), ‘1\[1 - (1 - lpg(/&))A)

To make comparison between two or more g-ROFVs, a score function is used to
differentiate two or more g-ROFVs. In many cases of real problems if score function
fails to differentiate the g-ROFVs. To solve this issue an accuracy function is

investigated, which are defined below.

1.4.4. Definition [30]

Let 3 = (us,¥s) be ag-ROFV, then the score function of 3 can be given as follows:
Sc(F) = pus? =y Sc() € [-1,1].

Now comparing any two g-ROFVs 3; = (ug, s,) (i = 1,2), then

L3 >3 0 Se(S1) > S5e(3);
i 31 <3 0f Sc(F1) < 5c(3y);

In case whenS§c(J,) = §c(F,) thenJ, ~ JF,. Further two g-ROFVs can be

compared by using accuracy function, which is defined as:

1.4.5. Definition [30]

Let 3 = (us, ¥s) be ag-ROFV. Then the accuracy function of J is given as:

Ac(F) = s + 95T Ac(3) € [0,1].



Now comparing any two gq-ROFVsJ; = (ug,¥s,) (i = 1,2), if $c(Jy) = 5c(3J2),

then we have

L3> 3 i Ac(Fy) > Ac(Fy);
i F <3 if Ac(Jy) < Ac(3Fy);
i, 3y ~ 3 if Ac(Fy) = Ac(3y).

1.4.6. Theorem [30]
Let 3 = (us, ¥s) and J; = (usx,,Ps,) be any two g-ROFVs and A,4;,4, > 0. Then
the following results are holds:

() 3@ 31 = 31D 3;

(i) A(3 + J1) = 13BA34;

(i) (A + 22)T = 1 I © 4,3;

(V) I® 31 = 31®J;

V) (3®ID* = 3'®31*;

(vi) 3H+4) = Sh @,

1.5. g-Rung orthopair fuzzy weighted averaging aggregation

operator
Here we will define a brief concept of g-ROFWA and q-ROFWG aggregation

operators.
1.5.1. Definition [30]

Let3; = (u;, ¥;) (i = 1,2...,n) be g-ROFVs. Letw = (W, Wy, ..., w,, )T be the weight
vectors such that »%, w =1 withw; € [0,1]. Then the mapping for g-ROFWA
aggregation operator is defined as: ¢ — ROFWA: H™ — H (where ™ is the collection
of g-ROFVs)

q — ROFWA(3J1, 3z, - In) = @21 Wi,

q n _ n
w =
= 1—| |(1—u?) | |¢iw :

1.5.2. Definition [30]

LetS; = (u;,¥;) (i=1,2...,n) be g-ROFVs. Let w = (Wy, Wy, ..., w,,)T be the weight

vectors such that ), w = 1 with w; € [0, 1] respectively. Then the mapping for g-
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ROFWG aggregation operator is defined as: q — ROFWG: H™ — H (where H™ is the
collection of g-ROFVs).

q — ROFWG (31,35, - 3n) = O, ;"

_ (ﬂu 1 —ﬁ[(l —wé’)"”)-

1.5.3. Remarks

(1) If g =1,then q— ROFWA reduced to IFWA by Xu [4] and q — ROFWG
reduced to IFWG by Xu and Yager [5].

IFWA(JIJ (72) Jn) = ea?:llT/iJi

=<1—fju—uwifjw?)

IFWG(JlJ (.721 (.71’1) = ®1i1=1171l'(7i

= (ﬁ#?: 1- ﬁ(l — )" )
i=1 i=1

(i) If g =2,then q— ROFWA reduced to PyFWA and q — ROFWG reduced
to PyFWG given in [17, 75].
PYFWA(Nl, NZ, Nn) = @{l:l]T/iNi

2 n n
- 1—[]u—uﬂi[]w?
i=1 i=1

and

and

PyFWG(Nl, Nz, . Nn) = @{l:llfllxl

n ) n
=\ [[wr. 1-T]a-wp7 )
i=1 i=1

1.6. Rough set theory
In 1982, the pioneer concept of rough set (RS) was first proposed by Pawlak [36] who

generalized the classical set theory to cope imprecise, vague and uncertain information

by an easy way. By definition, Pawlak’s RS of a universal set is characterized by two
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approximation sets known as lower and upper approximations. The lower
approximation consists of those elements which contain in the set and the upper
approximation consists of those objects having nonempty intersection with the set.
Further equivalence relation plays a key role in Pawlak’s RS for approximations and
RS theory has been extensively used in various directions of theoretical as well as in
practical applications.

Let T,,T, be two nonempty set and consider a Cartesian productT; X T, =
{(#4,#,)|#, € T1, %, € T,}. A subset of a Cartesian product is called binary relation
and it is denoted by R. The statements (%4, %,) in R is read as "#, is R-related to %,"
and is represented as #,R#%, or (£, #%,) € R.

Suppose T be a universal set and R be a binary relation over T x T having the following

properties:

(0 R is reflexive, i.e. V£ € T, AR %,

(i) R is symmetric, i.e. forany #,,%, €T, if £,R%,, then £,R#,

(iii)  Ris transitive, i.e. for any £,,%,,%#5 €T if £;R%, and £,R#%, then

S RAe3.

Then R is called an equivalence relation. The set of those objects of T which are related
to#£ €T, is said to be equivalence class of # and is represented as[£]x =
{u € T|#£Ru}. The pair (T,R) is known to be an approximation space. Consider a
nonempty subset K of T, then K is definable if it can be written in the union of some
equivalence classes of T, otherwise K is undefinable. So in this case set & can be

approximated in the form of definable subsets called lower and upper approximation

which are given as:

RXK) ={k eT|[£]z € K}
R(K) ={L ET|[£]lx NK # 0}

R(K) is the greatest definable set in T contained in K and R(%) is the least set in T
containing K. The set R(%) = (R(%), R(%)) is said to RS if R(K) # R(¥X). The

geometrical interpretation of RS is shown in Fig. 2.

11
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27

Fig. 2, Geometrical Interpretation of Rough Set

1.6.1. Example
LetT = {kll ’kZl /&3I k4) &/5; /"’6} and

R = {(kl,lf’al), (Rgy R3), Bz, #o3), (g, o), (Bos, #o5), (Feg, Fe6), (R1, R2), (£2, /&1),}
(/('/3, ’kS): (’ks; %’3) .

Then R is an equivalence relation on T. Now the equivalence classes of R are [%,]z =
[#2]n = {#1, 2}, [R3ln = [#s]lr = {3, £s}, [Ralx = (R4} and [#e]r = {#6}. Let
us  consider K = {#, £z, £y, £} ST. ThenR(K) = {£4,£¢}, R(K) =
{By, By, Pz, oy, Bos, o6}, As R(K) #= R(K). Hence R(K) = (R(K),R(XK)) is a

rough set.

In next definition Yao [77] presented the rough set based on set valued mapping (SVM)

means using nonequivalence structure.
1.6.2. Definition [77]

Consider a universal set T. Suppose R € T X T be the crisp relation. Suppose R* be
the set valued mapping (SVM) ie. R*=T - P*(T) defined by R*(£) = {u €
T|(#,u) € R and # € T}. Then the pair (T, R) is known to be an approximation space.
Suppose @ = J < T, then the lower and upper approximation of J w.r.t approximation

space (T, R) is denoted and defined as:
R ={£ TR (£) €3}

and R ={£eT|R (L) N + O}

12



The pair (3(3),:73(3)) is known to be a crisp rough set, where R(3) # R(3). Hence

R(Z),R(Z): P*(T) —» P*(T) is called crisp lower and upper approximation operators
w.r.t (T, R), where P*(T) is the collection of power set of T.

1.6.3. Theorem
Suppose R, and R, are any two equivalence relations on set T and X;, K, are

the non-empty subsets of T. Then the following are hold:
i R S XKy S RO,
i. R, UK, = R(K) URK,),
iii. R NK,) =RE) NREG),
iv. ¥, S K, = R(K,) S R(K,),
V. K, S K, = R(K,) S R(K,),
Vi  R(K; UXK,) 2 R(K,) UR(KS),
vii.  R(K,NK,) S R(K,) N RI).

1.7. Covering based intuitionistic fuzzy rough set
Here in this subsection we are going to present a brief structure of CBIFRS and its

related structure.
1.7.1. Definition [78]

Let T be a universal set. The set X = {C # ¢:C S T} is called coverof T, ifUC =T.

So in this case the pair (T, K) is said to be covering approximation space (CAS).
1.7.2. Definition [78]

Let (T,X) be a CAS. Then Ny (#£) =n{C:C € K and # € C}is known as the
neighborhood of £ € T w.r.t (T, X).

1.7.3. Definition [79]

Let T be a universal set. Let F = {F,,F,,...,F,} with F, € FST(i =1,...,m).
If TVT F;(#) = 1for each £ € T, so in this case F is called a fuzzy covering of T.
i€

The pair (T, F) is called a fuzzy CAS.

13



1.7.4. Definition [80]

Suppose T is a universal of discourse. Forany g € (0,1]and F = {F;,F,, ..., F,} with
Fn € FST (i = 1,..., m), then F is called a fuzzy B-covering of T, if U F;(#£) = p for

each £ € T. The pair (T, F) is said to be fuzzy -covering approximation space.
1.7.5. Definition [80]
Consider (T, F) be a fuzzy CAS and F = {F,, F,, ..., F,} be a fuzzy B-covering of T,

for some g € (0,1]. Then fuzzy pB-neighborhood is defined as N,f =N{F, €
FFi(R)=p(=1,2,....m)}for L€T.

1.7.6. Definition [80]

Let (T,F) be a fuzzy CAS and F = {F;,F,,...,F,} be a fuzzy -covering of T, for
some 8 € (0,1]. Then g-neighborhood of y is denoted and defined as (]\fyﬁ)* ={k €

T: N (#) > B} foreach y € T.

1.7.7. Definition [81]

Let T beanysetand J = {J,,J,...,Im}, Where J; € IFST andi = 1,2,..., m. For any
IFV B = (ug,¥p), J is called intuitionistic fuzzy f-covering (IF g-covering) of T, if
(U, d) (k) = p for all £ € T. Here (T,J) is called a IF covering approximation
space (IFCAS).

Suppose that (T, J) is a IFCAS and J = {J;, J>, -..,Jm} be a IF B-covering of T for
some B = (g, 1p). Then Nj, =n{J; € J:J; > B, j=12,...,m} is the IFB-
neighborhood of £ in T.

An IFB-neighborhood system is denoted and defined as Nf = {]\@[’Ek):k € T} which

is induced by IF B-covering J. By using IF matrix to represent a IFS-neighborhood

system as follows:

MY = (M, (8]

%iX%jETXT

1.7.8. Remarks [81]

(N If B = (1,0), then in this case IF B-covering reduced to a crisp covering and
similarly if 8 = (1,0), then IF pB-neighborhood reduced to a crisp
neighborhood.
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(i) If 3 = (#£,0), suchthat 0 < £ < 1, then in this case IF 3-covering reduced
to a fuzzy covering and similarly if If 8 = (#,0), then IF g-neighborhood

reduced to a fuzzy B-neighborhood respectively.
1.7.9. Definition [81]

Consider a IFCAS (T, C), where J = {J1,J2 I3 -, Im} 1S the set of IF B-covering
of T for some B = (uﬁ,lpﬁ) and T = {#4, #,, ..., £, }. Consider that the neighborhood

system Nf { Sk R E T} induced by IF B-covering of J such that

NB

Ik {< ia],,uN;z (fai,faj),leﬁM(&i, #;) >4 [foralli=1,...,nand j

=1,...m}

Now for any S € IFS”, where 3 = {< kj,us(kj),ws(/oj)) >, lj=1,...,m}, the

lower and upper approximations of § w.r.t NP

Jsy 18 represented and defined by

OR (N_f (5),N_f(3)>,

where
Broey — o
N_J(\S) - {< /"’i’ 'UN_JB(s)(kl)' l/)N—JB(S)(kL) >q |l = 1,...,71}
and
— a
N = {< Bkt o) (D g (R >q li = 1,...,n}
such that

Hagf ) (% /\ {“Nﬁ (#oi,#) V (%j)}

j=1

=

NB(J)(/&) =

{lefE/zi) (fei, #21) N5 (/a,-)}

~.
1l
=
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m

N_J/g - (&) = {HNJB(&i) (/&i;/&j)/\ﬂs (/*”J)}

j=1

m

le_JB(S) (’kl) = /\ {leglz/;l) (’ki, k]) \Y lps (/&1)}

j=1
So the operators ]\ff (S),Nf (3) : IFST — IFST are said to be lower and upper IF

rough approximation operators w.r.t J\{f :

Therefore, the covering based IF rough set is the pair]\gg Q) = (J\ff (S),Nf ),
when ever ]\/‘f ) # Nf ().

1.8. Soft sets

In 1999, Molodtsov [53] investigated the pioneer concept of soft set (S, S) which is
defended on parameterizations tool to cope the uncertainty and vague data. Various
traditional concepts such as fuzzy sets by Zadeh [1], rough sets theory by Pawlak [36],
IFS by Atanassov [2] etc. are generally used by scholars to handle the complexity
during analysis but grossly all these notions have the lack of parameterizations tool.

Therefore, these concepts cannot be impressively applied to real life problems. So,

Molodtsov investigated the novel concept of S, S which is defined as:
1.8.1. Definition [53]

Consider a fix set T called universal and [E represents the set of parameters with KX <

E. The pair (H,%) is known to be aS;S overT, where H is a function given

by #: % — P(T). P(T) denotes the power set of T.
1.8.2. Definition [82]

Let (1, ¥;) and (33, K,) be two S;. Ss over a common universe T. Then (H3, K,) is
known to be a soft subset of (H;, K;) if K, € K; and H,(s) € H;(s), forall s € K,

1.8.3. Definition [82]

Two S¢,Ss (Hy, K1) and (H3, K;) over a common universe T are called soft equal if

(Hy, K7) is a soft subset of (H,, K,) and (H,, K,) is a soft subset of (H;, K;).
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1.8.4. Definition [82]

Let (1, K1) and (35, K;) be two Sy, Ss over a common universe T. Then their union

isa S¢S (E,C), where C = K; UK, and forall s € C,

H,(s) if s € Ki\XK;
E(s) =1 H,(s) if s € K\¥,
Hi(s)UH,(s) if seX,NK;
This relation is represented as (#;, K;) U (#,, X,) = (E, C).
1.8.5. Definition [55]

Let (Hy, K1) and (H,, K) be two S, Ss over a same universe T. Then their extended

intersection is a S¢S (E, C), where C = K; U X, and for all s € C,

Hi(s) if s € K3\¥,
E(s) =1 H,(s) if s € Ko\¥,
Hi(s)NH,(s) if seXK,NK,
This relation is represented as (#;, ;) N (#,, X,) = (E, C).
1.8.6. Definition [54]

Consider a S¢S (#,E) and X < E. A pair (#,%) is said to be a fuzzy S;,S (FS;.S)
over T, where H is a function given by 7: K — #™; 1 (™) represents the collection

of all fuzzy subsets of T, and is given as
j‘TSj = {< /é',l,,u](/tl) > |kl € T}

If s; is any parameter and }Tsj represents a crisp subset of a universal set X, then FS,S

reduces to Sg,S.

1.9. Intuitionistic fuzzy soft set
In this subsection we will present the concept of IFS;. S and their basic operational laws.

1.9.1. Definition [56]

Let (H, E) be a S;Sover T. A pair (J,X) over T is said to be an IFS;S such that J is
function given by J: X' — IFST. Then IFS;,S denoted and defined as:

Jsj(/&i) = {(/&i,uj(/&i),lpj(ki)) |[#; € T and s; € [E},
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where u;(£;),;(#;) represents the M'G and N MG an object £; € T to the set Js,;with
0 < 41 () + 1; () < 1. For the sake of simplicity Jy, () = (#;,1; (£, 1; ()
is denoted as Js,; = (1, 1y;), which represents IFSy, value (IFS,V). Further, Mg, =
1 — (i + y;) is known as hesitancy degree.

1.9.2. Definition [58, 60]

Let Jg, = (u(£), 1K) and Js,, = (2 (#:), Y2 (£)), (i = 1,2,...,m) be two

IFS;¢Vs. Then the fundamental operations are given as:

(i) Js;y U Is;, = (B max(uy (£, 12 (£)), min(p, (£,),9, (#,))) for £, € T;

(iD) Isy N Js;p = (#gy min(uy (£, o (£)), max(h, (), 1, (#,))) for £; € T,

(ii)JE, = (Ri Y1 (£, 1y (£)) for £; € T, where J¢, is complement of Jg, ..
1.9.3. Definition [58, 60]

Let (7511 = (ﬂl(’&l)"’bl(’kl)) and (7512 = (Hz(/&l), lpz(/&l)) be two IFSftVS Then

the fundamental operations are given as:

Js,® Js,, = (q\/lff (1) + .Ug (%) — .Uf (%‘/1).11(21 (1), 1 (£, (/&1)> ;

Js;,® ds,, = (/h(/t'q)llz (#1), q\/lpf (#41) + lpg (#1) — l/)f (/&1)#}5 (#1) >;

15, = (Jl ~(1-4 (fal))l,wf(kl)) for A > 0;

a 2
(7511 = (l’tf(kl)l \/1 - (1 - l/)f (kl)) >f0r /1 > 0
1.9.4. Definition [58]

Let Js,, = (u11,%11) be any IFSg V. Then the score function of J,,  can be given as:

56(3511) = 1 — Y11s SC(JSH) € [—1,1].

Greater the score value, greater the IFSy,V is.
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1.10. Intuitionistic fuzzy soft weighted averaging and geometric

aggregation operators
Here we will discuss the detail of IFS;; WA and IFS;, WG aggregation operators.

1.10.1. Definition [58]

Let J, = (wij, i) (i =12..,n,and j = 1,2 ...,m) be IFS;Vs. Consider w =
(W1, Wy, ..., wp)T and @ = (&g, Ty, ..., Uy )T be the weight vectors for experts 4; and
parameters s; such that X7, w = 1 and Y7L, & = 1 with w;, &; € [0, 1] respectively.
Then the mapping for IFS;, WA aggregation operator is defined as: IFS;:WA: H™ — H
(where H'™ is the collection of IFS;,Vs)

IFSe WA(Ts,, Tsrpr o Jspm) = D=1l (Ga?ﬂﬁi‘]sw)
—ﬁ<ﬁ(1_“ﬁ) ) ﬁ(ﬂ%)
j=1 \i=1 j=1 \i=1

1.10.2. Definition [58]

Let Jy, = (i, ¥y) (i=12..,n,andj = 1,2..,m) be IFS,Vs. Consider w =
(Wq, Wy, ..., w,)T and @ = (4, Uy, ..., Uy, )T be the weight vectors for experts #4; and
parameters s; such that Y7y w = 1 and Y72, 4 = 1 with w;, u; € [0, 1] respectively.
Then the mapping for IFS;. WG aggregation operator is defined as: IFS; WG: H™ - H
(where H'™ is the collection of IFS;,Vs)

[FESe WG ( s,y dsypr oo dspm) = (@111 1(7‘4:’ )ﬁf
ﬁ (l_[w,”) 1= ﬁ <ﬁ(1 - wi,-)”=”> .
j=1 \i=1 j=1 \i=1

1.10.3. Theorem [58]

Let Js, = (1 ¥iy) (= 12..,n,andj=12..,m) be IFS,Vs. Suppose w =
(Wy, Wy, ..., w,)T and T = (T, Uy, ..., U, )T be the weight vectors for experts #£; and
parameters s; such that XL, w = 1 and XL, 4 = 1 with w;, u; € [0, 1] respectively.
Then the IFSy, WA aggregation operator has the following properties.

(i) (Idempotency): If s, = T, where T, = (ug,1)5), then
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IFSpWA(Js,, Jsypr 0 JIsy) = T

(ii) (Boundedness): If J;, = (mjin min{y;}, max max{y j}) and
Jd, = (m]ax miax{uij},mjin miin{lpij}), then
‘75‘_ij = IFSftWA(‘jsn"jSu’ ""anm) = ‘7;;]

(iii) (Shift-invariance): If T, = (us, ¥,) is another IFS,V, then
IFS; WA(Js,, D T, Is,,® T,y -wes Js,, D Ts)
= IFS; WA(Js,,) Tspyr r Ispp) D L.
(iv) (Homogeneity): For A > 0, then we have
IFSpWA(AJs, Ads, 0 Ads,,, ) = ATESyWA(Js, s Jsyyr ver Tsym)-

1.10.4. Theorem [58]
Let Js, = (i, ¥i;) (= 1,2..,n,and j = 1,2...,m) be IFS;Vs. Consider w =
(W1, Wy, ..., wp,)T and & = (T4, Uy, ..., Uy )T be the weight vectors for experts 4; and
parameters s; such that Yy w = 1 and Y72, 4 = 1 with w;, u; € [0, 1] respectively.

Then the IFS;, WG aggregation operator has the properties.

() (Idempotency): If Js,; = ¥, where T = (us, Ys), then
IFSp WG (Js,,s Jsyyr oor Jsp ) = s

(i) (Boundedness): IfJ;l.j = (m_in m,in{,ul-j},max max{lpij}) and
J l J i
J& = (m]ax miax{,ul-]-}, mjin miin{l/)l-j}>, then
Js;; S TESEWG (T, Tsiyp oos Tsum) < T3

(iiii) (Shift-invariance): If T = (us, 1) is another IFS;,V, then
IFS WG (Js,, ® T, T, ® Ty o) I, D L)
= IFS; WG (Js,,, Jsyyr ver Ty, ) O T

(iv) (Homogeneity): For A > 0, then we have

IFSpWG(Ads,, Adsyy s A5, ) = AESp WG (T, Tsyyr o Is)-
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1.11. Soft rough set
In this section, the combine study of S¢S and RS are presented to get the new notion

of S¢.RS by based on crisp S¢S relation form universe T to set of parameter E.

1.11.1. Definition [83]

Suppose a S¢S (H, E) over a universal set T. The relation R from T with E is said to

be a crisp soft relation, whish is denoted and defined as:
R ={< (&,5),ux(#,s) > |(#,s) €T x E},

_ ) (1 (£,s)ER
where uz: T X E - {0, 1} with ux (#£,s) = {0 (£s) & R
1.11.2. Definition [84]

Consider a universal set T and [E be the fixed set of parameter. Suppose R € T X E be
the crisp soft relation over T X [E. Suppose R* be the set valued mapping (SVM) i.e.
R* =T - P*(E) defined by R*(£) = {s € E|(#,s) € R and £ € T}, where P*(E)

is the collection of power set of E.

The relation R* is known to be serial if V £ € T, R*(#) # @. Then the pair (T, E, R) is
known to be a crisp soft approximation (S;;A) space. Suppose @ # X < E, then the

lower and upper soft approximation of K w.r.t 5, A space (T, E,R) is denoted and

defined as:
R(K) ={# € T|R"(#) S K} (1)
and R(K)={k eT|R*(£)NK + 0} (2)
The pair (g(%),:ﬁ(:}c)) is known to be a crisp soft rough set, where R(¥) # R(XK).

Hence R(K),R(K):P*(E) - P*(T) is called lower and upper crisp soft rough
approximation (Sy;RA) operators w.r.t (T, E, R).

1.11.3. Example

Consider a universal set T = {£, %, #23, #o4, %5} and let E = {s,, s, 53, 5,} be the set
of parameters. Then the S¢S (3, E) over T are defined as:

H(sy) =y, #p, 3}, H(sy) =0, H(s3) = {#eg, s}, H(sy) =T,
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Now consider a crisp soft relation R over T X E is given as:

R = {(/&1' 1), (2, 81), (#3,51), (£2,53), (£4,53), (£1,54), (R3, 54), (fe3, 54),}
(/"/4) 54); (/"/SJ 54)

Now from the definition of SVM R*, are given as

R*(#1) = {s1,5}, R (#2) ={s1,52,8:}, R'(k3) ={s1,8:}, R ()
= {53,584}, R*(#s) = {54}

If X = {s,, 53,54} € E be the set of parameter then by Egs. (1) and (2), R(K), R(¥X)

are given as:
E(:}C) = {&44 &5}; ﬁ(jc) = {&11 %’21 %’31 %’41 ’&/5} = T
1.11.4. Theorem [84]

Suppose (T, E, R) be a crisp S¢,RA space. Consider X, X, € P*(E), then lower and

upper approximation satisfied the following properties:
. R&) =~ (ﬁ(ﬁ(l)), where ~X; is complement of X;;
i, R =~ (R(~3));
iii.  R(H, UK, = R(K) URK);
iv. REK;NK,) =REK) nRE,);
V. K, S K, = R(K,) € R(K);
Vi. Ky € K, = R(H) € R(OG);
vii.  R(K; UK,) 2 R(K,) UR(K,);
viii.  R(¥; N K,) € R(K,) NR(K).

1.12. Intuitionistic fuzzy soft rough set
Zhang [84] et al. originated the hybrid notion of S¢S and RS with IFS to initiate the

new concept of IFS;,RS. They have presented some desirable properties of the IFS;.RS.
1.12.1. Definition [83]

Consider a S¢S (H, K) over a universal set T. Then a relation R is known to be a fuzzy

soft relation (FS;.R) from T X [E and denoted as:

R ={< (&,5), ux(#,s) > |(#,s) € T x E},
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where pz:T X E — [0,1]. If T = {£4, %, ..., &} and E = {s;, s, ..., s}, then the
FS;eR R from T to E is given in the following Table 1.1

Table 1.1, Tabular representation of FS;.R

Sl SZ v Sn
fq tr(#4,51) pr(#1,57) pr(#1,5,)
f; tr (£2,51) g (#2,57) pr(#2,5,)
’ﬁ’m Ur (’f"’m' 51) Ur (’km' 52) Hr (’km' Sn)

1.12.2. Definition [84]

Consider an Sy, A space (T, E,R). Now for any J = {< £, u;(£),;(#£) > |£ € T},
where J € IFST. Then the lower and upper approximation J w.r.t (T, E, R) are denoted

by R(J) and R(J) and are defined as:
R(D) = {< &, 1z gy (R), Yrg)(R) > | € T}

R() = {< £, iz 5 (R), Y5y (R) > | € T},

where

M) () = /\%EE{(l — ug(#,5))Vuy (£)}
Va® =\ _{un(h,9) nuy ()
@) = \/ | {un(h5) n g ()

Van® = [\ {0~ )V ()

The pair (3((7),33((7)) is called an IFS;RS, where R(J) # R(J). Hence
R(T), R(J): IFSE - IFST is called lower and upper IFS,R approximation operators
w.rt(T,E,R).
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The upper and lower approximation that is R(J) and R(J) is again IFN.
Therefore, R(J), R(J): IFS(E) —» IFS(T) is called lower and upper IFSR

approximation operators w.r.t (T, E, R).
1.12.3. Example

Consider a universal set T = {£,, £, #3, #4, #5} and let E = {s;, s,, 3,5, } be the set

of parameters. Suppose R be the FS¢,R over T X E as given in Table 1.2.
Now to define J € IFSE that is,
J =1{(s4,0.7,0.2), (s,,0.6,0.3), (s3,0.4,0.5), (s, 0.8,0.1)}.
Now to calculate R(J), R(J) are given as:
R(J) = {(#,,0.4,0.5), (£,,0.4,0.5), (£, 0.6,0.3), (£4,0.4,0.5), (£5,0.4,0.5)},

R(J) = {(#£,,0.7,0.2), (#,,0.6,0.3), (#3,0.6,0.4), (#24,0.8,0.2), (#5,0.6,0.3)}.

Table 1.2, Tabular representation of FS;.R

S1 Sz S3 Sy
fq 0.9 0.4 0.7 0.3
#, 0.6 0.8 0.9 0.5
£ 0.3 0.6 0.2 0.1
n 0.7 0.3 0.6 0.8
fes 0.5 0.9 0.8 0.4

1.12.4. Theorem [84]
Suppose (T, E, R) be the fuzzy S;.RA space. Consider J,,J, € IFSE, then lower and
upper approximation operators R(J,) and R(J,) satisfied the following properties:

. R(J) =~ <§(~Jl)), where ~J, is complement of 7,

i. R =~ (R(~a0),

iii. R(JLUIL) =R(I) VR,
iv.  R(JiNJT2)=R(T) NR(T,),
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V.  J1E€J, = R(J1) € R,
Vii  J1 € J2 = R(J1) € R(J2),
vii.  R(J, UV J7) 2 R(J4) U R(T2),

viii.  R(J, N Jy) € R(IJ) NR(T,).

1.13. TOPSIS method with Pythagorean fuzzy information

LetT = {#4,%,,..., %, } be any set of n feasible alternatives, P = {P,, P,,..., P, } be
the set of m attributes and consider the weight vector w = (W,, W, ..., w,,)T for all
attributes such that 0 <w; < 1land 2%, w; = 1. Decision makers D, and
Dnon-mem €Xpress their preference evaluation for alternatives #;(i=1,...n)
corresponding to the set of attribute P;(j = 1,...,m) by u;; and y;; respectively. So
combining these two values as a PyFVs, we have PyF decision matrix P;(#;) =
(uij, Pij). This means that the decision maker D,,,,, provides MG u;; to an object £;
against to the attribute ;. Whereas the expert D, on_mem Provides NMG ;; to an

object #; against to the attribute ; and their decision matrix is given as:

(M1 V11) (a2 12) - (.U1j'1/)1j)
?j(/&j)= (#21::¢21) (.“22»}!’22) (.Uzj':lpzj)

(#u;lpu) (#iz;'lpiz) (.L‘ij"lpij)

By using the PyF TOPSIS approach, we will present PyF positive ideal solution and
PyF negative ideal solution through the score function by Definition 1.3.4, which is

given as:
P* = (B, max{s(P(A)Y/j = 1,...,m}
={< Pl W > <Pouz, 03 >, .. <Py, i, Y >}
P~ = (P, min{s(F(A))}/j = 1,...,m}
={<PLu, 1 > < Popz, Y7 >, < Py, i, Ui >}

Further to calculate the weighted distances D* and D~ for an object #; and PyF-PIS
P* and PyF-NIS P~ are defined as the following:

D* (£, P*) = ) T d (B8, B(PY)

j=1
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= 5> (Jid = 7]+ [, = )|+ [ = G ) | for = 1)

j=1
Usually inferior the value of D*, better the alternative #; and let,

Dt pmin(#i, PT) = mln D*(#;, PY)

1<isn

and

D~ (ki P7) = ) Wy (708 7,(PO))
j=1

%Z‘T}J |'ul] (:u ) |+|l/)u (l[) ) |+|7le (7T+) |) for(i=1,...,n)

j=1
Greater the value of D, better the alternative #; and let,
D max(#i, P7) = max D~ (%;, P7)
In TOPSIS method to get the ranking of alternative #;, we use the revised closeness
formula which is defined as:

D~ (#;,P7) D*(#;,P*)
D_max(%’il P_) D+min (ki: P+)

§(ky) =

Larger the value of £(#;), better that alternative is.
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Chapter 2

Pythagorean fuzzy soft rough sets

In this chapter we are going to present the hybrid study of S;;Ss, RSs and PyFSs to get
the new concepts of soft rough Pythagorean fuzzy sets (S;.RPyFS) and Pythagorean
fuzzy soft rough sets (PyFSy.RS). The aim of this chapter is to originate the two new
notions that are S, RPYFS and PyFS;,RS, and to investigate some important properties
of S, RPYFS and PyFS.RS in detail. Furthermore, classical representations of PyFS;.R
approximation operators are presented. Then the proposed operators are applied to DM
problem in which the experts provide their preferences in PyFS;.R environment.
Finally through an illustrative example, it is shown that how the proposed operators

work in DM problems.
2.1.1. Definition

Suppose T* = {(#4,%,): (£1,#%,) € [0,1] x [0,1] such that £% + £3 < 1} with the

ordered relation < represented as:
(’kl,kz) < (91'92) (=4 ’kl < 91 and 9» < %/2 A (kl,kz), (gl,gz) ET* (21)

For an arbitrary (#£,, %), (g1, g-) are known to be incomparable if the Eq. (2.1) is not

satisfied.

2.1.2. Lemma

The ordered set T* is a complete lattice w.r.t ordere d relation <.

NextV (#£4,%,),(g91,92) € T*, the operation A and Vv on (T*,<y+) are given as:
(1, #2) A (g1, g2) = {min(%,, g1), max(#£,, g,)}
(1, #2) V (g1, g2) = {max(£4, g1), min(%£,, g2)}-

2.2. Soft rough Pythagorean fuzzy set
In this section, we will present the concept of S;,RPYFS by combining the crisp soft

relation from T to E with the rough PyFS. Furthermore, the concept of S RPyF
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approximation operators are investigated, and some basic properties of proposed
operators are also discussed.

2.2.1. Definition

Consider a crisp S;,A space (T, E,R). Now forany § = {< s, ux(s),5(s) > |s € E},
where € PyFSE. Then the lower and upper soft approximations of I w.r.t SpA

space (T, E, R) are represented by R() and R(S) and are defined as:
R() = {< £, gy (B), g () > |£ €T}

ﬁ(ﬁ) = {< *, HR () (’ﬁ’/)ﬂpﬁ(s) (#) > |% € T},

where
o (B) = /\ - d P (B) = \/ -
lug(\s)( ) SER*(A) ,U\S(S) an Ebg(\;)( ) SER*(£) 71[’\5(5)
) 2 2
with 0 < (,113(3) (/&)) + (1/)3(3) (k)) <1 and
(B = \/seR*(/‘c) H3(s) and Py (R) = /\seR*(/’L) ¥s(®)

with 0 < (k) (8))” + (Vi) (B)) <1

The pair (3(3),7@(5)) is called a S;,RPYFS of 3 w.r.t (T,E,R), where R(J) #
R(3). Hence R(3J),R(J):PFSE —» PyFST are called lower and upper S;RPyF

approximation operators w.r.t (T, E, R).
2.2.2. Remark

Consider a crisp Sg.A space (T,E,R) and let for any F = {< s, uz(s) > |s € E},
where F € FSE. Then the defined lower and upper S RPyF operators R(F) and R (F)

reduce to soft rough fuzzy operators, that is
R(F) = {< ko pugry(R) > |RET} and R(F) = (< &, gz (R),> |R €T},

where

) (R) /\&1@*(/&)“?( 1) and g (£) vklex*(&)ﬂ?( z
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The pair (3(7-"),:7?(:7-")) is called a soft rough FS of F w.r.t S A space (T, E, R),
where R(F) # R(F).
2.2.3. Remark

Consider a crisp S A space (T, E,R) and let 3 € P(E), where P(E) is a power set of .
Then the defined lower and upper Sy, RPyF operators R(3) and R(3) reduce to crisp
S¢eRA operators. Hence, it is observed that S;,RPYFS is the generalization of S¢.RS.

2.2.4. Example

Consider a universal set T = {#,, #,, #5, #4, %5} let E = {s, 55, 53,54} be the set of

parameters. Then a S¢S (H, E) over T is given as:
‘7{(51) = {’kli /&2, %’3} 7{(52) = ®1 7-[(53) = {%’21 %’4}1 }[(54) = T
Let R be the crisp soft relation from T to E, given by

R = {(/&1' S1), (3, 81), (#e3,51), (£, 53), (4, 53), (£1,54), (3, 54), (fe3, 54),}
B (#4,54), (£s,54) .

Now from the above relation the SVM R* is given as:

R*(#y) ={s1,84}, R (k) ={s1,83,5:}, R (&3) ={sy,s4}, R ()
={s3,5:}, R (#s) = {s4}.

Next to define an arbitrary PyFS < that is § € PyFSE as given below:
3 =1{<s,090.3><5,0.8,0.5 > < s304,0.7 > < s,,0.7,0.5 >}

Now to determine the S;.RPyF lower and upper approximation operators R(3) and

R () that are

R(T) = {< £4,0.7,0.5 >, < £,,04,0.7 >,< £5,0.7,05 >, < £,,0.4,0.7 >,
< £5,0.7,0.5 >}

R(I) ={< £4,0.9,0.3 >,< £,,09,0.3 > < £5,09,0.3 > < £,,0.7,0.5 >,
< £5,0.7,0.5 >}.
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2.2.5. Theorem

Suppose a crisp Sp.A space (T,E,R). Then for any 3, J;,J, € PFSE, the S;.RPyF

approximation operators R(3) and R(3) hold the following characteristics:

i R =~ (§(~3)), where ~ is complement of S,

. 3(31 N 32) = 3(31) N E(Sz),

Vi. ﬁ(S1 U3J,) = R(J1) UR(S,),
vih 3, €35, =
viil. §(31 N3J,) € R(F1) NR(T,).

Proofs: i. Now by using the definition of S;.RPYFS, we have
~ (RC®)) = {< £, (8), iz (R) > £ € T)
=</¢,/\ ~~s,\/ ~~s>/¢ET}
{ seR*(l‘a)lp( () SER*(&,)‘U( () > |

={< k' /\ (S), \/ 3 > k € T}
{ SER* (£) Hiy () seR*(k)lp(J)(S) |
= {< £, up(5) (R, p(y) (R) > | £ € T}

this implies that ~ (§(~S)) = R(J).
ii. Now to show that R(J; N 3,) = R(F1) N R(T,)
R(31 N I2) = {< £ b5, B, Yr3i03,) (R) > | £ € T}

51N (S),\/ ~ oy () > keT}
SER*(A) #(610\52) SER* () l/)(\hn\Sz) |

{tsn DAy (9}, \/semk){lp(so (VP (s)} > | £ € T}

SER*(£)

<4, ~ A ~ ,
{ /\seR* oy HGD (s) /\sew o H (5)}
« Vv « >|#ET
{\/sex*(&)w(“)(s) \/sese*(/a)lp(‘”) (S)} | }
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= {< &, {urcy (B) A bz, B} {vrc) () Vg, ()} > | £ € T}
this implies R(J3; N J2) = R(TF1) N R(Ty).

iii. Now to prove that if §; € 3, then R(J;) € R(55),

R(S31) = {< £, ugy R, Yr(s,y (R) > |#£ € T}
=</a,/\ ~ s,\/ ~ s>kET}
serec) Kz, (S) et /L)ll’(\n)( ) > |

< {< /&/\ M(sz)(s),\/ 1.0(32)(5) > | % € T}
SER*(£) R*(

< &, Ups,) R, Yr) (R) > | £ € T}

this implies R(J;) S R(F,).
iv. To prove that R(J; U J,) 2 R(J1) U R(S2)

3(31 U 32) = {< #, HR(31U32) (k)’¢3(31U32) (%) > |% € T}

<k,/\ P (s),\/ o (8) > kET}
serto) LY seae*(fc)lp(élu‘”) |

I
—
N
&

/\seR*(k){M(Sl) )V bz ()}, \/SER* : k){ll’(sl) () A, ()} > 14

e r}
> {< *, {/\SER o Hp(s) V /\ H(Jz)(s)}
{\/SER*(/&)IIJ(Sl) ) /\\/SER*%)IP(Sz)(S)} > |k € T}

= {< & {tr) B V gy (B} {re) () Adre, (R} > |4 €T}
this implies R(J; N 3,) 2 R(F1) NR(Ty).
The proofs of v. to viii. are easy and follow the above results.

Furthermore, by counter example it is observe that the equality does not hold in part iv.

and viii.
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2.2.6. Example
Suppose the crisp soft relation R on T X [E as given in Example 2.2.4, i.e.

R = {(/51' 1), (#p,51), (£3,51), (fp,S3), (£, 53), (#1,S4), (R3,54), (£3, 54),}
(#4,54), (s, 54)

Now from the above relation the SVM R* is given as:

R*(#1) = {s1,5}, R (&) ={s1,53,85}, R k3) ={s1,5:}, R (%4)
={s3,5:}, R (#s) = {54}

Next to define an arbitrary PyFSs 5, 3, that is 5,3, € PFSE as given below:
3. = {< 54,0903 >,<5,,0.8,0.5 >,< 550.4,0.7 >< 5,,0.7,05 >}
3, = {< 54,0.85,0.5 >,<5,,09,04 >,< 550.50.6 >,< s54,0.4,03 >}
Consider
J,UJ, =1{<5,0903><5,,09,04 >,< 530506 > < s,0.7,0.3 >}

Now to determine the S;.RPyF lower and upper approximation operators R(J,) and

R(J,) that are

R(3,) ={< #£4,0.7,05 >,< £,,0.4,0.7 >,< £4,0.7,0.5 >, < #£,4,0.4,0.7 >,
< £5,0.7,0.5 >}

R(3,) ={< £,,04,05>,< £,,04,0.6 >,< £5,0.4,0.5 >, < £,,04,0.6 >,
< #s,0.4,0.3 >}

N o (< £,0.7,05>,< £5,040.6 >, < £3,0.7,05 >,}
RCI VRS2 = { < £4) 04,07 >, < £g,0.7,03 >
and

R(GLUS,) ={<#£4,0.7,03 >,< £,,0.5,0.6 >,< £5,0.7,0.3 >, < £,4,0.5,0.6 >,
< #5,0.7,0.3 >}

From the above analysis it is observed that R(J; U J,) € R(F1) U R(S,) because
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{< 2, s, ), Prcs05) () > 1R €T)

% {< % tryure,) B, Wreoure,) () > |£ € T}
This implies < £,0.7,0.3 > £ < £4,0.7,0.5 > = 0.7 < 0.7 but 0.3 2 0.5.

Similarly, we can show that

R(F) UR(S,) € R(F1 U T
2.3. Pythagorean fuzzy soft rough set
In this section, motivated from the concept of IF SRS [84] we investigate the novel
notion of PyFSyRS. Furthermore, the basic properties of PyFS;.R approximation

operators are also investigated in detail.

2.3.1. Definition

Consider the set of parameters [E and let T be the universe of discourse. Then the pair
(3,E) is called Pythagorean fuzzy S;.S (PyFS;.S) over a universe of discourse T,
where § is a mapping given by J:E — PyFST such that Vs € E,3(s) =
{< 4, ps5) (), P35y (#) > | £ € T} € PyFST and pg(s), Ps(5): T = [0, 1] denotes the
MG and NMG of an alternative £ € T to the set J(s), with the constraint 0 <
(Ms(s) (4”&))2 + (lps(s) (f&))z <1

2.3.2. Definition

Consider the set of parameters [E and let T be the universe of discourse. Let R be an

arbitrary FSg,R over T x E. Then the triplet (T,E,R) is called fuzzy Sy A space.
Consider for any S = {< s, u5(s),15(s) > |s € E} € PyFSE, then the lower and
upper approximation R(3) and R(J) of I w.r.t fuzzy Sy, A space (T, E,R) is denoted
and defined as:

R(Y) = {< £, () (R), Yaey (£) > | £ € T}

R(3) = {< £, g5 (R, Y75y (R) > | € T},

where

hr) () = /\sem{(l — ug(#,5))Vus(s)} and Ve ()
=/l )5(5))

with 0 < (ug(g) (fc))z + (1[)3(3) (/&))2 < 1and
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MRy () = \/SE[E{HR (%, )5 (s)} and P ()
- /\ em{(l — ug (#, ) )Vips(s) }

With 0 < (i) (8))” + (W ) < 1.

The pair (3(3),75(3)) is called PyFS;RS of 3 w.rt fuzzy Sy.A space (T,E,R),
where R(3) # R(J). Hence R(F), R(J): PyFSE —» PyFST are called lower and
upper PyFS.R approximation operators w.r.t (T, E, R).

From the above analysis, it is clear that the lower and upper PyFS;;R approximation

operators R(3), R(3) are again the PyFVs implies R(T), R(S) € PyFST that is:

(:“3(3) (k))z + (1/)3(3) (/&))2

= A\ (- (o)) v ()]
+ \/SEIE [(MR(&, )N (s (s))z]
RV RS RV A
<1- \/SE[E [(uy(k, s))z/\{1 - (us(s))z}]
+ \/SEIE [(uge(/é, S))Z/\{l - (us(s))z}]

=1

This implies (pzs) (/@))2 + (¥re (/&))2 <1
Hence it is clear that R(J) € PFST. Similarly R(3) € PFST. Therefore, the lower and
upper PyFS;.R approximation operators w.r.t (T, E, R) is again a PyFV.
2.3.3. Remarks
Consider the crisp Sy, A space (T, E,R) and J € PFSE, then lower and upper PyFSsR
approximation operator’s R(3) and R(S) reduced into the following form.

R(3) = {< &, g (), Yrey) (£) > |£ €T}

R() = {< £tz (B), sy (R) > £ € T},

where

ma® =\ i@ and img®=\/ ()

SER*(
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and

e (R) = \/se:;z*(&) us(s) and Pz () = /\ NG

SER*(£)

Thus in this case the lower and upper PyFS;.R approximation operators reduced to
S¢¢RPyF approximation operators. Hence it is observed that PyFS;.RS is the
generalization of Sy, RPYFS.
2.3.4. Remarks
Consider a FSy,A space (T,E,R) andJ € FSE, then lower and upper PyFS;.R
approximation operator’s R(3) and R(S) reduced into the following form.

R(3) = {< %, Up ) (R) > | £ € T}

R(3) = {< bz () > 1L ET},

where

mae@= [\ | a©) ad yae@=\[_ i

SER* (&)

and

e (R) = \/SE R ps(s) and Yz () = /\ P (s)

SER*(£)

Thus in this case the lower and upper PyFS;:R approximation operators reduced to
S¢eRF approximation operators. Hence it is observed that PyFS;RS is the
generalization of S, RFS.
2.3.5. Example
Suppose T = {#, #,, #3, %4, £} be a universal of discourse and E = {s;, s, 53,54} be
the set of parameter. Consider (', E) be a FS;,S over T. Let R be the FS;R over T x
[E which is given in Table 2.1.
Next to define a PyFS § € PyFSE as follows:

S ={<s5,,0804><s5,0.902 > < s50.7,0.6 > < s4,0.6,0.3 >}
Now to determine the PyFS;.R lower and upper approximation operators R(3J) and

R(3J) that are
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Table 2.1. FS;,R R over T X E

R S1 S, S3 Sa
e 0.8 0.3 0.5 0.7
£ 0.9 0.6 0.4 0.6
foq 0.7 0.1 0.8 0.3
£y 0.2 0.9 0.3 0.6
s 0.8 0.3 0.9 0.5

R(G,) ={< #£4,0.6,05>,< £,,0.6,0.4 >,< £5,0.7,0.6 >,< £4,0.6,0.3 >,
< #5,0.6,0.6 >}

R(S,) = {< #£,,0.8,0.3 >,< £,,0.8,0.4 >,< £5,0.7,04 >,< £,,0.9,0.2 >,
< #s,0.8,0.4 >}
2.3.6. Theorem

Suppose a fuzzy Sy.A space (T,E,R). Then for any 3, 3J;, 3, € PFSE, the PyFS;.R

approximation operators R(3) and R(3) hold the following characteristics.

i R =~ (§(~S)), where ~3 is complement of 5,
i R(3NT) =REG) NRES),
il 3 €3, =2 R(G) € RS,
iv. R(F1UJ,) 2 R(F1) URT,),

Vi. %(51 U3, = §(31) Y ﬁ(32):
Vi, 3, €3, 2 R(31) S RS,

viii.  R(3;NJy) € R(Ty) NR(T).
Proof: i. By applying definition of PyFS;.R approximation operators, we have
~(R(~3)) = {< &, Wz (8), g5y (#) > | € T}

=fc \_10-m@)Vpey©)\/ (g ©) > 1her]
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=<t \_ {1 )Vise}\/ {936} > 14 €7

= {< 2, iz (), Yy (£) > £ € T}

this implies ~ (§(~3)) = R(3J).

ii. Now to prove that R(J; N J,) = R(F1) N R(T,), we have

3(31 N 32) = {< #, HR(31n32) (%’)'lpﬂ(Sﬂ\Sz) (#) > % € T}

= {< #, /\SEE{(l — (£, $)Vits,n5) ()} \/SEE{MR(/&, SN (03, ()} > |4
-

={< . \_ (0= il )VIky, G g, O]},
\/ _lix )N, Vs, )]} > 1 7]
= {< #, [/\sem{(l - //‘R(’k; S))/\,Usl(s)} V/\SE]E{(1 - .Uya(/é, S))/\H32 (S)}] )

[\/SEE{MR (&, $)Nps, ($)}V \/SEE{HR (%, )Yy, (s)}] > |4 € T}

= {< & i) B Nigcyy) (), Yresy) #)Vibr(s,y (£) > |4 € T}
this implies R(3; N 3,) = R(F,) N R(S,).

iii. If 3; < 3, then we have to prove that R(J;) < R(J,)
R(3D) = {< 4, wp(s,) R, Yo, (£) > |£ € T}
= {< fé»/\ {(1 - uz (&, S))V.U(sl)(s)};\/ {ur (e, )NY (5, ()} > | £ € T}
SEE NI
<{<t, \_{0-mt)Vusy®h\ it DM, o)} > 14 eT)
SEE SEE
= {< & tp (5 R), g5y (R) > |4 €T}
This implies R(5,) € R(J2).
iv. To prove that R(J; U J3) 2 R(J1) U R(J2)

R(F1 U 32) = {< 4 bz (s,um,) (B, Yres,us,) (£) > | £ € T}
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_ {< s /\SEE{(1 — 1 () Vit 5 ()]
V(e )Mpis,000 (00} > £ € T)
= {< £, /\SEE{(I — iz (£, 5))V[ug, (s)Vus, ()]},
\/ it 9, I, ]} > 14 € 7}
> {< [/\sem(l — ug (£, s))Vusl(S)] vV [/\SEE(l — ug (&, S))V.USZ(S)]'

Vit 9ms, @A\ e o, o] >]

= {< o, tzcs) #IViry (), Yrey) B NPg(s,) (£) > |4 € T}
this implies R(3; N F,) = R(F1) N R(3L).

