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0.1. Introduction

The branch of Mathematics in which we study the geometric properties of analytic functions
(AF) 1s called geometric function theory (GFT). Cauchy started to develop the substructures
around 200 years ago during 1814 — 1831. Cauchy. Riemann and Weierstrass were considered
as pioneers of this field. Since that time. this theory is expanded 1n many directions. Riemann
contributed to this field by introducing the Riemann mapping theorem in 1851. Riemann proved
the existence of an AF £ that maps from a connected domamn D; # C in the z-plane on to a
connected domain D in the w-plane. This result of Riemann mapping laid down the foundation
of GFT. This famous theorem and then Koebe's theory provide many fundamental results of
geometric function theory. His imtial work on this field can be found mm {53]. Gronwall’s
proposed the area theorem in 1914. This idea revolves around some conformal mappings in
open unit disc. A lot of applications of GFT can be found in other fields of sciences like
Electronics. Medicines. Physics etc. see [91 101. 109! and cited therein

Any function £ is in the class S if it is univalent and normalized function. Any function £ € §

has series of the form

Lw)=uw+ i amuw™.

m=2
In above equation. az the second coefficient, of a normalized univalent function estimated by
Bieberbach [16] in 1916. Further, Bieberbach also conjectured about the mth coefficient. He
has shown that |ag| < 2 and mentioned |am| < m is generally valid and is called Bieberbach
conjecture. Bieberbach conjecture was proved to be true for m = 3 by Lowner [59] in 1923.
The same result was proved for various other values of m by Jandwski [43]. Goodman [38 39|,
Littlewood [56]. Pinchuk '83]. Pommerenke [84]. Rogosinsk: {88] and Ruscheweyh [93]. For
several vears this challenging and famous conjecture inspired mathematicians which results in
the development of various novel procedures in complex analysis. Univalent function theory
has its own significance. In 1916. Bieberbach conjecture failed to explain some situations due
to which several new subclasses of S are proposed and investigated such as starlike functions by
Alexander [6]. These starlike functions (SF) were further studied by Nevanlinna [72] Alexander

6] also developed a class of convex functions (CF) In 1915. Alexander give us a connection



between the members of the classes C and S” of CF and SF respectively. Alexander theorem
states that £ € S be 1n C 1if and only if wL' € S*. Later Kaplan [51] developed the class of
close to convex functions (CCF) and explained it geometrically. The geometre interpretation
means that £ € K maps every circle arc |w| < 1 onto a closed path for which tangent rotates
with an increase in @ for both clockwise and counterclockwise direction but can not turn back.
Several approaches of geometric function theory were suggested by de-Branges [18]. when he
solved the Bieberbach conjecture in 1984. The class of Carathéodory functions (20] which maps
unit disk onto right half plane 1s denoted by P. play a pivotal role in GFT.

The operator plays an important role in Mathematics. Using convolution and subordination
theories to define operators and study operators properties is newest area of present research 1
this field. Libera (54 introduced an operator called Libera operator and studied the classes §*
and C under this operator. Later, Bernardi [15] developed a generalized operator and discuss
its various properties. In recent past several new operators are introduced by Ruscheweyh [93],
Noor [73] and many others [21. 57. 58]. These researchers developed some interesting new
classes of univalent and analytic functions which contain existing classes as special cases.

In 1991, Goodman [40. 41] introduced two important classes UC and {7S* of analytic functions.
which are natural generalizations of convex and starlike functions 1n conic domains. In 1999,
for k > 0, Kanas [47] initiated the classes k&-UC and k-US* of k-uniformly convex and k-
uniformly starlike functions respectively. The work of Kanas is generalized by many researchers

(see [25. 88. 90]).



0.2. Chapter Wise Study

In this section, a short description of all chapters is discussed.

Chapter 1

In this chapter, we discuss some basics of this field. The proofs of the results are omitted
but referred here. Some subclasses related with AF are also discussed. Many interesting and
important subclasses of starlike and convex are presented. We also discuss convolution and
subordination as main tools used 1n geometric function theory. Some linear and g-cifferential
operator also discussed. At the end of this chapter some lemmas are given which helps us to
prove certain important results.

Chapter 2

In this chapter, we 1nitiate two new subclasses I, ,(q, 3,51.‘53) and T, ,{q- Sﬁ%) These
classes are initiated by using the Salagean ¢ -differential operator with the help of Janowski
function These classes generalized numerous classes by selecting specific values of the parame-
ters. We examined numerous sharp results and properties of these classes, like as extreme points
(EP). distortion theorem (DT), coefficient estimates (CE), convexity, radii of star-likeness (RS),
close-to-convexity, and integral mean inequalities. The content of this chapter are published in
the journal, Mathematics, 2019, 7, 458-469.

Chapter 3

In this chapter. we initiate a new subclass k-QMT («a) of AF, which generalizes the class of k-
uniformly CF. The main purpose of this chapter 1s to establish several interesting relationships
between k-QMT (o) and the class B(d) of functions with bounded turning. We studied various
interesting association of this class with already existing classes of AF. Certain important cases
for some special values of the parameters have been obtained. The content of this chapter are
published 1 the journal, AIMS Mathematics, 2019, 5(3), 1926-1935.

Chapter 4

In this chapter. we imtiate two new subclasses 77, (q‘ﬁ %) and TQFY, (’),ﬁ. Q—S) These
classes is initiated by using the Mittag-Leffler function with the help of Janowsk functions.
These classes generalized numerous classes by selecting specific values of the parameters. We
examimed numerous sharp results and properties of these classes, like as extreme pownts (EP},

distortion theorem (DT), coefficient estimates (CE), convexity, radii of star-likeness (RS). close-



to-convexity and integral mean inequalities (IMI}. The content of this chapter are published in
the journal, Honam Mathematical Journal, 2020 (Accepted).

Chapter 5

The main focus of this chapter is to set out few imperative characteristic properties for a few
subclasses of uniformly SF and CF which are initiated here by infers of the normalized condition
of the generalized Bessel functions (BF) to be univalent inside the H. Furthermore, we as well
develop up some results about of these subclasses related to a particular integral operator.
The content of this chapter are published in the journal, Turkish Journal of Mathematics,
2019, 43, 2433 — 2443.

Chapter 6

The main focus of this chapter 1s to 1nitiate a subclass QZ (A, g, ‘:’:l, 53) of AF using subordmations
along with the newly defined g-analogue of Choi-Saigo-Srivastava operator. Some results, such
as integral representation (IR), coefficient estimates (CE). radhus of starlikeness. linear combi-
nation (LC), weighted mean (WM) and arithmetic means (AM) for this class are derived. The
content of this chapter are published in the journal, Hacettepe Journal of Mathematics &
Statistics, 2020, 49(4) 1471-1479.

Chapter 7

In this chapter, with the help ¢g-conic domain (Qk,q[ﬁl, 53]) . g-Janowski type functions and the
concepts of quantum (or ¢-) calculus, we initiate new subclasses of ¢g-convex and g¢-close-to-
convex functions. These subclasses explores some vital geometric properties such as coefficient
estimates (CE), sufficiency criteria and also convolution properties. Furthermore, we as well
develop up some results about of these subclasses with those obtained in earlier investigations
1s also provided. The content of this chapter are published in the journal, Mathematic, 2020,
8(3), 440-452.



Chapter 1

Preliminaries

The main objective of this chapter, is to exanmune few fundamental 1deas of GF'T, which give
us a foundation for the later work. Here we will inquired few fundamental defimitions and
classical results. The details of such results study standard texts [29. 39. 85]. At the starting,
we concentrated on the classes A and S. which are of normalized AF and normalized analytic
univalent functions respectively. Next we discussed subclasses of A and § At the end of this
chapter, we introduced such lemmas which are helpful to understand upcoming chapters. In

this chapter we presented such results which are already known and will be referred properly.
1.1 Analytic functions (AF) and Univalent functions (UF)

Firstly, we define the class 4 and S of normalized AF and normalized UF.

1.1.1 Analytic Functions [29, 39, 85)

If a function £. whose derivative exists at wy and also in neighborhood of wy then such a
function is called AF. If £{w') is anaytic for all w € D, then £ 1s AF 1n whole domain D.

If we take w € D = C, where T is set of complex numbers and L(w) is AF then £ is called
entire function. Occasionally it is tough to use arbitrary domain D, so by well-known Riemann

mapping theorem. we use open unit disc H = {w : |w| < 1} instead of D.



1.1.2 The Class A

In class A, all AF with the normalized condition £(0) = 0 and £'(8) = 1 exists. Generally,

normalization does not mfluence on Taylor’s series. For £ € A has a series form
fe o]
Lw)=w+ Y amuw™ (1.1.1)
m=2

1.1.3 The Class T

In class T all those functions of class of A having negative coefficients in Taylor’s series. Thus
L €T is given by
o

Llw)=uw~— Z |@m | w™. (1.1.2}

m=2

Initially. Silverman [100] study this class.

1.1.4 Univalent Functions {29, 39]

If in the domain D and range £(D) of a function £. having 1-1 correspondence then such
function is UF. Mathematically. £L(w) is umvalent if ., # wy, implies £(wy,) # L{wy). for all
W # Wn € D,

Koebe function

Ky(w) = w , weH, (1.1.3)

(1-w)?

is one of simplest example of UF while £ (w) = w? 1s not UF.

1.1.5 The Class S

All such functions belonging to S which belong to A and also UF Koebe function 1s very well

known example for the class S. UF plays pivotal role in this field.

1.2 Carathéordory functions

We have noticed that. lot of functions whose mapping cover the whole complex plane but also

we have some functions which maps right half plane such complex-valued functions known as

7



Carathéordory functions [29, 39]. All such mappings belonging to the class P These functions

are of incredible significance in GFT. Numerous subclasses of AF and UF are associated with

P.

1.2.1 The Class P

Let b be AF with P(0) = 1. Then b belonging to the class P. if ReP(w) > 0 and has the power

series
Pluy=1+ Z amw™. w € H. (1.2.1)
m=1
The Mabius function
had 1+w ~
‘119=1T2m§w = wel (1.2.2)

is an element of the class P. It is not necessary a function belonging to P is also univalent. For
example

Po(w)=1+uw™eP. ¥ym>0. (1.23)

this function for m > 2. is not univalent. The Mobius function (AMg) defined by (1 2.2) plays

the central and extremal role in class P.

1.2.2 Subordination

Primarily Lindelof [55] initjate the notion of subordination 1n 1909. Afterward Littlewood [56]
and Rogosinski [88. 89] made further advancements.

Definition of subordination

Let £,1 € Athen £ <! (read it as £ is subordinate to ! ) if and only if we have s € A with the
condition |s(w)| < 1 and s(0) = 0. for w € H such that l{s{w)) = L{w). Particularly if £ € §
in H then £ < is equivalent to £(0) — I(0) = 0 and L(H} C I(H).

1.3 Some Important Subclasses of Univalent Functions

In this portion. we presented such classes which have specific geometric conditions. We briefly

talk about a few essential subclasses of AF which map H onto the starlike domain and convex



domain. We consider a few fundamental properties of these classes and the connection of these

classes with the Carathéordory class P will moreover be explored.

1.3.1 Starlike Function (SF) [29, 39]

Let a domain D C C, is star shaped about a point wgq. if any other point w € D joining with
wy by line segment @wg kies with in D. The function £ under which image of domain H is a
starshaped region with respect to wo # 0 is known as starlike function.

Mathematically. a normalized AF function L is SF if

wl! (w) -
Re( Z(w) ) >0 weH (1.3.1)
or equivalently
wl (w) =
) eP,weH (1.3.2)

Let us denote S* be the class normalized starlike functions. Thus

ST = {EEA:RE (ugi:u;)) >0, w Eﬁ} (1.3.3)

With respect to origin, the Koebe function is an example of SF The class of SF was begun by
Alexander [6] and examined by Nevanlinna [72].
1.3.2 Convex Function (CF) [29, 39]

Let a domain D C C, is convex if jomning two arbitrary points of D with a line segment hies
completely in D. A function £ € S in which £ (fl ) is a convex, is a CF.
Mathematically. a normalized AF function £ 1s CF if

(wl'(w)) =
e . wéEH. 3.
Re( o) >0.we (1.3.4)
or equivalently
(wL (w)) s
2 (w) eP, we H. (1.3.5)



Let us denotes ' be the class of normalized convex functions. Thus

C={£eS:ReG%%%l)>oJreﬁ}. (1.3.6)
The function
uw
Llw) = T (1.3.7)

is convex. The class of CF was first examined by Alexander [6].

Note that, C C §* C §.

1.3.3 Alexander Theorem

In 1952. Alexander [6] give us a theorem between the members of the classes C' and 5™

Let £ be normalized AF in H Then £ € C if and only if wl’ € §*

1.3.4 Close to Convex Function (CCF) [38]

A mappmg £ € Ais CCF. if it satisfy the followng condition,

! ) -
tec. Re(E%Y 50 wef (1.3.8)
I'(w)
or eguivalently
£ (w) .
leC. eP,weH (1.3.9)
U(w)

Let us denote K be the class of normalized CCF.

K:{EEAJEC.m(i$)>&weﬁ} (1.3.10)

L]

Kaplan {51] initiated the study of this class.

1.4 Some Generalized Subclasses of Analytic functions

In this portion, the subclasses which have speaific geometnic conditions of order a. where 0 <

a < 1 are presented.
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1.4.1 The Class P (a) [39]

Let be P. Then b belong to the class P («) if
0<a<l ReP(w)>a weH (1.41)
The function b can moreover be written as
b(w)=a+(l—a)p (w). b€ P.weH (1.4.2)

Let d € C\ {0} and b € A. Then b belonging to P (d) iff there exist a mapping by € P such

that
p(w)=(1—d)+dp (). weH

Ford=1-a.0<a<1.P2>P(a)=P(d).

