

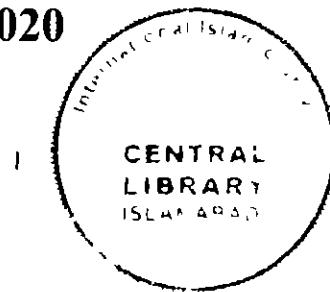
Analysis and Applications of Convolution and Subordination in Geometric Function Theory

By

Muhammad Naeem

**Department of Mathematics and Statistics
Faculty of Basic and Applied Sciences
International Islamic University, Islamabad
Pakistan**

2020



Accession No TH.23271

PHD
SIS
MUA

Geometric function theory

Mathematics

Functions of complex variables

Analysis and Applications of Convolution and Subordination in Geometric Function Theory

By

Muhammad Naeem

Reg. # 75-FBAS/PHDMA/S17

Supervised by

Dr. Tahir Mahmood

Co-Supervised by

Dr. Saqib Hussain

Department of Mathematics and Statistics

Faculty of Basic and Applied Sciences

International Islamic University, Islamabad

Pakistan

2020

Analysis and Applications of Convolution and Subordination in Geometric Function Theory

By
Muhammad Naeem

A Dissertation Submitted in the Partial Fulfillment of the Doctor of Philosophy in Mathematics

Supervised by
Dr. Tahir Mahmood
Co-Supervised by
Dr. Saqib Hussain

Department of Mathematics and Statistics
Faculty of Basic and Applied Sciences
International Islamic University, Islamabad
Pakistan
2020

Author's Declaration

I, **Muhammad Naeem** Reg. No. **75/FBAS/PHDMA/S17** hereby, declare, that my PhD thesis title: **Analysis and Applications of Convolution and Subordination in Geometric Function Theory** is my own work and neither as a whole nor as a part thereof has been copied out from any source. It is further declared that I have prepared this thesis entirely on the basis of my personal efforts made under the sincere guidance of my kind supervisor. No portion of the work, presented in this thesis, has been submitted in the support of any application for any degree or qualification of this or any other institute of learning.

At any time if my statement is found to be incorrect even after my Graduate the university has the right to withdraw my PhD degree.

Muhammad Naeem

PhD Mathematics

Reg. No. 75-FBAS/PHDMA/S17

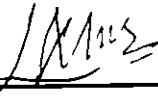
Date: / /2020

Plagiarism Undertaking

I solemnly declare that research work presented in the thesis titled: **Analysis and Applications of Convolution and Subordination in Geometric Function Theory** is solely my research work with no significant contribution from any other person. Small contribution/help wherever taken has been duly acknowledged and that complete thesis has been written by me.

I understand the zero tolerance policy of the HEC and University, International Islamic University, Sector H-10, Islamabad, Pakistan towards plagiarism. Therefore, I as an Author of the above titled thesis declare that no portion of my thesis has been plagiarized and any material used as reference is properly referred/cited.

I undertake that if I am found guilty of any formal plagiarism in the above titled thesis even after award of PhD degree, the university reserves the rights to withdraw/revoke my PhD degree and that HEC and the University has the right to publish my name on the HEC/University Website on which names of students are placed who submitted plagiarized thesis.

Author' Signature: _____ 

Name: (Muhammad Naeem)

Certificate of Approval

This is to certify that the research work presented in this thesis, entitled **Analysis and Applications of Convolution and Subordination in Geometric Function Theory** was conducted by **Mr. Muhammad Naeem**, Reg No. 75-FBAS/PHDMA/S17 under the supervision of **Dr. Tahir Mahmood** no part of this thesis has been submitted anywhere else for any other degree. This thesis is submitted to the **Department of Mathematics & Statistics, FBAS, IIU, Islamabad** in partial fulfillment of the requirements for the degree of **Doctor of Philosophy in Mathematics, Department of Mathematics & Statistics, Faculty of Basic & Applied Science, International Islamic University, Sector H-10, Islamabad, Pakistan.**

Student Name: Muhammad Naeem

Signature:

Examination Committee:

a) **External Examiner 1:**

Name/Designation/Office Address

Signature:

Prof. Dr. Akbar Azam

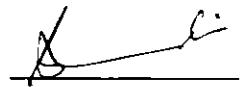
Professor of Mathematics,

Department of Mathematics,

COMSATS, IIT, Park Road, Chak Shahzad.

b) **External Examiner 2:**

Name/Designation/Office Address)

Signature: 

Prof. Dr. Muhammad Shabir

Professor of Mathematics,

Department of Mathematics,

QAU, Islamabad

c) **Internal Examiner:**

Name/Designation/Office Address)

Signature:

Dr. Nayyar Mehmood

Assistant Professor

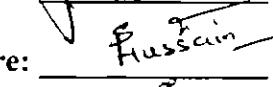
Supervisor Name:

Dr. Tahir Mahmood

Signature:

Co-Supervisor Name:

Dr. Saqib Hussain

Signature: 

Name of Chairman:

Dr. Tariq Javed

Signature:

Name of Dean:

Prof. Dr. Muhammad Irfan Khan

Signature:

*Dedicated
To My
Loving Mother and Father (late)
My Wife and My family
And respectful teachers
Whose affection is reason on every success in
my life.*

Acknowledgement

I begin with the name of **Allah Almighty**, the most Beneficent and Merciful, the creator of universe, Who granted me the courage to strengthen my vision to complete the work of my thesis successfully. I offer my humblest words of thanks to Holly Prophet **Hazrat Muhammad (Peace Be Upon Him)** who is constant source of guidance for humanity

I would like to express my sincere gratitude to my supervisors **Dr. Tahir Mahmood** and **Dr. Saqib Hussain** for their support and guidance throughout my course work and research work. During course work as well as research work, I found **Dr. Tahir Mahmood** devoted, generous and helpful that enhanced my knowledge of the subject. He is the source of inspiration for me due to his encouraging behavior

Dr. Saqib Hussain is master of his field, rich in new ideas and introduces me about field related to literature. He always showed the right way of doing research by giving new ideas and fruitful suggestion. His intellectual suggestion, valuable comments, uncompromisingly stride for the perfection of this project are remarkable. I am luckiest for having both of them as my supervisor.

I owe my respect to **Prof. Dr. Tariq Javed**, Chairman Department of Mathematics & Statistics, for his encouraging attitude and providing the research facilities. Words of thanks, surely insufficient and incomplete, I pay my thanks to the whole faculty of Department of Mathematics & Statistics IIUI, especially **Prof. Dr. Muhammad Arshad Zia**, **Dr. Nayyer Mahmood** and also cited for all my worthy teachers throughout my life by whom I got my spiritual values and basis of education.

I am so much thankful to my colleagues at department of Mathematics & Statistics, IIUI who encourage me throughout my research work. I had some very enjoyable moments with my friends and colleagues who support encourage me directly or indirectly in my research work.

My deepest sense of indebtedness goes to my **parents** whose encouragement give me the strength at every stage of my educational life and without their prayers I would be nothing. My **wife, brothers and sisters** have also a great part in my efforts. Their love and support enables me to achieve any target in my life. Along them my other family member's prayers were also very supportive.

Muhammad Naeem

Contents

0. Research Profile	1
0.1. Introduction	2
0.2. Chapter wise study	4
1. Preliminaries	6
1.1 Analytic functions (AF) and Univalent functions (UF)	6
1.1.1 Analytic Functions	6
1.1.2 The Class A.....	7
1.1.3 The Class T	7
1.1.4 Univalent Functions.....	7
1.1.5 The Class S	7
1.2. Caratheodory functions.....	8
1.2.1 The Class P	8
1.2.2 Subordination	8
1.3 Some Important Subclasses of Univalent Functions	9
1.3.1 Starlike Function	9
1.3.2 Convex Function	9
1.3.3 Alexander Theorem	10
1.3.4 Close to Convex Function	10
1.4 Some Generalized Subclasses of Analytic Functions	11
1.4.1 The Class $P(\alpha)$	11
1.4.2 The Class $S^*(\alpha)$	11
1.4.3 The Class C (α)	12
1.4.4 The Class K (α)	12
1.4.5 The Class UC	13
1.4.6 The Class US^*	13
1.4.7 The Class k - UC	13
1.4.8 The Class k - US^*	14

1.4.9 The Class k - $US^*(\alpha)$	14
1.4.10 The Class k - $UC(\alpha)$	14
1.4.11 The Class k - $UC(\alpha, \beta)$	14
1.4.12 The Class k - $US^*(\alpha, \beta)$	15
1.4.13 The Class M_α	15
1.5 Introduction of q -Calculus	15
1.5.1 q -shifted factorial and q -gamma function	16
1.5.2 q -number and q -factorial	16
1.5.3 Remarks	17
1.6 Conic Domain	17
1.7 Some Important Functions	18
1.7.1 Mittag-Leffler function	18
1.7.2 Bessel functions	19
1.8 Some Important Operators	20
1.8.1 Convolution Operator	20
1.8.2 q -Derivative operator or q -Difference operator	20
1.8.3 Sălăgean q -derivative operator (or q -differential) operator	21
1.8.4 Choi-Saigo-Srivastava operator	21
1.9 Some Generalized Subclasses of Analytic Functions in q -Calculus.	22
1.9.1 Definition	22
1.9.2 Definition	23
1.9.3 Definition	23
1.9.4 Definition	23
1.9.5 Definition	23
1.9.6 Definition	24
1.9.7 Definition	25
1.10 Some Important Lemmas	25
1.10.1 Lemma	25
1.10.2 Lemma	26
1.10.3 Lemma	26
1.10.4 Lemma	26

1.10.5 Lemma	27
1.10.6 Lemma	28
1.10.7 Lemma	28
1.10.8 Lemma	28
1.10.9 Lemma	28
1.10.10 Lemma	28
1.10.11 Lemma	29
1.10.12 Lemma	29
2. A New Subclass of Analytic Functions Defined by using Sälägean q-Differential Operator	
2.1 Introduction	30
2.1.1 Definition	30
2.1.2 Remarks	31
2.1.3 Defintion	31
2.1.4 Remarks	31
2.2 Main Results	32
2.2.1 Theorem	32
2.2.2 Theorem	33
2.2.3 Corollary	34
2.2.4 Theorem	35
2.2.5 Theorem	36
2.2.6 Theorem	37
2.2.7 Theorem	39
2.2.3 Corollary	40
2.2.7 Theorem	40
3. A class of analytic functions related to convexity and functions with bounded turning	
3.1 Introduction	43
3.1.1 Bounded turning	43
3.1.2 Definition	44
3.1.3 Example	44
3.2 Main Results	45
3.2.1 Theorem	46
3.2.2 Theorem	47
3.2.3 Theorem	48
3.2.4 Theorem	49
4. A Subclass of Analytic Functions Defined by using Mittag-Leffler Function	
4.1 Introduction	52
4.1.1 Definition	52
4.1.2 Definition	53
4.2 Main Results	53
4.2.1 Theorem	53

4.2.2 Theorem	54
4.2.3 Corollary	55
4.2.4 Theorem	55
4.2.5 Theorem	56
4.2.6 Theorem	58
4.2.7 Theorem	59
4.2.8 Corollary	61
4.2.9 Theorem	61
5. Subclasses of uniformly convex and starlike functions associated with Bessel functions	
5.1 Introduction	63
5.1.1 Definition	63
5.1.2 Definition	64
5.1.3 Definition	64
5.1.4 Definition	64
5.2 Main Results	65
5.2.1 Theorem	65
5.2.2 Theorem	66
5.2.3 Theorem	66
5.2.4 Theorem	68
5.2.5 Theorem	69
5.2.6 Corollary	70
5.2.7 Theorem	71
5.2.8 Corollary	72
5.2.9 Theorem	73
5.2.10 Theorem	74
5.2.11 Theorem	75
5.2.12 Theorem	75
6. A subclass of univalent functions associated with q-analogue of Choi-Saigo-Srivastava operator	
6.1 Introduction	77
6.1.1 Definition	79
6.2 Main Results	79
6.2.1 Theorem	79
6.2.2 Theorem	80
6.2.3 Theorem	81
6.2.4 Theorem	82
6.2.5 Theorem	83
6.2.6 Theorem	84
6.2.7 Theorem	85
7. Janowski type q-convex and q-close-to-convex functions associated with q-conic domain	
7.1 Introduction	86
7.1.1 Definition	87
7.1.2 Definition	87
7.1.3 Definition	88
7.2 Main Results	88
7.2.1 Theorem	88

7.2.2 Corollary	89
7.2.3 Theorem	89
7.2.4 Corollary	90
7.2.5 Theorem	91
7.2.6 Corollary	91
7.2.7 Corollary	91
7.2.8 Theorem	91
7.2.9 Corollary	92
7.2.10 Theorem	92
7.2.11 Corollary	93
7.2.12 Corollary	93
7.2.13 Corollary	94
7.2.14 Theorem	94
7.2.15 Corollary	94
7.2.16 Theorem	94
7.2.17 Theorem	95
8. Conclusion	96
9. References.....	97

0. Research Profile

1. **Naeem M.**, Hussain S., Mahmood T., Khan S and Darus M. A new subclass of analytic functions defined by using Salagean q -differential operator. *Mathematics*, 2019. 7, 458-469.
2. Wang Z. G., **Naeem M.**, Hussain S., Mahmood T. and Rasheed A., A class of analytic functions related to convexity and functions with bounded turning. *AIMS Mathematics*. 2019. 5(3), 1926–1935.
3. Mahmood T., **Naeem M.**, Hussain S., Khan S. and Altinkaya S., A subclass of analytic functions defined by using Mittag-Leffler function. *Honam Mathematical Journal*, 2020 (Accepted).
4. **Naeem M.**, Hussain S . Sakar F M., Mahmood T. and Rasheed A. Subclasses of uniformly convex and starlike functions associated with Bessel functions. *Turkish Journal of Mathematics*, 2019. 43. 2433 – 2443.
5. Wang Z. G.. Hussain S.. **Naeem M.**, Mahmood T. and Khan S.. A subclass of univalent functions associated with q -analogue of Choi-Saigo-Srivastava operator *Hacettepe Journal of Mathematics & Statistics*, 2020, 49(4) 1471-1479.
6. **Naeem M.**, Hussain S., Khan S., Mahmood T., Darus M. and Shareef Z.. Janowski Type q -Convex and q - Close-to-Convex Functions Associated with q -Conic Domain. *Mathematic*. 2020. 8(3), 440-452.

0.1. Introduction

The branch of Mathematics in which we study the geometric properties of analytic functions (AF) is called geometric function theory (GFT). Cauchy started to develop the substructures around 200 years ago during 1814 – 1831. Cauchy, Riemann and Weierstrass were considered as pioneers of this field. Since that time, this theory is expanded in many directions. Riemann contributed to this field by introducing the Riemann mapping theorem in 1851. Riemann proved the existence of an AF \mathcal{L} that maps from a connected domain $D_1 \neq \mathbb{C}$ in the z -plane on to a connected domain D_2 in the w -plane. This result of Riemann mapping laid down the foundation of GFT. This famous theorem and then Koebe's theory provide many fundamental results of geometric function theory. His initial work on this field can be found in [53]. Gronwall's proposed the area theorem in 1914. This idea revolves around some conformal mappings in open unit disc. A lot of applications of GFT can be found in other fields of sciences like Electronics, Medicines, Physics etc. see [91 101, 109] and cited therein

Any function \mathcal{L} is in the class S if it is univalent and normalized function. Any function $\mathcal{L} \in S$ has series of the form

$$\mathcal{L}(w) = w + \sum_{m=2}^{\infty} a_m w^m.$$

In above equation, a_2 the second coefficient, of a normalized univalent function estimated by Bieberbach [16] in 1916. Further, Bieberbach also conjectured about the m th coefficient. He has shown that $|a_2| \leq 2$ and mentioned $|a_m| \leq m$ is generally valid and is called Bieberbach conjecture. Bieberbach conjecture was proved to be true for $m = 3$ by Lowner [59] in 1923. The same result was proved for various other values of m by Janowski [43], Goodman [38 39], Littlewood [56], Pinchuk [83], Pommerenke [84], Rogosinski [88] and Ruscheweyh [93]. For several years this challenging and famous conjecture inspired mathematicians which results in the development of various novel procedures in complex analysis. Univalent function theory has its own significance. In 1916, Bieberbach conjecture failed to explain some situations due to which several new subclasses of S are proposed and investigated such as starlike functions by Alexander [6]. These starlike functions (SF) were further studied by Nevanlinna [72]. Alexander [6] also developed a class of convex functions (CF). In 1915, Alexander give us a connection

between the members of the classes C and S^* of CF and SF respectively. Alexander theorem states that $\mathcal{L} \in S$ be in C if and only if $w\mathcal{L}' \in S^*$. Later Kaplan [51] developed the class of close to convex functions (CCF) and explained it geometrically. The geometric interpretation means that $\mathcal{L} \in K$ maps every circle arc $|w| < 1$ onto a closed path for which tangent rotates with an increase in θ for both clockwise and counterclockwise direction but can not turn back. Several approaches of geometric function theory were suggested by de-Branges [18], when he solved the Bieberbach conjecture in 1984. The class of Carathéodory functions [20] which maps unit disk onto right half plane is denoted by \mathcal{P} , play a pivotal role in GFT.

The operator plays an important role in Mathematics. Using convolution and subordination theories to define operators and study operators properties is newest area of present research in this field. Libera [54] introduced an operator called Libera operator and studied the classes S^* and C under this operator. Later, Bernardi [15] developed a generalized operator and discuss its various properties. In recent past several new operators are introduced by Ruscheweyh [93], Noor [73] and many others [21, 57, 58]. These researchers developed some interesting new classes of univalent and analytic functions which contain existing classes as special cases.

In 1991, Goodman [40, 41] introduced two important classes UC and US^* of analytic functions, which are natural generalizations of convex and starlike functions in conic domains. In 1999, for $k \geq 0$, Kanas [47] initiated the classes $k\text{-}UC$ and $k\text{-}US^*$ of k -uniformly convex and k -uniformly starlike functions respectively. The work of Kanas is generalized by many researchers (see [25, 88, 90]).

0.2. Chapter Wise Study

In this section, a short description of all chapters is discussed.

Chapter 1

In this chapter, we discuss some basics of this field. The proofs of the results are omitted but referred here. Some subclasses related with AF are also discussed. Many interesting and important subclasses of starlike and convex are presented. We also discuss convolution and subordination as main tools used in geometric function theory. Some linear and q -differential operator also discussed. At the end of this chapter some lemmas are given which helps us to prove certain important results.

Chapter 2

In this chapter, we initiate two new subclasses $\mathcal{U}_{i,j}(q, \beta, \hat{\mathcal{A}}, \tilde{\mathcal{B}})$ and $T\mathcal{U}_{i,j}(q, \beta, \hat{\mathcal{A}}, \tilde{\mathcal{B}})$. These classes are initiated by using the Salagean q -differential operator with the help of Janowski function. These classes generalized numerous classes by selecting specific values of the parameters. We examined numerous sharp results and properties of these classes, like as extreme points (EP), distortion theorem (DT), coefficient estimates (CE), convexity, radii of star-likeness (RS), close-to-convexity, and integral mean inequalities. The content of this chapter are published in the journal, **Mathematics, 2019, 7, 458-469**.

Chapter 3

In this chapter, we initiate a new subclass $k\text{-QM}\mathcal{T}(\alpha)$ of AF, which generalizes the class of k -uniformly CF. The main purpose of this chapter is to establish several interesting relationships between $k\text{-QM}\mathcal{T}(\alpha)$ and the class $\mathcal{B}(\delta)$ of functions with bounded turning. We studied various interesting association of this class with already existing classes of AF. Certain important cases for some special values of the parameters have been obtained. The content of this chapter are published in the journal, **AIMS Mathematics, 2019, 5(3), 1926–1935**.

Chapter 4

In this chapter, we initiate two new subclasses $Q_{\chi,i,j}^{\alpha,\mu}(\gamma, \hat{\mathcal{A}}, \tilde{\mathcal{B}})$ and $TQ_{\chi,i,j}^{\alpha,\mu}(\gamma, \hat{\mathcal{A}}, \tilde{\mathcal{B}})$. These classes is initiated by using the Mittag-Leffler function with the help of Janowski functions. These classes generalized numerous classes by selecting specific values of the parameters. We examined numerous sharp results and properties of these classes, like as extreme points (EP), distortion theorem (DT), coefficient estimates (CE), convexity, radii of star-likeness (RS), close-

to-convexity and integral mean inequalities (IMI). The content of this chapter are published in the journal, **Honam Mathematical Journal, 2020 (Accepted)**.

Chapter 5

The main focus of this chapter is to set out few imperative characteristic properties for a few subclasses of uniformly SF and CF which are initiated here by infs of the normalized condition of the generalized Bessel functions (BF) to be univalent inside the \tilde{H} . Furthermore, we as well develop up some results about of these subclasses related to a particular integral operator. The content of this chapter are published in the journal, **Turkish Journal of Mathematics, 2019, 43, 2433 – 2443**.

Chapter 6

The main focus of this chapter is to initiate a subclass $Q_q^*(\lambda, \mu, \widehat{\mathfrak{A}}, \widetilde{\mathfrak{B}})$ of AF using subordinations along with the newly defined q -analogue of Choi-Saigo-Srivastava operator. Some results, such as integral representation (IR), coefficient estimates (CE), radius of starlikeness, linear combination (LC), weighted mean (WM) and arithmetic means (AM) for this class are derived. The content of this chapter are published in the journal, **Hacettepe Journal of Mathematics & Statistics, 2020, 49(4) 1471-1479**.

Chapter 7

In this chapter, with the help q -conic domain $(\Omega_{k,q}[\widehat{\mathfrak{A}}, \widetilde{\mathfrak{B}}])$, q -Janowski type functions and the concepts of quantum (or q -) calculus, we initiate new subclasses of q -convex and q -close-to-convex functions. These subclasses explores some vital geometric properties such as coefficient estimates (CE), sufficiency criteria and also convolution properties. Furthermore, we as well develop up some results about of these subclasses with those obtained in earlier investigations is also provided. The content of this chapter are published in the journal, **Mathematic, 2020, 8(3), 440-452**.

Chapter 1

Preliminaries

The main objective of this chapter, is to examine few fundamental ideas of GFT, which give us a foundation for the later work. Here we will inquire few fundamental definitions and classical results. The details of such results study standard texts [29, 39, 85]. At the starting, we concentrated on the classes \mathcal{A} and S , which are of normalized AF and normalized analytic univalent functions respectively. Next we discussed subclasses of \mathcal{A} and S . At the end of this chapter, we introduced such lemmas which are helpful to understand upcoming chapters. In this chapter we presented such results which are already known and will be referred properly.

1.1 Analytic functions (AF) and Univalent functions (UF)

Firstly, we define the class \mathcal{A} and S of normalized AF and normalized UF.

1.1.1 Analytic Functions [29, 39, 85]

If a function \mathcal{L} , whose derivative exists at w_0 and also in neighborhood of w_0 then such a function is called AF. If $\mathcal{L}(w)$ is analytic for all $w \in D$, then \mathcal{L} is AF in whole domain D .

If we take $w \in D = \mathbb{C}$, where \mathbb{C} is set of complex numbers and $\mathcal{L}(w)$ is AF then \mathcal{L} is called entire function. Occasionally it is tough to use arbitrary domain D , so by well-known Riemann mapping theorem, we use open unit disc $\tilde{H} = \{w : |w| < 1\}$ instead of D .

1.1.2 The Class \mathcal{A}

In class \mathcal{A} , all AF with the normalized condition $\mathcal{L}(0) = 0$ and $\mathcal{L}'(0) = 1$ exists. Generally, normalization does not influence on Taylor's series. For $\mathcal{L} \in \mathcal{A}$ has a series form

$$\mathcal{L}(w) = w + \sum_{m=2}^{\infty} a_m w^m. \quad (1.1.1)$$

1.1.3 The Class T

In class T , all those functions of class of \mathcal{A} having negative coefficients in Taylor's series. Thus $\mathcal{L} \in T$ is given by

$$\mathcal{L}(w) = w - \sum_{m=2}^{\infty} |a_m| w^m. \quad (1.1.2)$$

Initially, Silverman [100] study this class.

1.1.4 Univalent Functions [29, 39]

If in the domain D and range $\mathcal{L}(D)$ of a function \mathcal{L} , having 1-1 correspondence then such function is UF. Mathematically, $\mathcal{L}(w)$ is univalent if $w_m \neq w_n$ implies $\mathcal{L}(w_m) \neq \mathcal{L}(w_n)$, for all $w_m \neq w_n \in D$.

Koebe function

$$K_b(w) = w \frac{1}{(1-w)^2}, \quad w \in \tilde{H}, \quad (1.1.3)$$

is one of simplest example of UF while $\mathcal{L}(w) = w^2$ is not UF.

1.1.5 The Class S

All such functions belonging to S which belong to \mathcal{A} and also UF Koebe function is very well known example for the class S . UF plays pivotal role in this field.

1.2 Carathéodory functions

We have noticed that, lot of functions whose mapping cover the whole complex plane but also we have some functions which maps right half plane such complex-valued functions known as

Carathéodory functions [29, 39]. All such mappings belonging to the class \mathcal{P} . These functions are of incredible significance in GFT. Numerous subclasses of AF and UF are associated with \mathcal{P} .

1.2.1 The Class \mathcal{P}

Let \mathbb{P} be AF with $\mathbb{P}(0) = 1$. Then \mathbb{P} belonging to the class \mathcal{P} , if $Re\mathbb{P}(w) > 0$ and has the power series

$$\mathbb{P}(w) = 1 + \sum_{m=1}^{\infty} a_m w^m, \quad w \in \tilde{H}. \quad (1.2.1)$$

The Möbius function

$$M_{\Theta} = 1 + 2 \sum_{m=1}^{\infty} w^m = \frac{1+w}{1-w}, \quad w \in \tilde{H}, \quad (1.2.2)$$

is an element of the class \mathcal{P} . It is not necessary a function belonging to \mathcal{P} is also univalent. For example

$$\mathbb{P}_0(w) = 1 + w^m \in \mathcal{P}, \quad \forall m \geq 0. \quad (1.2.3)$$

this function for $m \geq 2$, is not univalent. The Möbius function (M_{Θ}) defined by (1.2.2) plays the central and extremal role in class \mathcal{P} .

1.2.2 Subordination

Primarily Lindelof [55] initiate the notion of subordination in 1909. Afterward Littlewood [56] and Rogosinski [88, 89] made further advancements.

Definition of subordination

Let $\mathcal{L}, l \in \mathcal{A}$ then $\mathcal{L} \prec l$ (read it as \mathcal{L} is subordinate to l) if and only if we have $s \in \mathcal{A}$ with the condition $|s(w)| < 1$ and $s(0) = 0$, for $w \in \tilde{H}$ such that $l(s(w)) = \mathcal{L}(w)$. Particularly if $\mathcal{L} \in S$ in \tilde{H} then $\mathcal{L} \prec l$ is equivalent to $\mathcal{L}(0) = l(0) = 0$ and $\mathcal{L}(\tilde{H}) \subseteq l(\tilde{H})$.