The proofs of v. to viii. are easy and follow the above results.

2.3.7. Definition
Suppose § = {< £, u5(£),p5(£) > |£ € T} € PFST be any PyFS and a, B € [0,1]
with a? + B2 < 1.Then the-(a, B) level cut set on 5 is defined and denoted as:

Sk = (£ € Tlug(R) = a,p3(#) < B}
Then the setJ, = {k € T|ug(£) = a} is known as membership set of a-level cut
which is generated as . Similarly,
Ja+ = {k € T|ug(£) > a} is known as membership set of strong a-level cut which is
generated as 5. The set 38 = {/o € T|Ys(R) < /5’} is known as membership set of -
level cut which is generated as . Similarly,
P = {k € T|Yx(R) < ﬁ} is known as membership set of strong S-level cut which is
generated as .
On the same way the other level cut sets of PyFS  are denoted and defined as:
S§+ = {k € T|ux(£) > a,Px(£) < [3} is known as (a*, B)-level cut set on 5,
S§+ = {/a ET|ux(#) = a,P5(£) < ,8} is known as (a, B%)-level cut set on ,

Sf; = {/a € T|ug(£) > a,Px(£) < ,8} is known as (a*t, B7)-level cut set on .
2.3.8. Theorem

Let J,3,,3, be any PyFSs. Then the (a,)-level cut set for PyFS satisfied the
following, for a, B € [0,1] with a? + p? < 1.
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(i) 35 =3, N3

(i)) (~+Fa = ~F*, (~I)F = ~Jp+;

o~

(i) 31 € 32 = (04 = (305
(IV)($1 N 32)e = $)a N ($Das (31N 3P = GFDFn(FDF (3N
308 = (305 0 (3,05
V) B1UI)e = $1)a VU (B (31UIDP = (@FDF UG (31U
308 2 (305 U (3,05
(Vi) ay Z ay and By < B2 = Ja, € Jays Ip, € 35,5 Sgi c Sﬁi,
Proof: The proof of (i) and (iii) are easy and follows from Definition 2.3.7.
(ii). To show that (~3), = ~3*"
If
3 = {< £, u5(£),P5(£) > |#£ € T}, then ~3J = {< £, 5 (L), u5 () > | £ € T}

Now

(~a = (£ € TlY5(R) = a} (2.2)
Nest
3¢ = {{ € Tl () < a}}
This implies
~3% = {{# € TIy5() = o} (2.3)
Thus from Egs. (2.2) and (2.3), we have
(e = ~3.

Similarly, it can be proved that
(~3)ﬁ = ~Sﬁ+
(iv). To prove that (3; N J32)¢ = (J1)e N (32«

As
3y NS, = {< £, minfus, (B), us, (B)], max[ps, (£), 5, (#)] > |£ € T}
Now
(31 N 32 = {< £ € TImin[pus, (B, us, (#)] = a}
={<# eTlus,(®) = a} n{< £ € T|ug,(£) = a}
= Qe N (@2
Next
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(31 N 32D = {£ € Timax([py, (), ¥y, (R)] < B}
= {# € T|p5,(£) < B} n{£ € Ty, (£) < B}
= (30F N (3)F
So, by using (i) we have
(3103205 = 31 N3 N (G103 = ($0)a N ($2)a N (3P N (3)P
= {30 NG} N {3 N (3P} = F4 N (3)F
this implies (31 N 3205 = (305 N (35
(v). Consider
Sy U, = {< £,max|us, (R), us, (B, min[ys, (#), 5, (#)] > |£ € T}
Now
(31 U3a = {< % € Tmax|ug, (#), u5,(#)] = a}
={<# €T|u5,(#) = a} U{< £ € T|uy,(#) > a}

= (Sl)a Y (Sz)a
Next

(31 N3P = {£ € Tmin[ys, (8), 5, ()] < B}
={# € T, (B) < BIU{k € T|yYs, (k) < B}
= (3P U (3P
Aswe knowthat §; €S 3, U, and 3, S 3, US,
So, by using (iii) we have
(306 € (1UFDs and (34 € (31US5
this implies (3, N 32)5 = (304 N (3%,
(vi). Consider for any % € (J),, then by Definition 2.3.7, we get uy, (£) = a; =
ay = ux, (£) = a, = £ € (J1)q,, therefore we have (F;)q, € (J1)q,-
Similarly, we get (3;)% < (3,)P2. Consequently (1), N (2D S (F1)g, N
(5,)P2, then by using (i) we have (31)2 c (32)§§.
Suppose a FSg:R R from T to E, denoted by
Ry ={(£,s) €ET X E|ug(£,s) = a}
Ro(#) = {s € E|lux(#,s) = a} forae€[0,1]
Ro+ ={(#,s) ET X E|ug(#£,s) > a}
R +(#) ={s € Elug(#,s) >a} forae€[0,1]
R ={(£,s) €T X E|lY(#,s) < a}
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R*(#) ={s € ElY(#,s) <a} fora€]0,1]

R ={(#,s) e T xE[Y(h,s) < a}

R (R)={s € Ely(#,s) <a}  fora€[0,1]
Then R, R+, RY, R are crisp S;;R on T x E.
In Theorems 2.3.9 and 2.3.10, it is shown that PyFS,.R approximation operators can be
represented by crisp Sy, RA operators.
2.3.9. Theorem
Suppose a FS; A space (T,E,R) andJ € PFSE. Then the upper PyFS;R
approximation operator can be shown as follows, forall 2 € T.
(D).

tr@® = \/ [eARGOW)]

a€l0,1]

= \/ (AR B)]

a€l0,1]

= \/ [eARer G A)]

a€l0,1]

= \/ [eARe G )]

a€l0,1]
(ii).
Yz () = /\ [aV (1 - m(S“)(k))]

a€[0,1]

= N\ [ov(1-To) @)

= :aV (1 — R(l_a)+(3“)(/f’c))]

= N\ [ (1-Faor(3)®))

(iii).

(iv).

J— at _— + _— R — —_ a
[RQ] € Ra-0+(37) € Ra-0* (3 ERa-0 () € [R(D)] -
Proof: (i). Forany £ € T, we have
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\/ [0 AR @3] = sup{a € (01114 € R 3}

a€l0,1]

= Sup{a € [0,1]|73(a) RNy # (Z)}

= Sup{a € [0,1]|3s € E[s € Riay(£), s € Ja]}

= Sup{a € [0,1]|3s € E[ug(£,5) = a, u5(s) = a]}
= \/[llﬂz(f?a s) A #S(S)]

seE
= HR(x) (#)
On the same way we can prove that

tr@® = \/ [e ARG )]

a€l0,1]

= \/ [eA RG]

a€l0,1]
= \/ [eARer ) ®)]
a€l0,1]
(ii). The upper crisp S;:RA operator according to definition Sy, RS, we have
N 2V (1-Ta@9w)] = infla € 01114 € B (39}
a€f0,1]
= inf{a € [0,1]|R_o(£) N 3% # @}
= inf{a € [0,1]|3s € E[s € R1_q, s € 3%}
= inf{a € [0,1]|3s € IE[MR(/&, s)=21—aPs(s) < a]}
= A\ - ek, )V ()}

seE
= Yz (s)
On the same way we can prove that

Urw®@ =\ [av(1-Ra(3)w)]

a€l0,1]

N\ [ev(1-RaorGOw))

a€l0,1]

/\ |2V (1= R (3°) ()]

a€l0,1]

(iiii). It is easily verified that R+ (S 4+) € R+ (Fe) € Ry (). We have just to prove
that [R(F)] + € R+ (o) and R (Ja) € [R(I)],
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Let for all £ € [ﬁ(S)]a+ implies iz ) (£) > a. Now according to definition of
PyFS.R approximation operators
Uz (R) = Vseg[ur(#,5) Aug(s)] > @ holds. So there exist s, € E such
that uz (%, o) A pux(se) > a, this implies that pg (%, so) > a and ux(sy) > a. So, s, €
R,+(#) and sy € J,+, thus as a result we get R, +(£) N J,+ #+ @.Therefore, by
definition of crisp S;.RS, we have sy € Ry+ (J,+). Hence [ﬁ(S)]aJr S Ryt (Fat).
Next for any £ € R (o), We have R, (Jo)(£) = 1. Since puz ) () = Vpepou[B A
Rp(Ip) B)] 2 @ AR (I)(R) = a = gy 5y (R) 2 @, thus £ € [ﬁ(S)]a. Therefore
Re (3a) € [R(I)].
2.3.10. Theorem
Suppose a FS;,A space (T,E,R) and 3 € PyFSE. Then the lower PyFS;, A operator
can be shown as: forall £ € T

(i)

pry@® =\ [aVRia(Ea)B)]

a€l0,1]

= N\ [2VRa-or GO®)]

a€l0,1]

= N\ [2VRacar G )

a€l0,1]

= N\ [evRia G )]

a€l0,1]

(i
a® = \/ [en(1-R(EOW)]

(iii)
[RED)] v € Riza(Bat) € Ra-ay (Fat) € Ra-ay+(3a) € [R(I)],

43



(iv)
at + a
[3(3)] c :R(l—a)Jr(Sa ) c R(l—a)Jr(Sa) c :R(l—a) (Sa) L= [3(3)]
Proof: The proof of (i) and (iii) according to Theorem 2.3.8 and 2.3.9. Now for any £ €

T, consider

prey® = \/ [eAR-3OB)]

a€l0,1]

= \/ [enRe(~37))]

a€l0,1]
=V [en(-2uls)®)
a€[0,1]
= \/ [aA(l—&(SOﬁ)(/&))]
a€l0,1]
Vi) (B) = /\ oV (1= R (~39(8))|
a€[0,1]
= N\ [ov(1- R -3 w))
a€[0,1]
= N\ |av{i- -RGo@w))
a€[0,1]
= N\ [aVRoGe)®)]
a€[0,1]

Therefore, by the duality of upper and lower PyFS;.R approximation operators (see
Theorem 2.3.6, we can get

Hry ) = Pz B = [\ [eVRaG)®)]

a€[0,1]
Ya® =tz ® = \/ [en(1-R(3)B)]
a€f0,1]
Similarly, the proof of above result, we can get

pry® = [\ [aVRuw+ G B)]

a€l0,1]

= N\ [aVRaw Ge)B)]

aelo,1

]
= /\ [eVRi-a(B) ()]
]

a€e(0,1
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And

Il
5]
>
/N
—_
|

R (37) ) )]

= \/ [er(1-Rre3om))

The proofs of (iii) and (iv) are easy and follows form Theorem 2.3.9.

2.4. Application of Pythagorean fuzzy soft rough set in decision
making
Here in this section, the technique for DM process is constructed on the basis of

proposed approaches. For this, we have used the ring sum and ring product operations
on PyFSs. By the operation the basic concept of this method and approach to DM is
given, which is based on PyFS;,.RS approach.

2.4.1. Ring sum and ring product

2.4.1.1.  Definition [76]

Let Sl = {< /&, 'ufR(Sﬂ (k)’lpR(Sﬂ (%/) > |%/ € T} and 32 = {< k, .UR(SZ) (/k),
Yrs,) (R > |k € T} € PyFST. Then the ring sum for 3, and 5, can be defined as:

2
)

3193 = {\/(/J:R(sl) (/&))2 + (M'R(sz)(/&))z - (ng(sl) (/&))2 (.UR(SZ)(k))

Yr) B, (R R € T}.

2.4.1.2.  Definition [76]
Let Sl = {< /&, Hr(39) (%’)’IIJR(Sﬂ (k) > |k € T} and SZ = {< k, HR () (&),
Yres,) () > £ € T} € PyFST. Then the ring product for 3, and 5, can be defined

as:

( 2 2 \
@3, - {#ml) Bt 8, () * (wﬂ(\sz)(k))z per >
\ - (lpﬂe(sl)(f&)) (ll)ye(sz)(/a)) )

Consider a fuzzy soft approximation space(T, E, R) in which T is the universal set, E

R

be the initial set of parameters and R be the FS;,Ron T x E. We will initiate the general

steps and DM algorithms of the proposed concepts as follows:
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2.4.2. Algorithm
This subsection is devoted for the step wise algorithm of the proposed model and

consists of the following steps:
Step (i): First to find the FS;.R R from T X E or fuzzy SS;, (3, E) over T, accordance

to the interests of decision maker.

Step (ii): For the evaluation of certain decision input each person has different point of
views on the attribute of the same parameter, so to find the optimum normal decision

object  in accordance with the demand of expert/decision maker.

Step (iii): From Definition PyFS;.RS, calculate the PyFS;.R approximation operators
R(3) and R(J).

Step (iv): By ring sum or ring product operation calculate the choice set.
{={R) ORE))

- {\[ (ﬂi(s) (f&))z + (.Ug(S) (/&))2 - (Hﬁ(s) (/&))2 (”E(S) (k))

2
)

Yz BYre ()14 € T}

& ={< ,u:(R), s (k) > |k €T}

Step (v): Compute the top level threshold value 2 = (u, ) such that u = max (%)
andy = 1msiisr}1 Y (#;). Itis clear that in choice set ¢ the PyFV, A is the maximum choice
value. If pg(#£;) =7+ 1 and g (#£;) <+ 1 then the optimum decision value is 4;.

The final decision is only one, one may go back to the second step and change the

optimum decision object in the final step of the given algorithm, when there exist too

many "optimal choices" to be chosen.

The concept of the proposed algorithm is illustrated with the help of the following

example.

2.5. Illustrative example

For a certain senior position of a doctor in Pakistan Institute of Medical Sciences
(PIMS) Cardiac Centre, the appointment of new faculty has to face a very complex

evaluation and DM process. The skill and ability of a candidate may be judged with
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respect to various attributes like "physical and surgical productivity" "managerial skill"
"ability to work under pressure” "research productivity"” etc. In order to take the right
decision about the candidate the professional experts opinions are needed for these

criteria.

Consider that T = {£,,%,, %3, %4,#%s} be set of five candidates who fulfil the
requirements for the senior faculty position in PIMS. In order to appoint the most
qualified and suitable candidates for the required position, a team of experts is
organized and chaired by Prof. Z as a director. The team of experts will judge the

candidates upon the criteria in the parameter set E = {s;, s, S3, S4, S5, S}, Where

s; = physical and surgical productivity, s, = managerial skill
s3 = experience and research productivity,
s, = abality to work under pressure

ss = academic leadership quality, S¢ = contribution to PIMS

According to the background and experience, the team of experts wants to appoint the
candidate which qualifies with the parameters of E who deserves extremely from

candidate in T.
Ring sum for PyFS;RS

Step (i). Consider that the experts explain the gorgeous and attractiveness of the

candidates by calculating a FS;,R R from T x [E which is given in the following Table

2.2.

Table 2.2. FS;,R R from T X [E

R S, S S3 Sy Ss Se
foq 0.6 0.5 0.8 0.7 0.9 0.4
#, 0.8 0.4 0.7 0.6 0.5 0.3
fos 0.6 0.3 0.4 0.5 0.1 0.6
foy 0.4 0.5 0.1 0.3 0.8 0.2
fos 0.5 0.4 0.8 0.7 0.3 0.9
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Step (ii): Suppose a committee of professionals present the optimum normal decision

object  which is a PyF subset over the set of parameters [, which is given as:

¥ ={<5,,0.5,03><5,0.6,04><s50.702><s,,04,0.5 > < s;,0.5,0.4
>, < 54,0.8,0.2 >}.

Therefore, the characteristics of the candidates upon the Criteria of the given parameters
can be described by the PyFS. For example, the standard of the candidate under
criteria/parameter s, is (0.5,0.3). The value 0.5 is the degree of membership and the
value 0.3 is the degree of non-membership of candidate under criteria s; respectively.
In other words, candidate is qualified for the MG is 0.5 and disqualified for the N MG
that is 0.3.

Step (iii): From Definition PyFS;.RS, calculate the PyFS;.R approximation operators
R(3) and R(3).

R() ={< £4,0.4,05 >, < #£,,0.5,04 >,< #5,0.5,0.5 >, < £,,0.2,0.5 >,
< #s5,0.5,0.4 >}

R(3) ={< £4,0.7,0.2 >,< £,,0.7,0.3 >,< £4,0.6,0.4 >, < £,,0.5,0.4 >,
< £5,0.8,0.2 >}

Step (iv): By ring sum operation calculate the choice set.

§={R() ®RE)}
= {< #4,0.75601,0.1 >,< £,,0.78581,0.12 >, < #£4,0.72111,0.2 >,
< £4,0.52915,0.2 >, < £5,0.8544,0.08 >}

Step (v): Compute the top level threshold value A = (u, ) such that u = max (%)
<isn
andy = 1m,in Ye(#;). Itis clear that in choice set ¢ the PyF value 4 is the maximum
<isn

choice value. If pg(#;) =7+ 1 and g (#;) <7+ 1, then the optimum decision value
is %;. Hence the optimum decision is 4 = %5 = (0.8544,0.08).

Ring product for PyFS;.RS

Now to calculate the optimal decision through ring product operator, we have

§ = {R(Y BRI}
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= {< #£4,0.28,0.52915 >, < 4£,,0.35,0.48539 >, < £4,0.3,0.60828 >,
< 4#4,0.1,0.60828 >, < £, 0.4,0.44 >}.

Hence, the optimal decision is A = £< = (0.4,0.44). Therefore, the most qualified and
suitable candidate for the required position is /.
Ring sum for §;,RPYFS
Step (i). Consider that the experts explain the gorgeous and attractiveness of the
candidates through the proposed model of S RPyFS. Consider a S¢S (H, E) over T
defined as follows:
H(sy) =k, e}, H(sy) =0, H(s3) = {#ey, oz, fou, 5}, F(s4)
= {#4, #e3, s},
H(ss) = {hy, o3, £5), H(sg) = {#y, £3, F5}
Now to define crisp S;:R R from T x E, that is
R =

{(/&1; 1), (#g, 1), (3, 53), (#3,53), (£, 53), (#5,53), (1, 54), (K3, 54), (fey, 54),}
(#2,55), (#3,55), (#s,S5), (2, 56), (#3, S6), (£5, Se),

Furthermore, from Definition of SRS to obtain the SVM R*, that is
R*(#1) = {s1,50 56}, R*(#y) ={s3,55}, R*(%3) ={s3,54,55,56¢}, R*(£4)
= {s3,54}, R*(#s) = {s3, 55,56},
Step (ii). Now consider the team of experts present the optimum normal decision object
3 which is a PyF subset over the set [E as follows:
3 ={<5,,050.3 > <s,,0.6,04 > < s3,0.7,0.2 > < s4,04,0.5 > < s5,0.5,0.4
>, < 5,,0.8,0.2 >}
Therefore, the characteristics of the candidates upon the criteria of the given parameters
can be described by the PyFSs. For example, the standard of the candidate under
criteria/parameter s, is (0.5,0.3). The value 0.5 is M'G and the value 0.3 is NMG of
candidate under criteria s, respectively. In other words, candidates is qualified for the
MG is 0.5 and disqualified for the N MG is 0.3.
Step (iii): From Definition S;.RPYyFS, calculate the Sy RPyF approximation operators

R(J) and R(3).

R(T) = {< £4,0.4,0.5 >, < £,,05,0.4 >, < £5,04,05 > < £,,04,0.5 >,
< £5,0.5,0.4 >}
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R(F) ={< £4,08,0.2 >,< £,,0.7,0.2 >,< £5,0.8,0.2 >, < £,,0.7,0.2 >,
< £5,0.8,0.2 >}
Step (iv): By ring sum operation calculate the choice set.

§ =R BORE))
= {< #,,0.83522,0.1 >, < #,,0.78581,0.08 >, < £5,0.83522,0.1 >,
< £4,0.75604,0.1 >, < £, 0.8544,0.08 >}

Step (v): Compute the top level threshold value A = (u,y) € T* such that u =
max pi (£) andy = 1réliisr}1 Ye(£;). Itis clear that in choice set ¢ the PyFV, A is the
maximum choice value. If pg(#;) =7+ 1 and g (#;) <7+ ¥, then the optimum
decision value is ;. Hence the optimum decision is A = £5 = (0.8544,0.08).

Ring product for §¢RPYFS

Now to calculate the optimal decision through ring product operator, we have

£={R) DR}
= {< #4,0.32,0.52915 >,< #£,,0.35,0.44 >, < #£4,0.32,0.52915 >,
< £4,0.28,0.52915 >, < £s,0.4,0.44 >}.

Hence, the optimal decision is A = %5 = (0.4,0.44). Therefore, the most qualified and
suitable candidate for the required position is /.

2.5.1. Comparative study

From the above analysis it is clear, that the proposed approach is better than

intuitionistic fuzzy rough set (IFRS) [49], soft rough intuitionistic fuzzy set (S¢.RIFS)
and intuitionistic fuzzy soft rough set (IFS;.RS) [84]. The advantages of the proposed

method with existing literature are given below.

2.5.1.1. Advantages
(a) Consider a crisp S;,A space (T,E,R) and let I = {<s,u5(s) >|s€T}€

FSE. Then the defined Sr«RPYF approximation operators R(J) and R(I)
degenerate into the SR fuzzy set.

(b) Suppose a crisp S¢. A space (T, E, R) and for a crisp set 3 € PE of E. Then the
defined Sy, RPyF approximation operators R(J) and R(J) degenerate into
Sr¢RA operators as defined in Definition of S;.RS.
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(c) By taking crisp SpA space (T,E,R) and let 3 € PFSE. Then the PyFS;R
approximation operators R(3) and R(3) in definition of PyFS;,RS, degenerate
into Sy RPYF approximation operators R(3J) and R(3) in definition Sy, RPYFS.

(d) By taking FS;A space (T,E,R) and letJ € FSE. Then the PyFS;R
approximation operators R(J) and R(J) in definition PyFS;,RS, degenerate
into soft fuzzy rough approximation operators defined by Sun and Ma [85].

Now to verify the effectiveness of the developed approach with some existing

methods are presented in Table 2.3. by considering the above Illustrative Example.

IFRS [49] having no information about parameterizations tools, so due to lake of
this information the method developed in [86] failed to handle the proposed

example. On the other hand, if the sum of PyF value (Ms(k),lﬁs(k)) is greater

than 1, that is ug(£) + (%) > 1in optimum normal decision object ¥ of Step
(ii). So in this case the method presented in [84] failed to tackle the situation. Thus
from the comparative study it is clear that the proposed method is more superior
and provides more freedom to the decision makers for the selection of MG and

NMG as compare to existing literature.

Table 2.3.  Comparative study of the proposed method with some existing literature

Methods Ranking

IFRS [49] Failed to handle

SpRIFS [84]
IFS; RS [84]
S¢RPYFS (proposed)

PyFS;.RS (proposed)

2.5.2. Conclusion

The theories of RS, S¢S, IFS and PyFS all are important mathematical tools for dealing
with uncertainties. In this manuscript, we have presented two new concepts: S;.RPYFS
and PyFS;.RS, which can be seen as two new generalization of S;.RS models. Then

we have investigated some important properties of S;,RPyFS and PyFS¢, RS with detail.
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Moreover, ?the classical representations of PyFS:.R approximation operators are
presented. In addition, the validity and effectiveness of the proposed operators are
checked by applying them to the problems of DM in which the experts provide their
preferences in PyFS;.R environment. Finally, through a numerical example it is
demonstrated that how the proposed operators work in DM problems. By comparative
analysis, we find that it is more effective to deal with DM problem with the evaluation
of PyF information based on S¢,RPYFS and PyFS;.RS models than DM problem with
the evaluation of S;.RIFS and IFS;.RS models.
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Chapter 3

Covering based orthopair fuzzy rough set model hybrid with
TOPSIS

In this chapter a comprehensive model is originated to handle the DM problems in
which the experts have quite different opinions in favor or against some plans, entities
or projects. Therefore, a new technique is applied to investigate the hybrid notions of
RS with g-ROFS by using the concept of fuzzy f-covering and fuzzy [-covering
neighborhoods to get the new notion of covering based g-ROF rough set (CBg-
ROFRS). Furthermore, by applying the developed concept of CBq-ROFRS on TOPSIS
and present its application to the MADM . In real scenario CBq-ROFRS model is an
important tool to discuss the complex and uncertain information. This method has
stronger capacity than IFS and PyFS to cope the uncertainty. From the analysis, it is
clear that CBg-ROFRS degenerates into covering based IF rough set (CBIFRS) if the
rung g = 1 and degenerate into covering based PyF rough set (CBPyFRS) if the
rung g = 2. Thus the proposed concept is the generalization of both CBIFRS and
CBPYFRS. Moreover, an illustrative example is presented to show how the developed
model will be helpful in DM problems and a comparative study of the developed
method with some other methods is presented which show that the developed approach
is more capable and superior than the existing methods.

3.1. Covering based g-rung orthopair fuzzy rough set

Here in this section we are going to investigate the hybrid structure of q-ROFSs, fuzzy
CAS and fuzzy RSs to get the generalized structure of CBg-ROFRS. First we define
the PyF covering approximation space (PyFCAS).

3.1.1. Definition

Let T be any set and X = {X,,X,,...,X,,}, where 8; € PFST and i = 1,2,...,m. For
any PyFV B = (ug, ), ¥ is called Pythagorean fuzzy p-covering (PyF B-covering)
of T,if (UL, X;)(%) > B forall £ € T. Here (T, X) is called a PyFCAS.

Suppose that (T, X) be a PyFCAS and X = {X,,X,, ..., X, } be a PyF B-covering of T
for some B = (ug,3p). Then NN@) =N{R; EX:X; =B, j=12,...,m}PyF B
neighbor-hood of £ in T.
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A PyF S-neighborhood system is denoted and defined as ngf = {J\Q{/’Ek):/a € T} which

is induced by PyF [-covering X. By using PyF matrix to represent a PyF -

neighborhood system follows the structure given below:

M{ = [ MG, (8]

Fei XA jETXT
3.1.2. Remarks
() If = (1,0), then in this case PyF B-covering reduced to a crisp covering

and if 3 =(1,0), then PyF p-neighborhood reduced to a crisp
neighborhood.

(i) If 3 = (#£,0)such that 0 < £ < 1,then in this case PyF g-covering
reduced to a fuzzy covering and if 8 = (#,0), then PyF g-neighborhood

reduced to a fuzzy B-neighborhood respectively.

3.1.3. Definition

Let T be any set and P = {P,,P,, ..., P}, Where P; € q — ROFT andi =1,2,...,m.
Forany q-ROFV g = (uﬁ, 1/)5), P is said to be q-ROF B-covering (g-ROFS-covering)
of T, if (UZ,P)(k) = pfor all£ €T. Here(T,P)is called a g-ROF covering
approximation space (q — ROFCAS).

Suppose that (T,P)be a q— ROFCAS andP = {P,,P,,..,P,}be a gq-ROFpB-
covering of T for some S = (ug, ¥p).Then Nf(k) =n{P, € P:Pi(£) =B,j =

1,2,.. .,m} is called g-ROFS-neighborhood of T.

A g-ROFB-neighborhood system is denoted and defined as ]\Qf ={Njf(k):/ae

T} which is induced by g-ROFS-covering . By using g-ROF matrix to represent a q-
ROFS-neighborhood system as follows:

Mg - [Njf(/éi) (kj )]

%iX%jETXT
3.1.4. Remark

(N If 8 = (1,0), then g-ROFS-covering reduced to a crisp covering and if 8 =
(1,0),then in this case q-ROFg-neighborhood reduced to a crisp
neighborhood.
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(i) If 5 = (#£,0), such that 0 < £ < 1, then q-ROFp-covering reduced to a
fuzzy covering and if 8 = (#, 0), then q-ROFB-neighborhood reduced to a
fuzzy (-neighborhood respectively.

Proof. (i) LetP ={P,,P,,...,P,}q-ROF pB-covering. Then by definition
(U, P)() = p forall £ € T. If § = (1,0), then there exist at least a q-ROFV a =
(U Pe) = (1,0) such that (1,0) = P; (%), (for some j = 1,2,...,m) for £ € T. Thus
Up,ep Pi = T. Hence, if B = (1,0), then in this case g-ROF S-covering reduceds into

crisp cover.

; B
Next consider NP( £

neighborhood of T. If B = (1,0), then there exists at least a g-ROFV a = (ug, ¥,) =

=N{P; € P:P;(#) = B,j = 1,2,...,m} be a g-ROF B-covering

(1,0) = P;(#) such that a« = P;(£) = B, for £ € T. Then each ]\@f”(&) contain at least

a  Q-ROFVa = (i) = (1,0)for R€T. ThusN/ =n{P;:P, €Pand s €
P,j =12, ...,m}Hence, ifp =(1,0)then in this case g-ROF B-covering

neighborhood reduced into crisp neighborhood.
Similarly we can prove the (ii).
3.1.5. Definition [87]

Suppose 3 = (us5, Ps) be a g-ROFV, then score function of 3 is given as

1
Greater the score value of Sc(3), then superior the orthopair is.

3.1.6. Example

Suppose that (T,P) be a q-ROFCAS and P = {P;,P,, P5,P,, Ps} be the set of g-
ROFSs of T such that T = {£4, %, ..., %6} With § = (0.8,0.7) as given in Table 3.1.

Hence P is a q-ROF S-covering of T. Then

0.8,0.7 0.8,0.7 0.8,0.7
N-(P((kﬂ ) =PLNP; NP, Nﬂ’((%z) ):?1n?2' NS”((/&3) ):?10
Ps,
(0.8,0.7) __ (0.8,0.7) _ (0.8,0.7) _
N?(/“t) =PLNP NP, N?(lés) =P NP, N?(&z}) =P NP;
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Table 3.1. Tabular representation of g-ROF S-covering

T/ P, P, P, P, P,
£y (0.9,0.5) (0.85,0.65) (0.7,0.8) (0.5,0.9) (0.9,0.3)
£, (0.89,0.7) (0.93,0.45) (0.79,0.65) (0.69,0.8) (0.65,0.95)
fos (0.95,0.6) (0.69,0.85) (0.98,0.43) (0.7,0.4) (0.5,0.9)
fo (0.85,0.7) (0.6,0.9) (0.55,0.85) (0.97,0.3) (0.89,0.4)
fos (0.6,0.87) (0.9,0.45) (0.69,0.85) (0.92,0.6) (0.8,0.75)
#s | (0.88,0.55) (0.6,0.9) (0.9,0.63) (0.8,0.75) (0.5,0.89)

From Njf = {NPB(,&):/& € T} is obtained the Table 3.2 given below,

Table 3.2. Tabular representation of Ng§°'8'°-7)

fr #, s fou s oo

£y (0.85,0.65) (0.65,0.95) (0.509)  (0.609) (0.6087) (0.50.9)

£ (0.85,0.65) (0.89,0.7) (0.69,0.85) (0.6,0.9) (0.6,0.87)  (0.6,0.9)

' (0.7,0.8)  (0.79,0.7)  (0.95,0.6) (0.55,0.85) (0.6,0.87) (0.88,0.63)

Foy (0.5,0.9) (0.65,0.95) (0.50.9)  (0.850.7) (0.6,0.87) (0.5,0.89)

fos (05,09  (0.69,0.8) (0.69,0.85) (0.92,0.6) (0.6,0.9) (0.6,0.9)

fog (0.7,0.8)  (0.79,0.7) (0.95,0.6) (0.55,0.85) (0.6,0.8) (0.88,0.63)
Therefore,

(0.85,0.65) (0.650.95) (0509)  (0.609) (0.6087) (0.50.9) ]
|(0.85,0.65) (0.89,0.7) (0.69,085) (0.60.9) (0.6087) (0.60.9) |
| 07,08  (0790.7) (0.9506) (0.550.85) (0.60.87) (0.88,0.63)]
~| (0.509) (0.65095) (0.509) (0.850.7) (0.6,0.87) (0.50.89) |
| (0.50.9) (0.69,08) (0.69,0.85) (0.609) (0.906) (0.609) |
| (0.708) (0.79,07) (0.950.6) (0.550.85) (0.6087) (0.88,0.63)]

(0.8,0.7)
M?

3.1.7. Definition

Consider a g-ROFCAS (T, C), where P = {P;, P,, P;, ..., Py} is the set of g-ROF f3-
covering of T for some B = (ug,3p) and T = {£,, £, ..., £,}. Consider that the
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neighborhood system J\Cf { pat € T} induced by g-ROF gB-covering of P such
that

wa {</a,,uNB (/&l,fa)leg (/&l,lf’a)>q foralli=1,...,nand j

=1,...m}

Now for any § € q — ROFS”, where 3 = {< us(#), 1,03(/&]-)) >, lj=1,...,m}, the

lower and upper approximations of § w.r.t NE

P 18 represented and defined by

N () = (N_f (3>,N_£<3>>,

where
ME ) = < ity ) (RO, Wy 8D >q li = 1,..m]
and
— o
N =A< b, u— L) Yv— ;) > =1,...,
P (\5) { i 'uNf(S)( l) lej?(S)( l) q |l n}
such that

Pt

{HNf(ﬂi) (%0 #;) Nt (/”&j)}

llef(S) (f&i) =
- 1

-
1l

WINC \m/{w () v ()]

=1

~.

0@ =\/ i (m)vae)

=1

~.

>5

1{w (1 £)A05(8,)}

N_jf”(”)

-
1l
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So the operators J\f‘,,fg (S),N_f(ﬁ) :q-ROF(T) — g-ROF(T) are said to be lower and

upper g-ROF rough (g-ROFR) approximation operators with respect to Nf.

Therefore, the CBg-ROFRSs is the pair J\@f ) = (J\@f (S),J\@f (3)), when ever
NE (D) # N ().

3.1.8. Remark
I.  Ifthe value of g = 1, then the notion of CBq-ROFRS is reduced to CBIFRS.
ii.  Ifthevalue of g = 2, then the notion of CBg-ROFRS is reduced to CBPYFRS.
iii.  The notion of CBg-ROFRS is the generalization of CBIFRS and CBPyFRS
models.

3.1.9. Example
Consider that § € g — ROFST, that is

o~ {(kl, 0.91,0.62), (#,,0.58,0.83), (#5,0.8,0.75), (#,,0.95, 0.35),}
v (#s5,0.8,0.7), (#¢,0.98,0.37)

and if we consider Mg = [Nf%_)(/cj)]% R as given in Example 3.1.6, where
i iX jETXT

B = (0.8,0.7). Then

(#£4,0.5,0.95), (#,,0.58,0.9), (#,0.55,0.87), (£,,0.5, 0.95),}

B ey _
Np (3) = { (#5,0.5,0.9), (£, 0.55,0.87)

2 () {(/&1, 0.98,0.35), (£, 0.98,0.35), (#3,0.98,0.35), (£, 0.98, 0.35),}
p W= (£s,0.98,0.35), (£, 0.98,0.35)
3.1.10. Definition [88]

Let us consider that 3y = (us,,¥s,) and S, = (us,, s, ) be two g-ROFSs. Then the

distance between 5, and , is defined as follows:

1
D(31,32) = {ZZ'M&) (#) — U, (/&)|p

RET

|~

1 )P
+ ZZ |‘/)(31) (#) — 1/1(32)(/’&)| ,wherep > 1.

RET
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3.1.11. Theorem

Let (T,P) be ag-ROFCAS and P = {P;,P,,..., B} be a g-ROFB-covering of T for
some B = (ug,Pp). Consider that the neighborhood system J\@f = {Ngf”(%)lk eET}

induced by g-ROFf-covering P. Now for any 5,3, € q — ROFST, following are
holds:

-
N

i NP (@) €3N (D);

hen N (31) € VF (3) and NV (31) € NP (S2);

—

fSl c SZ!
i~ NP (30 = N (~ 3 and ~ NP (1) = N (~ 30);
NP (3 n3) = MF (3D nvE (3
_ga(d1 32) _y(«h) _y(dz),
Nﬁ o~ o~ DNﬁ o~ Nﬁ o~ .
_ga(\hU\Sz) —_p(\h)U_y)(\Sz).
i MG uS) =N ) UuNE (3
VI. > (31VU3J2) 5 (31) 5 (32);
11 F (o o CF o F o~
Vil B (31N3) NG () NN (32
Proof: Proof of i. to iii. are easy and follows the definition of CBg-ROFRS.

iv: As we know that
B v Aee ) — o
Np (31 N3J2) = {< fki:.u]v—jf(slnsz)(%/i): lpw_fslnsz(ki) >, i = 1n}
As
B oree \ — o
N__’P (\Sl) - {< /kl'l .UN—jf(Sl)(kl)l l/)N_j?Sl(kl) >q |l - 1121 n}

In order to show J\fgf’) RIRDE J\@,ﬁ G n Njf (1), we have to prove

Mok 5ansp) B) = {“N_gf 50 B N gt s, (&i)}
and

Vorf angn B0 = {l/’N_gf o BV Vg (sz)%)}

Now consider
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m

llN_f(SlﬂTS )( l) /\ {‘u]\fﬁ (/"'“ #; )/\MJ10J2 (k )}

j=1

m

= ,/=\1 {/‘Nf(ﬁi) (fei, #;) Mg, (£;) MSz(kj)}}

- N, Gommos o) Ao, ot 6))

j=1

= _?g(‘s)(/&)/\MNB(N (%)

Next
le_ﬁ(slnsz)(&i) = ]\=/1 {wa(&i) (fei, #;) v ltbSlnSZ(kj)}
= \/ Ilp]\ff( " (#u £7) v {5, () 0 lPsz(/&j)}}
j=1 l
- ]\=/1 {IPN;%) (%0, #;) v s, (fcj)} v J\=/1 {lefwa (B0 ) Vs, (/&j)}
= Vool ) BV P,y (D)
Therefore

NF(31032) = NF (3 0 NF (3.

v: Next to prove
NB [ o~ DNB o Nﬁ o~
 (31UJI2) 23 (3) UNg (1)

we have to show #; € T

ok 5,03 B) 2 Hagk sy (R V iy o (A1)

Vb 5,05 B = Wby (D Ay (£1)
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Now consider

m

Hagf gy (B0 = /\{“Ngf(ki) (/&i’&f)/\u(31U32)(kj)}

Jj=1

>z 1>

1]
[

{“Nf(k,) (#0, #;) M, (#1) v MSz(kj)}}

m

{ﬂNf(/Li) (f&i/&j)/\ﬂsl(/&j)} \ /\ {H]‘Gf(ﬁi) (i kj)/\M32(kj)}

j=1

=
J

N > . .
Haf (5,05 (B0 2 Moy (RO V Byt ) (1)

Furthermore,

m

Yo g (B0 = \/ {‘l’wf(“ (#i, #7) v ¢(31U32)(’ki)}

j=1

= \/ {‘/’wa) (#0, £) V (W5, ) N, (/”&i)}}

j=1

= \/ {‘/’Nf@i) (i, ;) V sy (f&i)} A \/ {l/’Nf(ki) (i, ;) Vi3, (/”&i)}}

j=1 j=1
‘/’N_ﬂslusz)(/‘i) = {lpw_ﬁ (50 BN lpw_ﬁ(sz)(/‘i)}
Therefore,
N_gaﬁ(31 U3, 2 N_gaﬁ(31) U N_f(Sz)
Proofs of vi: and vii: are directly follows from the above proofs of iv: and v.

3.2. Multi-attribute decision making model by utilizing g-ROFRS

hybrid with TOPSIS
MADM has a high potential and disciplined process to improve and evaluate multiple

conflicting criteria in all areas of DM In this competitive environment an enterprise
needs the more accurate and more repaid response to change the customer needs. So,
MADM has the ability to handle successfully the evaluation process of multiple

contradictory attribute. For an intelligent decision the experts analyze each and every
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characteristic of an alternative and then they take the decision. Further, we will present
the model for M ADM and their basic steps of construction by utilizing the proposed

aggregation operators under g-ROFR information.

LetT = {#4,%,,..., %, } be any set of n feasible alternatives, P = {P,, P,,..., P, } be
the set of m attributes and consider the weight vector w = (W,, W, ..., w,,)T for all
attributes such that 0 <w; < 1land 2%, w; = 1. Decision makers D, and
Dnon-mem ©€Xpress their preference evaluation for alternatives #;(i =1,...n)
corresponding to the set of attribute P;(j = 1,...,m) by u;; and y;; respectively. So
combining these two values as a q-ROFV we have g-ROF decision matrix P;(#;) =
(uij, Pij). This means that the decision maker D,,,,, provides MG u;; to an object £;
against to the attribute ;. Whereas the expert D, on_mem Provides NMG ;; to an
object #; against to the attribute ; and their decision matrix is given as:
(t1¥11) (a2 2) - (i)
P(y) = (#21,:%1) (.Uzz':lpzz) (#zj':ll)zj)
Wi, Vi) iz ¥i2) - (Wi ¥ip)
In order to tackle a MADM problem with the help of the proposed model, first we
will discuss the technique for proposed model and steps wise algorithm for M ADM
problem for the proposed CBg-ROFRS model, which mainly consists of three steps. In
the first step decision makers D, and D, on—mem Provide their input to find a g-
ROFSs as explained above. By using the g-ROF TOPSIS (q-ROF-TOPSIS) approach,
we will present -ROF positive ideal solution (gq-ROF-PIS) Pt =
{P;, max{Sc(P;j(#£;))}/j = 1,...,m} and g-ROF negative ideal solution (g-ROF-
NIS) P~ = {P;, min{Sc(P;(#;))}/j = 1,...,m}, through the score function by
Definition 3.1.5. With the help of Definition 3.1.10, the distance D* and D~ are
determined among alternatives #; and g-ROF-PIS P* and gq-ROF-NIS P~. Therefore,
the  new  g-ROFS D ={<£,up(£),Pp(£) >, | €T} = (up,Pp)g =
(D*,D7 )4 can be constructed. Therefore, a multi-attribute g-rung orthopair fuzzy
decision making information system (MAQ-ROFDMIS) (T, P, P, D) has been obtained.
Then to find the optimal object or ranking among all the objects, they are arranged
according to the preference evaluation. In second phase the lower and upper
approximations of the g-ROFSs are calculated with the precision parameter 5(0 < g <

1) (where B the precision parameter, which is used on the CBg-ROFRS model to
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explain the consistency consensus threshold by the decision maker). Finally to find the
optimal object via ranking or DM process among all the alternatives and then arranged

according the preference evaluation.

Here the detail of first step is presented and first suggesting the q-ROF-TOPSIS
method. In this method the optimal alternative should have the shortest distance (that
is the alternative should have higher score value) from g-ROF-PIS P* and the farthest
distance (that is the alternative should have least score value) from the q-ROF-NIS P~.
By use of Definition 3.1.5, to identify g-ROF-PIS P* and g-ROF-NIS P~ obtains the

following structure.
P* = (P, max{s(B; (£} = 1,...,m}
= {<PLuf, P > <Ppuz, 3 >, < Py, i, P, >}
and
P~ = {P;,min{s(P;(#£:))}/j=1,...,m}

= {< Pous, Y1 >, < Pz, Y7 >, < Poy i, Y >}

Further with the help of Definition 3.1.10, to calculate the weighted distances D* and
D~ for an object #; and g-ROF-PIS P* and g-ROF-NIS P~ is defined as the following:

D= > d (7 k), P(P))
=1

= {25 |y (8) — i )7 + B W[ () — ;R for (i =

D= ) d ()7 ()
=1

m . 1
1O 13
- ﬁz | i (R) — Mj(/c)‘lp + %Z W[ (R — ¢j(/&)—|p for (i

j=1 j=1

63



Therefore we put together the new q-ROFS D = (up, Yp) = (D*,D7).
3.2.1. Definition

A g-ROF triangular norm (in short g-ROF t-norm) is a function T:[0,1] X [0,1] =

[0,1], having the following characteristic:

(1 Commutative

(i)  Associative

(iii)  Increasing

(iv) T, 1)=+#V#LEO1].
Similarly a g-ROF triangular t-conorm (in short g-ROF t-conorm) is a function
T:10,1] x [0,1] = [0,1], having the following characteristic:

(v) Commutative
(vi)  Associative
(vii)  Increasing
(viii) T(#,0)=#V#£ €[0,1].
Here the q-ROF t-norm and g-ROF t-conorm are used for M ADM problem.

RR? ,M+M
Ts(kl,fc’/z) = and TS(/&l,kz) = ! W
i+ (- D)1 £9) 1

Further by use a definition of CBq-ROFRS, the lower and upper approximations of

best and worst g-ROFDM alternatives are found based on consistency consensus

threshold (0 < B < 1) as given below.

Pt

Hyvf o) () = {.UNB (fei, £2) Nuap (# )}

1

-
1l

Yooy \/{ (kl,k )V o (4 )}

j=1

and

m

(80 = \/{MN (0 5) V10|
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m

Finally based on Definition 3.2.1, to find the rank of all the alternatives and then arrange
them according to the preference evaluation based on consistency consensus
threshold (0 < f < 1).

3.2.2. Definition

Suppose that MAQ-ROFDMIS is (T,P,P,D). For the g-ROFDM objectD =
(D*,D™) € q— ROFST represented by the preference information of decision maker

D and risk preference threshold a(0 < a < 1).

Now define the ranking function of alternative %; (i = 1,...,n) as:

Ty(#;) = aTy (“Nﬁ(@) (fr'«i);ll’]\@f@) (&)) + (1 =a)Ty <.U— (/&i),kl’]\j@) (%))

~nf @)
The ranking function shows that 0 < Ty(#%;) < 1.