1.4.2 The Class S* («)

Let £ € A. Then £ belong to the class S {a) if

! 1 —-—
0<a<l Re(YENY s, wed (1.4.3)
L{w)
or equivalently
wi' ~
0_<_a<1.—£—E'P(a).'w€H (1.4.4)

All normalized SF of order « 1s denoted by the class S* (a).

wl'(w)
Lw)

S*(a}={£€A:Re( ))a,05a<1.u'€ﬁ}. (1.4.5)

Roberston [87] initiate this class in 1936.

Note S* (0) = §*.

11



1.4.3 The Class C (a)

Let £ € S Then £ belong to the class C (a) if

(wl'(w))’ =
< ~— 77 !
0<a<l. Re( ) >a, weEH (1.4.6)
or equivalently
N ! -
b<a<t BEO) cpiy wed (1.4.7)
L'{w)

All normalized CF of order a is denoted by the class C {a).

(wl'(w))

C(a)={f€5.Re( Tlw) )>a,0§a<1.weff} (1.4 8)

Roberston [87! initiate this class in 1936.

Note that. C = C(0)

1.4.4 The Class K (o) [39]

A function £ € A is said to be CCF of order « if it satsfy the following condition

! N -
Re(E™Y S 4 0<a<1 wed. (1.4.9)
I'(w)
or equivalently
L(w -
mEP(O).OSG(l. we H. (1.4.10)

Here [ is convex function of order c.

All normalized CCF of order « is denoted by the class K (a)

Note that K (0) = K.

In 1991, Goodman |40, 41] initiate two important classes UC and US* of uniformly convex

function (UCF) and uniformly starlike function (USF) respectively as below

12



1.4.5 The Class UC

A function £ € A defined mn (1 1.1) in class UC if it satisfy the following condition

E” (w)
L {w)

EeUCifandonlyifﬁeA:Re((w—ﬁ) +1)>0, 9,we H,

according to Ronning [90] and Ma et al. [63]

weH (1.4.11)

] ! " .
LeUC fandonlyif L€ A Re(w) >‘w£ () .

L' (w) L' (w)

All such functions are in class UC.

1.4.6 The Class US”

A function £ € A defined m (11 1) in class US* if it satisfy the following condition

, (w'-ﬁ)ﬁTW)) =
LeUCfandonlyif L€ A Re(——— >0. d,we H.
’ L{w) ~ £(n)
according to Ronning [90] and Ma et al. {63]
J L {w ~
EELG*ﬁMMOMyﬁﬁeA:ReCiégw:>ufég»-%,weﬂ (1412)

All such functions are in class US*. Geometrically, £ € A in classes US* or UC which maps
every circular segment 1 which is in H. with center ¢ € H onto a starlike arc or a convex arc
respectively.

For k > 0, Kanas [47] inaugurate the class k-UC and k-US* as:

1.4.7 The Class k-UC

A function £ € S is belong to class k-UC if 1t satisfy

wl” (w)

) we H. (1.4.13)

1 !
Eek—UCifandonlyJfEES'Re(m—é:r((w)—)))>k
ul

13



1.4.8 The Class k-US*
Let £ € § Then £ belong to the class k-US™ if 1t satisfy

wl!
L

. . wl'
Lek—US*fandonlyif L€ 5. Re ra >k

—4,w€ﬁ. (1.4.14)

Observe that 0-UC = C, 0-US*=US* and 1-UC = UC. 1-US* =US".

Geometrical representation of theses classes is very interesting for k > 0. for detail see [43. 48.
49. 50. 76. 77. 62, 113].

For (0 < a < 1}, in [88. 90}. Ronning initiated the two classes k-US* (a) and k-UC (a) as:

1.4.9 The Class £-U'S™(a)

Let £ € S. Then £ belong to the class k-US* () if it satisfy

! : _
Lek-US"{a) iﬁ'Re{uﬁﬁ —af} > k‘wﬁ -—1’, we H. (1.4.15)

1.4.10 The Class k-UC (a)

Let £ € S. Then £ belong to the class k-UC (a) if it satisfy

wil” (w)

Dm),weH. (1.4.16)

Lek-UC{a) 1ﬂ'£€S.Re(M—a) >k
L'{w)

For (0<a<fA<1)and k(1—5) < 1— a, El-Ashwah et al [25]. initiate two important

subclasses k-UC (. B) and k-US* {@, 8) of k-umformly convex and starlike functions as

1.4.11 The Class k-UC (o, 3)

Let £ € S. Then £ belong to the class k-UC (a, 3) if it satisfy

(wl'{w))

T LweH (1.417)

-8

Lek-UC(a, 8) if and only ifRe{M—a} >k

L{w)

14



1.4.12 The Class k-US* (a, 3)

Let £ € S. Then £ belong to the class k-US* (a, B} if it satisfy

Jird ! -
Lek—-US"{a. 3) if and only 1fRe{w£ —a} > k\iu-g— - 3‘, we H (1.4.18)

1.4.13 The Class M,

For 0 < a < 1. Mocanu [69] initiate the class M, of mappings £ € A such that %ﬁf(u) #0

for all w € H and

1 ! ” —
Re{(l—a)u—f—+a(w§) }>0, we H. (1.4.19)

Geometrically, as a class of mappings that maps the circle centered at the ongin on a-convex
arcs and derived the condition (1.4 19). For particular values of a, we obtain a number of

interesting classes of AF having nice geometry, for instance Aly = S* and M; = C are well

known classes of SF and CF.

1.5 Introduction of g-Calculus

The mathematical study of g-calculus, especially g-transform, g-integral and ¢-fractional calcu-
lus has been a point of awesome 1ntrigued for analysts due to its wide applications in numerous
areas (see [35 112]). A few of the prior work on the applications of the g-calculus was pre-
sented by Jackson [45, 46]. Afterward, g-analysis with geometrical properties was turned mto
distinguished through quantum groups. Owing to the numerous applications of g-analysis 1n
mathematics and other area, many analysts [2, 35, 44, 45, 46, 105, 107, 108. 112] did a few
noteworthy work on g-calculus. Recently, Srivastava [109], explore and investigated the math-
ematical application of fractional ¢- calculus, Integral g-calculus and fractional g-differential
operators in GFT. Now days. rather of ordinary operators. many researchers like Aldweby and

Darus [7] and Srivastava et al. [110], studied g-operators because of extensive use in g-calculus.
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1.5.1 g-shifted factorial and g-gamma function [36, 37)

For ¢.80 € C (|g] < 1), and m € NU {0} = No, g-shifted factorial 1s symbolized and defined as
[60.q],, = 75" (1= dog") = (1 — da) (1 — oq) (1 — d0q%) .. (1—8og™ 1}, (1.5.1)

with

[d0-9]g =1

In the sense of g- gamma function (I'yw), we write for m € Np

o o |2 lalm*do) im
[q‘s -qm] = 1 T 5 1-q™, (1.5.2)
where
rqw=-[fq‘i+ﬂi(1—q)l—w, > la). (153
note that
(60410 = 520 (1~ dog?) (15.4)
and
Ly (w+1) = (Tqw) [w],, (1.5.5)

where [w|, is a g-number and defined below.

1.5.2 g-number and g-factorial [114]

For g € ]0.1|. The g-number ([50_| q) and q-factorial([noj q!) is defined by

qﬁu —
[60Jq=- - (60 € C). (15.6)
and
m—1
[Gol, =Y ¢ =1+g+d+.. +¢" " (GeN. (15.7)
t=1
Now g-factorial
[mol,! = T2 [t],. (no € N). (1.5.8)
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and

[nojq! = 1, ('n.o = 1)

1.5.3 Remarks

For ¢ — 17, the basic g-calcutus definitions reduce into classical definitions.
da —
(2) [bo), =55 —do (¢—17).
(12) For ¢ = 17. Tyu (¢- gamma function) reduce into I'w (classical gamma (Euler’s) function),
that is

Faw— Tw (g—17)

(121) For, [8¢.4],, (g-shifted factorial) defined in (1.5.1) reduces into (o), (familiar Pochhammer

symbol) as
do{do+1) .(bo+t—1) tel
(60)t = ° (159)
1 t=10.
we obtain (dg}, as
. [d*.q],

1.6 Conic Domain

For > 0, Kanas and Wisniowska (43, 49] initiated the study of AF on conic domain ) as:
Q= {u—+-w'u>x (u—l)z—i-v?}.

Note that, for s =1, 0 < k < 1 and « > 1, the doman {1 represents a parabola. right branch
of a hyperbola and ellipse respectively. For these comic regions. the below functions h, {w} play

as the role of extremal functions.

1+ _
o , k=0,
1+(10gfj%) ;25 k=1
P () = S 1+ sinh? {arctan w% {arccos k) } —51_2K 0<k<l. (16.1)
Y . :
1 : Y 1 .
L 1+ 7= sm _EQRTEy Jo /1oy e tog k> 1.

17



where

u(w) = f__—\/\gi weH
If x = cosh (#R'(y)/(4R(y))) € (0.1), where R(y) and R'(y) = R(\/1 —y?) represents the
Legender's complete elliptic integral of first kind and complementary integral of R'(y) and
R(y). see [5. 33. 43. 49. 52. 71, 94. 115]. T k. (w) = 1 + 8 (k) w + &1 (k) w? 4+ - 1s taken from
[49] for (16 1). then

8{arccos K)?

wI{1—r3) 0<k<l
é(k)= ;55 =1, (16.2)
772
TR Ry 7 1.
d1 (k) = 82(k) 8 (x),
where
2
T—J—;ﬁ 0<k<l.
da (k) = % k=1, {16.3)
4R2(y)(y2+6y+l)—1r2
R
where 71 = %arccosn. and y € (0.1).

1.7 Some Important Functions

1.7.1 Mittag-Lefler function

Mittag-Leffler defined familiar Mittag-LefHler function [67, 68] M, (w) by

o wm
and Wiman {118] generalized this function by
oc '[,Um
M, = > T
foulw) = Y, gy @20 (172)
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where R (¢) > 0. R (z) > 0 and a. x € C. Many researchers explain the Mittag-LefHler function
and its generalizations see [9. 34. 66. 86. 103, 104. 106].

An impartant theory that has contributed significantly in geometric function theory is differen-
tial operator theory. Numerous researchers have worked intensively 1n this way. for recent work

see [1. 26, 32. 75. Elhaddad [31] introduced the following differential operator for £ € A

= r
8DQ/(a. wl(w)=w+ Z 1+ (m-1) x]“/ Tlalm _(_ul)) - Ju)am'ur:"'. (1.7.3)
m=2 '
and for Le T
T'(p) m

807 (a. wL(w) =w— Y [1+(m—1) ™ At (1.7 4)

m=2

T(a{m— 1) + u)

1.7.2 Bessel functions (BF)

Let us consider a second order mear homogeneous different1al equation.
wls’ (w) +bws (w)+ [duw? =22 (1-b)] s(w)=0 (b.x d€C) (1.7.5)

A particular solution of {17 5) give a generahzed Bessel functions of the first kind of order =z,

given in (1.7 6) defined by Baricz [12].

v =) _ mdrn
s(w) = srpa = Z (m)‘I“((:rl—)'r s B (1.7.6)

m=2

The function s; 4 4 is not univalent H but the series given by (1.7.5) 1s convergent. Cho [22]

defined the following transformation
b 1 T
uppg{wy=2T (:r + —_;—) w28, p4 (V) Vi=1
Using well known Pochhammer symbol the following Gamma function can be defined

(ao) :F(ag-l—m): 1 m=0
" T {ao) aglag + 1)(ag +2) -~ (ag+m—1) meN
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We can express u; pq () = u; (w) and u; (w) can be written as follows.

o (=97 b+1
Uz (W) = uzpg(w) = w™, where z+ —— e N={1. 2. 3...} (1.7.7)
T 2 G, o /

=

[

We write b, = v+ %

In geometric function theory the study of generalized Bessel functions is an important topic.
In this study. we refer to the studies done by Baricz [11, 12, 13, 14]. Akgul [3. 4] . Sakar and
Aydogan {94] . Cho et al {22] . Mondal [70] . Deniz [27, 28] and Choi (23]. Studies on Struve

functions can be found in recent investigation by Srivastava [102].

1.8 Some Important Operators

1.8.1 Convolution Operator

The part of operator is exceptionally imperative in this field. By utilizing convolution theory. to
characterize operator and study operator properties, are most current days research. Numerous
differential and mtegral operators can be characterized by the help of convolution of certain
AF.

o)
Let £ given by (1.1 1) and I (w) = v + Z b,w™ Then convolution of £ and ! 15 symbolized

m=2

by £ * [ and describe as:
(Lal)(w)=w+ Y ambnuw™ (1.8.1)

m=2
1.8.2 g-Derivative operator or g-Difference operator [44, 45, 46]

The g-derivative (g-difference) operator of a mapping £ of the form (1.1.1}, for a given subset
of C is symbolized by (§D,L) (w) and described by

L(w)—ﬁ(qw) U % O
(9D,L) (w) = , w(1=9) (1.8.2)
L (0) w =0,
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when g — 1. the g-difference ( g-derivative) operator, shrink into ordinary derivative, that is
lim (9D, L) (w) = L (w),
q—f

provided that L exists.