1.3 Some Important Subclasses of Univalent Functions

In this portion, we presented such classes which have specific geometric conditions. We briefly talk about a few essential subclasses of AF which map \tilde{H} onto the starlike domain and convex

domain. We consider a few fundamental properties of these classes and the connection of these classes with the Carathéodory class \mathcal{P} will moreover be explored.

1.3.1 Starlike Function (SF) [29, 39]

Let a domain $D \subseteq \mathbb{C}$, is star shaped about a point w_0 . if any other point $w \in D$ joining with w_0 by line segment $\overline{ww_0}$ lies with in D . The function \mathcal{L} under which image of domain \tilde{H} is a starshaped region with respect to $w_0 \neq 0$ is known as starlike function.

Mathematically, a normalized AF function \mathcal{L} is SF if

$$\operatorname{Re} \left(\frac{w\mathcal{L}'(w)}{\mathcal{L}(w)} \right) > 0, \quad w \in \tilde{H} \quad (1.3.1)$$

or equivalently

$$\frac{w\mathcal{L}'(w)}{\mathcal{L}(w)} \in \mathcal{P}, \quad w \in \tilde{H} \quad (1.3.2)$$

Let us denote S^* be the class normalized starlike functions. Thus

$$S^* = \left\{ \mathcal{L} \in \mathcal{A} : \operatorname{Re} \left(\frac{w\mathcal{L}'(w)}{\mathcal{L}(w)} \right) > 0, \quad w \in \tilde{H} \right\}. \quad (1.3.3)$$

With respect to origin, the Koebe function is an example of SF. The class of SF was begun by Alexander [6] and examined by Nevanlinna [72].

1.3.2 Convex Function (CF) [29, 39]

Let a domain $D \subseteq \mathbb{C}$, is convex if joining two arbitrary points of D with a line segment lies completely in D . A function $\mathcal{L} \in S$ in which $\mathcal{L}(\tilde{H})$ is a convex, is a CF.

Mathematically, a normalized AF function \mathcal{L} is CF if

$$\operatorname{Re} \left(\frac{(w\mathcal{L}'(w))'}{\mathcal{L}'(w)} \right) > 0, \quad w \in \tilde{H}. \quad (1.3.4)$$

or equivalently

$$\frac{(w\mathcal{L}'(w))'}{\mathcal{L}'(w)} \in \mathcal{P}, \quad w \in \tilde{H}. \quad (1.3.5)$$

Let us denote C be the class of normalized convex functions. Thus

$$C = \left\{ \mathcal{L} \in S : \operatorname{Re} \left(\frac{(w\mathcal{L}'(w))'}{\mathcal{L}'(w)} \right) > 0, w \in \tilde{H} \right\}. \quad (1.3.6)$$

The function

$$\mathcal{L}(w) = \frac{w}{1-w} \quad (1.3.7)$$

is convex. The class of CF was first examined by Alexander [6].

Note that, $C \subset S^* \subset S$.

1.3.3 Alexander Theorem

In 1952, Alexander [6] give us a theorem between the members of the classes C and S^* .

Let \mathcal{L} be normalized AF in \tilde{H} . Then $\mathcal{L} \in C$ if and only if $w\mathcal{L}' \in S^*$

1.3.4 Close to Convex Function (CCF) [38]

A mapping $\mathcal{L} \in \mathcal{A}$ is CCF, if it satisfy the following condition,

$$l \in C, \operatorname{Re} \left(\frac{\mathcal{L}'(w)}{l'(w)} \right) > 0, w \in \tilde{H}. \quad (1.3.8)$$

or equivalently

$$l \in C, \frac{\mathcal{L}'(w)}{l'(w)} \in \mathcal{P}, w \in \tilde{H} \quad (1.3.9)$$

Let us denote K be the class of normalized CCF.

$$K = \left\{ \mathcal{L} \in \mathcal{A} : l \in C, \operatorname{Re} \left(\frac{\mathcal{L}'(w)}{l'(w)} \right) > 0, w \in \tilde{H} \right\}. \quad (1.3.10)$$

Kaplan [51] initiated the study of this class.

1.4 Some Generalized Subclasses of Analytic functions

In this portion, the subclasses which have specific geometric conditions of order α , where $0 \leq \alpha < 1$ are presented.

1.4.1 The Class $\mathcal{P}(\alpha)$ [39]

Let $\mathfrak{p} \in \mathcal{P}$. Then \mathfrak{p} belong to the class $\mathcal{P}(\alpha)$ if

$$0 \leq \alpha < 1, \operatorname{Re} \mathfrak{p}(w) > \alpha, w \in \tilde{H} \quad (1.4.1)$$

The function \mathfrak{p} can moreover be written as

$$\mathfrak{p}(w) = \alpha + (1 - \alpha) \mathfrak{p}_1(w), \mathfrak{p}_1 \in \mathcal{P}, w \in \tilde{H} \quad (1.4.2)$$

Let $d \in \mathbb{C} \setminus \{0\}$ and $\mathfrak{p} \in \mathcal{A}$. Then \mathfrak{p} belonging to $\mathcal{P}(d)$ iff there exist a mapping $\mathfrak{p}_1 \in \mathcal{P}$ such that

$$\mathfrak{p}(w) = (1 - d) + d \mathfrak{p}_1(w), w \in \tilde{H}$$

For $d = 1 - \alpha$, $0 \leq \alpha < 1$, $\mathcal{P} \supset \mathcal{P}(\alpha) = \mathcal{P}(d)$.

1.4.2 The Class $S^*(\alpha)$

Let $\mathcal{L} \in \mathcal{A}$. Then \mathcal{L} belong to the class $S^*(\alpha)$ if

$$0 \leq \alpha < 1, \operatorname{Re} \left(\frac{w \mathcal{L}'(w)}{\mathcal{L}(w)} \right) > \alpha, w \in \tilde{H} \quad (1.4.3)$$

or equivalently

$$0 \leq \alpha < 1, \frac{w \mathcal{L}'}{\mathcal{L}} \in \mathcal{P}(\alpha), w \in \tilde{H} \quad (1.4.4)$$

All normalized SF of order α is denoted by the class $S^*(\alpha)$.

$$S^*(\alpha) = \left\{ \mathcal{L} \in \mathcal{A} : \operatorname{Re} \left(\frac{w \mathcal{L}'(w)}{\mathcal{L}(w)} \right) > \alpha, 0 \leq \alpha < 1, w \in \tilde{H} \right\}. \quad (1.4.5)$$

Roberston [87] initiate this class in 1936.

Note $S^*(0) = S^*$.

1.4.3 The Class $C(\alpha)$

Let $\mathcal{L} \in S$. Then \mathcal{L} belong to the class $C(\alpha)$ if

$$0 \leq \alpha < 1, \operatorname{Re} \left(\frac{(w\mathcal{L}'(w))'}{\mathcal{L}'(w)} \right) > \alpha, \quad w \in \tilde{H}. \quad (1.4.6)$$

or equivalently

$$0 \leq \alpha < 1, \frac{(w\mathcal{L}'(w))'}{\mathcal{L}'(w)} \in \mathcal{P}(\alpha), \quad w \in \tilde{H} \quad (1.4.7)$$

All normalized CF of order α is denoted by the class $C(\alpha)$.

$$C(\alpha) = \left\{ f \in S : \operatorname{Re} \left(\frac{(w\mathcal{L}'(w))'}{\mathcal{L}'(w)} \right) > \alpha, \quad 0 \leq \alpha < 1, \quad w \in \tilde{H} \right\} \quad (1.4.8)$$

Roberston [87] initiate this class in 1936.

Note that, $C = C(0)$

1.4.4 The Class $K(\alpha)$ [39]

A function $\mathcal{L} \in \mathcal{A}$ is said to be CCF of order α if it satisfy the following condition

$$\operatorname{Re} \left(\frac{\mathcal{L}'(w)}{l'(w)} \right) > \alpha, \quad 0 \leq \alpha < 1, \quad w \in \tilde{H}. \quad (1.4.9)$$

or equivalently

$$\frac{\mathcal{L}'(w)}{l'(w)} \in \mathcal{P}(\alpha), \quad 0 \leq \alpha < 1, \quad w \in \tilde{H}. \quad (1.4.10)$$

Here l is convex function of order α .

All normalized CCF of order α is denoted by the class $K(\alpha)$

Note that $K(0) = K$.

In 1991, Goodman [40, 41] initiate two important classes UC and US^* of uniformly convex function (UCF) and uniformly starlike function (USF) respectively as below

1.4.5 The Class UC

A function $\mathcal{L} \in \mathcal{A}$ defined in (1.1.1) in class UC if it satisfy the following condition

$$\mathcal{L} \in UC \text{ if and only if } \mathcal{L} \in \mathcal{A} : \operatorname{Re} \left((w - \vartheta) \frac{\mathcal{L}''(w)}{\mathcal{L}'(w)} + 1 \right) > 0, \vartheta, w \in \tilde{H},$$

according to Ronning [90] and Ma et al. [63]

$$\mathcal{L} \in UC \text{ if and only if } \mathcal{L} \in \mathcal{A} : \operatorname{Re} \left(\frac{(w\mathcal{L}'(w))'}{\mathcal{L}'(w)} \right) > \left| \frac{w\mathcal{L}''(w)}{\mathcal{L}'(w)} \right|, w \in \tilde{H}. \quad (1.4.11)$$

All such functions are in class UC .

1.4.6 The Class US^*

A function $\mathcal{L} \in \mathcal{A}$ defined in (1.1.1) in class US^* if it satisfy the following condition

$$\mathcal{L} \in UC \text{ if and only if } \mathcal{L} \in \mathcal{A} : \operatorname{Re} \left(\frac{(w - \vartheta) \mathcal{L}'(w)}{\mathcal{L}(w) - \mathcal{L}(\eta)} \right) > 0, \vartheta, w \in \tilde{H}.$$

according to Ronning [90] and Ma et al. [63]

$$\mathcal{L} \in US^* \text{ if and only if } \mathcal{L} \in \mathcal{A} : \operatorname{Re} \left(\frac{w\mathcal{L}'(w)}{\mathcal{L}(w)} \right) > \left| \frac{w\mathcal{L}'(w)}{\mathcal{L}(w)} - 1 \right|, w \in \tilde{H} \quad (1.4.12)$$

All such functions are in class US^* . Geometrically, $\mathcal{L} \in \mathcal{A}$ in classes US^* or UC which maps every circular segment η which is in \tilde{H} , with center $\varphi \in \tilde{H}$ onto a starlike arc or a convex arc respectively.

For $k \geq 0$, Kanas [47] inaugurate the class k - UC and k - US^* as:

1.4.7 The Class k - UC

A function $\mathcal{L} \in S$ is belong to class k - UC if it satisfy

$$\mathcal{L} \in k - UC \text{ if and only if } \mathcal{L} \in S : \operatorname{Re} \left(\frac{(w\mathcal{L}'(w))'}{\mathcal{L}'(w)} \right) > k \left| \frac{w\mathcal{L}''(w)}{\mathcal{L}'(w)} \right|, w \in \tilde{H}. \quad (1.4.13)$$

1.4.8 The Class k - US^*

Let $\mathcal{L} \in S$. Then \mathcal{L} belong to the class k - US^* if it satisfy

$$\mathcal{L} \in k - US^* \text{ if and only if } \mathcal{L} \in S . Re \left(\frac{w\mathcal{L}'}{\mathcal{L}} \right) > k \left| \frac{w\mathcal{L}'}{\mathcal{L}} - 1 \right|, w \in \tilde{H}. \quad (1.4.14)$$

Observe that 0 - $UC \equiv C$, 0 - $US^* \equiv US^*$ and 1 - $UC \equiv UC$, 1 - $US^* \equiv US^*$.

Geometrical representation of theses classes is very interesting for $k \geq 0$. for detail see [43, 48, 49, 50, 76, 77, 62, 113].

For $(0 \leq \alpha < 1)$, in [88, 90]. Ronning initiated the two classes k - $US^*(\alpha)$ and k - $UC(\alpha)$ as:

1.4.9 The Class k - $US^*(\alpha)$

Let $\mathcal{L} \in S$. Then \mathcal{L} belong to the class k - $US^*(\alpha)$ if it satisfy

$$\mathcal{L} \in k - US^*(\alpha) \text{ iff } Re \left\{ \frac{w\mathcal{L}'}{\mathcal{L}} - \alpha \right\} > k \left| \frac{w\mathcal{L}'}{\mathcal{L}} - 1 \right|, w \in \tilde{H}. \quad (1.4.15)$$

1.4.10 The Class k - $UC(\alpha)$

Let $\mathcal{L} \in S$. Then \mathcal{L} belong to the class k - $UC(\alpha)$ if it satisfy

$$\mathcal{L} \in k - UC(\alpha) \text{ iff } \mathcal{L} \in S . Re \left(\frac{(w\mathcal{L}'(w))'}{\mathcal{L}'(w)} - \alpha \right) > k \left| \frac{w\mathcal{L}''(w)}{\mathcal{L}'(w)} \right|, w \in \tilde{H}. \quad (1.4.16)$$

For $(0 \leq \alpha < \beta \leq 1)$ and $k(1 - \beta) < 1 - \alpha$, El-Ashwah et al [25]. initiate two important subclasses k - $UC(\alpha, \beta)$ and k - $US^*(\alpha, \beta)$ of k -uniformly convex and starlike functions as

1.4.11 The Class k - $UC(\alpha, \beta)$

Let $\mathcal{L} \in S$. Then \mathcal{L} belong to the class k - $UC(\alpha, \beta)$ if it satisfy

$$\mathcal{L} \in k - UC(\alpha, \beta) \text{ if and only if } Re \left\{ \frac{(w\mathcal{L}'(w))'}{\mathcal{L}'(w)} - \alpha \right\} > k \left| \frac{(w\mathcal{L}'(w))'}{\mathcal{L}'(w)} - \beta \right|, w \in \tilde{H} \quad (1.4.17)$$

1.4.12 The Class $k-US^*(\alpha, \beta)$

Let $\mathcal{L} \in S$. Then \mathcal{L} belong to the class $k-US^*(\alpha, \beta)$ if it satisfy

$$\mathcal{L} \in k-US^*(\alpha, \beta) \text{ if and only if } \operatorname{Re} \left\{ \frac{w\mathcal{L}'}{\mathcal{L}} - \alpha \right\} > k \left| \frac{w\mathcal{L}'}{\mathcal{L}} - \beta \right|, \quad w \in \tilde{H} \quad (1.4.18)$$

1.4.13 The Class M_α

For $0 \leq \alpha \leq 1$, Mocanu [69] initiate the class M_α of mappings $\mathcal{L} \in A$ such that $\frac{\mathcal{L}(w)\mathcal{L}'(w)}{w} \neq 0$ for all $w \in \tilde{H}$ and

$$\operatorname{Re} \left\{ (1 - \alpha) \frac{w\mathcal{L}'}{\mathcal{L}} + \alpha \frac{(w\mathcal{L}')'}{\mathcal{L}'} \right\} > 0, \quad w \in \tilde{H}. \quad (1.4.19)$$

Geometrically, as a class of mappings that maps the circle centered at the origin on α -convex arcs and derived the condition (1.4.19). For particular values of α , we obtain a number of interesting classes of AF having nice geometry, for instance $M_0 = S^*$ and $M_1 = C$ are well known classes of SF and CF.

1.5 Introduction of q -Calculus

The mathematical study of q -calculus, especially q -transform, q -integral and q -fractional calculus has been a point of awesome intrigued for analysts due to its wide applications in numerous areas (see [35–112]). A few of the prior work on the applications of the q -calculus was presented by Jackson [45, 46]. Afterward, q -analysis with geometrical properties was turned into distinguished through quantum groups. Owing to the numerous applications of q -analysis in mathematics and other area, many analysts [2, 35, 44, 45, 46, 105, 107, 108, 112] did a few noteworthy work on q -calculus. Recently, Srivastava [109], explore and investigated the mathematical application of fractional q -calculus, Integral q -calculus and fractional q -differential operators in GFT. Now days, rather of ordinary operators, many researchers like Aldweby and Darus [7] and Srivastava et al. [110], studied q -operators because of extensive use in q -calculus.

1.5.1 q-shifted factorial and q-gamma function [36, 37]

For $q, \delta_0 \in \mathbb{C}$ ($|q| < 1$), and $m \in \mathbb{N} \cup \{0\} = \mathbb{N}_0$, q -shifted factorial is symbolized and defined as

$$[\delta_0, q]_m = \prod_{t=0}^{m-1} (1 - \delta_0 q^t) = (1 - \delta_0) (1 - \delta_0 q) (1 - \delta_0 q^2) \dots (1 - \delta_0 q^{m-1}), \quad (1.5.1)$$

with

$$[\delta_0, q]_0 = 1$$

In the sense of q -gamma function ($\Gamma_q w$), we write for $m \in \mathbb{N}_0$

$$[q^{\delta_0}, q_m] = \frac{\Gamma_q(m + \delta_0)}{\Gamma_q \delta_0} (1 - q)^m, \quad (1.5.2)$$

where

$$\Gamma_q w = \frac{[q, q]_\infty}{[q^w, q]_\infty} (1 - q)^{1-w}, \quad (1 > |q|). \quad (1.5.3)$$

note that

$$[\delta_0, q]_\infty = \prod_{t=0}^\infty (1 - \delta_0 q^t). \quad (1.5.4)$$

and

$$\Gamma_q(w + 1) = (\Gamma_q w) [w]_q, \quad (1.5.5)$$

where $[w]_q$ is a q -number and defined below.

1.5.2 q-number and q-factorial [114]

For $q \in]0, 1[$. The q -number $([\delta_0]_q)$ and q -factorial $([n_0]_q!)$ is defined by

$$[\delta_0]_q = -\frac{q^{\delta_0} - 1}{1 - q}, \quad (\delta_0 \in \mathbb{C}). \quad (1.5.6)$$

and

$$[\delta_0]_q = \sum_{t=1}^{m-1} q^t = 1 + q + q^2 + \dots + q^{m-1}. \quad (\delta_0 \in \mathbb{N}). \quad (1.5.7)$$

Now q -factorial

$$[n_0]_q! = \prod_{t=0}^{n_0} [t]_q, \quad (n_0 \in \mathbb{N}). \quad (1.5.8)$$

and

$$[n_0]_q! = 1, \quad (n_0 = 1)$$

1.5.3 Remarks

For $q \rightarrow 1^-$, the basic q -calculus definitions reduce into classical definitions.

$$(i) [\delta_0]_q = -\frac{q^{\delta_0}-1}{1-q} \rightarrow \delta_0 \quad (q \rightarrow 1^-).$$

(ii) For $q \rightarrow 1^-$, $\Gamma_q w$ (q -gamma function) reduce into Γw (classical gamma (Euler's) function), that is

$$\Gamma_q w \rightarrow \Gamma w \quad (q \rightarrow 1^-)$$

(iii) For, $[\delta_0, q]_m$ (q -shifted factorial) defined in (1.5.1) reduces into $(\delta_0)_t$ (familiar Pochhammer symbol) as

$$(\delta_0)_t = \begin{cases} \delta_0 (\delta_0 + 1) \dots (\delta_0 + t - 1) & t \in \mathbb{N}, \\ 1 & t = 0. \end{cases} \quad (1.5.9)$$

we obtain $(\delta_0)_t$ as

$$(\delta_0)_t = \lim_{q \rightarrow 1^-} \frac{[q^{\delta_0}, q]_m}{(1-q)^m}. \quad (1.5.10)$$

1.6 Conic Domain

For $\kappa \geq 0$, Kanas and Wiśniowska [43, 49] initiated the study of AF on conic domain Ω_κ as:

$$\Omega_\kappa = \left\{ u + iv \cdot u > \kappa \sqrt{(u-1)^2 + v^2} \right\}.$$

Note that, for $\kappa = 1$, $0 < \kappa < 1$ and $\kappa > 1$, the domain Ω_κ represents a parabola, right branch of a hyperbola and ellipse respectively. For these conic regions, the below functions $h_\kappa(w)$ play as the role of extremal functions.

$$h_\kappa(w) = \begin{cases} \frac{1+w}{1-w} & \kappa = 0, \\ 1 + \left(\log \frac{\sqrt{w+1}}{1-\sqrt{w}} \right)^2 \frac{2}{\pi^2} & \kappa = 1, \\ 1 + \sinh^2 \left\{ \arctan h \sqrt{w} \frac{2}{\pi} (\arccos \kappa) \right\} \frac{2}{1-\kappa^2} & 0 < \kappa < 1. \\ 1 + \frac{1}{\kappa^2-1} \sin \left(\frac{\pi}{2R(y)} \int_0^{\frac{u(w)}{\sqrt{y}}} \frac{dx}{\sqrt{1-x^2} \sqrt{1-y^2 x^2}} \right) + \frac{1^2}{\kappa^2-1} & \kappa > 1. \end{cases} \quad (1.6.1)$$

where

$$u(w) = \frac{w - \sqrt{y}}{1 - \sqrt{y}w}, \quad w \in \tilde{H}$$

If $\kappa = \cosh(\pi R'(y)/(4R(y))) \in (0, 1)$, where $R(y)$ and $R'(y) = R(\sqrt{1-y^2})$ represents the Legendre's complete elliptic integral of first kind and complementary integral of $R'(y)$ and $R(y)$, see [5, 33, 43, 49, 52, 71, 94, 115]. If $h_\kappa(w) = 1 + \delta(\kappa)w + \delta_1(\kappa)w^2 + \dots$ is taken from [49] for (1.6.1), then

$$\delta(\kappa) = \begin{cases} \frac{8(\arccos \kappa)^2}{\pi^2(1-\kappa^2)} & 0 \leq \kappa < 1, \\ \frac{8}{\pi^2} & \kappa = 1, \\ \frac{\pi^2}{4\sqrt{y}(\kappa^2-1)R^2(y)(1+y)} & \kappa > 1. \end{cases} \quad (1.6.2)$$

$$\delta_1(\kappa) = \delta_2(\kappa)\delta(\kappa),$$

where

$$\delta_2(\kappa) = \begin{cases} \frac{T_1^2+2}{3} & 0 \leq \kappa < 1, \\ \frac{2}{3} & \kappa = 1, \\ \frac{4R^2(y)(y^2+6y+1)-\pi^2}{24R^2(y)(1+y)\sqrt{y}} & \kappa > 1. \end{cases} \quad (1.6.3)$$

where $T_1 = \frac{2}{\pi} \arccos \kappa$, and $y \in (0, 1)$.

1.7 Some Important Functions

1.7.1 Mittag-Leffler function

Mittag-Leffler defined familiar Mittag-Leffler function [67, 68] $M_\alpha(w)$ by

$$M_\alpha(w) = \sum_{m=0}^{\infty} \frac{w^m}{\Gamma(\alpha + 1)}. \quad (1.7.1)$$

and Wiman [118] generalized this function by

$$M_{\alpha, \mu}(w) = \sum_{m=0}^{\infty} \frac{w^m}{\Gamma(\alpha m + \mu)} \quad (\alpha \geq 0). \quad (1.7.2)$$

where $\Re(\alpha) > 0$, $\Re(\mu) > 0$ and $\alpha, \mu \in \mathbb{C}$. Many researchers explain the Mittag-Leffler function and its generalizations see [9, 34, 66, 86, 103, 104, 106].

An important theory that has contributed significantly in geometric function theory is differential operator theory. Numerous researchers have worked intensively in this way, for recent work see [1, 26, 32, 75]. Elhaddad [31] introduced the following differential operator for $\mathcal{L} \in \mathcal{A}$

$$\partial D_{\chi}^{n/}(\alpha, \mu)\mathcal{L}(w) = w + \sum_{m=2}^{\infty} [1 + (m-1)\chi]^{n/} \frac{\Gamma(\mu)}{\Gamma(\alpha(m-1) + \mu)} a_m w^m. \quad (1.7.3)$$

and for $\mathcal{L} \in \mathcal{T}$

$$\partial D_{\chi}^{n/}(\alpha, \mu)\mathcal{L}(w) = w - \sum_{m=2}^{\infty} [1 + (m-1)\chi]^{n/} \frac{\Gamma(\mu)}{\Gamma(\alpha(m-1) + \mu)} a_m w^m \quad (1.7.4)$$

1.7.2 Bessel functions (BF)

Let us consider a second order linear homogeneous differential equation.

$$w^2 s''(w) + bw s'(w) + [dw^2 - x^2(1-b)] s(w) = 0 \quad (b, x, d \in \mathbb{C}) \quad (1.7.5)$$

A particular solution of (1.7.5) give a generalized Bessel functions of the first kind of order x , given in (1.7.6) defined by Baricz [12].

$$s(w) = s_{x,b,d} = \sum_{m=2}^{\infty} \frac{(-1)^m d^m}{(m)!\Gamma(x+m+\frac{b+1}{2})} \quad (1.7.6)$$

The function $s_{x,b,d}$ is not univalent in \tilde{H} but the series given by (1.7.5) is convergent. Cho [22] defined the following transformation

$$u_{x,b,d}(w) = 2^x \Gamma\left(x + \frac{b+1}{2}\right) w^{-\frac{x}{2}} s_{x,b,d}(\sqrt{w}) \quad \sqrt{1} = 1$$

Using well known Pochhammer symbol the following Gamma function can be defined

$$(a_0)_m = \frac{\Gamma(a_0 + m)}{\Gamma(a_0)} = \begin{cases} 1 & m = 0 \\ a_0(a_0 + 1)(a_0 + 2) \cdots (a_0 + m - 1) & m \in \mathbb{N} \end{cases}$$

We can express $u_{x,b,d}(w) = u_x(w)$ and $u_x(w)$ can be written as follows.

$$u_x(w) = u_{x,b,d}(w) = \sum_{m=0}^{\infty} \frac{(-\frac{d}{4})^m}{(x + \frac{b+1}{2})_m (m)!} w^m, \text{ where } x + \frac{b+1}{2} \in N = \{1, 2, 3, \dots\} \quad (1.7.7)$$

We write $b_s = x + \frac{b+1}{2}$.

In geometric function theory the study of generalized Bessel functions is an important topic. In this study, we refer to the studies done by Baricz [11, 12, 13, 14], Akgul [3, 4] . Sakar and Aydogan [94] . Cho et al [22] , Mondal [70] . Deniz [27, 28] and Choi [23]. Studies on Struve functions can be found in recent investigation by Srivastava [102].

1.8 Some Important Operators

1.8.1 Convolution Operator

The part of operator is exceptionally imperative in this field. By utilizing convolution theory, to characterize operator and study operator properties, are most current days research. Numerous differential and integral operators can be characterized by the help of convolution of certain AF.

Let \mathcal{L} given by (1.1.1) and $l(w) = w + \sum_{m=2}^{\infty} b_m w^m$ Then convolution of \mathcal{L} and l is symbolized by $\mathcal{L} * l$ and describe as:

$$(\mathcal{L} * l)(w) = w + \sum_{m=2}^{\infty} a_m b_m w^m. \quad (1.8.1)$$

1.8.2 q-Derivative operator or q-Difference operator [44, 45, 46]

The q -derivative (q -difference) operator of a mapping \mathcal{L} of the form (1.1.1), for a given subset of \mathbb{C} is symbolized by $(\partial \mathcal{D}_q \mathcal{L})(w)$ and described by

$$(\partial \mathcal{D}_q \mathcal{L})(w) = \begin{cases} \frac{\mathcal{L}(w) - \mathcal{L}(qw)}{w(1-q)} & w \neq 0 \\ \mathcal{L}'(0) & w = 0. \end{cases} \quad (1.8.2)$$

when $q \rightarrow 1$, the q -difference (q -derivative) operator, shrink into ordinary derivative, that is

$$\lim_{q \rightarrow 1} (\partial \mathcal{D}_q \mathcal{L})(w) = \mathcal{L}'(w),$$

provided that \mathcal{L}' exists.