3.2.3. Algorithm
By utilizing the above interpretation, the step wise decision algorithm for the developed

model based on CBg-ROFRS is summarized as follows:
input  MAQ-ROFDMIS (U, P,P, D);

output The sort ordering for all alternatives;

Step (i): Determine the g-ROF-NIS P* and g-ROF-NIS P,

Step (ii): Determine the D* = up and D~ = 4, between the alternatives and the g-
ROF-PIS P* and g-ROF-NIS P,

Step (iii): Next find the lower and upper approximations

#N_gf(D) (/"’L)I le_ﬁ(D) (kl)l HN—Tﬁ(D) (kl) and T'IN—??(D) (kl)n
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Step (iv): Determine the ranking function Tx(#;),

Step (v): Finally ranking of all object in a specific ordered to get best optimum option
of professional experts.

The flow for TOPSIS method under g-ROFRS is given in Fig. 3.1.

3.3. Numerical example
In this section we will initiate an illustrative example to prove the quality and

Excellency of the developed model based on CBg-ROFS that relates the evaluation and
rank of appointment of new faculty position in Universities. Then q-ROF-TOPSIS
provides the desired ranking.

For a certain senior position in Universities, the appointment of a new faculty has to
face a very complex evaluation and decision making process. The skill and ability of a
candidate may be judged with respect to various attributes like as "managerial skills"
"ability to work under pressure” "research productivity” etc. In order to take the right
decision about the candidate the opinions of professional experts are needed for these

criteria.

[ Decision Making ]

A 4

A 4 v

G R

(N_jf’ ), M (3))

A 4

[ Ranking Function Tx(#;) ]

Fig. 3.1. Flow chart for TOPSIS method under g-ROFRS
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Consider that T = {#4, %, #3, %4, %5} be the set of five candidates who fulfil the
requirements for the senior faculty position in Y University. In order to appoint the most
qualified and suitable person for the required position, a team of experts is organized
and chaired by Prof. Z as a director. The team of experts will judge the candidates upon
the criteria in the set of attribute P = {P;, P,, Ps, P4, Ps, P}, Where

P, = Research productivity, P, = Managerial skill,
P5; = Impact on research community P, = Ability to work under pressure,
P = Academic leadership qualities, P, = Contribution to Y University

According to the background and expertise, the team of experts wants to appoint the
candidate who qualifies with the criteria of P to the utmost extent from candidate in T
Suppose that the evaluation values of each alternative with respect to each attribute
provided by the decision makers D¢ and D, on—mem are presented in the decision

matrix given in Table 3.3, and the weights of all the attributes set is given as below:

W, =02, W, = 0.18, W; = 0.22, W, = 0.12, Ws = 0.15, W, = 0.13

Table 3.3, Tabular representation of q-ROFSs for P

T/P P, P, P, P, P, P,

feq (0.98,0.3) (0.7,0.4) (0.8,0.2) (0.9,0.1) (0.7,0.6) (0.4,0.3)
feq (0.9,0.4) (0.7,0.8) (0.7,0.5) (0.6,0.3) (0.65,0.87) (0.6,0.2)
fes (0.8,0.7) (0.7,0.2) (0.95,04) (0.8,0.4) (0.5,0.2) (0.8,0.3)
en (0.8,0.3) (0.6,0.5) (0.7,0.4) (0.9,0.2) (0.8,0.65) (0.4,0.2)

fos (0.5,0.2) (0.95,04) (0.8,0.3) (0.7,0.1) (0.6,0.3) (0.94,0.38)

For example, the characteristics of a candidate £, under attribute P; is (0.98,0.3), the
value 0.98 is the MG and the value 0.3 is the MG of candidate /£, under criterion
P, respectively. In other words, candidate £, is qualified and suitable on MG 0.98 and
disqualified on N MG of 0.3.
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Further the step wise algorithm for the proposed MADM approach based on CBg-
ROFRS consists of the following steps:

Step (i): Now to compute the g-ROF-PIS P* and q-ROF-NIS P~ by use of Definition

3.1.5, when g = 3 as follows.

pt = {(iPl, 0.98,0.3), (P,, 0.95,0.4), (P5,0.95,0.4), (P,,0.9,0.1), (Ps, 0.8,0.65),}
B (P, 0.94,0.38)

pm {(?1, 0.5,0.2), (P,,0.7,0.8), (P5,0.7,0.5), (P,, 0.6,0.3), (Ps, 0.65,0.87),}
(P, 0.4,0.3)

Step (ii): Furthermore, to compute the distance D* = up and D+ = 5, between the
alternatives and the g-ROF-PIS P* and g-ROF-NIS P~ when p = 3;

0.12943 0.13642 0.14903 0.14129 0.13849
fy T ky T Rz kT s

DY = pp =

0.15782 0.10907 0.2201 0.11109 0.17627

e S

Step (iii): Next, to determine the lower and upper approximation that is

MN_:;';B(D) (/kl)l le_f(D) (/"’L)l M]\Tf(@) (%/1) and T]J\T:f(@) (kl)l

First to compute g-ROFf-neighborhood for each £, € T (i = 1,2,...,5), and let the
consistency threshold q-ROF g = (0.8,0.4). Then

(0.8,0.4) __ (0.8,04) __ (0.8,0.4)
= ng n fP4_ n ‘{P6l
(0.8,0.4) __ (0.8,0.4) __
NfP(/q_) _?1n‘(P4-1 N‘{P(/"’S) —?2“?:;“?6

Further Table 3.4 for Nj,(o's'o-“)

Now to compute

W (), Wop. (R, pu—p (B) and n— ()
Np (DY TN (D) Pyt nfoy
_ 0.12943 0.12943 0.12943 0.12943 0.12943
R S S A
0.7 0.8 0.5 0.7 0.8
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Table 3.4, Tabular representation of v;*%%*

A0 for o oy o fos
o, (0.8,0.3) (0.6,0.5) (0.8,0.7) (0.7,0.4) (0.5,0.3)
fey (0.7,0.4) (0.7,0.8) (0.7,0.2) (0.6,0.5) (0.59,0.4)
fos (0.4,0.3) (0.6,0.5) (0.8,0.4) (0.4,0.4) (0.7,0.38)
oy (0.9,0.3) (0.6,0.4) (0.8,0.7) (0.8,0.3) (0.5,0.2)
g (0.4,0.4) (0.6,0.8) (0.7,0.4) (0.4,0.5) (0.8,0.4)

0.7 0.8 0.8 09 0.8

o) ™k hy ey ey s

_ 0.10907 0.10907 0.10907 0.10907 0.10907
Nﬁ(D) N /('/1 ’ /('/2 ’ /('/3 ’ %/4 ’ &/5

n

Step (iv): Now to compute the ranking function T5(#;), and for this let the risk

preference threshold @ = 0.75, where (0 < a < 1) as follows:

_ 0.076550 0.084171 0.058484 0.080097 0.087149
STk ky Ry kg R

Step (v): Finally, rank the obtained results and arranged them in a specific ordered to

get the most desirable option from £;.
fos > oy > oy > foy > R

Hence through the process of decision making finally we get most desirable applicant
for the required position by the utilizing CBg-ROFRS model based on MADM
method. Hence, from the illustrative example it is observed that the 5th candidate is

the most desirable and perfect applicant for the required position.

3.3.1. Comparative analysis
Yager [16], developed the concept to PyFSs and presented an important model based

on PyFWA operator to solve M'CDM problems. On the same concept Zhang and Xu
[76], presented TOPSIS to solve MCDM with PyF information. These methods fail to
handle situations when the MG is 0.9 and MG is 0.8. In this case (0.9)? + (0.8)? >
1 and the methods proposed in [16] and [76] fail to tackle the situation. The proposed

69



Table 3.5, Comparative analysis of different methods

Methods Score values Ranking
foq f, fos foy fes

CFRSs [80] Fail to handle X
CFRSs [89] Fail to handle X
CIFRSs [90] Fail to handle X
PyFSs [16] Fail to handle X
PyFSs [76] Fail to handle X
CBPyFRS(proposed) Fail to handle X
CBg-ROFRS 0.076550 0.084171 0.058484 0.080097 0.087 #s > £, > £,
(proposed) > fy > Ry

method handle such situations very easily, for example (0.9)? + (0.8)2 < 1 for q =
5. So from the analysis it is clear that the presented model is more suitable to meet a
variety of situations by adjusting the values of q. Therefore the proposed method is the
more superior than the methods proposed in [16] and [76] because the input range of
developed model is more flexible, wider and suitable because when the rung increases,
the orthopair provides additional space to the boundary constraint. Therefore the
proposed method is more suitable because it provides more space to the decision maker

in decision making problems.

3.3.2. Conclusion
MADM has the high potential and discipline process to improve and evaluate multiple

conflicting criteria in all areas of the decision making. A comprehensive model is
originated to handle the DM problems in which some energetic perspective are in
support and against of some plans, entities or projects. The investigated concept is
interesting in that case, where the professionals have contradictions in their decision
about some proposal or plan. Therefore, a new technique is developed to investigate
the hybrid notions of RS with g-ROFS by using the concept of fuzzy g-covering and
fuzzy B- neighborhoods to get the new notion of CBg-ROFRS. Furthermore, by
applying the developed concept of CBg-ROFRS on TOPSIS and presenting its
application for M ADM . In real scenario CBg-ROFRS model is an important tools to
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discuss the complex and uncertain information. This method has stronger capacity than
IFS and PyFsS to cope the uncertainty. From the analysis, it is clear that CBg-ROFRS
degenerates into CBIFRS if the rung q = 1 and degenerate into CBPYFRS if the
rung g = 2. Thus the proposed concept is generalization of CBIFRS and CBPyFyRS.
Moreover, an illustrative example is presented to describe how the developed model
helps us in DM problems and a comparative study of the proposed model with some
existing methods is presented which shows that the developed approach is more capable
and superior than the existing methods. The comparative analysis of the developed
model with existing methods is given in Table 3.5 by considering the above Illustrative
Example. From Table 3.5 it is clear that the methods proposed in [80] and [89] are
failed to handle situation because only handle the fuzzy MG and having no information
about ¥ M G. Similarly the CIFRSs method proposed in [90] also failed to handle it due
to the limitation on M'G and VMG that their sum is less than or equal to 1. Analogously
the methods proposed in [16, 76] and CPyFRSs are also failed to handle the situation
due to the limitation on M'G and VMG that their square sum is less than or equal to 1.
The main advantages of the proposed method has the ability to cope these situations
and provides a huge space and freedom to the decision makers to assign values freely
by adjusting the value of g and hence the method proposed in this paper is superior than

existing methods.
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Chapter 4

Orthopair fuzzy soft average aggregation operators

In 1999, Molodtsov investigated the pioneer notion of S¢S which provides a general
framework for mathematical problems by affix parameterization tools during the
analysis as compared to fuzzy set and q-ROFS. From the analysis of existing literature
and best of our knowledge, there has been no research on the hybrid model of S¢S and
g-ROFS that is g-rung orthopair fuzzy soft set (q-ROFS,.S). Therefore, for the scope
of future motive, the proposed concept has enough space for the new research. The aim
of this chapter is to investigate the notion of g-ROFS;,S, which plays a bridge role
between these two notions. Therefore, our main contribution in this chapter is to
investigate the g-ROFS;, weighted averaging (g-ROFS; WA), g-ROFS;, ordered
weighted averaging (g-ROFS;;OWA) and g-ROFS;, hybrid averaging (q-ROFS;HA)
operators in -ROFS;, environment. Further, the fundamental properties of these
aggregation operators are studied. On the base of developed approach an algorithm for
MCDM is being presented. An application of medical diagnosis problems is solved on
the proposed algorithm under the g-ROFS;, environment. Finally, comparison between
the developed operators with some existing operators are being presented showing the
superiority and efficiency of the developed approach than the existing literature.

4.1. Pythagorean fuzzy soft set

Yager [16] investigated the dominant concept of PyFS, in which the square sum of MG
and VMG belongs to [0,1]. The input range of PyFS is more flexible and provides
additional space to the experts for selecting their decision choice. Here we will present
the hybrid model of S¢S and PyFS that is Pythagorean fuzzy soft set (PyFS,,S) which is
defined as:

4.1.1. Definition

Consider a soft set (H, E) over a universe of discourse T. A pair (7, E) is known to be
a PyFSy.S over T, where T is a function given by T: E — PyFS™ which is given as

T;}.(ki) = {< ki:.uj(ki):l/)j(ki) > |#; € T and Sj € [E},
where u;(#£;),;(#%;) denotes the Mg and N MG of an object £; € T to the set Ts;

2 2
respectively, and satisfying the condition that 0 < (uj(ki)) + (lpj(/ai)) <1. For
simplicity T5 (#;) =< #;, u;(#;),9;(#;) > is denoted by I, = (uij,lpij) is known
as PyF soft value (PyFS. V).

72



4.1.2. Definition

Let 35, = (Wi, ¥in), s, = Wiz, ¥i2) (0 = 1,2,...,m) be any two PyFS;.Vs. Then
the basic operations on them are given as follows:

(i) s, USsy, = (i&i,max(ul (%)), Uy (/ai)), min(t,bl (£, P, (ki))) for £, €
T;

(i) S5, N sy, = (/&i; min(lh (%), Uz (’ki)); max(l,bl(ki), Y, (kl))) for£; €
T;

(i)  3,,° = (#4, 11 (#1), u1 (£)), where 3, denotes the complement of ,_;

(iv) B, €S, if tin(£y) < () and iy (&) = (&) forall £; € T;

4.1.3. Definition

Let S, = (1 (£1),91(£1)), s, = (2 (#£1), 9, (#£1)) be any two PyFS;, Vs and
A > 0. Then some basic operations are given below:

)

() 94,83, = (VIEGD + B0k — R AIBED (B8
(i) 6,85, = (1 kD (8 VOTRD) + PZ () — P CR)VE ()
(i) 23, = (VI— - BRI (4));

(v) 34, = (1) VT- 1= PZRI)

4.2. g-Rung orthopair fuzzy soft set

Recently in 2017 Yager [27], investigated the prominent concepts of g-ROFS in which
the sum of g*"* power of M'G and q*"* power of N MG belongs to [0,1]. In this section,
we will investigate the hybrid model of S¢S and g-ROFS that is g-ROFS;.S and their
desirable properties are discussed in detail.

4.2.1. Definition

Consider a S¢S (H,E) over a universal set T and a pair (T, %) is known to be a g-

ROFS.Sover T, where 7" isa functiongivenby T: E - q — ROFS™ which is defined
as:

Tg].(/&l') = {< /&i,ﬂj(/&i),lpj(ki) >q |#%; €T, Sj € Eand q = 1},
where u;(#£;),;(#%;) denotes the Mg and N MG of an object £; € T to the set Ts;

respectively, and satisfying the condition that 0 < (uj(ki))q + (lpj(/ai))q <1and
q = 1. For the simplicity T5,(#;) =< #;, u;(#:),;(#£;) >4, is denoted by I, =
(,Ltij,l/Jij) which represents a g-ROFS;, value (g-ROFS,V). Moreover, the degree of

hesitancy for g-ROFS;,V is defined as my_ = 1/1 — (()" + (Wi))?) . The set of all
ij
q-ROFS;.S on the set T is represented by g — ROF S S™.
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Let I, = (i1, ¥i1), Js,, = Wiz, Yiz) (i = 1,2,...,m) be any two g-ROFS;,Vs and
A > 0. Then some basic operations on q-ROFS;. Vs are given as follows:

i. Ssil U Ssiz = (’ki' (ma.X(/ll(/ki), Hz(/&i)); mln(lpl(’kl)' lpZ(kl)))) for ki €
T,
i 3, N3, = (/&i' (min(lh (#1), Uy (/&i)); max(l,bl (£, (kl)))) for #; €
T,
ii. 35, = (% (Y, (£, 1y (/al-))), where I, denotes the complement of 3, ;
iv. s, Sy, if () < up(Ry), Y1(#y) =, (&) forall £; €T,
V.o 3,035, = (q\[lff (fy) + g (Rp) — pf (Rdpg () , ) (R ] (ki)>;
vi. 3,83, = <u1 (B (), q\[lpf (£) + 93 (&) — i (R)Y] (#;) );
.. q A
vii. 23, = (\[1 —[1=ud D] LD );
viii. 34 = <uf1(lai) , q\[l - [1- ﬁ(’ki)]l >
4.2.2. Example

Consider that a person wants to buy a cellphone form the set under consideration of
five possible alternatives that is T = {#£,, £, 3, #4, #25}. Let E = {54, 5,, 53,5, } be the
corresponding set of parameters, where s; = high quality audio, video and voice call,
s, = impressive design with high resolution camera, s; = high battery timing, s, =
reasonable price. On the basis of above criteria a decision maker evaluate the
alternatives with rating values and described the result in the form of g-ROFS;, Vs as
given in Table 4.1;

Table 4.1. tabular representation of g-ROFS,S (3, X); forq =3

T 54 Sy S3 S

3 (0.9,0.5) (0.8,0.4) (0.6,0.3) (0.95,0.4)
5 (0.8,0.2) (0.5,0.1) (0.7,0.6) (0.8,0.3)
By (0.93,0.2) (0.7,0.3) (0.5,0.4) (0.75,0.4)
£, (0.7,0.4) (0.8,0.6) (0.93,0.2) (0.7,0.2)
B (0.82,0.6) (0.9,0.4) (0.7,0.1) (0.92,0.45)
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4.2.3. Definition

Consider 3, = (111,%11) be a g-ROFS, V. Then the score function for 3 can be
given as,

q _.4q
~ ef117 Y11 1 ~
Sc(Ss,,) =1l — 9, + (— - 5) ngm forq > 1and S(3,,) € [-1,1].

e”¢111_‘/’¢111+1
Let 3511 = (,Llll, lpll) and 3512 = (,Ll12, lplZ) be two q'ROFSftVS Then

(I) If SC(SSM) > CS‘6(3512)’ then S511 7
(") If SC(SSM) < SC(SSu)’ then S511 S
(i) 1fS8c(Ss,,) = Sc(Ss,,), then

q q o~ o~ .
(a) If7TSS11 > Ty, then 3., < Js,,;
R

q — 4 & —
(b) If7TSS11 =T, then 3, =

4.2.4. Theorem

S12°

Let 3511 = (l’llli 17[)11)'3512 = (“12)1/)12) be aﬂy two q'ROFSftVS and A,Al,lz > 0.
Then the following properties are holds:

) 35, ® 35, ;D Ssiy
(i) I5,8 Js, ,® s,
(III) /1(3511 ® S512) = /13511 ® 13512;
(iv) (/11 + /12)3511 = /113311 5] 123511;

A +A A Az .
(V) Sg&i & = S5111® 35,

o~
sy
o~

sy

H o~ o~ o~ o~ A
(VI) ‘5§11® ‘5§12 = (‘5511® ‘5511) )
Proof. Proofs are straightforward.

4.3. g-Rung orthopair fuzzy soft average aggregation operator
In this section, we present the detail study of q-ROFS; WA, q-ROFS;;OWA and g-
ROFS;.HA operators and also discuss some of their related properties in detail.

4.3.1. g-Rung orthopair fuzzy soft weighted averaging operators
In this subsection, we investigate g-ROFS;,WA operator and some of their basic

properties.
4.3.1.1. Definition

Let S, = (uyj,¥y) fori=12,..,nandj=12,..,m, be the collection of g-
ROFS;. Vs, and consider the weight vectors W = {Ww;,W,,..,w,}and i =
{tiy, Uy, ..., Uy} for the experts £; and for the parameters s;’s respectively; and having
the conditions that w;,u; € [0,1] with X, w; = 1 and 25-":117]- =1. Then the
mapping for g-ROFS;.WA operator is defined as: g — ROFS;,WA: X" - X, (where X
is the collections of all g-ROFS;,Vs)
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q- ROFSftWA(Ssn' S512’ e SSnm) = ®;n=1ﬁj (®?=1l4=/i35ij)-

The aggregated result for g-ROFS;, WA operator is described in the following Theorem
4.3.1.2.

4.3.1.2. Theorem

Let s, = (wij i) fori=12,..,nand j = 1,2,..,m, be the collections of g-
ROFS;.Vs. Then the aggregated result for g-ROFS;, WA operator is given as:

a- ROFSftWA(SSn' 3512’ ’Ssnm) = Ga;n:lﬁj (@?:117/i35i1-)

m m

_ <q -1 (1:_1[(1 - ug.)Wi)uj 11 (1_1[ w!}i)uj) (4.1)

J J

where w = {w,,w,, ...,w,,} be the weight vector for the experts #; and u =
{uy, uy, ..., Uy} be the weight vector for the parameters s;'s respectively; and having

the conditions that w;, %i; € [0,1] with YL, w; = 1 and YT, &; = 1.
Proof. Consider mathematical induction to prove the given result.

As we know by operation laws, that

351,035, = (i/(lin)q + (12)7 = (p11)7 (121 :l/’111l’12) and

A3 = ("/1 - [1—uq]l,lpﬂ> fori>1

First we will show that the Eq. (4.1) is true for n = 2 and m = 2, so we have

=1, {(i/1 - (1-u)" >® (ijl - (=)™ ff)}@
m{(Vi- G-t Jo(Vi-0-u)™ vk )|

2 2 2 2
a VT/,: W+ a VT/i W
- Ja-e™ ] [l e | -] [a-e)™ ] [wi
1 i=1 1 i=1

i= i=

<l
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j=1 \i=1
Hence the result is true forn = 2 and m = 2,

Next suppose that Eq. (4.1) is true forn = k; and m =k,

o~ o~ o~ ky = kf =~
q- ROFSftWA (‘5511"5512’ ""‘Ssklkz) = eajzzlu]' (eaiilwi‘ssij)

/q ky /[ ky N\Y Kk [k uj
\ j=1 \i=1 j=1 \i=1

We show that Eq. (4.1) istrueforn =k; +1 and m =k, + 1

S~—

o~ o~ o~ o~
q- ROFSftWA (‘5511’ SOTIERY “Ssk1kz' Js(k1+1)(kz+1))

ky = ki = = — ~
{EBJ'=1”J' (®i=1wi‘55i1‘)} D Uiy +1) (W("z+1)“55(k1+1>(k2+1>)

/q ky / ki N\Y ke [k uj \

— a)"" Wi = = ~

- | 1- 1_[ 1_[ (1 - #ij) ’ 1_[ ll}ij | ® Uky+1) (W(k2+1)‘55(k1+1)(k2+1))
\ j=1 \i=1 j=1 \i=1 /

/ (ky+1) /(kq+1) Tj (ky+1) /(ky+1) uj

q Wi p.

_ | | | | q | | | | ;

- | 1- (1 - 'uij) ) lpl‘j |
\ j=1 i=1 j:l i=1 /

Hence Eq.(4.1) istrue forn = k; + 1 and m = k, + 1. Therefore, by mathematical
induction the Eq. (4.1) is true for all m,n > 1.

Moreover, to show that the aggregated result achieved from g-ROFS;, WA operator is
also a Q-ROFS;V. Now for any S, = (wity) (i =1,2,.,n)and (j =
1,2,..,m), where 0 < p;;, ¥y; < 1, satisfying that 0 < uf, + v < 1, with weight
vectors w = {w,, Wy, ..., w,} and u = {1, U, ..., U,,} for the experts #£; and for the
parameters s;'s respectively; and having the conditions that w;,; € [0,1] with
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n _ m n _ uj
~os] Ja-uy*si=o<] (] Ja-u)")

IA
[EEN

i=1 Jj=1 \i=1

m

o< 1—“(11[(1—#;)@)%31

j=1 \i=1

Similarly,

n m n u]
OSlPijSl:OSHIP:;iSl:Osn(nw;fi) <1
i=1 i=1

j=1

As

n n
q q q q q)\"i q\7i
Wty sl1=y;<1-p;= n(lpij) ‘< (1_[(1 = 1) l)
i=1 i=1

j=1 \i=1 Jj=1 ‘=1
m n ;)\ 1 m n A\
>(]] (]_[ w“,”) < ﬂ( (1- u?,-)wi) (42)
j=1 \i=1 j=1 \i=1
Now we have

j=1 \i=1 j=1 \i=1
Therefore,
q
(q m n _ uj m n 3 uj 1
o=\ l-T([J6-w)") ¢ +ALI([Tvi) | =
k j=1 \i=1 ) j=1 \i=1

Hence, it is proved that the aggregated result achieved from q-ROFS;, WA operator is
also a g-ROFS;, V.

4.3.1.3. Remark
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(a) Ifthe value of q is fixed, that is ¢ = 1, then the proposed q-ROFS;, WA operator
reduces to IFS;, WA operator.

(b) Ifthe value of q is fixed, that is ¢ = 2, then the proposed q-ROFS;, WA operator
reduces to PyFSy, WA operator.

(c) If there is only one parameter, that is s; (mean m = 1), then the proposed g-
ROFS;. WA operator reduces to g-ROFWA operator.

Hence from Remark 4.3.1.3, it is clear that the developed q-ROFS;, WA operators is
the generalized case of IFWA, IFS; WA and PyFS;.WA operators.

4.3.1.4. Example

Suppose Mr. X wants to purchase a house from the set of five houses in the domain
setT = {#y, £y, #o3, %4, %5} and let E = {s;,s,,s35,5,} be the set of criterion
(parameters), i.e. s; (i = 1,2,3,4) stands for s; = beautiful, s, = in green surrounding,
s; = expenxive, s, =safety respectively. Suppose the weight vectors w =
(0.24,0.23,0.22,0.15,0.16)" and & = (0.28,0.19,0.3,0.23)7 for the experts #; and for
the parameters s;'s respectively. The experts provide their evaluation for each house to
their corresponding criterion (parameters) in the form of g-ROFS Vs, which is
presented in Table 4.2.

By using Eq. (4.1), we have

q — ROFS; WA(Ss,,, Ssypr oo r Sss,)

(J-fitgeer i3

m
j=1 \i=1 Jj=1

0.28

1— {(1 —0.883)0-24(1 — 0.963)023(1 — 0.913)0-22}
(1 —0.753)015(1 — 0.823)0.16
{(1 — 0.83)0-24(1 — 0.753)023(1 — 0.93)0-22(1 — 0.853)0-15}0'19
(1 _ 0_93)0.16
{(1 — 0.653)024(1 — 0.773)923(1 — 0.863)9-22(1 — 0.933)0-15}
(1 —0.783)016
{(1 — 0.933)024(1 — 0.873)0-23(1 — (.73)0-22(1 — 0_93)0.15}0-23

\ (1 —0.943)0.16
0.28

{(0.250.24)(0.40.23)(0.340.22)(0.20.15)}0.3 {(0.320.24)(0.250.23)(0.50,22)}0.23
(0.30.16) (0.20.15)(0.450.16) /

= (0.866891,0.334196).

w

0.3’
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In the following, in view of Theorem 4.3.1.2 some properties of the developed g-
ROFS;.WA operator for the collections of q-ROFSftVSSSU = (uij,lpij), (i =
1,2,..,n)and (j =1,2,...,m), is being presented.

Table 4.2, Tabular representation of g-ROFS,S (3, X) for q = 3

T Sy S, S3 S
£, (0.88,0.4) (0.8,0.4) (0.65,0.25) (0.93,0.32)
£, (0.96,0.2) (0.75,0.3) (0.77,0.4) (0.87,0.25)
£ (0.91,0.4) (0.9,0.3) (0.86,0.34) (0.7,0.5)
£, (0.7,0.6) (0.85, 0.45) (0.93,0.2) (0.9,0.2)
B (0.82,0.5) (0.9,0.33) (0.78,0.3) (0.94, 0.45)

4.3.1.5. Theorem

Suppose the collections of g-ROFS. Vs Jsi; = (ui]-,z,bl-]-), (i=12,..,n)and( =
1,2, ...,m), with weight vectors w = (W, Wy, ..., w,)T and & = (iiy, ity, ..., Uy,) " for
the experts #; and for the parameters s;’s respectively, such that w;, ii; € [0,1] with
Yie1w; = 1and Y7L, 4; = 1. Then the q-ROFS;,WA operator holds the following
properties:

i: (Idempotency): If SSU =&, (Vi=12,..,nandj =1,2,..,m), where & =
(b,d), then

q — ROFS;, WA(Ss, ., Sspyr s Ssp) = Es-

ii: (Boundedness): IfS;l.j = (mjn m,in{ul-j}, max max{lpij}) and
] 13 j i

35, = (m]ax miax{,ul-j}, min miin{lpl-j}>, then

S;ij S q- ROFSfCWA(SSn'SSu’ ""Ssnm) = S;U
iii: (Monotonicity): If & = (b, dy), (i =1,2,..,n) and (j =1,2,..,m), be
the another collection of g-ROFS;. Vs such that u;; < b;; and ¥;; = d,;j, then
q — ROFS; WA(Ss,,, Sspyr 0 Sy ) < 9 — ROFS;, WA(Eg, &, o Es, -

iv: (Shift Invariance): If & = (b, d), is another g-ROFS;,V, then

q — ROFS; WA(Ss,, ®Es, S5, DEs, ) S, BEs)
= q — ROFS; WA(Ss,,, Ss,,0 0 Ssp ) DEs-
iv: (Homogeneity): If 1 is any real number such that A > 0, then

q — ROFS; WA(A;,,, ASs,,, ) 235, ) = Aq — ROFS,WA(Ss,, S, s s,y )-
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Proof.i: (Idempotency) As it is given that if for all SSU =& =(0bd)(Vi=
1,2,..,nandj = 1,2,...,m), then from Eq. 4.1, we have

q - ROFSftWA(SSll’ 3512' ey SSnrn)

q

(- ﬁ(ﬂ (1- u)) 1] (ﬂ wy)”\

j=1 \i=1

= <q\[1 - ((1 — bQ)Z?=1V=Vi>Z}n=1ﬁ]' ) (dzzl:lﬁi)z;'n:lﬁj
= (V1=(a=09,4) = b,4) =&,

Therefore, g — ROFS;, WA(Ss,,, Ssyr s Ss,,) = Es-

N————

ii: (Boundedness) As 35, = (mjn m,in{,ul-]-}, max max{lpij}) and S;i]. =
J 3 j i
(m_ax max{uij}, min m,in{lpl-j}>. To prove that 3;1.]. <q- ROFSftWA(SSn,SSn, s
J l j i

o~ o~
"Ssnm) = "Ssij’
Now foreachi = 1,2,...,nand j = 1,2, ..., m, we have

mjin miin{/,tij} < Wi < max mlax{ul-j} s 1- max mlax{ufj} <1- ,ufj

<1- mjin miin{ufj}

o F1(F10 -t Sﬁm“‘“” ")

]:1 =1 ]: =1

j=1

q Xz Wi
S ((1 - m}ax mlax{,uij}> >

?:1‘711' Zj:luj
< <<1 — min m,in{u%}) >
L

m 5.
Zj:lu]

J

m n _ u]
wi . .
o (1 - m]ax mlax{,u?j}> < D <1:1[(1 - ,ufj) ) < (1 - mjln miln{,ugj})

1
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m
=1

o1- (1 ~ min miin{u?j}> <1- 1_[ <1j(1 - ug’j)wi>uj

J
<1- (1 ~ max miax{u?j})

Hence
q m n _ uj
mjin miin{uij} < [1- 1_[ (1_[ (1 _ H?j)wl)
j=1 \i=1
< m]ax miax{ul-]-} (4.3)

Next foreachi = 1,2,...,nand j = 1,2, ..., m, we have

min ml.in{l/)ij} < Py < max mﬁx{wij}

) lj (t[ (m mﬁx{wu})wi)uj |

this implies that

mjin miin{l/)l-j} < 1_[ (ﬂ(lp”)wi) < m}ax mifiX{lPij} (4.4)
j=1 \i=1

Therefore, from Egs. (4.3) and (4.4), we have

q m n . Uj
. . q t
mjm mim{/xij} < [1- 1_[ <1_[ (1 - ,ul.j) ) < m]ax miax{/,tij}
j=1 \i=1

and
m n u;
. . w;
mjm mim{lpij} < 1_[ <1_[(IIJU) ) < m]ax miax{lpij}
j=1 \i=1
Letd =q— ROFSftWA(SSH, s,y ...,Ssnm) = (us,¥s), then by score function given
in Definition 4.2.4, we have
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q
s

e“g_‘l’g 1
ehs¥s +1 2

5c(8) = ul — 9 + (— =

< (mjax miaX{llij}>q - (mjin miin{l,bij})q +

J— T——

1
+ —= |nd, =8c(3E,
e(ij_IX m?x{uij})q—(m]in miin{q)ij})q +1 2 J;ij ( $ J)
this implies
Sc(6) < Sc (3;}.)
q q e#g—lllg 1 q . . a
" se(®) = g+ (g3 = (mmint ) -
q
(m]ax miax{z/)ij}> +
ool N
—= |- =8¢ |,
e(m}in miin{uij}>q—<m}ax mlax{wij})q +1 2| sy Sij

this implies Sc(6) = Sc (35,,):
In view of that direction, consider the following cases,

Casei: If Sc(8) < Sc (S;”U) and Sc(8) > Sc (S;i].), by the comparison of two g-
ROFS;. Vs, we get

35, < a4 = ROFSHWA(S,,, Sy s S ) < 32, -
Case ii: 1f Sc(8) = 5c (3% ), that is

eHs—w3 1 q q
s —Ws +| —agr 35|75 = (maX maX{uu}> - (m.in m.in{wij}) +
5_1IJ 2 ] L j i

ets Vs +1
o(mxmpxlu)) (mpnmpntu))”
+ 2wz,
e(m]ax mlax{uij}>q—<m]in miin{tpij})q +1 2 T[‘S;-ij

then by using the above inequalities, we get

q
~t+
\ssi]'

Us = max max{/xij} and Ys = min mjn{l/)ij}. Thus ng =T
] 4 j i
Hence by comparison of two g-ROFS;. Vs, we have

q- ROFSftWA(SSn'SSn' ’Ssnm) = S;—ij )
Case iti: 1f 5c(8) = 5c (35, ), that is
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q q e”g_lpg 1 q ] _ q q
Hy — P+ ST 2 ng = (mjlnmim{u,-j}) — (m]ax miax{lljij}) +
q q
e(mjjn miin{uij}> —(mj:;lx m?x{lpij})
+ q q =5 | sz
e(mjjn miin{yij}) —(m}axmiax{d)ij}) 41 2 Jsij
then by using the above inequalities, we get

Us = mjin miin{ul-]-} and Y5 = m]ax mlax{t,l)ij}

Thus
q _ 49
7'[5 = T[S;ij
this implies

a- ROFSftWA(SSn’SSlz’ ’Ssnm) = 3S_ij )
Therefore, it is proved that
S;ij =q- ROFSftWA(SSn’SSlz’ ""Ssnm) = 3;-ij '

iii: (Monotonicity)  Since y;; < bjjandy;; > d;;, (i =1,2,...,n) and (j =
1,2, ..., m), then this implies that

-11([ Jo- ") <[1([To-m")

j=1 \i=1 =]j=1 i=1 o .
=1- ﬁ (ﬁ(l - u?j)wi> <1- r <r(1 - bfj)wi)
j=1 \i=1 j=1 \i=1
e <[] o
=1 i=1 j=1 i=1
Further;nore ]
Vi 2 dij > (H(wij)Wi) 2 n(dij)wi
i=1 _ ~ izi ﬁj
=TT o) =T 1(] Jew) +5)
j=1 \i=1 j=1 \i=1

Let 85 = q — ROFS; WA(Ss,,, s,y 0 Sspm) = (s Wsy) and

8¢ = q — ROFS;WA(E;,,, &, s s, ) = (bs, ds,)

From Egs. (4.5) and (4.6), we have

M53 < b5£ and lpgs > dgg
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then by score function given in Definition 4.2.4, we have
SC((Ss) < SC((Sg)
In view of that direction, consider the following cases,

Case i: If Sc(85) < Sc(8¢), by the comparison of two g-ROFS,, Vs, we get

q — ROFS; WA(Ss,,, Sspyr -0 s,y ) < 9 — ROFS; WA(E
Case ii: If Sc(65) = Sc(d¢), that is

S11’ 512’ e gSnm)'

e °s
Sc(6y) = g, — 5, +| —7—or— —5 | 7,

then by above inequality, we have

Usy = bs, and Ps, = ds

Hence j. = nj = (s ¥sy) = (bs ds,)
Therefore, it is proved that

q — ROFS;, WA(Ss,,, Sspyr -0 s, ) < G — ROFS; WA(E £

S11’ 512""’ Snm/*

iv: (Shift Invariance) Since &, = (b,d) and Ssij=(usij,1psij) are the g-
ROFS;. Vs, SO

S51169 & = <q\/1 -(1- .utlll)(l — b7) :lplld>

Therefore,

q — ROFS; WA(S;,, 5,3, BE, ., B, BE;) = BTy (L, (S, BE,))

(" 1_ﬁ®(1_%)w (1_bq>wl) ﬂ(ﬂwwldul) )
<q 1—(1—bﬂﬁ<ﬁ(1 i) W>. ﬂﬁ(f” ))
(ﬁ (1- M?j)wi)“f ﬁ <ﬁ l/)f}")uj ®(b, )

i=1 j=1 \i=1

q m
-] |
j=1
= q — ROFS; WA(Ss,,, Sspyr 0 S, JDEs
Hence the required result is proved.
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iv: (Homogeneity) Consider A > 0 be any real number and Jsi; = (uij,tpij) be a
g-ROFS,.V, then

q A
~ _ q A
Now
q — ROFS;WA(AS,,, ATs,,0 s A3, )

(e-w) [ )

i=1

m
j:

wy

(@) Qe

= Aq — ROFS; WA(Ss,,, Ssppr s s )

Therefore, the required property is proved.

4.3.2. g-Rung orthopair fuzzy soft ordered weighted averaging

operators
From the above analyses of g-ROFS;.WA operator, it is clear that q-ROFS;, WA

operator just weighed the values of g-ROFS;.N, while g-ROFS;, OWA operator weigh
the ordered positions via scoring the g-ROFS;, values rather than weighting the g-
ROFS;, values themselves. So, here we will present the detailed study of g-
ROFS;.OWA operator and also studied their related properties.

4.3.2.1. Definition

Let S, = (uyj,¥yy) (fori = 12,..,nand j = 1,2,...,m), be the collections of g-
ROFS;Vs, and consider the weight vectors w = {Ww;,W,,..,Ww,}andu =
{1y, uy, ..., Uy} for the experts £; and for the parameters s;’s respectively, and having
the conditions that w;,u; € [0,1] with X, w; = 1 and Z}’ilﬁj =1. Then the
mapping for g-ROFS; OWA operator is defined as: g — ROFS;,OWA: X" — X, (where
X is the collections of all g-ROFS;; Vs)

q — ROFS; OWA(Ss,,, oy o Fonm) = Ol (O #:S0s, ).

The aggregated result for g-ROFS;, OWA operator is described in the following
Theorem 4.3.2.2.

4.3.2.2. Theorem

Let S, = (ui, i) (fori = 1,2,...,nand j = 1,2,...,m), be the collections of g-
ROFS;. Vs. Then the aggregated result for g-ROFS;, OWA operator is given as:
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q- ROFSftOWA(SSn' S512' e SSnm) = ®;n=1ﬁj (@?:1171[30-5”)

- <q b ﬁ (ﬁ(l - ”Zij)wi>uj ﬁ <]_1[ ¢W,>]> (47)

j=1 \i=1

where SGSU = (,uaij;lpaij), represents the permutations of i®* and j** largest object
of the collections of i X j g-ROFSy Vs 3, = (i), ¥yj)-

Proof. Proof is similar to Theorem 4.3.1.2.

4.3.2.3. Remark
a. If the value of q is fixed, that is g =1, then the proposed ¢-
ROFS;.OWA operator reduces to IFS;, OWA operator.

b. If the value of q is fixed, that is g = 2, then the proposed ¢-
ROFS;.OWA operator reduces to PyFS;, OWA operator.

c. If there is only one parameter, that iss; (meansm = 1), then the
proposed g-ROFS;. OWA operator reduces to g-ROFOWA operator.

Hence from Remark 4.3.2.3, it is clear that IFS;,OWA, PyFS; OWA and q-ROFOWA
operators are the special cases of the proposed q-ROFS;, OWA operator.

4.3.2.4. Example

Consider the collections g-ROFS. Vs SSU = (uij,lpij) as given in Table 4.2, of
Example 4.3.1.4, then by using score function from Definition 4.2.4, the tabular
representations of Sgsij = (u(,ij,lp(,ij) is given in Table 4.3.

Now by using Eq.(4.7), to find the g-ROFS;, OWA operator, we have

q - ROFSftOWA(SSllI SSIZ' ---;Ssnm) = @;n:ll:l] (®?=114=1130'SU)

(G (1)

j=1 j=1

Table 4.3, Tabular representation of g-ROFS .S SJSU = (um.]., waij) forq >3

T 51 S S3 S4

foq (0.96,0.2) (0.9,0.3) (0.93,0.2) (0.93,0.32)
f, (0.91,0.4) (0.9,0.33) (0.86,0.34) (0.9,0.2)
foq (0.88,0.4) (0.85,0.45) (0.78,0.3) (0.94,0.45)
foy (0.82,0.5) (0.8,0.4) (0.77,0.4) (0.87,0.25)
fos (0.75,0.6) (0.75,0.3) (0.65,0.25) (0.7,0.5)
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- {(1 — 0.963)024(1 — 0.913)023(1 — 0.883)0-22(1 — 0.823)0-15}0'28
(1 —0.753)016
{(1 — 0.93)024(1 — 0.93)0-23(1 — 0.853)0-22(1 — 0_83)0.15}0-19
(1 —0.753)016
{(1 — 0.933)024(1 — 0.863)023(1 — 0.783)022(1 — 0.773)0-15}0'3
(1 —0.653)016
{(1 —0.933)024(1 — 0.93)0-23(1 — 0.943)022(1 — 0.873)0-15}0'23
\ (1 —0.73)016
{(0_20.24)(0_40.23)(0_40.22)(0_50.15)}0-28 {(0_30.24)(0_330.23)(0_450.22)}0-19\
(0.69-16) (0.49-15)(0.30-16)
{(0_20.24)(0_340.23)(0_30.22)(0_40.15)}0-3 {(0_320.24)(0_20.23)(0_450.22)}0-23/
(0.25°1€) (0.25°1%)(0.5%1¢)
= (0.878279,0.32812)

w

In the following, in view of Theorem 4.3.2.2, some properties of the proposed Q-
ROFS;.OWA operator for the collections of g-ROFS;Vs Ssij = (uij,tpij), (i =
1,2,..,n)and (j =1,2,.., m), is being presented.

4.3.2.5. Theorem

Suppose the collections of g-ROFS. Vs Jsi; = (ui]-,z,bl-]-), (i=12..,n)and(j =
1,2, ...,m), with weight vectors w = (W, Wy, ..., w,)T and & = (iiy, ity, ..., Uy,)" for
the experts £; and for the parameters s;’s respectively, such that w;,u; € [0,1]
with YL, w; = 1and Y7L, 4; = 1. Then the g-ROFS;;OWA operator has the
following properties:
i: (Idempotency): I35, =65 (Vi=12,..,nandj=12,..,m), where ;s =

(b,4), then
q — ROFS; OWA(Ss,,, Ssyyr o0 s, ) = Eos:

ii: (Boundedness): If o5 = (mjn m,in{ugij},max max{lpdij}) and S;SU =
] 3 j i
(m]ax miax{,udi j} ,min mim{lp(,l- ; }) then

S‘;Sij =q- ROFSftOWA(SSn'SSu’ ""Ssnm) s S;sij'
iii: (Monotonicity): If & = (b, dy), (i =1,2,..,n) and (j =1,2,..,m), be

the another collection of g-ROFS;. Vs such that u;; < b;; and ¥;; = d,;j, then

q — ROFS;, OWA(Ss,,, s, +» s, ) < q — ROFS;,OWA(&;, , &, -
iv: (Shift Invariance): If & = (b,d), is another g-ROFS,.V, then

. E

Snm/*

q — ROFS;, OWA(S;,, Es, S, DEs, .., S5, DEs)
= q — ROFS;, OWA(Ss,,, Ss,pr - r s, ) BEs.
iv: (Homogeneity): If 1 is any real number such that A > 0, then

q — ROFS; . OWA(AS,,, AD;,,, -, A5, ) = Aq — ROFS; OWA(S,,, Ss,ys s s, )-
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Proof. Proofs are straightforward and follows from Theorem 4.3.1.5.

4.3.3. g-Rung orthopair fuzzy soft hybrid averaging operators
From the above analyses of g-ROFS;, WA and g-ROFS;, OWA operators, it is clear that

0-ROFS; WA operator just weighed the values of q-ROFS;.V, while g-ROFS;,OWA
operator weight the ordered positions via score function of the g-ROFS, values rather
than weighting the g-ROFS;, values themselves. So, it is clear that weights denotes
distinct attributes in both g-ROFS;, WA and q-ROFS;, OWA operators. However, at the
same time both the operators weigh only one of them. Therefore, here we will present
the detail study of g-ROFS;.HA operator which measure both g-ROFS;, values and its
order position at the same time and also studied their related properties in detail.

4.3.3.1. Definition

Let 3y, = (), ¥i;) (fori = 1,2,..,nand j = 1,2,..,m), be the collections of g-
ROFS;Vs, and consider the weight vectors w = {Ww;,W,,..,Ww,}andu =
{1y, uy, ..., Uy} for the experts £; and for the parameters s;'s respectively; and having
the conditions that w;,%; € [0,1] with XL, w; = 1and Y7L, 4; = 1. Then the
mapping for g-ROFS;.HA operator is defined as; g — ROFS; HA: X™ — X, (where X is
the collections of all g-ROF S, Vs):

q— ROFS; HA (S, S,y s Sopn) = O T (@1, 7,5, )-

J

The aggregated result for g-ROFS;.HA operator is described in the following Theorem
4.3.3.2.

4.3.3.2. Theorem

Let SSU = (,ul-j,tpl-j) (fori=12,..,nandj =1,2,..,m),Witho = (v,,v,, ..., )7
and r = (1,15, ..., 1,,)7 are the weight vectors of Jsi; = (uij,lpij), such that v;,t; €
[0,1] with ¥, v; = 1and Y7L t; = 1 and n is the known as balancing coefficient
represents the number of elements in i*" row and j** column with aggregation
associated vectors w = (Wy, Wy, ..., w,)T and & = (iiy, Uy, ..., Uy, )T for the experts 4;
and for the parameters s;'s respectively, such that w;,u; € [0,1] with X, w; =
1 and Y7, u; = 1. Then the aggregated result for g-ROFS;.HA operator is given as:

q-— ROFSftHA(Ssll' 3512' ""Ssnm) = @;nzlﬁ] (®?=1‘T/igsij)

_ <q - ﬁ (ﬁu - a?,-)Wi)uj T1 <111[ z/l-”}")uj) (48)

m
j=1 \i=1 j=1

where %sii = nviersij, represents the permutation of it"* and j** largest object of the
collections of i x j g-ROFSyVs 3, = (fyj, ¥yj)-

Proof: Proof is similar to Theorem 4.3.1.2.

89



4.3.3.3. Remark

a.

If the value of g is fixed, that is ¢ = 1, then the developed q-ROFS;.HA
operator reduces to IFSgHA operator.

If the value of q is fixed, that is ¢ = 2, then the proposed g-ROFS;.HA
operator reduces to PyFSgHA operator.

If there is only one parameter, that iss; (meansm = 1), then the
proposed g-ROFS;.HA operator reduces to g-ROFHA operator.

T
If vr = (i% %) , then the proposed g-ROFS;.HA operator reduces

to g-ROFS;. WA operator.

T
Ifwu = (i% %) , then the proposed g-ROFSy.HA operator reduces

to g-ROFS;.OWA operator.

Hence from Remark 4.3.3.3, it is clear that IFS; HA, PyFS;HA, q-ROFHA, g-
ROFS;: WA and g-ROFS;,OWA operators are the special cases of the proposed g-
ROFS;HA operator.