1.8.3 Siligean g-derivative operator ( or g-differential) operator

1n 2017. Govindaraj and Sivasubramaman [42] defined the Salagean g-derivative ( g-differential)
operator as

Let £ € A set out in (1.1 1). Then the Salagean g-derivative (or g-differential} is mnterpret as:
SOL = L. SIL=wdD,L . SiL = wdDy (Sy7'L). 1€ No={0}UN. we H.

simply imples

Sel(uw) =L (w)x*Lgs(w). 1E€Ng = {0} UN. (1.8 3)
where -
Ly, (w)=uw+ Z [mJ;u'm. weH (1.8.4)
=2

using {1 8 3) and (1.8.4), the series form of S, £ (w) for £ 1s given by

SiL(w)=w+ Y [m];amuw™ (1.8.5)
m=2
Note that
oC
Im L, ,{w)=w+ mtuw™,
el o () ‘mZ=2
and
hm S:L{w) = L{w)* | w-+ mw™ | = w+ manpw.
s = 000+ (0 S =

the last expression is famous Salagéan derivative [95].



1.8.4 Choi-Saigo-Srivastava operator

Cho1. Saigo and Srivastava [24] generalized the Noor integral operator (73] in 2002 and imtiate
the operator I , which is name as Choi-Saigo-Srivastava operator. The construction of operator

I, is i the following way:

Let £ € A.
DouLlw) = Lw) « Fagiulw), weH A>~1, p>0
where
Farrplu -—u+z pJ-m—;I;(i)-i- Mw”‘=w+f§g%—])\m—.‘:ﬂiwm (1.8.6)
Thus. we see that w
I uL(w)=w+ mz:; ﬁ%’i‘]i—lamwm (1.8.7)

1.9 Some Generalized Subclasses of Analytic Functions in g-

Calculus

1.9.1 Definition{43]

In 1973. Janowski [43] , introduced the class P (51 ‘53) as follows.

Let e A and P(0) = 1. belong to P (51 53) if p{w) is subordinate to i—:%% that is
1 + a ' —~ —~ i~
p(w)—<——?_l-(-1i)—,—1§%<9151.u'eH (1.9.1)
1+ 9B (w)

Geometrically p € P (ﬁ‘%) iff P(0) = 1 and P(I;T) are inside the such open disc whose
centered lies on real axis and end of the diameter points are dy = ﬁ'—% and do = 'ifg-. Note
that. P{1.—1] = P and P[1 - 2a,~] = P {a).

Also according to Janowski [43]

Let be A and P(0) = 1, belong to P (iﬁ %) if and only if there exists a mapping P& P such



that

@+0p@)-(3-1) 1480

(B + 1) (w) - (ﬁé— 1) 1+ Bw
here. the class the of mappings with non negative real parts is P.
1.9.2 Definition[107]

L € A is belonging to &* (ﬁ ‘.’?3) if and only 1f

2)

< 51).

L{w) —b 93+1

ww) PWE-D-(E-1)
(o) (1<

where P€ A and P(0) = 1, belong to P (51‘33)

1.9.3 Definition[107]
A function £ € A 1s also belonging to € (51 ‘B) if and only if

L

(wL' (u‘)) b (w) (@ +1) -

51—1)

(Lw))  DPw)(B+1)—

|~

where P€ A and P(0) = 1. belong to P (ﬁ %)

1.9.4 Definition[108]

A function £ € A is also belonging to S; (51 %) if and only if

wdD L (w) _ (§I+ 1)I~) (w) — (51 - 1) (_-1
T (@-1)p - (51)

Additionally by rule of subordination we are able to written as follows:

’waDqﬁ('LU) - (Ql-i—l)u-‘-z-'r-( 1)

Liw) (% + 1) w2+ (93 — 1) qu
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where

1.9.5 Definition[108]

A function £ € A is also belonging to C, (51 ‘%) if and only if

oD, (wdD,L(w)) P @+1) - (A-1)
ODL{w) B (w (93 + 1) — (is - 1)

. (—15%<§Lg1). g€ (0.1)

Additionally by rule of subordination we are able to written as follows:

8D, (wdD,Law)) LA+ D)+ (3-1) qu~2
ODgL{w) w (‘13 = 1) + (fB - 1) qu+2

Next. Mahmood et al.[61] nitated the class k-P, (ﬁ %) as:

1.9.6 Definition[61]

A function h € k-P, (A.98) if and only if
q

(%01 + 03) i (w) — (01 - 03)
(s‘z%ol + 03) h (w) — (%01) - 03) '

h(w) < k>0. g€ (01}

where

O;=14+¢q and O3=3—4q.

(19.6)

(1.9.8)

Also hy(w) is defined in {1.6.1) Geometrically. the mapping & € kP, (5153) takes whole

domain £y 4 (51 9-3) 1< B < U < 1. k > 0 which is definable as:
Qk_q{ﬁ %)z {r=u+w:Re(¥) >k |V -1]}.

where

(5301 - 03) r{w) — (‘5101 - 03)

v= (%01 + 03) r{w) — (‘3101) + 03)
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For detail see [61].

Note that

{i) For ¢ — 1. the domain ), (51, ‘B) shrinks to the Q, (51 53) (see [78)).
(ii) For ¢ — 1. the class k — P, (5[ ‘fﬁ) shrinks to the class Kk — P (51 ‘:f%) (see [78)]).

(iii) For ¢ — 1 and x = 0. then -7, (ﬁ.%) = P(A. B) also k—P(1.—1) = P (hy) (see [43]).

1.9.7 Definition[61]

Let £ € A is belonging to k-ST (€. D), 1f and only if

. [ (201~ 0a) PR — (€0, - Oy) (DO - 03) L2 — (€0, - 0y) 1
¢ 3 - w w -
(DO + 03) “OZEE) _ (0, + 0y) (DO1 + 03) 222L) _ (@0, + 03)

Or equivalently
wdDgL(w)

T € k ~P,(€.D).

where k> 0. -1< D <€ < 1.
We can see that when ¢ — 1. then & — ST 4(€. D) diminishes to the renowned class which is

stated in [78].

1.10 Some Important Lemmas

1.10.1 Lemma(57]

If £ and g are AF in H with
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then, for 0 < p and w = re®, (0 <7< 1),
2w 2
[Tiepas< [ lawipae (1.101)
0 0

1.10.2 Lemma[26]

Let #ig is AF in H with A(0) =1and 3> 0.0<7 <1 I

Jwhy (w)  1+w{l—2)

fo tw) + =50 — (1.10.2)
then
where
; V(@ = B)? +48ﬁ+(2'7—5)_ (1.103)

1.10.3 Lemma [81]

Let #i be AF in H of the form

oC
Blw)=1+Y bnu™, b #0,

m=2

with % () # 0 in H. If, 3 a point wo. lwg| < 1 such that for {|wo| > lw]} larg A{w)} < 2 and

larg A (wo)| = 5f for some p > 0, then we have w—‘;:(i—Ti,";l) = i{p, where

{ EZ%((:-F%). when argfi{wg) = £
14

L.
<—Z{(c+1). when argh(wg) = —7f.

where (A {wg))? = e (c > 0).

Above lemma 15 the generalized form of Nunokawa's lemma .
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1.10.4 Lemma[116]

Let positive measure on [0, 1] is ¢ Let {7 defined on H x [0.1] 1s a complex-valued function with
U (..t) and AF 1 H for everv t € [0.1] and for all w € H, e-integrable on [0,1] be U{w. ).
Suppose that U (—7.¢) is real, 0 < Rel (w.t) and 1/U (~,t) < Re {l/U (ur,t)} for t € [0,1]

and |w| <7 <1 I

1
U(w)= | Ulw.t)de(t),
.4
then 1/F (—r) < Re{1/F (w)}.

1.10.5 Lemmal65]

If-1<D<€<1, A>0andy bea complex number satisfying -A1-€)/(1-D) <

Re {7} . then the differential equation

ws' (w) 1+ Cw ~

s(w)+ = '€ H.
(w) As{w)+v  1+Dw’ “
has a univalent solution in H given by
p Adn (14 D) E—P)/D
i -3 D#0,
A/tﬁﬂ—l(um)“‘-"”i‘dx
s{w) = W o
—+r pAC W -~
= -3 D=0
)\/t)‘+7'18)‘(tdt
. 0
Ifr{w)=1+cquw+ cow? + . is AF in H and satisfying
wr' (w 1+ Cw =
r(w) + (w) we H,

= )
ar{w)+n 1+ Dw

then
1+ Cw
1+ Dw’

r{w) < s{w) <

and s {w) 1s the best dominant.
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1.10.6 Lemma[117, Chapter 14]

Let n. x and y # 0.—1.—2.. be complex numbers. Then, for } < Rez < Rey.

1

(1) 2Gr{n.z.yw) = F(y /s (1-—

0
() Gi{n.z.yw) = G {z.nyw).

() 2Gi{n.z.yw) = (1-w)™" 26 (n.y—x.y.

1.10.7 Lemma[73]
. Let —155325%1 <§11§§125 1. Then

1 +§l1‘w < 1+§12’U’.‘
1+§31w ]+%2'LL'.

1.10.8 Lemma[89]

Suppose 1 + 3 > cnuw™ =d{w) < Hw)=1+3 ~_, Crhu™

€ A, then

1.10.9 Lemma|61]

Suppose d(w) =1+ 37 | cnuw™ € k-Py(A 2. B). then
SHIELTE
where 4 {k} is given by (1 6.2)

1.10.10 Lemma[61]

For k > 0. let d € k-ST (€. D)

(3 - B)0y)
4

I—-x
Sy

d(k).

diw) =uw + Z bnu™. we H.

28
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(1-sw) "ds

w
w—1

) is convex and H(w)



77 232?/

then

o< ()a(kx@- D)(01) - 4¢[n], D
m| = lln=0

49 [n+1], ) )
where §(k) is given by (1.6.2).
1.10.11 Lemma[66)
Suppose d € §* and £ € C, then G € S, we have

L{w) * d(w)G(w) = ~ we b
Z(w) + d(w) € w(G(H)), eH.

here “*” represent convolution and ¢o{G (ﬁ ) represent the closed convex hull G (H)

1.10.12 Lemma[61]

The function £ € A is belonging to the class k-S7 4(€. D). if

3 {203(1 +k)g[m—1],+ |(DO1) + O3) [m], — (€O1) + 03)‘} |am|
m=2

<01 D -
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Chapter 2

A New Subclass of Analytic
Functions Defined by using Silidgean
g-Differential Operator

In this chapter, we initiate two new subclasses U, ,(q, 3,51. B) and TU,,(q, 351%) These
classes are initiated by using the Salagean g -differential operator with the help of Janowski
function. These classes generalized numerous classes by selecting specific values of the parame-
ters. We examined numerous sharp results and properties of these classes, like as extreme points
(EP). distortion theorem (DT), coefficient estimates (CE), convexity, radii of star-hkeness (RS).

close-to-convexity, and integral mean inequalities.

2.1 Introduction

2.1.1 Definition

Let £ € A. Then £ € U, ,(q, 3,9, %) if fulfill the subordination condition

S L(w)
S3L(w)

-8

SiEw) |, 1+ 2w
S3L(w) 1+ Bw

wherewEI}.S,'}E(w);éO.qe(O,l),ﬁZO, _1<®B <A< for1>31€Nand )€ Ng
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By taking notable values of parameters, we get numerous critical subclasses examined by dif-

ferent creators.

2.1.2 Remarks

(i) For A=1-2a,qg—1,and B = —1, the class U, , (g. ﬁ,ﬁ. %) shrinks into the class KE,J (a. 3}
(0 < o < 1) studsed by Eker and Owa [30].

(ii) Forz=1. ¢ — L. A =1-2a. 7=0and B=—1the class L{zaj(q.ﬁ,ﬂ.%) shrinks into the
class UpS(ax, 8). (0 < a < 1) studied by Shams et.al [97].

(1ii) For ¢ — 1. A=1-2a B =-1,1=2 and 7 = L, the class U, (g, 3.9.B) shrmks into
the class UpK(a. 3). (0 < a < 1) studied by Shams et al [98].

(1v) For 8=10,v=1. ¢ — 1 and 3 = (. the class Ui,J(q.ﬁ,ﬁ,%) shrinks nto the class S*(ﬁ ’55)
studied by Janowski {43].

(v)For =0.1=2.¢— 1and j =1, the class UT,J(q,ﬁ.ﬁ.%) shrinks into the class }Cg(ﬁ %)
studied by Padmanabhan and Ganesan [82].

2.1.3 Definition

As T is the subclass of A having negative coefficients 1 Maclaurin’s series defined in (1.1.2).
Here, we denote the class T, ,{q. 3.%.8B) = U, 3.9, 53) nT.
For appropriate possibility of the parameters g. ¢, 7, 3, 2 and B. we are able to get assorted

subclasses of 7.

2.1.4 Remarks

() TUy41,(0.5,1 — 20,—1) = TS(3,0.8). (0 < @ < 1. 3> 0. ) € No) (see Rosy and Muru-
gusundaramoorthy [92] and Aouf [10]).

(1) TU10(0.1,1 = 2. —1) = S T (a) and TU21(0-1.1 — 20,-1) = UCT (a) {0 < a < 1) (see
Bharati et al. [17]).