1.8.3 Sälägean q -derivative operator (or q -differential) operator

In 2017, Govindaraj and Sivasubramanian [42] defined the Sälägean q -derivative (q -differential) operator as:

Let $\mathcal{L} \in \mathcal{A}$ set out in (1.1.1). Then the Sälägean q -derivative (or q -differential) is interpret as:

$$S_q^0 \mathcal{L} = \mathcal{L}, \quad S_q^1 \mathcal{L} = w \partial \mathcal{D}_q \mathcal{L}, \quad S_q^n \mathcal{L} = w \partial \mathcal{D}_q (S_q^{n-1} \mathcal{L}), \quad n \in \mathbb{N}_0 = \{0\} \cup \mathbb{N}, \quad w \in \tilde{H}.$$

simply implies

$$S_q^n \mathcal{L}(w) = \mathcal{L}(w) * L_{q,n}(w), \quad n \in \mathbb{N}_0 = \{0\} \cup \mathbb{N}. \quad (1.8.3)$$

where

$$L_{q,n}(w) = w + \sum_{m=2}^{\infty} [m]_q^n w^m, \quad w \in \tilde{H} \quad (1.8.4)$$

using (1.8.3) and (1.8.4), the series form of $S_q^n \mathcal{L}(w)$ for \mathcal{L} is given by

$$S_q^n \mathcal{L}(w) = w + \sum_{m=2}^{\infty} [m]_q^n a_m w^m. \quad (1.8.5)$$

Note that

$$\lim_{q \rightarrow 1} L_{q,n}(w) = w + \sum_{m=2}^{\infty} m^n w^m,$$

and

$$\lim_{q \rightarrow 1} S_q^n \mathcal{L}(w) = \mathcal{L}(w) * \left(w + \sum_{m=2}^{\infty} m^n w^m \right) = w + \sum_{m=2}^{\infty} m^n a_m w^m.$$

the last expression is famous Salägean derivative [95].

1.8.4 Choi-Saigo-Srivastava operator

Choi, Saigo and Srivastava [24] generalized the Noor integral operator [73] in 2002 and initiate the operator $I_{\lambda,\mu}$ which is name as Choi-Saigo-Srivastava operator. The construction of operator $I_{\lambda,\mu}$ is in the following way:

Let $\mathcal{L} \in \mathcal{A}$.

$$I_{\lambda,\mu} \mathcal{L}(w) = \mathcal{L}(w) * \mathcal{F}_{\lambda+1,\mu}(w), \quad w \in \tilde{H}, \quad \lambda > -1, \quad \mu > 0.$$

where

$$\mathcal{F}_{\lambda+1,\mu}(w) = w + \sum_{m=2}^{\infty} \frac{\Gamma(\mu+m-1)\Gamma(1+\lambda)}{\Gamma(\mu)\Gamma(m+\lambda)} w^m = w + \sum_{m=2}^{\infty} \frac{[\mu]_{m-1}}{[1+\lambda]_{m-1}} w^m \quad (1.8.6)$$

Thus, we see that

$$I_{\lambda,\mu} \mathcal{L}(w) = w + \sum_{m=2}^{\infty} \frac{[\mu]_{m-1}}{[1+\lambda]_{m-1}} a_m w^m \quad (1.8.7)$$

1.9 Some Generalized Subclasses of Analytic Functions in q -Calculus

1.9.1 Definition[43]

In 1973, Janowski [43] , introduced the class $\mathcal{P}(\widehat{\mathfrak{A}}, \widetilde{\mathfrak{B}})$ as follows.

Let $\mathfrak{P} \in \mathcal{A}$ and $\mathfrak{P}(0) = 1$, belong to $\mathcal{P}(\widehat{\mathfrak{A}}, \widetilde{\mathfrak{B}})$ if $\mathfrak{p}(w)$ is subordinate to $\frac{1-\widehat{\mathfrak{A}}(w)}{1+\widetilde{\mathfrak{B}}(w)}$, that is

$$\mathfrak{p}(w) \prec \frac{1+\widehat{\mathfrak{A}}(w)}{1+\widetilde{\mathfrak{B}}(w)}, \quad -1 \leq \widetilde{\mathfrak{B}} < \widehat{\mathfrak{A}} \leq 1, \quad w \in \tilde{H} \quad (1.9.1)$$

Geometrically $\mathfrak{p} \in \mathcal{P}(\widehat{\mathfrak{A}}, \widetilde{\mathfrak{B}})$ iff $\mathfrak{P}(0) = 1$ and $\mathfrak{P}(\tilde{H})$ are inside the such open disc whose centered lies on real axis and end of the diameter points are $d_1 = \frac{1+\widehat{\mathfrak{A}}}{1+\widetilde{\mathfrak{B}}}$ and $d_2 = \frac{1-\widehat{\mathfrak{A}}}{1-\widetilde{\mathfrak{B}}}$. Note that, $\mathcal{P}[1, -1] = \mathcal{P}$ and $\mathcal{P}[1-2\alpha, -] = \mathcal{P}(\alpha)$.

Also according to Janowski [43]

Let $\mathfrak{P} \in \mathcal{A}$ and $\mathfrak{P}(0) = 1$, belong to $\mathcal{P}(\widehat{\mathfrak{A}}, \widetilde{\mathfrak{B}})$ if and only if there exists a mapping $\mathfrak{P} \in \mathcal{P}$ such

that

$$\frac{(\widehat{\mathfrak{A}} + 1)\mathbb{P}(w) - (\widehat{\mathfrak{A}} - 1)}{(\tilde{\mathfrak{B}} + 1)\mathbb{P}(w) - (\tilde{\mathfrak{B}} - 1)} \prec \frac{1 + \widehat{\mathfrak{A}}w}{1 + \tilde{\mathfrak{B}}w}, \quad (1.9.2)$$

here, the class the of mappings with non negative real parts is \mathcal{P} .

1.9.2 Definition[107]

$\mathcal{L} \in \mathcal{A}$ is belonging to $\mathcal{S}^*(\widehat{\mathfrak{A}}, \tilde{\mathfrak{B}})$ if and only if

$$\frac{w\mathcal{L}'(w)}{\mathcal{L}(w)} = \frac{\mathbb{P}(w)(\widehat{\mathfrak{A}} + 1) - (\widehat{\mathfrak{A}} - 1)}{\mathbb{P}(w)(\tilde{\mathfrak{B}} + 1) - (\tilde{\mathfrak{B}} - 1)}. \quad (-1 \leq \tilde{\mathfrak{B}} < \widehat{\mathfrak{A}} \leq 1). \quad (1.9.3)$$

where $\mathbb{P} \in \mathcal{A}$ and $\mathbb{P}(0) = 1$, belong to $\mathcal{P}(\widehat{\mathfrak{A}}, \tilde{\mathfrak{B}})$

1.9.3 Definition[107]

A function $\mathcal{L} \in \mathcal{A}$ is also belonging to $\mathcal{C}(\widehat{\mathfrak{A}}, \tilde{\mathfrak{B}})$ if and only if

$$\frac{(w\mathcal{L}'(w))'}{(\mathcal{L}(w))'} = \frac{\mathbb{P}(w)(\widehat{\mathfrak{A}} + 1) - (\widehat{\mathfrak{A}} - 1)}{\mathbb{P}(w)(\tilde{\mathfrak{B}} + 1) - (\tilde{\mathfrak{B}} - 1)}. \quad (-1 \leq \tilde{\mathfrak{B}} < \widehat{\mathfrak{A}} \leq 1). \quad (1.9.4)$$

where $\mathbb{P} \in \mathcal{A}$ and $\mathbb{P}(0) = 1$, belong to $\mathcal{P}(\widehat{\mathfrak{A}}, \tilde{\mathfrak{B}})$

1.9.4 Definition[108]

A function $\mathcal{L} \in \mathcal{A}$ is also belonging to $\mathcal{S}_q^*(\widehat{\mathfrak{A}}, \tilde{\mathfrak{B}})$ if and only if

$$\frac{w\partial D_q \mathcal{L}(w)}{\mathcal{L}(w)} = \frac{(\widehat{\mathfrak{A}} + 1)\tilde{\mathbb{P}}(w) - (\widehat{\mathfrak{A}} - 1)}{(\tilde{\mathfrak{B}} + 1)\tilde{\mathbb{P}}(w) - (\tilde{\mathfrak{B}} - 1)}, \quad (-1 \leq \tilde{\mathfrak{B}} < \widehat{\mathfrak{A}} \leq 1). \quad q \in (0, 1). \quad (1.9.5)$$

Additionally by rule of subordination we are able to written as follows:

$$\frac{w\partial D_q \mathcal{L}(w)}{\mathcal{L}(w)} \prec \frac{(\widehat{\mathfrak{A}} + 1)w + 2 + (\widehat{\mathfrak{A}} - 1)qw}{(\tilde{\mathfrak{B}} + 1)w + 2 + (\tilde{\mathfrak{B}} - 1)qw}.$$

where

$$\tilde{P}(w) = \frac{1+w}{1-qw} \quad (1.9.6)$$

1.9.5 Definition[108]

A function $\mathcal{L} \in \mathcal{A}$ is also belonging to $\mathcal{C}_q(\widehat{\mathfrak{A}}, \tilde{\mathfrak{B}})$ if and only if

$$\frac{\partial D_q(w \partial D_q \mathcal{L}(w))}{\partial D_q \mathcal{L}(w)} = \frac{\tilde{P}(w)(\widehat{\mathfrak{A}} + 1) - (\widehat{\mathfrak{A}} - 1)}{\tilde{P}(w)(\tilde{\mathfrak{B}} + 1) - (\tilde{\mathfrak{B}} - 1)}. \quad (-1 \leq \tilde{\mathfrak{B}} < \widehat{\mathfrak{A}} \leq 1), \quad q \in (0, 1) \quad (1.9.7)$$

Additionally by rule of subordination we are able to written as follows:

$$\frac{\partial D_q(w \partial D_q \mathcal{L}(w))}{\partial D_q \mathcal{L}(w)} \prec \frac{w(\widehat{\mathfrak{A}} + 1) + (\widehat{\mathfrak{A}} - 1)qw + 2}{w(\tilde{\mathfrak{B}} + 1) + (\tilde{\mathfrak{B}} - 1)qw + 2}.$$

Next. Mahmood et al.[61] initated the class $k\mathcal{P}_q(\widehat{\mathfrak{A}}, \tilde{\mathfrak{B}})$ as:

1.9.6 Definition[61]

A function $h \in k\mathcal{P}_q(\widehat{\mathfrak{A}}, \tilde{\mathfrak{B}})$ if and only if

$$h(w) \prec \frac{(\widehat{\mathfrak{A}}O_1 + O_3)h_k(w) - (\widehat{\mathfrak{A}}O_1 - O_3)}{(\tilde{\mathfrak{B}}O_1 + O_3)h_k(w) - (\tilde{\mathfrak{B}}O_1 - O_3)}. \quad k \geq 0, \quad q \in (0, 1) \quad (1.9.8)$$

where

$$O_1 = 1 + q \quad \text{and} \quad O_3 = 3 - q.$$

Also $h_k(w)$ is defined in (1.6.1) Geometrically, the mapping $h \in k\mathcal{P}_q(\widehat{\mathfrak{A}}, \tilde{\mathfrak{B}})$ takes whole domain $\Omega_{k,q}(\widehat{\mathfrak{A}}, \tilde{\mathfrak{B}})$, $1 \leq \tilde{\mathfrak{B}} < \widehat{\mathfrak{A}} \leq 1$, $k \geq 0$ which is definable as:

$$\Omega_{k,q}(\widehat{\mathfrak{A}}, \tilde{\mathfrak{B}}) = \{\tau = u + iv : \Re(\Psi) > k|\Psi - 1|\}.$$

where

$$\Psi = \frac{(\tilde{\mathfrak{B}}O_1 - O_3)r(w) - (\widehat{\mathfrak{A}}O_1 - O_3)}{(\tilde{\mathfrak{B}}O_1 + O_3)r(w) - (\widehat{\mathfrak{A}}O_1 + O_3)}$$

For detail see [61].

Note that

- (i) For $q \rightarrow 1$, the domain $\Omega_{\kappa q}(\widehat{\mathfrak{A}}, \widetilde{\mathfrak{B}})$ shrinks to the $\Omega_{\kappa}(\widehat{\mathfrak{A}}, \widetilde{\mathfrak{B}})$ (see [78]).
- (ii) For $q \rightarrow 1$, the class $\kappa - \mathcal{P}_q(\widehat{\mathfrak{A}}, \widetilde{\mathfrak{B}})$ shrinks to the class $\kappa - \mathcal{P}(\widehat{\mathfrak{A}}, \widetilde{\mathfrak{B}})$ (see [78]).
- (iii) For $q \rightarrow 1$ and $\kappa = 0$, then $\kappa - \mathcal{P}_q(\widehat{\mathfrak{A}}, \widetilde{\mathfrak{B}}) = \mathcal{P}(\widehat{\mathfrak{A}}, \widetilde{\mathfrak{B}})$ also $\kappa - \mathcal{P}(1, -1) = \mathcal{P}(h_{\kappa})$ (see [43]).

1.9.7 Definition[61]

Let $\mathcal{L} \in \mathcal{A}$ is belonging to $k - \mathcal{ST}_q(\mathfrak{C}, \mathfrak{D})$, if and only if

$$\Re \epsilon \left(\frac{(\mathfrak{D}O_1 - O_3) \frac{w \partial D_q \mathcal{L}(w)}{\mathcal{L}(w)} - (\mathfrak{C}O_1 - O_3)}{(\mathfrak{D}O_1 + O_3) \frac{w \partial D_q \mathcal{L}(w)}{\mathcal{L}(w)} - (\mathfrak{C}O_1 + O_3)} \right) > k \left| \frac{(\mathfrak{D}O_1 - O_3) \frac{w \partial D_q \mathcal{L}(u)}{\mathcal{L}(w)} - (\mathfrak{C}O_1 - O_3)}{(\mathfrak{D}O_1 + O_3) \frac{w \partial D_q \mathcal{L}(w)}{\mathcal{L}(u)} - (\mathfrak{C}O_1 + O_3)} - 1 \right|$$

Or equivalently

$$\frac{w \partial D_q \mathcal{L}(w)}{\mathcal{L}(w)} \in k - \mathcal{P}_q(\mathfrak{C}, \mathfrak{D}).$$

where $k \geq 0$, $-1 \leq \mathfrak{D} < \mathfrak{C} \leq 1$.

We can see that when $q \rightarrow 1$, then $\kappa - \mathcal{ST}_q(\mathfrak{C}, \mathfrak{D})$ diminishes to the renowned class which is stated in [78].

1.10 Some Important Lemmas

1.10.1 Lemma[57]

If \mathcal{L} and g are AF in \bar{H} with

$$\mathcal{L} \prec g$$

then, for $0 < p$ and $w = re^{i\theta}$, $(0 < r < 1)$,

$$\int_0^{2\pi} |\mathcal{L}(w)|^p d\theta \leq \int_0^{2\pi} |g(w)|^p d\theta. \quad (1.10.1)$$

1.10.2 Lemma[26]

Let \hbar_0 is AF in \tilde{H} with $\hbar_0(0) = 1$ and $\beta > 0$. $0 \leq \gamma < 1$. If

$$\hbar_0(w) + \frac{\beta w \hbar_0'(w)}{\hbar_0(w)} \prec \frac{1 + w(1 - 2\gamma)}{1 - w}. \quad (1.10.2)$$

then

$$\hbar_0(w) \prec \frac{1 + w(1 - 2\delta)}{1 - w}.$$

where

$$\delta = \frac{\sqrt{(2\gamma - \beta)^2 + 8\beta} + (2\gamma - \beta)}{4}. \quad (1.10.3)$$

1.10.3 Lemma [81]

Let \hbar be AF in \tilde{H} of the form

$$\hbar(w) = 1 + \sum_{m=1}^{\infty} b_m w^m, \quad b_j \neq 0,$$

with $\hbar(w) \neq 0$ in \tilde{H} . If, \exists a point w_0 , $|w_0| < 1$ such that for $\{|w_0| > |w|\}$ $|\arg \hbar(w)| < \frac{\pi\rho}{2}$ and $|\arg \hbar(w_0)| = \frac{\pi\rho}{2}$ for some $\rho > 0$, then we have $\frac{w_0 \hbar'(w_0)}{\hbar(w_0)} = i\ell\rho$, where

$$\begin{cases} \ell \geq \frac{m}{2} \left(c + \frac{1}{c} \right), & \text{when } \arg \hbar(w_0) = \frac{\pi\rho}{2}. \\ \ell \leq -\frac{m}{2} \left(c + \frac{1}{c} \right), & \text{when } \arg \hbar(w_0) = -\frac{\pi\rho}{2}. \end{cases}$$

where $(\hbar(w_0))^{1/\rho} = \pm ic$ $(c > 0)$.

Above lemma is the generalized form of Nunokawa's lemma .

1.10.4 Lemma[116]

Let positive measure on $[0, 1]$ is ε . Let \dot{U} defined on $\tilde{H} \times [0, 1]$ is a complex-valued function with $\dot{U}(\cdot, t)$ and AF in \tilde{H} for every $t \in [0, 1]$ and for all $w \in \tilde{H}$, ε -integrable on $[0, 1]$ be $\dot{U}(w, \cdot)$. Suppose that $\dot{U}(-r, t)$ is real, $0 < \operatorname{Re} \dot{U}(w, t)$ and $1/\dot{U}(-r, t) \leq \operatorname{Re} \{1/\dot{U}(w, t)\}$ for $t \in [0, 1]$ and $|w| \leq r < 1$. If

$$\dot{U}(w) = \int_0^1 \dot{U}(w, t) d\varepsilon(t),$$

then $1/\mathcal{F}(-r) \leq \operatorname{Re} \{1/\mathcal{F}(w)\}$.

1.10.5 Lemma[65]

If $-1 \leq \mathfrak{D} < \mathfrak{C} \leq 1$, $\lambda > 0$ and γ be a complex number satisfying $-\lambda(1 - \mathfrak{C}) / (1 - \mathfrak{D}) \leq \operatorname{Re} \{\gamma\}$, then the differential equation

$$s(w) + \frac{ws'(w)}{\lambda s(w) + \gamma} = \frac{1 + \mathfrak{C}w}{1 + \mathfrak{D}w}, \quad w \in \tilde{H}.$$

has a univalent solution in \tilde{H} given by

$$s(w) = \begin{cases} \frac{w^{\lambda+\gamma}(1+\mathfrak{D}w)^{\lambda(\mathfrak{C}-\mathfrak{D})/\mathfrak{D}}}{\lambda \int_0^w t^{\lambda+\gamma-1}(1+\mathfrak{D}t)^{\lambda(\mathfrak{C}-\mathfrak{D})/\mathfrak{D}} dt} - \frac{\gamma}{\lambda}, & \mathfrak{D} \neq 0, \\ \frac{w^{\lambda+\gamma}e^{\lambda\mathfrak{C}w}}{\lambda \int_0^w t^{\lambda+\gamma-1}e^{\lambda\mathfrak{C}t} dt} - \frac{\gamma}{\lambda}, & \mathfrak{D} = 0. \end{cases}$$

If $r(w) = 1 + c_1w + c_2w^2 + \dots$ is AF in \tilde{H} and satisfying

$$r(w) + \frac{wr'(w)}{\lambda r(w) + \gamma} \prec \frac{1 + \mathfrak{C}w}{1 + \mathfrak{D}w}, \quad w \in \tilde{H},$$

then

$$r(w) \prec s(w) \prec \frac{1 + \mathfrak{C}w}{1 + \mathfrak{D}w},$$

and $s(w)$ is the best dominant.

1.10.6 Lemma[117, Chapter 14]

Let n , x and $y \neq 0, -1, -2, \dots$ be complex numbers. Then, for $0 < \operatorname{Re} x < \operatorname{Re} y$.

$$\begin{aligned}
 (i) \quad {}_2G_1(n, x, y; w) &= \frac{\Gamma(y)}{\Gamma(y-x)\Gamma(x)} \int_0^1 s^{x-1} (1-s)^{y-1-x} (1-sw)^{-n} ds \\
 (ii) \quad {}_2G_1(n, x, y; w) &= {}_2G_1(x, n, y; w). \\
 (iii) \quad {}_2G_1(n, x, y; w) &= (1-w)^{-n} {}_2G_1\left(n, y-x, y, \frac{w}{w-1}\right)
 \end{aligned}$$

1.10.7 Lemma[73]

. Let $-1 \leq \tilde{\mathfrak{B}}_2 \leq \tilde{\mathfrak{B}}_1 < \hat{\mathfrak{A}}_1 \leq \hat{\mathfrak{A}}_2 \leq 1$. Then

$$\frac{1 + \hat{\mathfrak{A}}_1 w}{1 + \tilde{\mathfrak{B}}_1 w} \prec \frac{1 + \hat{\mathfrak{A}}_2 w}{1 + \tilde{\mathfrak{B}}_2 w}.$$

1.10.8 Lemma[89]

Suppose $1 + \sum_{m=1}^{\infty} c_m w^m = d(w) \prec H(w) = 1 + \sum_{m=1}^{\infty} C_m w^m$. If $H(\tilde{H})$ is convex and $H(w) \in \mathcal{A}$, then

$$|c_m| \leq |C_1|, \quad m \geq 1.$$

1.10.9 Lemma[61]

Suppose $d(w) = 1 + \sum_{m=1}^{\infty} c_m w^m \in k\text{-}\mathcal{P}_q(\hat{\mathfrak{A}}, \tilde{\mathfrak{B}})$, then

$$|c_m| \leq \left| \delta\left(k, \hat{\mathfrak{A}}, \tilde{\mathfrak{B}}\right) \right| = \frac{(\hat{\mathfrak{A}} - \tilde{\mathfrak{B}})O_1}{4} \delta(k),$$

where $\delta(k)$ is given by (1.6.2)

1.10.10 Lemma[61]

For $k \geq 0$, let $d \in k\text{-}\mathcal{ST}_q(\mathfrak{C}, \mathfrak{D})$

$$d(w) = w + \sum_{m=2}^{\infty} b_m w^m, \quad w \in \tilde{H}.$$

then

$$|b_m| \leq \prod_{n=0}^{m-2} \left(\frac{|\delta(k)(\mathfrak{C} - \mathfrak{D})(O_1) - 4q[n]_{qe} \mathbb{D}|}{4q[n+1]_q} \right),$$

where $\delta(k)$ is given by (1.6.2).

1.10.11 Lemma[66]

Suppose $d \in \mathcal{S}^*$ and $\mathcal{L} \in \mathcal{C}$, then $G \in \mathcal{S}$, we have

$$\frac{\mathcal{L}(w) * d(w)G(w)}{\mathcal{L}(w) * d(w)} \in \overline{\text{co}}(G(\tilde{H})), \quad w \in \tilde{H}.$$

here “*” represent convolution and $\overline{\text{co}}(G(\tilde{H}))$ represent the closed convex hull $G(\tilde{H})$.

1.10.12 Lemma[61]

The function $\mathcal{L} \in \mathcal{A}$ is belonging to the class $k\text{-ST}_q(\mathfrak{C}, \mathfrak{D})$. if

$$\begin{aligned} & \sum_{m=2}^{\infty} \left\{ 2O_3(1+k)q[m-1]_q + \left| (\mathfrak{D}O_1) + O_3) [m]_q - (\mathfrak{C}O_1) + O_3) \right| \right\} |a_m| \\ & \leq O_1) |\mathfrak{D} - \mathfrak{C}| \end{aligned}$$

Chapter 2

A New Subclass of Analytic Functions Defined by using Sälagean q-Differential Operator

In this chapter, we initiate two new subclasses $\mathcal{U}_{i,j}(q, \beta, \widehat{\mathfrak{A}}, \widetilde{\mathfrak{B}})$ and $T\mathcal{U}_{i,j}(q, \beta, \widehat{\mathfrak{A}}, \widetilde{\mathfrak{B}})$. These classes are initiated by using the Sälagean q -differential operator with the help of Janowski function. These classes generalized numerous classes by selecting specific values of the parameters. We examined numerous sharp results and properties of these classes, like as extreme points (EP), distortion theorem (DT), coefficient estimates (CE), convexity, radii of star-hkeness (RS), close-to-convexity, and integral mean inequalities.

2.1 Introduction

2.1.1 Definition

Let $\mathcal{L} \in \mathcal{A}$. Then $\mathcal{L} \in \mathcal{U}_{i,j}(q, \beta, \widehat{\mathfrak{A}}, \widetilde{\mathfrak{B}})$ if fulfill the subordination condition

$$\frac{S_q^i \mathcal{L}(w)}{S_q^j \mathcal{L}(w)} - \beta \left| \frac{S_q^i \mathcal{L}(w)}{S_q^j \mathcal{L}(w)} - 1 \right| \prec \frac{1 + \widehat{\mathfrak{A}}w}{1 + \widetilde{\mathfrak{B}}w}.$$

where $w \in \widetilde{H}$, $S_q^j \mathcal{L}(w) \neq 0$, $q \in (0, 1)$, $\beta \geq 0$, $-1 \leq \widetilde{\mathfrak{B}} < \widehat{\mathfrak{A}} \leq 1$. for $i > j$, $i \in \mathbb{N}$ and $j \in \mathbb{N}_0$

By taking notable values of parameters, we get numerous critical subclasses examined by different creators.

2.1.2 Remarks

- (i) For $\widehat{\mathfrak{A}} = 1 - 2\alpha$, $q \rightarrow 1$, and $\tilde{\mathfrak{B}} = -1$, the class $\mathcal{U}_{i,j}(q, \beta, \widehat{\mathfrak{A}}, \tilde{\mathfrak{B}})$ shrinks into the class $\tilde{N}_{i,j}(\alpha, \beta)$. ($0 \leq \alpha < 1$) studied by Eker and Owa [30].
- (ii) For $i = 1$, $q \rightarrow 1$, $\widehat{\mathfrak{A}} = 1 - 2\alpha$, $j = 0$ and $\tilde{\mathfrak{B}} = -1$ the class $\mathcal{U}_{i,j}(q, \beta, \widehat{\mathfrak{A}}, \tilde{\mathfrak{B}})$ shrinks into the class $\mathcal{U}_0\mathcal{S}(\alpha, \beta)$. ($0 \leq \alpha < 1$) studied by Shams et.al [97].
- (iii) For $q \rightarrow 1$, $\widehat{\mathfrak{A}} = 1 - 2\alpha$, $\tilde{\mathfrak{B}} = -1$, $i = 2$, and $j = 1$, the class $\mathcal{U}_{i,j}(q, \beta, \widehat{\mathfrak{A}}, \tilde{\mathfrak{B}})$ shrinks into the class $\mathcal{U}_0\mathcal{K}(\alpha, \beta)$. ($0 \leq \alpha < 1$) studied by Shams et al [98].
- (iv) For $\beta = 0$, $i = 1$, $q \rightarrow 1$ and $j = 0$, the class $\mathcal{U}_{i,j}(q, \beta, \widehat{\mathfrak{A}}, \tilde{\mathfrak{B}})$ shrinks into the class $\mathcal{S}^*(\widehat{\mathfrak{A}}, \tilde{\mathfrak{B}})$. studied by Janowski [43].
- (v) For $\beta = 0$, $i = 2$, $q \rightarrow 1$ and $j = 1$, the class $\mathcal{U}_{i,j}(q, \beta, \widehat{\mathfrak{A}}, \tilde{\mathfrak{B}})$ shrinks into the class $\mathcal{K}_0(\widehat{\mathfrak{A}}, \tilde{\mathfrak{B}})$. studied by Padmanabhan and Ganesan [82].