4.3.3.4. Example

Consider the collections g-ROFS. Vs Jsi; = (ui]-,z,bl-]-) as given in Table 4.2, of

Example 4.3.1.4, with v = (0.26,0.22,0.1,0.27,0.15)" and r = (0.23,0.28,0.2,0.29)7
be the weight vectors of them, and having associated aggregate vectors w =
(0.27,0.18,0.1,0.18,0.27)T and & = (0.26,0.24,0.24,0.26)7. Then by using operation
laws as given in Eq.(4.9) and their score results are given in Table 4.4. The
corresponding g-ROFS, Vs gsi,- = nvirjﬁsij, of the permutation of i*" and j** largest

object of the collections of i X j g-ROFS,Vs gsu = nvirjﬁsij, is given in Table 4.5.

Since

~ 3 nv;x; s
Sy = it S, = ( \/ 1-(1-u r’,z/ﬂ“’t”) (4.9)

Table 4.4, Tabular representation of score values of g-ROFS;. Vs §5ii = nvierSU forq >3

S1 S, S3 Sy
foq -0.16007 -0.15175 -0.29021 0.195882
f, 0.13525 -0.19738 -0.45464 0.027663
fog -0.59745 -0.46069 -0.65469 -0.71362
foy -0.49017 -0.10964 0.092527 0.276974
fos -0.59292 -0.27435 -0.52888 0.048367
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Table 4.5, Tabular representation of g-ROFS, Vs 551‘] = nvirjssu forq>3

S1 S2 S3 Sa

£y | (0.7495,0.6655)  (0.6711,0.7395)  (0.7089,0.6476)  (0.7369,0.5325)
foy (0.6617,0.7604) (0.6125,0.7164) (0.4311,0.6934)  (0.7716,0.6508)
#5 | (0.5389,0.8533)  (0.5375,0.6912)  (0.5007,0.8174)  (0.8642,0.8406)
£, | (0.5059,0.8873)  (0.6213,0.7923)  (0.4515,0.8348)  (0.6621,0.6426)

Fos (0.5299,0.9) (0.5508, 0.8449) (0.4581,0.8977)  (0.3895,0.9044)

Now by using Eq. 4.8, of Theorem 4.3.3.2,

a- ROFSftHA(SSn’ 3512’ v S5nm> = Ga;n:ﬂjj (ea?zlﬁigsii)

/q m n U m n u;
_ \ 1- 1_[ (1_[(1 — i fj.)v?-) 1_[ (1_[ 1;;5”.1’) / — (0.635733,0.753867)
j=1 \i=1 j=1 \i=1
Inthe following, in view of Theorem 6, some properties of the developed g-ROFS; HA
operator ~ for  the  collections  of  g-ROFS; Vs Ssij = (uij,tpij), (=
1,2,..,n)and (j =1,2,...,m), is being presented.

4.3.3.5. Theorem

Suppose the collections of g-ROFS;, Vs 3, = (uij,lpl-j), (i=12..,nand( =
1,2,.., m), with v = (vy,v,,...,v,)T and r = (x;,1,, ...,t,)T be the weight vectors
of them, such that v;, t; € [0,1] with YL, v; = 1and X7, v; = 1 and n is the known
as balancing coefficient represent the number of elements in i** row and j** column.
Let w = (Wy, Wy, ..., w,)T and @ = (&, Uy, ..., U,,)T be the aggregate associated
weight vectors for the experts £; and for the parameters s;’s respectively, such that
w;, 4 € [0,1] with X, w; = 1 and XL, 4; = 1. Then the ¢-ROFS;HA operator
satisfy the following properties:

i: (Idempotency): If Sy = &, (Vi=12,..,nandj = 1,2,..,m), where & =
nv;t;&s, then
q — ROFS; HA(Ss, ., Sspyr o0 Ss) = s

ii: (Boundedness): Ifgs‘ij = (mjn min{f;;}, max m_ax{lﬁij}) and
j i j i
S;]_ = (m}ax mlax{ﬁij},mjin miin{tpij}>, then
85, S 4= ROFS;HA(S,, Sy o Sspn) < S
iii: (Monotonicity): If & = (b, dy), (i =1,2,..,n) and (j =1,2,..,m), be
the another collection of g-ROFS;. Vs such that u;; < b;; and ¥;; = d,;j, then
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q — ROFS; HA(Ss,,, S, 0 s, ) < q — ROFSHA(E,,,
iv: (Shift Invariance): If & = (b, d), is another g-ROFS,.V, then

Espyrover Espr )-

1 Cspm

q — ROFS; HA(Ss,, BEs, S5, DEs, ovr) s, DEs)
= q — ROFS; HA(Ss,,, S, r s, )DEs.
iv: (Homogeneity): If 1 is any real number such that 2 > 0, then

q — ROFS; HA(AS;,,, AFs,,, -» 4S5, ) = Aq — ROFS HA(Ss, ) Ssyyr ooor sy )-
Proof. Proofs are straightforward and follows from Theorem 4.3.1.5.

As aggregation operators are used to create a framework for MCDM problems. So, in
coming section we will present the application for the proposed aggregation operators.

4.4. Model for MCDM under g-rung orthopair fuzzy soft
information
Decision making is a pre-planned process of selecting the logical choice among several
objects. DM plays an important role in real life situation. A good decision can change
the course of our lives. An intelligent decision maker judges the limitations, advantages
and characteristics of each alternatives and then he could reaches to the final decision.
Here we will present the mathematical description of the proposed model for MCDM
under g-ROFS;, environment. The general concept and step wise algorithm for the

given approach is as follows:

Let T = {#£4, %, ..., #,} be the set of [ different alternatives, which is assessed by n
senior experts D;,D,, ..., D, and let E = {sy, s, ..., S, } be the corresponding set m
parameters. A team of n senior experts has been constituted to evaluate each alternative
#e (e = 1,2,..,1) according to their corresponding parameters; (j = 1,2,...,m).
Assume that the committee of experts provide their assessment in terms of g-
ROFSy, Vs s, = (uij, hij) with weight vectors w = (Wy, W, .., W,)" and @ =
(U, Uy, ..., Uy)T for the experts £; and for the parameters s; respectively, such that
w;, 4 € [0,1] with X, w; = 1 and Y7L, u; = 1. So the collective information are
expressed in a decision matrix M = [SiInxm- In ordered to use the assessments of
senior experts, the aggregated q-ROFS,, V &, for alternative £, (e = 1,2, ..., 1) is given
as &, = (u.,y,) by applying the proposed aggregation operators. Finally determine the
score function for overall aggregated q-ROFS;Vs 3, (e =1.2,..,0) for the
alternatives and rank them in a specific order to get the best optimal solution.

4.4.1. Algorithm
In the following, the step wise algorithm for solving MCDM problems with the help
of proposed operators consists of the following steps.

Step 1. Collect the expert’s assessment information for each alternative to their
corresponding parameters and then construct a decision matrix M = [Sf&i]’]nxm as:
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(t11,¥11) (2o ¥12) - (am Yim)
M = (1121'.1.021) (Iizz;.lpzz) (MZmJ'lpZm)

(.ulm'-lplm) (HZmJ.IPZm) (.unm;lpnm)

Step 2. Normalize the g-ROFS;, decision matrix M = [Jz, ]axm by changing
assessment value of cost parameter into benefit parameter if there is any, by using the
formula from [91] that is,
Sf%i,- ; for cost type parameter
bij = Slai,- ; for benefit type parameter’
where 35, = (i), ;) represents the complement of S, = (uyj, ;).

Step 3. By applying the proposed aggregation operators aggregate the q-ROFS;.Vs
Ski,- = (uij,zpij) for each alternative %, (e =1,2,...,1) into collective decision
matrix &,.

Step 4. Calculate the score value for &, by using Definition 9, of the overall
alternative £, (e = 1,2, ..., 1).

Step 5. Arrange the ranking result in a specific order for alternative £, (e = 1,2, ..., 1)
and chose the best optimal result.

The flow chart of above algorithm for g-ROFS;, WA is given in Fig. 4.1.

[ Obtain Decision Matrix ]

y

[ Examine if all the data is

of benefit type

Normalize the Data of
using the definition of

complement

Aggregate the Date by
applying g-ROFS;,WA/G J

aggregation operators

A

Compute the score
value of aggregate data

A

Rank the alternatives
for optimum result

no

Fig. 4.1. flow chart for g-ROFS;,WA and q-ROFS;;WG



4.5. A Numerical example of the proposed model to MCDM
This section is devoted for the presentation of an illustrative example to demonstrate
the effectiveness and validity of the developed model with g-ROF soft information.

Consider a team of experts consist of five senior doctors D;,D,, D3, D, and Ds,
whose weight vectors w = (0.18,0.24,0.21,0.15,0.22)7, will present their evaluation
for four different patients %£,, #,, %5 and %, based on the constraint of parameters set
E = {s; = chest pain,s, = fever,s; = cough,s, = fatigue,ss = vomit} having
weight vector & = (0.26,0.22,0.1,0.27,0.15)7. The doctors present their evaluation for
each alternative to their corresponding symptom in the form of g-ROFS;,Vs. Now we
apply the step wise algorithm of the proposed model to diagnose the illness of desirable
patients.

By using q — ROFS;;WA operator

Step 1. The doctors present their evaluation for the illness of each alternative (patient)
to their corresponding symptoms (parameters) in the form of q-ROFS. Vs, which is
given in Tables 4.6 — 4.9 respectively.

Step 2. There is no need to normalize the given g-ROF soft matrix because all the
parameters of the same type.

Step 3. The experts/doctors evaluation for each patient %; (i = 1,2,3,4) is aggregated
by applying the Eq.4.1, for q = 3, so we have

& =(0.715197,0.188439), &, = (0.745295,0.189273),
& = (0.775728,0.164921), &, = (0.754479,0.158639)

Step 4. Calculate the score value by using Definition 4.2.4, for each aggregated value
& (i =1,2,3,4) in Step 3, that is

Sc(§) = 0414877,  Sc(&,) = 046537,  Sc(&;) = 0.522354,
Sc(&,) = 0.484856

Step 5. Finally rank the results in descending order to get the best optimal result. Hence
from the score values, we get the ranking result as:

Sc(&3) > Sc(&y) > Sc(&y) > Sc(éy)
Therefore, form overall analysis of the experts, it is observed that patient %5 has more
serious illness than the others patients.

For q — ROFS;;OWA operator
Step 1. Same as above.
Step 2. Same as above.

Step 3. The experts/doctors evaluation for each patient £; (i = 1,2,3,4) is aggregated
by applying the Eq.4.7, so we have

& = (0.722349,0.186069), &, = (0.750879,0.185528),
& = (0.775689,0.168362), &, = (0.75392,0.161782)
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Step 4. Calculate the score value by using Definition 4.2.4, for each aggregated value
& (i=1,2,3,4) in Step 3, that is

Sc(&) = 0426939,  Sc(&,) = 0475573,  Sc(&) = 0.521928,
Sc(&,) = 0.483572

Step 5. Finally rank the results in descending order to get the best optimal result. Hence
from the score values, we get the ranking result as:

Sc(&3) > Sc(&y) > sc(&y) > Sc(éy)

Therefore, form overall analysis of the experts, it is observed that for g-ROFS;,OWA
operator the best optimal solution is again same as q-ROFS;.WA. Hence patient £5 has
more serious illness than the others patients.

For q — ROFS;HA operator
Step 1. Same as above.
Step 2. Same as above.

Step 3. The experts/doctors evaluation for each patient %; (i = 1,2,3,4) is aggregated
by  applying  the Eq.4.8, with  u=(0.15,0.2,0.17,0.3,0.18)T and r =
(0.16,0.21,0.13,0.26, 0.24)7 be the weight vectors of R (uij,tpij), and n is the
balancing coefficient represents the number of elements in i** row and j** column.
Let w = (0.18,0.24,0.21, 0.15,0.22)T and @ = (0.26,0.22,0.1, 0.27,0.15)7 be the
aggregate associated weight vectors for the experts £; and for the parameters s;’s
respectively, so we have

& = (0.457099,0.709743), &, = (0.478573,0.708384),
&, = (0.489985,0.696883), &, = (0.474105,0.692815)

Step 4. Calculate the score value by using Definition 4.2.4, for each aggregated value
& (i =1,2,3,4) in Step 3, that is

Sc(&) = —0.29764, Sc(&,) = —0.27858, Sc(&;) = —0.2507, Sc(&,) =
—0.25753

Step 5. Finally rank the results in descending order to get the best optimal result. Hence
from the score values, we get the ranking result as:

Sc(&3) > Sc(&y) > sc(&y) > Sc(éy)

Therefore, form overall analysis of the experts, it is observed that for q-ROFS; HA
operator the best optimal solution is again same like g-ROFS;,WA and g-
ROFS; OWA. Hence patient %5 has more serious illness than the others patients.
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Table 4.6, g-ROFS, matrix for patient %,

s; = Chest S, = S3 = Sy = Sg =

pain Fever Cough Fatigue Vomit
D, (0.7,0.25) (0.7,0.22) (0.88,0.1) (0.9,0.1) (0.73,0.2)
D, (0.6,0.1) (0.6,013)  (0.85,0.12) (0.650.25)  (0.81,0.18)
D (0.54,0.15) (0.7,0.2) (0.75,0.24)  (0.68,0.25)  (0.6,0.26)
D, (0.65,0.2) (0.8,0.18)  (0.850.13)  (0.8,0.18) (0.7,0.28)
D (0.6,03)  (0.750.18)  (0.67,0.25)  (0.6,0.3)  (0.45,0.15)

Table 4.7, g-ROFS, matrix for patient %,

sy = Chest s, =Fever S3 = Sy = s5 = Vomit

pain Cough Fatigue
D, (0.80.15)  (0.75,0.22)  (0.76,0.1) (0.8,0.19) (0.7,0.25)
D, (0.75,0.18)  (0.8,0.15) (0.8,0.18) (0.5,0.25) (0.8,0.16)
D, (0.78,0.13) (0.7,0.2) (0.7,025)  (0.76,021)  (0.76,0.23)
D, (0.9,0.1) (0.65,0.33)  (0.76,0.15)  (0.87,0.12)  (0.65,0.18)
D (0.65,0.3) (0.55,0.2) (0.6,0.3) (0.7,0.23)  (0.55,0.15)

Table 4.8, g-ROFS;, matrix for patient %

s; = Chest s, = Fever s3 =Cough s, = ss = Vomit

pain Fatigue
D, (0.71,0.25) (0.78,0.1)  (0.88,0.11)  (0.81,0.18) (0.78,0.2)
D, (0.8,0.15)  (0.85,0.12) (0.9,0.1) (0.65,0.25)  (0.74,0.23)
D, (0.76,0.1)  (0.88,0.11)  (0.84,0.12)  (0.86,0.1) (0.79,0.2)
D, (0.78,0.22)  (0.75,0.25) (0.74,02)  (0.75,0.25)  (0.65,0.16)
D (0.6,0.25) (0.8,0.19)  (0.75,0.16) (0.6,0.2) (0.5,0.1)
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Table 4.9, g-ROFS;, matrix for patient %,

s; = Chest s, =Fever s; = Cough Sy = sz =Vomit
pain Fatigue
D, (0.76,0.22) (0.75,0.22) (0.85,0.14) (0.78,0.2) (0.65,0.26)
D, (0.72,0.12) (0.79,0.18) (0.6,0.12) (0.73,0.15) (0.8,0.14)
D; (0.82,0.16) (0.83,0.1) (0.84,0.13) (0.82,0.12) (0.77,0.2)
D, (0.6,0.27) (0.6,0.3) (0.7,0.2) (0.83,0.13) (0.6,0.25)
Dy (0.55,0.1) (0.81,0.12) (0.8,0.15) (0.72,0.17) (0.5,0.15)

4.5.1. Comparative study

To show the superiority and influence of proposed model, a comparative study has been
presented of the proposed model with some existing literature, based on different
aggregation operators (see [4, 30, 58]). If we assign the value to MG 0.9 and N MG 0.5,
then their sum 0.9 + 0.5 > 1. So in this case the methods presented in [4, 58] will fail
to cope the situation. Similarly, if we consider Tables 4.6 to 4.9, then the methods
developed in [4, 30] will also fail to tackle the situation, and the developed approach
cope all these situations. For this, different parameters of gq-ROF soft numbers are
aggregated by applying weighted averaging operator having weight vectors u =
(0.26,0.22,0.1,0.27,0.15)7, and got the q-ROF soft matrix for different candidates
+#; (i = 1,2,3,4) as summarized in Table 4.10. Then based on this evaluated matrix a
comparative analysis of different aggregation operators has been presented, and their
corresponding results for each candidates are given in Table 4.11. From this table, it is
clear that patient %5 has more illness diagnosed by the expert doctors. The characteristic
analysis of the developed approach with some existing studies is given in Table 4.12.
So, from Table 4.12, it is clear that the methods given in [4, 30] have no information
about parameter study. The advantages of the developed concept is that they have the
ability to solve the real life problems by using their parameterizations properties.
Hence, the developed concept can be utilized for solving the DM problems rather than
other existing operators in g-ROFS;, environment.

Table 4.10, Aggregated values of g-ROFS s, matrix for patients

£, foy foqy foy
D, (0.5137,0.1660)  (0.4413,0.1751)  (0.5180,0.1531)  (0.4527,0.2046)
D, (0.4224,0.1445)  (0.4508,0.1764)  (0.5481,0.1459)  (0.4114,0.1415)
D, (0.3308,0.2162)  (0.4047,0.2015)  (0.5803,0.1238)  (0.5465,0.1377)
Dy (0.4768,0.1888)  (0.4859,0.1696)  (0.3991,0.2113)  (0.3101,0.2291)
D (0.2881,0.2193)  (0.2256,0.2246)  (0.3276,0.1685)  (0.3784,0.1347)
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Table 4.11. Comparative Studies of different methods

Methods Score values of patients Ranking

foq f, fos foy
IFWA [4] 0.258398, 0.241765, 0.31298, 0.232224 E>8>&,>8,
IFOWA [4] 0.23115, 0.23056, 0.329916, 0.277871 E>8,>8 >8,
IFHA [4] 0.26103, 0.273152, 0.337673, 0.246599 &>86,>8 >8,

IFS; WA [58] 0516859, 0.548324, 0.604673, 0590214 & >¢&, > &, > &

PyFS; WA (proposed) | 0.522097, 0.565965, 0.621904, 0.593809 E>&6,>8>¢&
PyFS;,OWA 0.532526, 0.575719, 0.621094, 0.591066 E>&6,>8>&
(proposed)

PyFS;.HA (proposed) | -0.39452, -0.37378, -0.34634, -0.34975 E>86,>8>&
g-ROFWA [30] 0.083494, 0.076265, 0.111612, 0.067345 &> >8>8,
g-ROFS; WA 0.414877, 0.46537, 0.522354, 0.484856 E>&6,>8>&
(proposed)

0- 0.426939, 0.475573, 0.521928, 0.483572 E>&6,>8>&
ROFS;, OWA(proposed)

g-ROFS; HA -0.29764, -0.27858, -0.2507, -0.25753 E>&,>8>&
(proposed)

Table 4.12. Characteristic analysis of different models

Fuzzy information Aggragate parameter informatiom
IFWA [4] Yes No
IFOWA [4] Yes No
IFHA [4] Yes No
IFS WA [58] Yes Yes
g-ROFWA [30] Yes No
Proposed Operators Yes Yes

4.5.2. Conclusion

Decision making is a pre-planned process of selecting the logical choice among several
objects. Therefore, DM plays a significant role in real life situation. In this manuscript
we have presented the hybrid study of S¢S and g-ROFS to get new concept of g-
ROFS;.S, which provides a general framework for mathematical problems by affix
parameterization tools during the analysis as compared to other method. Based on this
concept we have established the aggregation operators that are q-ROFS; WA, g-

ROFS;,OWA and g-ROFS;,HA and also studied their corresponding operational laws
in g-ROFS;, environment. Furthermore, we have investigated their desirable properties
in detail. Based on proposed model a medical DM problem has been presented under
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the g-ROFS;, environment. Then we have shown the justification of the developed
approach with some existing methods and a characteristic analysis showing the
influence and superiority of the developed method than the existing literature. The
advantages of the developed concepts are that they have the ability to solve the real life
problems by using their parameterizations properties. Hence, the developed concept
can be utilized for solving the DM problems rather than other existing operators in g-
ROFS;, environment.
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Chapter 5

Orthopair fuzzy soft geometric aggregation operators

Hussain et al. [64] presented the combined study of S¢S and g-ROFS to get the new
notion called g-ROFS;.S. The notion of g-ROFS;.S is free from that inherited
complexities which suffered the contemporary theories because parameterization tool
is the most significant character of g-ROFS;.S. In this chapter our main contribution is
to originate the concept of g-ROFS;, WG, g-ROFS;,OWG and g-ROFS;,HG operators
in g-ROFS;, environment. Moreover, some dominant properties such as Idempotency,
Boundedness, Monotonicity, Shift invariance and Homogeneity of these developed
operators are studied in detail. Based on these proposed approaches, a model is built up
for MCDM and its algorithm has being presented. Finally, utilizing the developed
approach an illustrative example is solved under g-ROFS;, environment. Further a
comparative analysis of the investigated models with existing methods are presented in
detail which shows the competence and ability of the developed models.

5.1. g-Rung orthopair fuzzy soft set
In this section, a detail study of the hybrid model of S¢S and g-ROFS that is g-ROFS;,S
is being presented and their desirable operations are discussed in detail.

5.1.1. Definition [64]

Suppose a soft set (#,E) over a universal set T and a pair (7, 8) is said to be a g-
ROFS;,S over T, where 7 is a mapping denoted by 7: E — q — ROFS®), which is
given as:

Tg].(/ki) = {< /&i,ﬂj(/&i),l/)j(%i) >q |%l eT, Sj € E and q= 1},
where p;(£;),1;(%;) denote the M'G and N MG of an alternative £; € T to the set Ts;

respectively, and hold the restriction that 0 < (u,- (/él-))q + (lpj(/ai))q <landgq =>1.
For the simplicity Ty (£,) =< %, 1 (£:),1;(#;) >, is denoted by I, = (u;j, i)
representing a q-ROFS;, number (g-ROFS.V). Further, the hesitancy degree for g-

ROFSy.V is given as g, = i/l — ((u)" + (Wi))") - The set of all -ROFS},S is
denoted by q-ROFS;.S™.

For detail study of g-ROFS;,S and its basic operations and relation see Chapter 4,
Section 4.2.

On the analysis of q-ROFS;.V we presented the score function which estimates the
ranking between two or more alternatives satisfy the desirable choice of experts.
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5.1.2. Definition [64]

Let 3, = (11, ¥i;) be a g-ROFS, V. Then score function for 3, 18 given as

Sc(Ss,) = 1 — i + i 1) >1 and Sc(3,)
C\Ssy; ) = Hyj ij e“gf—wqu 1 > T[Ssi]- forq=1 an ¢ 3s;;
€ [-1,1]

Let Js,, = (11, ¥11) and Js,, = (12, 912) be two g-ROFS;,Ns. Then

0 18c(Ss,,) > Sc(Ss,,) then Js . = s

(i) 1F8c(Ss,,) <Sc(Ts,,) thenJs,, <F

(i) 1£8c(3s,,) = Sc(Ss,,), then

(@) Ifmy, >y, then s, < 3Js,,;

S12?

(b) g, =my,  then3s,, = 3s,,.

5.2. g-Rung orthopair fuzzy soft geometric aggregation operator
This section is allotted to the detailed study of q-ROFS;, WG, g-ROFS;.OWG and g-
ROFS;.HG operators and their basic properties have been provided in detail.

5.2.1. g-Rung orthopair fuzzy soft weighted geometric operators
This subsection, consists of the detail study of q-ROFS;,WG operator and discussed

their fundamental properties.

5.2.1.1. Definition

Let 3, = (wijy i) fori=12,..,nandj=12,..,m, be the collection of g-
ROFS;. Vs, and suppose the weight vectors w = {w,, W,, ..., w, } for the decision
makers #£; and @ = {1, %,, ..., &y} and for the parameters s;" respectively; and
satisfying the restrictions that w;, #; € [0,1] with X, w; = 1 and X7, «; = 1. Then
0-ROFS; WG operator is a mapping denoted and defined as: g — ROFS;;WG: X" —
X, (where X contains the collection of g-ROFS;; Vs)

= \1j
q — ROFSFWG(Ss, 0 Ssppr o0 Sspm) = Oy (®?=135Wi;) j

The following Theorem 5.3.1.2, describes the aggregation result for q-ROFS;,WG
operator.

5.2.1.2. Theorem

Suppose the collections 3, = (1, ¥y;) fori = 1,2,...,nand j = 1,2,...,m, of g-
ROFS;.Vs. Then the aggregation result for g-ROFS;, WG operator is defined as:

_ N\
0 — ROFS; WG(Ss,,s Sopyr s Ssm) = On (@130 )

Sij
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[[a- zpf’,-)ﬁ) , (5.1)

1=

(e

Jj=1

where w = {w;,w,,...,w,}and be weight vector for decision makers u =
{1y, uy, ..., Uy} be the for the parameters s; respectively; which satisfying that w;, ii; €
[0,1] with ¥y w; = 1 and Y7L, u; = 1.

Proof. By utilizing mathematical induction to prove the aggregation result of Eq. 5.1.

Consider the operation laws of q-ROFS,S, that is

J5,,® Js,, = (M11ﬂ12 ) i/(lpn)q + (P12)7 - (1.011)‘1(1!’12)‘7) and
3¢ = (,lla ,‘{/1 —[1 —l/)q]“) fora =1

First we will show that the Eq.5.1 is true forn = 2 and m = 2, so we have

J

q = ROFS; WG (Ssii'SsU) = ?Jg=1 (®i2=13~‘zj')ﬁ
= (@L.3%) '@ (eksl)

W1 o o2\ W1 o e
(‘55111®‘55221) ® (‘55112 ‘55222

I
N

NGRS

Hence the result is true forn = 2 and m = 2,
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Next suppose that Eq. 5.1 is true forn = k; and m =k,

q — ROFS;, WG (3 Fsiys oo 35%) _ ( fllng)ﬁj

/k2 ky [ ky _ ﬁj\
/1 , 1— (1_1'01]) L |

We show that Eq.5.1 istrueforn=k; +1 and m=k, + 1

q-— ROFSftWG (3511, 3512; ey 35,(1,(2; 35(k1+1)(k2+1))

=q- ROFSftWG ((3511’ 3512’ e 35k1k2) ’ 35(k1+1)(k2+1))

— \T; 7 U(keq +1)
— ko k1 Wi/ Wka+1) 1
=1®j=1 (®l 1‘5511) }® (‘S

] S(kq+1)(ka+1)
k> q ko kq _ ij _
wi W Ukq+1)

_ _ _ 4 ~&V(ka+1) )
- | | I l“ |1 | | | |(1 l'bij) |® (‘SS(k1+1>(kz+1>

= j=1 i=1 /

(ky+1) /(kqy+1) u; . (ky+1) /(kq+1) ~ ﬁj\

wi

[ TI(ITe) =TT o) ]

Hence Eq.5.1 is true for n=k,; +1 and m = k, + 1. Therefore, by induction
process Eq. 5.1 is true for all values of m,n > 1.

Moreover, to prove the aggregated result achieved from g-ROFS;, WG operator is again
a q-ROFS;, V. Now for any S, = (wij,¥ij), (0 = 1,2,..,n) and j = 1,2,...,m),
where 0 < p;;, ¥;; < 1, satisfying that 0 < “u + lpu < 1, with weight vectors w =

{wy, Wy, ..., w,} and u = {uy, Uy, ..., Uy} for the decision maker #£; and for the
parameters s; respectively; which satisfying that w;,u; € [0,1] with X, w; =
land Y7L u; = 1.

AS,

S'mllarly’0<‘/’ll<1:>0<1—1/JUS1=>0S(1—1/;{’].)Wi§1

:>0S1:_1[(1_1/)i€lj)‘4=/i < 1=>0Sf1[<1i[(1_¢iqj)wi)uj <1
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n n

w; wi

W+l <1 <1-9f = | ) S<ﬂ(1—w;§) )
i=1 i=1

-(1107) ) =110 -
Jj=1 =1 j=1 \i=1
m n 7\ 4 m n 7,
= 1_[ (1_[ ”?) = 1_[ <1_[(1 - lpiqj)‘T)i) (5.2)
j=1 \i=1 j=1 \i=1
Now we have

by Eq.5.2, wehave

<17 (Hu _ w)) [ ([Te- w)) _1

j=1 Jj=1 M=t
Therefore,
m ,on i |, m ,on _ ﬁj\q
o= (1) |+ =TI Te-w)") =
j=1 \i=1 k j=1 \i=1 )

Therefore, from the above analysis we observed that the aggregation result obtained

from g-ROFS;. WG operator is again a q-ROFS;, V.
5.2.1.3. Remark

a. When rung g =1, then in this case the developed g-ROFS; WG

operator degenerates into IFS;. WG operator.

b. When rung g = 2, then in this case the investigated q-ROFS;,WG

operator degenerates into PyFS;.WG operator.

c. If the parameter set contain just one element, i.e. s;(mean m = 1), then
in this case the developed g-ROFS; WG operator degenerates to g-

ROFWG operator.

It is clear from Remark 5.3.1.3, that IFWG, IFS;WG, PyFS;WG and g-ROFWG

operators are the special cases of the developed operator.
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5.2.1.4. Example

Consider a decision maker Mr. Z purchase a house in the domain setT =
{#e1, #o5, #25, %24, %5} and let E = {s,,s,, s3,5,} be the criterion (parameters) set, i.e.
s; (i = 1,2,3,4) stands for s; = beautiful, s, = in green surrounding, s; = expenxive,
s, = safety respectively. Suppose w = {0.26,0.12,0.23,0.2,0.19} be the weight vectors
for expert %; and u = {0.26,0.21,0.29,0.24} be the weight vector for parameters s;
respectively. The decision maker gives their assessment for each alternative against his
parameters in the form of g-ROFS,,. Vs, which is given in Table 5.2.

By using Eq.5.1, we have
q = ROFS;WG(s,, ) sy o0 Sis)
[

5 o, 4 6 ﬁj\
(3w
j=1 \i=1 j=1 \i=1

Table 5.2, Tabular notation of g-ROFS,S (T,$) for q = 3

S Sq S, Sg S
£, (0.78,0.34) (0.86,0.42) (0.72,0.26) (0.93,0.4)
£, (0.93,0.25) (0.76,0.36) (0.87,0.41) (0.87,0.5)
£ (0.91,0.24) (0.92,0.35) (0.86,0.42) (0.77,0.25)
£, (0.75,0.26) (0.85,0.34) (0.93,0.25) (0.94,0.28)
B (0.85,0.35) (0.94,0.35) (0.78,0.3) (0.92,0.46)
0.26 0.21

(0.75%2)(0.85%19)

0.29

|
\l

(0.9392)(0.78°19)

(0.780-26) (0.930'12)(0.910'23)} {(0.860'26)(0.760'12)(0.920'23)

(0.720'26)(0.870'12)(0.860'23)} {(0.930-26)(0.870-12)(0.770-23)}

(0.85%92)(0.94°19) }

0.24 "’

(0.9492)(0.92°19)

(1—-0.263)%2(1 — 0.353)019
(1 — 0.423)026(1 — 0.363)012(1 — 0,353)0:23)%%
{ (1 —0.343)02(1 — 0.353)0-19 }
{(1 — 0.263)026(1 — 0.413)012(] — 0.423)0.23)%%°
(1 —0.253)02(1 — 0.33)019 }
(1 —0.43)026(1 — 0.53)012(1 — (0.253)0:23 0.24
{ (1 —0.283)02(1 — 0.463)019 }

w

= (0.849189,0.350549).

From the analysis of Theorem 5.3.1.2, the g-ROFS;, WG operator fulfill the following
properties for the collection g-ROFS; Vs 3, = (,ul-j,l[)ij), (i=12,..,n)and(j =
1,2,...,m), is being presented.
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5.2.1.5. Theorem

Let 3y, = (wijo i), (i =1,2,..,n) and j =1,2,..,m), the collections of g-
ROFS;, Vs with weight vectorsw = (Wy, Wy, ..., w,)" and i = (iy, Uy, ..., Uy,)" for the
decision makers #£; and for the parameters s; respectively, such that w;, ii; € [0,1]
with X7, w; = 1 and 7., u4; = 1. Then the q-ROFS;WG operator satisfying the
following properties;

i: (Idempotency): If SSU =&, (Vi=12,..,nandj =1,2,...,m), where & =
(b,4), then

q - ROFSftWG(SSll; 3512; "'ISSnm) = 85'

ii: (Boundedness): If35, = (mjn m,in{,ul-]-},max max{l,bij}) and
] 3 j i

3;]_ = (m]ax miax{uij}, mjin miin{lpij}), then
S;ij s q- ROFSftWG(SSn’SSlz’ ""Ssnm) = S;-ij'
iii: (Monotonicity): If £SU. = (bij,dij), (i=12..,n)and( =1,2,..,m), be
the another collection of g-ROFS;, Vs such that p;; < b;; and ¥;; = d;;, then
q — ROFSF WG (S0 Sspyr o0 s, ) < 4 — ROFS;,WG(Es,,, Es,yr ooer sy )-
iv: (Shift Invariance): If & = (b,d), is another g-ROFS;,V, then

q — ROFS;, WG(Ss,, ®E;, I, ®Es, --v, 3, ®Es)
= q — ROFS;,WG(Ss,,) Ssryr s Sy, ) ®OEs-
iv: (Homogeneity): For areal number 2 > 0, then

q — ROFS,WG(ASs,,, AFs,,0 0 AT, ) = A4 — ROFS;WG(Ss,,, Ssrys s Ssp)-

Proof.i: (Idempotency): As it is given that if for all Jsy =& = (bd)(Vi=
1,2,..., nandj = 1,2, ..., m), then from Theorem 5.3.1.2, we have

4 — ROFS;WG(Ssp) Ssiyr o sy )

(ﬂ(ﬂ) 1T )

-(F1(E)" b (e >>

= ((bz?ﬂv:v")zﬁlﬁj. 1/1 -((1- dQ)Z?=1Wz)Z§”=1ﬁf>
= (b'q 1—(1—dQ)) =(b,d) =&,
Therefore, ¢ — ROFS; WG(Ss,,, s,y s s, ) = Es-
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ii: (Boundedness): As Jsi; = (mjn min{y; j}, max max{lpij}) and
] 12 Jj i
35 = (maX max{y;;}, min mm{%}) To prove that

SSU q- ROFSftWG(«Ssn; RYPYRE ;«Ssnm) ‘SSU
Now foreveryi =1,2,..,nand j = 1,2, ..., m, we have

mjin m,in{uij} S W = mjax miax{/,tl-j}

o ([t} < (o)

L1 T (mpmmti))”)

j=1 \i=1

=

m
= Zj:luj

o < (m]m min {.%})Z?:lw >

((max maxy))

this implies that

m n _ u;
min miin{/,tij} < 1_[ (ﬂ(uij)wl) < max mlax{yl-j} (5.3)
j=1 \i=1

Next foreachi = 1,2,...,nand j = 1,2, ..., m, we have
o q q
mjm mim{l/)l-j} <Y < m]ax miax{lpl-j} < 1- m}ax miax{lpij} <1-9Y))

<1- mjin miin{l/)l-qj}

=T] (ﬂ (1.- maxmax{y))” ) ' ﬁ(ﬂ(l ) %)Wl> .

]:1 =1 =

< ﬁ (ﬁ[ (1 — mjin miin{l/)fj}> i) J

j=1

" ((1 ~maxmax(ul)) ) ) f[ (U(l - 1””)%) |

((1 — min mln{lpl]}>Zl i >Z] -

J

<

m

(1 — m]axmax ) 1_[ <1_[(1 — sz) ) (1 —min miin{lljiqj})

=1
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o 1~ (1- minmin{y)) = 1 ﬁ (ﬂ“ ) MWL) |

]:1 =1

<1- (1 - mjax miaX{ll)ij}>

Hence
q m n = ﬁ]
mjin miin{lpij} < [1- 1_[ <1_[ (1 — wiqj)Wl)
j=1 \i=1
< max miax{lpij} (5.4)

Therefore, from Egs. (5.3) and (5.4), we have

m n _ uj
mjin miin{uij} < 1_[ (ﬂ(uij)wl) < mjax miax{yij}
j=1 \i=1

and

m

mjin miin{¢ij} . a . 1—[ (ﬁ (1 ~ wiqj)ﬁzi) j < m}?‘X rniaX{lliij}
=1 \i=1

j=1

Let & =q— ROFS; ;WG (S, Sspyr -0 Ss,m) = (M5, Ws), then by using score
function, we have

q_,q
ets Vs 1
5¢(8) = pl =7 + | ——— — = | nf
s Ve a1 2)"

q q
< (mjax mflx{#ij}> - (mjin miin{lpij}) +
R
+ 7 7 |y, =5 (38) = 8@
e<mfxm?x{#ij}) ~(min min(py)) Y

+1
= 8¢ (S;u)

and

q_..d
ehs¥s 1
5 6 = q —_ q + - q
C( ) :ué‘ lpé‘ <eug_¢g + 1 2) T[6
o a q
= (mj‘n m}n{ﬂz’j}> - (m]ax m?X{IPUD +

, (m]in miin{mj})q—(m]ax mlaX{ll)ij})q

I N 5
e(m}nmiin{ﬂij})q_(mjaxm?X{ll)ij})q 2 |55, S¢ (‘SSU) = 5c(8)

+1
> s5c(35,)-

From the above study, the following cases arises,

108



Casei: IfSc(6) < Sc (S;‘U) and Sc(6) > Sc (S;U), by comparing two Q-
ROFS;, Vs, we get

I35, <a- ROFS;WG(Ss, 1 Ssiyr v Sspm) < R
Case ii: If Sc(8) = Sc (3, that is

q_..,4
q ets¥s 1 q a . . a
— s + —e#g_wg 1 3 g = (mjaxmiax{uij}) - (mjln miln{l,l;ij})
q q
e(m}axm?x{uij}) —(m}in miin{d)i]-}) 1
+ q q - E 7T§+ )
e(m}axm?x{ui}-}> —(m}in miin{lpij}) +1 Sij
then by using the above inequalities, we get

= . = i 1 .. a_ 4
Us = mjax miax{uu} and Ps mjln mim{lpu}. Thus 7 nsgij,

Thus from the comparison of two g-ROFS;; Vs, we have

a- ROFSftWG(SSn’SSlz’ Y SSnm) = 3;-ij '
Case ii: 1f 5c(8) = Sc (33, ). that is

q e”g_lpg 1 q ) - q q
— 1,[)5 + m — E Mg = (mjm mim{,ul-j}) — (mjax miax{lpij}) +
o (mjnmint)) (i mp )
+ __
e(m]in miin{uij}>q—<m}ax m?x{lpij})q 1 2

then by using the above inequalities, we get

)

3
29

ij

Us = mjin miin{ul-j} and s = m}ax miax{lpij}

Thus
q _ 9
7'[6 = T[3§U

this implies q — ROFS; WG (s, sz ) Ssum) = S5, -
Therefore, it is proved that
35, < 4= ROFS{WG(Ts,r Sy voor Sopm) < I, -

iii: (Monotonicity):  Since u;; < b;; and y;; = d
1,2, ...,m), then this implies that

j=by = (H(#u) ) < ﬁ[(bij)wi
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= ﬁ[(l:[(uu)wl) . :
< H (H(bij)w")uj (5.5)

zp--zd--=>1—d-->1—zpij=>1 dl. >1-—

- o)

~1- _m (ﬂ(l - w)) =] (ﬂ(l A )

Furthermore,

v

j=1 \i=1 j=1
T Ta-")
j=1 \i=1
> B (H (1- d?j)wj J (5.6)

Let 8y = q — ROFS;WG(Js,,» s,y s Sspm) = (s Ps) and

& &

8¢ = q — ROFS;,WG(& sum) = (Dsgr ds,)

S11’
From Egs. (5.5) and (5.6), we have

S127 "t

,ng,‘s < bgg and lpSS > dé‘
then from a score function, we have

3

Sc(85) < Sc(8¢)
In view of above condition, the following cases arises,
Case i: 1f Sc(8) < Sc(8¢), by comparing two g-ROFS;, Vs, we get

q — ROFSWG(Ss,,) Sspyr o0 s,y ) < 4 — ROFS;,WG(E
Case ii: If Sc(85) = Sc(8¢), that is

S11’ 512’ e 8Snm)'

q _..,4
q q e"o5™"% 11 4
56(63) = #53 - ll)é‘s + ﬂq _wq - E T[STS
e % %5 +1
q _..,49
q q R 1) 4
=Hs, ~ Vst | Ja e T e T Sc(8e),
e % T +1

then by above inequality, we have

hsy = bs. and s, = ds
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Hence

T[g = gg = (usg’ lpt?g) = (b55’ d5s)

L=
Therefore, it is proved that

q — ROFS,WG(Ss,,r Ssyyr o0 s, ) < 4 — ROFS;,WG(E

S11’ 512’ e gsnm)'

iv: (Shift Invariance) Since &, = (b,d) and Ssij=(u5ij,¢5ij) are the g-
ROFS; Vs, so

q
Therefore,

_ q;
q- ROFSftWG(Shl@gS’ 3512®£5’ e 35nm®€5) = ®;n=1 (®?=1(35nm®£5)‘m) J

1) {1
) 1—<1—dq>ﬂ<ﬂ ”">l”)
NHGREIETN

= q — ROFS; WG (s, sy, o0 S ) OEs
Thus we get required proof.

iv: (Homogeneity) Consider for real number 2> 0 and 3, = (1, ;;) be a g-
ROFS;.V, then

q A
~ A
38, = (Hij'Jl_(l_wj) >
Now
q- ROFSftWG(/LsSn,A\Sle, ASsnm)
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(07 o))

= Aq - ROFSftWG(Ssll' 3512! eee JSSnm)

Hence, the proof is completed.

5.2.2. g-Rung orthopair fuzzy soft ordered weighted geometric

operators
From the analysis of g-ROFS;, WG operator, it is observed that g-ROFS;, WG operator

only weights the values of g-ROFS.V, while g-ROFS;,OWG operator weights the
ordered positions of g-ROFS,V through scoring instead of weighting the q-ROFS;,
values itself. So, in this subsection we will investigate the detailed study of -
ROFS;.OWG operator and its related properties.

5.2.2.1. Definition

Let 3y, = (wij, i) (fori=12,..,nand j = 1,2,..,m), be the collections of g-
ROFS;, Vs, and suppose the weight vectors w = (Wy, W, ..., w,,)” for the decision
makers #£; and &t = (i, iy, ..., Up,)" for the parameters s; respectively, and satisfying
the restrictions that w;,u; € [0,1] with}X, w; =1and Y7L, u; = 1. Then g-
ROFS;.OWG operator is a mapping denoted and defined as: ¢ — ROFS;,OWG: X" —
X, (where X contains the collections of g-ROF S, Vs)

2
q-— ROFSftOWG(an:Jslz:- lenm) ®jy (®? 15311) g

The following Theorem 5.3.2.2, described the aggregation result for g-ROFS;,OWA
operator.

5.2.2.2. Theorem

Consider the collections s, = (uij, i) (for i = 1,2,..,nand j = 1,2,...,m), of g-
ROFS;.Vs. Then the aggregation result using g-ROFS;, OWG operator is defined as:

ﬁ.
q — ROFS;OWG(Ss,,s S sppr s Sspm) = O 1(®? 1‘”2221) J

e
ﬁ (]_[(1 DK ) ) (5.7)

]:1 =1
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where SUSU. = (/im- i Wai j), denotes the permutations of i** and j** largest value of an
alternative of the collections of ith row and jth column of g-ROFS;. Vs SSU =

(kijo i),
Proof. Proof is easy and directly follows from Theorem 5.3.1.2.

5.2.2.3. Remark

a. When rung g =1, then the investigated g-ROFS;.OWG operator
degenerate into IFS;, OWG operator.

b. When rung g = 2, then the investigated g-ROFS;.OWG operator
degenerate into PyFS;. OWG operator.

c. If the parameter set contains just one parameter that is s; (means m =
1), then the developed g-ROFS;,OWG operator in this manuscript

reduces to g-ROFOWG operator.

Thus from the analysis of Remark 5.3.2.3, we observed that IFS;,OWG, PyFS;,OWG

and g-ROFOWG operators are the specially derived from the developed g-
ROFS;,OWG operator.

5.2.2.4. Example

Suppose that S, = (i, 1;;) be the collection g-ROFSy, Vs. Take the values of g-
ROFS;. Vs from Table 5.2 of Example 5.3.1.4, then by utilizing score function, the
tabular notations of Sosij = (.um'jlll)m'j) is given in Table 5.3. Now by Eq.(5.7), we
have

uj

= \U
q — ROFS; OWG(Ts,,, Ssyr - Ssnm) = Oy (OF1357, )

(f)” {-ice)

j=1 \i= 1 \i=1

Table 5.3, Tabular notation of g-ROFS ;.S 3051‘; = (Hm_]_, wgi]_) forq=3

S 5 S, Sg Sa

£ (0.93,0.25) (0.94,0.35) (0.93,0.25) (0.94,0.28)
£, (0.91,0.24) (0.92,0.35) (0.87,0.41) (0.93,0.4)
s (0.85,0.35) (0.85,0.34) (0.86,0.42) (0.92,0.46)
£ (0.78,0.34) (0.86,0.42) (0.78,0.3) (0.87,0.5)
P (0.75,0.26) (0.76,0.36) (0.72,0.26) (0.77,0.25)
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0.21

{(0.930-26)(0.910-12)(0.850-23)}0'26 {(0.940-26)(0.920-12)(0.850-23)}

(0.78°2)(0.75%19) (0.86°2)(0.76%19)
{(0.930'26)(0.870'12)(0.860-23)}0'29 {(0.940-26)(0.930-12)(0.920-23)}"'24 '
(0.78°2)(0.72919) (0.87°2)(0.77°19)

1— {(1 — 0.253)026(1 — 0.243)012(1 — 0.353)0.23}0.26
(1 — 0.343)02(1 — 0.263)0-19

(1 —0.353)026(1 — (0.353)012(1 — 0.343)0-23 0.21

{ (1 —-0.423)02(1 —0.363)019 }

(1 — 0.253)0-26(1 — 0.413)012(1 — 0.423)0.23)%%°

{ (1-0.33)02(1 — 0.263)019 }
(1 — 0.283)026(1 — 0.43)012(1 — 0.463)0-23)%2*

{ (1 —0.53)02(1 — 0.253)0-19 }

= (0.854398,0.353285)

w

From the analysis of Theorem 5.3.2.2, the g-ROFS;,OWG operator fulfill the
following properties for the collection §-ROFS;Vs I, = (i, %), (i =
1,2,..,n) and (j =1,2,...,m), have been initiated.