(iii) TU10(0.0,1 — 2a,—1) = T*(a) and TU51(0.0,1 = 20, -1) =C(a). (0 S a < 1) (see Sil-

verman [96]).
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2.2 Main Results

Coefficient estimates

2.2.1 Theorem

A function £ defined in (1 1.1) is belong to U, ,(q. 3.2, B) if
i {(1 +8(1+ ’%D) (rml; - (mj) + {% (]} — 8 [mJ;]} t <A—B.  (221)
m=2

Proof. For the proof of Theorem 2.2 1, 1t 1s enough to show that

s | 2=t |
A — Bp(w)
where
L SiEw) |8
T oy i
Now
plw) — 1
A — %p(w}

SiL(w) — S§L(w) - B }S;,L(u') - sgz:(w)]

ASIL{w) — B [S;L(w) ~ Bett |S;z:(w) — SIL(w) H
22, { (Imll — () ame = 5 | 5552y ([m)) = [mi) |}

(BB w- [y (B Imly — & [m]y) amwm ~ Bse |57, () = [mf}) am™ |
525 (Fmll = [mi ) lom [l + 8 s (Tl = [m13 ) lam fl™

A

(@ B) 0] — [Soriea | ® ()l — 8 [ ol ™ + B[] Sircs ([l = ) lam el
Ty (Tmiy = [mf3) 1+ 8) o]
B = B) — 3oy B [ml, 8 [ lam] = 3| Ty (fmy [l lam

1A
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This last expression is bounded above by 1 if

i {158 (14 [B])) (mly = Im) + {8 P = 8 [l o < 2= B,

m=2

and subsequently the proof is completed. ®
Theorem (2.2.2), shown that the condition (2.2 1) is also required for functions £ € TU. ,(q, 3. A.B).

2.2.2 Theorem

A function £ defined in (1 1.2) is belong to TU, ,{q, 3, A, %) if and only if

plw)—1
2% - Bp(w)|
where
L Sitw) ]St
P = Gt I SiEw) 1"
then

sy { (tmly I am + 36| Sy (ml) = Tmf2) ame™ |}

-1

x{ (B-B)w+ T, (B (]}~ A fmf}) apu™ } <1
+B5e? |3, ([mJ; — [mJ;) amwm‘

Since Re(w) < |w|. then we obtain

52 {(Tmly — (mf2) am™ + 8 [y (Imiy = [mf3) e}
-1

Re y { (ﬁl— {é) w+ Y o (‘33 [m];, — A [mez) amu™ } <1
+B3e° |, (fmjy - [m J;) amwm’
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Now choosing w to be real and letting w — —1, we obtain

S {(1+8(1-8)) (imfy — fmi3) - |8 mJg - & Jam <8 -8
m=2

Or. equivalently
Z{(1+3(1+]93‘)) (fmg ~ Tmp) + |8 'm) - 8 m)3 } om < 8- B.

This completes the proof =

2.2.3 Corollary

A function £ defined in (1 1.2) is belong to TU, ,(q, 3,51, B}, then for m > 2

o < | A- B
B {(1+5(1+ \%D) (rmJ;- [myq) +‘§3[m]3—ﬁ[m]ﬂ}

The result is sharp, for the function

(22.2)

— —~

A—'B 2 om0,
(o () (s~ i) = o) " 5

L{w)=w—

That is, equality can be attained for the function defined in (22 3) .

Distortion Theorems

2.2.4 Theorem

Let £ € TU,,(g.3,2.9B). Then

o - B wl’.
L)} 2 fu (eI (m;_[QJ;)+[%[2J;—§W2J;1}| |
and 2% — B
|L(w)} < Jwi+ . "

(19 (o)) (g = 122) = 120, 272
this is a sharp result.

34



Proof. In view of Theorem (2.2.2}, let
a(m) = { (1+8(1+|8])) (Im); - (mJ2) + |B ]y - & [mJ3|}
for (m > 2). ®(m) is increasing mapping, therefore:

2(2) i jam < Y B(m) jam| < A - F,
=2 m=2

that is:
" - -
A-—B
Z |aml <
= B(2)

Thus, we have

@) € ol + ol Y el
m=2

o~ —~

A-B .

(oo (D) () - B —amg)

\L(w)] < w| +

Similarly, we get

=] oc

L)} 2 fwl =Y laml [w]™ 2 bl = D Janl
m=2 m=2
A—B
z jul- hwl?

{(1+5 (1+ ]%D) (m;- m;) + \9‘3 2], - @ m;]}

Finally, the equality can be attained for the function:

—~ —_—

2A-B

fluw) =w = [+ o (i+[2])) (12, - 1217) + [ 120, - AL

w? (2.2.4)

At |w] =7 and v = re!®*+V7 (k € Z). This completes the Theorem (2 2.4). =
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2.2.5 Theorem

Let £ € TU,,(q 3,2 B). Then

€)= 1- _ 2(%-3) ) i
{(1ea(u+]2])) (120 - 1213) + [ B 120 - 225

- (ﬁ B)
(e fm]) (s -2 <[ 12 - 212

The result is sharp.

w].

} |

and

]

Proof. As for {m > 2). ( ) is an increasing mapping, In view of Theorem (2.2.2), we have:
o -~ -
( ()) (Z iamj)<z ( ) m]_ZQ |am|§(2l—‘3).
m=2
that is:

ST k)
m=2

3(2)

Thus we have:

oo
‘El(w)‘ <1+ v Z m|am| .

L(w)] <1+ — 2( )
{(r o (1=[2])) (1205 - r23) + B 1205 - 21253}

Similarly, we get:

]

|£(w)]

v

o0
1— |w] Y mlam|
m=2

- 2(51 %)

T G (R (12t ) < [B - A}

|l
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Thus we have
wl {w)

1l <1=
L{w) Hel-e

if and only if
m=2

(m = p)am |w|™
T <1 (2.2.8)

But, by Theorem (2 2.2),{2.2 8) will be true if

mm e s L ([ B])) (Pl =t + |8 (i - A el }
that is, if

1

e {(1_99) Q=9 (1= [B]) (1t - i) + [ [mJ;—ﬁ(mJé’}}m—:l_ s

m— ¢

2A-B

This implies. for m > 2

{(1—¢)x{Kl+50*W%D)(“ﬂé‘ﬁﬂﬁ*W%“ﬂ;—ﬁhﬂﬂ}}ﬁﬁ‘

m— A-B

™= inf
m>2

This completes (2.2 5). To prove (2.2.6) and (2 2.7), it is sufficient to show that

i

1225 1 (ul<re 0< 5 <),
L' (w)

Vﬁﬂ—ﬂﬁl—w (! < 3. 0< ¢ <1).

respectively. m

Extreme Points
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2.2.7 Theorem
Let

Lp(w)=w— (ﬁ_%)
{(1 + 7 (1 + I%D) (]'mJ; - [m_\';) + ‘53 fmJ; 2 {mjé‘}

™., m=2.3.

and

Li(w) = w.

Then £ € TU, (g, 5,§l. 53) if and only if £{w) take the form

Lw) =) tmlm(w).
m=1

where
Tm 20 ) mm=1
m=1
Proof. Suppose that
oo
Llw) = 3 nplm(w)
m=1
oc é“l _ %
- w— Z . ( ) w™

2 {(HB(H‘%D)([mJ;—[mJ;)+‘%[mJ;—ﬁfmJé‘}

Then. from Theorem (2.2.2}, we have

= [{(1+8(1+|B])) (mly - 1m) + |B [m]; - &[]} & - )
e (s (L [B])) (i - i) = [B T - i}

m

= @-%)Y .= @-B)(1-n)<@A-B)
m=2

Thus, in view of Theorem (2.2.2), we find that £ € TU, ,{q, 3, 2 ‘%) Conversely. let us suppose
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that £ € TU,‘J(q,ﬁ,ﬁ,%), then, since

(2 - B)
{(1+6(1+ j%j)) ([mJ;— rmJ;) +\€é rmJ;_ﬁ[mjgl}

am <

By setting

{(1+6 (1+ ]%D) ([mJ; _ rmJ-;) + |§3 [mJ;—ﬁ[mJ;H

T]m e = = Am
(A —B)
m= 1- Z m
m=2
Thus clearly, we have
Lluw) =Y gnlm(w).
m=1]
Theorem {2 2 7) is completed. =
2.2.8 Corollary
For class TU, ;(q. 3. 2. B). EP are given by
ﬁ] (w) = w.
(% - B) m

Lp(w) =w - w". o om=23...

{(1 + 3 (1+ |i§|)) ([mJ; - [mJ;) + |§”3 [mj;-ﬁfmjg\}

Integral Means Inequalities

2.2.9 Theorem

-~ o~

Suppose that £ € TU,,(q.53,A B). p>0. -1 < B<A<1,8>01€N. 7€Ng1> 7 and
Lo(w} 15 defined by

A- B 2

T T (- 8) (2l 12y) < B -]
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then w = re. (0 <7 < 1). we have

2m 2w
/ |£(u}Pdf < f |Ca(w)[P 6.
0 0

L{w)=wuw— Z g™, am > 0.

m=2

the relation (1.10.1) is e

2r
J
27
< [h-
0

to proving that

- S ™! _ A-B _
1 ;:2 <1 [(a+8(1+|8)) (120 - 1213) + B 12, -
By setting
N a1 | A-B
1 mzzz 1 {(1+3(1+[8])) (120 - 1213) + B 20, - E T2

and using (2.2 1), we obtain
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W (w)

[

IA

{(1+6(1+‘%

)

) (120 - 1213) + | B 120 - 87203

oc
m=2

%D) (m;- m;) + ‘%m;-ﬁm;l}

to:tl

9 —

apw™

i{(HB(H

9"3’)) ((mJ;— mf3) + ’53 ]! —éi[mjg\}a

A-B

Gm

Iu*Ié{(l+3(l+

lw| < 1.

A—-B

42
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Chapter 3

A class of analytic functions related
to convexity and functions with

bounded turning

In this chapter, we define a new subclass k-QMT (a) of analytic functions, which generalizes the
class of k-umformly convex functions. The main purpose of this chapter is to establish several
interesting relationships between k-QM7 ()} and the class B(J) of functions with bounded
turmng. We studied various interesting relationships of this class with already existing classes
of analytic functions. Certain important cases for some special values of the parameters haw

been obtained.

3.1 Introduction

3.1.1 Bounded turning

In [80]. it is proved that if Re(£') > 0 in H, then £ 15 univalent in H. In 1972, MacGrego
[64] studied the class B of functions with bounded turning, a function £ € B if 1t satisfies th

condition Re (£') > 0 for w € H. A natural generalization of the class B is B(d) (0 < § < 1),
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function £ € B(4) if it satisfies the condition
Re (L) >4 (we H,0<6<1),
for details associated with the class B(8) (see {19, 79])

3.1.2 Definition

Let Le Aand k> 0.0<a <1 Then £ € k-OMT («) if and only if

L )y
R { C(w) }>k

{(wl' ('w))l

o) ~1.weH (3.1.1)

(1-0)L (v) +a

It is worth mentioning that for special value of parameter we obtained number of already defined
classes, here some of them are listed below

(1) k-QMT (1} = k-UCY

(1) 0-QMT (6) =C

Next. we provide an example of a function belonging to k-QMT7T (a).

3.1.3 Example

Next, we provide an example of a function belonging to k-QMT (a).
The function £(w) = %= is in the class k-QMT (a) for

1-Aw
1—b°
k< , (3.1.2)
by/b(l+a){b(t+a}+2}+4
where |[A| = b
Proof. For Aw = be*, (3.1 1) become
1912 ©d
L pey K|+ a) () - 2be
> . N
RG(L—M”)“ i1 — bet|* (3.13)
It can be easily be seen that
1+ bet? 152
Re (1 — be'ﬁ’) = b (3.14)
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Using (3.1 3). (3.1 4) and after some simple calculation, we obtain (3.12). m

3.2 Main Results

3.2.1 Theorem

Let 0 << land k> . If £ € k-OMT (o), then £ € B(4), where

(=B +4/(27=8)° +83

2.1
; ; (3:2.)
with 8 = kl('l*f‘:) and v = k'l‘i';'l.
Proof, Let

L' (w) =h(uw),

where # is analytic in H with & (0) = 1. From Inequality (3 1 1) which takes the form
wh (w) wh' (w)
k(1= -
Re{1+ () } > (1 a)ﬁ(w)+a(1+ R w) 1

wh {w)
Fw)

= k|l-a-Hhlw)+ah(w) —a

we find that

_ 1+ak \ wk (w) k-ak—1
Re{ﬁ{u)+(k(1—a)) ﬁ(w)}> —a

which can be rewritten as

wh' (w)
Re{ﬁ(w)-l— 15 (@) } >y

where § = AITE%T and 4 = %. The above relation can be written 1n the following Briot-

Bouquet differential subordination

wh (w) 14+(1-27)w

fi{w) + %ﬁ(w) —
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Thus. by Lemma 1 10 2. we obtain

1+(1-26)w
1w

h < , (3.2.2)

where

(27 = 8)+4/(2y - 8)" + 83
; .

with 3 = kl(‘l*'—fzj and ~ = k'lo_‘;_l. This implies that £ € B (4). We thus complete the proof of

Theorem 3.21. =

Special Cases

(i) For a = 0 and k = 1. and for £ € 1-QMT (0), we have £ € B (). where § ~ 050 that is
£ € 1-QMT (0) implies £ 1s bounded turning of order 0.5
(ii) For a = % and k=1 and for £ € 1-OQMT (%), we have £ € B {§). where § ~ 0 50 that is
L£el-QMT (%) imphes £ 1s bounded turning of order 0.5

(1ii) For a = 0 then

(2k% — 2k — 1) + V4K — 8K + 12k + 1

& ik

In other words for £ € k-QMT (0), we have £ € B(é1).

3.2.2 Theorem

Let0<a<1.0<3<1.¢>0k>1.m>3+1(3€N).|{|>2(c~1)and

adf£(1- a)cssm?—i

> 1. 2.3
(21 (3.23)

If
L{w)=uw+ Z anw™  (a;41 #F 0}

m=3+1

and £ € k-QMT (a), then £ € B(3y). where

3¢ =min{3: 8 € (0.1)}
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such that (3 2.3) holds.