2.1.3 Definition

As T is the subclass of \mathcal{A} having negative coefficients in Maclaurin's series defined in (1.1.2). Here, we denote the class $\mathcal{T}\mathcal{U}_{i,j}(q, \beta, \widehat{\mathfrak{A}}, \tilde{\mathfrak{B}}) = \mathcal{U}_{i,j}(q, \beta, \widehat{\mathfrak{A}}, \tilde{\mathfrak{B}}) \cap T$.

For appropriate possibility of the parameters q , i , j , β , $\widehat{\mathfrak{A}}$ and $\tilde{\mathfrak{B}}$, we are able to get assorted subclasses of T .

2.1.4 Remarks

- (i) $\mathcal{T}\mathcal{U}_{j+1,j}(0, \beta, 1 - 2\alpha, -1) = \mathcal{T}\mathcal{S}(j, \alpha, \beta)$. ($0 \leq \alpha < 1$, $\beta \geq 0$, $j \in N_0$) (see Rosy and Murugusundaramoorthy [92] and Aouf [10]).
- (ii) $\mathcal{T}\mathcal{U}_{1,0}(0, 1, 1 - 2\alpha, -1) = \mathcal{S}_p T(\alpha)$ and $\mathcal{T}\mathcal{U}_{2,1}(0, 1, 1 - 2\alpha, -1) = \mathcal{U}\mathcal{C}\mathcal{T}(\alpha)$ ($0 \leq \alpha < 1$) (see Bharati et al. [17]).
- (iii) $\mathcal{T}\mathcal{U}_{1,0}(0, 0, 1 - 2\alpha, -1) = \mathcal{T}^*(\alpha)$ and $\mathcal{T}\mathcal{U}_{2,1}(0, 0, 1 - 2\alpha, -1) = \mathcal{C}(\alpha)$. ($0 \leq \alpha < 1$) (see Silberman [96]).

2.2 Main Results

Coefficient estimates

2.2.1 Theorem

A function \mathcal{L} defined in (1.1.1) is belong to $\mathcal{U}_{i,j}(q, \beta, \widehat{\mathfrak{A}}, \widetilde{\mathfrak{B}})$ if

$$\sum_{m=2}^{\infty} \left\{ \left(1 + \beta \left(1 + |\widetilde{\mathfrak{B}}| \right) \right) \left(\lceil m \rceil_q^i - \lceil m \rceil_q^j \right) + \left| \widetilde{\mathfrak{B}} \lceil m \rceil_q^i - \widehat{\mathfrak{A}} \lceil m \rceil_q^j \right| \right\} a_m \leq \widehat{\mathfrak{A}} - \widetilde{\mathfrak{B}}. \quad (2.2.1)$$

Proof. For the proof of Theorem 2.2.1, it is enough to show that

$$1 > \left| \frac{p(w) - 1}{\widehat{\mathfrak{A}} - \widetilde{\mathfrak{B}} p(w)} \right|,$$

where

$$p(w) = \frac{S_q^i \mathcal{L}(w)}{S_q^j \mathcal{L}(w)} - \beta \left| \frac{S_q^i \mathcal{L}(w)}{S_q^j \mathcal{L}(w)} - 1 \right|$$

Now

$$\begin{aligned} & \left| \frac{p(w) - 1}{\widehat{\mathfrak{A}} - \widetilde{\mathfrak{B}} p(w)} \right| \\ = & \left| \frac{S_q^i \mathcal{L}(w) - S_q^j \mathcal{L}(w) - \beta e^{i\theta} \left| S_q^i \mathcal{L}(w) - S_q^j \mathcal{L}(w) \right|}{\widehat{\mathfrak{A}} S_q^j \mathcal{L}(w) - \widetilde{\mathfrak{B}} \left[S_q^i \mathcal{L}(w) - \beta e^{i\theta} \left| S_q^i \mathcal{L}(w) - S_q^j \mathcal{L}(w) \right| \right]} \right| \\ = & \left| \frac{\sum_{m=2}^{\infty} \left\{ \left(\lceil m \rceil_q^i - \lceil m \rceil_q^j \right) a_m w^m - \beta e^{i\theta} \left| \sum_{m=2}^{\infty} \left(\lceil m \rceil_q^i - \lceil m \rceil_q^j \right) a_m w^m \right| \right\}}{\left(\widehat{\mathfrak{A}} - \widetilde{\mathfrak{B}} \right) w - \left[\sum_{m=2}^{\infty} \left(\widetilde{\mathfrak{B}} \lceil m \rceil_q^i - \widehat{\mathfrak{A}} \lceil m \rceil_q^j \right) a_m w^m - \widetilde{\mathfrak{B}} \beta e^{i\theta} \left| \sum_{m=2}^{\infty} \left(\lceil m \rceil_q^i - \lceil m \rceil_q^j \right) a_m w^m \right| \right]} \right| \\ \leq & \frac{\sum_{m=2}^{\infty} \left(\lceil m \rceil_q^i - \lceil m \rceil_q^j \right) |a_m| |w|^m + \beta \sum_{m=2}^{\infty} \left(\lceil m \rceil_q^i - \lceil m \rceil_q^j \right) |a_m| |w|^m}{\left(\widehat{\mathfrak{A}} - \widetilde{\mathfrak{B}} \right) |w| - \left[\sum_{m=2}^{\infty} \left| \widetilde{\mathfrak{B}} \lceil m \rceil_q^i - \widehat{\mathfrak{A}} \lceil m \rceil_q^j \right| |a_m| |w|^m + \beta \left| \widetilde{\mathfrak{B}} \right| \sum_{m=2}^{\infty} \left(\lceil m \rceil_q^i - \lceil m \rceil_q^j \right) |a_m| |w|^m \right]} \\ \leq & \frac{\sum_{m=2}^{\infty} \left(\lceil m \rceil_q^i - \lceil m \rceil_q^j \right) (1 + \beta) |a_m|}{\left(\widehat{\mathfrak{A}} - \widetilde{\mathfrak{B}} \right) - \sum_{m=2}^{\infty} \left| \widetilde{\mathfrak{B}} \lceil m \rceil_q^i - \widehat{\mathfrak{A}} \lceil m \rceil_q^j \right| |a_m| - \beta \left| \widetilde{\mathfrak{B}} \right| \sum_{m=2}^{\infty} \left(\lceil m \rceil_q^i - \lceil m \rceil_q^j \right) |a_m|} \end{aligned}$$

This last expression is bounded above by 1 if

$$\sum_{m=2}^{\infty} \left\{ \left(1 + \beta \left(1 + |\tilde{\mathfrak{B}}| \right) \right) \left(\lceil m \rceil_q^i - \lceil m \rceil_q^j \right) + \left| \tilde{\mathfrak{B}} \lceil m \rceil_q^i - \hat{\mathfrak{A}} \lceil m \rceil_q^j \right| \right\} a_m \leq \hat{\mathfrak{A}} - \tilde{\mathfrak{B}},$$

and subsequently the proof is completed. ■

Theorem (2.2.2), shown that the condition (2.2.1) is also required for functions $\mathcal{L} \in \mathcal{TU}_{i,j}(q, \beta, \hat{\mathfrak{A}}, \tilde{\mathfrak{B}})$.

2.2.2 Theorem

A function \mathcal{L} defined in (1.1.2) is belong to $\mathcal{TU}_{i,j}(q, \beta, \hat{\mathfrak{A}}, \tilde{\mathfrak{B}})$ if and only if

$$\sum_{m=2}^{\infty} \left\{ \left(1 + \beta \left(1 + |\tilde{\mathfrak{B}}| \right) \right) \left(\lceil m \rceil_q^i - \lceil m \rceil_q^j \right) + \left| \tilde{\mathfrak{B}} \lceil m \rceil_q^i - \lceil m \rceil_q^j \right| \right\} a_m \leq \hat{\mathfrak{A}} - \tilde{\mathfrak{B}}.$$

Proof. Since $\mathcal{U}_{i,j}(q, \beta, \hat{\mathfrak{A}}, \tilde{\mathfrak{B}}) \supset \mathcal{TU}_{i,j}(q, \beta, \hat{\mathfrak{A}}, \tilde{\mathfrak{B}})$, for $\mathcal{L} \in \mathcal{TU}_{i,j}(q, \beta, \hat{\mathfrak{A}}, \tilde{\mathfrak{B}})$, we have

$$1 > \left| \frac{p(w) - 1}{\hat{\mathfrak{A}} - \tilde{\mathfrak{B}} p(w)} \right|,$$

where

$$p(w) = \frac{S_q^i \mathcal{L}(w)}{S_q^j \mathcal{L}(w)} - \beta \left| \frac{S_q^i \mathcal{L}(w)}{S_q^j \mathcal{L}(w)} - 1 \right|.$$

then

$$\left| \sum_{m=2}^{\infty} \left\{ \left(\lceil m \rceil_q^i - \lceil m \rceil_q^j \right) a_m w^m + \beta e^{i\theta} \left| \sum_{m=2}^{\infty} \left(\lceil m \rceil_q^i - \lceil m \rceil_q^j \right) a_m w^m \right| \right\} \times \left\{ \begin{array}{l} (\hat{\mathfrak{A}} - \tilde{\mathfrak{B}}) w + \sum_{m=2}^{\infty} \left(\tilde{\mathfrak{B}} \lceil m \rceil_q^i - \hat{\mathfrak{A}} \lceil m \rceil_q^j \right) a_m w^m \\ + \tilde{\mathfrak{B}} \beta e^{i\theta} \left| \sum_{m=2}^{\infty} \left(\lceil m \rceil_q^i - \lceil m \rceil_q^j \right) a_m w^m \right| \end{array} \right\}^{-1} \right| < 1.$$

Since $\operatorname{Re}(w) \leq |w|$, then we obtain

$$\operatorname{Re} \left\{ \sum_{m=2}^{\infty} \left\{ \left(\lceil m \rceil_q^i - \lceil m \rceil_q^j \right) a_m w^m + \beta e^{i\theta} \left| \sum_{m=2}^{\infty} \left(\lceil m \rceil_q^i - \lceil m \rceil_q^j \right) a_m w^m \right| \right\} \times \left\{ \begin{array}{l} (\hat{\mathfrak{A}} - \tilde{\mathfrak{B}}) w + \sum_{m=2}^{\infty} \left(\tilde{\mathfrak{B}} \lceil m \rceil_q^i - \hat{\mathfrak{A}} \lceil m \rceil_q^j \right) a_m w^m \\ + \tilde{\mathfrak{B}} \beta e^{i\theta} \left| \sum_{m=2}^{\infty} \left(\lceil m \rceil_q^i - \lceil m \rceil_q^j \right) a_m w^m \right| \end{array} \right\}^{-1} \right\} < 1$$

Now choosing w to be real and letting $w \rightarrow -1$, we obtain

$$\sum_{m=2}^{\infty} \left\{ \left(1 + \beta \left(1 - \tilde{\mathfrak{B}} \right) \right) \left(\lceil m \rceil_q^i - \lceil m \rceil_q^j \right) - \left| \tilde{\mathfrak{B}} \lceil m \rceil_q^i - \hat{\mathfrak{A}} \lceil m \rceil_q^j \right| \right\} a_m \leq \hat{\mathfrak{A}} - \tilde{\mathfrak{B}}.$$

Or, equivalently

$$\sum_{m=2}^{\infty} \left\{ \left(1 + \beta \left(1 + \left| \tilde{\mathfrak{B}} \right| \right) \right) \left(\lceil m \rceil_q^i - \lceil m \rceil_q^j \right) + \left| \tilde{\mathfrak{B}} \lceil m \rceil_q^i - \hat{\mathfrak{A}} \lceil m \rceil_q^j \right| \right\} a_m \leq \hat{\mathfrak{A}} - \tilde{\mathfrak{B}}.$$

This completes the proof ■

2.2.3 Corollary

A function \mathcal{L} defined in (1.1.2) is belong to $\mathcal{TU}_{i,j}(q, \beta, \hat{\mathfrak{A}}, \tilde{\mathfrak{B}})$, then for $m \geq 2$

$$a_m \leq \frac{\hat{\mathfrak{A}} - \tilde{\mathfrak{B}}}{\left\{ \left(1 + \beta \left(1 + \left| \tilde{\mathfrak{B}} \right| \right) \right) \left(\lceil m \rceil_q^i - \lceil m \rceil_q^j \right) + \left| \tilde{\mathfrak{B}} \lceil m \rceil_q^i - \hat{\mathfrak{A}} \lceil m \rceil_q^j \right| \right\}} \quad (2.2.2)$$

The result is sharp, for the function

$$\mathcal{L}(w) = w - \frac{\hat{\mathfrak{A}} - \tilde{\mathfrak{B}}}{\left\{ \left(1 + \beta \left(1 + \left| \tilde{\mathfrak{B}} \right| \right) \right) \left(\lceil m \rceil_q^i - \lceil m \rceil_q^j \right) + \left| \tilde{\mathfrak{B}} \lceil m \rceil_q^i - \hat{\mathfrak{A}} \lceil m \rceil_q^j \right| \right\}} w^2, \quad m \geq 2. \quad (2.2.3)$$

That is, equality can be attained for the function defined in (2.2.3).

Distortion Theorems

2.2.4 Theorem

Let $\mathcal{L} \in \mathcal{TU}_{i,j}(q, \beta, \hat{\mathfrak{A}}, \tilde{\mathfrak{B}})$. Then

$$|\mathcal{L}(w)| \geq |w| - \frac{\hat{\mathfrak{A}} - \tilde{\mathfrak{B}}}{\left\{ \left(1 + \beta \left(1 + \left| \tilde{\mathfrak{B}} \right| \right) \right) \left(\lceil 2 \rceil_q^i - \lceil 2 \rceil_q^j \right) + \left| \tilde{\mathfrak{B}} \lceil 2 \rceil_q^i - \hat{\mathfrak{A}} \lceil 2 \rceil_q^j \right| \right\}} |w|^2.$$

and

$$|\mathcal{L}(w)| \leq |w| + \frac{\hat{\mathfrak{A}} - \tilde{\mathfrak{B}}}{\left\{ \left(1 + \beta \left(1 + \left| \tilde{\mathfrak{B}} \right| \right) \right) \left(\lceil 2 \rceil_q^i - \lceil 2 \rceil_q^j \right) + \left| \tilde{\mathfrak{B}} \lceil 2 \rceil_q^i - \hat{\mathfrak{A}} \lceil 2 \rceil_q^j \right| \right\}} |w|^2.$$

this is a sharp result.

Proof. In view of Theorem (2.2.2), let

$$\Phi(m) = \left\{ \left(1 + \beta \left(1 + |\tilde{\mathfrak{B}}| \right) \right) \left(\lceil m \rceil_q^i - \lceil m \rceil_q^j \right) + \left| \tilde{\mathfrak{B}} \lceil m \rceil_q^i - \hat{\mathfrak{A}} \lceil m \rceil_q^j \right| \right\}$$

for ($m \geq 2$). $\Phi(m)$ is increasing mapping, therefore:

$$\Phi(2) \sum_{m=2}^{\infty} |a_m| \leq \sum_{m=2}^{\infty} \Phi(m) |a_m| \leq \hat{\mathfrak{A}} - \tilde{\mathfrak{B}},$$

that is:

$$\sum_{m=2}^{\infty} |a_m| \leq \frac{\hat{\mathfrak{A}} - \tilde{\mathfrak{B}}}{\Phi(2)}$$

Thus, we have

$$\begin{aligned} |\mathcal{L}(w)| &\leq |w| + |w|^2 \sum_{m=2}^{\infty} |a_m|, \\ |\mathcal{L}(w)| &\leq |w| + \frac{\hat{\mathfrak{A}} - \tilde{\mathfrak{B}}}{\left\{ \left(1 + \beta \left(1 + |\tilde{\mathfrak{B}}| \right) \right) \left(\lceil 2 \rceil_q^i - \lceil 2 \rceil_q^j \right) + \left| \tilde{\mathfrak{B}} \lceil 2 \rceil_q^i - \hat{\mathfrak{A}} \lceil 2 \rceil_q^j \right| \right\}} |w|^2. \end{aligned}$$

Similarly, we get

$$\begin{aligned} |\mathcal{L}(w)| &\geq |w| - \sum_{m=2}^{\infty} |a_m| |w|^m \geq |w| - |w|^2 \sum_{m=2}^{\infty} |a_m| \\ &\geq |w| - \frac{\hat{\mathfrak{A}} - \tilde{\mathfrak{B}}}{\left\{ \left(1 + \beta \left(1 + |\tilde{\mathfrak{B}}| \right) \right) \left(\lceil 2 \rceil_q^i - \lceil 2 \rceil_q^j \right) + \left| \tilde{\mathfrak{B}} \lceil 2 \rceil_q^i - \hat{\mathfrak{A}} \lceil 2 \rceil_q^j \right| \right\}} |w|^2 \end{aligned}$$

Finally, the equality can be attained for the function:

$$\mathcal{L}(w) = w - \frac{\hat{\mathfrak{A}} - \tilde{\mathfrak{B}}}{\left\{ \left(1 + \beta \left(1 + |\tilde{\mathfrak{B}}| \right) \right) \left(\lceil 2 \rceil_q^i - \lceil 2 \rceil_q^j \right) + \left| \tilde{\mathfrak{B}} \lceil 2 \rceil_q^i - \hat{\mathfrak{A}} \lceil 2 \rceil_q^j \right| \right\}} w^2 \quad (2.2.4)$$

At $|w| = r$ and $w = r e^{i(2k+1)\pi}$ ($k \in \mathbb{Z}$). This completes the Theorem (2.2.4). ■

2.2.5 Theorem

Let $\mathcal{L} \in \mathcal{TU}_{i,j}(q, \beta, \widehat{\mathfrak{A}}, \widehat{\mathfrak{B}})$. Then

$$|\mathcal{L}'(w)| \geq 1 - \frac{2(\widehat{\mathfrak{A}} - \widehat{\mathfrak{B}})}{\left\{ (1 + \beta(1 + |\tilde{\mathfrak{B}}|)) \left([2]_q^i - [2]_q^j \right) + |\tilde{\mathfrak{B}}[2]_q^i - \widehat{\mathfrak{A}}[2]_q^j| \right\}} |w|.$$

and

$$|\mathcal{L}'(w)| \leq 1 + \frac{2(\widehat{\mathfrak{A}} - \widehat{\mathfrak{B}})}{\left\{ (1 + \beta(1 + |\tilde{\mathfrak{B}}|)) \left([2]_q^i - [2]_q^j \right) + |\tilde{\mathfrak{B}}[2]_q^i - \widehat{\mathfrak{A}}[2]_q^j| \right\}} |w|.$$

The result is sharp.

Proof. As for $(m \geq 2)$, $\frac{\Phi(m)}{m}$ is an increasing mapping, In view of Theorem (2.2.2), we have:

$$\left(\frac{\Phi(2)}{2} \right) \left(\sum_{m=2}^{\infty} m |a_m| \right) \leq \sum_{m=2}^{\infty} m \left(\frac{\Phi(m)}{m} \right) |a_m| = \sum_{m=2}^{\infty} \Phi(m) |a_m| \leq (\widehat{\mathfrak{A}} - \widehat{\mathfrak{B}}),$$

that is:

$$\sum_{m=2}^{\infty} m |a_m| \leq \frac{2(\widehat{\mathfrak{A}} - \widehat{\mathfrak{B}})}{\Phi(2)}$$

Thus we have:

$$\begin{aligned} |\mathcal{L}'(w)| &\leq 1 + |w| \sum_{m=2}^{\infty} m |a_m|. \\ |\mathcal{L}(w)| &\leq 1 + \frac{2(\widehat{\mathfrak{A}} - \widehat{\mathfrak{B}})}{\left\{ (1 + \beta(1 + |\tilde{\mathfrak{B}}|)) \left([2]_q^i - [2]_q^j \right) + |\tilde{\mathfrak{B}}[2]_q^i - \widehat{\mathfrak{A}}[2]_q^j| \right\}} |w|. \end{aligned}$$

Similarly, we get:

$$\begin{aligned} |\mathcal{L}(w)| &\geq 1 - |w| \sum_{m=2}^{\infty} m |a_m| \\ &\geq 1 - \frac{2(\widehat{\mathfrak{A}} - \widehat{\mathfrak{B}})}{\left\{ (1 + \beta(1 + |\tilde{\mathfrak{B}}|)) \left([2]_q^i - [2]_q^j \right) + |\tilde{\mathfrak{B}}[2]_q^i - \widehat{\mathfrak{A}}[2]_q^j| \right\}} |w| \end{aligned}$$

Thus we have

$$\left| \frac{w\mathcal{L}'(w)}{\mathcal{L}(w)} - 1 \right| \leq 1 - \varphi,$$

if and only if

$$\frac{\sum_{m=2}^{\infty} (m-\varphi)a_m |w|^{m-1}}{(1-\varphi)} \leq 1. \quad (2.2.8)$$

But, by Theorem (2.2.2), (2.2.8) will be true if

$$\left(\frac{m-\varphi}{1-\varphi} \right) |w|^{m-1} \leq \frac{\left\{ \left(1 + \beta \left(1 + |\tilde{\mathfrak{B}}| \right) \right) \left(\lceil m \rceil_q^i - \lceil m \rceil_q^j \right) + \left| \tilde{\mathfrak{B}} \lceil m \rceil_q^i - \hat{\mathfrak{A}} \lceil m \rceil_q^j \right| \right\}}{(\hat{\mathfrak{A}} - \tilde{\mathfrak{B}})}.$$

that is, if

$$|w| \leq \left\{ \left(\frac{1-\varphi}{m-\varphi} \right) \times \frac{\left\{ \left(1 + \beta \left(1 + |\tilde{\mathfrak{B}}| \right) \right) \left(\lceil m \rceil_q^i - \lceil m \rceil_q^j \right) + \left| \tilde{\mathfrak{B}} \lceil m \rceil_q^i - \hat{\mathfrak{A}} \lceil m \rceil_q^j \right| \right\}}{\hat{\mathfrak{A}} - \tilde{\mathfrak{B}}} \right\}^{\frac{1}{m-1}}. \text{ for } m \geq 2.$$

This implies, for $m \geq 2$

$$r_1 = \inf_{m \geq 2} \left\{ \left(\frac{1-\varphi}{m-\varphi} \right) \times \frac{\left\{ \left(1 + \beta \left(1 + |\tilde{\mathfrak{B}}| \right) \right) \left(\lceil m \rceil_q^i - \lceil m \rceil_q^j \right) + \left| \tilde{\mathfrak{B}} \lceil m \rceil_q^i - \hat{\mathfrak{A}} \lceil m \rceil_q^j \right| \right\}}{\hat{\mathfrak{A}} - \tilde{\mathfrak{B}}} \right\}^{\frac{1}{m-1}}.$$

This completes (2.2.5). To prove (2.2.6) and (2.2.7), it is sufficient to show that

$$\left| 1 + \frac{w\mathcal{L}''(w)}{\mathcal{L}'(w)} - 1 \right| \leq 1 - \varphi \quad (|w| < r_2, 0 \leq \varphi < 1),$$

and

$$\left| \mathcal{L}'(w) - 1 \right| \leq 1 - \varphi \quad (|w| < r_3, 0 \leq \varphi < 1).$$

respectively. ■

Extreme Points

2.2.7 Theorem

Let

$$\mathcal{L}_m(w) = w - \frac{(\widehat{\mathfrak{A}} - \widetilde{\mathfrak{B}})}{\left\{ \left(1 + \beta \left(1 + |\widetilde{\mathfrak{B}}| \right) \right) \left(\lceil m \rceil_q^i - \lceil m \rceil_q^j \right) + \left| \widetilde{\mathfrak{B}} \lceil m \rceil_q^i - \widehat{\mathfrak{A}} \lceil m \rceil_q^j \right| \right\}} w^m, \quad m = 2, 3.$$

and

$$\mathcal{L}_1(w) = w.$$

Then $\mathcal{L} \in \mathcal{TU}_{i,j}(q, \beta, \widehat{\mathfrak{A}}, \widetilde{\mathfrak{B}})$ if and only if $\mathcal{L}(w)$ take the form

$$\mathcal{L}(w) = \sum_{m=1}^{\infty} \eta_m \mathcal{L}_m(w).$$

where

$$\eta_m \geq 0, \quad \sum_{m=1}^{\infty} \eta_m = 1.$$

Proof. Suppose that

$$\begin{aligned} \mathcal{L}(w) &= \sum_{m=1}^{\infty} \eta_m \mathcal{L}_m(w) \\ &= w - \sum_{m=2}^{\infty} \eta_m \frac{(\widehat{\mathfrak{A}} - \widetilde{\mathfrak{B}})}{\left\{ \left(1 + \beta \left(1 + |\widetilde{\mathfrak{B}}| \right) \right) \left(\lceil m \rceil_q^i - \lceil m \rceil_q^j \right) + \left| \widetilde{\mathfrak{B}} \lceil m \rceil_q^i - \widehat{\mathfrak{A}} \lceil m \rceil_q^j \right| \right\}} w^m \end{aligned}$$

Then, from Theorem (2.2.2), we have

$$\begin{aligned} &\sum_{m=2}^{\infty} \left[\frac{\left\{ \left(1 + \beta \left(1 + |\widetilde{\mathfrak{B}}| \right) \right) \left(\lceil m \rceil_q^i - \lceil m \rceil_q^j \right) + \left| \widetilde{\mathfrak{B}} \lceil m \rceil_q^i - \widehat{\mathfrak{A}} \lceil m \rceil_q^j \right| \right\} (\widehat{\mathfrak{A}} - \widetilde{\mathfrak{B}})}{\left\{ \left(1 + \beta \left(1 + |\widetilde{\mathfrak{B}}| \right) \right) \left(\lceil m \rceil_q^i - \lceil m \rceil_q^j \right) + \left| \widetilde{\mathfrak{B}} \lceil m \rceil_q^i - \widehat{\mathfrak{A}} \lceil m \rceil_q^j \right| \right\}} \eta_m \right] \\ &= (\widehat{\mathfrak{A}} - \widetilde{\mathfrak{B}}) \sum_{m=2}^{\infty} \eta_m = (\widehat{\mathfrak{A}} - \widetilde{\mathfrak{B}})(1 - \eta_1) \leq (\widehat{\mathfrak{A}} - \widetilde{\mathfrak{B}}) \end{aligned}$$