5.2.2.5. Theorem

Let 3, = (i, ¥i), (i =1,2,..,n) and (j =1,2,...,m) be the collection of g-
ROFS Vs with weight vector w = (Wy, W, ...,w,)" for experts £; and u =
(U, Uy, ..., Uy)" be weight vector the parameters s; respectively, such that w;, ; €
[0,1] with Y7Ly w; = 1 and XL, 4; = 1. Then the g-ROFS;,OWG operator satisfied
the following:

i: (Idempotency): 1f3s;;, = Eosy (Vi=12,..,nandj =12, ..,m), where &, =
(b,4), then

q — ROFS;, OWG(Ss,,) sy s Ss) = Eos-
ii: (Boundedness): |f353ij = (mjn m,in{ugij},max max{lpm-j}) and
] 3 j i

S;Su = (m]ax mlax{/xaij} ) mjin miin{lpm-j}>, then

S;Sij S q - ROFSftOWG(Sslli Sslzl "'JSSnm) S S;S”
iii: (Monotonicity): If & = (b, dy), (i =1,2,..,n) and (j =1,2,..,m), be

the another collection of g-ROFS;. Vs such that u;; < b;; and ¥;; = d,;j, then

q — ROFS;, OWG(Ss,,, s, s Ss) < 9 — ROFS, OWG(E,,, Es,,s -
iv: (Shift Invariance): If & = (b, d), is another g-ROFS,.V, then

€

Snm/*

q — ROFS;, OWG(Ss,, ®Es, 35, ®Es, - T, OEs)
= q — ROFS;,OWG(Ss,,, Ssrpr +r Sy ) OEs-
iv: (Homogeneity): Ifany A > 0, then
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q — ROFS;, OWG(ATs,,, A5, - A3s,,,) = A9 — ROFS; 0OWG(Ss,,, sy s s )-

Proof. Proofs are straightforward like Theorem 5.3.1.5.

5.2.3. g-Rung orthopair fuzzy soft hybrid geometric operators
In this subsection, we will initiate the detailed study of g-ROFS;.HG operator and it is

observe that g-ROFSy,HG operator weights g-ROFS. Vs and its order position as well.
Here we will discuss its fundamental properties of g-ROFS;HG operators such as
Idempotency, Boundedness, Monotonicity, etc. with detail.

5.2.3.1. Definition

Let3s,, = (wij, i) (fori=12,..,nand j = 1,2,..,m), be the collections of g-
ROFS;Vs, and consider the weight vectors w = {Ww;,W,,..,Ww,}andu =
{1y, uy, ..., Uy, } for the professional experts £; and for the parameters s;’s respectively;
and satisfying that w;,u; € [0,1] with XL, w; = 1and XL, 4; =1. Then g-
ROFS;.HG operator is a mapping denoted and defined as; q — ROFS;HG: X" —
X, (where X contains the collections of all g-ROFS;, Vs)

q — ROFS; HG(Ss,,» Ssypr s o) = ®T21 (®?=1§Z§-)w'

Based on Definition 5.3.3.1, the following Theorem 5.3.3.2, described the aggregation
result for g-ROFS;,HG operator.

5.2.3.2. Theorem

Suppose the collection S, = (uij, i) (fori = 1,2,...,nand j = 1,2,...,m) of -
ROFVs, withv = (vy,v,, ...,,)T and t = (r4, 15, ..., 1,,)7 are the weight vectors of
Js; = (uij,tpij), such that v;,r; € [0,1] with X v, =1and X7, =1 and n
denotes the number of elements and is called the balancing coefficient in

i*" row and j** column with aggregation associated vectors w = (Wy, Wy, ..., W,)"
and U = (i1, Uy, ..., Uy,)" for the decision makers #; and for the parameters s;'s

respectively, with w;,4; € [0,1] such that X7, w; = 1 and X7, %; = 1.Then the
aggregated result for g-ROFS;.HG operator is given as:

~TAT - ‘l=l‘.
q — ROFS;HG(Ss,,) Sspyr s ) = Oy (®?=1S§”i;) j

= <jm1 (]_[ ﬁﬁ?i)uj - ﬁ (ﬁu R tﬁf’j)Wi)uj ) (5.8)

—_ nv;r; . .
where Ssi]_ = (SSU) g represents the largest alternative of permutation of
i" and j*™ of the collections of i x j q-ROFSNs J,, = (i, ¥y;)-

Proof: Proof is straightforward like Theorem 5.3.1.2.
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5.2.3.3. Remark
(@) When q = 1, then the investigated q-ROFS;,HG operator degenerates

into IFSyHG operator.

(b) When q = 2, then in this case the investigated q-ROFS;;HG operator
degenerates into PyFS;.HG operator.

(c) When the parameter set contains just one alternative that is s;
(meansm = 1), then the investigated ¢-ROFS;,HG operator
degenerates to q-ROFHG operator.

T
(d) When vr = (i% %) , then the investigated q-ROFS;.HG operator
degenerates into -ROFS;, WG operator.

T
(e) When wu = (%%%) , then in this case the investigated Q-

ROFS;.HG operator degenerates into g-ROFS;. OWG operator.

Thus from the analysis of Remark 5.3.3.3, we analyzed that IFS;;HG, PyFS;HG, g-
ROFHG, g-ROFS; WG and q-ROFS;.OWG operators are the special derived cases of
the developed g-ROFS;.HG operator.

5.2.3.4. Example

Suppose that ;. = (u;j, ¥i;) be the collection of g-ROFS;, Vs as described in Table

5.2, of Example 5.3.1.4, with v = (0.26,0.22,0.1,0.27,0.15)7 be the weight vectors of
experts r = (0.23,0.28,0.2,0.29)T be the weight vector for parameter. Let the
associated aggregate  vectors  w = (0.27,0.18,0.1,0.18,0.27)and u=
(0.26,0.24,0.24,0.26)T.By applying Eq.(5.9) and their score values are express in

Table 5.4. The permutation of largest values of the collection g-ROFS Vs i‘}si]. =
nvierS”, of it" row and j** column are expressed in Table 5.5. Since

= ~ 3 nv;r;j v
Ssij = MU Ss; = <\/1 - (1 - :u?j o, l/)nvlrj> (5.9)
Table 5.4, The score values of g-ROFS;. Vs %Sii = nvirjfssij forq >3
S1 Sy S3 Sy
£y -0.22765 -0.08604 -0.26668 0.109494
£y -0.01185 -0.25119 -0.36466 -0.23585
foq -0.48968 -0.47161 -0.69634 -0.50436
foy -0.14662 0.008862 0.03341 0.295625
fos -0.45766 -0.21373 -0.52886 -0.33226
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Table 5.5, Tabular description of g-ROFS, Vs §SU =nvy3, forq=3

S1 S2 S3 Sa
foq (0.6967,0.7042) (0.6711,0.6651) (0.7089,0.6878)  (0.7942,0.6075)
£, (0.5389,0.6582) (0.6752,0.7292) (0.4854,0.7045)  (0.7716,0.7079)
fog (0.5594,0.7243) (0.6777,0.8022) (0.5949,0.8219)  (0.6621,0.8016)
foy (0.5331,0.8344) (0.5463,0.7301) (0.4515,0.8348) (0.654,0.8446)
Hos (0.5299,0.8486) (0.5752,0.8633) (0.4581,0.9167) (0.439,0.8179)

Now by using Eq.5.8, of Theorem 5.3.3.2,

o~ o~ o~ &W; Ui
q - ROFSftHG('\Ssll’ '\5512’ ) JSnm) = ®;n=1 (®:l=1'\5‘04'}511])

ORI

j=1 i=1 j:

= (0.595792,0.630295)
Based on Theorem 5.3.3.2, the investigated q-ROFS;,HG operator satisfied some basic
properties.

5.2.3.5. Theorem

Suppose 35, = (uij, W), (i =1,2,...,n) and (j =1,2,...,m), be the collection of
g-ROFS; Vs with v = (vy,v,,...,v,)" be the weight vectors of #£; andr=
(t;,12, ..., 1,,)7 be the weight vectors of s;, with v;,t; € [0,1] such that Y7, v; =
1 and Z}”:lrj = 1. Here n represent the number of alternatives ini" row and
jt™" column and is called balancing coefficient. Let w = (w,, Wy, ..., w,)T and & =
(414, Uy, ..., Uy)T be the aggregate associated weight vectors for the experts 4; and for
the parameters s;'s respectively, with w;,%; € [0,1] such that}?,w; =
1 and Y7, u; = 1. Then the following properties are held for g-ROFS;.HG operator:

i: (Idempotency): If Ssij =&, (Vi=12,..,nandj =1,2,..,m), where & =
(s, 1), then

q — ROFS; HG (S0 Sspyr vver s, ) = Es-
ii: (Boundedness): IfS;l.j = (m_in m_in{,ul-j},max m_ax{lpl-j}) and
j i j i
3;}_ = (m}ax mlax{uij}, mjin miin{tpij}>, then

35, < 4= ROFS;HG(Ss,, spr s Ssm) <
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iii: (Monotonicity): If &, = (bij,dij), (i =1,2,..,n)and (j =1,2,..,m), be
the another collection of g-ROFS;, Vs such that p;; < b;; and ¥;; = d;;, then

q — ROFS; HG (S, Sspr o0 Ssp) < 4 — ROFS;HG(Es,,, Esyr or Es,y)-
iv: (Shift Invariance): If & = (b,d), is another g-ROFS,.V, then

q — ROFS; HG(Ss,, ®E;, Fs,, ®Fs, o, Js, OF,)
= q - ROFSftHG(Ssll; 3512’ "'JSSnm)®£S'
iv: (Homogeneity): For any 1 > 0, then

q — ROFS; HG(ASs,,, A5,y s A5, ) = Aq — ROFSFHG (S, Soryr s Ssmn)-
Proof. Proofs are easy and follow the Theorem 5.3.1.5.

5.3.  An approach for MCDM under g-rung orthopair fuzzy soft
information

This section is allotted for the DM process for the developed aggregation operators. In
DM aggregation operators plays an important role because it aggregates the several
evaluation values of experts into a single value. DM is a pre-planned process of
identifying and selecting the best choice out of many alternatives. DM is a hard process
because it can vary so obviously from one scenario to the next. Therefore, it is very
important to judge the characteristics and limitations of alternative. Also DM is a better
approach to increase the chance of selecting most appropriate alternative of the choice.
It is essential to know that how much truly background information is required for
decision maker and the best effective strategy in DM is to keep an eye and focus on
your goal.

Suppose the set T = {£,,%,,..,#;} of different objects and consider E =
{s1,52, ..., sp} be set of parameter against alternatives £, (e = 1,2, ...,1). The team of
m professional experts D;, D, ..., D,y IS going to evaluate each object £ against their
given parameter s;. The group of professional experts describe its evaluation in the form

of Js,; = (15, ¥i;) with weight vector w = (%, W,, ..., Wy, )" for senior experts D; and
let @ = (4, Uy, ..., u,)" be the weight vector for the parameters s; with w;, ii; € [0,1]
such that i, w; = 1and X7_;u; = 1. The collective evaluation of professional
experts are described in a decision matrix Ml = [S,zl.j]mxn. By applying the developed
model on evaluated decision matrix Ml = [S%ij]mxn we will get an aggregated Q-
ROFS;.V &, = (ue,1p.) for every object to against parameters. Finally by applying the
score function on each aggregated q-ROFSfV &, = (u.,.) for each object %, and
rank them in a specific ordered to the most desirable option out of total.

5.3.1. Algorithm
Based on above analysis, the algorithm for the proposed model for solving MCDM
application is given below.

Step 1. Collect the evaluation information of professional experts for every object to
corresponding parameters and then established the decision matrix M = [Skij]mxn as:
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(11, ¥11) (2, ¥12) = (Wan, P1n)
M = (ll21'.¢21) (Iizz;.lpzz) (.HZnJ'IIJZn)

(/flml'-lpml) (Iimz;lpmz) (.umn;lpmn)

Step 2. Normalize the decision matrix by interchanging the cost and benefit parameters
if there is any by applying the formula from [91] that is,

Sf”azj ; for cost type parameter
Pij = 3’%’1‘ ; for benefit type parameter’
where 3§, = (i), ;) represents the complement of .. = (1), ¥i)-

Step 3. By applying the developed model on evaluated decision matrix M = [Jz, Jimxn
we will get an aggregated q-ROFS;.V &, = (u,,1.) for each alternative %, (e =
1,2, ..., 1) to their corresponding parameters.

Step 4. Determine the score value on each aggregated q-ROFS;.V &, = (u,,,.) for
each alternative %,.

Step 5. Finally rank the score value in a specific ordered to get best choice out of total.

The flow chart of above algorithm for g-ROFS;, WG operator is given in Fig. 4.1.

5.4.  An lllustrative example for the proposed model to MCDM

In this subsection through an illustrative example we will present the medical diagnose
problem by applying the developed model to determine the applicability and superiority
of the developed methods based on g-ROF soft information adopted from [64].

Suppose a team of five professional Doctors D,,D,, D3, D, and Ds are going to
describe their assessment report for four different under medical treatment
patients %4, %,, #5 and #, having weight vector w = (0.18,0.24,0.21,0.15,0.22)7.
Let E = {s, = chest pain,s, = fever,s; = cough,s, = fatigue,ss = vomit} be
the set of parameters having weight vector & = (0.26,0.22,0.1,0.27,0.15)7. The
experts mean professional Doctors present their assessment report for each under
medical treatment patient against their symptom in the form of q-ROFS;, decision
matrix. Based on above analysis, to diagnose the most illness patient via the algorithm
for the proposed model is given below.

By using q — ROFS;, WG operator

Step 1. The collective evaluation information of professional experts for each patient
to oppose parameters (symptoms) and their established the decision matrix M =
[S/zij]mxn are given in Tables 5.6 — 5.9 respectively:

Step 2. All the parameters are the same type so no need to normalize the assessment
information in decision matrix.

Step 3. By applying the developed model on each evaluated decision matrix M =
[S/cij]mxn for each patient £; by using Eq.5.1, for q = 3, and the aggregated result

is given below:
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& =(0.676098,0.217227), &, = (0.711392,0.213948),
&5 = (0.745244,0.192632), ¢, = (0.726185,0.183019)

Step 4. Determine the score function on each aggregated q-ROFV &, = (u,,,) for
each alternative £, in Step 3, that is

S(&) = 0349273,  S(&,) = 0.404847,  S(&;) = 0.464826,
S(&,) = 0.4337

Step 5. In final step rank the score value in a specific ordered to get best choice out of
total.

S(&) > S(&,) > S(&,) > S(&)

Hence, form the analysis of above calculation it is clear that under medical treatment
patient £, has diagnose more illness in list.

By q — ROFS;,OWG operator
Step 1. Similar as above.
Step 2. Similar as above.

Step 3. By applying the developed model on each evaluated decision matrix M =
[Skij]mxn for each patient £; by using Eq.5.7, for q = 3, and the aggregated result
is given below:

& = (0.682695,0.212683), &, = (0.716155,0.210147),
& = (0.747071,0.194893), &, = (0.726911,0.188214)

Step 4. Determine the score value on each aggregated g-ROFV ¢, = (u,, ¥, ) for each
alternative #, in Step 3, that

S(&) = 0360011,  S(&) = 041323,  S(&) = 0.467677,
S(&,) = 0.434245

Step 5. In final step rank the score value in a specific ordered to get best choice out of
total.

S(&) > S(&) > S(&) > S(6y)

Hence, form the analysis of above calculation it is clear that under medical treatment
patient £ has diagnose more illness in list.

For q — ROFS;HG operator
Step 1. Similar as above.
Step 2. Similar as above.

Step 3. By applying the developed model on each evaluated decision matrix M =
[S/zij]mxn for each patient #£; by wusingEq.5.8, forq=3, with v=
(0.15,0.2,0.17,0.3,0.18)T and r = (0.16,0.21,0.13,0.26,0.24)" be the weight vectors
of Sfaij = (,uij,l/)ij), and n represent the number of alternatives
ini" row and j** column and is called balancing coefficient. Let w =
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(0.18,0.24,0.21,0.15,0.22)7 and % = (0.26,0.22,0.1,0.27,0.15)7 be the aggregate
associated weight vectors for professional Doctor D; and for the parameters s;’s

respectively, the aggregated result is given below:

& = (0.418696,0.732854), &, =
& = (0.469079,0.715699), &, =

Step 4. Determine the score value on each aggregated g-ROFV ¢, = (u,, ¥, ) for each
alternative #, in Step 3, that

S(&,) = —0.3625, S(&,) = —0.34969, S(&;) = —0.2981, S(&,) = —0.31024

(0.444599,0.735594),
(0.450482,0.71448)

Table 5.6. g-ROFS, matrix for patient %,

s, = Chest s, = Fever s; = Cough s, =Fatigue ss = Vomit

pain
D, (0.7,0.25) (0.7,0.22) (0.88,0.1) (0.9,0.1) (0.73,0.2)
D, (0.6,0.1) (0.6,0.13) (0.85,0.12) (0.65,0.25) (0.81,0.18)
D, (0.54,0.15) (0.7,0.2) (0.75,0.24)  (0.68,0.25) (0.6,0.26)
D, (0.65,0.2) (0.8,0.18) (0.85,0.13) (0.8,0.15) (0.7,0.28)
Ds (0.6,0.3) (0.75,0.18)  (0.67,0.25) (0.6,0.3) (0.45,0.15)

Table 5.7. g-ROFS, matrix for patient %,

sy =Chest pain s, =Fever s; =Cough s, =Fatigue ss =Vomit
D, (0.8,0.15) (0.75,0.22) (0.76,0.1) (0.8,0.19) (0.7,0.25)
D, (0.75,0.18) (0.8,0.15) (0.8,0.18) (0.5,0.25) (0.8,0.16)
D, (0.78,0.13) (0.7,0.2) (0.7,0.25) (0.76,0.21) (0.76,0.23)
D, (0.9,0.1) (0.65,0.33) (0.76,0.15) (0.87,0.12) (0.65,0.18)
Ds (0.65,0.3) (0.55,0.2) (0.6,0.3) (0.7,0.23) (0.55,0.15)

Table 5.8. g-ROFS, matrix for patient %

sy =Chest pain s, =Fever s; =Cough s, =Fatigue ss =Vomit
D, (0.71,0.25) (0.78,0.1) (0.88,0.11) (0.81,0.18) (0.78,0.2)
D, (0.8,0.15) (0.85,0.12) (0.9,0.1) (0.65,0.25) (0.74,0.23)
D, (0.76,0.1) (0.88,0.11) (0.84,0.12) (0.86,0.1) (0.79,0.2)
D, (0.78,0.22) (0.75,0.25) (0.74,0.2) (0.75,0.25) (0.65,0.16)
Ds (0.6,0.25) (0.8,0.19) (0.75,0.16) (0.6,0.2) (0.5,0.1)
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Step 5. In final step rank the score value in a specific ordered to get best choice out of
total:

S(&) > S(&y) > S(&) > S(6y)

Hence, form the analysis of above calculation it is clear that under medical treatment
patient £, has diagnose more illness in list.

5.4.1. Comparative analysis

To present the applicability and superiority of the investigated aggregation models, a
comparative study is being given in the following (see [5, 7, 21, 30, 58]). If we consider
PyFVs, so in this case the methods investigated in [5, 7, 21, 58] are failed to handle the
decision makers prefer choice. Similarly, if we acknowledge Tables 5.6 to 5.9, then the
methods initiated in [5, 7, 21, 30] are failed to handle the experts prefer evaluations and
the methods investigated in this manuscript still handle

Table 5.9. g-ROFS, matrix for patient %,

s; =Chest pain s, =Fever s; =Cough s, =Fatigue ss =Vomit
D, (0.76,0.22) (0.75,0.22)  (0.85,0.14) (0.78,0.2) (0.65,0.26)
D, (0.72,0.12) (0.79,0.18) (0.6,0.12) (0.73,0.15) (0.8,0.14)
D, (0.82,0.16) (0.83,0.1) (0.84,0.13)  (0.82,0.12) (0.77,0.2)
D, (0.6,0.27) (0.6,0.3) (0.7,0.2) (0.83,0.13) (0.6,0.25)
Ds (0.55,0.1) (0.81,0.12) (0.8,0.15) (0.72,0.17) (0.55,0.15)

all these scenarios. By applying proposed weighted geometric operators on Tables
5.6 to 5.9 to aggregate the different parameters of q-ROFS,,Ns with weigh vector 4 =
(0.26,0.22,0.1,0.27,0.15)T to achieve the decision matrix as summarized in Table 5.10
for different patients #; (i = 1,2,3,4). Based on Table 5.10, a comparative study of the
different existing models have been presented and their summarized results for each
patient #; are given Table 5.11. Hence, form the above calculation of Table 5.11, it is
clear that under medical treatment patient b; has diagnose more illness in list. The
Characteristic summery of proposed models with some existing literatures are
presented in Table 5.12. Thus from the analysis of Table 5.12, it is observed that
existing models give in [5, 7, 21, 30] having no information about parameterization
tools. The main advantage of the investigated model is the capability to solve real
problems by utilizing parameterization properties. Therefore, the proposed approach is
more capable and superior than existing methods under g-ROFS;, environment.

5.4.2. Conclusion

Decision making is a pre-plan process of identifying and choosing the logical choice
out of several alternatives. DM is a hard process because it can vary so obviously from
one scenario to the next. Therefore, it is very important to judge the characteristics and

122



limitations of alternative. Also DM is a batter approach to increase the chance of
selecting most appropriate alternative of the choice. It is essential to know that how
much truly background information is required for decision maker and the best effective
strategy in DM is to keep an eye and focus on your goal. The pioneer paradigm of S¢S
was investigated by Molodtsov by affixing parameterization tools in ordinary sets. S¢S
theory is free from inherit complexity and a nice mathematical tool to cope uncertainties
in parametric manner. The aim of this manuscript is to initiate the combine study of
S¢S and g-ROFS to get the new notion called g-ROFS,,S. The notion of g-ROFS,,S is
free from those complexities which suffering the ordinary theories because
parameterization tool is the most significant character of g-ROFS¢,S. In this manuscript
our main contribution to originate the concept of q-ROFS;, WG, g-ROFS;,OWG and
0-ROFS;HG operators in g-ROFS;S environment. Moreover, some dominant
properties of these developed operators are studied with detail. Based on these proposed
approach, a model is build up for MCDM and their step wise algorithm is being
presented. Finally, utilizing the developed approach an illustrative example is solved
under g-ROFS;, environment. Further a comparative analysis of the investigated
models with existing methods are presented in detail which shows the competence and
ability of the developed models. The main advantage of the investigated model is the
capability to solve real problems by utilizing parameterization properties. Therefore,
the proposed approach is more capable and superior than existing methods under g-
ROFS;, environment.

Table 5.10, Aggregated values of g-ROFS;, matrix for patients

#4 t, fes foy
D, (0.7713,0.1999)  (0.7691,0.1960) _ (0.7783,0.1932)  (0.7538,0.2168)
D, (0.6641,0.1820)  (0.6929,0.1974)  (0.7666,0.1951)  (0.7358,0.1478)
D, (0.6388,0.2267)  (0.7453,0.2019)  (0.8245,0.1301)  (0.8164,0.1470)
D, (0.7474,0.1984)  (0.7774,0.2151)  (0.7406,0.2280)  (0.6651,0.2457)
Dy (0.6103,0.2607)  (0.6184,0.2483)  (0.6360,0.2015)  (0.6687,0.1411)
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Table 5.11. Comparative Studies of different methods

Methods Score values of patients Ranking

#4 #; #3 #4
IFWG [5] 0.46119, 0.49917, 0.5572, 0.55418 §,>8,>8,>¢,
IFOWG [5] 0.47123, 0.50500, 0.55447, 0.54260 §,>8,>8,>¢,
IFHG [5] 0.44665, 0.48839, 0.53872, 0.52907 §,>8,>8,>¢,
IFS;WG [58] 0.47536, 0.51160, 0.56806, 0.55816 §,>8,>8,>¢,
IFEWG [7] 0.44290, 0.50071, 0.55935, 0.55612 §,>¢,>8,>¢
PYyFWG [21] 0.41024, 0.46069, 0.51919, 0.49886 §,>¢,>8,>¢
PYyFEWG [21] 0.16317, 0.21196, 0.25247, 0.25114 §,>8,>8,>¢
PYFS ;WG (proposed) 0.46427, 0.51474, 0.57343, 0.55374 §,>8,>¢,>¢
PYFS,OWG 0.47513, 0.52336, 0.57502, 0.54971 §,>¢,>8,>¢
(proposed)
PYFSHG (proposed) -0.44065, -0.435, -0.38704,  -0.39273
g-ROFWG [30] 0.29865, 0.35021, 0.40678, 0.38045 §,>8,>8,>¢
q-ROFS;,WG 0.349273, 0.404847, 0.464826, 0.4337 §,>¢,>8,>¢
(proposed)
q-ROFS;, OWG 0.360011, 0.41323, 0.467677, 0.434245 §,>¢6,>¢,>¢,
(proposed)
q-ROFS(HG -0.3625, -0.34969, -0.2981, -0.31024 §,>¢,>8,>¢
(proposed)

Table 5.12. Characteristic analysis of different models

Fuzzy information Aggragate parameter informatiom
IFWG [5] Yes No
IFOWG [5] Yes No
IFHG [5] Yes No
IFEWG [7] Yes No
IFS WG [58] Yes Yes
PYFWG [21] Yes No
PYFEWG [21] Yes No
g-ROFWG [30] Yes No
Proposed Operators Yes Yes
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Chapter 6

Orthopair fuzzy soft Dombi averaging aggregation operators

Recently, some improvement has been suggested in the dominant notion of fuzzy set,
by Yager. He investigated the generalized concept of FS, IFS and PyFS and called it g-
ROFS. It is observed that the rung q is the most useful characteristic of this concept
which has the capability to cover the boundary range that can be required. The input
range of g-ROFS is more flexible, wider and suitable because when the rung g increase,
the orthopair provides additional space to the boundary constraint. The aim of this
chapter is to present the Dombi aggregation operators using q-ROFS;, environments.
Since Dombi operational parameter possess natural flexibility with resilience of
variability. The behaviour of Dombi operational parameter is very important to express
the experts’ attitude in DM. In this chapter, we present q-ROFS;,DA aggregation
operators including g-ROFS;.DWA, q-ROFS;,DOWA and gq-ROFS;,DHA operators.
The basic properties of these operators are presented in detail such as Idempotency,
Boundedness, Monotonicity, Shift invariance and Homogeneity. By applying
developed approach, this chapter contains the technique and algorithm for MCDM .
Further a numerical example is given to illustrative the flexibility and applicability of

the developed operators.

6.1. g-Rung orthopair fuzzy soft set
This section is devoted for the detail and hybrid study of the prominent paradigm of

S¢S and the recent developed pioneer notion of g-ROFS to obtain the new concept of
g-ROFS;.S. For a detail study of g-ROFS;.S and its basic operations and relations see
Chapter 4, Section 4.2.

To rank two or more g-ROFS;;Vs score function plays an important role which

estimates the ranking values of alternatives satisfy the desirable choice of experts
6.1.1. Definition

Let 3, = (1ij,¥i;) be a g-ROFS;, V. Then the score function of 3, is denoted and

defined as:
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1

sc(Ssy) = 5L+l —vf) s (3,) € [0

Greater the score value superior that orthopair is.
6.1.2. Definition

Let 3, = (1, ¥i;) be a g-ROFS;, V. Then the accuracy function of J, s denoted

and defined as:
AC (351']') = :u'?] + lpg; AC (SSU) E [011]:

LetJs,, = (1), %1;) for (j = 1,2) be two g-ROFS,V and Sc(Ss,, ), Sc(Ss,, ) be the
score functions of 3., and S, and Ac(Ss,, ), Ac(Ss,, ) be the accuracy functions of

5110 Js,, respectively. Then

(i) 1£5¢(Ss,,) > Sc(3s,,), then Iy, > Iy,

(i) 1f Sc(Ss,,) = Sc(Ss,,), then
a) IfAc(Ss,,) > Ac(Ss,,), then S, > s
b) If Ac(Ss,,) = Ac(Ss,, ) then Js,, = sy,

6.2. Dombi operations on g-rung orthopair fuzzy soft set
In 1982 Dombi [65] initiated the new type of sum and product operators which is known

as Dombi t-norm and Dombi t-conorm and is given below:

6.2.1. Definition [65]

Let f and g be any two real numbers and f > 1. Then the Dombi norms for them are

defined in the subsequent expression:

Tp(f,g9) =
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In view of above definition we can establish the new operation laws for q-ROFS;;Ns

as follows:

6.2.2. Definition

Consider Js,, = (111, P11) and Js,, = (12,312) be any two g-ROFS; Vs, f > 1
and p > 0. Then the Dombi operations of t-norm and t-conorm for g-ROFS,, Vs are

defined as follows:

(ii) 3511 ®'\SS12 =

o
(i) P, = of1-
\

— 1 -
\be | b))

By using the above operation laws we can easily obtain the following results

for p, p1, p, > O:

o o

(i) I5,,® Js,, = Js,,D I,

(i) p(Ts,, D@ Js,,) = PIs,,®D P35,
(V) 135y, © P13s,, = (P1 + P2 s,
@) 30,038, = (36, ®3s,,)s

(vi) 0@ 302 = PrHee),

Proofs are easy and straightforward.
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6.3. g-Rung orthopair fuzzy soft Dombi average aggregation

operators
In this section, in view of defined Dombi operation laws we will extend Dombi

operators to g-ROFS;, environment such as q-ROFS;,WA, g-ROFS;.DOWA and g-

ROFS;.DHA operators and investigate their fundamental properties with details.

6.3.1. g- Rung orthopair fuzzy soft Dombi weighted averaging

operators
This subsection is devoted for the study of g-ROFS;, DWA operator and discuss their

basic properties in details.
6.3.1.1. Definition

Let 3y, = (wij, i) for (i=12,..,mandj = 1,2,..,n) be the collection of g-
ROFS;;Vs. Suppose w = (W, W, ..., W, )" be the weight vectors for expert #;
and ¢ = (i€, 4, ..., wy)" be the weight vectors for parameterss; having the
conditions  thatw;,#; € [0,1] with¥2, w; =1 and}7.,%«; =1. Then g-
ROFS;.DWA operator is a mapping denoted and define as: ¢ — ROFS,DWA: X" - X,
(where X represents the collection of g-ROFS,,Vs) such that

q = ROFS;: DWA(Ss,, Bsyyr s Sopn) = BF1 % (O, W:3s,) (6.1)

Based on Eg. (6.1) we can obtain the aggregated result for g-ROFS;. DWA operator as
described in Theorem 6.3.1.2.

6.3.1.2. Theorem

Suppose the collection 3, = (1, ¥i;) for (i = 1,2,..,mand j = 1,2,...,n) of g-
ROFS;Vs. Consider w = (Wy, W5, ..., W,,)" be the weight vectors for experts #;
and i€ = (&, %y, ..., %,)" be the weight vectors for parameterss; having the
conditions that w;, 2¢; € [0,1] with Xi%; w; = 1 and X7, «; = 1. Then the aggregated

result for g-ROFS;, DWA operator is stated as:

q — ROFSp, DWA(Ss,, Ssyyr s Sopmn) = O % (O, 735,
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| 1 1

i
=|q1_ ) il (6.2)
n =/[ym = #ifqﬁﬁ n = m=1_¢UBB
1+ Zj:l’“'j Zi:lWl(l_”ijq) 1+ Zj:l"’vj Zi=1wi< Vi >

Proof: The required proof can be obtained by using mathematical induction.

From Dombi operational laws, we have

(

351163512 = | a 1 -

1 1

- and
B B\B _ B _ B
{(nta) sty | () )

™R

Now first we show that Eq. 6.2 holds for m = 2 and n = 2,

q — ROFS;,DWA(S;,,,3s,,) = ®?_114; (@%ﬂﬁissﬁ)

= 1y (W1 35, OW, s, )DL, (W1 s, O, s,,)
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Further, let Eqg. 6.2, is true form = k; and n = k,,

q = ROFSpDWA (3, Boiyr s Ssie, ) = O 7% (D1, W:3, )

, |

=iq1— ! 1

..q \B
\J kel )

Next we show that Eq. 6.2 istrueform =k; +1landn =k, + 1

=

q —_ ROFSftDWA (5511; Sslzi ey Ssklkzl 35(k1+1)(k2+1))

- <®k2147} (691 1V_Vl‘5511)> ® (ﬁkzﬂ (M:/kl"'luissif))
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==

q - ) 1
_ _ wij? \F - = v\ P\
\ 1+[ﬁk2+1<wk1+1<m> )} 1+[ak2+1<wk1+1<¢_ij> >} /

1
/ B B\\B
ky = (ki = ( Hij? _ _ wij

i 1+[2jiluj<2iilwi<1‘#ijq> )Wk”l(Wkl“(l‘#ijq) >}
| -
B B\\B

ky — _ (1= _ _ 15

\ 1+[2]i1 ]<Zl=11Wl< wl] ) >+uk2+1<wk1+1<lp_ij

8

1 1 i
= | I
B\\B B\\B
kot1 = [<ki+1 = [ Hij? Ko+l = [ki+1 = (17¥ij
\ el ) ) ep (e ()]

Hence that Eq. 6.2, is true form = k; + 1 and n = k, + 1. Therefore, by process of

mathematical induction, we conclude that Eq. 6.2 is true for all m,n > 1.

Further to verify that the aggregated result obtained from g — ROFS;;,DWA (Ssn,

R ...,Ssklkz) is again a g — ROFS,, V.

Let y=a|l-— T and A=
—a \P\)P
iz ot o2 )
ij
1
o\
1+{2§€2I1 =]_<Z;c=11+1 =i<11—plf’]i]'> )}
As 0<u;<1=0<1l-—p-<1=0<
all- - <1=0<y<1
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Similarly

As

=

(

| q|l —

|| e
Next
0<y7+2A1>

0<

l/)ijS1$O<

1
——<1=0
1+ %y

Y

<
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v (s m (S5}

1

PI+A <1229 <1—yd

v

(
o

ko+1 =
j=1 “i(z

ki1+1 =
i=1 i

g

| <1-

)

™|

5 )

1
B\\F

kot1 = [ki+1 = [ H#ij?
ot () ) )
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B\\B

— _ Hi

I

\q

1 i

1
B\\B

_ _ [ wij
1+[Z;‘iilﬁj(nglWi(l_ZUq) )} /

S0<y?+M <1

q|1 —

IA
.

q|1—

.

Therefore, it is verified that the aggregated result obtained from gq —

ROFS;.DWA (S5, Ssyys - sy, ) 15 a02IN @ g — ROFS;, V.

6.3.1.3. Example

Suppose T = {#4,#,, %3, %4} be the set of expert teachers who want to judge the

ability of a student Z under the set of parameters E = {sy, s,, s3}, where s;(j = 1,2,3)
stands for s; = responsable, s, = coures command and s; = punctual. The

experts provides their estimated values in the form of g-ROFS;, Vs which are given in

Table 6.1. Let w = (0.26,0.3,0.23,0.21)7 be the weight vectors for expert £;, & =
(0.35,0.31, 0.34)" be the weight vectors for parameters s; and operational parameter

B = 2 for g = 3. Now to calculate the aggregated result by applying Eg. 6.2, we have

q — ROFSr, DWA(Ss,,, Sspyr s Sspy) =

./ \

| 21— ,

-~ _( i3 2 _ (1 2
\ 1+{ ;=147j<2?=1v|_/i<$> )} 1+[Z?=1uj<2§=1wi<wj1> )}

Therefore, ¢ — ROFS;, DWA(Ss,,, 3s,,r +r Is,,) = (0.941368,0.271102).

1
2

6.3.1.4. Remarks
(a) If we consider that the value of parameter g = 1 is fixed, then the proposed g —
ROFS;.DWA operator reduced to IFS;, DWA operator.
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Table 6.1, Tabular represent of g-ROFS,S (J,E) for § =2andq =3 >

T S1 S, S3

N (0.9,0.3) (0.85,0.4) (0.7,0.2)

£, (0.85,0.6) (0.75,0.25) (0.6,0.3)

fos (0.98,0.38) (0.92,0.3) (0.8,0.15)
N (0.7,0.4) (0.95,0.45) (0.82,0.32)

(b) If we consider that the value of parameter g = 1 is fixed, then the proposed g —
ROFS;.DWA operator reduced to IFS; DWA operator.

(c) If we consider that the value of parameter g = 2 is fixed, then the proposed g —
ROFS;.DWA operator reduced to PyFS;, DWA operator.

(d) If the set contain only parameter that is s; (meansm = 1), in this case the

proposed g — ROFS;.DWA operator reduced to ¢ — ROFDWA operator.

Thus from the analysis of Remark 6.3.1.4, it is clear that IFS;,DWA, PyFS;, DWA and
q — ROFDWA operators are the special cases of the developed g — ROFS;.DWA

operator.

Based on Theorem 6.3.1.2, some properties of the g — ROFS;;DWA operators are

investigated which are described below:
6.3.1.5. Theorem

Suppose the collection 3, = (1, ¥i;) for (i = 1,2,..,mand j = 1,2,...,n) of g-
ROFS;Vs. Consider w = (W, W5, ..., W,,)" be the weight vectors for experts #;
and i€ = (&, %y, ..., %,)" be the weight vectors for parameterss; having the
restriction that w;, ¢, € [0,1] with 272, w; = 1 and 7%, 4, = 1. Then the following

properties are holds for g-ROFS;. DWA operator:

i:  (Idempotency):  Let SSU =& forall(i=12,..,mandj=12,..,n),
where & = (b, d). Then

q — ROFS; DWA(Ss,,, Soppr s S ) = Es -
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ii: (Boundedness): Let Ss_ij = (m_in min (uij), max max (l,b,-j)> and
jooi oo

3;] = <m];1x max (,ul-j), mjin ml_in (lpi]-)>. Then

5, < 4 — ROFS: DWA(Ss,,, sy s Sspn) < I3, -
iii:  (Monotonicity): ~ Let another  collection & = (by,dy) for (i =

1,2,..,mandj=1,2,..,n) of -ROFS;, Vs such that u;; < b;; and ¥;; = d;;. Then

q — ROFS; DWA(Ss,,» Sspyr s sy ) < g — ROFS; DWA(E;,,, Es,,s ooer Esy )-
iv: (Shift Invariance): Let & = (b, d) be a g-ROFS;,. V. Then

q — ROFS;, DWA(Ss,, D Es Fs,, @D Es, - s, D Es)
= q — ROFS;, DWA(Ss,,, Sspyr - Ssy) D Es-

v: (Homogeneity): Let p > 0 be any real number. Then

q — ROFS;: DWA(p3s,,, 03510 0 P spun)
= p q — ROFS;.DWA(Ss,,, Ssrpr r 35, )-
Proof: i: (Idempotency): Since Ssij =& forall(i=12,..,mandj=12,..,n),
where &, = (b, d). Then by Theorem 1, we have

|
|

— ROFS; DWA (S, Ssryr s S ) =

q|1—

)

1 1
m = K1 A — 1 wl E
el ol

S
oy,

qa|]l —

)

1 1
_ bq B E = F
1+{Z] 1 ]< =W (1_bq) )} 1+{ ?:1“']'( i= 1Wz

—

1 |
)
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=1 - - \I
B pit 1=y
1+ 1+
1 -yt Vi /

= (b,d) =&

Hence, the proof is complete.
ii: (Boundedness): Consider foreachi = 1,2,...,mand j = 1,2, ...,n, we have

mjin miin (,ul-j) S < mjax mlax (yl-]-)

=1+ mjr min () <1+ H <1+ e 1)
- = —,a=
1~ min min (,u?j) 1—w; 1 — max max (,u?j)
1 1 < 1
- max max (,u?j) 14 1 .U?j i B - mjin min (,u?j)
— i) —
1- max max (,ufj) Y 1- min min (,u?j)
= 1 < ! < !
max max (,u'.l.) B .“?j B min min (,11‘7.)
14— L 7 g 1y—
1-— max max (,ufj) Y 1~ minmin (u?j)
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= 1
P\ A
max max (ulf’j)
1+ 7=1"7j Lt Wi I q
1- m]ax miax (ui].)
1
<
q ANY
DI A B A e
j=1% i=1"1 1 _ Mq
ij
< 1
= 1
P\\B
min min (y?j)
1+ X | XL, w; —
1- mjln miln (yij)
1 < 1
=
1 B 1
) Y
q 1+ 2T | 2w, S
1- m]._axmiax (,ul.j) 2]—1 j | Xt Wi <1 _ ﬂ?j
1
Bl min min (,ufj)
j i
1+ —— 7
1- mjm mim (,ul.j)
Sqll-—————— < [1- - T<al- —
1+1'7'(") RN DI By ™ q
_m]_mmim ”ij j=1"] i=1"i 1_”?1' 1—m];1xmiax(;4ij)
Similarly we can show for NMG
1 - 1
. . = 1
1- mjm min (lpij) 7

1+

n = m = (L=¥y d
mjin min (¥y)) 1+ {Zj=1’”'j <2i=1 Wi (1#—”]) >}
1

1- m}ax max (z/)l—j)

mjax ml_ax (z/)l—j)

Therefore, from above equations we have

137



5y < 4 — ROFS: DWA(Ss,,, sy s Sspn) < I3, -

iii: (Monotonicity): Since foralli=12,..,mandj=1,2,..,n, we have y;; <

bij and lpij > dij-

AsS
q b?j 1 1
Hij iy U -1+ Hij
= ! T < - 1
q B E q B E
n = m = bij n = m _”ij
I jmr %l L= Wil 0 T Zjma B iz Wi D0
ij Y
=, |1- - <q1- 1

q

1 1
u \F\)P ANAN
ij 3]

Similarly, we can show for MG

1 1

>
o (o (52 )

1
_ _ 1—-di\P\)?
1+ { j=1Uj <an1wi (d—UU) )}
Hence from above equations we have

| =

q — ROFS; . DWA(Ss,,» Sspyr o0 I, ) < g — ROFS; DWA(E

S11’ 512’ e Esmn)_

iv: (Shift Invariance): Since & = (b, d) and 3, = (yj, ¥i) (i =
1,2,..,mand j = 1,2,...,n) are -ROFS,Vs. Then

Ssll @ gs
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N——
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——
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\____/

Now consider
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q — ROFS; DWA(S;,, @ &5, 35,,D Es, ) T, B &) =

/ .1- - ,
A VR PRI,
1+{2?=147j<2ﬁ1wi<1_:q_> >+Z?=1aj<zﬁlwi(1fw) >
)
1

I
I
|
1
n = m=1_1pifﬁ n = =1—d‘8ﬁ
1+ Yj=1 %) Zi=1wi< e ) +2j=1“j< m w50 >

IR

1 1

N 0 B
1+{2?=147]'<2?;1V=vi<1—:1]¢.1.> >+(1qu) }
)

= q —_ ROFSftDWA(Sslll 3512‘ ""Ssmn) @ gs

1-—

)

q 1 1
B 1= ; B B B
1+{Z?=1¢71<ZI§1‘7’i< 1,,;) )*(%) I

|
'\

Therefore, the proof is completed.

v: (Homogeneity) Let p >0 be any real number and S, = (uij i) (i =
1,2,..,mandj=1,2,..,n) are g-ROFS,;Vs. Then
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pSSij =
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1
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1 1

I
) 1
by
o /

=i a1 BT\ B B
q B —[ym = (%)
\ R A Te—E
= p q — ROFS;,DWA(Ss,, Ssiys oor Ss)

Therefore, the proof is completed.

6.3.2. g- Rung orthopair fuzzy soft Dombi ordered weighted averaging

operators
In this subsection, in view of defined Dombi operation laws we will present the g-

ROFS;.DOWA operator and investigate their fundamental characteristics in details.

6.3.2.1. Definition

Let Ssij = (uij,z/)ij) for(i=1,2,..,mandj=1,2,..,n) be the collection of g-
ROFS;.Fs. Suppose w = (Wy, W, ..., w,,)" be the weight vectors for expert #;
and ¢ = (L, 4,, ..., w,)" be the weight vectors for parameterss; having the
conditions  thatw;,«; € [0,1] withXZ, w; =1 andX?;«; =1. Then g-
ROFS.DOWA operator is a mapping denoted and define as: ¢ — ROFS;;DOWA: X" —
X such that

q — ROFS; DOWA(Ss, ., Ssiyr 0 Sspn)
= ®?=1/L=Lj(®?;1ﬁi355ij)l (63)
where Ss&-,- = (ll&'j' Ysi j) is the permutation of i*" row and j** largest elements of the
collections from i x j ¢ — ROFS; Vs I, = (wij,ij) for (i=12,..,mandj =
1,2,..,n).
Based on Eg. (6.3) we can obtain the aggregated result for g-ROFS;.DOWA operator
as described in Theorem 6.3.2.2.

6.3.2.2. Theorem

Suppose the collection SSU = (,uij,l/)ij) for(i=1,2,..,mandj=1,2,..,n) of g-
ROFS;,Vs. Consider w = (w;, W, ..., w,,)" be the weight vectors for experts #;

and i€ = (L1, 1L,, ..., )" be the weight vectors for parameterss; having the
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conditions that w;, ; € [0,1] with Y%, w; = 1 and X7, w; = 1. Then the aggregated

result for g-ROFS;, DOWA operator is stated as:

q- ROFSftDOWA(SSH'SSu’ ""Ssmn) = ®?=1ﬁi(®ﬁ1“=’i35&j)

( \

| af1- ! . |, (6.4)

1)
B e \BY)P B RN Y
| et T pelmecz )

where Ss&.j = (u&- i Wsi j) is the permutation of i® row and j** largest elements of the

collections from i x j q — ROFS; Vs I, = (i, ij) for (i=12,..,mandj =
1,2,..,n).

Proof: Proof is straightforward like Theorem 6.3.1.2.
6.3.2.3. Example

Let s, = (i) for(i=1,..,4andj=1,23) be the collection of g -
ROFS;.Vs as mention in Table 6.1 of Example 6.3.1.3. Now by utilizing the

Definition 6.1.2.2, the tabular description of 3, = (.U&'j: lpgl’j) is given in Table 6.2.

q — ROFS; DOWA(Ss,,, sy s Jsps) = Bfcs (O, Wi3ss,) =

./ 1 \

E ) .
..3 2 - ii 2\)2
N e

Therefore ¢ — ROFS;, DOWA(Ss,,, Ss,,r +r Is,,) = (0.944704,0.274876).

1
2

6.3.2.4. Remarks
(a) If we consider that the value of parameter g = 1 is fixed, then the proposed g —
ROFS,DOWA operator reduced to IFS;, DOWA operator.

(b) If we consider that the value of parameter g = 2 is fixed, then the proposed g —
ROFS;.DOWA operator reduced to PyFS;, DOWA operator.
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Table 2, Tabular represent of g-ROFS;S 3, = (llaij,lllaij) for=2andq=3 >

T Ss1 Ss2 S53

N (0.98,0.38) (0.95,0.45) (0.82,0.32)
#, (0.9,0.3) (0.92,0.3) (0.8,0.15)
foq (0.85,0.6) (0.86,0.4) (0.7,0.2)

N (0.7,0.4) (0.75,0.25) (0.6,0.3)

(c) If we consider that the value of parameter g = 1 is fixed, then the proposed q —
ROFS,.DOWA operator reduced to IFS;, DOWA operator.

(d) If we consider that the value of parameter g = 2 is fixed, then the proposed q —
ROFS;.DOWA operator reduced to PyFS;. DOWA operator.

(e) If the set contain only parameter that is s; (meansm = 1), in this case the
proposed g — ROFS;.DOWA operator reduced to ¢ — ROFDOWA operator.

Thus from the analysis of Remark 6.3.2.4, it is clear that IFS;,DOWA, PyFS; DOWA

and g — ROFDOWA operators are the special cases of the developed q —
ROFS;,DOWA operator.