Proof. By the assumption. we have

Lw)=h(wy =1+ cnu™ ¢, #0 (3.2.4)

m=3

In view of (31 1) and (3 2.4) . we get

wh {(w)
Re{l-+- A () } >k

If there exists a point wg € H such that

w)

(1-a)fi{w)+a (1 + 'w:( (u‘)) - 1‘

pr

larg ki (w)| < 5 (lw| < |lwg|. 0 <3< 1)

and

larg £ (wo)| = ?21, 0<d<1

then from Lemma 1 10.3. we know that

wolt (wp)
—— =13,
A (wo)
where
(B (wo))V® = £ic (¢ >0)
and
. £> 2 (c+1). (argﬁ(u'o)z%"').
(< -3 (c+13). (argﬁ (wo) = —32—’)
For the case
37
ch{wg) = —.
arg (HO) D
we get
Red1+ 2Rl _perisugy=1. (3.25)
h(wo)
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Moreover, we find from (3.2 3) that

k(1= o) B (w) + (1 n “’: (“’0)) -1

(o)
I P N awﬁ'('wo)
= k|(1—ca){fi(we)—1}+ R (wo)
— k (l—a){(izc}5—1}+zaﬁl‘ (32.6)

}’

, 2
= k(l1—a) (cacos.ﬁg—l) +{ali3:i:(1—a)cjsin3

-

v
2| =

1

By virtue of (323) and (3.2.6). we have

Re{1+ wh (M‘O)} <k|(l1—a)h(w)+ « (l+wh (u‘O)) —1’.
B (wo)

R (wo)
which is contradiction to the definition of k-QMT (a). Since 3, = mmn{d 3 € (0.1)} such

that (3.2 3) holds. we can deduce that £ € B(3,} By using the sinular method as given above,

we can prove the case

37
arg ii{wy) = -

is true. The proof of Theorem 3.2.2 is thus completed. =

3.2.3 Theorem

Let 0< o< land k> = If £ € k-QMT (a), then
Luwy=<s(w)= T

where

gluw)= [26’1 (%1 % + 1. w’{i 1)]

with 8 = ——kl(irfg)

Proof. Suppose that
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From the Theorem 3 2 1, we see that

wh (w) 1+(1—2'})u'_<1+ur
Lh (w) 1—w 1—-w

F(w) +

14+ak - k—ak-—1
k(l—a) and 7 = -7 5 -

If we set A= é ~n=0.C€=1and D=-1Lemma 1.10 5, then

where 3 =

gl
twinr

1 w? (1—w)

gw) ~ ®
l/ﬂft1’3—1 (1—¢t)"7at
0

F{w) <s(w)=

By putting ¢ = ww. and using Lemma 1.10.6, we obtain

h{w) < s(w)= ! = !
PIen) T
1/3(1 —w)™ 8 /ulfﬁ“l(l—uw) 279 du
0

9 ' -1
— {2G1 (5(1—7).1;%“:““11)} .

which 1s the desired result of Theorem 3.2.3. =

3.2.4 Theorem

If0<8<land 0<v <1l If £ €k-QMT (). then

2 1 1V} 7!
Re£’>{2G1 (E(l—,u).l.E—H 5)} ,

or equivalently k-QM7T (a) C B(pg) where

2 11\
#0={2G1 (5(1—#)-1:3"'1 E)} :
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Proof. Fornz%(]—,u). =73 y=1+1 wehave

1

F(w) = (1+Duw)” jtz_l (1 + Dtw) " dt
0
Flw) = 11:5;; 261 (l,n,y; u—lf—l) (3.27)

To prove k-QMT () C B{pyg). it is suffices to prove

inf {Req(w)} =q(-1).

we need to show that

Re {1/F (w)} > 1/F (=1).

By using Lemma 1.10.4 and (3.2.7) it follows that

0
where
1—-w
}-(’tL‘.t) = m, (OStS 1)
— _FLn— _ -n-—1
de (t) = I"(n)["(y-n)t (1 —)¥ dt.

which is a positive measure on [0. 1]

It is clear that Re F (w.t) > 0 and F (—r.t)1sreal for 0 < |w| <r <landt € [0.1] Also

1 _ 1-(1-t)w 1+(1—t)r_ 1
Re{}'(u‘.t)}_Re{ 1—w }2 1+r  Fi-rt)

for |w| < r < 1. Therefore using Lermnma 1.10.4, we get

Re {1/F (w}} 2 1/F (-7)

o0



Now letting r — 17. 1t follows

Re{1/F (w)} > 1/F (-1).

Thus, we deduce that k-QM7T (a) C B(yy). =

al



Chapter 4

A Subclass of Analytic Functions
Defined by using Mittag-Lefller

Function

In this chapter. we initiate two new subclasses Q1 ('}ﬁ%) and TQJY, (’}51%) These
classes is initiated by using the Mittag-Leffler function with the help of Janowski functions.
These classes generalized numerous classes by selecting specific values of the parameters. We
examined numerous sharp results and properties of these classes, like as extreme points (EP),
distortion theorem (DT), coefficient estimates (CE), convexity, radii of star-likeness (RS), close-

to-convexity and integral mean inequalities (IMI).

4.1 Introduction
4.1.1 Definition

X.t7

Let £ € A Then £ € ('}',ﬁ. ’53) if fulfill the following subordination relationship:

dD; (a. p)L(w)

9D (o p)L(w)

0D (oo )Lw) | 1+ %w
9D} (e. w)L(w) 1+Bw’
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where w € H, 8D (o, p)L(w) # 0, &, 7. 46X 2 0, -1< B <A< forz>3 1€ Nand
7 € Np.and 8D (a, p}L(w) defined m (1.7.3).

By taking notable values of parameters, we get numerous critical subclasses examined by dif-
ferent creators

(2) 1;,; (v.1—2¢,-1) = Ey (7,€), (30},

(12) Q1.1,0 (1,1-2¢,-1) =UE(v,¢), [97],

(u1) @0 (.1 — 26,—1) = UE(7,¢). [98],

(221} Q(l)io (O 9. B ~) =g (QL ) [43].

() QLo (o A %) K (".%), 821,

4.1.2 Definition

As T be the subclass of .A having negative coefficients in Maclaurin's series defined in (11.2).
Here, we denote the class TQ“"” (’},‘51 ‘3) Qafj ('},21 'EB) NnT.
For appropriate possibility of the parameters Y., p. A, i, EB 3.7, we are able to get assorted

subclasses of 7.

(x) TQ1 z+1;( 1= 26.-1) =TS8 (3,1.¢) . [8],
(22} TQ110(1,1—25,—1) ST (g}, [17),
(111) TQMG({]‘I—?E,——l ) = T*{g), [100].

4.2 Main Results

Coeflicient estimates

4.2.1 Theorem

A function £ defined in (1 1.1) is belong to @7, (’),51. %) if

S v[ien (1D} (¢ - &) + | (B0 - 8[| lam] <& - . (4.2.1)
m=2
where g =1+ (m—1)x and v = W(;(—;?Tﬁ
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Proof. We need to show that
p(w) —1

ek <1,
A — Bp(w)

where
oD: (a, p)L{w) oD} (a. ) L{w)

. HuEw) 0D e B
) = 5Dl W) 'aDJ(a L (w)

Hence, we obtamn

O
A — Bp(w)

D3 (e, ) £(w) — 8D (0. ) £(w)

— 7e# |aDs (0. p) L) ~ 0D (. ) ()|
D (o ) L(w) — D (a. u)ﬁ(w)”

AODY (. w)L(w) - B 0Dy (o, w)L(w) — e

S0 (68— ) amu™ - 7e? [Ty v (98 = @) amu™|
(@ — B)w — [z;';=2 v (%QB’ - é‘w) amu™ — B [T v (¢t — &) amu'm”
5%, (6" = ) lam] [w]™ + 7 oy v (¢ = @) lam] ]
@ - B) ul - [ v | (86— 807 laml [0l +~ [B| Tinyv (8 = &) lam] wl”
S v (¢ — @) (14) lan]
@ B) - T, v |(B¢ -89 |laml =1 |B| T v (¢ = &) fam|

I

IA

This last expression is bounded above by 1 if

S [{1ea(1+[8))} (¢ - ) + B 8| laml < G- .

m=2

and hence the proof 15 completed. m

Theorem 4.2.2, shown that the condition (4.2 1) is also required for functions £ € TQ;:f , (”, A %) .

4.2.2 Theorem

AmMMnﬁﬁhwuNUJMHMm@gmT@%(mﬁ%)ﬁmdmkﬁ

5 [{1e (1 [B)) - )+ B0 - 82/l <5,
Wheroe“t=r—(m{rl:l—(fi)_HJamdqb.:1-|-(m_1))L
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Proof. Since
w a ;e W4 3 M
o ('},91."3) > T, (q.m.%),

by making use of the same method given in Theorem (4.2 1), we immediately proof of Theorem

(422) =

4.2.3 Corollary
A function £ defined in (11.2) 15 belonging to TQY, (q, A, %), then

— —_—

A-B

am < — —~ — (m>2). (4.2.2)
e (e [B])} @ -9+ [Be -3
The sharpness of this result, we have the function:
L(w)=w— 2-% ™ {m>2). (4.2.3)

T G B -a]

That is, equality can be attained for the function defined in (4.2 3).

Next, we discuss, distortion result and growth result for £ in the class TQ?:' 5 (")‘51 %)

4.2.4 Theorem

Let £L e T, (7,51, ‘fﬁ) Then

(ﬁ—%) o+ p)
T () [{1 +y (14 ’%D} ((1+x)‘ —qa +x)3) + ‘%(l—i— ) — a1 +x)-’H

1L(w}| = |w]|~- :

|

and

(ﬁ-—%) [la+ p)

12
T () [{1+'}(1+“2~3D}((1+x)'-—(1+x)1)+1Q~3(1+x)t—ﬁ(1+l)3‘] .

|£(w)] < |wi+

Proof. In view of Theorem 4.2.2, consider

5(m) =U{1+7(1+‘%D} (¢ — &) + "%cb’—alqﬂ\.
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where ¢ =1+ (m—1)y and v = fwﬂf{)—ﬂﬁ,é(m) is an increasing function for m (m > 2,

This implies that:

that is:

Thus, we have:

)] < el + 3 Jaml
m=2

(51—‘%) Tla + p)

_ w2
Hels] |+T(p) {144 (1+ B)} (@0 -0 wxP )+ B -Aa+ x| .
Similarly, we get:
IL(w)] > jw|-— i lam | w™ > |w|— i |am| |w]?
m=2 m=2
. (Qt—aB) T{a + p) .

i [{149 1+ |B))} (v 0 - e x?) + B+ 1) - A+

Finally. the equality can be attained for the function:

(‘31— %) I'a + u)

N = w— 2
Fuwy = I'(u) [{1 + (1 + “BD} ((x+1)’ -(1 +x)3) + “B(H 1) -2 1+ x)’Hu
(4.2.4)
at |w|=r and w = re{®+1)7 (k ¢ Z). This completes Theorem 4.2.4 =
4.2.5 Theorem
Let £ € T, (’}ﬁ %) Then
‘E'(u,)‘ - 2(@—%)]?((14-#) el

I (p) [{14—1 (1+|55D} ((x+1)t— (l-u)f) + |%()‘+1)’—§l(1+\)JH
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and
2(51—53)]?(0:4—;1)

T () [{1+q (1+‘%D} ((1+x)‘—(1+x)1) +‘53(1+x)‘—ﬁ(1+x)fu

' |w] -

}z: (w)‘ <1+

This result is sharp.

Proof. In view of Theorem 4.2.2, suppose that

6(m)=v{l+’y(l+’%D}(¢I—¢J)+'%d)z—§l¢3’.

where ¢ =1+ {m—1)x and v = F(a(rl;(f}.)+#)’ @Enm) 1s an increasing function for m (m > 2)

Similarly, we obtain:

(i‘g'“’"'m) (@) <> (6—?) ol = 3 80 lam] < (8- 5).

m=2

that is:

i|am|m$ (3(2?)) (ﬁ—%).

m=2

and consequently:
£ w)| <1+ 3 mlam o],
m=2
2 (ﬁ—%) INCEIT

T (1) [((x+ 1)'-(1+x)") {1+') (1+}§3D}+’%(x+1)‘—§1(1+x)fﬂ

‘z‘(ur)i <1+ ]

Also, we get

oc

1-— Zmlam||w|

m=2

v

o)

]E,(w)‘ L 2 (éi— i’a) T(a + p) .
- T () [((x%—l]’ _ (1+x)1) {1+'y (1+ ]%D}+ |%(1+x)” —ﬁ(1+x)n”u

Finally, we can see that the assertions of Theorem 4.2.5, the equality can be attamed for the

the function defined by (4.2.4). Theorem 4.2.5 1s completed. ®
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Next discussion is Radii of Starlikeness (RS), Convexity and Close-to-Convexity for TQ; H ; (", A, %)

4.2.6 Theorem

Let L € TS, (’)?31 53) Then

(i) For |w| < 71 and (0 < @ < 1). £ is starlike of order a. where:

T = inf
m>2

{(l—a) Xv[{1+q(1+{‘BD}(cﬁ‘—cﬁ’)—k}%qﬁ‘—ﬁé’u}ﬁ‘ 425)

ma (3-2)

(ii) For |w| < re and (0 < a < 1), £ is convex of order «, where:

I {( 1—a ) Y Hl + (1+ 1%’)(}5[(fg)¢]) + '%qn' —ﬁasfH }’“*‘ iz

(iii) For |w| < 73 and (0 < @ < 1), L is close to convex of order a, where:

r3 = inf
m>2

{(1 —a) L Hl {1+ ‘%D} (0 - o)+ ‘%W _ﬁd)]H }ﬁ (4.2.7)

m (51—93)

All results are sharp. for the mapping £ given in {(4.2.3).

Proof. Here enough to show:

wl (w)

Lw) !