Thus, in view of Theorem (2.2.2), we find that $\mathcal{L} \in \mathcal{TU}_{i,j}(q, \beta, \widehat{\mathfrak{A}}, \widetilde{\mathfrak{B}})$. Conversely, let us suppose

that $\mathcal{L} \in \mathcal{TU}_{i,j}(q, \beta, \widehat{\mathfrak{A}}, \widetilde{\mathfrak{B}})$, then, since

$$a_m \leq \frac{(\widehat{\mathfrak{A}} - \widetilde{\mathfrak{B}})}{\left\{ \left(1 + \beta \left(1 + |\widetilde{\mathfrak{B}}| \right) \right) \left(\lceil m \rceil_q^i - \lceil m \rceil_q^j \right) + \left| \widetilde{\mathfrak{B}} \lceil m \rceil_q^i - \widehat{\mathfrak{A}} \lceil m \rceil_q^j \right| \right\}}$$

By setting

$$\eta_m = \frac{\left\{ \left(1 + \beta \left(1 + |\widetilde{\mathfrak{B}}| \right) \right) \left(\lceil m \rceil_q^i - \lceil m \rceil_q^j \right) + \left| \widetilde{\mathfrak{B}} \lceil m \rceil_q^i - \widehat{\mathfrak{A}} \lceil m \rceil_q^j \right| \right\}}{(\widehat{\mathfrak{A}} - \widetilde{\mathfrak{B}})} a_m$$

$$\eta_1 = 1 - \sum_{m=2}^{\infty} \eta_m$$

Thus clearly, we have

$$\mathcal{L}(w) = \sum_{m=1}^{\infty} \eta_m \mathcal{L}_m(w).$$

Theorem (2.2.7) is completed. ■

2.2.8 Corollary

For class $\mathcal{TU}_{i,j}(q, \beta, \widehat{\mathfrak{A}}, \widetilde{\mathfrak{B}})$. EP are given by

$$\mathcal{L}_1(w) = w,$$

$$\mathcal{L}_m(w) = w - \frac{(\widehat{\mathfrak{A}} - \widetilde{\mathfrak{B}})}{\left\{ \left(1 + \beta \left(1 + |\widetilde{\mathfrak{B}}| \right) \right) \left(\lceil m \rceil_q^i - \lceil m \rceil_q^j \right) + \left| \widetilde{\mathfrak{B}} \lceil m \rceil_q^i - \widehat{\mathfrak{A}} \lceil m \rceil_q^j \right| \right\}} w^m, \quad m = 2, 3, \dots$$

Integral Means Inequalities

2.2.9 Theorem

Suppose that $\mathcal{L} \in \mathcal{TU}_{i,j}(q, \beta, \widehat{\mathfrak{A}}, \widetilde{\mathfrak{B}})$, $p > 0$, $-1 \leq \widetilde{\mathfrak{B}} < \widehat{\mathfrak{A}} \leq 1$, $\beta > 0$, $i \in \mathbb{N}$, $j \in \mathbb{N}_0$, $i > j$, and $\mathcal{L}_2(w)$ is defined by

$$\mathcal{L}_2(w) = w - \frac{\widehat{\mathfrak{A}} - \widetilde{\mathfrak{B}}}{\left\{ \left(1 + \beta \left(1 + |\widetilde{\mathfrak{B}}| \right) \right) \left(\lceil 2 \rceil_q^i - \lceil 2 \rceil_q^j \right) + \left| \widetilde{\mathfrak{B}} \lceil 2 \rceil_q^i - \widehat{\mathfrak{A}} \lceil 2 \rceil_q^j \right| \right\}} w^2,$$

then $w = re^{i\theta}$. ($0 < r < 1$), we have

$$\int_0^{2\pi} |\mathcal{L}(w)|^p d\theta \leq \int_0^{2\pi} |\mathcal{L}_2(w)|^p d\theta.$$

Proof. For

$$\mathcal{L}(w) = w - \sum_{m=2}^{\infty} a_m w^m, \quad a_m \geq 0.$$

the relation (1.10.1) is equivalent to proving that

$$\begin{aligned} & \int_0^{2\pi} \left| 1 - \sum_{m=2}^{\infty} a_m w^{m-1} \right|^p d\theta \\ & \leq \int_0^{2\pi} \left| 1 - \frac{\widehat{\mathfrak{A}} - \widehat{\mathfrak{B}}}{\left\{ (1 + \beta (1 + |\tilde{\mathfrak{B}}|)) \left([2]_q^i - [2]_q^j \right) + |\tilde{\mathfrak{B}}| [2]_q^i - \widehat{\mathfrak{A}} [2]_q^j \right\}} w \right|^p d\theta. \end{aligned}$$

By applying Lemma (1.10.1), it is suffices to show that

$$1 - \sum_{m=2}^{\infty} a_m w^{m-1} \prec 1 - \frac{\widehat{\mathfrak{A}} - \widehat{\mathfrak{B}}}{\left\{ (1 + \beta (1 + |\tilde{\mathfrak{B}}|)) \left([2]_q^i - [2]_q^j \right) + |\tilde{\mathfrak{B}}| [2]_q^i - \widehat{\mathfrak{A}} [2]_q^j \right\}} w.$$

By setting

$$1 - \sum_{m=2}^{\infty} a_m w^{m-1} = 1 - \frac{\widehat{\mathfrak{A}} - \widehat{\mathfrak{B}}}{\left\{ (1 + \beta (1 + |\tilde{\mathfrak{B}}|)) \left([2]_q^i - [2]_q^j \right) + |\tilde{\mathfrak{B}}| [2]_q^i - \widehat{\mathfrak{A}} [2]_q^j \right\}},$$

and using (2.2.1), we obtain

$$\begin{aligned}
|\Psi(w)| &= \left| \sum_{m=2}^{\infty} \frac{\left\{ (1 + \beta (1 + |\tilde{\mathfrak{B}}|)) \left(\lceil 2 \rceil_q^i - \lceil 2 \rceil_q^j \right) + \left| \tilde{\mathfrak{B}} \lceil 2 \rceil_q^i - \widehat{\mathfrak{A}} \lceil 2 \rceil_q^j \right| \right\}}{\widehat{\mathfrak{A}} - \tilde{\mathfrak{B}}} a_m w^{m-1} \right| \\
&\leq |w| \sum_{m=2}^{\infty} \frac{\left\{ (1 + \beta (1 + |\tilde{\mathfrak{B}}|)) \left(\lceil 2 \rceil_q^i - \lceil 2 \rceil_q^j \right) + \left| \tilde{\mathfrak{B}} \lceil 2 \rceil_q^i - \widehat{\mathfrak{A}} \lceil 2 \rceil_q^j \right| \right\}}{\widehat{\mathfrak{A}} - \tilde{\mathfrak{B}}} a_m \\
&\leq |w| \sum_{m=2}^{\infty} \frac{\left\{ (1 + \beta (1 + |\tilde{\mathfrak{B}}|)) \left(\lceil m \rceil_q^i - \lceil m \rceil_q^j \right) + \left| \tilde{\mathfrak{B}} \lceil m \rceil_q^i - \widehat{\mathfrak{A}} \lceil m \rceil_q^j \right| \right\}}{\widehat{\mathfrak{A}} - \tilde{\mathfrak{B}}} a_m \\
&\leq |w| < 1.
\end{aligned}$$

Chapter 3

A class of analytic functions related to convexity and functions with bounded turning

In this chapter, we define a new subclass $k\text{-}\mathcal{QMT}(\alpha)$ of analytic functions, which generalizes the class of k -uniformly convex functions. The main purpose of this chapter is to establish several interesting relationships between $k\text{-}\mathcal{QMT}(\alpha)$ and the class $\mathcal{B}(\delta)$ of functions with bounded turning. We studied various interesting relationships of this class with already existing classes of analytic functions. Certain important cases for some special values of the parameters have been obtained.

3.1 Introduction

3.1.1 Bounded turning

In [80], it is proved that if $\operatorname{Re}(\mathcal{L}') > 0$ in \tilde{H} , then \mathcal{L} is univalent in \tilde{H} . In 1972, MacGregor [64] studied the class \mathcal{B} of functions with bounded turning, a function $\mathcal{L} \in \mathcal{B}$ if it satisfies the condition $\operatorname{Re}(\mathcal{L}') > 0$ for $w \in \tilde{H}$. A natural generalization of the class \mathcal{B} is $\mathcal{B}(\delta)$ ($0 \leq \delta < 1$), a

function $\mathcal{L} \in \mathcal{B}(\delta)$ if it satisfies the condition

$$\operatorname{Re}(\mathcal{L}') > \delta \quad (w \in \tilde{H}, 0 \leq \delta < 1),$$

for details associated with the class $\mathcal{B}(\delta)$ (see [19, 79])

3.1.2 Definition

Let $\mathcal{L} \in \mathcal{A}$ and $k \geq 0$. $0 \leq \alpha \leq 1$. Then $\mathcal{L} \in k\text{-QM}\mathcal{T}(\alpha)$ if and only if

$$\operatorname{Re} \left\{ \frac{(w\mathcal{L}'(w))'}{\mathcal{L}'(w)} \right\} > k \left| (1 - \alpha) \mathcal{L}'(w) + \alpha \frac{(w\mathcal{L}'(w))'}{\mathcal{L}'(w)} - 1 \right|. \quad w \in \tilde{H} \quad (3.1.1)$$

It is worth mentioning that for special value of parameter we obtained number of already defined classes, here some of them are listed below

(i) $k\text{-QM}\mathcal{T}(1) = k\text{-UCV}$

(ii) $0\text{-QM}\mathcal{T}(\delta) = \mathcal{C}$

Next, we provide an example of a function belonging to $k\text{-QM}\mathcal{T}(\alpha)$.

3.1.3 Example

Next, we provide an example of a function belonging to $k\text{-QM}\mathcal{T}(\alpha)$.

The function $\mathcal{L}(w) = \frac{w}{1-Aw}$ is in the class $k\text{-QM}\mathcal{T}(\alpha)$ for

$$k \leq \frac{1 - b^2}{b\sqrt{b(1 + \alpha) \{b(1 + \alpha) + 2\} + 4}}, \quad (3.1.2)$$

where $|A| = b$

Proof. For $Aw = be^{i\theta}$, (3.1.1) become

$$\operatorname{Re} \left(\frac{1 + be^{i\theta}}{1 - be^{i\theta}} \right) \geq \frac{k \left| (1 + \alpha) (be^{i\theta})^2 - 2be^{i\theta} \right|}{|1 - be^{i\theta}|^2}. \quad (3.1.3)$$

It can be easily be seen that

$$\operatorname{Re} \left(\frac{1 + be^{i\theta}}{1 - be^{i\theta}} \right) = \frac{1 - b^2}{|1 - be^{i\theta}|^2}. \quad (3.1.4)$$

Using (3.1 3), (3.1 4) and after some simple calculation, we obtain (3.1 2). ■

3.2 Main Results

3.2.1 Theorem

Let $0 \leq \alpha < 1$ and $k \geq \frac{1}{1-\alpha}$. If $\mathcal{L} \in k\text{-QM}\mathcal{T}(\alpha)$, then $\mathcal{L} \in B(\delta)$, where

$$\delta = \frac{(2\gamma - \beta) + \sqrt{(2\gamma - \beta)^2 + 8\beta}}{4}, \quad (3.2.1)$$

with $\beta = \frac{1+\alpha k}{k(1-\alpha)}$ and $\gamma = \frac{k-\alpha k-1}{1-\alpha}$.

Proof. Let

$$\mathcal{L}'(w) = \hbar(w),$$

where \hbar is analytic in \tilde{H} with $\hbar(0) = 1$. From Inequality (3.1.1) which takes the form

$$\begin{aligned} \operatorname{Re} \left\{ 1 + \frac{w\hbar'(w)}{\hbar(w)} \right\} &> k \left| (1-\alpha)\hbar(w) + \alpha \left(1 + \frac{w\hbar'(w)}{\hbar(w)} \right) - 1 \right| \\ &= k \left| 1 - \alpha - \hbar(w) + \alpha\hbar(w) - \alpha \frac{w\hbar'(w)}{\hbar(w)} \right|, \end{aligned}$$

we find that

$$\operatorname{Re} \left\{ \hbar(w) + \left(\frac{1+\alpha k}{k(1-\alpha)} \right) \frac{w\hbar'(w)}{\hbar(w)} \right\} > \frac{k-\alpha k-1}{1-\alpha},$$

which can be rewritten as

$$\operatorname{Re} \left\{ \hbar(w) + \frac{w\hbar'(w)}{\frac{1}{\beta}\hbar(w)} \right\} > \gamma,$$

where $\beta = \frac{1+\alpha k}{k(1-\alpha)}$ and $\gamma = \frac{k-\alpha k-1}{1-\alpha}$. The above relation can be written in the following Briot-Bouquet differential subordination

$$\hbar(w) + \frac{w\hbar'(w)}{\frac{1}{\beta}\hbar(w)} \prec \frac{1 + (1-2\gamma)w}{1-w}.$$

Thus, by Lemma 1 10 2, we obtain

$$\hbar \prec \frac{1 + (1 - 2\delta)w}{1 - w}, \quad (3.2.2)$$

where

$$\delta = \frac{(2\gamma - \beta) + \sqrt{(2\gamma - \beta)^2 + 8\beta}}{4}.$$

with $\beta = \frac{1+\alpha k}{k(1-\alpha)}$ and $\gamma = \frac{k-\alpha k-1}{1-\alpha}$. This implies that $\mathcal{L} \in B(\delta)$. We thus complete the proof of Theorem 3.2 1. ■

Special Cases

- (i) For $\alpha = 0$ and $k = 1$, and for $\mathcal{L} \in 1\text{-QM}\mathcal{T}(0)$, we have $\mathcal{L} \in B(\delta)$, where $\delta \simeq 0.50$ that is $\mathcal{L} \in 1\text{-QM}\mathcal{T}(0)$ implies \mathcal{L} is bounded turning of order 0.5
- (ii) For $\alpha = \frac{1}{2}$ and $k = 1$ and for $\mathcal{L} \in 1\text{-QM}\mathcal{T}(\frac{1}{2})$, we have $\mathcal{L} \in B(\delta)$, where $\delta \simeq 0.50$ that is $\mathcal{L} \in 1\text{-QM}\mathcal{T}(\frac{1}{2})$ implies \mathcal{L} is bounded turning of order 0.5
- (iii) For $\alpha = 0$ then

$$\delta_1 = \frac{(2k^2 - 2k - 1) + \sqrt{4k^4 - 8k^3 + 12k + 1}}{4k}.$$

In other words for $\mathcal{L} \in k\text{-QM}\mathcal{T}(0)$, we have $\mathcal{L} \in B(\delta_1)$.

3.2.2 Theorem

Let $0 < \alpha \leq 1$, $0 < \beta < 1$, $c > 0$, $k \geq 1$, $m \geq j + 1$ ($j \in \mathbb{N}$), $|\ell| \geq \frac{m}{2} (c - \frac{1}{c})$ and

$$\left| \alpha\beta\ell \pm (1 - \alpha) c^\beta \sin \frac{\beta\pi}{2} \right| \geq 1. \quad (3.2.3)$$

If

$$\mathcal{L}(w) = w + \sum_{m=j+1}^{\infty} a_m w^m \quad (a_{j+1} \neq 0)$$

and $\mathcal{L} \in k\text{-QM}\mathcal{T}(\alpha)$, then $\mathcal{L} \in \mathcal{B}(\beta_0)$, where

$$\beta_0 = \min\{\beta : \beta \in (0, 1)\}$$

such that (3.2.3) holds.

Proof. By the assumption, we have

$$\mathcal{L}'(w) = \hbar(w) = 1 + \sum_{m=j}^{\infty} c_m w^m, \quad c_j \neq 0 \quad (3.2.4)$$

In view of (3.1.1) and (3.2.4), we get

$$\operatorname{Re} \left\{ 1 + \frac{w\hbar'(w)}{\hbar(w)} \right\} > k \left| (1 - \alpha) \hbar(w) + \alpha \left(1 + \frac{w\hbar'(w)}{\hbar(w)} \right) - 1 \right|$$

If there exists a point $w_0 \in \tilde{H}$ such that

$$|\arg \hbar(w)| < \frac{\beta\pi}{2}, \quad (|w| < |w_0|, 0 < \beta < 1)$$

and

$$|\arg \hbar(w_0)| = \frac{\beta\pi}{2}, \quad 0 < \beta < 1$$

then from Lemma 1.10.3, we know that

$$\frac{w_0\hbar'(w_0)}{\hbar(w_0)} = \imath\ell\beta,$$

where

$$(\hbar(w_0))^{1/\beta} = \pm ic \quad (c > 0)$$

and

$$\ell \cdot \begin{cases} \ell \geq \frac{m}{2} (c + \frac{1}{c}), & \left(\arg \hbar(w_0) = \frac{\beta\pi}{2} \right) \\ \ell \leq -\frac{m}{2} (c + \frac{1}{c}), & \left(\arg \hbar(w_0) = -\frac{\beta\pi}{2} \right) \end{cases}$$

For the case

$$\arg \hbar(w_0) = \frac{\beta\pi}{2},$$

we get

$$\operatorname{Re} \left\{ 1 + \frac{w\hbar'(w_0)}{\hbar(w_0)} \right\} = \operatorname{Re} \{ 1 + \imath\ell\beta \} = 1. \quad (3.2.5)$$

Moreover, we find from (3.2.3) that

$$\begin{aligned}
& k \left| (1 - \alpha) \hbar(w_0) + \alpha \left(1 + \frac{w \hbar'(w_0)}{\hbar(w_0)} \right) - 1 \right| \\
&= k \left| (1 - \alpha) (\hbar(w_0) - 1) + \alpha \frac{w \hbar'(w_0)}{\hbar(w_0)} \right| \\
&= k \left| (1 - \alpha) \left\{ (\pm i c)^\beta - 1 \right\} + i \alpha \beta l \right| \\
&= k (1 - \alpha)^2 \left(c^\beta \cos \beta \frac{\pi}{2} - 1 \right)^2 + \left\{ \alpha l \beta \pm (1 - \alpha) c^\beta \sin \beta \frac{\pi}{2} \right\}^2 \\
&\geq 1
\end{aligned} \tag{3.2.6}$$

By virtue of (3.2.5) and (3.2.6), we have

$$\operatorname{Re} \left\{ 1 + \frac{w \hbar'(w_0)}{\hbar(w_0)} \right\} \leq k \left| (1 - \alpha) \hbar(w_0) + \alpha \left(1 + \frac{w \hbar'(w_0)}{\hbar(w_0)} \right) - 1 \right|,$$

which is contradiction to the definition of k -QM \mathcal{T} (α). Since $\beta_0 = \min\{\beta \mid \beta \in (0, 1)\}$ such that (3.2.3) holds, we can deduce that $\mathcal{L} \in \mathcal{B}(\beta_0)$. By using the similar method as given above, we can prove the case

$$\arg \hbar(w_0) = -\frac{\beta \pi}{2}.$$

is true. The proof of Theorem 3.2.2 is thus completed. ■

3.2.3 Theorem

Let $0 \leq \alpha < 1$ and $k \geq \frac{1}{1-\alpha}$. If $\mathcal{L} \in k$ -QM \mathcal{T} (α), then

$$\mathcal{L}'(w) \prec s(w) = \frac{1}{g(w)}.$$

where

$$g(w) = \left[{}_2G_1 \left(\frac{2}{\beta}, 1, \frac{1}{\beta} + 1, \frac{w}{w-1} \right) \right]$$

with $\beta = \frac{1+\alpha k}{k(1-\alpha)}$.

Proof. Suppose that

$$\mathcal{L}'(w) = \hbar(w).$$

From the Theorem 3.2.1, we see that

$$\hbar(w) + \frac{w\hbar'(w)}{\frac{1}{\beta}\hbar(w)} \prec \frac{1 + (1 - 2\gamma)w}{1 - w} \prec \frac{1 + w}{1 - w}.$$

where $\beta = \frac{1+\alpha k}{k(1-\alpha)}$ and $\gamma = \frac{k-\alpha k-1}{1-\alpha}$.

If we set $\lambda = \frac{1}{\beta}$, $\gamma = 0$, $\mathfrak{C} = 1$ and $\mathfrak{D} = -1$ Lemma 1.10.5, then

$$\hbar(w) \prec s(w) = \frac{1}{g(w)} = \frac{w^{\frac{1}{\beta}} (1-w)^{-\frac{2}{\beta}}}{\frac{1}{\beta} \int_0^1 t^{1/\beta-1} (1-t)^{-2/\beta} dt}$$

By putting $t = uw$, and using Lemma 1.10.6, we obtain

$$\begin{aligned} \hbar(w) \prec s(w) &= \frac{1}{g(w)} = \frac{1}{\frac{1}{\beta(1-w)^{-\frac{2}{\beta}}} \int_0^1 u^{1/\beta-1} (1-uw)^{-2/\beta} du} \\ &= \left\{ {}_2G_1 \left(\frac{2}{\beta} (1-\gamma), 1; \frac{1}{\beta} + 1; \frac{w}{w-1} \right) \right\}^{-1}, \end{aligned}$$

which is the desired result of Theorem 3.2.3. ■

3.2.4 Theorem

If $0 < \beta < 1$ and $0 \leq \nu < 1$. If $\mathcal{L} \in k\text{-QM}\mathcal{T}(\alpha)$, then

$$\operatorname{Re} \mathcal{L}' > \left\{ {}_2G_1 \left(\frac{2}{\beta} (1-\mu), 1; \frac{1}{\beta} + 1; \frac{1}{2} \right) \right\}^{-1},$$

or equivalently $k\text{-QM}\mathcal{T}(\alpha) \subset B(\mu_0)$ where

$$\mu_0 = \left\{ {}_2G_1 \left(\frac{2}{\beta} (1-\mu), 1; \frac{1}{\beta} + 1; \frac{1}{2} \right) \right\}^{-1}.$$

Proof. For $n = \frac{2}{\beta}(1 - \mu)$, $x = \frac{1}{\beta}$, $y = \frac{1}{\beta} + 1$, we have

$$\begin{aligned}\mathcal{F}(w) &= (1 + Dw)^n \int_0^1 t^{x-1} (1 + Dtw)^{-n} dt \\ \mathcal{F}(w) &= \frac{\Gamma(x)}{\Gamma(y)} {}_2G_1 \left(1, n, y; \frac{w}{w-1} \right)\end{aligned}\quad (3.2.7)$$

To prove $k\text{-QM}\mathcal{T}(\alpha) \subset B(\mu_0)$, it is suffices to prove

$$\inf_{|w|<1} \{\operatorname{Re} q(w)\} = q(-1).$$

we need to show that

$$\operatorname{Re} \{1/\mathcal{F}(w)\} \geq 1/\mathcal{F}(-1).$$

By using Lemma 1.10.4 and (3.2.7) it follows that

$$\mathcal{F}(w) = \int_0^1 \mathcal{F}(w, t) d\varepsilon(t).$$

where

$$\begin{aligned}\mathcal{F}(w, t) &= \frac{1-w}{1-(1-t)w}, \quad (0 \leq t \leq 1). \\ d\varepsilon(t) &= \frac{\Gamma(x)}{\Gamma(n)\Gamma(y-n)} t^{n-1} (1-t)^{y-n-1} dt.\end{aligned}$$

which is a positive measure on $[0, 1]$

It is clear that $\operatorname{Re} \mathcal{F}(w, t) > 0$ and $\mathcal{F}(-r, t)$ is real for $0 \leq |w| \leq r < 1$ and $t \in [0, 1]$. Also

$$\operatorname{Re} \left\{ \frac{1}{\mathcal{F}(w, t)} \right\} = \operatorname{Re} \left\{ \frac{1-(1-t)w}{1-w} \right\} \geq \frac{1+(1-t)r}{1+r} = \frac{1}{\mathcal{F}(-r, t)}$$

for $|w| \leq r < 1$. Therefore using Lemma 1.10.4, we get

$$\operatorname{Re} \{1/\mathcal{F}(w)\} \geq 1/\mathcal{F}(-r)$$

Now letting $r \rightarrow 1^-$, it follows

$$\operatorname{Re} \{1/\mathcal{F}(w)\} \geq 1/\mathcal{F}(-1).$$

Thus, we deduce that $k\text{-}\mathcal{QMT}(\alpha) \subset B(\mu_0)$. ■

Chapter 4

A Subclass of Analytic Functions Defined by using Mittag-Leffler Function

In this chapter, we initiate two new subclasses $Q_{\chi, i, j}^{\alpha, \mu}(\gamma, \widehat{\mathfrak{A}}, \widetilde{\mathfrak{B}})$ and $TQ_{\chi, i, j}^{\alpha, \mu}(\gamma, \widehat{\mathfrak{A}}, \widetilde{\mathfrak{B}})$. These classes is initiated by using the Mittag-Leffler function with the help of Janowski functions. These classes generalized numerous classes by selecting specific values of the parameters. We examined numerous sharp results and properties of these classes, like as extreme points (EP), distortion theorem (DT), coefficient estimates (CE), convexity, radii of star-likeness (RS), close-to-convexity and integral mean inequalities (IMI).

4.1 Introduction

4.1.1 Definition

Let $\mathcal{L} \in \mathcal{A}$. Then $\mathcal{L} \in Q_{\chi, i, j}^{\alpha, \mu}(\gamma, \widehat{\mathfrak{A}}, \widetilde{\mathfrak{B}})$ if fulfill the following subordination relationship:

$$\frac{\partial D_{\chi}^i(\alpha, \mu)\mathcal{L}(w)}{\partial D_{\chi}^j(\alpha, \mu)\mathcal{L}(w)} - \gamma \left| \frac{\partial D_{\chi}^i(\alpha, \mu)\mathcal{L}(w)}{\partial D_{\chi}^j(\alpha, \mu)\mathcal{L}(w)} - 1 \right| \prec \frac{1 + \widehat{\mathfrak{A}}w}{1 + \widetilde{\mathfrak{B}}w},$$

where $w \in \tilde{H}$, $\partial D_\lambda^2(\alpha, \mu)\mathcal{L}(w) \neq 0$, $\alpha, \gamma, \mu, \chi \geq 0$, $-1 \leq \tilde{\mathfrak{B}} < \hat{\mathfrak{A}} \leq 1$. for $\iota > j$, $\iota \in \mathbb{N}$ and $j \in \mathbb{N}_0$. and $\partial D_\chi^\iota(\alpha, \mu)\mathcal{L}(w)$ defined in (1.7.3).

By taking notable values of parameters, we get numerous critical subclasses examined by different creators

- (i) $Q_{1,\iota,j}^{0,1}(\gamma, 1 - 2\epsilon, -1) = E_{\iota,j}(\gamma, \epsilon)$, [30],
- (ii) $Q_{1,1,0}^{0,1}(\gamma, 1 - 2\epsilon, -1) = UE(\gamma, \epsilon)$, [97],
- (iii) $Q_{1,2,0}^{0,1}(\gamma, 1 - 2\epsilon, -1) = UE(\gamma, \epsilon)$, [98],
- (iv) $Q_{1,1,0}^{0,1}(0, \hat{\mathfrak{A}}, \tilde{\mathfrak{B}}) = S^*(\hat{\mathfrak{A}}, \tilde{\mathfrak{B}})$, [43],
- (v) $Q_{1,2,0}^{0,1}(0, \hat{\mathfrak{A}}, \tilde{\mathfrak{B}}) = K(\hat{\mathfrak{A}}, \tilde{\mathfrak{B}})$, [82].