Based on the analysis of Theorem 6.3.2.2, some properties of the ¢ — ROFS;;DOWA

operators are investigated which are described below:
6.3.2.5. Theorem

Suppose the collection 3, = (1, ¥i;) for (i = 1,2,..,mand j = 1,2,...,n) of g-
ROFS,Vs. Consider w = (W, W, ..., w,,)" be the weight vectors for experts #;

and 4 = (Ui, Uy, ..., U,)" be the weight vectors for parameters s; having the restriction
that w;, u; € [0,1] with Xi2, w; = 1 and X7, &; = 1. Then the following properties

are holds for g-ROFS;, DOWA operator:

i (Idempotency):  Let SSU =& forall(i=12,..,mandj=12,..,n),
where & = (b, d). Then

q — ROFS; DOWA(Ss, ., Ssiyr 0 Sspn) = s -
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ii: (Boundedness): Let Ss_ij = (m_in min (uij), max max (l,b,-j)> and
jooi oo

3';1_]_ = <m];1x max (,ul-j), mjin ml_in (zpl-]-)>. Then

S5, < 4 — ROFS;DOWA(Ss,,, sy s Ssmn) < I3, -
iii:  (Monotonicity): ~ Let another  collection & = (by,dy) for (i =

1,2,..,mandj=1,2,..,n) of g-ROFS, Vs such that y1;; < b;; and ¥;; = d;;. Then

q — ROFS;, DOWA(Ss,,, s, s Ss,) < @ — ROFS;,DOWA(E
iv: (Shift Invariance): Let & = (b, d) be a g-ROFS;,. V. Then

EspyrrEs,):

S11’ ? ¥ Smn

q — ROFS;;DOWA(S;,,® &, Is,,®D s, ) s, D Es)
= q — ROFS;.DOWA(Ss,,, Ssppr s Ss) D Es-

v: (Homogeneity): Let p > 0 be any real number. Then

q — ROFS; . DOWA(pSs, ., pSsiyr -0 P3s,)
= p g — ROFS;,DOWA(Ss,,, s,y s s, )-

Proof: Proofs are directly follows from Theorem 6.3.1.5.

6.3.3. g- Rung orthopair fuzzy soft Dombi hybrid averaging operators
In this subsection, in view of defined Dombi operations we will present the study of g-

ROFS;.DHA operator and investigate their fundamental characteristics with details.

6.3.3.1. Definition

Let 3, = (wijy i) for (i =1.2,...,mand j = 1,2,..,n) be the collection of g-
ROFS; Vs with v = (11, 12, ..., v,)T @and 7 = (ry, 73, ...,1;,)" be the weight vector
of s, = (g, ¥yy) such that vy, €[01] with¥ vy =1 and ¥} 7 = 1.
Suppose w = (Wy, Wy, ..., Wy, )T and it = (114, Uy, ..., u,)T be the  aggregation
associated weight vectors for expert #; and parameterss; having the conditions
that w;, u; € [0,1] with X, w; = 1and X7_; 4; = 1. Then q-ROFS;, DHA operator is
a mapping denoted and define as: ¢ — ROFS;;DHA: X™ — X such that
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q — ROFS;: DHA(Ss,, Jsy0 s Sspun)
= ®}1=117] (®lrr=lllT/l'§Sgij)J (65)
where ﬁs&-, = n1;Js,; IS the permutation of i®" row and j** column largest elements
of the collections from g — ROFS;Vs SSU = (plij,l,l)ij) and n is called the balancing

coefficient.

Based on Eg. (6.5), we can obtain the aggregated result for g-ROFS;, DHA operator as
described in Theorem 6.3.3.2.

6.3.3.2. Theorem

Suppose the collection I, = (uij, i) for (i = 1,2,...,mand j = 1,2, ...,n) of g-
ROFS;Vs.  Consider w = (W, Wy, ..., Wy, )" and it = (U, Uy, ..., U,)" be the
aggregation associated weight vectors for experts #£; and parameters s; having the
conditions that w;, ; € [0,1] with X2, w; = 1 and X7, &; = 1. Then the aggregated

result for g-ROFS;, DHA operator is stated as:

q — ROFS;, DHA(Ss5,,) Sos10 0 Sssmn) = Of=1l (B 1Wis5,,)

( \
I

o1 - 1 : o NS

1 = |
~ . q B F _ _ 1—171 ij A B
el )f el )

where §S&.j = nvierSU is the permutation of i** row and j** column largest elements

of the collections from g —ROFS;Vs I, = () with o =

(v, v, e, vy)T and r = (1,15, ..., 7,)T be the weight vector and n is a balancing

coefficient.

Proof: Proof is straightforward like Theorem 6.3.1.2.
6.3.3.3. Example

Let I, = (wij,¥i;) for (i=1,..,4andj =1,2,3) be the collection of q—
ROFS; Vs as mention in Table 6.1 of Example 6.3.1.3. Let v =
(0.25,0.28,0.29,0.18)" and r = (0.36,0.29,0.35 )T be the weight vector of expert

#; and parameter s;, and their corresponding aggregation associated weight vector w =
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(0.26,0.3,0.23,0.21)" for expert £; and # = (0.35,0.31,0.34)" for parameter s;. Now
by utilizing the operation mentioned in Eq. 6.7 and their corresponding results are given
in Table 6.3, similarly by using score function as given in Definitions 6.1.2.2 and their

results are given in Table 6.4. The tabular description for new ordering of §S&.j =

nvierSU is given in Table 6.4.

1 1

( \.
p35=| a|1— T i (6.7)
\ )}

P\B 1 —
:u'SSq 1 I’DJS

Therefore,
q — ROFS;, DHA(Ss,,, Ss,yr 0 3s,,) = (0.916853,0.381134).

Table 6.3, Tabular represent of q-ROFS,S ﬁsw = nvierSU forf=2andq =3

T Ss1 Ss2 Ss3

foq (0.85153,0.41667) (0.7856,0.55317) (0.61795,0.29705)
fe, (0.79509,0.70258) (0.66473,0.36904) (0.52791,0.40636)
foq (0.0.9697,0.48677) (0.87553,0.42493) (0.73722,0.21689)
foy (0.59438,0.567) (0.90169,0.64165) (0.7253,0.48385)
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Table 6.4, Tabular description of score values for §S&j = nvir}-SSU forf=2andq =3

T Ss1 Ss2 Ss3

#q (0.772555) (0.657789) (0.604883)
., (0.57791) (0.621733) (0.54001)
fos (0.898249) (0.797202) (0.695232)
oy (0.41385) (0.734469) (0.634138)

Table 6.4, New ordered for q-ROFS,S 55&1, = nvierSU, forf=2andq =3

T S§1 Ss2 Ss3

£q (0.9697,0.48677) (0.87553,0.42493) (0.73722,0.21689)
£, (0.85153,0.41667) (0.90169,0.64165) (0.7253,0.48385)
£ (0.79509,0.70258) (0.7856,0.55317) (0.61795,0.29705)
'n (0.59438,0.567) (0.66473,0.36904) (0.52791,0.40636)

6.3.3.4. Remarks
(@) If we consider that the value of g =1 is fixed, then the proposed g —
ROFS;.DHA operator reduced to IFS;.DHA operator.

(b) If we consider that the value of q =2 is fixed, then the proposed q —
ROFS;.DHA operator reduced to PyFS;. DHA operator.
(c) If the set contain only parameter that is s; (means m = 1), in this case the

proposed q — ROFS;.DHA operator reduced to ¢ — ROFDHA operator.

Thus from the analysis of Remark 6.3.3.4, it is clear that IFS;,DHA, PyFS; DHA and
q — ROFDHA operators are the special cases of the developed g — ROFS;.DHA

operator.

Based on the analysis of Theorem 6.3.3.2, some properties of the g — ROFS;.DHA

operators are investigated which are described below:
6.3.3.5. Theorem
Suppose the collection SSU = (,uij,l/)ij) for(i=1,2,..,mandj=1,2,..,n) of g-

ROFS Vs with v = (v, v, ..., v,)" and r = (11,15, ...,1;,)" be the weight vector
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of 3, = (uij ij) such that vym €[0,1] WithY™ v, =1 andXh 7 =1.
Suppose w = (Wy, Wy, ..., W, )T and @ = (iiy, @y, ..., 1u,,)T be the  aggregation
associated weight vectors for expert #£; and parameterss; having the conditions
that w;, #; € [0,1] with X2, w; = 1 and X7, &; = 1. Then the following properties

are holds for g-ROFS;.DHA operator:
(1):  (Idempotency) Let SSU =& forall(i=12,..,mandj=1,.2,..,n),
where &, = (b, d4). Then

q — ROFS; DHA(Ss,,0 Sspyr s s ) = Es -

(ii): (Boundedness) Let Sgl,j = <mjn min (,ul-]-), max max (wi]-)> and
J 3 j i

3;]_ = <mjax max (,Llij), mjin miin (lpij)>. Then

35, S 4 — ROFS; DHA(Ss,,, sy o0 Sspn) < I3, -
iii: (Monotonicity) Let another collection &, = (b, d;) for (i=12,..,mandj =

1,2,..,n) of g-ROFS;, Vs such that u;; < b;; and ;; = d;;. Then

q — ROFS;DHA(Ss,,, 3510 0 Sspm) < 4 — ROFS;,DHA(E;, . Es,,) - s, ):
iv: (Shift Invariance) Let & = (b,d) be a g-ROFS,V. Then

q — ROFS;DHA(J;5,, @ &, Jsp,® Esv ) Fis ® Es)
= q - ROFSftDHA(S.S‘lll 3512' ""Ssmn) @ ES.

v: (Homogeneity) Let p > 0 be any real number. Then

q — ROFS;DHA(p3s,,) PTsyzr s PSsn) = P 4 — ROFSeDHA(Ss,,, S0 s Sspmn):
Proof: Proofs are easy and directly follows Theorem 6.3.1.5.

6.4. An approach to MCDM under Dombi operations using g-rung

orthopair fuzzy soft information
This section describes a MCDM techniques by using the applicability of developed

operators for handling M'CDM problems. Here criteria and parameter weights are real
numbers and criteria values are g-ROFVs. The techniques of mathematical descriptions

and their general steps wise algorithm under g-ROF environment is given as follows.
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Suppose T = {#4, £y, %5, ..., #;.} be the collection of alternatives in which the most
desirable alternative is going to evaluated by the senior decision makers d =
{d,,d,,ds,...,d,;} against their corresponding parameters E = {sy, s, S5, ..., S, }. Let
w = (Wy, Wy, ..., wy)T and @ = (iiy, &Ly, ..., 1, )T be the aggregation associated weight
vectors for expert #£; and parameterss; having the conditions that w;, i, € [0,1]
with 27, w; = 1 and X7, &; = 1. The senior decision makers gives their assessment
for best alternative #£, against to parameter s, in the form of g-ROFS Vs SSU =
(43, %) such that0 < uf; + % < 1 for g = 1. The decision makers describe their
collective evaluated information in the form of g-ROFS, decision matrix M =
[Ssi,-]mxn- Using the preferences values of senior experts the aggregated result &; for
alternative £; (i = 1,2, ..., k) is & = (u;, ¥;) by applying the q-ROFS;,DW averaging
operations which is given in Egs. 6.2, 6.4 and 6.6. Finally to get the most desirable

alternative apply the score function on aggregated result &; and rank them to get the

best option.

6.4.1. Algorithm
The step wise decision algorithm for the developed operators are summarized as

follows:

Step i: Extract the collective evaluated information of senior experts in the form of g-

ROFS;, decision matrix Ml = [Ssij]mxn for each alternative against their parameter.

(t11,¥11) (U2, ¥12) = (an, Y1)
M = (M21:.1/)21) (sz»_lpzz) (.Uzn».ll&n)

(.umll.l/)ml) (.umz;l/)mz) (.umn:.lpmn)

Step ii: Using the preferences values of senior experts, aggregate the q-ROFS;, Ssij for

alternative #£; (i = 1,2, ..., k) into collective decision matrix &; = (u;, ;) by applying
the developed g-ROFS;, D averaging and g-ROFS.D geometric operations.

Step iii: Applying the definition of score function determine the score values of ¢&; for
each object £; for i = (1,2, ..., k).

Step iv: Finally rank the obtained results and arranged them in a specific ordered to get

the most desirable option from 4.
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6.5. Numerical example
In ordered to demonstrate the applicability and validity of the proposed method, a

decision making process has been illustrated with the Constructional engineering
projects (CEP) adopted from [92].

Suppose a particular example about the four potential CEP (alternatives) T =
{#e1, %25, %5, %4} and the committee of expert engineers d = {d,, d,, d3, d,4, ds} whose
weight vector is & = (0.24,0.26,0.23,0.15,0.12)7 will give their assessment for the
project against some parameter [E = {s;,s,,s3, 5, and weight vectoru =
(0.27,0.22,0.23,0.28)7, where s; = the construction work environment, s, = the
construction site safety protection measure s; = the safety production responsibility
system, s, = the safety management ability of the engineering project. The expert
engineers d;(i = 1,...,5) provides their assessment for each project against their
parameter in the form of g-ROFVs. Following steps followed for finding the most

desirable CEP by applying the developed approach.
By applying q-ROFS;,DWA operator

Step i: The five expert engineers d; will evaluate the construction of four CEP in terms
of g-ROFVs, parameters and their rating results are given in Tables 6.5 — 6.8

respectively.

Step ii: Applying the preferences values of senior engineers, the aggregated result for

each alternative #£; (i = 1,...,4) by applying the developed q-ROFS;.DWA operator

for ¢ = 3 and B = 2 are gives as:

& = (0.808828,0.110937), &, = (0.758981,0.165394),
&3 = (0.743415,0.14901), ¢, = (0.746606,0.111174)

Step iii: Applying the definition of score function and determine the score values of ¢;

for each object £; for i = (1, ...,4).

Sc(&) = 0.763886, Sc(&,) = 0.716344, Sc(&;) = 0.703776, Sc(&,)
= 0.7074

Step iv: Finally rank the obtained results and arranged them in a specific ordered to get

the most desirable option from #£;.
Ry 7 Ry F Ry 7 Aog
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From the ranking result, it is clear that £, is the most desirable and profitable CEP

among all.
By applying q-ROFS;DOWA operator
Step i: Same as above.

Step ii: Applying the preferences values of senior engineers, the aggregated result for
each alternative #£; (i = 1, ...,4) by applying the developed g-ROFS;.DOWA operator

for ¢ = 3 and B = 2 are gives as:

& = (0.806913,0.113117), &, = (0.762272,0.162736),
& = (0.77327,0.151224), &, = (0.7564,0.122431)

Step iii: Applying the definition of score function and determine the score values of &;
for each object #; for i = (1, ...,4).

Sc(§,) = 076197,  Sc(&,) = 0.719308,  Sc(&,) = 0.729458,
Sc(&,) = 0.715466,

Step iv: Finally rank the obtained results and arranged them in a specific ordered to get
the most desirable option from £;.

by Fhy = by E Ry
From the ranking result, it is clear that £, is the most desirable and profitable CEP
among all.
By applying q-ROFS;,DHA operator
Step i: Same as above.
Step ii: Applying the preferences values of senior engineers, the aggregated result for
each alternative #£; (i = 1,...,4) by applying the developed g-ROFS;.DHA operator

for g =3 and B = 2. Let v = (0.22,0.16,0.2,0.24,0.18)T and r=
(0.32,0.29,0.18,0.21 )™ be the weight vector of expert £; and parameter s;. Let w =

(0.24,0.26,0.23,0.15, 0.12)" and @ = (0.27,0.22,0.23,0.28)7 be the corresponding

aggregation associated weight vector for expert £; and parameter s; forq = 3 and g =

2. Then

£ =(0.709337,0.213582), &, = (0.653017,0.280623),
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& = (0.678549,0.25099), £, = (0.659497,0.206046)

Step iii: Applying the definition of score function and determine the score values of &;
for each object £; for i = (1, ...,4).

Sc(&) = 0.673583,  Sc(&,) = 0.628184, Sc(&;) = 0.64306,
Sc(&,) = 0.639046

Step iv: Finally rank the obtained results and arranged them in a specific ordered to get

the most desirable option from £;.
VIRE PR IR

From the ranking result, it is clear that £, is the most desirable and profitable CEP

among all.

Therefore, from the analysis of illustrative example, it is evident that the ranking order
of the alternatives are slightly different but the ranking concerning the most suitable

and desirable alternative is identical that is £, for overall introduced operators.

Table 6.5, g-ROFS;, matrix for CEP £,

51 Sy S3 S

d (0.8,0.2) (0.9,0.1) (0.76,0.13) (0.71,0.23)
d, (0.7,0.15) (0.6,0.2) (0.8,0.18) (0.9,0.05)
ds (0.5,0.2) (0.81,0.14) (0.4,0.1) (0.65,0.32)
d, (0.72,0.23) (0.75,0.13) (0.55,0.22) (0.74,0.17)
ds (0.65,0.25) (0.5,0.12) (0.66,0.23) (0.45,0.05)

6.5.1. Comparative analysis
To present the efficiency and applicability of the proposed method with some existing

methods, a comparative study has been made based on different aggregation operators
(see [4, 30, 68, 69, 71, 75]) under IF, PyF and g-ROF environment. For collective
information different parameters of g-ROFS,Vs are aggregated by utilizing weighted
averaging operator against to their weight vector # = (0.27,0.22,0.23,0.28)7, to obtain
the aggregated g-ROFS; decision matrix for different alternative £; (i =1, ...4) as

summarized in Table 6.9. From the evident of this decision matrix a comparative study
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has been made of the proposed methods with some existing methods and their

simultaneous results are depicted in Table 6.10. From Table 6.10, it is clear that the

ranking orders are

Table 6.6, g-ROFS;, matrix for CEP £,

51 Sz S3 Sq
d, (0.6,0.13) (0.85,0.14) (0.8,0.18) (0.81,0.16)
d, (0.73,0.25) (0.74,0.25) (0.63,0.22) (0.77,0.15)
ds (0.45,0.32) (0.4,0.12) (0.54,0.31) (0.84,0.11)
d, (0.7,0.2) (0.6,0.3) (0.65,0.28) (0.76,0.19)
ds (0.62,0.35) (0.5,0.1) (0.74,0.12) (0.65,0.25)
Table 6.7. g-ROFS;, matrix for CEP %5

59 S, S3 Sy
d, (0.74,0.23) (0.55,0.12) (0.48,0.1) (0.42,0.15)
d, (0.6,0.15) (0.66,0.31) (0.78,0.12) (0.64,0.22)
d, (0.82,0.16) (0.74,0.25) (0.5,0.3) (0.3,0.1)
d, (0.65,0.34) (0.58,0.28) (0.73,0.25) (0.48,0.26)
ds (0.9,0.08) (0.6,0.2) (0.4,0.1) (0.61,0.35)

Table 6.8, g-ROFS;, matrix for CEP £,

S, S S3 Sy
d, (0.63,0.14) (0.45,0.13) (0.55,0.25) (0.62,0.15)
d, (0.35,0.05) (0.65,0.18) (0.75,0.18) (0.48,0.22)
d, (0.7,0.17) (0.9,0.09) (0.6,0.3) (0.52,0.16)
d, (0.39,0.25) (0.25,0.1) (0.56,0.16) (0.67,0.26)
ds (0.8,0.12) (0.76,0.23) (0.34,0.05) (0.38,0.1)
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slightly different but their best optimal alternative remain same for all operators that
is #,. However, in many situations of real life IFS and PyFS cannot provide the
additional space to the decision makers to describe the attribute evaluation value due to
its restricted constraints. Obviously in g-ROF environment the experts fully express the
decision information. From characteristic analysis the existing methods in [4, 30, 75]
are best for fuzzy data and these methods having no information about soft
parameterization tools and Dombi operational parameter. Similarly the methods in [68,
69, 71] have just Dombi operational parameter. Therefore, from the characteristic point
of view the methods proposed in this chapter are more superior and practical for real
life information to describe the fuzzy data under soft parameterizations information by

using Dombi operational law.

6.5.2. Influence of operational parameter 8
To express the influence and potential of operational parameter f on MCDM, different

values of B are utilized to rank the alternatives. For different input of £ in the range
of 1 < B < 30, the score values and their ranking order of alternatives #;(i = 1, ...,5)
based on q-ROFS;, DWA operators are depicted in Tables 6.11. From the analysis of
Tables 11, it is clear that for different input values of g the ranking order is slightly
different but the best optimal option remain identical that is £, for g-ROFS;; DWA

operators. By increasing the value of 8 cause gradual increase in score values for g-
ROFS;, DWA operators. This show that increasing the values of g from smaller to
bigger cause the decision makers’ attitude from pessimism to optimism for q-ROFSy,
DWA operators. Thus the behaviour of operational parameter 8 is very important to
express the experts’ attitude in decision making problems. Therefore, from overall
analysis it is concluded that the proposed method is more superior and resilience than
existing methods to solve the real life decisions by using parameterization tools under

Dombi operational law.

6.5.3. Conclusion
The process of DM is a complex issue involves professionals of different genre. Every

organization have to take decision at one point or another as a part of managerial
process. Therefore, every organization extensively needs a team of professional experts

to make all sorts of complex decision. But remember, that an individual alone cannot
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come out with final decision because decision making problems consist of cumulative

and consultative

Table 6.9, Aggregated values of g-ROFS,, matrix for CEP for £;

#q t, fes o

d, | (0.839983,0.143578) (0.805096,0.148488) (0.647834,0.133022) (0.592306,0.152046)
d, | (0.846328,0.084283) (0.735176,0.198556) (0.70186,0.164896) (0.658083,0.086928)
ds | (0.714504,0.149203) (0.759122,0.149169) (0.747558,0.147595) (0.826828,0.139741)
d, | (0.719443,0.174289) (0.705968,0.223092) (0.653149,0.277035) (0.585882,0.156939)

ds | (0.607438,0.084324) (0.666902,0.147059) (0.836595,0.115345) (0.734921,0.082803)

Table 6.10, Comparative analysis of existing methods with proposed methods

Methods Score values of alternatives Ranking

%4 #; o3 oy
IFWA [4] 0.659028 0.578421  0.557667 0.575095 £ > £, > foy > £y
PYFWA [75] 0.598381 0.532558  0.489755 0.474926 £y > foy > foz > £y

PyFDWA [69] 0.640947 054832 0527668 0538915 £, = £, = £, > £,

PyDFWA [68] 0.639334 0547267 0526257 0538347 £, = £, = £y > £,

G-ROFDWA [71] | 0.765043  0.720637  0.706817  0.65305 £, > £, > £; = £,

-ROFWA [30] | 0.482652  0.417154  0.368254 0.347148 £, > £, = s = £,

g-ROFS,.DWA 0.763886 0.716344  0.703776  0.7074 foy > foy > Hoy > g
(proposed)

g-ROFS.DOWA | 0.76197 0.719308  0.729458  0.715466 £, > #y > £y > £,
(proposed)

g-ROFS,.DHA 0.673583 0.628184 0.64306  0.639046 4, > £, > £y > £,
(proposed)
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Table 6.11, Ranking order based on different operational parameter of g-ROFS;, DWA operator

Operational Score values of alternatives Ranking

parameter oy e, foq n
B=1 0.722591  0.691494 0.656704 0.645816 £y > foy > fo3 > £y
B=2 0.763886  0.716344 0.703776 0.7074 oy > Hoy > Hoy > Fog
=3 0.791403  0.733061 0.741876 0.752795  #y >ty > o5 > £,
=5 0.820077  0.75353 0.787956 0.798473 £y > foy > fo3 > R,
p=8 0.837303  0.769509 0.817705 0.824584 £ > foy > foz > Ry
B =12 0.846658  0.780173 0.833981 0.838489 £y > foy > foz > Ry
g =16 0.851226  0.786025 0.84187 0.845221 oy > foy > foz > Ry
B =20 0.853929  0.789728 0.846506 0.849184 £y > foy > fo3 > R,
B =25 0.856068  0.792719 0.85016 0.852313 £y >ty > foz > £y
g =30 0.857484  0.79496 0.852567 0.854377  foy, > foy > foz > £,

process. Since intellectual minds are engage in this process, so it needs solid scientific
knowledge couple with experience and skills in addition to mental maturity. Recently,
Yager investigated the generalized concept of FS, IFS and PyFS and called it g-ROFS.
It is observed that the parameter q is the most useful characteristic of this concept which
has the capability to cover the boundary range that can be required. The input range of
g-ROFS is more flexible, wider and suitable because when the rung increase, the
orthopair provides additional space to the boundary constraint. The aim of this chapter
is to present the notion of q-ROFS;,S based on the Dombi operations. Since Dombi
operational parameter possess natural flexibility with resilience of variability. The
behaviour of Dombi operational parameter is very important to express the experts’
attitude in decision making. Further we present g-ROFS;;DA aggregation operators
including g-ROFS;.DWA, g-ROFS;,DOWA and q-ROFS;.DHA operators. The basic
properties of these operators are presented in detail such as Idempotency, Boundedness,
Monotonicity, Shift invariance and Homogeneity. By applying develop approach, this
manuscript contains the technique and algorithm for M¢DM. Further a numerical
example is developed to illustrative the flexibility and applicability of the developed

operators.
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Chapter 7

Orthopair fuzzy soft Dombi geometric aggregation operators

The aim of this chapter is to present the notion of Dombi operation in g-ROFS,S. Since
Dombi operational parameter possess natural flexibility with resilience of variability.
The behaviour of Dombi operational parameter is very important to express the experts’
attitude in DM. In this chapter, we will present the concept of ¢-ROFS;.DG
aggregation operators including g-ROFS;,DWG, @-ROFS;,DOWG and ¢-
ROFS;.DHG operators. The basic properties of these operators are presented in detail
such as ldempotency, Boundedness, Monotonicity, Shift invariance and Homogeneity.
A MCDM technique and algorithm is developed based on above mentioned approach.
Further a numerical example is developed to illustrative the flexibility and applicability

of the developed operators.
7.1. g-Rung orthopair fuzzy soft set
The detailed study of PyFS;;Ss, q-ROFS,,Ss and their fundamental operations and

relations are presented in Sections 4.1 and 4.2 of Chapter 4. The score function and

accuracy function for g-ROFS;,Ss are given in Definitions 6.1.1 and 6.1.2.

7.2. Dombi operations on g-rung orthopair fuzzy soft set
For a detail study of Dombi sum and Dombi product and its basic operations and

relations are given in Chapter 6 Section 6.2.

7.3. g-Rung orthopair fuzzy soft Dombi geometric operators
In this section, in view of defined Dombi operation laws we will extend Dombi

operators to q-ROFS;, environment such as g-ROFS;,WG, g-ROFS;,DOWG and g-

ROFS;,DHG operators and investigate their fundamental properties in details.

7.3.1. g-Rung orthopair fuzzy soft Dombi weighted geometric
operators

This subsection is devoted for the study of g-ROFS;.DWG operator and discuss their

basic properties in details.
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7.3.1.1. Definition

Let 3, = (wij, i) for (i=12,..,mandj = 1,2,..,n) be the collection of g-
ROFS;;Vs. Suppose w = (W, W, ..., Wy,,)" be the weight vectors for expert #;
and U = (i1, Uy, ..., Uy)" be the weight vectors for parameters s; having the conditions
that w;, u; € [0,1] with X7, w; = 1and X.7_, &; = 1. Then q-ROFS;, DWG operator is
a mapping denoted and define as: ¢ — ROFS,DWG: X™ — X, (where X represents the
collection of g-ROFS,, Vs) such that

_ T
q — ROFS;, DWG(Ts,,s Ss1pr 0 Sspn) = =1 ( =1 (3‘”‘.) J) (7.1)

Si]

Based on Eg. (7.1) we can obtain the aggregated result for g-ROFS;. DWG operator as
described in Theorem 7.3.1.2.

7.3.1.2. Theorem

Suppose the collection 3, = (1, ¥i;) for (i = 1,2,..,mand j = 1,2,...,n) of g-
ROFS;;Vs. Consider w = (w;,W,, ..., W,,, )" be the weight vectors for experts #;
and & = (i, Uy, ..., U,)" be the weight vectors for parameters s; having the conditions
that w;, %; € [0,1] with X%, w; = 1and X7, &; = 1. Then the aggregated result for g-
ROFS;.DWG operator is stated as:

q- ROFSftDWG(SSn’SSu' ""Ssmn) = ®?=1 ( ?;1 (S?;) J)

1 1

; T,q|1 — T (7.2)
1-p B g \B\)B
pofmelff | ey )

ij

Proof: The required proof can be obtained by using mathematical induction.

From Dombi operational laws, we have
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Further, let Eq. 7.2, is true form = k; and n = k,,

o~ o~ & k k Wi i
q —_ ROFSftDWG (\5511, \5512, "."Ssklkz) = ®]=21 (®i=11 (\S‘S,V]) )

1 1
B
ky — [y = ¥ij”
1+{2jiluj<zizllwi<1—gijq> >}

Next to show that Eq. 7.2, istrueform = k; + landn =k, + 1

==
N~

q — ROFS;DWG (3;,,, 3y,

~ o~
e Ssp gy ‘55(k1+1>(k2+1))

k k Wi 4 aWky+1 Uk +1
- ®i=21 (®i=11 (‘SSU) >® (‘Ssijl )
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Hence that Eq. 7.2, is true form = k; + 1 and n = k, + 1. Therefore, by process of

=~

mathematical induction, we conclude that Eq. 7.2, is true for all m,n > 1.

Further to verify that the aggregated result obtained from ¢q—

ROFS; DWG (ssn, Srpr e Ssklkz) is again a g — ROFS;, V.

Let
H= - T and A= 41— ! .
NN NN
ez ) frafaenzi)
As
1 1
0<wj<1=0=< <1=0< T
42t 1-uw\P\)P
‘s ko+1 = ki+1 = 3]
Hij 1+ {2131 j<2i=11 i( 1 ) >}
<1=>0<u<1
Similarly
0<p;<120<1-—7<120<
1+1_;’ijq
1
q 1- T <1
_a \P\)B
—r
>0<1<1
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_ _( ¥i?
pzealra2) )
ij

1

1
B\\F
_ _ (1-myj
\fzs oo (52 )

>0<pu?+27<1

\__/Q

Therefore, it is verified that the aggregated result obtained from gq —

ROFS;DWG (s, Ssyyr s Sy, ) 15 802N 2 g — ROFSy,V.

7.3.1.3. Example

Suppose T = {#4, #,,#,#,} be the set of expert Professors who want to judge the

ability of a student Z under the set of parameters E = {s;, s, s3}, where s;(j = 1,2,3)

stands for s; = responsable, s, = coures command and s; = punctual. The

experts provides their estimated values in the form of q-ROFS, Vs which are given in

161



Table 7.1. Let « = (0.26,0.3,0.23,0.21)7 be the weight vectors for expert £;, z =

(0.35,0.31,0.34)" be the weight vectors for parameters s; and operational parameter

B = 2 for g = 3. Now to calculate the aggregated result by applying Eg. 7.2, we have

Sij

q — ROFS,DWG(Js, ) Ssyyr vor o) = @y (®?=1 (Sﬁi)uj)

1 1

vi®
1+ Z?:lﬁi ?:1‘T’i<1_;]”3>
ij

= (0.754181,0.449179)

Therefore,
q — ROFS; DWG(Ss,,, s, -+ r Is,,) = (0.754181,0.449179).

Table 7.1, Tabular represent of g-ROFS;,S (3,E) for f = 2and q = 3

T S1 S, S3

#q (0.9,0.3) (0.85,0.4) (0.7,0.2)

£, (0.85,0.6) (0.75,0.25) (0.6,0.3)

s (0.98,0.38) (0.92,0.3) (0.8,0.15)
foy (0.7,0.4) (0.95,0.45) (0.82,0.32)

7.3.1.4. Remarks
(a) If we consider that the value of parameter g = 1 is fixed, then the proposed g —
ROFS; DWG operator reduced to IFS;,DWG operator.

(b) If we consider that the value of parameter g = 2 is fixed, then the proposed g —
ROFS; DWG operator reduced to PyFS;, DWG operator.

(c) If the set contain only parameter that is s; (means m = 1), in this case the

proposed g — ROFS;, DWG operator reduced to ¢ — ROFDWG operator.
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Thus from the analysis of Remark 7.3.1.4, it is clear that IFS;,DWG, PyFS;,DWG and
q — ROFDWG operators are the special cases of the developed g — ROFS;.DWG

operator.

Based on Theorem 7.3.1.2, some properties of the g — ROFS;,DWG operators are

investigated which are described below:
7.3.1.5. Theorem

Suppose the collection I, = (uij, i) for (i = 1,2,..,mand j = 1,2,...,n) of g-
ROFS;,Vs. Consider w = (W, W,, ..., W, )" be the weight vectors for experts #;
and & = (i1, Uy, ..., Uy)" be the weight vectors for parameters s; having the restriction
that w;, 4, € [0,1] with 272, w; = 1 and 7%, 4, = 1. Then the following properties
are holds for g-ROFS;,DWG operator:

i: (Idempotency)  Let SSU =& forall(i=12,...,mandj=1,2,..,n),
where &, = (b,d4). Then

q — ROFS; DWG(Ss,,» Sspyr oor sy ) = Es -

ii: (Boundedness) Let S;l.j = (m_in min (,ul-j), max max (lpij)> and
J 3 j i

3%, = (m]ax max ™} mjin min (lpij)>. Then

5, < 4 — ROFS; DWG(Ss,, Sy s S ) < I8,
iii: (Monotonicity) Let another collection &, = (b, d;) for (i=12,..,mandj =

1,2,...,n) of g-ROFS;, Vs such that y;; < b;; and ¥;; = d;;. Then

q — ROFS; DWG(Ss,,, s,y s s, ) < ¢ — ROFS;,DWG(Eg, , € £

S127 *** Smn)'

iv: (Shift Invariance) Let & = (b, d¢,) be a g-ROFS;, V. Then

q — ROFS;,DWG(Ss,, ® £, T, ® Es, s s, ® Es)
= q — ROFS;DWG(Ss,,) Sspyr s sy ) ® Es.

v: (Homogeneity) Let p > 0 be any real number. Then
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q — ROES; . DWG(0Ss,,, 08s,0 s D5y, )
= p q — ROFS; DWG(Ss, ., Ssppr s s )-

Proof: i: (Idempotency) Since SSU =& forall(i=12,...,mandj=12,..,

where £ = (b, d). Then by Theorem 7.3.1.2, we have

?
=

ROFSftDWG("Ssll' \5512; (LI ] \Ssmn) =

1 1

.~ /T
—/

Il
o
fuy
+
-
= P
Zle
[y
~—
Q
—_
|
Juny
+
—
[
| Q|-
- ~
~
~——

=(b,d) =&
Hence, the proof is complete.
ii: (Boundedness) Consider foreachi = 1,2,...,mand j = 1,2, ..., n, we have

mjin miin (,ul-j) < Wi = m}ax ml_ax (,ul-j)

o - 1— N
1 mjmmim(uu)21+1_ul_j21+ m]axmiax(,uu)

=1+
mjin miin (,ul-j) Hij mjax miax (,uij)
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1 1 1

1- mjin miin (,Uij) 1+ T—py 1- m]ax max (ﬂij)
1+ o Hij 1+
minmin (wi j) mJ?\X max ( .Uij)
L 1
= PRt <
S B 3
1-minmin(p;; _ _ (1-ny;
1+ z:?=117j z:?=L1"Tli #((U) 1+[Z?=1uj{zy=llwi< Hij > ”
mjln miln ”ij)
1
1
1+|3 . TAY™ . W 1_mf"xmiax(”ij) Al
Loy Wy —L——
j=17])~i=1"1 m?xmlax(uij)
= ! < 1 < 1

1-min mjn(uij) - B % 1—maxmax(uij)
1+ n = )ym = (17Hij 1+ .
T 1 L gAY™ W, .
mjm miln(ul]) + 21=1u1 Yitq Wi i m]axmlax(/.tlj)

Similarly we can show for nonmembership

1 1 1
q 1 - T T q\ 2 q 1 - 1 2 q 1 - T aq\
min mjn 1[)..) 7 maxmax(ljz..)
j i ( ij q B B Jj i 1]
——— 1y gy w, Yy s
() Jer o B2 tompemp(v)

Therefore, from above analysis we have
5, S 4 — ROFS; DWG(Ss,, Sy s S ) < I8,

iii: (Monotonicity) Since foralli =1,2,..,mandj=1,2,..,n, we have y;; <

bij and l/)ij = dij'

As
— 1—=>b:.
'u'USbU:>1+ HUZ].‘F Y
ij ij
1 < 1
=
1=~ 1-b
1+—2 1+ /
.uij bl]
1 1
= <
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Similarly, we can show for MG

1 1

1 1
" B\\B d?' B\\B
= = i = =
el st o) s stz o
ij 3]

Hence from above equations we have

=>,1-

q — ROFS; DWG(Ss,,, s, o0 s, ) < @ — ROFS; DWG(Es, , Es,,, - Es, ).

iv: (Shift Invariance) Since & = (b, d) and s, = (ui, ) (i =
1,2,..,mand j = 1,2,...,n) are g-ROFS,.Vs. Then

(

~ I 1 1
‘\5511® gs = |

e P | s

N~

Now consider

I
’ 5 ; 5
n o= [ym = (1Hi au ¥l B
1+{Zj=1uj<2i=1wi< y,ij]> >+(1T) } 1+{27’=1‘l=t]<2:r;1\/|=/l<j> )‘l'(%) } /
ij
= q — ROFS;,DWG(Ss,,, Ssppr - Jsy) ® Es
Therefore, the proof is completed.

v: (Homogeneity) Let p >0 be any real number and S, = (uij i) (i =
1,2,..,mand j = 1,2,...,n) are g-ROFS;,Vs. Then
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Further consider

q - ROFSftDWG(pSSn' pSSu' ""pSSmn) =

1 1
ql_

19 1
_ AB\\B q \B\\B
— _ [1-HKij _ [ Y
1+{2?=1u”<mlpw"< wij ) ); 1+{Z?=1ﬂj(zﬁlpw"<1-$9-> >}
ij

T

1 1

= p q — ROFS; DWG(3s.,, Ssrys oor Is,r )

Therefore, the proof is completed.

7.3.2. g-Rung orthopair fuzzy soft Dombi ordered weighted geometric

operator

In this subsection, in view of defined Dombi operation laws we will present the g-

ROFS;.DOWG operator and investigate their fundamental characteristics in details.

7.3.2.1. Definition

et = (uij, ;) for i=1.2,..,mandj=1,2,..,n) be the collection of g-
Let 3y, = (g, Wy i=1,2 dj=1,2 be the collection of

ROFS,Vs. Suppose w = (Wy, W,, ..., w,,, )T be the weight vectors for expert £; and &t =

(4, Uy, ..., U, )" be the weight vectors for parameterss; having

that w;, u; € [0,1] with X2, w; = 1 and X7, &; = 1. Then g-ROFS.DOWG operator

T
—AB\P q \B
= - (1-Hij _ _ [ ¥i;
Zjer (mlw‘( Kij ) )]} H{’)[Z?ﬂﬁj(zﬁlwi<1—ufﬁ> >l}

the conditions

is a mapping denoted and define as: g — ROFS;, DOWG: X™ — X such that

— \T;
q- ROFSftDOWG(SSM'SSn' ""Ssmn) = ®}1=1 ( ﬁl (S?Zij) ])’
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where SS&.], = (M&' i Wsi j) is the permutation of i®® row and j* largest elements of the
collections from i X jq — ROFS;Ns SSU = (uij,l,b,-j) for(i=12,..,mandj =
1,2,..,n).

Based on Eq. (7.3) we can obtain the aggregated result for g-ROFS;;DOWG operator

as described in Theorem 7.3.2.2.
7.3.2.2. Theorem

Suppose the collection I, = (uij, i) for (i = 1,2,..,mand j = 1,2,...,n) of g-
ROFS;,Vs. Consider w = (W, W,, ..., W, )" be the weight vectors for experts #;
and U = (i, Uy, ..., Uy)" be the weight vectors for parameters s; having the conditions
that w;, u; € [0,1] with X2, w; = 1and X7_, i4; = 1. Then the aggregated result for g-
ROFS;.DOWG operator is stated as:

— \T
q —_ ROFSftDOWG(Ssll; 35121 '"ISSmn) = ®;l=1 ( 117:11 (Sﬁi;l]) ])

Z \

1 |
| ! 1,q 1- 1 |» (74)

N s |
_ _ [1-nsi .4
\1+{Z7’L1ﬁj (mlwl( “651) >} 1+{Z?=1ﬁj(mlﬁi<lz—pi;--q> >} /
ij

where ... = (usii, ¥s;i ) is the permutation of it* row and j&" largest elements of the
S8ij Sijr ¥Yéij p J g

collections from i x j ¢ — ROFS;Ns I, = (wij,pij) for (i=12,..,mandj =
1,2,..,n).

Proof: Proof is straightforward like Theorem 7.3.1.2.
7.3.2.3. Example

Let I, = (i) for(i=1,..,4andj=1,23) be the collection of q—
ROFS;, Vs as mention in Table 7.1 of Example 7.3.1.3. Now by utilizing the Definition
7.1.2.2, the tabular description of 3, = (161, Ysis) IS given in Table 7.2
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o~ o~ o~ Wi J
q- ROFSftDOWG(\SSn'\Ssu' ""\5543) = ®?=1 (®?=1 (‘S?;ij) ) -

(

| 1 1

T3

| 3 =([v4 = 1_”ciijz 2 1/;&]-3 2

\1+ K Zi:lWi( Hsij ) L ?”Wi(W)
ij

Therefore ¢ — ROFS;, DOWG(Ss,,, 3, »Is,,) = (0.775171,0.436559).

|
oy
/

Table 7.2, Tabular represent of -ROFSy.S 3y, = (keij sij) for p =2 and q =3

X Ss1 Ss2 Ss3

£q (0.98,0.38) (0.95,0.45) (0.82,0.32)
#, (0.9,0.3) (0.92,0.3) (0.8,0.15)
o3 (0.85,0.6) (0.86,0.4) (0.7,0.2)

Ry (0.7,0.4) (0.75,0.25) (0.6,0.3)

7.3.2.4. Remarks
(a) If we consider that the value of parameter g = 1 is fixed, then the proposed g —
ROFS.DOWG operator reduced to IFS;,DOWG operator.

(b) If we consider that the value of parameter g = 2 is fixed, then the proposed g —
ROFS; DOWG operator reduced to PyFS; DOWG operator.

(c) If the set contain only parameter that is s; (means m = 1), in this case the

proposed g — ROFS;, DOWG operator reduced to ¢ — ROFDOWG operator.

Thus from the analysis of Remark 7.3.2.4, it is clear that IFS;,DOWG, PyFS;.DOWG
and ¢ — ROFDOWG operators are the special cases of the developed g — ROFS;,.DOWG

operator.

Based on the analysis of Theorem 7.3.2.2, some properties of the ¢ — ROFS;,DOWG

operators are investigated which are described below:
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7.3.2.5. Theorem

Suppose the collection I, = (wij, i) for (i = 1,2,..,mand j = 1,2, ...,n) of g-
ROFS,Vs. Consider w = (W, W, ..., w,)T be the weight vectors for experts #;
and & = (i1, Uy, ..., Uy)" be the weight vectors for parameters s; having the restriction
that w;, u; € [0,1] with X2, w; = 1 and X7, &; = 1. Then the following properties
are holds for g-ROFS;,DOWG operator:

i: (Idempotency) Let 351’1‘ =& forall(i=12,...,mandj=1,2,..,n),
where &, = (b, d4). Then

q — ROFS;, DOWG(Ss, s Sspyr -0 Jsyn) = Es -

ii: (Boundedness) Let S;l,j = <m_in min (,ul-j), max max (lpij)> and
J 3 j i

3;]_ = <m]ax max (,Llij), mjin miin (lpij)>. Then

35, < 4 — ROFS;DOWG(Ss,,, Ssyyr s S ) < I,
iii: (Monotonicity) Let another collection &, = (b, d;) for (i=12,..,mandj =

1,2,..,n) of g-ROFS, Vs such that u;; < b;; and ¥;; = d;;. Then

q — ROFS DOWG(Ss,,» 35,0 -0 Sspmn) < 4 — ROFSDOWG(Es, |, Es s oons Es, )
iv: (Shift Invariance) Let £ = (b, d) be a g-ROFS, V. Then
q — ROFS;,DOWG(S;,, ® &, 3s,,® sy ) s, @ &)
= g — ROFS;; DOWG(Ss,,, 3s,, s s, ) @ Es.
v: (Homogeneity) Let p > 0 be any real number. Then
q — ROFS;: DOWA(ps,,, 03510 1 PS5 )
= p g — ROFS;;DOWA(Ss,,, s,y s sy )-

Proof: Proofs are directly follows from Theorem 7.3.2.5.
7.3.3. g-Rung orthopair fuzzy soft Dombi hybrid geometric operators

In this subsection, in view of defined Dombi operation laws we will present the study

g-ROFS;.DHG operator and investigate their fundamental characteristics with details.
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The basic advantage of g-ROFS;.DHG operator is that, on the same it measures both
the weight of g-ROFS;. Vs and the ordered position of g-ROFS,, Vs under the opinions

of same experts.
7.3.3.1. Definition

Let 3, = (wij, i) for (i=12,..,mandj = 1,2,..,m) be the collection of g-
ROFS, Vs with v = (v, v5, ..., v,)" and r = (14,73, ...,1,,)" be the weight vector
of s, = (wijthyj) such that w7y €[0,1] WithXZ, ;=1 and ¥} 7 = 1.
Suppose w = (Wy, Wy, ..., W, )T and &t = (iiy, 1y, ..., u,)T be the  aggregation
associated weight vectors for expert #; and parameterss; having the conditions
that w;, u; € [0,1] with X%, w; = 1and Y7, &; = 1. Then q-ROFS;, DHG operator is
a mapping denoted and define as: ¢ — ROFS;,DHG: X™ — X such that

q — ROFS;:DHG(Js,, syr s Sspmn)
Wi %
-, (e (35,)7) (7.5)
— nvirj . .
where SS&.]. = (SSU) is the permutation of i*® row and j™* column largest

elements of the collections from g — ROFS,Vs SSU = (yij,lpij) and n is called the

balancing coefficient.

Based on Eqg. (7.5), we can obtain the aggregated result for g-ROFS;, DHG operator as
described in Theorem 7.3.3.2.

7.3.3.2. Theorem

Suppose the collection 3, = (1, ¥i;) for (i = 1,2,..,mand j = 1,2,...,n) of g-
ROFS;Vs.  Consider w = (Wy, Wy, ..., Wn)" and & = (i, Uy, ..., U,)"  be  the
aggregation associated weight vectors for experts %; and parameters s; having the
conditions that w;, u; € [0,1] with Xi2; w; = 1 and X.7_, &; = 1. Then the aggregated

result for -ROFS;,DHG operator is stated as:

o~ o~ o~ Wi J
q- ROFSftDHG(\55511'\55512' ---:\Sé‘smn) = ®}1=1 ( ?;1 (‘S?:Sij) )
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1 1 |

. 1— | (7.6)
i \P\)B D B
n = m = (17Hsi = = Lj

ij

where ﬁss” = n1;Js,; IS the permutation of i®" row and j** column largest elements

( \
~

of the collections from g — ROFS;,Vs 3, = (uij, ;) With v = (v, v, ., v)7

and r = (ry, 1y, ..., )T be the weight vector and n is a balancing coefficient.

Proof: Proof is straightforward like Theorem 7.3.1.2.
7.3.3.3. Example

Let Iy, = (wij,¥i;) for (i=1,..,4andj =1,2,3) be the collection of q—
ROFS;Vs as mention in Table 7.1 of Example 7.3.13. Let « =
(0.25,0.28,0.29,0.18)" and r = (0.36,0.29,0.35 )T be the weight vector of expert
#; and parameter s;, and their corresponding aggregation associated weight vectors
w = (0.26,0.3,0.23,0.21)" for expert £; and & = (0.35,0.31,0.34)" for parameter s;.
Now by utilizing the operation law mention in Eq. 7.7 and related results are given in
Table 7.3. Furthermore the score results by using Definitions 7.1.2.2 are given in

Table 7.4. The tabular description for T}S&j = m’iTszU is given in Table 7.5.