<l1-—a for |uw| <ry,

where r; is given by (4.2.5). Indeed we find from (1.1.2) that is

wlw) | TR ym= Dom w]"”
Lw) |7 1-Yeamle™

Thus, we have
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if and only if

Ziig(m( = zf)m ™ (4.2.8)

But. by Theorem 4 2.2. {4 2 8) will be true if

(30 g 2Dl
- A

1—a 7 ’

-8B

that is. if

m - a A-B

] < {(1“‘1) Al (H‘%D}(#“ﬁ’])*’%a‘w”}#__1 (m>2)

this implies

ey Gl
(2-3)
This completes (4 2.5).

To prove (4 2.6) and (4.2.7) it is sufficient to show that

1+%(:L)—))—1 Sl—a (|u|[<T2ROSa<1)‘
and
’C’(ﬂ')—llﬁl—a (|IL'I<T3. OSG(l)_
[ |

Next. we discussed extreme points for TQ: # B (’y. ﬁ, ’53) .

4.2.7 Theorem

Let

Lopw)=w-— = oA = = w
UH1+7@+¢BD}@k—¢)+k&ﬁ—me

m
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and

Li(w) =w.

Then £ € T, (’y,ﬁ. ‘53) if and only if £ (w) take the form

Lw) =Y nplmlw),
m=1

where

T 2 0s inm= L.
m=1

Proof. Suppose that

L) = ) tmlm(w)
m=1

= w—in a-% i
by’ mv[{l—{-'} (1+“ED}(¢‘—G§-’)+‘%¢’—§1¢’H

m

Then, from Theorem 4.2.2, we have

& [(3-5)s {1 (1[5} 0—0)+[80-30]

D B R 7 e R () Y

= {ﬁ— %) Z M
m=2

= @-B)(1-m)
2 —B).

IA

Thus, in view of Theorem 4.2.2, we find that £ € TQ;::: ; ('}, ‘31, 93) Conversely, let us suppose
that £ € TQ‘;‘::J (’},51. ‘53), then, since

o~ —_—

A—B
i ) R )

Qm <
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by setting

I ) o I
A—B
and o
™ I—an-
m=2
we have

Theorem completed. ®

4.2.8 Corollary

For class TQ{Y) (ﬁ,,ﬁ. 53) . EP are as:

Li(w) = w,
and
Lop(w)=w-— A w™  (m2>2).
v[{1e2 (1+[8[)} - - By a0l
Integral Means Inequalities
4.2.9 Theorem
Suppose that £ € TQUY, (’}, A, ‘173) and La{w) is defined by
(Q::l - %) Ta + p)
= =0 - e ) [ (1 [B)) ]+ B v 1 - A0+ 7
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then for w = re'(0 < r < 1), we have
27 2n
[ iewras [ iewras
0 0

Proof. Let L(w) =w— ¥ amw™ ( am > 0) then we must show that
m=2

P

2 >0
/ 1— Z anw™ Y df
0

m=2

21 (ﬁ—%) INGE Y ’
< / 1-— — — — w| df
0 T (1) K(x+1)‘—(1+x)3) {1-4—’) (1+‘%D}+ }‘B(x—i— 1)‘—21(1+X)JH

By Lemma 1.10.1, it is enough to show that

(5[-—53)]7(&—0—#) ’
T (u) [((x+1)'—(1-+—x)3) {1+’} (1+\6§D} L ]%(x+1)1—§1(1+xﬁH '

o0
1—2 amw™ 1l < 1—
m=2

By setting

~ (ﬁ-%)r(a-kp)
I—Zamwm l=1- = = =
o T (u) [((x-l—l)’— (1 +x;)3) {1+'} (1+ '%D} + }*.B(X+1)’ —m(1+x)JH

w({w).

and using (4 2.1), we get

ir(p) [((x+1)1—(1+x)f){1+r,»(1+j§s’)}+1%(x+1)*—§1(1+x)fu
m=2 (51 - ‘%) NG
o () [(Get 1) =+ 0?) {147 (14 ]8])} + B+ 84|
m=2 (51 ‘1—3) T+ p)
o L[{1+7(1+‘%D} ¢ - &) + | B - SllerH

A—

apw™

| {w}|

Gm

A
=
A
[

Theorem 4.2.9 15 completed ®
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Chapter 5

Subclasses of uniformly convex and
starlike functions associated with

Bessel functions

Applications of Bessel functions have been commonly utilized in UF theory. The main focus
of this chapter is to set out few imperative characteristic properties for a few subclasses of
uniformly SF and CF which are initiated here by infers of the normalized condition of the
generalized BF to be univalent inside the H. Furthermore, we as well develop up some results

about of these subclasses related to a particular integral operator.

5.1 Introduction

Throughout this chapter. unless otherwise stated. the parameters of alpha, beta and eta are

considered as (¢ > 0), (0 < f<1)and (0<n<1).

5.1.1 Definition

Let £ € A. Then £ € Q; (o, 8. n) if it fulfill the successive condition:

wl (w)+nw?l” (w)
Re { Zlw) } 2o

wl (w) + el (w)
L(w)

~1|+3 (5.1.1)
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5.1.2 Definition

Let £ € A. Then £ € Q,CV (&, 3,n) if it fulfill the successive condition:

+3 (5.1.2)

£ (w) +mel” (w) £ (w)+nuwl’ (w)
He { L (w) } = \ 7 (w) 1

5.1.3 Definition

Let £ € A. Then £ € PS{a.n) if 1t fulfill the successive condition:

wl (w)+me? L’ (w)

wl (w) + nqu?l” (w)
> — 5 1.
Re{ Ciw) +a> Z(w) o (51.3)
5.1.4 Definition
Let £ € A. Then £ € PCV (a,n) if it fulfill the successive condition:
£ (w) +nuwl’ (w) £ (w) +qwl’ (w)
> —a. 1.

We note that PST (a,n) = PS{a,n)NT and PCVT (a,n) = PCV (a.n)NT
For special value of parameter, we obtain some of the previously studied classes. Some of them

are hsted below.

; Q. (a,8.0) = SP (a. 3) [22).

i Q.CV (a.8.1) = UCV (. 8) [17].
il PS(a.0)=x(a) [22].

v PCV (a,1) = CP () [22].

Tn present chapter, we obtained sufficient conditions for £ € A. to be in Q:{a, 3,7} and
Q:CV (a.3,71). We also determined necessary and sufficient conditions for L ¢ A, to bein the
PS(e.n) and PCV {a. 7). Furthermore, we determined sufficient conditions for wu. to be 1n
Q. (e, 8.1) and Q.CV (o B.7) also for w (2 — ) to be in the function classes PS{a n) and
PCV {a.n). We conusider an ntegral operator related to the function u,. Also, some corollaries

related to main theorems have been presented.
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5.2 Main Results

In this section, some theorems and corollaries related to our main results will be given.

5.2.1 Theorem

A sufficient condition for £ € A, is belonging to Q. (o, 3.7) , if it fulfill the successive inequality
(521):

S {mmm-n+1)(1+a)—a~3}am| <15 (5.2.1)

m=2

Proof. It is enough to show that

L

wl (w) +nu?l” (w)

L{w) -1

«

- Re {“’ﬁ (w);(’:{:“)fgﬁ (w) _ 1} <1-8.

Let us consider the following inequalities

wl (w) +quwil” (w)

L(w) -1

L(w)

— Re {wﬁl (w) + gl {w) 3 1}

wl (w) +nuw? L’ (w) — L (u)
L(w)

<(x+1)

{a+1) ( iz (an—nm-Fm—l) Iaml)

<

o

1- Z |am|
m:

2

This preceding expression is bounded above by 1 — 3. if the following inequality holds

Y immm—n+1){1+a)—a—8}am| <1-8.

m=2

]
Tt is remarkable that a necessary and sufficient condition for £ € T 1s belonging to Qz (o, 5.7)
is that the condition (5.2 1) holds.
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5.2.2 Theorem

A sufficient condition for £ € A, is belonging to Q:CV (a, 3.1, if it fulfill the successive
inequality (5.2 2).
Z mm-D1+a)+1-3}aml <13 (5.2.2)

m=2

Proof. It is enough to show that

£ (w) +mul” (w)
L' (w)

-1

Let’s consider the following inequalities

nuwl’ (w) + L (w)

nuwl’ (w) +wl (w)
L {w) B { £ (w) 1}
nwl” (w)
< {1+ a} R )

n(1+a) i;z(m— 1) m|am|
1- 5 (mlan)

m=2

IA

This preceding expression is bounded above by 1 — 3, if the following inequality holds
00
S m{p(m-1)(1+a)+1-3}lam| <1~ 3

m=2

[ |
It is remarkable that a necessary and sufficient condition for £ € T is belonging to Q-CV (e, 3.7)
is that the condition (5.2.2) is satisfied.

5.2.3 Theorem

A necessary and sufficient condition for £ € T 15 belonging to PS(a.n) is that the following
inequality (5.2.3) holds.

Z{nm —D4m-a}lan| <1+a (5.2.3)
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Proof. Let's consider the following inequalities

e {nu.z,: (w) + wl (w)} s

£ (w) L (w)

nuwll” (w) + wl (w) 3 a}

which leads to

wl' (w) + il (w) R wl' (w)+ el (w)
L(w) £ (w)

Consider

nu?l” (w) + wl (w) Ca

£ (w) L (w)

< o WL (w) + Pl ()
=7 L (w)

S
=0 m=2

z— Y. (amwm)]
m=2

‘1 - ic: (m +qm® - nm) (amw™ 1)

=92 m=2

o0
’1 - Y anum!

m=2

This preceding expression is bounded above by 2a if the following inequalities hold

™8

(nmz—nm+m) lam| —1 < a (1+ Z |am|)

m=2

2

3
Il

8

{pm(m—-1)+m-a}lem| <1+ a.

3
1
b
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5.2.4 Theorem

A necessary and sufficient conditien for £ € T is belonging to PCV (a 7) is that, the following

inequahty (5.2 4) holds.
o0
Y frm(m—1) +m(1-a)len <1+ a
m=2

Proof. Let us consider the following mequalities

e {r:'(w>+nwc” (w)} oy | L @)

L (w)

L (w)

which leads to
£ (w)+ nuel” (w) 3
' (w)

Consider

£ (w) +qul’ (w) B

£ (w) £ (w)
<9 L (u')-%:n'wﬁ (w)
- L' (w)
z— Y (nm?*-nm+ m) amwm\
z— Y, mamwm|
m=2
1— 3 (m+nm? —nm) (amuw™ 1)
1- Y (mamw™ 1)
m=2

This preceding expression is bounded above by 2« if the following inequality holds

S frm(m—1) +m(1-a)]lan| < 1+a

m=2
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5.2.5 Theorem

If d < 0 and b, < 0 then vu; € @z (a,8,7) of
n(1+a)u, () + 2+ 1) (1+a)u, (D+(1-8)fu (1) -1 <1-3 (5.2.5)

Proof. Since

wig (W) =w -+ Z - (m— 1y wm, (5.2.6)

on account of Theorem 5 2.1. it 1s enough to show that

o d
£{d.bs,x,8.m) = Z [m(1+a)(nm—n+1)—(a—|—3)]( E ‘j') e <1—i3.

m=2

69



Doing some simple calculations, we have:

£{d. bs,a. 8,1}
o] (_g)m—l
= mz:zz [(1 =+ Q’) (ﬂm2 —-nm =+ m) - (a - B)] (m _ I;I(bs)mnl
_& P
_:L;[(l—ka)('qm 1) (m = 1)+ 1= 3] i —
= (-9""
_Zz{n m2—m)(1+a)+(m-1 (1+a)+1—8} —1§'(bs)m_1
& 5 O )
_mzﬂry(m—l)(m—Q)(1+a)( A +m§(2n+1)( DO+e) Iy
SV C
* 2 O
=ir](1+a) (—%)m_l +i(2n+1J(l+a) = %)
= (m=3)bs}ny 25 (m = 2) 1{bs) s
o (1 (-9""
P T
=in(1+a} (_%)mﬂ +§(2n+1)(1+a} (d)mﬂ +Z(1 3) (4)"“1
m=0 (B ) oo (m) ! m=0 (bs )m+1 p (m+1)!
(-9)° (%)
=n(l+a) b, (b34+1)uz+2 O+ (2n+1)(1+a) b4 uzy1 (1) + (1 — 8) {u- (1) — 1}
=n[1+a}u:(l)+(2n+1)(1+a)u;(l)+(1— By {uz (1) — 1} (5.2.7)

Therefore the last expression (5 2.7) is bounded above by 1 — 3 if the condition (52.5) is

satisfied. =

5.2.6 Corollary

I d < 0 and b < 0 then, w (2 —u;) € Q. (a. 3,7} if and only if (5.2.5) is satisfied.
Proof. Since

fa"=] d)m—l
vz = mz b)m_l(m—l)'“’ '




by utilizing the procedure given within the verification of Theorem 5 2.5. we arrive instantly

Corollary 52.6 =

5.2.7 Theorem

Ifd < 0 and b, < 0 then vwu, € Q.CV (. 3.7) if
n(1+a)us () +2r(l+a)+1-8)ug ()+ (1 -8 [u(1)-1<1-8

Proof. Since

= (=9
wug (w) = w+ ,;::2 (bs)m_?_ s 1)'wm'
on account of Theorem 5 2 2. 1t is enough to show that
o _é)m-l
f(d.b.a B.n) = ,,);zzm {1+ a) (m= 1)+ (1= 8)) s —

(5.2.8)

(5.2.9)



Doing some simple calculations, we have.