4.1.2 Definition

As T be the subclass of \mathcal{A} having negative coefficients in Maclaurin's series defined in (1.1.2).

Here, we denote the class $TQ_{\chi,\iota,j}^{\alpha,\mu}(\gamma, \hat{\mathfrak{A}}, \tilde{\mathfrak{B}}) = Q_{\chi,\iota,j}^{\alpha,\mu}(\gamma, \hat{\mathfrak{A}}, \tilde{\mathfrak{B}}) \cap T$.

For appropriate possibility of the parameters $\chi, \alpha, \mu, \hat{\mathfrak{A}}, \iota, \tilde{\mathfrak{B}}, j, \gamma$, we are able to get assorted subclasses of T .

- (i) $TQ_{1,\iota+1,\iota}^{0,1}(\gamma, 1 - 2\epsilon, -1) = TS(\iota, \gamma, \epsilon)$, [8],
- (ii) $TQ_{1,1,0}^{0,1}(1, 1 - 2\epsilon, -1) = S_p T(\epsilon)$, [17],
- (iii) $TQ_{1,1,0}^{0,1}(0, 1 - 2\epsilon, -1) = T^*(\epsilon)$, [100].

4.2 Main Results

Coefficient estimates

4.2.1 Theorem

A function \mathcal{L} defined in (1.1.1) is belong to $Q_{\chi,\iota,j}^{\alpha,\mu}(\gamma, \hat{\mathfrak{A}}, \tilde{\mathfrak{B}})$ if

$$\sum_{m=2}^{\infty} v \left[\{1 + \gamma(1 + |I|)\} (\phi^i - \phi^j) + \left| (\tilde{\mathfrak{B}}\phi^i - \hat{\mathfrak{A}}\phi^j) \right| \right] |a_m| \leq \hat{\mathfrak{A}} - \tilde{\mathfrak{B}}. \quad (4.2.1)$$

where $\phi = 1 + (m - 1)\chi$ and $v = \frac{\Gamma(\mu)}{\Gamma(\alpha(m-1)+\mu)}$

Proof. We need to show that

$$\left| \frac{p(w) - 1}{\widehat{\mathfrak{A}} - \widetilde{\mathfrak{B}}p(w)} \right| < 1.$$

where

$$p(w) = \frac{\partial D_\lambda^i(\alpha, \mu) \mathcal{L}(w)}{\partial D_\lambda^j(\alpha, \mu) \mathcal{L}(w)} - \gamma \left| \frac{\partial D_\lambda^i(\alpha, \mu) \mathcal{L}(w)}{\partial D_\lambda^j(\alpha, \mu) \mathcal{L}(w)} - 1 \right|.$$

Hence, we obtain

$$\begin{aligned} & \left| \frac{p(w) - 1}{\widehat{\mathfrak{A}} - \widetilde{\mathfrak{B}}p(w)} \right| \\ = & \left| \frac{\partial D_\lambda^i(\alpha, \mu) \mathcal{L}(w) - \partial D_\lambda^j(\alpha, \mu) \mathcal{L}(w) - \gamma e^{i\theta} \left| \partial D_\lambda^i(\alpha, \mu) \mathcal{L}(w) - \partial D_\lambda^j(\alpha, \mu) \mathcal{L}(w) \right|}{\widehat{\mathfrak{A}} \partial D_\lambda^j(\alpha, \mu) \mathcal{L}(w) - \widetilde{\mathfrak{B}} \left[\partial D_\lambda^i(\alpha, \mu) \mathcal{L}(w) - \gamma e^{i\theta} \left| \partial D_\lambda^i(\alpha, \mu) \mathcal{L}(w) - \partial D_\lambda^j(\alpha, \mu) \mathcal{L}(w) \right| \right]} \right| \\ = & \left| \frac{\sum_{m=2}^{\infty} v (\phi^i - \phi^j) a_m w^m - \gamma e^{i\theta} \left| \sum_{m=2}^{\infty} v (\phi^i - \phi^j) a_m w^m \right|}{(\widehat{\mathfrak{A}} - \widetilde{\mathfrak{B}}) w - \left[\sum_{m=2}^{\infty} v (\widetilde{\mathfrak{B}} \phi^i - \widehat{\mathfrak{A}} \phi^j) a_m w^m - \gamma \widetilde{\mathfrak{B}} e^{i\theta} \left| \sum_{m=2}^{\infty} v (\phi^i - \phi^j) a_m w^m \right| \right]} \right| \\ \leq & \frac{\sum_{m=2}^{\infty} v (\phi^i - \phi^j) |a_m| |w|^m + \gamma \sum_{m=2}^{\infty} v (\phi^i - \phi^j) |a_m| |w|^m}{(\widehat{\mathfrak{A}} - \widetilde{\mathfrak{B}}) |w| - \left[\sum_{m=2}^{\infty} v \left| (\widetilde{\mathfrak{B}} \phi^i - \widehat{\mathfrak{A}} \phi^j) \right| |a_m| |w|^m + \gamma \left| \widetilde{\mathfrak{B}} \right| \sum_{m=2}^{\infty} v (\phi^i - \phi^j) |a_m| |w|^m \right]} \\ \leq & \frac{\sum_{m=2}^{\infty} v (\phi^i - \phi^j) (1 + \gamma) |a_m|}{(\widehat{\mathfrak{A}} - \widetilde{\mathfrak{B}}) - \sum_{m=2}^{\infty} v \left| (\widetilde{\mathfrak{B}} \phi^i - \widehat{\mathfrak{A}} \phi^j) \right| |a_m| - \gamma \left| \widetilde{\mathfrak{B}} \right| \sum_{m=2}^{\infty} v (\phi^i - \phi^j) |a_m|} \end{aligned}$$

This last expression is bounded above by 1 if

$$\sum_{m=2}^{\infty} v \left[\left\{ 1 + \gamma \left(1 + \left| \widetilde{\mathfrak{B}} \right| \right) \right\} (\phi^i - \phi^j) + \left| \widetilde{\mathfrak{B}} \phi^i - \widehat{\mathfrak{A}} \phi^j \right| \right] |a_m| \leq \widehat{\mathfrak{A}} - \widetilde{\mathfrak{B}}.$$

and hence the proof is completed. ■

Theorem 4.2.2, shown that the condition (4.2.1) is also required for functions $\mathcal{L} \in TQ_{\chi, i, j}^{\alpha, \mu}(\gamma, \widehat{\mathfrak{A}}, \widetilde{\mathfrak{B}})$.

4.2.2 Theorem

A function \mathcal{L} defined in (1.1.2) is belonging to $TQ_{\chi, i, j}^{\alpha, \mu}(\gamma, \widehat{\mathfrak{A}}, \widetilde{\mathfrak{B}})$ if and only if

$$\sum_{m=2}^{\infty} v \left[\left\{ 1 + \gamma \left(1 + \left| \widetilde{\mathfrak{B}} \right| \right) \right\} (\phi^i - \phi^j) + \left| \widetilde{\mathfrak{B}} \phi^i - \widehat{\mathfrak{A}} \phi^j \right| \right] |a_m| \leq \widehat{\mathfrak{A}} - \widetilde{\mathfrak{B}},$$

where $v = \frac{\Gamma(\mu)}{\Gamma(\alpha(m-1)+\mu)}$ and $\phi = 1 + (m-1)\lambda$

Proof. Since

$$Q_{\chi, i, j}^{\alpha, \mu} \left(\gamma, \widehat{\mathfrak{A}}, \tilde{\mathfrak{B}} \right) \supseteq TQ_{\chi, i, j}^{\alpha, \mu} \left(\gamma, \widehat{\mathfrak{A}}, \tilde{\mathfrak{B}} \right),$$

by making use of the same method given in Theorem (4.2.1), we immediately proof of Theorem (4.2.2) ■

4.2.3 Corollary

A function \mathcal{L} defined in (1.1.2) is belonging to $TQ_{\chi, i, j}^{\alpha, \mu} \left(\gamma, \widehat{\mathfrak{A}}, \tilde{\mathfrak{B}} \right)$, then

$$a_m \leq \frac{\widehat{\mathfrak{A}} - \tilde{\mathfrak{B}}}{v \left[\left\{ 1 + \gamma \left(1 + |\tilde{\mathfrak{B}}| \right) \right\} (\phi^i - \phi^j) + |\tilde{\mathfrak{B}}\phi^i - \widehat{\mathfrak{A}}\phi^j| \right]} \quad (m \geq 2). \quad (4.2.2)$$

The sharpness of this result, we have the function:

$$\mathcal{L}(w) = w - \frac{\widehat{\mathfrak{A}} - \tilde{\mathfrak{B}}}{v \left[\left\{ 1 + \gamma \left(1 + |\tilde{\mathfrak{B}}| \right) \right\} (\phi^i - \phi^j) + |\tilde{\mathfrak{B}}\phi^i - \widehat{\mathfrak{A}}\phi^j| \right]} w^m \quad (m \geq 2). \quad (4.2.3)$$

That is, equality can be attained for the function defined in (4.2.3).

Next, we discuss, distortion result and growth result for \mathcal{L} in the class $TQ_{\chi, i, j}^{\alpha, \mu} \left(\gamma, \widehat{\mathfrak{A}}, \tilde{\mathfrak{B}} \right)$:

4.2.4 Theorem

Let $\mathcal{L} \in TQ_{\chi, i, j}^{\alpha, \mu} \left(\gamma, \widehat{\mathfrak{A}}, \tilde{\mathfrak{B}} \right)$. Then

$$|\mathcal{L}(w)| \geq |w| - \frac{(\widehat{\mathfrak{A}} - \tilde{\mathfrak{B}}) \Gamma(\alpha + \mu)}{\Gamma(\mu) \left[\left\{ 1 + \gamma \left(1 + |\tilde{\mathfrak{B}}| \right) \right\} \left((1 + \chi)^i - (1 + \chi)^j \right) + |\tilde{\mathfrak{B}}(1 + \chi)^i - \widehat{\mathfrak{A}}(1 + \chi)^j| \right]} |w|^2$$

and

$$|\mathcal{L}(w)| \leq |w| + \frac{(\widehat{\mathfrak{A}} - \tilde{\mathfrak{B}}) \Gamma(\alpha + \mu)}{\Gamma(\mu) \left[\left\{ 1 + \gamma \left(1 + |\tilde{\mathfrak{B}}| \right) \right\} \left((1 + \chi)^i - (1 + \chi)^j \right) + |\tilde{\mathfrak{B}}(1 + \chi)^i - \widehat{\mathfrak{A}}(1 + \chi)^j| \right]} |w|^2$$

Proof. In view of Theorem 4.2.2, consider

$$\delta(m) = v \left\{ 1 + \gamma \left(1 + |\tilde{\mathfrak{B}}| \right) \right\} (\phi^i - \phi^j) + |\tilde{\mathfrak{B}}\phi^i - \widehat{\mathfrak{A}}\phi^j|.$$

where $\phi = 1 + (m-1)\chi$ and $v = \frac{\Gamma(\mu)}{\Gamma(\alpha(m-1)+\mu)}$, $\delta(m)$ is an increasing function for m ($m \geq 2$),

This implies that:

$$\delta(2) \sum_{m=2}^{\infty} |a_m| \leq \sum_{m=2}^{\infty} \delta(m) |a_m| \leq \widehat{\mathfrak{A}} - \widetilde{\mathfrak{B}},$$

that is:

$$\sum_{m=2}^{\infty} |a_m| \leq \frac{\widehat{\mathfrak{A}} - \widetilde{\mathfrak{B}}}{\delta(2)}$$

Thus, we have:

$$|\mathcal{L}(w)| \leq |w| + \sum_{m=2}^{\infty} |a_m| |w|^2.$$

$$|\mathcal{L}(w)| \leq |w| + \frac{(\widehat{\mathfrak{A}} - \widetilde{\mathfrak{B}}) \Gamma(\alpha + \mu)}{\Gamma(\mu) \left[\left\{ 1 + \gamma \left(1 + |\widetilde{\mathfrak{B}}| \right) \right\} \left((1 + \chi)^i - (1 + \chi)^j \right) + \left| \widetilde{\mathfrak{B}} (1 + \chi)^i - \widehat{\mathfrak{A}} (1 + \chi)^j \right| \right]} |w|^2$$

Similarly, we get:

$$\begin{aligned} |\mathcal{L}(w)| &\geq |w| - \sum_{m=2}^{\infty} |a_m| |w|^m \geq |w| - \sum_{m=2}^{\infty} |a_m| |w|^2 \\ &\geq |w| - \frac{(\widehat{\mathfrak{A}} - \widetilde{\mathfrak{B}}) \Gamma(\alpha + \mu)}{\Gamma(\mu) \left[\left\{ 1 + \gamma \left(1 + |\widetilde{\mathfrak{B}}| \right) \right\} \left((\chi + 1)^i - (1 + \chi)^j \right) + \left| \widetilde{\mathfrak{B}} (\chi + 1)^i - \widehat{\mathfrak{A}} (1 + \chi)^j \right| \right]} |w|^2. \end{aligned}$$

Finally, the equality can be attained for the function:

$$\mathcal{L}(w) = w - \frac{(\widehat{\mathfrak{A}} - \widetilde{\mathfrak{B}}) \Gamma(\alpha + \mu)}{\Gamma(\mu) \left[\left\{ 1 + \gamma \left(1 + |\widetilde{\mathfrak{B}}| \right) \right\} \left((\chi + 1)^i - (1 + \chi)^j \right) + \left| \widetilde{\mathfrak{B}} (\chi + 1)^i - \widehat{\mathfrak{A}} (1 + \chi)^j \right| \right]} w^2 \quad (4.2.4)$$

at $|w| = r$ and $w = r e^{i(2k+1)\pi}$ ($k \in \mathbb{Z}$). This completes Theorem 4.2.4. ■

4.2.5 Theorem

Let $\mathcal{L} \in TQ_{\chi, i, j}^{\alpha, \mu} \left(\gamma, \widehat{\mathfrak{A}}, \widetilde{\mathfrak{B}} \right)$. Then

$$|\mathcal{L}'(w)| \geq 1 - \frac{2(\widehat{\mathfrak{A}} - \widetilde{\mathfrak{B}}) \Gamma(\alpha + \mu)}{\Gamma(\mu) \left[\left\{ 1 + \gamma \left(1 + |\widetilde{\mathfrak{B}}| \right) \right\} \left((\chi + 1)^i - (1 + \chi)^j \right) + \left| \widetilde{\mathfrak{B}} (\chi + 1)^i - \widehat{\mathfrak{A}} (1 + \chi)^j \right| \right]} |w|,$$

and

$$|\mathcal{L}'(w)| \leq 1 + \frac{2(\widehat{\mathfrak{A}} - \tilde{\mathfrak{B}})\Gamma(\alpha + \mu)}{\Gamma(\mu) \left[\left\{ 1 + \gamma \left(1 + |\tilde{\mathfrak{B}}| \right) \right\} \left((1 + \chi)^i - (1 + \chi)^j \right) + \left| \tilde{\mathfrak{B}}(1 + \chi)^i - \widehat{\mathfrak{A}}(1 + \chi)^j \right| \right]} |w|.$$

This result is sharp.

Proof. In view of Theorem 4.2.2, suppose that

$$\delta(m) = v \left\{ 1 + \gamma \left(1 + |\tilde{\mathfrak{B}}| \right) \right\} (\phi^i - \phi^j) + |\tilde{\mathfrak{B}}\phi^i - \widehat{\mathfrak{A}}\phi^j|.$$

where $\phi = 1 + (m-1)\chi$ and $v = \frac{\Gamma(\mu)}{\Gamma(\alpha(m-1)+\mu)}$, $\frac{\Phi(m)}{m}$ is an increasing function for m ($m \geq 2$)

Similarly, we obtain:

$$\left(\sum_{m=2}^{\infty} |a_m| m \right) \left(\frac{\delta(2)}{2} \right) \leq \sum_{m=2}^{\infty} m \left(\frac{\delta(m)}{m} \right) |a_m| = \sum_{m=2}^{\infty} \delta(m) |a_m| \leq (\widehat{\mathfrak{A}} - \tilde{\mathfrak{B}}),$$

that is:

$$\sum_{m=2}^{\infty} |a_m| m \leq \left(\frac{2}{\delta(2)} \right) (\widehat{\mathfrak{A}} - \tilde{\mathfrak{B}}).$$

and consequently:

$$|\mathcal{L}'(w)| \leq 1 + \sum_{m=2}^{\infty} m |a_m| |w|,$$

$$|\mathcal{L}'(w)| \leq 1 + \frac{2(\widehat{\mathfrak{A}} - \tilde{\mathfrak{B}})\Gamma(\alpha + \mu)}{\Gamma(\mu) \left[\left((\chi + 1)^i - (1 + \chi)^j \right) \left\{ 1 + \gamma \left(1 + |\tilde{\mathfrak{B}}| \right) \right\} + \left| \tilde{\mathfrak{B}}(\chi + 1)^i - \widehat{\mathfrak{A}}(1 + \chi)^j \right| \right]} |w|$$

Also, we get

$$|\mathcal{L}'(w)| \geq 1 - \sum_{m=2}^{\infty} m |a_m| |w|$$

$$|\mathcal{L}'(w)| \geq 1 - \frac{2(\widehat{\mathfrak{A}} - \tilde{\mathfrak{B}})\Gamma(\alpha + \mu)}{\Gamma(\mu) \left[\left((\chi + 1)^i - (1 + \chi)^j \right) \left\{ 1 + \gamma \left(1 + |\tilde{\mathfrak{B}}| \right) \right\} + \left| \tilde{\mathfrak{B}}(1 + \chi)^i - \widehat{\mathfrak{A}}(1 + \chi)^j \right| \right]} |w|.$$

Finally, we can see that the assertions of Theorem 4.2.5, the equality can be attained for the the function defined by (4.2.4). Theorem 4.2.5 is completed. ■

Next discussion is Radii of Starlikeness (RS), Convexity and Close-to-Convexity for $TQ_{\lambda, \gamma, \beta}^{\alpha, \mu}(\gamma, \widehat{\mathfrak{A}}, \widetilde{\mathfrak{B}})$

4.2.6 Theorem

Let $\mathcal{L} \in TQ_{\lambda, \gamma, \beta}^{\alpha, \mu}(\gamma, \widehat{\mathfrak{A}}, \widetilde{\mathfrak{B}})$. Then

(i) For $|w| < r_1$ and $(0 \leq \alpha < 1)$, \mathcal{L} is starlike of order α , where:

$$r_1 = \inf_{m \geq 2} \left\{ \left(\frac{1-\alpha}{m-\alpha} \right) \times \frac{v \left[\left\{ 1 + \gamma \left(1 + |\widetilde{\mathfrak{B}}| \right) \right\} (\phi^i - \phi^j) + |\widetilde{\mathfrak{B}}\phi^i - \widehat{\mathfrak{A}}\phi^j| \right]}{(\widehat{\mathfrak{A}} - \widetilde{\mathfrak{B}})} \right\}^{\frac{1}{m-1}}, \quad (4.2.5)$$

(ii) For $|w| < r_2$ and $(0 \leq \alpha < 1)$, \mathcal{L} is convex of order α , where:

$$r_2 = \inf_{m \geq 2} \left\{ \left(\frac{1-\alpha}{m(m-\alpha)} \right) \times \frac{v \left[\left\{ 1 + \gamma \left(1 + |\widetilde{\mathfrak{B}}| \right) \right\} (\phi^i - \phi^j) + |\widetilde{\mathfrak{B}}\phi^i - \widehat{\mathfrak{A}}\phi^j| \right]}{(\widehat{\mathfrak{A}} - \widetilde{\mathfrak{B}})} \right\}^{\frac{1}{m-1}}. \quad (4.2.6)$$

(iii) For $|w| < r_3$ and $(0 \leq \alpha < 1)$, \mathcal{L} is close to convex of order α , where:

$$r_3 = \inf_{m \geq 2} \left\{ \left(\frac{1-\alpha}{m} \right) \times \frac{v \left[\left\{ 1 + \gamma \left(1 + |\widetilde{\mathfrak{B}}| \right) \right\} (\phi^i - \phi^j) + |\widetilde{\mathfrak{B}}\phi^i - \widehat{\mathfrak{A}}\phi^j| \right]}{(\widehat{\mathfrak{A}} - \widetilde{\mathfrak{B}})} \right\}^{\frac{1}{m-1}} \quad (4.2.7)$$

All results are sharp, for the mapping \mathcal{L} given in (4.2.3).

Proof. Here enough to show:

$$\left| \frac{w\mathcal{L}'(w)}{\mathcal{L}(w)} - 1 \right| \leq 1 - \alpha \quad \text{for } |w| < r_1,$$

where r_1 is given by (4.2.5). Indeed we find from (1.1.2) that is

$$\left| \frac{w\mathcal{L}'(w)}{\mathcal{L}(w)} - 1 \right| \leq \frac{\sum_{m=2}^{\infty} (m-1)a_m |w|^{m-1}}{1 - \sum_{m=2}^{\infty} a_m |w|^{m-1}}.$$

Thus, we have

$$\left| \frac{w\mathcal{L}'(w)}{\mathcal{L}(w)} - 1 \right| \leq 1 - \alpha,$$

if and only if

$$\frac{\sum_{m=2}^{\infty} (m-\alpha) a_m |w|^{m-1}}{(1-\alpha)} \leq 1 \quad (4.2.8)$$

But, by Theorem 4.2.2. (4.2.8) will be true if

$$\left(\frac{m-\alpha}{1-\alpha} \right) |w|^{m-1} \leq \frac{v \left[\left\{ 1 + \gamma \left(1 + |\tilde{\mathfrak{B}}| \right) \right\} (\phi^i - \phi^j) + |\tilde{\mathfrak{B}}\phi^i - \hat{\mathfrak{A}}\phi^j| \right]}{\hat{\mathfrak{A}} - \tilde{\mathfrak{B}}},$$

that is, if

$$|w| \leq \left\{ \left(\frac{1-\alpha}{m-\alpha} \right) \times \frac{v \left[\left\{ 1 + \gamma \left(1 + |\tilde{\mathfrak{B}}| \right) \right\} (\phi^i - \phi^j) + |\tilde{\mathfrak{B}}\phi^i - \hat{\mathfrak{A}}\phi^j| \right]}{\hat{\mathfrak{A}} - \tilde{\mathfrak{B}}} \right\}^{\frac{1}{m-1}} \quad (m \geq 2)$$

this implies

$$r_1 = \inf_{m \geq 2} \left\{ \left(\frac{1-\alpha}{m-\alpha} \right) \times \frac{v \left[\left\{ 1 + \gamma \left(1 + |\tilde{\mathfrak{B}}| \right) \right\} (\phi^i - \phi^j) + |\tilde{\mathfrak{B}}\phi^i - \hat{\mathfrak{A}}\phi^j| \right]}{(\hat{\mathfrak{A}} - \tilde{\mathfrak{B}})} \right\}^{\frac{1}{m-1}} \quad (m \geq 2)$$

This completes (4.2.5).

To prove (4.2.6) and (4.2.7) it is sufficient to show that

$$\left| 1 + \frac{w \mathcal{L}''(w)}{\mathcal{L}'(w)} - 1 \right| \leq 1 - \alpha \quad (|w| < r_2, 0 \leq \alpha < 1),$$

and

$$\left| \mathcal{L}'(w) - 1 \right| \leq 1 - \alpha \quad (|w| < r_3, 0 \leq \alpha < 1).$$

■

Next. we discussed extreme points for $TQ_{\lambda,i,j}^{\alpha,\mu}(\gamma, \hat{\mathfrak{A}}, \tilde{\mathfrak{B}})$.