(7.7)

q — ROFS; DHG (S5, sy oo s ) = ®;’-’=1( =1 (ﬁz]) J) _

| 1 |
N 1= N
_ _ (1-Lsij 2 3.3 2
oo | ookt )
—W¥sij

Therefore, q — ROFS;:DHG(S;,,, Ss,,r -+ s,a) = (0.701933,0.561573).
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Table 7.3, Tabular represent of q-ROFS;,S §S&j = nin; 3, forf=2andq =3

T

Ss1

S52 S53

#q

e,

oy

(0.85153,0.41667)
(0.79509, 0.70258)
(0.0.9697,0.48677)

(0.59438,0.567)

(0.7856,0.55317) (0.61795,0.29705)

(0.66473,0.36904) (0.52791,0.40636)
(0.87553,0.42493) (0.73722,0.21689)

(0.90169,0.64165) (0.7253,0.48385)

Table 7.4, Tabular description of score values for :&55&1' = mrirji”ssij forf=2andq =3

T

Ss1 Ss2 Ss3
£q (0.772555) (0.657789) (0.604883)
#, (0.57791) (0.621733) (0.54001)
foz (0.898249) (0.797202) (0.695232)
Ry (0.41385) (0.734469) (0.634138)

Table 7.5, New ordered for q-ROFS,S 555” = nvierSU, forf=2andq =73

T Ss1 Ss2 S53

foq (0.9697,0.48677) (0.87553,0.42493) (0.73722,0.21689)
fe, (0.85153,0.41667) (0.90169,0.64165) (0.7253,0.48385)
foq (0.79509,0.70258) (0.7856,0.55317) (0.61795,0.29705)
foy (0.59438,0.567) (0.66473,0.36904) (0.52791,0.40636)

7.3.3.4. Remarks

(a) If we consider that the value of parameter g = 1 is fixed, then the proposed g —

ROFS;DHG operator reduced to IFS;,DHG operator

(b) If we consider that the value of parameter g = 2 is fixed, then the proposed g —

ROFS;,DHG operator reduced to PyFSy, DHG operator.
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(c) If the set contain only parameter that is s; (meansm = 1), in this case the

proposed g — ROFS;.DHG operator reduced to ¢ — ROFDHG operator.

Thus from the analysis of Remark 7.3.3.4, it is clear that IFS;,DHG, PyFS;.DHG and
q — ROFDHG operators are the special cases of the developed g — ROFS;:DHG

operator.

Based on the analysis of Theorem 7.3.3.2, some properties of the g — ROFS;,DHG

operators are investigated which are described below:
7.3.3.5. Theorem

Suppose the collection I, = (uij, ) for (i = 1,2,...,mand j = 1,2,...,n) of g-
ROFS, Vs with v = (v, v5, ..., v,)" and r = (14,73, ...,1,,)" be the weight vector
of s, = (g, ¥yy) such that w1 €[01] with¥ v, =1 and ¥} 7 = 1.
Suppose w = (Wy, Wy, ..., W, )T and i = (i1y, Uy, ..., u,,)T be the  aggregation
associated weight vectors for expert #£; and parameterss; having the conditions
that w;, %; € [0,1] with X%, w; = 1 and X7_; &; = 1. Then the following properties

are holds for g-ROFS;,DHG operator:

i: (Idempotency)  Let Ssij =& forall(i=1,2,...,mandj=1,2,..,n),
where &, = (b,4). Then

q — ROFS; DHG (s, Ssyys o sy ) = Es -

ii: (Boundedness) Let S;l.j = <m_in min (,ul-j), max max (lpij)> and
J 3 j i

3%, = (mjax max ™) mjin min (1/)l-j)>. Then

35, < 4 = ROFS; DHG(Ss,,, syys oo Sopn) < I3, -
iii: (Monotonicity) Let another collection &, = (b, d;) for (i=12,..,mandj =

1, 2, ey n) of q'ROFSftVS such that ‘U.U < bU and ll)u = dU Then

q — ROFS;.DHG(Ss,,» Ssyyr s s, ) < 4 — ROFS;,DHG(E;,,, &5,y o) sy )-
iv: (Shift Invariance) Let &, = (b, d) be a g-ROFS,V. Then
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q — ROFS;, DHG(Zs,, ® 5, s, ® Esr o, Js, ® &)
=q-— ROFSftDHG(Ssn; 3512’ ""Ssmn) ® 85'

v: (Homogeneity) Let p > 0 be any real number. Then

q — ROFS;,DHG(0Ss,,, 0561, 1 PTs) = P G — ROESEDHG (S5, sy s Sy )-

Proof: Proofs are easy and directly follows Theorem 7.3.1.5.

7.4. An approach to MC¢DM under Dombi operations using g-rung

orthopair fuzzy soft information
This section describes a MCDM techniques by using the applicability of developed

operators for handling M'CDM problems. Here criteria and parameter weights are real
numbers and criteria values are g-ROFVs. The techniques of mathematical descriptions

and their general steps wise algorithm under q-ROF environment is given as follows.

Suppose T = {#4, £y, %5, ..., #1} be the collection of alternatives in which the most
desirable alternative is going to evaluated by the senior decision makers d =
{d,d;, ds, ..., d,,} against their corresponding parameters E = {s;, s,, S5, ..., S, }. Let
w = (Wy, Wy, ..., wy)T and @ = (iiy, Uy, ..., U,)" be the aggregation associated weight
vectors for expert £; and parameterss; having the conditions that w;, i, € [0,1]
with X%, w; = 1 and X7, 4; = 1. The senior decision makers gives their assessment

for best alternative %, against to parameter s, in the form of g-ROFS; Vs Ssi]. =

(44, %) such that0 < uf; + % < 1 for q = 1. The decision makers describe their
collective evaluated information in the form of g-ROFS, decision matrix M =
[Ssi,-]mxn- Using the preferences values of senior experts the aggregated result &; for
alternative £; (i = 1,2, ..., k) is & = (u;, ;) by applying the g-ROFS;.DW geometric
operations which is given in Egs. 7.2,7.4 and 7.6. Finally to get the most desirable
alternative apply the score function on aggregated result &; and rank them to get the

best option.

7.4.1. Algorithm
The step wise decision algorithm for the developed operators are summarized as

follows:

Step i: Extract the collective evaluated information of senior experts in the form of g-

ROFS;, decision matrix Ml = [Ssl.j]mxn for each alternative against their parameter.
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(11, ¥11) (U2, ¥12) = (an, Y1)
M = (1121,.1,021) (Iizz;.lpzz) (.MZnJ'l/JZn)

(/flml'-lpml) (Iimz;lpmz) (.umn;lpmn)

Step ii: Using the preferences values of senior experts, aggregate the q-ROFSy, SSU for

alternative £; (i = 1,2, ..., k) into collective decision matrix & = (u;, ;) by applying
the developed g-ROFS;. D averaging and g-ROFS;.D geometric operations.

Step iii: Applying the definition of score function determine the score values of ¢; for
each object #; fori = (1,2, ..., k).

Step iv: Finally rank the obtained results and arranged them in a specific ordered to get

the most desirable option from £;.

7.5. Numerical example
In ordered to demonstrate the applicability and validity of the proposed method, a

decision making process has been illustrated with the Constructional engineering
projects (CEP) adopted from [92].

Suppose a particular example about the four potential CEP (alternatives) T =
{#, #5, #5, %4} and the committee of expert engineers d = {d,, d,, ds, d,, ds} whose
weight vector is w = (0.24,0.26,0.23,0.15,0.12)7 will give their assessment for the
project against some parameter E = {s;,s,,s3;,s,} and weight vectoru =
(0.27,0.22,0.23,0.28)7, where s, =the construction work environment, s, = the
construction site safety protection measure, s; = the safety production responsibility
system, s, = the safety management ability of the engineering project. The expert
engineers d;(i = 1,...,5) provides their assessment for each project against their
parameter in the form of g-ROFVs. Following steps followed for finding the most

desirable CEP by applying the developed approach.
By applying g-ROFS,DWG operator

Step i: The five expert engineers d; will evaluate the construction of four CEP in terms
of g-ROFVs, parameters and their rating results are given in Tables 7.6 — 7.9

respectively.
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Step ii: Applying the preferences values of senior engineers, the aggregated result for
each alternative £; (i = 1, ...,4) by applying the developed g-ROFS;DWG operator

for ¢ = 3 and B = 2 are gives as:

£ = (0.613069,0.222324), &, = (0.607699,0.252647),
£ = (0.513969,0.257883), & = (0.474117,0.214605)

Step iii: Applying the definition of score function and determine the score values of ¢;
for each object %; for i = (1, ...,4).

Sc(&) = 0.609718, Sc(é,) = 0.604148, Sc(&3) = 0.559311, Sc(éy)
= 0.548346

Step iv: Finally rank the obtained results and arranged them in a specific ordered to get

the most desirable option from £;.
foy > oy > oy > fo3

From the ranking result, it is clear that £, is the most desirable and profitable CEP

among all.
By applying g-ROFS;DOWG operator
Step i: Same as above.

Step ii: Applying the preferences values of senior engineers, the aggregated result for
each alternative £; (i = 1, ...,4) by applying the developed g-ROFS,DOWG operator

for ¢ = 3 and B = 2 are gives as:

& = (0.64151,0.216409), &, = (0.638415,0.252054),
&, = (0.548416,0.267736), &, = (0.501656,0.217831)

Step iii: Applying the definition of score function and determine the score values of ¢;
for each object £; for i = (1, ...,4).

Sc(&;) = 0.626935, Sc(&,) = 0.622094, Sc(&;) = 0.572875, Sc(&,) =
0.557955

Step iv: Finally rank the obtained results and arranged them in a specific ordered to get

the most desirable option from #£;.
for > Hoy > Ry > R,
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From the ranking result, it is clear that £, is the most desirable and profitable CEP

among all.
By applying g-ROFS,.DHG operator
Step i: Same as above.

Step ii: Applying the preferences values of senior engineers, the aggregated result for
each alternative #; (i = 1,...,4) by applying the developed g-ROFS;DHG operator
for g =3 and g = 2. Let v = (0.22,0.16,0.2,0.24,0.18)7 and r=
(0.32,0.29,0.18,0.21 )™ be the weight vector of expert £; and parameter s;. Let w =
(0.24,0.26,0.23,0.15, 0.12)T and & = (0.27,0.22,0.23,0.28)T be the corresponding
aggregation associated weight vector for expert %; and parameter s; forq = 3 and § =

2. Then

& = (0.531966,0.352165), &, =(0.536842,0.392825),
&3 =(0.418437,0.394779), &, = (0.399859,0.349697)

Step iii: Applying the definition of score function and determine the score values of &;
for each object %; for i = (1, ...,4).

Sc(&) = 0.553432, Sc(&,) = 0.54705, Sc(&3) = 0.505869, Sc(£,) = 0.510584

Step iv: Finally rank the obtained results and arranged them in a specific ordered to get

the most desirable option from £;.
for > oy > Ry > Fog
From the ranking result, it is clear that £, is the most profitable CEP among all.

Therefore, from the analysis of illustrative example, it is evident that the ranking order
of the alternatives are slightly different but the ranking concerning the most suitable

alternative is identical that is %, for overall introduced operators.

7.5.1. Comparative analysis
To present the efficiency and applicability of the proposed method with some existing

methods, a comparative study has been made based on different aggregation operators
(see [5, 30, 68, 69, 71, 75]) under IF, PyF and g-ROF environment. For collective
information different parameters of q-ROFS;. Vs are aggregated by utilizing weighted

geometric operator against to their weight vector # = (0.27,0.22,0.23,0.28)7, to obtain
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Table 7.6. g-ROFS;, matrix for CEP %,

S S, S3 Sa
d, (0.8,0.2) (0.9,0.1) (0.76,0.13) (0.71,0.23)
d, (0.7,0.15) (0.6,0.2) (0.8,0.18) (0.9,0.05)
ds (0.5,0.2) (0.81,0.14) (0.4,0.1) (0.65,0.32)
d, (0.72,0.23) (0.75,0.13) (0.55,0.22) (0.74,0.17)
ds (0.65,0.25) (0.5,0.12) (0.66,0.23) (0.45,0.05)
Table 7.7. g-ROFS;, matrix for CEP £,
51 Sy S3 Sq
d, (0.6,0.13) (0.85,0.14) (0.8,0.18) (0.81,0.16)
d, (0.73,0.25) (0.74,0.25) (0.63,0.22) (0.77,0.15)
d, (0.45,0.32) (0.4,0.12) (0.54,0.31) (0.84,0.11)
d, (0.7,0.2) (0.6,0.3) (0.65,0.28) (0.76,0.19)
ds (0.62,0.35) (0.5,0.1) (0.74,0.12) (0.65,0.25)
Table 7.8. g-ROFS;, matrix for CEP %
S; S S3 Sy
d, (0.74,0.23) (0.55,0.12) (0.48,0.1) (0.42,0.15)
d, (0.6,0.15) (0.66,0.31) (0.78,0.12) (0.64,0.22)
ds (0.82,0.16) (0.74,0.25) (0.5,0.3) (0.3,0.1)
d, (0.65,0.34) (0.58,0.28) (0.73,0.25) (0.48,0.26)
ds (0.9,0.08) (0.6,0.2) (0.4,0.1) (0.61,0.35)
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Table 7.9, g-ROFS;, matrix for CEP £,

S, S, S3 Sa

d, (0.63,0.14) (0.45,0.13) (0.55,0.25) (0.62,0.15)
d, (0.35,0.05) (0.65,0.18) (0.75,0.18) (0.48,0.22)
d; (0.7,0.17) (0.9,0.09) (0.6,0.3) (0.52,0.16)
dy (0.39,0.25) (0.25,0.1) (0.56,0.16) (0.67,0.26)
ds (0.8,0.12) (0.76,0.23) (0.34,0.05) (0.38,0.1)

Table 7.10. Aggregated values of g-ROFS;, matrix for CEP for #%;

’kl kz ’k3 k4

d, | (0.839983,0.143578) (0.805096,0.148488) (0.647834,0.133022) (0.592306,0.152046)
d, | (0.846328,0.084283) (0.735176,0.198556) (0.70186,0.164896) (0.658083,0.086928)
ds | (0.714504,0.149203) (0.759122,0.149169) (0.747558,0.147595) (0.826828,0.139741)
d, | (0.719443,0.174289) (0.705968,0.223092) (0.653149,0.277035) (0.585882,0.156939)

ds | (0.607438,0.084324) (0.666902,0.147059) (0.836595,0.115345) (0.734921,0.082803)

the aggregated q-ROFS;, decision matrix for different alternative £; (i = 1,...4) as

summarized in Table 7.10. From the evident of this decision matrix a comparative study
has been made of the proposed methods with some existing methods and their
simultaneous results are depicted in Table 7.11. From Table 7.11, it is clear that the
ranking orders are slightly different but their best optimal alternative remain same for
all operators that is £,. However, in many situations of real life IFS and PyFS cannot
provide the additional space to the decision makers to describe the attribute evaluation
value due to its restricted constraints. Obviously in q-ROF environment the experts
fully express the decision information. From characteristic analysis the existing
methods in [5, 30, 75] are best for fuzzy data and these methods having no information
about soft parameterization tools and Dombi operational parameter. Similarly the
methods in [68, 69, 71] have just Dombi operational parameter. Therefore, from the

characteristic point of view the methods proposed in this chapter are more superior and
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practical for real life information to describe the fuzzy data under soft parameterizations

information by using Dombi operational law.

7.5.2. Influence of operational parameter 8
To express the influence and potential of operational parameter f on MCDM, different

values of B are utilized to rank the alternatives. For different input of £ in the range
of 1 < B < 30, the score values and their ranking order of alternatives £;(i = 1, ...,5)
based on g-ROFS;, DWG operators are depicted in Tables 7.12. From the analysis of
Tables 7.12, it is clear that for different input values of £ the ranking order is slightly
different but the best optimal option remain identical that is %, for g-ROFS;, DWG
operators. By increasing the value of § cause gradual decrease in score values for g-
ROFS;, DWG operators. This show that increasing the values of g from smaller to
bigger cause the decision makers’ attitude from optimism to pessimism for q-ROFSy,
DWG operators. Thus the behaviour of operational parameter 8 is very important to
express the experts’ attitude in decision making problems. Therefore, from overall
analysis it is concluded that the proposed method is more superior and resilience than
existing methods to solve the real life decisions by using parameterization tools under

Dombi operational law.

7.5.3. Conclusion
The aim of this chapter is to present the notion of q-ROFS;.S based on the Dombi

operations. Since Dombi operational parameter possess natural flexibility with
resilience of variability. The behaviour of Dombi operational parameter is very
important to express the experts’ attitude in decision making. Further we present g-
ROFS;. DG aggregation operators including q-ROFS;.DWG, q-ROFS;,DOWG and g-
ROFSy.DHA operators. The basic properties of these operators are presented in detail
such as Idempotency, Boundedness, Monotonicity, Shift invariance and Homogeneity.
By applying develop approach, this manuscript contains the technique and algorithm
for MCDM . Further a numerical example is developed to illustrative the flexibility

and applicability of the developed operators.
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Table 7.11.

Comparative analysis of existing methods with proposed methods

Methods Score values of alternatives Ranking
#1 #2 #o3 #y

IFWG [5] 0.634397, 0.570364, 0.540043, 0.548168 foy > Hoy > oy > Fog
PYyFWG [75] 0.563338, 0.522164, 0.468469, 0.436953 foy > Hoy > oz > Ry
PyFDWG [69] 0.512353, 0.507842, 0.443545, 0.398963 foy = Hoy > oz > Ry
PyDFWG [68] 0.524211, 0.510858, 0.447564, 0.407124 foy > Hoy > g > Ry
g-ROFDWG [71] 0.688855, 0.700147, 0.66887, 0.632511 oy > foy > oy > Ry
g-ROFWG [30] 0.440017, 0.405538, 0.345699, 0.30311 by > Ry > foz > Ry
g-ROFS;DWG 0.609718, 0.604148, 0.559311, 0.548346 by > oy > oy > 1y
(proposed)

g-ROFS;DOWG 0.626935, 0.622094, 0.572875, 0.557955 by > oy > oy > 1y
(proposed)

g-ROFS;,DHG 0.553432, 0.54705, 0.505869, 0.510548 by > foy > Foy > Fog
(proposed)

Table 7.12. Ranking order based on different operational parameter of g-ROFS, DWG operator

Operational Score values of alternatives Ranking

parameter 8 #1 #2 s Ra
=1 0.640044, 0.631482, 0.583387, 0.568217 oy > foy > Fo3 > o
p =2 0.609718, 0.604148, 0.559311, 0.548346 toy > foy > Foy > g
p=3 0.587973, 0.58367, 0.54252, 0.534942 oy > foy > Fo3 > o
f =5 0.562564, 0.559175, 0.523482, 0.519643 oy > foy > Fo3 > Fo
f =8 0.545262, 0.54215, 0.511291, 0.509427 toy > foy > Ho3 > oy
g =12 0.5351, 0.531866, 0.504628, 0.503796 oy > foy > Fo3 >
g =16 0.530003, 0.526516, 0.501413, 0.501167 oy > foy > Ry >
g =20 0.526982, 0.52326, 0.499524, 0.499673 toy > foy > Foy > g
p =25 0.524602, 0.520651, 0.498028, 0.498525 oy > Hoy > Foy > Fog
g =30 0.523041, 0.51892, 0.497034, 0.497782 Ry >Ry > Ry > Fog
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Chapter 8

Orthopair fuzzy soft rough aggregation operators

The aim of this chapter is to investigate the hybrid concept of S¢S and RS with the
notion of g-ROFS to obtain the new notion of g-ROFS;,RS. In addition, some averaging
aggregation operators such as q-ROFS;.RWA, g-ROFS;.ROWA) and q-ROFS.RHA
operators are presented. Then basic desirable properties of these investigated averaging
operators are discussed in detail. Moreover, we investigated the geometric aggregation
operators such as g-ROFS,RWG, q-ROFS;.ROWG and g-ROFS;.RHG operators, and
proposed the basic desirable characteristics of investigated geometric operators. The
technique for MCDM and step wise algorithm for DM by utilizing the proposed
approaches are demonstrated. Finally, a numerical example for the developed approach
is presented and a comparative study of the investigated models with some existing
methods is brought to light in detail which shows that the proposed models are more

effective and applicable than existing approaches.

8.1. g-Rung orthopair fuzzy soft set
In Chapters 4 we have discussed the basic definitions and the desirable operations and

relations of PyFS;,S and q-ROFS;,S. For detail see Chapter 4, Sections 4.1 and 4.2.

8.2. g-Rung orthopair fuzzy soft rough set
This section is devoted to the hybrid study of q-ROFS with S5, S and RS to obtain the

new concept of g-ROFS;.RS. Some basic operations, a new score function and some

basic properties of the developed concept are investigated in detail.
8.2.1. Definition

Let (7, E) be a g-ROFS;,S over T. Any subset £ of T X E is said to a g-ROFS;, relation

from T to E and is defined as:
L={(#ys;),u(#s;), (£, si)(#i,s;) €T X E},

where : T X E - [0,1] and ¢: T X E — [0, 1] denotes the M'G and N MG with 0 <
[,U(&i, Sj)]q + [l/)(ki,Sj)]q < 1 for all (ki,Sj) €T XE.
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Table 8.1, Tabular form of g-ROFSy, relation £ from T to E

L Sy Sy Sn

#q (M(/&1'51)'¢(k1'51)) (#(kl'sz);lp(kl;sz)) (M(/%»Sn)»lp(kpsn))
%2 (H(%Zisl)' lp(’kZ'sl)) (#(kz'sz)' 1/)(/"/2'52)) (.U(/&Z:Sn)» lp(’kZJSn))
’km (H(’km' 51)' w(’km' 51)) (.u(’km' SZ)' w(’km' SZ)) (‘Ll(km, Sn)t lp(’km' Sn))

IfT = {£4, £3, ..., o} and E = {sy, s,, ..., s}, then g-ROFS, relation £ from T to E
can be presented in the following Table 8.1. In view of above definition of g-ROFS;,

relation, we can define the g-ROFS;.RS as:

8.2.2. Definition

Consider a universal set T, E be the set of parameter and (7, E) be a g-ROFS;,S. Let £
be an arbitrary g-ROFS}, relation from set T to E. The pair (T,E, £) is said to be g-
ROFS;, approximation space. For any optimum decision normal object M €

q — ROFS® | then the lower and upper approximation of M w.r.t approximation

space (T, E, L), are represented and defined as:

L) = {(féi:&(%i),ﬁ(%i)) |[#; € T} (8.2)
£ = { (40 1A, ;R 1R € T, (83)
where

wi (k) = /\[#L(/&psj) Ae(s)], () = \/[I/JL(’%'SJ)VIPM(SJ)]

SjE[E SjE]E

B =\ [telbos Vi ()] B89 = [\[e(ho5) A e ()

SjE[E SjE]E

such that

0= [ﬂ(ki)]q + [ﬁ(/&i)]q <1and0< [M_j(/&i)]q n [l/J_j(/&i)]q <1
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It is clear that £L(M) and L£L(M) are two g-ROFSs inT. Thus the operators
L(M),L(M) : q—ROFS;," > q — ROFS;," are respectively known as lower and
upper g-ROFS;.R approximation operators. Therefore g-ROFS.RS is a pair L(M) =

(Lo, Z()) = (/z @ (), (fao) : (rj(&i),w_j(ko)).

For simplicity we can write L(M) = (Q(M),Z(M)) = <J/’ai, <ﬂ(/ai),ﬂ(/éi)>,

(u—,-(/ai),zp_j(fai))> as Lg (M) = (LS,(ML-),L_S,.(Mi)) = (( wy by ), (i, wT,-))
and called g-ROFS;.R value (q-ROFS.RV), if there is no confusion.

8.2.3. Remark
(@ Ifqg =1, is fixed then the developed g-ROFS;.R approximation

operators reduced to IFS;.R approximation operators.
(b) Ifq =2, is fixed then the developed g-ROFS;.R approximation

operators reduced to PyFS;.R approximation operators.

Consider the following example for better understanding the concept of g-ROFS.R

approximation operators.
8.2.4. Example

Suppose a decision maker Z purchase a house from the set of five houses T =
{#1, #oq, #o3, %4, %25} under consideration. Let the parameter set E = {sq,S;, S3, S4},
where s; = beautiful,s, = large in size, s; = expensive and s, = location. A
decision maker Z wants to purchase a house from the available houses which fulfill the
utmost extent of given parameters. Consider the decision maker Z presents the gorgeous

of houses in form of g-ROFS;, relation £ from set T to E and is given in Table 8.2.

Consider a decision maker Z presents the optimum normal decision object M which is

a -ROF subset over parameter set E, that is:
M ={(s1,0.9,0.2), (55, 0.4,0.6), (53,0.8,0.4), (54, 0.5,0.1)}

Now by using Egs. (8.2) and (8.3), we have
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Table 8.2, g-ROFS, relation fromset T to E for g = 3

L S1 S, S3 Sa

fq (0.9,0.4) (0.8,0.2) (0.7,0.3) (0.65,0.2)
., (0.8,0.5) (0.5,0.1) (0.85,0.2) (0.3,0.7)
fos (0.6,0.9) (0.2,0.6) (0.6,0.1) (0.95,0.3)
oy (0.7,0.4) (0.93,0.4) (0.4,0.2) (0.5,0.1)
fes (0.3,0.7) (0.78,0.25) (0.8,0.15) (0.7,0.4)

() = 0.4, P, () = 0.6, iy (£y) = 0.3, P, (#) = 0.7, us (k) = 0.2,
Y3(3) = 0.9,y (y) = 0.4, Y, (£y) = 0.6, ps(hs) = 0.3, Ys(ks) = 0.7

Uy (#1) = 0.9, E(’ﬁq) = 0.1, u;(#,) =0.9, @(/&2) = 0.1, uz(#£3) = 0.95,
Y3 (£3) = 0.1, 1;(£,) = 093, P,(£,) = 0.1, iz (£5) = 0.9, Ps(£s) = 0.1

Now to get the lower and upper q-ROFS;;R approximation operators;

L) = {(#4,0.7,0.6), (£,,0.3,0.7), (£3,0.2,0.9), (%,,0.4,0.6), (£5,0.3,0.7)}
L) ={(#,,0.9,0.1), (#,,0.9,0.1), (#5,0.95,0.1), (£,,0.93,0.1), (£5,0.9,0.1)}
Therefore, L(M) = (Q(M),Z(M))

B {(kl, (0.7,0.6),(0.9,0.1)), (£, (0.3,0.7),(0.9,0.1) ), (%5, (0.2,0.9), (0.95, 0.1)),}
B (#4,(0.4,0.6),(0.93,0.1)), (#s, (0.3,0.7),(0.9,0.1))
8.2.5. Definition

Consider sz(Ml) = <sz(M1),L_Sj(M1)> for (j = 1,2) are the two g-ROFS;RVs.

Then the following operation are defined.
(1) Li, (M) U Lg,(My) = {(i(]\/{l) U ﬁ(]\ﬂ)); (L_sl(Ml) U

L_sz(Ml))};
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(ii)

(iii)

(iv)

v)

(vi)

(vii)

(viii)

(ix)

Ls, (M) N Ly, (M) = {(i(]vﬁ) n ﬁ(]‘/ﬁ)); (L_sl(Ml) n

L_Sz(Ml))};

L, (M)® Ly, (M) =

{(ﬁ(wﬂl)@ Ls, (Ml)) (L, 00)e ﬁ_sz(Ml))};
L, (M)® Ly, (M) =

{(ﬁ%)@ @(Ml))(ﬁ_slml)@ L—Szmo)};
L, M) € LSZ(MI) = (ﬁ(ﬂ/&) c ﬁ(]‘@)) and (L_sl(M1) c

L,0M));

als, (M) = (ale(Ml),AL_Sl(Ml)> for a > 1;

a

(le(Ml))a = ((ﬁﬁ‘@) ,(L_&(Ml))a > for a > 1.

Lg, (M,)¢ = (sz(Ml)C,L_Sj(Ml)C>, where L (M;)€ are L (My)° the
complements of g-ROFSR approximation operators
Ly, (M) and L, (M), ie. Lo, (M) = (Y, ty):

L(My) = L(M,) iff L(M,) = L(M,) and L(M;) = L(M);

8.2.6. Definition

Let £, (My) = (ﬁ (Ml),L_Sl(Ml)> = ((@ a1 ), (i, E)) be a g-ROFS;RV.

Then the score function for L (M) is given as.

Sc

(le(M1)) = %(@q + | - @q - Eq): Sc (le(M1))

€[-1,1] andg=>1.

Greater the score value, greater the g-ROFS;RV is.
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8.2.7. Proposition
Let (T,E,L) be qg-ROFS;. approximation space. For any two L(M;) =

(Q(Ml),f(Ml)) and L(M,) = (Q(Mz),f(Mz)) q-ROFS;.RSs over a common

universe set T. Then the following properties are holds.

(i) ~ (~ £(My)) = My, where ~ L(M,) is the complement of L(M,) ;
(ii) LM) U LM,) = LM,) U LM;), LM;) N LOM) = LIM,) N
L(M;)

(i)~ (L) VL)) = (~ L)) N (~ L(OM));
(iv)  ~ (L) NnLM)) = (~ LMYD) U (~ LM));
(V) If M; € M,, then L(M,) S L(M,);

(i) LM, UM,) 2 L(M,) U L(M);

(Vi) LM, N M,) € LM N L.

8.3. g-Rung orthopair fuzzy soft rough averaging aggregation

operator
This section is devoted for the study of q-ROFS;.RA aggregation operators such as g-

ROFS;.RWA, g-ROFS;,ROWA and g-ROFS;.RHA operators. We will present the

fundamental properties of these operators in detail.

8.3.1. g-Rung orthopair fuzzy soft rough weighted averaging operator
In this subsection the detail study of g-ROFS;.RWA operator and their basic properties

such as Idempotency, Boundedness and Monotonicity etc. are investigated.

8.3.1.1. Definition

Let £, (M;) = (sz(Ml-),L_sj(Mi)> (i=12,..,m, j=1.2,..,n) be the collection

of -ROFS;RVs. Let W = (Wy, Wy, ..., Wy)" and @ = (g, Uy, ..., W,)" be the weight
vectors of experts £; and parameters s; with X2, w; =1, X7, %; =1 and 0 <

w;, 4; < 1 respectively. The g-ROFS;,RWA operator is defined as:
q — ROFS;RWA (£, (M), ..., L, (M)

= (EB?:ﬂjj (ea?lﬂ:"iﬁsj(]‘/[i));@?ﬂﬂj (ea?:llM:/iL_sj(Mi)) >
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In view of above definition the aggregated result for g-ROFS;,RWA is given in the
following Theorem 8.3.1.2.

8.3.1.2. Theorem

Let sz(]v[i) = <L5j(Mi),L_5j(Mi)) (i=12,..,m, j=12,..,n) be the collection

of g-ROFS;RVs. Let W = (Wy, Wy, ..., Wy,)T and @ = (U, Uy, ..., Uy)" be the weight
vectors of experts #£; and parameters s; with X2, w; =1, Y7, %; =1 and 0 <

w;, u; < 1 respectively. Then g-ROFS;,RWA operator is given as:

q — ROFS;RWA (L, (M), ..., Lg, (M)

- lea};lﬁj (ea?ilﬁiﬁ(Mi))'@?ﬂﬁf (eaﬁl‘T’iL_”(Mi))l
(. n s om S\G nm _ﬁj\_
{ 11_[(“(1“—) ) H<W—> J}'
B (q n o, om 4omm w %)
{k [ Jo-mon) ) J}

Proof: By using Mathematical induction to prove the result.

As by operational law

£4, (M) @ Lo, () = ( (112, 1) @ (a2, 12 (7, 9200 (7. 952

q R R - A PR —
= [(i/&q t 2+ @@) <JM11 Tt T ¢12>l

and

S e P )

Suppose the result is true form = 2 and n = 2, that is
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q ~ ROFS;RWA (£,(M), £, (M), )

= l®;=1ﬁj <®?=1V=Vi1:sj (M; )) ) 63]2'=11=1j (®?=1WiL_Sj(Mi)) ]

Now consider

q — ROFS;cRWA (£L,(), £,, (M), )

= I@Jzﬂﬁj <®12=1VT11'LS]'(ML')> ,BF_11 (@iz=1“=/iﬁ_sj(Mi))

[
_|
|
|

q — ROFS;,RWA (L, (M), Ly, (M), )

[ [

- TITew)

The result is true form = 2 and n = 2.

Now consider the result is forn = k; and m =k,
q — ROFS;,RWA (sz (M), Ls, (M), .wr, L, (Mk2)>
_ ( =
B kq k; VT; ]
=TT T
j=1 \i=1
J{ q kq i;
wi
-] | ﬂ<1 ~5) H
It j=1 \i=

kq

11

kq

k2

i=1

i

lpl]

{u1 <W1le (M )€|9W2£s1 (M, )) @i, <VT’1§(M1 )@Wzﬁ(]‘@ ))} ._

@ (72, 00 em,L, 06,)) 0, (WL, 06)@m,L, () )} |

;
)

Next to show that the result hold forn = k; + 1 and m = k, + 1, so we have
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q — ROFS;.RWA [(sz (M), Lg, (M), .., Lg, (]V[kz)) Loy (M)

|o2.3, (ea"av-vlf: ,.(Mo) Oy, 11 (v=vk2+11:sk1“(mk2+l)> |
|
)]

= | ~ ~ B L
l @JIlelﬁj (®k21WLL ](Ml)) ea7-7](1+1 (Wk2+1Lsk1+1(Mk2+1)

. ki+l [kp+1 \Y ky#1 [kpH1 uj
Wi —
4 1-— (1 - ,U,l']'q) ) l,l}ij ¢ )
j=1 i=1 j=1 i=1

ki+1 [ky+1 U ga+1 kot

(
I
4' 1_[ 1_[(1 - ﬂuq>W1 : 1_[ d’u

This implies the result is true for n = k; + 1 and m = k, + 1. Therefore the result

hold for all m,n > 1.

Since it is clear that sz(Ml-) and L_Sj(]\/[i) are g-ROFVs. So by Definition 8.2.7, we
have @7, %; (@ﬁlﬁiﬁsj(Mi)> and @7, 1 (@{Zlﬁiﬁ_sj(]\/[i)) are also q-ROFVs.
Therefore, q — ROFS;.RWA (le(Ml), ...,Lsn(]v[m)) is also a g-ROFS;RV in
approximation space (T, E, £).

8.3.1.3. Example

Let T = {#4, %,, %5} be the set and M = {s;,s,} € E be the set of parameter with
weight vector w = (0.25,0.3,0.45)T for #; (i = 1,2,3) and @ = (0.55,0.45) for
s; (j = 1,2). Then g-ROFS;.RVs is given in Table 8.3.

Table 8.3, Tabular representation of sz(]vl‘l-) = (ﬁsj(Mi),,E_sj(Mi))

L s S

£ ((0.9,0.3),(0.8,0.4)) ((0.55,0.2),(0.76,0.14))
£, ((0.7,0.1),(0.2,0.75)) ((0.92,0.3),(0.6,0.3))
fosg ((0.92,0.25),(0.65,0.15)) ((0.4,0.85), (0.88,0.12))
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q — ROFS;,RWA (le (M), ., Ly, (]V[m))

= l®;=1ﬁj <®1'3=1V=Vil:sj(]v[i)> ) 63]2'=11=1j (®?=1‘4=/iL_Sj(Mi))l

(1 — 0.553)025(1 — 0.923)025(1 — 0.43)045]0.45 )7 5
k (0_30.250.10.30.250.45)0.55 (0.20'250.30'30.850'45)0'45 J

{(3\/1 _ ( [(1— 0.43)025(1 — 0.23)0.25(1 — 0.653)0:45]055 ) \>
[ )

{(3\/1 _ ( [(1— 0.93)025(1 — 0.73)025(1 — (.293)0-45]055 ) ) |
[

(1—-0.763)925(1 — 0.63)%25(1 — 0.883)0-45]0.45
| k (0_40.250_750.30_150.45)0.55(0_140.250_30.30_120.45)0.45 } |

= [(0.831432,0.255487), (0.72581,0.26258)].

From the analysis of Theorem 8.3.1.2, q-ROFS;;RWA operator has the following

properties.

8.3.1.4. Theorem

Let £,.(M;) = (L, (M), L. (M) ) (i =1,2,..,m, j =1,2,..,n) be the collection
] ] ]

of g-ROFS;RVs. Let w = (Wy, Wy, ..., Wy,)T and @ = (U, Uy, ..., U,)" be the weight
vectors of experts #; and parameters s; with X, w; =1, Y7, %4; =1 and 0 <
w;, u; < 1 respectively. Then the following properties hold for g-ROFS;.RWA

operator:
Q) (Idempotency) If sz(]v[l-) =E&W) (foralli=1,2,..,m andj =
1,2, ...1m), where £,(M) = (g (M),e_S(M)) = ((v.4), (b, d)). Then

q = ROFS;RWA (L, (M), Ly, (M), .., L, (M) = E(M).

(i)  (Boundedness) Let (sz(Mi))_ =
- +
(m_inm,ianj(Mi),maxmaxLSj(Ml-)> and (sz(Mi)) =
J — J t

(max max L (M;), min min L_sj(Ml-)) Then
J 2 J t
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(£5,000) < q— ROFSERWA (L, (M), £5, (M), ., L5, (M)
+
(iii)  (Monotonicity) Let & (W) = (85,.(]\@),8_5,.(]\6)) (i=12,..m j=
1,2,..,n) be another collection of g-ROFS;RVs such that &, (V) <
Ly, (M) and Eg (W) < L, (M;). Then
q — ROFS; RWA (&, (M), £, (M), ..., &, (M)
< q— ROFS;.RWA (le(Ml),LSZ (M), o) L, (Mm)).

(iv)  (Shift invariance) Let & () = (E(N),S_S(N)) = ((b.q),(5.d)) be

any other ¢ — ROFS;.RV. Then
q = ROFS; RWA (L, (M)BE,(N), L, M) DE(N), ..., Lg, (M) DEV))

= q — ROFSp,RWA (Ly, (M), L, (M), ..., L, (M) ) DE(V).

(v) (Homogeneity) For any real number A > 0;

q = ROFS;RW A (AL, (M), AL, (M), ..., AL, (M)
= Aq — ROFS;, RWA ( Ly, (M), Lg, (M), ..., Lg, (M) ).
Proof: (i)  (ldempotency)  Given  that L, M) =&, (V) (foralli=
1,2,..,m and j = 1,2,...n), where £,(M) = (E(M),E_S(M)) =((p,a).(p.2))

q — ROFS; RWA (L, (M), ..., Ly, (M) )

= <®7=1ﬁ] <®§21‘T/L’LSJ- (ML)> ’ @?2117]

/N

oL 7L 00)) )

(q ([T 6-w9") ] (ﬁl—”“)uj)
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For all i,j L, (M) = £(N) = (g(]vr),e_s(m)) = ((b.d),(5,d)). Therefore,

(-1 1))

(e i1

_ (%(M),E_S(M)) = &,(V)
Hence

q — ROFS; RWA (L, (M), ..., Lg, (M) ) = E,(NV)

(i)  (Boundedness)  As (LSj (Mi)> = [(m,-in ml_in {”A} , max max {&}) )

(mjin miin{/,t_ij} , MAX mlax{lp_u}ﬂ and

(21060 =)o) (pemp) o)

j i
L, (M) = [(&ﬁ)(u_ul/)_u)] To prove that

- +
(£5,(MD) < g = ROFSRWA (L, (M), £5,(M), ., £, (M) < (£, (M)
Since foreachi = 1,2,...,mand j = 1,2, ..., n, we have

in min{ . . - ..q — .4 —
mjmmim{@} < Hij < m}axmiax{ui} <1 m}axml_ax{ui } <1 Hij <1

min min {,ul-jq}
Ji i U2

194



<l

N zl <f1[ (1 B {iy }>V=Vi)u] = jn <lm (1- ul,")‘”i>uj
= ﬁ (ﬁ (1 — min min {ﬁq})ﬁi) !

j=1 \i=1
y o\ I 5
oS <(1 —m]axmiax{@q})ﬂ:lwl) iy _ n <ﬁ (1 _Eq)m‘> j
1
n =\ i T
<(1 —m]mmlrl {,u_ })Z{Ll%) "
n m N
& (1 — max max {@q}) < 1_[ 1_[( _ﬂq)wl) < (1 — minmin {”iq})
n m o o
et- (1 ~ minmin {@qD 1= (1_[ (1-py9) ‘)

<1- (1—maxmax Ui
J

IA

Hence

q m n . uj
minmin {1} < |1 —ﬂm(l—y) )
j=1 \i=1
< m}ax max {@} (8.4)

Now foreachi = 1,2,...,nand j = 1,2, ..., m, we have

mjin miin {E} Y ax max {I/Ju}

= 1_[ (1_[ (mln min {lpu}>v=vi>uj < lj <:1 (ﬁ)Wi>uj

5 ﬁ(ﬁ (mama () )

j=1 \i=1

195



~((mominta)™") ™ <1 ([T )")

IA
/
=i
>
B
gl
>
~
B
~.
N —
N—
™M
It}
pat
=
N——
™M
.3
ﬂ
<
~.

this implies that

mjin miin {¢ij} < (1_[ (&)Wl) < mjaxmlax {&}

j=1 \i=1

Similarly we can show that

. n o o,om A\
. . (— —q\Wi
mjm mim{,ul-j} < [1- 1_[ (1_[(1 - .uijq) )
1 i=1

j=

< m]ax miax{,u_l-j} (8.6)

and
mjin miin{l/)_ij} < 1_[ (n(lp_u)\?vl) < m}ax ml_ax{lp_l-j}
j=1 \i=1

So from Egs. (8.4),(8.5), (8.6) and (8.7) we have

n m _\ Y
mjin miin {ﬂ} < ' 1- 1_[ <1_[ (1 — EQ)M> < m}ax miax{ﬂ};

j=1 \i=1

o) <[ ([ T0)") < o)

] l

min m,in{t/J_ij} < 1_[ <1_[(1/J—U)Wl) < mjax miax{lp_ij}
j=1 \i

] l
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(8.7)

n m _ u]
min m,in{/x_l-j} < [1- ( (1 — ,u_l-jq)wi) < mjax miax{/,t_ij} and
i



This implies that (sz(Mi))_ <q-
+

ROFS;RWA (L5, (M), Lo, (M), ., L, (M) < (£5, ()

(iii) Monotonicity: Since &,(V;) = (esj(m),s_sj(m)> E <(bi]-, di,-),(b_i,-,d_i,-)>

and

L, (M) = (ﬁ(M»,Lj(Mﬂ) = ((ﬂ E),(;Tij, w_l-]-)>. To show that &, (V) <

Ly, (M) and € (W) < L (M) = 1,2,..,m) and (j = 1,2,...,n), 50

j=1 \i=1 j=1 \i=1
(I O ( )
j=1 \i=1 j=1 \i=1
' 1—ﬁ<ﬁ (1_51)”:”‘) J < —ﬁ(ﬁ (1—ﬂq)ﬁ">uj (8.8)
j=1 \i=1 j=1 \i=1
Next
ay =y~ ([ [(@)")2] J0)"
> .n (ﬁ (d_)) T (ﬁ (w_)) 89)
j=1 \i=1 j=1 \i=1

< |i- (1_[(1 —M—U")W") (8.10)



ﬁ (ﬁ(d_ﬁ)m)uj = ﬁ <ﬁ(¢u Wl,)“f (8.11)

j=1 \i=1 j=1 \i=1

Hence from Egs. (8.8), (8.9),(8.10) and (8.11), we get

£, (W) < L; (M) and E;(W) < I (M)
Therefore,

q — ROFS; RWA (&, (M), (M), .., &, (M) )

< q = ROFS;RWA (Lg, (M), Ly, (M), .., £, (M)
iv: (Shift Invariance) As E,(M) = (E(M),S_S(M)) = ((Q,Q), (5,3)) is any

0-ROFS;,RV and Ly (M;) = <sz(Ml-),L_5j(Mi)> = <(‘ﬂ E)(m 1,[1_”)) are the

collection of g-ROFS¢.RVs, so
£, (M) ® E,(M) = [(zz_ (M) @ E,(M), L, (M) @ e_sm)]

AS

L, (M) @ E,(M) = (Jl ~ (A= DA - b ¢_4>
Therefore,
q — ROFS; RWA ( Ly, (M)®E (M), Ly, (MR)DE(M), .., L, (M3)DES(M))

= [@?:1’% {@ﬁlti <ﬁ(]\/ﬂ)®55(]\/{')>} @7 1"’]{ (»C (M;))DES (M)>}l

:1 =1

<4Jlﬁ<ﬁw> o o))
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®[(b,d), (b, d)]

= q — ROFSp RWA (L, (M), Ly, (M), ..., Ls, (M) ) ©E,(M)

Therefore proved is completed.

iv: (Homogeneity) For a real number 2 > 0 and LSJ.(Ml-) = <sz(]v[i),£_sj(]\/[i)>

be a g-ROFS;.RVs, then

ALs (M) = </1 Lg;(M;), 4 L—sj(Mi)>

AL, () = [(Jl -(1- M’)A'@ﬁ ' (Jl -(1- EQ)A'EAN
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i=1

j=

= 1q — ROFS; RWA(S,,,,S.,, - Se,..)
Hence, the proof is completed.

8.3.1.5. Remark
(a) If the value of rung g = 1, then the proposed q-ROFS;.RWA operator
reduced to IFS;,RWA operator.

(b) If the value of rung g = 2, then the proposed q-ROFS;.RWA operator
reduced to PyFS; RWA operator.

(c) If there is only one soft parameter s;; (meansn = 1), then the

proposed g-ROFS;.RWA operator reduced to g-ROFRWA operator.

8.3.2. g-Rung orthopair fuzzy soft rough ordered weighted averaging
operator
In this subsection the detail study of g-ROFS;;ROWA operator and their basic

properties such as Idempotency, Boundedness and Monotonicity etc. are investigated.

8.3.2.1. Definition

Let £, (M;) = (sz(Mi),E(Mi)> (i=12,..,m, j=1.2,..,n) be the collection

of Q-ROFS; RVSs. Let w = (Wy, Wy, ..., Wy,)" and @ = (U, Uy, ..., Uy,)" be the weight
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vectors of experts #£; and parameters s; with X2, w; =1, X7, %; =1 and 0 <

w;, Uu; < 1 respectively. The g-ROFS;.ROWA operator is defined as:
q — ROFS;ROWA ( Ly, (M), ..., Ls, (M) )

= (69?:117,- (ea?;iviﬁas,. (M») O (O, Lo, (1)) )

In view of above Definition 8.3.2.1, the aggregated result for g-ROFS;,ROWA is given
in the following Theorem 8.3.2.2.