f(d-b51a~3«n)
S : G N - (-4
= g::;](l + a) (m® — m) CESIC + Z m (1 —,.‘3) T
s (-H""
_T;n(wa){z(m—l)+(m—1){m—2)}( lj!(bs)m_l
+ i (1-8){(m-1)+1} o™
m=2 (m_l)'(bs)m 1
S im0 ram) ooy D
= (m—=1)bs)p1 22 (m — 1)1 (Bs)m_y
- 9™ - -9
+,§2(m'lm_m(m_l)!(bs}m_l+m2=2(1“”(m-1)!(bs) ,
3 "L (9"
:m=3n(1+a) CEETION +mz=:22n(1 + o) T
. 9™ - (-Hm"
+£(1_5)(m_2)!(b5)m 1+mz21_ (m—l)'(b
20 ( )m+2 00 ( d)m.+1 00 (_g)m—o-l
zmgo G+o)g bs)rnsn (M) +,§2n(1+a) (bs) g1 (M '+,§(1_5) (b5t (m)!
- (-4
_ 4
- mz=o O =) Gy
oc (_c_;)m+2 (_Q)m-H
= &) ——— a —_ v 45 000
o0 ( é)m+1
=n(1+a)u;(1)+{2n(1+a)+(1—5)}u;(1)+(1—5’){%(1)*1}

Therefore the last expression is bounded above by 1 — 3, if the condition (5.2.8) is satisfied. m

5.2.8 Corollary

Ifd < 0and by < 0 then. w(2—u;) € @:CV (a, B.7n) if and only if the inequality (5.2.8) is

satisfied.
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Proof. Since

w(2—u)=w— i (-%)m_l o
DM T

by utilizing the procedure given within the verification of Theorem 5 2 7, we arrive mnstantly

Corollary 5.28 m

5.2.9 Theorem

If d < 0 and by < 0 then w (2 — u,) € PS{a.n)if

"

g (1) + (27 + Dug (D + (1 —a)uz (1) < 2. (5.2 10)

Proof. Since

00 _d m—1
r(d. by m) = mzz:z [mn (m—1) + (m — )] (mE 1‘;? b <l+a.
Doing some simple calculations, we have:
r{d. by, . 1)
< (4™
= mz=:2 [pm (m —1) + m — o] B,y (m =11
o 11 (12 (="
=mz=:2[’?(m —m) +m—q o), (m — 1)
_ oo - (_§ m—1 o0 B (_%)m—l o0 (_é)m—l
2ot m) s et 2 g P e e
B o T~ 4
= X nlm D=2 s e+ 2 G DD g ey
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Therefore, the last expression 1s bounded above by 1 + a 1f the condition (52 10) 15 satisfled.

qun (1) + (2 + Dy (1) + [ (1) =1 (1-a) < 1+a

"

mue (1) + (27 + Dug (1) + (1 - a)ug (1) £ 2

5.2.10 Theorem

If d < 0 and b, < 0 then w{2 —u;) € PCV (a.n) if and only if
qur (1) + (2n+1—a)u, (D +(1-alu, (1) <2

Proof. Since

oo d
w2 =us (w)) = ”""_:4;2 (m = 3)(b o
on account of Theorem 5.2.4. it is sufficient to show that
h{d. by, a.n) = i Imn (m—1) + (1 — a) m] D™ <l+a
' 2 (M= 1) G)n
Doing some simple calculations, we have:
hi{d. b, a.n)
S 9™
= mzzz o (1m = 1) + (1 = ) m] =iy —
2 L (4™
= 2;277 (m—1)(m-2) (m D)) + mZ=2(2n +1—a) b m=1)

(“%)
+Z(1 L (m=1)!

= mu, (1) + (2n+1—a)ux(1 )+ (1—a)fue (1) - 1.

74



This preceding expression 1s bounded above by 1 + « if the following inequality holds
muy (1) + (20 +1-@)u, () + (1 —a)us (1) < 2

[]
Within the another two theorems given below. we get results about of comparable sorts in
association with a specific integral operator T {d. bs, w) expressed by

1w

T(d.by.w) = / (12 — ug (2)] dt. (5.2.11)
0

5.2.11 Theorem

Ifd < 0 and b, < 0 then T (d.b,.w) € Qx (@, 8.1) 1f and only if the condition (5.2 5) is satisfied.

Proof. Since

oc (_c_,j)m—l
T{dbs.w)=w— 4 wm,
=0 ) Gy LT
on account of Theorem 5.2.1, we need only to show that
S mpm—n+1)(1+0) —a—fllan| <1-8
m=2

The rest portion of the proof of this theorem is the same to the proof of Theorem 525 =

5.2.12 Theorem

If d < 0 and bs < O then T (d, bs.w) € PS (a,7) if and only if the condition (5 2.10) is satisfied.

Proof. Since

T(d by,w)=w-— i (_%)m_l w™
b BT )

on account of Theorem 5 2 3, we need only to show that

m

o =]
an(m-1}+m—a|am|§1+a
m=2
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The rest portion of the proof of this theorem is the same as the proof of Theorem 52.9 =
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Chapter 6

A subclass of univalent functions
associated with g-analogue of

Choi-Saigo-Srivastava operator

The main objective of this chapter is to initiate a subclass Qg (A ,uﬁ%) of AF using subor-
dinations along with the newly defined g-analogue of Choi-Saigo-Srivastava operator Some
results, such as coefficient estimates (CE), integral representation (IR). linear combination
(LC), weighted mean (WM). arithmetic means (AM) and radius of starlikeness for this class

are derived.

6.1 Introduction

With the help of convolution and the definition of g-derivative, we generalized Choi-Saigo-

Srivastava operator [24], into ¢g-Choi-Saigo-Srivastava operator as:

Let L& A,
IL L(w) = L(w) * Formulw), we€ H A>-1 p>0.
where
p+m——ljrq(1+)\ o pq]ml m
Fortrp(w) _u+z T, (1T (m + V) Z IESW — T w™.  (6.1.1)
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Thus, we see that

oo

q [# q-|mf m
I, —w—i—z g™ (6.1.2)

Clearly
1§, L(w) = wdDL(w) and I{ ,L(w) = L{w)

From (6.1.2), we can easily get the identity
[A+1), 12, L(w) = ¢*wdD, (ILL“E(w)) + M I L), (6.1.3)

and

¢ wdD, (Ii.“ﬁ(w) [ I8 L) = T — 1 1§ L(w) (6.1.4)

If ¢ — 1. the relationships (6.1.3) and (6.1.4) imply that

w(nLw)) = (14N DLw) - Mg uLw).

w(ly, L) = phpnf(w) = (=D heel).

which is the well know 1dentities of Choi-Saigo-Srivastava operator. By taking notable values
of parameters, we get numerous know operator studied earlier m the literature.

Special cases

1. For p = 2. we obtain, g-analogue of Noor Integral operator studied 1 [105], which is define
as:

= [ml)!

I3,L(w)=w+ Z

— g u™.
= [T+ A qlm_y m

2 For p = 2. g — 1,we obtain, differential operator studied in [74], which is define as:

> m!
IClw)=w+ —_—amu.
( ) mz=2 (1 + )‘)m—l

3, For p =2, A =1—a, and ¢ — 1. we obtain Owa-Srivastava operator studied m [99) which

is define as:

Tm+ 12—«
I_q2L{w —tH—Z m+1{_a) )amwm.
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The aim of this chapter, to investigate the following subclass of AF associated with the operator

q
IA.P'

6.1.1 Definition

A function £ € A is belonging to @ (A, w2 €!~3) if 1t satisfies

wdDy (1§, L00)) 14 8w
o ~ =
IA_#E(w) 1+ Bw

Equivalently, a function £ € A is belonging to Q7(), .. 2. %), if and only if

wdDe(I3 , L(x))
17 L(u)

~ =~ w@Dq(Ii‘#f,(w])
A-3 ( Ii#ﬁ(w)

-1

<1 (6.1.5)

Throughout our discussion we assume that A > —1, x> 0. 0<g<land —1< B <A < 1.

unless otherwise stated. We also suppose that all coefficients an, of £ are real positive numbers.

6.2 Main Results

6.2.1 Theorem

Let £ € A be of the form (1.1.1). Then £ € Q{2 1, 2%, B), if and only if

Z{[qu(1—%)—1+ﬁ}ﬁ%’)\ﬂ;—]‘l:am<ﬁ—% (6.21)
m=2 m=

Proof. Assuming that (6.2.1) holds. To show that £ € Q;{/\,p.ﬁ. B), we only need to prove
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the inequality {6 1.5). For this, we consider

waDq{Ii‘ C(w)) [gl,._
T L) _ Yom=a(lmly - 1)m-[;i—]a:«.u;m
~ = (woD (1% L(w) 5 @) [a_ & $dlmy  m
A-® ("—ﬁ(—fh—) ) (2-8) wt S {8 B Iml, g o

oo (gl
S o(fml, ~ 1) =,

G-5) v, (8- B0ml,) e

IA

where we have used (1.6.2), (6.1.2), and (6.2.1) and this completes the direct part. Conversely,
let £ & Q;(A.#.QL%) be of the form (1.1.1), then from (6.1.5) along with (6.1.2), we have

wdDg (I3 L(w)) oo T#:] m
—W’— -1 Zm=2(|—qu - 1)T‘1+).,q milamw

= < 1.
~  ~ (waD, (13 L(w) B oc 5 | (M), m
Q‘”‘B( ) (8-2) w25 {8 - BIm), ) pigo one
Since |Rew| < |w|. we have
S5 a(fm], — Dyt ant™
Re s <1l (6.2.2)

(ﬁ - ‘?B) + 3 s {ﬁ ~-B [qu} Tm-—’"l—:jamwm

waDq(Igl E(w))

77 L is real. For real

Now, by choosing such value of w from the real axis such that
values and w — 1~ . also after quiteing the denommator in {6.2.2} . we obtain the required

inequality (6.2.1). m

6.2.2 Theorem

Let £ € Q(. jz, A B). Then

e = [ (12240 ) a0

with |ep(w)| < 1.
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Proof. Let £ € Q;(A.p,ﬂ. B) and setting

wdD ! L{w
0D LLE) ).
I'\Huﬁ(w)
with _
QA
hw) < L2
1+ Bw
equivalently. we can write
hiw) —
A_(w_ <1,
2 — Bh{w)
then, we have
hi{w)—-1 ,
#—-— = cp{w).
A — Bh{w)

where |p(w)| <1 Thus we can rewrite

oD, (I, L)) 1 ( 1-2Ag(t) )

I L) w\1-Bs()

and assist by basic calculation of integration, we get the required result. m

6.2.3 Theorem

Let £, € Q;(A,p,ﬁ.%) and have the form
L,y(w)= w+2akdfwk. for 3=1.2.3.. ,L
k=1

then F' € Q;(/\, p,ﬁ,%), where

l

{
Flu)= ZcJﬁj(w) with Zc_, =1
1=1

=1
Proof. By the idea of Theorem 6.2.1, we write as

(1 ‘ﬂm_l

oo {[qu(l—%)-1+§l} L
Z A-»

Gm.y < 1.

m=2
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Therefore

1
Flw) = ch(w—f-z:am_,w )z +Zchamjw

— ws i (z cjam) o

w

2

However.

s (bl ()

- Y [ngl,
L {[qu{l—‘B)—l-i-Ql} b
-4y —
31=2 | m=2 A-B

then F € Q;(A.p,ﬂ.%). ]
6.2.4 Theorem
Let £, g € Q4(A 2. 2. B) Then the weighted mean k). where h; is defined by

(1—7) L{w) +{1 +3) g(w)
: :

hy(w) =

is also in Qy(A ,u,,ﬁ, B)

Proof. From (6.2.3), we can write

m)_w_'_Z{ l_j am+(1+.7)% },wm'

To prove that hy(w) € Qg{A. 1. 2. 9B), we need to show that

i {[qu(l—%)—Hﬂ} {{1—3)am+(1+g)%m} (1. ¢ s
2 [

m=2 51-*?8 1+)‘~q-1m—1
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For this, consider

i{[mj 1_93)_1+m} 1= am+(1+7)Bm | [18n
- ~ B 2 M+XAql,_1

(1-7) {Z {fqu 1:%)'”5‘} [14.4],n s

2 %-B [T+ Aqly
Gy & AIml0=B) =148} g,
ST D R Tor- R R W
(1-3) , Q+3) _
st =1

by using inequality (6.2.1), the proof is completed. =

6.2.5 Theorem
Let £, with 3 = 1.2, ...a 15 belonging to the QalA p 51%) Then the anthmetic mean h,

where h is defined by
1

== : 2.4

h(w) > E £, (), (6.2.4)

is also n Q;(Apﬁ%)

Proof. From (6.2.4), we can write

h{w) = éz ('w + Z am,me)

=1 m=
= w-i—i(-i—ZamJ w™ (6.2.5)
m=2 =1
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Since £, € Q;(A.,u,‘fl B). for every 7 = 1.2,3.. ., therefore using (6.2.5) and (6.2.1). we have

m=2

o

Q|

m=2

5 (5-5)

- B,

7

IA
S
WE

1

]
=)

and this completes the proof. ®

6.2.6 Theorem

Let £ € Q(A pé\l%) Then £ € 8* (7). for |w| < r1. where

= {1- 8 ), + 81 e )7
T (m— ) (51—%)

Proof. Let £ € Q;(\. . A, %B).To prove £ € S* (7). we only need to show

uﬁ’(u) _
(58 -

(uf(lit;)) +1-—2v

<1

By using (1.1.1) along with some simple computations yield

= m-—9 m—1

m=2

Since £ € Q7 (A 1, A %) therefore from (6.2.1), we can easily obtain

o~ vl [ TN
e {rqu(l—%)—1+m}T—1—~Iiiqmill o
— am| <

A-B

m=2
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Now the inequality (6.2.6) is true, if the following inequality

m| -

T~ —

o - ol _Tralo
S oy = Al -8 -1+ 8 e
> (T ) laml el < —= o

m=2

m=2

holds, which implies that

1+Xql,,_;

(ﬁ—%) (m — )

1w|m-1 < (1 - 7) {[qu(l _ %) -1 +§~1} T

and thus we get the required result. m

6.2.7 Theorem

Let -1 < 532 < ‘31 < 511 < §l2 <1, and IE L{w) # 0 in H. and this satisfy

+1.u

(A1) BL0) Ay 148w

T pLw) 1+ B

Then £ € Q; (,\ + 1,,1,512.532) .
Proof. Since I, L{w) # 0 in H, we define the function p(w) by

wdDy (I§+1.#£(u‘))

I§+1,p£(w)

= p(w). (6.2.8)
By virtue of (6.1.3), we obtain

(M+1,) L) 1,

- = p(w).
P Ew P
Therefore, using (6.2.8), we have
waDq (I?\'+lp£(w)) 1+ ﬁl]’w
3 =plw) < —————.
I/\+1.p.£(w) 1+%Bw

by Lemma (1.10.7), we deduce that £ € Qj ()\ + 1,#,512, 532) . n
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Chapter 7

Janowski type g-convex and
g-close-to-convex functions

associated with g-conic domain

In this chapter. with the help g-conic domain (Qk q[il. 53}) g-Janowski type functions and the
concepts of quantum {or g-) calculus, we iitiate new subclasses of g-convex and g-close-to-
convex functions. These subclasses explores some vital geometric properties such as coefficient
estimates (CE), sufficiency criteria and also convolution properties. Furthermore, we as well
develop up some results about of these subclasses with those obtained in earlier investigations

is also provided.