4.2.7 Theorem

Let

$$\mathcal{L}_m(w) = w - \frac{\hat{\mathfrak{A}} - \tilde{\mathfrak{B}}}{v \left[\left\{ 1 + \gamma \left(1 + |\tilde{\mathfrak{B}}| \right) \right\} (\phi^i - \phi^j) + |\tilde{\mathfrak{B}}\phi^i - \hat{\mathfrak{A}}\phi^j| \right]} u^m \quad (m \geq 2).$$

and

$$\mathcal{L}_1(w) = w.$$

Then $\mathcal{L} \in TQ_{\chi, i, j}^{\alpha, \mu} \left(\gamma, \widehat{\mathfrak{A}}, \tilde{\mathfrak{B}} \right)$ if and only if $\mathcal{L}(w)$ take the form

$$\mathcal{L}(w) = \sum_{m=1}^{\infty} \eta_m \mathcal{L}_m(w),$$

where

$$\eta_m \geq 0, \quad \sum_{m=1}^{\infty} \eta_m = 1.$$

Proof. Suppose that

$$\begin{aligned} \mathcal{L}(w) &= \sum_{m=1}^{\infty} \eta_m \mathcal{L}_m(w) \\ &= w - \sum_{m=2}^{\infty} \eta_m \frac{\widehat{\mathfrak{A}} - \tilde{\mathfrak{B}}}{v \left[\left\{ 1 + \gamma \left(1 + |\tilde{\mathfrak{B}}| \right) \right\} (\phi^i - \phi^j) + |\tilde{\mathfrak{B}}\phi^i - \widehat{\mathfrak{A}}\phi^j| \right]} w^m \end{aligned}$$

Then, from Theorem 4.2.2, we have

$$\begin{aligned} &\sum_{m=2}^{\infty} \left[\frac{(\widehat{\mathfrak{A}} - \tilde{\mathfrak{B}}) v \left[\left\{ 1 + \gamma \left(1 + |\tilde{\mathfrak{B}}| \right) \right\} (\phi^i - \phi^j) + |\tilde{\mathfrak{B}}\phi^i - \widehat{\mathfrak{A}}\phi^j| \right]}{v \left[|\tilde{\mathfrak{B}}\phi^i - \widehat{\mathfrak{A}}\phi^j| + \left\{ 1 + \gamma \left(1 + |\tilde{\mathfrak{B}}| \right) \right\} (\phi^i - \phi^j) \right]} \eta_m \right] \\ &= (\widehat{\mathfrak{A}} - \tilde{\mathfrak{B}}) \sum_{m=2}^{\infty} \eta_m \\ &= (\widehat{\mathfrak{A}} - \tilde{\mathfrak{B}})(1 - \eta_1) \\ &\leq (\widehat{\mathfrak{A}} - \tilde{\mathfrak{B}}). \end{aligned}$$

Thus, in view of Theorem 4.2.2, we find that $\mathcal{L} \in TQ_{\chi, i, j}^{\alpha, \mu} \left(\gamma, \widehat{\mathfrak{A}}, \tilde{\mathfrak{B}} \right)$. Conversely, let us suppose that $\mathcal{L} \in TQ_{\chi, i, j}^{\alpha, \mu} \left(\gamma, \widehat{\mathfrak{A}}, \tilde{\mathfrak{B}} \right)$, then, since

$$a_m \leq \frac{\widehat{\mathfrak{A}} - \tilde{\mathfrak{B}}}{v \left[\left\{ 1 + \gamma \left(1 + |\tilde{\mathfrak{B}}| \right) \right\} (\phi^i - \phi^j) + |\tilde{\mathfrak{B}}\phi^i - \widehat{\mathfrak{A}}\phi^j| \right]}$$

by setting

$$\eta_m = \frac{v \left[\left| \tilde{\mathfrak{B}}\phi^i - \hat{\mathfrak{A}}\phi^j \right| + \left\{ 1 + \gamma \left(1 + \left| \tilde{\mathfrak{B}} \right| \right) \right\} \left(\phi^i - \phi^j \right) \right]}{\hat{\mathfrak{A}} - \tilde{\mathfrak{B}}} a_m \quad (m \geq 2)$$

and

$$\eta_1 = 1 - \sum_{m=2}^{\infty} \eta_m.$$

we have

$$\mathcal{L}(w) = \sum_{m=1}^{\infty} \eta_m \mathcal{L}_m(w)$$

Theorem completed. ■

4.2.8 Corollary

For class $TQ_{\lambda, i, j}^{\alpha, \mu} \left(\gamma, \hat{\mathfrak{A}}, \tilde{\mathfrak{B}} \right)$. EP are as:

$$\mathcal{L}_1(w) = w,$$

and

$$\mathcal{L}_m(w) = w - \frac{\hat{\mathfrak{A}} - \tilde{\mathfrak{B}}}{v \left[\left\{ 1 + \gamma \left(1 + \left| \tilde{\mathfrak{B}} \right| \right) \right\} \left(\phi^i - \phi^j \right) + \left| \tilde{\mathfrak{B}}\phi^i - \hat{\mathfrak{A}}\phi^j \right| \right]} w^m \quad (m \geq 2).$$

Integral Means Inequalities

4.2.9 Theorem

Suppose that $\mathcal{L} \in TQ_{\lambda, i, j}^{\alpha, \mu} \left(\gamma, \hat{\mathfrak{A}}, \tilde{\mathfrak{B}} \right)$ and $\mathcal{L}_2(w)$ is defined by

$$\mathcal{L}_2(w) = w - \frac{\left(\hat{\mathfrak{A}} - \tilde{\mathfrak{B}} \right) \Gamma(\alpha + \mu)}{\Gamma \mu \left[\left((\chi + 1)^i - (1 + \chi)^j \right) \left\{ 1 + \gamma \left(1 + \left| \tilde{\mathfrak{B}} \right| \right) \right\} + \left| \tilde{\mathfrak{B}} (\chi + 1)^i - \hat{\mathfrak{A}} (1 + \chi)^j \right| \right]} w^2$$

then for $w = re^{i\theta}$ ($0 < r < 1$), we have

$$\int_0^{2\pi} |\mathcal{L}(w)|^p d\theta \leq \int_0^{2\pi} |\mathcal{L}_2(w)|^p d\theta$$

Proof. Let $\mathcal{L}(w) = w - \sum_{m=2}^{\infty} a_m w^m$ ($a_m \geq 0$) then we must show that

$$\begin{aligned} & \int_0^{2\pi} \left| 1 - \sum_{m=2}^{\infty} a_m w^{m-1} \right|^p d\theta \\ & \leq \int_0^{2\pi} \left| 1 - \frac{(\widehat{\mathfrak{A}} - \tilde{\mathfrak{B}}) \Gamma(\alpha + \mu)}{\Gamma(\mu) \left[((\chi + 1)^i - (1 + \chi)^j) \left\{ 1 + \gamma (1 + |\tilde{\mathfrak{B}}|) \right\} + |\tilde{\mathfrak{B}}(\chi + 1)^i - \widehat{\mathfrak{A}}(1 + \chi)^j| \right]} w \right|^p d\theta \end{aligned}$$

By Lemma 1.10.1, it is enough to show that

$$1 - \sum_{m=2}^{\infty} a_m w^{m-1} \prec 1 - \frac{(\widehat{\mathfrak{A}} - \tilde{\mathfrak{B}}) \Gamma(\alpha + \mu)}{\Gamma(\mu) \left[((\chi + 1)^i - (1 + \chi)^j) \left\{ 1 + \gamma (1 + |\tilde{\mathfrak{B}}|) \right\} + |\tilde{\mathfrak{B}}(\chi + 1)^i - \widehat{\mathfrak{A}}(1 + \chi)^j| \right]} w.$$

By setting

$$1 - \sum_{m=2}^{\infty} a_m w^{m-1} = 1 - \frac{(\widehat{\mathfrak{A}} - \tilde{\mathfrak{B}}) \Gamma(\alpha + \mu)}{\Gamma(\mu) \left[((\chi + 1)^i - (1 + \chi)^j) \left\{ 1 + \gamma (1 + |\tilde{\mathfrak{B}}|) \right\} + |\tilde{\mathfrak{B}}(\chi + 1)^i - \widehat{\mathfrak{A}}(1 + \chi)^j| \right]} \varpi(w).$$

and using (4.2.1), we get

$$\begin{aligned} |\varpi(w)| &= \left| \sum_{m=2}^{\infty} \frac{\Gamma(\mu) \left[((\chi + 1)^i - (1 + \chi)^j) \left\{ 1 + \gamma (1 + |\tilde{\mathfrak{B}}|) \right\} + |\tilde{\mathfrak{B}}(\chi + 1)^i - \widehat{\mathfrak{A}}(1 + \chi)^j| \right]}{(\widehat{\mathfrak{A}} - \tilde{\mathfrak{B}}) \Gamma(\alpha + \mu)} a_m w^{m-1} \right| \\ &\leq |w| \sum_{m=2}^{\infty} \frac{\Gamma(\mu) \left[((\chi + 1)^i - (1 + \chi)^j) \left\{ 1 + \gamma (1 + |\tilde{\mathfrak{B}}|) \right\} + |\tilde{\mathfrak{B}}(\chi + 1)^i - \widehat{\mathfrak{A}}(1 + \chi)^j| \right]}{(\widehat{\mathfrak{A}} - \tilde{\mathfrak{B}}) \Gamma(\alpha + \mu)} a_m \\ &\leq |w| \sum_{m=2}^{\infty} \frac{v \left[\left\{ 1 + \gamma (1 + |\tilde{\mathfrak{B}}|) \right\} (\phi^i - \phi^j) + |\tilde{\mathfrak{B}}\phi^i - \widehat{\mathfrak{A}}\phi^j| \right]}{\widehat{\mathfrak{A}} - \tilde{\mathfrak{B}}} a_m \\ &\leq |w| < 1. \end{aligned}$$

Theorem 4.2.9 is completed ■

Chapter 5

Subclasses of uniformly convex and starlike functions associated with Bessel functions

Applications of Bessel functions have been commonly utilized in UF theory. The main focus of this chapter is to set out few imperative characteristic properties for a few subclasses of uniformly SF and CF which are initiated here by infers of the normalized condition of the generalized BF to be univalent inside the \tilde{H} . Furthermore, we as well develop up some results about of these subclasses related to a particular integral operator.

5.1 Introduction

Throughout this chapter, unless otherwise stated, the parameters of alpha, beta and eta are considered as $(\alpha \geq 0)$, $(0 \leq \beta < 1)$ and $(0 \leq \eta \leq 1)$.

5.1.1 Definition

Let $\mathcal{L} \in \mathcal{A}$. Then $\mathcal{L} \in Q_x(\alpha, \beta, \eta)$ if it fulfill the successive condition:

$$Re \left\{ \frac{w\mathcal{L}'(w) + \eta w^2 \mathcal{L}''(w)}{\mathcal{L}(w)} \right\} \geq \alpha \left| \frac{w\mathcal{L}'(w) + \eta w^2 \mathcal{L}''(w)}{\mathcal{L}(w)} - 1 \right| + \beta \quad (5.1.1)$$

5.1.2 Definition

Let $\mathcal{L} \in \mathcal{A}$. Then $\mathcal{L} \in Q_x CV(\alpha, \beta, \eta)$ if it fulfill the successive condition:

$$Re \left\{ \frac{\mathcal{L}'(w) + \eta w \mathcal{L}''(w)}{\mathcal{L}'(w)} \right\} \geq \alpha \left| \frac{\mathcal{L}'(w) + \eta w \mathcal{L}''(w)}{\mathcal{L}'(w)} - 1 \right| + \beta \quad (5.1.2)$$

5.1.3 Definition

Let $\mathcal{L} \in \mathcal{A}$. Then $\mathcal{L} \in PS(\alpha, \eta)$ if it fulfill the successive condition:

$$Re \left\{ \frac{w \mathcal{L}'(w) + \eta w^2 \mathcal{L}''(w)}{\mathcal{L}(w)} \right\} + \alpha \geq \left| \frac{w \mathcal{L}'(w) + \eta w^2 \mathcal{L}''(w)}{\mathcal{L}(w)} - \alpha \right| \quad (5.1.3)$$

5.1.4 Definition

Let $\mathcal{L} \in \mathcal{A}$. Then $\mathcal{L} \in PCV(\alpha, \eta)$ if it fulfill the successive condition:

$$Re \left\{ \frac{\mathcal{L}'(w) + \eta w \mathcal{L}''(w)}{\mathcal{L}'(w)} \right\} + \alpha \geq \left| \frac{\mathcal{L}'(w) + \eta w \mathcal{L}''(w)}{\mathcal{L}'(w)} - \alpha \right|. \quad (5.1.4)$$

We note that $PST(\alpha, \eta) = PS(\alpha, \eta) \cap T$ and $PCVT(\alpha, \eta) = PCV(\alpha, \eta) \cap T$

For special value of parameter, we obtain some of the previously studied classes. Some of them are listed below.

- i $Q_x(\alpha, \beta, 0) = SP(\alpha, \beta)$ [22].
- ii $Q_x CV(\alpha, \beta, 1) = UCV(\alpha, \beta)$ [17].
- iii $PS(\alpha, 0) = x(\alpha)$ [22].
- iv $PCV(\alpha, 1) = CP(\alpha)$ [22].

In present chapter, we obtained sufficient conditions for $\mathcal{L} \in \mathcal{A}$ to be in $Q_x(\alpha, \beta, \eta)$ and $Q_x CV(\alpha, \beta, \eta)$. We also determined necessary and sufficient conditions for $\mathcal{L} \in \mathcal{A}$, to be in the $PS(\alpha, \eta)$ and $PCV(\alpha, \eta)$. Furthermore, we determined sufficient conditions for wu_x to be in $Q_x(\alpha, \beta, \eta)$ and $Q_x CV(\alpha, \beta, \eta)$ also for $w(2 - u_x)$ to be in the function classes $PS(\alpha, \eta)$ and $PCV(\alpha, \eta)$. We consider an integral operator related to the function u_x . Also, some corollaries related to main theorems have been presented.

5.2 Main Results

In this section, some theorems and corollaries related to our main results will be given.

5.2.1 Theorem

A sufficient condition for $\mathcal{L} \in \mathcal{A}$, is belonging to $Q_x(\alpha, \beta, \eta)$, if it fulfill the successive inequality (5.2.1):

$$\sum_{m=2}^{\infty} \{m(\eta m - \eta + 1)(1 + \alpha) - \alpha - \beta\} |a_m| \leq 1 - \beta \quad (5.2.1)$$

Proof. It is enough to show that

$$\alpha \left| \frac{w\mathcal{L}'(w) + \eta w^2 \mathcal{L}''(w)}{\mathcal{L}(w)} - 1 \right| - \operatorname{Re} \left\{ \frac{w\mathcal{L}'(w) + \eta w^2 \mathcal{L}''(w)}{\mathcal{L}(w)} - 1 \right\} \leq 1 - \beta.$$

Let us consider the following inequalities

$$\begin{aligned} & \alpha \left| \frac{w\mathcal{L}'(w) + \eta w^2 \mathcal{L}''(w)}{\mathcal{L}(w)} - 1 \right| - \operatorname{Re} \left\{ \frac{w\mathcal{L}'(w) + \eta w^2 \mathcal{L}''(w)}{\mathcal{L}(w)} - 1 \right\} \\ & \leq (\alpha + 1) \left| \frac{w\mathcal{L}'(w) + \eta w^2 \mathcal{L}''(w) - \mathcal{L}(w)}{\mathcal{L}(w)} \right| \\ & \leq \frac{(\alpha + 1) \left(\sum_{m=2}^{\infty} (\eta m^2 - \eta m + m - 1) |a_m| \right)}{1 - \sum_{m=2}^{\infty} |a_m|}. \end{aligned}$$

This preceding expression is bounded above by $1 - \beta$, if the following inequality holds

$$\sum_{m=2}^{\infty} \{m(\eta m - \eta + 1)(1 + \alpha) - \alpha - \beta\} |a_m| \leq 1 - \beta.$$

■

It is remarkable that a necessary and sufficient condition for $\mathcal{L} \in \mathcal{T}$ is belonging to $Q_x(\alpha, \beta, \eta)$ is that the condition (5.2.1) holds.

5.2.2 Theorem

A sufficient condition for $\mathcal{L} \in \mathcal{A}_r$ is belonging to $Q_xCV(\alpha, \beta, \eta)$, if it fulfill the successive inequality (5.2.2).

$$\sum_{m=2}^{\infty} m \{ \eta(m-1)(1+\alpha) + 1 - \beta \} |a_m| \leq 1 - \beta \quad (5.2.2)$$

Proof. It is enough to show that

$$\alpha \left| \frac{\mathcal{L}'(w) + \eta w \mathcal{L}''(w)}{\mathcal{L}'(w)} - 1 \right| - \operatorname{Re} \left\{ \frac{w \mathcal{L}'(w) + \eta w \mathcal{L}''(w)}{\mathcal{L}'(w)} - 1 \right\} \leq 1 - \beta.$$

Let's consider the following inequalities

$$\begin{aligned} & \alpha \left| \frac{\eta w \mathcal{L}''(w) + \mathcal{L}'(w)}{\mathcal{L}'(w)} - 1 \right| - \operatorname{Re} \left\{ \frac{\eta w \mathcal{L}''(w) + w \mathcal{L}'(w)}{\mathcal{L}'(w)} - 1 \right\} \\ & \leq (1+\alpha) \left| \frac{\eta w \mathcal{L}''(w)}{\mathcal{L}'(w)} \right| \\ & \leq \frac{\eta(1+\alpha) \sum_{m=2}^{\infty} (m-1)m |a_m|}{1 - \sum_{m=2}^{\infty} (m|a_m|)} \end{aligned}$$

This preceding expression is bounded above by $1 - \beta$, if the following inequality holds

$$\sum_{m=2}^{\infty} m \{ \eta(m-1)(1+\alpha) + 1 - \beta \} |a_m| \leq 1 - \beta$$

■

It is remarkable that a necessary and sufficient condition for $\mathcal{L} \in T$ is belonging to $Q_xCV(\alpha, \beta, \eta)$ is that the condition (5.2.2) is satisfied.

5.2.3 Theorem

A necessary and sufficient condition for $\mathcal{L} \in T$ is belonging to $PS(\alpha, \eta)$ is that the following inequality (5.2.3) holds.

$$\sum_{m=2}^{\infty} \{ \eta m(m-1) + m - \alpha \} |a_m| \leq 1 + \alpha \quad (5.2.3)$$

Proof. Let's consider the following inequalities

$$Re \left\{ \frac{\eta w^2 \mathcal{L}''(w) + w \mathcal{L}'(w)}{\mathcal{L}(w)} \right\} + \alpha \geq \left| \frac{\eta w^2 \mathcal{L}''(w) + w \mathcal{L}'(w)}{\mathcal{L}(w)} - \alpha \right|,$$

which leads to

$$\left| \frac{w \mathcal{L}'(w) + \eta w^2 \mathcal{L}''(w)}{\mathcal{L}(w)} - \alpha \right| - Re \left\{ \frac{w \mathcal{L}'(w) + \eta w^2 \mathcal{L}''(w)}{\mathcal{L}(w)} \right\} \leq 2\alpha$$

Consider

$$\begin{aligned} & \left| \frac{\eta w^2 \mathcal{L}''(w) + w \mathcal{L}'(w)}{\mathcal{L}(w)} - \alpha \right| - Re \left\{ \frac{\eta w^2 \mathcal{L}''(w) + w \mathcal{L}'(w)}{\mathcal{L}(w)} \right\} \\ & \leq 2 \left| \frac{w \mathcal{L}'(w) + \eta w^2 \mathcal{L}''(w)}{\mathcal{L}(w)} \right| \\ & = 2 \frac{\left| z - \sum_{m=2}^{\infty} (\eta m^2 - \eta m + m) (a_m w^m) \right|}{\left| z - \sum_{m=2}^{\infty} (a_m w^m) \right|} \\ & = 2 \frac{\left| 1 - \sum_{m=2}^{\infty} (m + \eta m^2 - \eta m) (a_m w^{m-1}) \right|}{\left| 1 - \sum_{m=2}^{\infty} a_m w^{m-1} \right|}. \end{aligned}$$

This preceding expression is bounded above by 2α if the following inequalities hold

$$\begin{aligned} & \sum_{m=2}^{\infty} (\eta m^2 - \eta m + m) |a_m| - 1 \leq \alpha \left(1 + \sum_{m=2}^{\infty} |a_m| \right) \\ & \sum_{m=2}^{\infty} \{ \eta m (m-1) + m - \alpha \} |a_m| \leq 1 + \alpha. \end{aligned}$$

■

5.2.4 Theorem

A necessary and sufficient condition for $\mathcal{L} \in T$ is belonging to $PCV(\alpha, \eta)$ is that, the following inequality (5.2.4) holds.

$$\sum_{m=2}^{\infty} [\eta m(m-1) + m(1-\alpha)] |a_m| \leq 1 + \alpha \quad (5.2.4)$$

Proof. Let us consider the following inequalities

$$Re \left\{ \frac{\mathcal{L}'(w) + \eta w \mathcal{L}''(w)}{\mathcal{L}'(w)} \right\} + \alpha \geq \left| \frac{\mathcal{L}'(w) + \eta w \mathcal{L}''(w)}{\mathcal{L}'(w)} - \alpha \right|,$$

which leads to

$$\left| \frac{\mathcal{L}'(w) + \eta w \mathcal{L}''(w)}{\mathcal{L}'(w)} \right| - Re \left\{ \frac{\mathcal{L}'(w) + \eta w \mathcal{L}''(w)}{\mathcal{L}'(w)} \right\} \leq 2\alpha.$$

Consider

$$\begin{aligned} & \left| \frac{\mathcal{L}'(w) + \eta w \mathcal{L}''(w)}{\mathcal{L}'(w)} \right| - Re \left\{ \frac{\mathcal{L}'(w) + \eta w \mathcal{L}''(w)}{\mathcal{L}'(w)} \right\} \\ & \leq 2 \left| \frac{\mathcal{L}'(w) + \eta w \mathcal{L}''(w)}{\mathcal{L}'(w)} \right| \\ & = 2 \left| z - \sum_{m=2}^{\infty} (\eta m^2 - \eta m + m) a_m w^m \right| \\ & = 2 \left| z - \sum_{m=2}^{\infty} m a_m w^m \right| \\ & = 2 \left| 1 - \sum_{m=2}^{\infty} (m + \eta m^2 - \eta m) (a_m w^{m-1}) \right|. \end{aligned}$$

This preceding expression is bounded above by 2α if the following inequality holds

$$\sum_{m=2}^{\infty} [\eta m(m-1) + m(1-\alpha)] |a_m| \leq 1 + \alpha$$

■

5.2.5 Theorem

If $d < 0$ and $b_s < 0$ then $wu_x \in Q_x(\alpha, \beta, \eta)$ if

$$\eta(1 + \alpha)u''_x(1) + (2\eta + 1)(1 + \alpha)u'_x(1) + (1 - \beta)[u_x(1) - 1] \leq 1 - \beta \quad (5.2.5)$$

Proof. Since

$$wu_x(w) = w + \sum_{m=2}^{\infty} \frac{(-\frac{d}{4})^{m-1}}{(b_s)_{m-1} (m-1)!} w^m, \quad (5.2.6)$$

on account of Theorem 5.2.1, it is enough to show that

$$\mathcal{L}(d, b_s, \alpha, \beta, \eta) = \sum_{m=2}^{\infty} [m(1 + \alpha)(\eta m - \eta + 1) - (\alpha + \beta)] \frac{(-\frac{d}{4})^{m-1}}{(m-1)! (b_s)_{m-1}} \leq 1 - \beta.$$

Doing some simple calculations, we have:

$$\begin{aligned}
& \mathcal{L}(d, b_s, \alpha, \beta, \eta) \\
&= \sum_{m=2}^{\infty} [(1+\alpha)(\eta m^2 - \eta m + m) - (\alpha - \beta)] \frac{(-\frac{d}{4})^{m-1}}{(m-1)! (b_s)_{m-1}} \\
&= \sum_{m=2}^{\infty} [(1+\alpha)(\eta m - 1)(m-1) + 1 - \beta] \frac{(-\frac{d}{4})^{m-1}}{(m-1)! (b_s)_{m-1}} \\
&= \sum_{m=2}^{\infty} \{ \eta(m^2 - m)(1+\alpha) + (m-1)(1+\alpha) + 1 - \beta \} \frac{(-\frac{d}{4})^{m-1}}{(m-1)! (b_s)_{m-1}} \\
&= \sum_{m=2}^{\infty} \eta(m-1)(m-2)(1+\alpha) \frac{(-\frac{d}{4})^{m-1}}{(m-1)! (b_s)_{m-1}} + \sum_{m=2}^{\infty} (2\eta+1)(m-1)(1+\alpha) \frac{(-\frac{d}{4})^{m-1}}{(m-1)! (b_s)_{m-1}} \\
&\quad + \sum_{m=2}^{\infty} (1-\beta) \frac{(-\frac{d}{4})^{m-1}}{(m-1)! (b_s)_{m-1}} \\
&= \sum_{m=2}^{\infty} \eta(1+\alpha) \frac{(-\frac{d}{4})^{m-1}}{(m-3)! (b_s)_{m-1}} + \sum_{m=2}^{\infty} (2\eta+1)(1+\alpha) \frac{(-\frac{d}{4})^{m-1}}{(m-2)! (b_s)_{m-1}} \\
&\quad + \sum_{m=2}^{\infty} (1-\beta) \frac{(-\frac{d}{4})^{m-1}}{(m-1)! (b_s)_{m-1}} \\
&= \sum_{m=0}^{\infty} \eta(1+\alpha) \frac{(-\frac{d}{4})^{m+2}}{(b_s)_{m+2} (m)!} + \sum_{m=0}^{\infty} (2\eta+1)(1+\alpha) \frac{(-\frac{d}{4})^{m+1}}{(b_s)_{m+1} (m)!} + \sum_{m=0}^{\infty} (1-\beta) \frac{(-\frac{d}{4})^{m+1}}{(b_s)_{m+1} (m+1)!} \\
&= \eta(1+\alpha) \frac{(-\frac{d}{4})^2}{b_s (b_s+1)} u_{x+2}(1) + (2\eta+1)(1+\alpha) \frac{(-\frac{d}{4})}{b_s} u_{x+1}(1) + (1-\beta) \{ u_x(1) - 1 \} \\
&= \eta(1+\alpha) u_x''(1) + (2\eta+1)(1+\alpha) u_x'(1) + (1-\beta) \{ u_x(1) - 1 \} \tag{5.2.7}
\end{aligned}$$

Therefore the last expression (5.2.7) is bounded above by $1 - \beta$ if the condition (5.2.5) is satisfied. ■

5.2.6 Corollary

If $d < 0$ and $b_s < 0$ then, $w(2 - u_x) \in Q_x(\alpha, \beta, \eta)$ if and only if (5.2.5) is satisfied.

Proof. Since

$$w(2 - u_x) = w - \sum_{m=2}^{\infty} \frac{(-\frac{d}{4})^{m-1}}{(b_s)_{m-1} (m-1)!} w^m.$$

by utilizing the procedure given within the verification of Theorem 5.2.5. we arrive instantly

Corollary 5.2.6 ■

5.2.7 Theorem

If $d < 0$ and $b_s < 0$ then $uu_x \in Q_x CV(\alpha, \beta, \eta)$ if

$$\eta(1 + \alpha)u''_x(1) + [2\eta(1 + \alpha) + (1 - \beta)]u'_x(1) + (1 - \beta)[u_x(1) - 1] \leq 1 - \beta \quad (5.2.8)$$

Proof. Since

$$uu_x(w) = w + \sum_{m=2}^{\infty} \frac{(-\frac{d}{4})^{m-1}}{(b_s)_{m-1} (m-1)!} w^m. \quad (5.2.9)$$

on account of Theorem 5.2.2, it is enough to show that

$$f(d, b_s, \alpha, \beta, \eta) = \sum_{m=2}^{\infty} m[\eta(1 + \alpha)(m-1) + (1 - \beta)] \frac{(-\frac{d}{4})^{m-1}}{(m-1)! (b_s)_{m-1}} \leq 1 - \beta.$$

Doing some simple calculations, we have.

$$\begin{aligned}
& f(d, b_s, \alpha, \beta, \eta) \\
&= \sum_{m=2}^{\infty} \eta(1+\alpha)(m^2-m) \frac{(-\frac{d}{4})^{m-1}}{(m-1)!(b_s)_{m-1}} + \sum_{m=2}^{\infty} m(1-\beta) \frac{(-\frac{d}{4})^{m-1}}{(m-1)!(b_s)_{m-1}} \\
&= \sum_{m=2}^{\infty} \eta(1+\alpha) \{2(m-1) + (m-1)(m-2)\} \frac{(-\frac{d}{4})^{m-1}}{(m-1)!(b_s)_{m-1}} \\
&\quad + \sum_{m=2}^{\infty} (1-\beta) \{(m-1)+1\} \frac{(-\frac{d}{4})^{m-1}}{(m-1)!(b_s)_{m-1}} \\
&= \sum_{m=2}^{\infty} \eta(m-1)(1+\alpha)(m-2) \frac{(-\frac{d}{4})^{m-1}}{(m-1)!(b_s)_{m-1}} + \sum_{m=2}^{\infty} 2\eta(m-1)(1+\alpha) \frac{(-\frac{d}{4})^{m-1}}{(m-1)!(b_s)_{m-1}} \\
&\quad + \sum_{m=2}^{\infty} (m-1)(1-\beta) \frac{(-\frac{d}{4})^{m-1}}{(m-1)!(b_s)_{m-1}} + \sum_{m=2}^{\infty} (1-\beta) \frac{(-\frac{d}{4})^{m-1}}{(m-1)!(b_s)_{m-1}} \\
&= \sum_{m=3}^{\infty} \eta(1+\alpha) \frac{(-\frac{d}{4})^{m-1}}{(m-3)!(b_s)_{m-1}} + \sum_{m=2}^{\infty} 2\eta(1+\alpha) \frac{(-\frac{d}{4})^{m-1}}{(m-2)!(b_s)_{m-1}} \\
&\quad + \sum_{m=2}^{\infty} (1-\beta) \frac{(-\frac{d}{4})^{m-1}}{(m-2)!(b_s)_{m-1}} + \sum_{m=2}^{\infty} (1-\beta) \frac{(-\frac{d}{4})^{m-1}}{(m-1)!(b_s)_{m-1}} \\
&= \sum_{m=0}^{\infty} \eta(1+\alpha) \frac{(-\frac{d}{4})^{m+2}}{(b_s)_{m+2}(m)!} + \sum_{m=0}^{\infty} 2\eta(1+\alpha) \frac{(-\frac{d}{4})^{m+1}}{(b_s)_{m+1}(m)!} + \sum_{m=0}^{\infty} (1-\beta) \frac{(-\frac{d}{4})^{m+1}}{(b_s)_{m+1}(m)!} \\
&\quad + \sum_{m=0}^{\infty} (1-\beta) \frac{(-\frac{d}{4})^{m+1}}{(b_s)_{m+1}(m+1)!} \\
&= \sum_{m=0}^{\infty} \eta(1+\alpha) \frac{(-\frac{d}{4})^{m+2}}{(b_s)_{m+2}(m)!} + \sum_{m=0}^{\infty} \{2\eta(1+\alpha) + (1-\beta)\} \frac{(-\frac{d}{4})^{m+1}}{(b_s)_{m+1}(m)!} \\
&\quad + \sum_{m=0}^{\infty} (1-\beta) \frac{(-\frac{d}{4})^{m+1}}{(b_s)_{m+1}(m+1)!} \\
&= \eta(1+\alpha) u_x''(1) + \{2\eta(1+\alpha) + (1-\beta)\} u_x'(1) + (1-\beta) \{u_x(1) - 1\}
\end{aligned}$$

Therefore the last expression is bounded above by $1 - \beta$, if the condition (5.2.8) is satisfied. ■

5.2.8 Corollary

If $d < 0$ and $b_s < 0$ then. $w(2 - u_x) \in Q_x CV(\alpha, \beta, \eta)$ if and only if the inequality (5.2.8) is satisfied.