8.3.2.2. Theorem

Let L‘Sj(Mi) = <sz(Ml-),L_5j(Mi)> (i=12,..,m, j=12,..,n) be the collection

of g-ROFS;RVs. Let W = (Wy, Wy, ..., Wy,)T and @ = (U, Uy, ..., Uy,)" be the weight
vectors of experts #£; and parameters s; with X2, w; =1, X7, %; =1 and 0 <

w;, u; < 1 respectively. Then g-ROFS;,ROWA operator is given as:
q — ROFS;ROWA ( Ly, (M), ..., Ls, (M) )

- (ea;-zlﬁj (ea?;ﬁiﬁas,ma) O T (O, WL, (M) )

(T (=)

where Lg;. (M;) = | Lss.(M;), Lss.(M;) | denotes the largest value of the permutation
] J ]

from i row and j* column of the collection i xj g-ROFS;RNs L (M) =

(Ls,.(Mi).LT,.(Mi)).
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8.3.2.3. Example

Consider the above Table 8.3 of Example 8.3.1.3, for the collection g-ROFSRVs
sz(Mi) = <L5j(Mi),L_5j(Mi)) and the new ordered of tabular representation of

Ls; (M;) through score function is given in Table 8.4, that is

Table 8.4, Tabular representation of Ly, (M;) = (Lasj(]v[i), E(MJ)

L 5; S
foy ((0.9,0.2),(0.8,0.4)) ((0.92,0.3),(0.6,0.3))

o ((0.92,0.25),(0.65,0.15)) ((0.55,0.2),(0.76,0.14))
oy ((0.7,0.1),(0.2,0.75)) ((0.4,0.85),(0.88,0.12))

Now
q — ROFS;;ROWA (L, (M), ..., Ls, (M) )

- |01 (@721, 000 ). 0117, (017, 000 |

q — ROFS;ROWA (L, (M), ..., Ly, (M) )
= [(0.838595,0.261642), (0.727318,0.255189)].

From the analysis of Theorem 8.3.2.2, g-ROFS;,ROWA operator has the following

properties.

8.3.2.4. Theorem

Let £, (M;) = (sz(Ml-),L_sj(Mi)> (i=12,..,m j=1.2,..,n) be the collection

of -ROFS;RVs. Let W = (Wy, Wy, ..., Wy)" and @ = (g, Uy, ..., W,)" be the weight
vectors of experts £; and parameters s; with X2, w; =1, X7, %; =1 and 0 <
w;, u; < 1 respectively. Then the following properties hold for g-ROFS;.ROWA

operator:
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0] (Idempotency) If Lssj(]v[l-) =E&W) (foralli=1,2,..,m andj =
1,2, ...n), where £,(M) = (é(]v[),g_s(wr)) = ((b.4), (b, d)). Then

q = ROFS;ROWA (Ly, (M), £, (M), ..., Lg, (M) ) = E5(M)
(i)  (Boundedness)

Let (L(gsj(]\/[i)> = (m_inm,inLSsj(JV[i), maxmaxKSj(Mi)) and
J r 7 J t
+ —
J 7 J l
([,55]. (Mi)) < q — ROFS;, ROWA (Ls, (M), Ly, (M), ..., £, (M)
+
< (£5,01)
(iii)  (Monotonicity) Let & (V) = <£Sj(]\fl-),£_sj(]\fi)> (i=12,..m j=
1,2,...,n) be another collection of g-ROFS;RVs such that Esj(]\fi) <
Ly, (M) and €, (V) < L, (M;). Then
q — ROFS; ROWA (&5, (M), €, (M), ..., &5, (M)
< q — ROFS;ROWA (Ly, (M), £, (M), ..., Lg, (M) ).
(iv)  (Shift invariance) Let £ (N) = (E(N),E_S(N)) = ((Q,Q),(E,E)) be
any other ¢ — ROFS;.RV. Then
q = ROFS;ROWA (Ly,(M)®E((N), Ly, (MR)DES(N), ..., Ls, (M) DES (V) )

= q — ROFS;,ROWA (le (M), Ls, (M), ..., L, (Mm)) DEL ().
(v) (Homogeneity): For any real number 1 > 0;
q = ROFS;ROWA (AL, (M), AL, (M), ..., AL, (M)
=1q

— ROFS;,ROWA (L, (M), Ly, (M), ..., Lg, (M) )
Proof: Proof follows from Theorem 8.3.1.4.

8.3.2.5. Remark
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(a) Ifthe value of rung g = 1, then the proposed g-ROFS;.ROWA operator
reduced to IFS;,ROWA operator.

(b) If the value of rung g = 2, then the proposed g-ROFS;.ROWA operator
reduced to PyFS;,ROWA operator.

(c) Ifthere is only one soft parameter s;; (means n = 1), then the proposed
g-ROFS;.ROWA operator reduced to g-ROFROWA operator.

8.3.3. g-Rung orthopair fuzzy soft rough hybrid averaging operator
From the analysis of g-ROFS;RWA and g-ROFS;.ROWA operators, it is observed

that g-ROFS;.RWA operator weight the g-ROFVs while utilizing the score function g-
ROFS;.ROWA operator weight the order position as well. However, g-ROFS;,RHA
operator do the both on the same time means weighting the numbers and order. The

basic properties such as Idempotency, Boundedness and Monotonicity etc. are also
presented in the same section with detail.

8.3.3.1. Definition

Let £, (M) = (LS].(ML-),L_SJ(ML-)> (i=12,..,m, j=1.2,..,n) be the collection

of g-ROFSRVs. Let v = (v, vy, ..., v)" and 1 = (1,13, ..., 1,)" be the weight
vectors of experts %; and parameters s; with Y%, v; = 1, X7 5= 1and 0 < v, 75 <
1. Consider w = (Wy, Wy, ...,w,,)T and @ = (iiy,1,,...,u,)T be the associated
weight vectors of experts #£; and parameters s; with 7%, w; = 1, X7, %; = 1and 0 <

w;, u; < 1 respectively. The g-ROFS;.RHA operator is defined as:
q — ROFS;RHA (L, (M), ..., L, (M) )

- (@1 (@143, 00 ) 01, (012,15, 00) )

From the above definition the aggregated result for g-ROFS;.RHA operator is given in
the following Theorem 8.3.3.1.
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8.3.3.2. Theorem

Let LS].(M}) = (sz(Mi),L_sj(Mi)> (i=12,..,m, j=12,..,n) be the collection

of g-ROFS;RVs. Let v = (v, vy, ..., v)" and r = (1,13, ...,1,)" be the weight
vectors of experts £; and parameters s; with Y%, v; = 1, Y715 = 1and 0 < vy, 77 <
1. Consider w = (Wy, Wy, ...,w,,)T and @ = (iiy, 1y, ..., U,)T be the associated
weight vectors of experts £; and parameters s; with Y%, w; = 1, X7_;4; = 1and 0 <

w;, u; < 1 respectively. Then g-ROFS;.RHA operator is given as:
q — ROFS;RHA ( Ly, (M), ..., Lg, (M) )

= <@}1=11=‘j <@ﬁ17’i£:§sj (Mi)> ,@j-1 U (@ﬁﬂ":/i@(]"[i)) >

~ i=1 j=1 \i=1
(e i)
j=1 \i=1 j=1 \i=1

Where Lj, (M;) = (Lgsj(Mi),Ksj(Mi)> = <n4rierSj(Ml-), nvier_Sj(]v[i)> denotes
the largest value of the permutation from it"* row and j** column of the collection i x
Jj 9-ROFS;RVs Ly (M) = (sz(Mi),L_Sj(Mi)> andn represent the balancing

coefficient.

8.3.3.3. Example

Consider the above Table 8.3 of Example 8.3.1.3, for the collection g-ROFS;.RVs
L, (M) = (Ls]. (MQ,LTJ.(MJ) with v =(0.33,0.37,0.3)T and r =

(0.42,0.58)" be the weight vectors of experts #; and parameters s;. Consider w =

(0.36,0.34,0.3)T and u = (0.55,0.45)7 be the associated weight vectors of experts

205



#; and parameters s;. The tabular representation of L;’;sj(J\/[i) through operation law

and score function are given in Tables 8.5 and 8.6 as Lis,(M) = (L;gs]_(Mi), %(MQ) =

(Tl’U’iTjLSj ), Tl’U’iTjL_Sj(]V[i)>:

Table 8.5, Tabular representation by using operation law for Lgsj ;) = (Lgsj (MJ,@(ML-))

L Sy Sz

foy ((0.7483,0.1247), (0.6366,0.1663)) ((0.4629,0.1148), (0.6561,0.0804))
o ((0.5624,0.0466), (0.1551,0.3497)) ((0.8533,0.1931), (0.5254,0.1931))
Fog ((0.7574,0.0945), (0.4853,0.0567)) ((0.3238,0.4437), (0.7661,0.0626))

Table 8.6, Tabular representation after using Score function Lj;sj(Mi) = <L;§Sj(Mi), @(Mi))

L S Sz

oy ((0.7483,0.1247), (0.6366,0.1663)) ((0.8533,0.1931), (0.5254,0.1931))
+, ((0.7574,0.0945), (0.4853,0.0567)) ((0.3238,0.4437), (0.7661,0.0626))
' ((0.5624,0.0466), (0.1551,0.3497)) ((0.4629,0.1148), (0.6561,0.0804))

Now  q— ROFS;,RHA (L (M), Lsn(Mm)) = <ea,2-=1ﬁ,- <@§=114=ziLgsj(Mi)>,
031 (01725, 00)) )

q — ROFS;RHA (L, (M), ..., Lg, (M) )
= [(0.701609,0.129765), (0.600425,0.122969)].

From the analysis of Theorem 8.3.3.2, ¢-ROFS;.RHA operator has the following

properties.
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8.3.3.4. Theorem

Let LS].(M}) = (sz(Mi),L_sj(Mi)> (i=12,..,m, j=12,..,n) be the collection

of g-ROFS;RVs. Let v = (v, vy, ..., v)" and r = (1,13, ...,1,)" be the weight

vectors of experts £; and parameters s; with 7%, v; = 1, X715 = 1and 0 < v, 17 <
1. Consider w = (Wy, Wy, ...,w,,)T and @ = (iiy, 1y, ..., U,)T be the associated
weight vectors of experts £; and parameters s; with Y%, w; = 1, X7_;4; = 1and 0 <
w;, u; < 1 respectively. Then the following properties hold for g-ROFS;.RHA

operator:
M (Idempotency) If L;’gsl_(Mi) =E&W) (foralli=1,2,..,m andj =
1.2, ...n), where & (M) = (é(]\/[),g_s(]v[)) = ((b.2), (b, d)). Then
q = ROFS;RHA (L, (My), £, (M), ..., Lg, (M) ) = E(M)

(ii)  (Boundedness) Let (sz(Ml-)> = (mjn min L, (M;), max m.aXL_sj(Mi)) and
jooi joo
+ —
(,CS].(ML-)> = (maxmaxﬁsj(Mi),m_in min sz(Mi))- Then
] 2 ] 2
(LS].(ML-)> < q — ROFS;,RHA Ly, (My), L, (M), ..., L, (M)
+
(iili)  (Monotonicity): Let & (V) = <8Sj(]\fl-),8_5j(]\fi)> (i=12,..m j=
1,2, ...,n) be another collection of q-ROFS;RVs such that Esj(]\fi) <
Ly, (M;) and E_Sj(J\fl-) < L_Sj(]vq-). Then
q = ROFS;RHA (£5,(My), €5, (M), ..., €5, (M)

< q — ROFSpRHA (L, (M), Ly, (M3), ..., Ls, (M) )

(iv)  (Shift invariance): Let &(NV) = (é(N),Z(N)) = ((g,g), (E,E)) be

any other g — ROFS; RV. Then
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q — ROFS; RHA (L, (M)®E (W), L, MBE (N, .., Lg, (M) BE(N))

= q — ROFSp,RHA (Lg, (M), Ly, (M), .., £, (M) ) DES(N).
(V) (Homogeneity): For any real number A > 0;

q = ROFS;RHA (AL, (M), AL, (M), ..., AL, (M)

= Aq — ROFS;,RHA (Lg, (My), L4, (M), ..., £, (M;)).

Proof: Proof follows from Theorem 8.3.1.4.

8.3.3.5. Remark
(a) If the value of rung g = 1, then the proposed g-ROFS;RHA operator

reduced to IFS;,RHA operator.

(b) If the value of rung g = 2, then the proposed g-ROFS;RHA operator
reduced to PyFS; RHA operator.

(c) Ifthere is only one soft parameter s;; (means n = 1), then the proposed
g-ROFS;.RHA operator reduced to g-ROFRHA operator.

8.4. g-Rung orthopair fuzzy soft rough geometric aggregation

operator
This section is devoted for the study of q-ROFS;;R geometric aggregation operators

such as g-ROFS;RWG, g-ROFS;,ROWG and g-ROFS;.RHG operators. We will

present the fundamental properties of these operators in detail.

8.4.1. g-Rung orthopair fuzzy soft rough weighted geometric operator
In this subsection the detail study of g-ROFS;.RWG operator and their basic properties

such as ldempotency, Boundedness and Monotonicity etc. are investigated.

8.4.1.1. Definition

Let £, (M;) = (LS]_(ML-),L_S].(ML-)> (i=12,..,m j=1.2,..,n) be the collection

of g-ROFS,RVs. Let w = (Wy, Wy, ..., w,)T and i = (i, Uy, ..., U,)" be the weight
vectors of experts #£; and parameters s; with X2, w; =1, X7, %; =1 and 0 <

w;, 4; < 1 respectively. The g-ROFS;,RWG operator is defined as:
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q — ROFS;,RWG (1:51 (M), ..., Ly, (]V[m))

i }Ll{ &(ﬁ(m”)@}u}’ 7=1{ ™ (E(Mi))ﬁi}ﬁj

Based on above Definition 8.4.1.1, the aggregated result for g-ROFS;,RWG operator

is given in the following Theorem 8.4.1.2.

8.4.1.2. Theorem

Let L‘Sj(Mi) = <sz(Ml-),L_5j(Mi)> (i=12,..,m, j=12,..,n) be the collection

of g-ROFS;RVs. Let W = (Wy, Wy, ..., Wy,)" and @ = (U, Uy, ..., Uy,)" be the weight
vectors of experts #£; and parameters s; with X2, w; =1, Y7, %; =1 and 0 <

w;, 4; < 1 respectively. Then g-ROFS;,RWG operator is given as:

q — ROFS;RWG ( Ly, (M), ..., Lg, (M)

= ®?=1[®?;1 (ﬁ@‘@)) }

J

,®f=1 {®ﬁ1 (L_sj(]"[i))ﬁi}ﬁj

(0, m G| o m AN
1l (._ ﬂvzvi) , 1—U<H(1—Eq) ) }
B >n m 7 n,m ) af\
() T e |
\ j=1 \i=1 ]

Proof: Proof directly follows from Theorem 8.3.1.2.

Since it is clear that £, (M;) and L_Sj(]\/[l-) are g-ROFVs. So by Definition 8.2.5, we

wi uj
and ®}1=1{ [ (L—sj(Mi)) } are also Q-

<l

J

have ®}1=1{ ?i1<£sj(Mi)> }

ROFVs. Therefore, g — ROFS;,RWG (le (M), ..., L, (Mm)) is also a g-ROFS;.RN

in approximation space (T, E, £).

8.4.1.3. Example

209



Consider the above Table 8.3 of Example 8.3.1.3, for the collection g-ROFS;RVs
LS]. M) = (sz (Mi),L_Sj(Mi)) Then the aggregated result for ¢ — ROFS;,RWG is

given as:

q — ROFS;RWG (Lg, (M), ..., Ls, (M)

= ®]2'=1 {®i3=1 <sz(Mi)> l}

_( (0.90.250_70.30_920.45)0.55(0_550.250_920.30_40.45)0.45, \ _

{ 1 = ([(1 —0.33)025(1 — 0.13)025(1 — 0_253)0.45]0.55) }
k [(1—0.23)025(1 — .33)0.25(1 — 0.853)0:45]045 }

( (0.80'250.20'30.650'45)0'55(0.760'250.60'30.880'45)0'45, \

{ 3 1— ([(1 — 0_43)0.25(1 — 0_753)0.25(1 — 0_153)0.45]0.55) }
| [(1—0.14%)°25(1 — 0.33)°25(1 — 0.123)045]045/ |

uj

- {8 (Z(Mi))ﬁi}ﬁj

= [(0.715607,0.509925), (0.573442,0.484819)].

From the analysis of Theorem 8.4.1.2, q-ROFS;RWG operator has the following

properties.

8.4.1.4. Theorem

Let £, (M;) = (LS].(ML-),L_SJ(ML-)> (i=12,..,m, j=1.2,..,n) be the collection

of g-ROFS;RVSs. Let w = (Wy, Wy, ..., Wy, )T and @ = (U, Uy, ..., U,)" be the weight
vectors of experts #; and parameters s; with X, w; =1, Y7, %; =1 and 0 <
w;, u; < 1 respectively. Then the following properties hold for g-ROFS;.RWG

operator:
Q) (Idempotency) |If Ls]_(]v[i) =&(W) (foralli=12,..,m andj =
1,2, ...m), where £ (M) = (é (M),E_S(M)> =((2,4),(p,d)). Then

q = ROFS;RWG ( Ly, (M), L5, (M), .., Lg, (M) ) = E(M).
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(i)  (Boundedness)
Let (sz (]V[l-)> = (m_in min L, (M;), max max L_Sj(]\/[i)) and
J r 2 J !
+ —
(sz(Mi)) = (maxmaxﬁsj(Mi),min m,inLS].(JV[i)). Then
J r _Z J !
(sz(Mi)> < q — ROFSp,RWG (L, (M), Lg, (M), ..., Ls, (M) )
+
(iii)  (Monotonicity) Let & (W) = <£S]_ (]\Q),ST}.(]\Q)) (i=12,..m j=
1,2,..,n) be another collection of g-ROFS;RVs such that & (V) <
Ly, (M) and € (V) < L, (M). Then
q = ROFS; RWG (£, (M), £, (M), ..., &, (M)
< q = ROFS;RWG (Lg, (M), L, (M), ..., L, (M;)).
(iv)  (Shift invariance) Let £ () = (é(]\f),g_s(]\f)) = ((b.q),(5.,d)) be
any other ¢ — ROFS;.RV. Then
q = ROFS;RWG Ly, (M)DESN), L, (M)DES(N), .., Ls, (M) DES (V) )
= q — ROFS;,RWG (L, (M), Ly, (M), ..., Ls, (M) ) (V).
(v) (Homogeneity) For any real number A > 0;
q — ROFS,RWG (AL, (My), AL, (M), ..., AL, (M)
= Aq — ROFS,RWG (Ly,(My), L5, (M), ..., Lg, (M) ).
Proof: Proof are easy and follows from Theorem 8.3.1.4.

8.4.1.5. Remark
a) If the value of rung g = 1, then the proposed g- " operator
(@) If the value of 1, then th d g-ROFS:.RWG
reduced to IFS;,RWG operator.
the value of rung g = 2, then the proposed g- operator
(b) If the value of rung g = 2, then the proposed g-ROFS;.RWG op
reduced to PyFS;,RWG operator.

(c) Ifthere is only one soft parameter s;; (means n = 1), then the proposed
g-ROFS;.RWG operator reduced to g-ROFRWG operator.
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8.4.2. g-Rung orthopair fuzzy soft rough ordered weighted geometric

operator
In this subsection the detail study of q-ROFS;,ROWG operator and their basic

properties such as ldempotency, Boundedness and Monotonicity etc. are investigated
with detail.

8.4.2.1. Definition

Let £,.(M;) = L, (M), L. (M) ) (i =1,2,..,m, j =1,2,..,n) be the collection
J 3 J

of g-ROFS;RVs. Let W = (Wy, Wy, ..., Wy,)" and @ = (U, Uy, ..., Uy,)" be the weight
vectors of experts £; and parameters s; with X2, w; =1, Y7, %; =1 and 0 <

w;, u; < 1 respectively. The g-ROFS:.ROWG operator is defined as:
J f

q — ROFS;ROWG (L, (M), ..., Lg, (My) )

Jorfor. (se,00) ") e for (E00)")

In view of above definition the aggregated result for g-ROFS;,ROWG operator is given

uj =
J Uuj

in the following Theorem 8.4.2.2.

8.4.2.2. Theorem

Let Lo, (M) = [ L, (M), L, (M) ) (i =1,2,..,m, j =1,2,..,n) be the collection
j s j

of g-ROFS;RVSs. Let w = (Wy, Wy, ..., Wy,)T and @ = (U, Uy, ..., U,)" be the weight
vectors of experts #; and parameters s; with X, w; =1, Y7, %; =1 and 0 <

w;, u; < 1 respectively. Then g-ROFS;,ROWG operator is given as:

q — ROFS;ROWG (L, (M), ..., Lg, (M) )

= ?:1 { i=1 <L55j (ML)>

Ui

} RS (z:—m)}

§_II
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( n m 17] q n m _ 17]\
4 Wi 1- 1—s?)
Usij ’ lnb&] ’
j=1 \i=1 j=1 \i=1 J
( n m ﬂ] q n m 7 ﬁ]\
— a\ Wi
3 ( Usij Wl) ) 1- (1_[ (1 —%u ) > }
szl i=1 j=1 \i=1 J

where L, M) = <L5$j (M), Lss; (Mi)> denotes the largest value of the permutation

from i row and j** column of the collection iXj g-ROFS;RVs L (M;) =
<sz(Mi);L_sj(Mi)>-

Proof: Proof follows from Theorem 8.3.1.2.

8.4.2.3. Example

Consider the Table 8.3 of Example 8.3.1.3, and Table 8.4 of Example 8.3.2.3, for the
collection g-ROFS;RVs Lg, M) = <sz(Ml-),L_5j(Mi)> and their aggregated is
given as:

q — ROFS;ROWG (L, (M), ..., Lg, (M) )

- (@5, [@%zl (£55,00) } s {82 (B, 00) |

uj

B ( (0.90.250.920.30.70.45)0.55(0.920.250.550.30.40.45)0.45’ \ :
{ 3\/1 _ ([(1 —0.23)025(1 — 0.253)0-25(1 — 0_13)0.45]0.55) >,

[(1 — 0_33)0.25(1 _ 0_23)0.25(1 _ 0_853)0.45]0.45
( (0.80'250.650'30.20'45)0'55 (0.60'250.760'30.880'45)0'45, \

{ 3 1— ([(1 — 0_43)0.25(1 — 0_153)0.25(1 — 0_753)0.45]0.55) }
t [(1—0.33)025(1 — 0.143)025(1 — (.123)045]045 }

Therefore,

q — ROFS;ROWA (L, (My), ..., Ls, (M;))
= [(0.723264,0.510479), (0.587255,0.469476)].
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From the analysis of Theorem 8.4.2.2, q-ROFS;,ROWG operator has the following

properties.

8.4.2.4. Theorem

Let sz(]v[i) = <L5j(Mi),L_5j(Mi)) (i=12,..,m, j=12,..,n) be the collection

of g-ROFS;RVs. Let W = (Wy, Wy, ..., Wy,)T and @ = (U, Uy, ..., Uy)" be the weight
vectors of experts #£; and parameters s; with X2, w; =1, Y7, %; =1 and 0 <
w;, u; < 1 respectively. Then the following properties hold for g-ROFS;.ROWG

operator:
M (Idempotency) If Lss, (M) = E,(WV) (foralli =1,2,...,m and j = 1,2,
..n), where £,(M) = (g_ (M),g_S(M)) = ((b.d), (5, d)). Then
q = ROFS;ROWG ( Ly, (M), Lg, (M), ..., Ly, (M) ) = E,(M)
(i)  (Boundedness) Let (L,gsj(]v[i))_ _ (mjin min Ly;, (M),

- +
max max L5, (6)) and (L5,(M) = (maxmax L, (M),
i j i

min min LTSj(]V[i)). Then
Ji i

(L,;Sj (MJ) < q — ROFS;;ROWG (Ly,(My), L, (M), ..., Lg, (M)
+
(iili)  (Monotonicity) Let & (V) = <8Sj(]\fl-),8_sj(]\fi)> (i=12,...m j=
1,2, ..,n) be another collection of g-ROFS;.RVs such that Esj(Ni) <
Ly, (M;) and E_Sj(J\fl-) < L_Sj(]vq-). Then
q — ROFS;ROWG (&, (M), €, (M), ..., &, (M) )
< q— ROFS;ROWG (le(Ml),LSZ (M), ...,Lsn(Mm)).

(iv)  (Shift invariance) Let & (V) = (é(N),Z(N)) = ((g,g),(E,E)) be

any other g — ROFS; RV. Then
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q = ROFSpROWG (Lg, (MDBE N, L, (M)BE (N, .., Lg, (M) DES (V)

= q — ROFS;ROWG ( Ly, (My), £, (M), .., Lg, (M) ) EL(NV).
(V) (Homogeneity) For any real number 4 > 0;
q = ROFS;ROWG (AL, (M), AL, (M), ..., AL, (M)
=1 q
— ROFS;,ROWG (Lg, (M), L, (M), ..., £s, (M;)).

Proof: Proof follows from Theorem 8.3.1.4.

8.4.2.5. Remark
(a) Ifthe value of rung g = 1, then the proposed g-ROFS;.ROWG operator

reduced to IFS;,ROWG operator.

(b) Ifthe value of rung g = 2, then the proposed g-ROFS;;ROWG operator
reduced to PyFS;,ROWG operator.

(c) Ifthere is only one soft parameter s;; (means n = 1), then the proposed
g-ROFS; ROWG operator reduced to g-ROFROWG operator.

8.4.3. g-Rung orthopair fuzzy soft rough hybrid geometric operator
From the analysis of g-ROFS;,RWG and g-ROFS;.ROWG operators, it is observed

that g-ROFS;.RWG operator weight the g-ROFVs while utilizing the score function g-
ROFS;.ROWG operator weight the order position as well. However, q-ROFS; RHG

operator do the both on the same time means weighting the numbers and their order.
The basic properties such as Idempotency, Boundedness and Monotonicity etc. are also

presented in the same section with detail.

8.4.3.1. Definition

Let £, (M;) = (sz(Ml-),L_sj(Mi)> (i=12,..,m j=1.2,..,n) be the collection

of g-ROFS;RVs. Let v = (v, v, ..., )" and r = (ry, 15, ...,1,)" be the weight
vectors of experts £; and parameters s; with Y%, v; = 1, Y715 = 1and 0 < vy, 13 <
1. Consider w = (W, Wy, ...,wy,)T and 1 = (Ty, Uy, ..., U, )T be the associated
weight vectors of experts £; and parameters s; with Y%, w; = 1, X7_;4; = 1and 0 <

w;, 4; < 1 respectively. The g-ROFS;,RHG operator is defined as:
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q — ROFS;,RHG (le (M), .., Ly, (]V[m))

{@:';1 (f::;s,. (M)

>Wi}uj’ ;'l=1{ i=1 (@(Mi))ﬁi}

uj

From the above Definition 8.4.3.1, the aggregated result for g-ROFS;,RHG operator is

given in the following Theorem 8.4.3.2.

8.4.3.2. Theorem

Let L‘Sj(]v[i) = <sz(Ml-),L_5j(Mi)> (i=12,..,m, j=12,..,n) be the collection

of g-ROFSRVs. Let v = (v, vy, ..., v)" and r = (1,13, ...,1,)" be the weight
vectors of experts £; and parameters s; with X%, t; = 1, X7, v; = 1and 0 < k;, [; <
1. Consider w = (Wy, Wy, ...,w,,)T and @ = (iiy, 1y, ...,u,)T be the associated
weight vectors of experts £; and parameters s; with Y%, w; = 1, X7_;4; = 1and 0 <

w;, u; < 1 respectively. Then g-ROFS;.RHG operator is given as:

q — ROFS;RHG ( Ly, (M), ..., Ly, (M) )

I - <£6(M)>W} { ", (L_w))}

(2  m 7, n o m o ) |

< (ﬂuajm) , 1—]_[<1_[(1—¢:;i,-") ) }
_ j=1 \i=1 j=1 \i=1 )
RN AN

17" e

nuiry nur;

nuir; — 1]
where L;s]_ M) = (sz) = ((sz(Ml—)> ,(LS].(ML-)) > denotes the
largest value of the permutation from i*"* row and j** column of the collection i X j g-

ROFS;RVs sz(Mi)=<sz(Mi),L_sj(Mi)> andn represent the balancing

coefficient.
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8.4.3.3. Example

Consider the above Tables 8.3,8.5 and 8.6 of Examples 8.3.1.3 and 8.3.3.3, for the
collection g-ROFSfRVs L, ;) = (LS].(J\/[i),L_S].(Mi)> with v =

(0.33,0.37,0.3)T and r = (0.42,0.58)7 be the weight vectors of experts #; and
parameters s;.  Consider w = (0.36,0.34,0.3)" and % = (0.55,0.45)" be the
associated weight vectors of experts #£; and parameters s;. Then the aggregated result

for L‘j;sj (M;) is given as:

q — ROFS;RHG ( Ly, (M), ..., Ls, (M) )
= ®]2=1 1®?=1 (‘Cé‘sj(Mi)) }

q — ROFS;RHG ( Ly, (M), ..., Ls, (M) )

uj

® {®?=1 (E(Mi))‘?i}uj

= ((0.602629,0.250898), (0.479995,0.210973)).

From the analysis of Theorem 8.4.3.2, q-ROFS;.RHG operator has the following

properties.

8.4.3.4. Theorem

Let £, (M;) = (LS].(ML-),L_SJ(ML-)> (i=12,..,m, j=1.2,..,n) be the collection

of g-ROFSRVs. Let v = (v, vy, ..., v)" and r = (1,13, ..., 1,)" be the weight
vectors of experts %; and parameters s; with X%, v; = 1, X7,y =1and 0 < vy, 17 <
1. Consider w = (Wy, Wy, ...,w,,)T and @ = (iiy,1U,,...,u,)T be the associated
weight vectors of experts £; and parameters s; with Y%, w; = 1, X7_;4; = 1and 0 <
w;, u; < 1 respectively. Then the following properties hold for g-ROFS;.RHG

operator:
Q) (Idempotency) If L(’gsj(Ml—) =& (W) (foralli=1,2,..,m andj =
1,2, ...m), where £ (M) = (é (M),E_S(M)> =((2,4), (b, d)). Then

q — ROFS;,RHG (le (M), L, (M), ...,Lsn(Mm)) = &,(M)
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(i)  (Boundedness) Let (sz(Jv[,-)) =(m_inm,in£sj(]v[i),
J 2
- +
max max Z, (M;)) and (L, (M) = (maxmax £, (34,
] 3 J 7

min min L_Sj(J\/[i)>. Then
Ji i

(sz (]\/L“l-))_ < q — ROFS;,RHG (Ly, (M), £, (M), ..., Lg, (M)
+
< (£,0) -
(iii)  (Monotonicity) Let & (W) = <£S]_ (]\Q),ST}.(]\Q)) (i=12,..m j=
1,2,...,n) be another collection of g-ROFS;RVs such that SS].(J\G) <
L, (M) and €, (M) < L, (M;). Then
q — ROFS;RHG (&5, (M), E,, (M), .., &, (M) )
< q — ROFS;RHG (L, (M), Ly, (M), ..., Lg, (M) )
(iv)  (Shift invariance) Let £ (N) = (E(N),E_S(N)) = ((Q,Q),(E,E)) be
any other ¢ — ROFS;.RV. Then
q — ROFS;RHG ( Ly, (M)®E((N), Ly, M) BDE N, ..., Ly, (M )DE,(N))
= q — ROFS;.RHG (le (M), L, (M), ...,Lsn(]\/[m)) DE, (V).
(v) (Homogeneity) For any real number A > 0;
q = ROFS;RHG (AL, (My), AL, (M), .., AL, (M)
= 1.q — ROFS;RHG (Ly,(My), £, (M), ..., Lg, (M) ).
Proof: Proof follows from Theorem 8.3.1.4.

8.4.3.5. Remark
a) If the value of rung ¢ = 1, then the proposed g- " operator
(@) If the value of 1, then th d g-ROFS;RHG
reduced to IFS;,RHG operator.
the value of rung q = 2, then the proposed g- operator
(b) If the value of rung g = 2, then the proposed q-ROFS;.RHG op
reduced to PyFSy,RHG operator.
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(c) Ifthere is only one soft parameter s;; (means n = 1), then the proposed
g-ROFS;.RHG operator reduced to g-ROFRHG operator.

8.5. MCDM based on soft rough aggregation operator by using g-

rung orthopair fuzzy information
MCDM has the high potential and discipline process to improve and evaluate multiple

conflicting criteria in all areas of DM In this competitive environment an enterprise
needs the more accurate and more repaid response to change the customer needs. So,
MCDM has the ability to handle successfully the evaluation process of multiple
contradictory criteria. For an intelligent decision the experts analyze each and every
character of an alternative and the he takes the decision. Further, we will present the
model for MCDM and their basic steps of construction by utilizing the proposed

aggregation operators under g-ROF soft rough information.

Suppose that T = {#y, £,, %3, ..., %, be the initial set of various alternatives and E =
{s1,5,,53, ..., 5.} be the set of n parameters. Consider D = {D;, D,, D3, ..., D,, } be the
set of m professional experts of this area who presents their assessment expertise for
each alternative #£;(l =1,2,...,p) corresponding to n paramters. Let w =
(W, Wy, ..., wy,)T be the weight vectors of experts D; and & = (i1, iy, ..., 1) " be the
weight vectors of parameters s; with X%, w; =1, X7 4, =1 and 0 < w;,u; <1
respectively. The professional experts express their preference evaluation for
alternative £, with respect to parameter s; in the form of g-ROFS;.RVs. The collective
preference information given by the professionals are manage in g-ROFS.R decision
matrix, which is M = [sz(Ml-)]nxm, where M’ € E. Further, using the proposed
aggregation operators aggregate the preferences of experts to get the aggregated results

& (L=1,...,p) for each alternative #£, against their parameter s;. Finally utilize the

score function on the aggregated results &, = [(E g) (HJ)] and rank all the result

in a specific order to the get the most desirable option.

8.5.1. Algorithm
The step wise decision algorithm for the investigated operators.

Step (i): The professional experts express their preference evaluation for alternative

#) with respect to parameter s; in the form of g-ROFS;.RVs. Then collect the

219



preference information given by the professionals and manage them in g-ROFS;.R

decision matrix, which is Ml = [sz(Mi)]nxmv where M € E.

Step (ii): Applying the presented aggregation operators of each decision matrix M =

[sz(Mi)]nXm for each alternative £, (I = 1,2, ..., p) against parameter s; to get the

aggregated results &, = [(E g) (Y )]

Step (iii): Calculate the score value of aggregated results &, = [(E f) ( HJ)] for

each object #;.

Step (iv): Rank the score value of &; in a specific order to get optimum option of

professional experts.
8.6. Numerical example

In this section we will initiate the illustrative example to prove the quality and

Excellency of the developed operators.

Let Higher Education Commission (HEC) in Pakistan plans to introduce a selection
board of four high potential and professional Professors D = {D,,D,, D5, D,} from
home and abroad to select a most desirable applicant. Out of many applicants, three
applicants T = {#,, #,, #5} were called for interviews. The interview mainly judges
the applicants against some parameters M = {s; = academic level, s, =
development potential, s; = professional ethics, s, =

research productivity } € E. Let w = (0.3,0.28,0.24, 0.18)7 be the weight vectors
for professional experts D; (i = 1,...,4) and & = (0.32,0.17,0.31,0.2)7 be the weight

vectors for parameters s; (j = 1,2,3) respectively. The professional experts express
their preference evaluation for candidate %, with respect to parameter s; in the form of
g-ROFS;.RVs. Finally, followed the following steps by utilize the proposed models to

select the most desirable and suitable applicant %;.
By using q-ROFS;RWA

Step (i): The professional experts express their preference evaluation for alternative

#, with respect to parameter s; in the form of g-ROFS;.RVs. Then collect the

preference information given by the professionals and manage them in q-ROFS;R
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decision matrix, which is Ml = [sz(Mi)]nxmv where M < E which is given in Tables

8.7-8.9.

Step (ii): Applying the presented q-ROFS;RWA aggregation operators on each

decision matrix M = [sz(Jv[i)]nXm for each alternative #£; (I = 1,2,3) against

parameter s; to get the aggregated results &, = [(E g) (my )] that is;

&, =[(0.640506,0.218382), (0.600249,0.254431)],
&, =[(0.607809,0.217229),(0.730645,0.202415)],
&3 =[(0.606198,0.198551),(0.649417,0.183108)]

Step (iii): Calculate the score value of aggregated results &, = [(E f) ( HJ)] for
each object #,, that is
Sc(&) = 0.226074,  Sc(&,) = 0298025,  Sc(&) = 0.241341.

Step (iv): Rank the score value of &; in a specific order to get optimum option of

professional experts, that is

Sc(&y) > Sc(&3) > Sc(éy)

Therefore, from the above analysis it is observed that %, is more suitable and desirable

candidate against the given position.
For g-ROFSRWG

Step (i): Similar as above.

Step (ii). Applying the presented g-ROFS;.RWG aggregation operators on each

decision matrix M = [sz(Ml-)]nxm for each alternative #; (I = 1,2,3) against

parameter s; to get the aggregated results &, = [(E g) ( TRV )] that is;

& =[(0.540892,0.29117),(0.446263,0.448329)],
&, =[(0.50166,0.321735),(0.598613,0.331553)],
& =[(0.491017,0.291113),(0.545527,0.264822)]

Step (iii): Calculate the score value of proposed g-ROFS;.RWG aggregated

results &, = [(E E) (wy )] for each object 4, that is
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Sc(&,) = 0.06616, Sc(&,) = 0.135502, Sc(&3) = 0.118744.

Step (iv): Rank the score value of &; in a specific order to get optimum option of
professional experts, that is

Sc(&y) > Sc(&3) > Sc(éy)

Therefore, from the above analysis it is observed that %, is more suitable and desirable

candidate against the given position.
For g-ROFS;;ROWA
Step (i): Similar as above.
Step (ii) &, = [(0.657933,0.217542),(0.621125,0.234448)],
& =1(0.612743,0.216413),(0.744755,0.193923)],
& =1(0.621268,0.203392),(0.677814,0.180796)]
Step (iii): Sc(&;) =0.250625, Sc(é,) = 0.312857, Sc(é3) = 0.26844.

Step (iv):  Sc(&,) > Sc(&3) > Sc(é)

Therefore, from the above analysis it is observed that %, is more suitable and desirable

candidate against the given position.
For g-ROFS;,ROWG
Step (i): Similar as above.
Step (ii): & = [(0.562833,0.293072), (0.473363,0.418793)],
&, =1[(0.517595,0.319441),(0.614971,0.321818)],
&; =[(0.49826,0.296096), (0.583543,0.259781)]
Step (iii): Sc(&) = 0.09287, Sc(&,) = 0.152658, Sc(&;) = 0.139459.

Step (iv):  Sc(&,) > Sc(&3) > Sc(&y)

Therefore, from the above analysis it is observed that %, is more suitable and desirable

candidate against the given position.
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For g-ROFS;;RHA

Step (i): Similar as above.

Step (ii). Applying the presented g-ROFS;.RHA aggregation operators on each

decision matrix M = [L;;Sj(Mi)]nXm for each alternative #; (I = 1,2,3) against

parameter s; to get the aggregated results &, = [(u_gﬁ)(ﬁw_g)] with v =

(0.25,0.29,0.3,0.16)T and r = (0.27,0.23,0.32,0.18)7 be the weight vectors of

experts %; and parameters s;. Then the aggregated result for Lgsj (M;) is given as:

& =1[(0.432025,0.669215),(0.408108,0.691652)],
&, =[(0.417457,0.662671),(0.503394,0.6509)],
& =[(0.392067,0.655437), (0.442525,0.635251)]

Step (iii): Sc(&) = —0.24099,  Sc(§) =—0.18323, Sc(&) =
— 0.1955.

Step (iv):  Sc(&) > Sc(&3) > Sc(é)

Therefore, from the above analysis it is observed that %, is more suitable and desirable

candidate against the given position.
For g-ROFS;,RHG

Step (i): Similar as above.

Step (ii). Applying the presented g-ROFS;.RHG aggregation operators on each

decision matrix M = [L;;Sj(Ml-)]nxm for each alternative %, (Il = 1,2,3) against

parameter s; to get the aggregated results &, = [(ujg, lpg) ( Elp_g)] with v =
(0.25,0.29,0.3,0.16)T and r = (0.27,0.23,0.32,0.18)" be the weight vectors of experts

#; and parameters s;. Then the aggregated result for ngsj (M) is given as:

& =1[(0.365745,0.709626), (0.308693,0.751049)],
&, =[(0.332518,0.713922),(0.407739,0.706165)],
& =[(0.318639,0.693983), (0.36813,0.673448)]

Step (iii): Sc(£,) = — 0.35133, Sc(&,) = — 0.30573, Sc(&;) = — 0.27871.
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Step (iv):  Sc(é&3) > Sc(&,) > Sc(&)

Therefore, from the above analysis it is observed that %5 is more suitable and desirable

candidate against the given position.

Table 8.7, -ROFS;R matrix for candidate %,

S1 Sz S3 Sy

[(0.7,0.2),(0.8,0.1)] [(0.65,0.25),(0.3,0.6)] [(0.82,0.18),(0.6,0.4)] [(0.5,0.2),(0.4,0.1)]
[(0.6,0.1), (0.5,0.3)] [(0.5,0.1),(0.7,0.15)]  [(0.3,0.2),(0.2,0.7)]  [(0.2,0.3),(0.6,0.2)]
[(0.4,0.5), (0.6,0.2)] [(0.75,0.2),(0.4,0.1)] [(0.65,0.3),(0.7,0.25)] [(0.5,0.4),(0.1,0.5)]

[(0.5,0.3),(0.3,0.7)] [(0.6,0.4),(0.9,0.1)] [(0.78,0.22), (0.45,0.4)] [(0.8,0.1),(0.3,0.1)]

Table 8.8, -ROFS;R matrix for candidate %,

Sl SZ S3 S4

[(0.6,0.3),(0.9,0.)] [(0.2,0.4),(0.6,0.D] [(0.5,0.2),(0.9,0.D] [(0.6,0.2),(0.7,0.2)]
[(0.4,0.25),(0.3,0.5)] [(0.5,0.15),(0.7,0.3)] [(0.77,0.1),(0.6,0.35) [(0.4,0.3),(0.5,0.1)]
[(0.3,0.6), (0.65,0.25) [(0.66,0.2),(0.8,0.17) [(0.8,0.15),(0.55,0.2) [(0.7,0.1),(0.3,0.6)]

[(0.5,0.15), (0.55,0.2) [(0.8,0.1),(0.4,0.5)] [(0.62,0.3),(0.9,0.1)] [(0.2,0.4),(0.5,0.3)]

Table 8.9, -ROFS;R matrix for candidate /5

S1 S2 S3 Sg

[(0.8,0.13),(0.8,0.1)] [(0.5,0.2),(0.6,0.1)] [(0.4,0.1),(0.7,0.2)] [(0.7,0.1),(0.6,0.3)]
[(0.5,0.16), (0.4,0.2)] [(0.8,0.12),(0.3,0.4)] [(0.6,0.2),(0.4,0.3)] [(0.5,0.2), (0.4,0.1)]
[(0.4,0.5),(0.7,0.3)] [(0.5,0.4),(0.5,0.12)] [(0.2,0.4),(0.8,0.14)] [(0.3,0.4),(0.2,0.5)]

[(0.3,0.2), (0.5,0.15)] [(0.6,0.25),(0.7,0.3)] [(0.8,0.18),(0.75,0.1)] [(0.6,0.2),(0.8,0.1)]

8.6.1. Comparative study
To compare the investigated methods with some existing methods based on IFS, PyFS

and g-ROFS. For this purpose different parameters of the above numerical example are

aggregated by utilizing the proposed aggregation operators having weight vectors
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Table 8.10; aggregated matrix for candidate

%1 /&’2 k?’

D, | [(0.719,0.201), (0.651,0.208 [(0.538,0.256), (0.849,0.115 [(0.670,0.122),(0.713,0.154
D, | [(0.471,0.154), (0.534,0.320 [(0.602,0.179),(0.550,0.298 [(0.616,0.171),(0.387,0.222
D5 | [(0.598,0.350), (0.582,0.229 [(0.678,0.226), (0.629,0.260 [(0.370,0.430), (0.682,0.225

D, | [(0.703,0.230), (0.616,0.287 [(0.605,0.211),(0.733,0.205 [(0.650,0.201),(0.703,0.137

7 = (0.32,0.17,0.31,0.2)7, and their collective aggregated decision matrix for each
candidates #; (I = 1,2,3) is given in Table 8.10. Now based on this evaluated matrix a
comparative analysis of the investigated models with some existing aggregation
operators are presented in Table 8.11. From Table 8.11, it is observed that the existing
methods have lake of rough information and they are not capable to solve and rank the
given illustrative example. Therefore, from these analysis it is clear that the developed

methods is more superior and capable than existing methods.

8.6.2. Conclusion
MCDM has the high potential and discipline process to improve and evaluate multiple

conflicting criteria in all areas of the DM. In this competitive environment, an
enterprise needs the most accurate and rapid response to change the customer needs.
So, MCDM has the ability to handle successfully the evaluation process of multiple
contradictory criteria. For an intelligent decision, the experts analyze each and every
character of an alternative and then they take the decision. For an intelligent and
successful decision, the experts require a careful preparation and analysis of each and
every character for an alternative and then they can take a good decision if they are
armed with all the data and information that they need. The dominant concepts of FSs,
SreSs and RSs generalized the classical set theory to cope with imprecise, vague and
uncertain information. Molodtsov investigated the pioneer concept of S¢S which is free
from the inherit complexity which the contemporary theories faced. It is observed that
S¢S has too close relation with FSs and RSs. The S, S theory regarded as an effective
mathematical tools for handling the uncertain ambiguous and imprecise data. Recently,
Yager presented the new concept of g-ROFS which emerged the most significant

generalization of PyFS. From the analysis of g-ROFS, it is clear that the rung g is the
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Table 8.11, Comparative study of different methods

Methods Score values Ranking
$1 $2 $3

IFWA [4] Unapproachable X
IFS: WA [58] Unapproachable X
PYyFS: WA [64] Unapproachable X
g-ROFWA [30] Unapproachable X
q-ROFS; WA [64] Unapproachable X
Cg-ROFWA [69] Unapproachable X
g-RONFWA [34] Unapproachable X
g-ROFS;RWA (proposed) | 0.226074,  0.298025,  0.241341 EEEFEE
q-ROFS;,ROWA 0.250625,  0.312857,  0.26844 LEEEE
(proposed)
g-ROFS;RHA (proposed) | —0.24099, —0.18323, —0.1955 EEEEE
IFWG [5] Unapproachable X
IFS: WG [58] Unapproachable X
g-ROFWG [30] Unapproachable X
Cg-ROFWG [33] Unapproachable X
g-RONFWG [34] Unapproachable X
q-ROFS;,RWG (proposed) | 0.06616,  0.135502,  0.118744 LEEEE
g-ROFS;,ROWG 0.09287,  0.152658,  0.139459 LE&LEE
(proposed)
q-ROFS;,RHG (proposed) | —0.35133, —0.30573, —0.27871 Lr& =

most significant feature of this notion for when rung q increases the orthopair adjust in
the boundary range which is needed. Thus the input range of g-ROFS is more flexible,
resilience and suitable than the IFS and PyFS. The aim of this manuscript is to

investigate the hybrid concept of S¢S and RS with the notion of g-ROFS to obtain the
new notion of g-ROFS,RS. In addition, some averaging aggregation operators such as
g-ROFS;.RWA, q-ROFS;.ROWA and g-ROFS;.RHA operators are presented. Then
basic desirable properties of these investigated averaging operators are discussed in
detail. Moreover, we investigated the geometric aggregation operators such as Q-
ROFS;RWG, g-ROFS;,ROWG and g-ROFS;,RHG operators, and proposed the basic
desirable characteristics of investigated geometric operators. The technique for
MCDM and step wise algorithm for decision making by utilizing the proposed

approaches are demonstrated clearly. Finally, a numerical example for the developed
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approach is presented and a comparative study of the investigated models with some
existing methods is brought to light in detail which shows that the proposed models are
more effective and applicable than existing approaches.
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