7.1 Introduction

Here we introduce the following classes k—UCV, (€. D). R—HKq(ﬁ. B.¢.D) and kU Qq(ﬁ B.C.D)

of analytic functions.
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7.1.1 Definition

Let £ € A, be in the class k — UCV, (€. D) if and only if

) ((@ol — 05) 28571 — (20 - 03)) |01 = 0n) BEHG ~ (€01 - 0
€

(DO, + 03) PHEI 7P — (€01 + 09) (D01 + 03) PR — (€01 + O3)

Or equivalently.

8D, (wdD,L{w))
k —P,€. D).
oD,y ¢ P&
where k> 0. -1 <D < €<L1
One can clearly see that
L€ k—UCV(C€.D) & wdDy(w) € K — ST 4{€.D). (7.11)

Here the class k — UCV,(€ D) reduces to a well known class defined in [78] when ¢ — 1.

7.1.2 Definition

Let £ € A, be in the class k-L{qu(ﬁ.%.Q.’D) if and only if there exist I € k-S7T4(€, D). such

that

. ( (%01 _ 03) wOPaLi) _ (ﬁo1 - 03) ) .

(BO1 +0s) 22552 — (301) + 0s)

(B0 - 05 ) 20ust) (201 - 0s)

-1

(BO1 + 0q) 22eEe)l — (80y) + 0s)

We can write equivalently
wdDgL(w)

) € k - P, (2. B).

where —1 < B <A< 1, k>0.-1<D<CLL
Here the class k-UUK, (?3[ 98.¢.D) shrinks into the class defined in (see [60]) when ¢ — 1
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7.1.3 Definition

Let £ € A. belong to the class k—L{Qq(ﬁl.%.Q‘. D} 1f and only if there exists I € k-CV, (€, D).

such that
= a0, (wdD,L{w)) (& =~ 0Dg(wdDL(w)) (5. _
e (201 0) 2REEL - (30, 00) | | (B0 - ) 2R - (on-0y)
- D {(wdDg L(w]) b -y 8D (wiDy L{w)) o
(BO1 + 05) 2GRl — (80)) + 03) (801 +05) 22ee2Belel) _ (80, + 0s)
Or equivalently,
8D, (wdD,L{w)) o
k - Py, B),
oDy < F PP,

wherefor k> 0. —1 <D <C<1, -1<B<A<L.

It is simple to verify this
Ler—UQUB.€.D) o wdDL € k— UK (A B.C.D). (7.1.2)

Here the class & — 4Q, (2. B. €. D) shrinks into the class defined in [60] when ¢ — 1,.
In this chapter, we assume that ¢ € (0.1}. k>0, -1 <D <€ < l.and -1 < B <A<

unless otherwise specified.

7.2 Main Results

7.2.1 Theorem

Let £ € A, then £ is in the class A-UCV,(€, D), if the following inequality holds

S ml, {203(1; +1)q[m— 1], +|(DO1) + 03) [m], ~ (€O1) +03)‘} ||
2

oc

3

<0O1|D—¢

Proof. By Lemma 1.10.12 and relation (7.1.1) the proof is straightforward. m

For ¢ — 17, in Theorem 7 2.1, then we obtamed following corollary, proved by Malik and Noor

78].
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7.2.2 Corollary

Let £ € A, then £ belong to k-UCV(C, D). if the following inequality holds

Yo m{2k+1) (m=1)+|m(®+1) - (€+ D} am| < D~ €.

m=2

7.2.3 Theorem

Let £ € A. then £ 15 in the class k-UK, (2. B, €. D). if the condition (7.2.1) holds

i {203(k +1) ‘bm - [quam‘ n ‘(%ol n 03) [m), am — (éiol + 03) bmw}
2

m=

<O ‘%—ﬁ‘ (7 2.1)

Proof. Presume that (7.2.1) holds, then it is to be show enough that

(30,-0) 245 - (30, - 0)

(201 + 05) 220ese) — (80, + 0)

_Re{ (801 - 0) 2255 — (30, - 03) _1}

(801 + 0s) 22752 - (801) + 0u)

k -1

<1
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We have
(801 - 03) 225258 — (80, - 03)

(9301 + 03) -@%g(— (5101) + 03)

R (B01 - 05) =27 - (ﬁol_oa)—l
e (%OH—%)M (ﬁ01+03)

-1

k

Tw)
<(k+1) (9:301 - 0y) ¥25e8) _ (80, - 03)

(B01 +05) 2208 — (80, +0a)

l{w) — wOD L(w)
(%01 + 03) wdD, L (w) — (ﬁol) + 03) I(w)
g {bm — Tmgam pu™
O (% - ’a‘l) wet %, {%01) +03) [m] , am ~ (ﬁol + og) bm} wm
203(k +1) Yy {[pm = Tl am‘}
< .
01) ]a‘é - 5‘1‘ -3, (B0 + 05) Im)om - (@0, + 05) bm‘

-1

= 203(k + 1)

= 203(k +1)

(7.2 2)

The expression (7.2.2) 15 bounded above by 1 if

o0

Z [203 (k+1) ‘bm—(mj am‘ ‘(zsol+03) [m), am—(m01+03) m|]
=2

501‘93-91‘.

7.2.4 Corollary[60]

Let £ € A. Then £ is in the class k-LHCquql( VB.€.D) = k- LHC(ﬁ %B.¢.D), if the following

condition holds:

-~

i {2(k +1) b — mam| + | (B + 1)mam — (@ + 1)bm{} < ’% _ 91| .
m=2
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7.2.5 Theorem
Let £ € A. Then £ is in the class k-U Qq(ﬁ. B. €. D). if the following condition holds:
3, [205(E = 1) b — [10] am| = |01 + O5) [m] 0 = (01 + O
=2
<0, -4
Proof. By Theorem 7.2.3 and relation (7.1.2) the proof is straight forward. m

7.2.6 Corollary[60]
Let £ € A. Then £ is in the class k- L{)Cq_,l( AB.C.D) = k-ug(ﬁ.% €, D). if

im{O(kH ) (B — ] + |( €B+1)mam—(m+l)bm>} ’ —ﬁ\.

m=2

7.2.7 Corollary[111]

Let £ € A. Then £ is in the class 1 - UK,1(1 = 27,—1,1. 1) = UK{7) if

d.m
m=2
7.2.8 Theorem

Let £ € k-UCV (€. D). is of the form {1.1.1). Then

o [s(k)(€ - D) (O1) — 4 [n, m}
{am| _[qunn—o 4q I'n+1J

where d({k) is given by (1.6.2).
Proof. By Lemma 1.10.10 and relation (7.1.1) the proof is straightforward. m

For ¢ — 17, Theorem 7.2.8 bring to the following corollary, proved by Noor [78]
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7.2.9 Corollary

Let £ € k-LCV(€. D). Then

1 m-2 {16(k)(C—D) - 2nD|
lam| < 1m0 ( 2(n+1) )

where d(k) is given by (1.6 2).

7.2.10 Theorem

If £ € k-UK, (. B.€. D) and [(w) € k-ST (€. D). Then

m— 2 |a(k)(€=D)(O1)-4q[n] D]

o] < T, Hns | 41l
ml= k)(sn 93}0‘, -2 [s(k)(€-D) 01) 4919] 4.
: Z HJ 4q1+qu £ s 'm22

where 6(k) is given in (1.6.2).
Proof. Let us take

wdDyL{w)}

it Sl A ' 2.

Tw) h{w) (7.2.3)

where

h{w) € k — P,(A.B) and Llw) € k — ST,(€. D).

Now from (7.2.3), we have
wdDL{w) = {w)h(w).

which implies that
w+ Yooy [m]gamw™ = (1+ 70y emw™) (w + L olg bm™)
By equating w™ coefficients
|'m_| A = bm+zm 1b“.,cm_i,. a=1 b =1

This implies that
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[m)g laml < lbml + 723" 55| lemo |

Since h € k—’Pq(ﬁ, ‘,!~3), therefore by using Lemma 1.10 9 on (7.2.4), we have

8(k)O1 (2 — B)

[ lam| < [bm] + 22

sl AR

Again I € k-87 4(€. D), therefore by using Lemma 1.10.10 on (7.2.5). we have

|d(k)(€—D)01)—4¢[n] T}
[mJ H ( dq[n+1],

Iaml <

(k) (E—B)O01) ~m—1 Tys—2 { |SUHE-DVO1)—4qln] T}
+ 4 qu 7=1 ]._[n,:O 4q[n+1jq :

7.2.11 Corollary{60]

If £ € k-UK,_1(2A.B.€,D) = k-UK(A.B.€, D). Then

1 Tym—2 { [§(k}{C—D)—2nD|
HHn=0( 2(n+1} )
|am| <
kY A—B) —m—1 113-2 {[|6(k){€—D)—2nD
LHEE) s [ (BREDLnDl) s g

where 6(k) is defined by (1.6.2).

7.2.12 Corollary[76]

I L(w) € k-UKqo1(1.—1,1,—1) = k-UK. Then

O

ml

8(k - (d(k)

lam| <
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7.2.13 Corollary[51]

If £€0—UKg1(0.1.--1,1,-1) = K. Then
lam! <m. m2>2

7.2.14 Theorem
If £ € k-UQy (2, B,€.D). Then

Hm 2 [80k)(€-D)(01)—1q[n ], D|

lam] < (im1,)’ J 0k sl ]
mi = Sk (AR 01) 7 2 S(R){C—D)(O1)—4q(s] . D
4(ml,)” X Tl a0 22

where 6(k) is defined by (1.6.2).

Proof. By Theorem 7.2.10 and relation (7.1.2) the proof is straight forward. m

7.2.15 Corollary[60]

If £ € k-UdQy 1 (3.B.€.D) = UQ(A, B.€.D) and is of the form (1.1.1). Then

H (IJ(L {¢-D)— 2n9|)
|am| < R _5 2{n+1)
- (k) (A —B) SE{E—D)—2nD
+ % )2(mﬂ H (' ( )(2(n+?lj l)’ m2 2.

7.2.16 Theorem
If £ € k-P(€.D) and ¥ € C. then £ xX € k-8T (€. D)

Proof. Here we need to prove that

wdD, (R(w) * L{w))
Glw) = £(w)

€k—8T,C.D)
Consider

Y(w) * L{w) (%)—(El)
X(uw) * Lw)
Y(w) * L{w)¥(w)
x{w) = L{w)

94



where %ﬂ(—w = TU(w) € P,(€, D). By using Lemma 1.10 11, we will obtain the required

result. =

7.2.17 Theorem

If £ € k-UK,(U.B.€.D) and § €C, then £+ ¥ € kUK, (2, B.€. D).

Proof. Since £ € k-UK:q(ﬁl.%.GZ.D). there exist [ € k-ST4(€. D). such that E%‘iﬁ—m € k-
P,(A B).

It follows from Lemma 1.10 11 that § *7 € k-ST4(€, D).

Consider

wdDy (x(w) * L(w)) _ Y(w) * (woDL{w))
(X(aw) *¥(x)) (X(w)+l(w))

) (2250 ) 1(w)
) * L(w)
R(w) * Flw)l(w)
0w = lfw)

where F € k—STq{gl. %) By using Lemma 1.10.11, we will obtain the required result. =
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Conclusions

This thesis is mamly in the field of GFT of single complex variable. We studied some new
subclasses of AF within the open unit disk H by utilizing latest techniques such as subordination
and convolution.

Tt is worth mentioning that operator plays a central 1ole in almost all branches of analysis. In
this thesis we discuss Sildgean g-differential operator. We profoundly examined the analytic and
geometric properties of these recently defined classes. For these classes certain important and
interesting results like coefficients bounds growth results. distortion theorems extreme points.
radius of convex, close-to-convex and starlikeness have obtained We also effectively introduce
g-analogue of Choi-Saigo-Srivastava operator and mitiate a subclass of AF. We utilized the
subordination methods to drive our key findings such as coefficient estimates (CE) integral
representation (IR). linear combination (LC), weighted mean (WM). anthmetic means (AM)
and radius of starlikeness for this class. Qur initiated classes generalized numerous classes by

choosing specific values of the parameters.
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