Proof. Since

$$w(2 - u_x) = w - \sum_{m=2}^{\infty} \frac{(-\frac{d}{4})^{m-1}}{(b_s)_{m-1} (m-1)!} w^m.$$

by utilizing the procedure given within the verification of Theorem 5.2.7, we arrive instantly

Corollary 5.2.8 ■

5.2.9 Theorem

If $d < 0$ and $b_s < 0$ then $w(2 - u_x) \in PS(\alpha, \eta)$ if

$$\eta u_x''(1) + (2\eta + 1) u_x'(1) + (1 - \alpha) u_x(1) \leq 2. \quad (5.2.10)$$

Proof. Since

$$w(2 - u_x(w)) = w - \sum_{m=2}^{\infty} \frac{(-\frac{d}{4})^{m-1}}{(b_s)_{m-1} (m-1)!} w^m$$

on account of Theorem 5.2.3, it is sufficient to show that

$$r(d, b_s, \alpha, \eta) = \sum_{m=2}^{\infty} [\eta m(m-1) + (m-\alpha)] \frac{(-\frac{d}{4})^{m-1}}{(m-1)! (b_s)_{m-1}} \leq 1 + \alpha.$$

Doing some simple calculations, we have:

$$\begin{aligned} r(d, b_s, \alpha, \eta) &= \sum_{m=2}^{\infty} [\eta m(m-1) + m - \alpha] \frac{(-\frac{d}{4})^{m-1}}{(b_s)_{m-1} (m-1)!} \\ &= \sum_{m=2}^{\infty} [\eta(m^2 - m) + m - \alpha] \frac{(-\frac{d}{4})^{m-1}}{(b_s)_{m-1} (m-1)!} \\ &= \sum_{m=2}^{\infty} \eta(m^2 - m) \frac{(-\frac{d}{4})^{m-1}}{(b_s)_{m-1} (m-1)!} + \sum_{m=2}^{\infty} (m-1) \frac{(-\frac{d}{4})^{m-1}}{(b_s)_{m-1} (m-1)!} + \sum_{m=2}^{\infty} (1-\alpha) \frac{(-\frac{d}{4})^{m-1}}{(b_s)_{m-1} (m-1)!} \\ &= \sum_{m=2}^{\infty} \eta(m-1)(m-2) \frac{(-\frac{d}{4})^{m-1}}{(b_s)_{m-1} (m-1)!} + \sum_{m=2}^{\infty} (2\eta + 1)(m-1) \frac{(-\frac{d}{4})^{m-1}}{(b_s)_{m-1} (m-1)!} \\ &\quad + \sum_{m=2}^{\infty} (1-\alpha) \frac{(-\frac{d}{4})^{m-1}}{(b_s)_{m-1} (m-1)!} \\ &= \eta u_x''(1) + (2\eta + 1) u_x'(1) + (1 - \alpha) [u_x(1) - 1] \end{aligned}$$

Therefore, the last expression is bounded above by $1 + \alpha$ if the condition (5.2.10) is satisfied.

$$\begin{aligned}\eta u_x''(1) + (2\eta + 1) u_x'(1) + [u_x(1) - 1](1 - \alpha) &\leq 1 + \alpha \\ \eta u_x''(1) + (2\eta + 1) u_x'(1) + (1 - \alpha) u_x(1) &\leq 2\end{aligned}$$

■

5.2.10 Theorem

If $d < 0$ and $b_s < 0$ then $w(2 - u_x) \in PCV(\alpha, \eta)$ if and only if

$$\eta u_x''(1) + (2\eta + 1 - \alpha) u_x'(1) + (1 - \alpha) u_x(1) \leq 2.$$

Proof. Since

$$w(2 - u_x(w)) = w - \sum_{m=2}^{\infty} \frac{(-\frac{d}{4})^{m-1}}{(m-1)! (b_s)_{m-1}} w^m,$$

on account of Theorem 5.2.4, it is sufficient to show that

$$h(d, b_s, \alpha, \eta) = \sum_{m=2}^{\infty} [m\eta(m-1) + (1-\alpha)m] \frac{(-\frac{d}{4})^{m-1}}{(m-1)! (b_s)_{m-1}} \leq 1 + \alpha.$$

Doing some simple calculations, we have:

$$\begin{aligned}h(d, b_s, \alpha, \eta) &= \sum_{m=2}^{\infty} [m\eta(m-1) + (1-\alpha)m] \frac{(-\frac{d}{4})^{m-1}}{(m-1)! (b_s)_{m-1}} \\ &= \sum_{m=2}^{\infty} \eta(m-1)(m-2) \frac{(-\frac{d}{4})^{m-1}}{(m-1)! (b_s)_{m-1}} + \sum_{m=2}^{\infty} (2\eta + 1 - \alpha) \frac{(-\frac{d}{4})^{m-1}}{(b_s)_{m-1} (m-1)!} \\ &\quad + \sum_{m=2}^{\infty} (1-\alpha) \frac{(-\frac{d}{4})^{m-1}}{(b_s)_{m-1} (m-1)!} \\ &= \eta u_x''(1) + (2\eta + 1 - \alpha) u_x'(1) + (1 - \alpha) [u_x(1) - 1].\end{aligned}$$

This preceding expression is bounded above by $1 + \alpha$ if the following inequality holds

$$\eta u_x''(1) + (2\eta + 1 - \alpha) u_x'(1) + (1 - \alpha) u_x(1) \leq 2.$$

■

Within the another two theorems given below, we get results about of comparable sorts in association with a specific integral operator $T(d, b_s, w)$ expressed by

$$T(d, b_s, w) = \int_0^w [2 - u_x(t)] dt. \quad (5.2.11)$$

5.2.11 Theorem

If $d < 0$ and $b_s < 0$ then $T(d, b_s, w) \in Q_x(\alpha, \beta, \eta)$ if and only if the condition (5.2.5) is satisfied.

Proof. Since

$$T(d, b_s, w) = w - \sum_{m=2}^{\infty} \frac{(-\frac{d}{4})^{m-1}}{(b_s)_{m-1} (m-1)!} w^m,$$

on account of Theorem 5.2.1, we need only to show that

$$\sum_{m=2}^{\infty} [m(\eta m - \eta + 1)(1 + \alpha) - \alpha - \beta] |a_m| \leq 1 - \beta$$

The rest portion of the proof of this theorem is the same to the proof of Theorem 5.2.5. ■

5.2.12 Theorem

If $d < 0$ and $b_s < 0$ then $T(d, b_s, w) \in PS(\alpha, \eta)$ if and only if the condition (5.2.10) is satisfied.

Proof. Since

$$T(d, b_s, w) = w - \sum_{m=2}^{\infty} \frac{(-\frac{d}{4})^{m-1}}{(b_s)_{m-1} (m-1)!} w^m,$$

on account of Theorem 5.2.3, we need only to show that

$$\sum_{m=2}^{\infty} \eta m (m-1) + m - \alpha |a_m| \leq 1 + \alpha$$

The rest portion of the proof of this theorem is the same as the proof of Theorem 5.2.9. ■

Chapter 6

A subclass of univalent functions associated with q-analogue of Choi-Saigo-Srivastava operator

The main objective of this chapter is to initiate a subclass $Q_q^*(\lambda, \mu, \tilde{\mathcal{A}}, \tilde{\mathcal{B}})$ of AF using subordinations along with the newly defined q -analogue of Choi-Saigo-Srivastava operator. Some results, such as coefficient estimates (CE), integral representation (IR), linear combination (LC), weighted mean (WM), arithmetic means (AM) and radius of starlikeness for this class are derived.

6.1 Introduction

With the help of convolution and the definition of q -derivative, we generalized Choi-Saigo-Srivastava operator [24], into q -Choi-Saigo-Srivastava operator as:

Let $\mathcal{L} \in \mathcal{A}$,

$$I_{\lambda, \mu}^q \mathcal{L}(w) = \mathcal{L}(w) * \mathcal{F}_{q, \lambda+1, \mu}(w), \quad w \in \tilde{H}, \quad \lambda > -1, \quad \mu > 0.$$

where

$$\mathcal{F}_{q, \lambda+1, \mu}(w) = w + \sum_{m=2}^{\infty} \frac{\Gamma_q(\mu+m-1)\Gamma_q(1+\lambda)}{\Gamma_q(\mu)\Gamma_q(m+\lambda)} w^m = w + \sum_{m=2}^{\infty} \frac{[\mu, q]_{m-1}}{[1+\lambda, q]_{m-1}} w^m. \quad (6.1.1)$$

Thus, we see that

$$I_{\lambda,\mu}^q \mathcal{L}(w) = w + \sum_{m=2}^{\infty} \frac{[\mu, q]_{m-1}}{[1 + \lambda \cdot q]_{m-1}} a_m w^m. \quad (6.1.2)$$

Clearly

$$I_{0,2}^q \mathcal{L}(w) = w \partial D_q \mathcal{L}(w) \quad \text{and} \quad I_{1,2}^q \mathcal{L}(w) = \mathcal{L}(w)$$

From (6.1.2), we can easily get the identity

$$[\lambda + 1]_q I_{\lambda,\mu}^q \mathcal{L}(w) = q^\lambda w \partial D_q \left(I_{\lambda+1,\mu}^q \mathcal{L}(w) \right) + [\lambda]_q I_{\lambda+1,\mu}^q \mathcal{L}(w), \quad (6.1.3)$$

and

$$q^\lambda w \partial D_q \left(I_{\lambda,\mu}^q \mathcal{L}(w) \right) = [\mu]_q I_{\lambda,\mu+1}^q \mathcal{L}(w) - [\mu - 1]_q I_{\lambda,\mu}^q \mathcal{L}(w) \quad (6.1.4)$$

If $q \rightarrow 1$, the relationships (6.1.3) and (6.1.4) imply that

$$\begin{aligned} w (I_{\lambda+1} \mathcal{L}(w))' &= (1 + \lambda) I_{\lambda,\mu} \mathcal{L}(w) - \lambda I_{\lambda+1,\mu} \mathcal{L}(w), \\ w (I_{\lambda,\mu} \mathcal{L}(w))' &= \mu I_{\lambda,\mu+1} \mathcal{L}(w) - (\mu - 1) I_{\lambda+1,\mu} \mathcal{L}(w). \end{aligned}$$

which is the well known identities of Choi-Saigo-Srivastava operator. By taking notable values of parameters, we get numerous known operator studied earlier in the literature.

Special cases

1. For $\mu = 2$, we obtain, q -analogue of Noor Integral operator studied in [105], which is defined as:

$$I_{\lambda,2}^q \mathcal{L}(w) = w + \sum_{m=2}^{\infty} \frac{[m]_q!}{[1 + \lambda \cdot q]_{m-1}} a_m w^m.$$

2 For $\mu = 2$, $q \rightarrow 1$, we obtain, differential operator studied in [74], which is defined as:

$$I^m \mathcal{L}(w) = w + \sum_{m=2}^{\infty} \frac{m!}{(1 + \lambda)_{m-1}} a_m w^m.$$

3. For $\mu = 2$, $\lambda = 1 - \alpha$, and $q \rightarrow 1$, we obtain Owa-Srivastava operator studied in [99] which is defined as:

$$I_{1-\alpha,2} \mathcal{L}(w) = w + \sum_{m=2}^{\infty} \frac{\Gamma(m+1)\Gamma(2-\alpha)}{\Gamma(m+1-\alpha)} a_m w^m.$$

The aim of this chapter, to investigate the following subclass of AF associated with the operator $I_{\lambda,\mu}^q$.

6.1.1 Definition

A function $\mathcal{L} \in \mathcal{A}$ is belonging to $Q_q^*(\lambda, \mu, \widehat{\mathfrak{A}}, \widetilde{\mathfrak{B}})$ if it satisfies

$$\frac{w\partial D_q(I_{\lambda,\mu}^q \mathcal{L}(w))}{I_{\lambda,\mu}^q \mathcal{L}(w)} < \frac{1 + \widehat{\mathfrak{A}}w}{1 + \widetilde{\mathfrak{B}}w}$$

Equivalently, a function $\mathcal{L} \in \mathcal{A}$ is belonging to $Q_q^*(\lambda, \mu, \widehat{\mathfrak{A}}, \widetilde{\mathfrak{B}})$, if and only if

$$\left| \frac{\frac{w\partial D_q(I_{\lambda,\mu}^q \mathcal{L}(w))}{I_{\lambda,\mu}^q \mathcal{L}(w)} - 1}{\widehat{\mathfrak{A}} - \widetilde{\mathfrak{B}} \left(\frac{w\partial D_q(I_{\lambda,\mu}^q \mathcal{L}(w))}{I_{\lambda,\mu}^q \mathcal{L}(w)} \right)} \right| < 1 \quad (6.1.5)$$

Throughout our discussion we assume that $\lambda > -1$, $\mu > 0$, $0 < q < 1$ and $-1 \leq \widetilde{\mathfrak{B}} < \widehat{\mathfrak{A}} \leq 1$, unless otherwise stated. We also suppose that all coefficients a_m of \mathcal{L} are real positive numbers.

6.2 Main Results

6.2.1 Theorem

Let $\mathcal{L} \in \mathcal{A}$ be of the form (1.1.1). Then $\mathcal{L} \in Q_q^*(\lambda, \mu, \widehat{\mathfrak{A}}, \widetilde{\mathfrak{B}})$, if and only if

$$\sum_{m=2}^{\infty} \left\{ \lceil m \rceil_q (1 - \widetilde{\mathfrak{B}}) - 1 + \widehat{\mathfrak{A}} \right\} \frac{\lceil \mu, q \rceil_{m-1}}{\lceil 1 + \lambda, q \rceil_{m-1}} a_m < \widehat{\mathfrak{A}} - \widetilde{\mathfrak{B}} \quad (6.2.1)$$

Proof. Assuming that (6.2.1) holds. To show that $\mathcal{L} \in Q_q^*(\lambda, \mu, \widehat{\mathfrak{A}}, \widetilde{\mathfrak{B}})$, we only need to prove

the inequality (6.1.5). For this, we consider

$$\begin{aligned} \left| \frac{\frac{w\partial D_q(I_{\lambda,\mu}^q \mathcal{L}(w))}{I_{\lambda,\mu}^q \mathcal{L}(w)} - 1}{\widehat{\mathfrak{A}} - \widetilde{\mathfrak{B}} \left(\frac{w\partial D_q(I_{\lambda,\mu}^q \mathcal{L}(w))}{I_{\lambda,\mu}^q \mathcal{L}(w)} \right)} \right| &= \left| \frac{\sum_{m=2}^{\infty} (\lceil m \rceil_q - 1) \frac{[\mu,q]_{m-1}}{[1+\lambda,q]_{m-1}} a_m w^m}{(\widehat{\mathfrak{A}} - \widetilde{\mathfrak{B}}) w + \sum_{m=2}^{\infty} \left\{ \widehat{\mathfrak{A}} - \widetilde{\mathfrak{B}} \lceil m \rceil_q \right\} \frac{[\mu,q]_{m-1}}{[1+\lambda,q]_{m-1}} a_m w^m} \right| \\ &\leq \frac{\sum_{m=2}^{\infty} (\lceil m \rceil_q - 1) \frac{[\mu,q]_{m-1}}{[1+\lambda,q]_{m-1}} a_m}{(\widehat{\mathfrak{A}} - \widetilde{\mathfrak{B}}) - \sum_{m=2}^{\infty} \left\{ \widehat{\mathfrak{A}} - \widetilde{\mathfrak{B}} \lceil m \rceil_q \right\} \frac{[\mu,q]_{m-1}}{[1+\lambda,q]_{m-1}} a_m} < 1. \end{aligned}$$

where we have used (1.6.2), (6.1.2), and (6.2.1) and this completes the direct part. Conversely, let $\mathcal{L} \in Q_q^*(\lambda, \mu, \widehat{\mathfrak{A}}, \widetilde{\mathfrak{B}})$ be of the form (1.1.1), then from (6.1.5) along with (6.1.2), we have

$$\left| \frac{\frac{w\partial D_q(I_{\lambda,\mu}^q \mathcal{L}(w))}{I_{\lambda,\mu}^q \mathcal{L}(w)} - 1}{\widehat{\mathfrak{A}} - \widetilde{\mathfrak{B}} \left(\frac{w\partial D_q(I_{\lambda,\mu}^q \mathcal{L}(w))}{I_{\lambda,\mu}^q \mathcal{L}(w)} \right)} \right| = \left| \frac{\sum_{m=2}^{\infty} (\lceil m \rceil_q - 1) \frac{[\mu,q]_{m-1}}{[1+\lambda,q]_{m-1}} a_m w^m}{(\widehat{\mathfrak{A}} - \widetilde{\mathfrak{B}}) w + \sum_{m=2}^{\infty} \left\{ \widehat{\mathfrak{A}} - \widetilde{\mathfrak{B}} \lceil m \rceil_q \right\} \frac{[\mu,q]_{m-1}}{[1+\lambda,q]_{m-1}} a_m w^m} \right| < 1.$$

Since $|\operatorname{Re} w| < |w|$, we have

$$\operatorname{Re} \left(\frac{\sum_{m=2}^{\infty} (\lceil m \rceil_q - 1) \frac{[\mu,q]_{m-1}}{[1+\lambda,q]_{m-1}} a_m w^m}{(\widehat{\mathfrak{A}} - \widetilde{\mathfrak{B}}) + \sum_{m=2}^{\infty} \left\{ \widehat{\mathfrak{A}} - \widetilde{\mathfrak{B}} \lceil m \rceil_q \right\} \frac{[\mu,q]_{m-1}}{[1+\lambda,q]_{m-1}} a_m w^m} \right) < 1. \quad (6.2.2)$$

Now, by choosing such value of w from the real axis such that $\frac{w\partial D_q(I_{\lambda,\mu}^q \mathcal{L}(w))}{I_{\lambda,\mu}^q \mathcal{L}(w)}$ is real. For real values and $w \rightarrow 1^-$, also after quiteing the denominator in (6.2.2), we obtain the required inequality (6.2.1). ■

6.2.2 Theorem

Let $\mathcal{L} \in Q_q^*(\lambda, \mu, \widehat{\mathfrak{A}}, \widetilde{\mathfrak{B}})$. Then

$$I_{\lambda,\mu}^q \mathcal{L}(w) = \exp \int_0^w \frac{1}{t} \left(\frac{1 - \widehat{\mathfrak{A}}\phi(t)}{1 - \widetilde{\mathfrak{B}}\phi(t)} \right) d_q(t).$$

with $|\phi(w)| < 1$.

Proof. Let $\mathcal{L} \in Q_q^*(\lambda, \mu, \widehat{\mathfrak{A}}, \widetilde{\mathfrak{B}})$ and setting

$$\frac{w \partial D_q I_{\lambda, \mu}^q \mathcal{L}(w)}{I_{\lambda, \mu}^q \mathcal{L}(w)} = h(w).$$

with

$$h(w) \prec \frac{1 + \widehat{\mathfrak{A}}w}{1 + \widetilde{\mathfrak{B}}w},$$

equivalently, we can write

$$\left| \frac{h(w) - 1}{\widehat{\mathfrak{A}} - \widetilde{\mathfrak{B}}h(w)} \right| < 1,$$

then, we have

$$\frac{h(w) - 1}{\widehat{\mathfrak{A}} - \widetilde{\mathfrak{B}}h(w)} = \phi(w).$$

where $|\phi(w)| < 1$. Thus we can rewrite

$$\frac{\partial D_q \left(I_{\lambda, \mu}^q \mathcal{L}(w) \right)}{I_{\lambda, \mu}^q \mathcal{L}(w)} = \frac{1}{w} \left(\frac{1 - \widehat{\mathfrak{A}}\phi(t)}{1 - \widetilde{\mathfrak{B}}\phi(t)} \right)$$

and assist by basic calculation of integration, we get the required result. ■

6.2.3 Theorem

Let $\mathcal{L}_j \in Q_q^*(\lambda, \mu, \widehat{\mathfrak{A}}, \widetilde{\mathfrak{B}})$ and have the form

$$\mathcal{L}_j(w) = w + \sum_{k=1}^{\infty} a_{k,j} w^k. \quad \text{for } j = 1, 2, 3, \dots, l.$$

then $F \in Q_q^*(\lambda, \mu, \widehat{\mathfrak{A}}, \widetilde{\mathfrak{B}})$, where

$$F(w) = \sum_{j=1}^l c_j \mathcal{L}_j(w) \quad \text{with} \quad \sum_{j=1}^l c_j = 1.$$

Proof. By the idea of Theorem 6.2.1, we write as

$$\sum_{m=2}^{\infty} \left\{ \frac{\left\{ \left\lceil m \right\rceil_q (1 - \widetilde{\mathfrak{B}}) - 1 + \widehat{\mathfrak{A}} \right\} \frac{[\mu q]_{m-1}}{[1+\lambda q]_{m-1}}}{\widehat{\mathfrak{A}} - \widetilde{\mathfrak{B}}} \right\} a_{m,j} < 1.$$

Therefore

$$\begin{aligned}
F(w) &= \sum_{j=2}^l c_j \left(w + \sum_{m=2}^{\infty} a_{m,j} w^m \right) = w + \sum_{j=2}^l \sum_{m=2}^{\infty} c_j a_{m,j} w^m \\
&= w + \sum_{m=2}^{\infty} \left(\sum_{j=2}^l c_j a_{m,j} \right) w^m
\end{aligned}$$

However,

$$\begin{aligned}
&\sum_{m=2}^{\infty} \frac{\left\{ [m]_q (1 - \tilde{\mathfrak{B}}) - 1 + \hat{\mathfrak{A}} \right\} \frac{[\mu, q]_{m-1}}{[1+\lambda, q]_{m-1}} \left(\sum_{j=2}^l a_{m,j} c_j \right)}{\hat{\mathfrak{A}} - \tilde{\mathfrak{B}}} \\
&= \sum_{j=2}^l \left\{ \sum_{m=2}^{\infty} \frac{\left\{ [m]_q (1 - \tilde{\mathfrak{B}}) - 1 + \hat{\mathfrak{A}} \right\} \frac{[\mu, q]_{m-1}}{[1+\lambda, q]_{m-1}} a_{m,j}}{\hat{\mathfrak{A}} - \tilde{\mathfrak{B}}} \right\} c_j \leq 1,
\end{aligned}$$

then $F \in Q_q^*(\lambda, \mu, \hat{\mathfrak{A}}, \tilde{\mathfrak{B}})$. ■

6.2.4 Theorem

Let $\mathcal{L}, g \in Q_q^*(\lambda, \mu, \hat{\mathfrak{A}}, \tilde{\mathfrak{B}})$. Then the weighted mean h_j , where h_j is defined by

$$h_j(w) = \frac{(1-j)\mathcal{L}(w) + (1+j)g(w)}{2}, \quad (6.2.3)$$

is also in $Q_q^*(\lambda, \mu, \hat{\mathfrak{A}}, \tilde{\mathfrak{B}})$

Proof. From (6.2.3), we can write

$$h_j(w) = w + \sum_{m=2}^{\infty} \left\{ \frac{(1-j)a_m + (1+j)\tilde{\mathfrak{B}}_m}{2} \right\} w^m.$$

To prove that $h_j(w) \in Q_q^*(\lambda, \mu, \hat{\mathfrak{A}}, \tilde{\mathfrak{B}})$, we need to show that

$$\sum_{m=2}^{\infty} \frac{\left\{ [m]_q (1 - \tilde{\mathfrak{B}}) - 1 + \hat{\mathfrak{A}} \right\} \left\{ \frac{(1-j)a_m + (1+j)\tilde{\mathfrak{B}}_m}{2} \right\} \frac{[\mu, q]_{m-1}}{[1+\lambda, q]_{m-1}}}{\hat{\mathfrak{A}} - \tilde{\mathfrak{B}}} < 1.$$

For this, consider

$$\begin{aligned}
& \sum_{m=2}^{\infty} \frac{\left\{ \left\lfloor m \right\rfloor_q (1 - \tilde{\mathfrak{B}}) - 1 + \hat{\mathfrak{A}} \right\}}{\hat{\mathfrak{A}} - \tilde{\mathfrak{B}}} \left\{ \frac{(1 - \jmath) a_m + (1 + \jmath) \tilde{\mathfrak{B}}_m}{2} \right\} \frac{[\mu, q]_{m-1}}{[1 + \lambda, q]_{m-1}} \\
&= \frac{(1 - \jmath)}{2} \sum_{m=2}^{\infty} \frac{\left\{ \left\lfloor m \right\rfloor_q (1 - \tilde{\mathfrak{B}}) - 1 + \hat{\mathfrak{A}} \right\}}{\hat{\mathfrak{A}} - \tilde{\mathfrak{B}}} \frac{[\mu, q]_{m-1}}{[1 + \lambda, q]_{m-1}} a_m \\
&\quad + \frac{(1 + \jmath)}{2} \sum_{m=2}^{\infty} \frac{\left\{ \left\lfloor m \right\rfloor_q (1 - \tilde{\mathfrak{B}}) - 1 + \hat{\mathfrak{A}} \right\}}{\hat{\mathfrak{A}} - \tilde{\mathfrak{B}}} \frac{[\mu, q]_{m-1}}{[1 + \lambda, q]_{m-1}} \tilde{\mathfrak{B}}_m \\
&< \frac{(1 - \jmath)}{2} + \frac{(1 + \jmath)}{2} = 1
\end{aligned}$$

by using inequality (6.2.1), the proof is completed. ■

6.2.5 Theorem

Let \mathcal{L}_j with $j = 1, 2, \dots, \alpha$ is belonging to the $Q_q^*(\lambda, \mu, \hat{\mathfrak{A}}, \tilde{\mathfrak{B}})$. Then the arithmetic mean h , where h is defined by

$$h(w) = \frac{1}{\alpha} \sum_{j=1}^{\alpha} \mathcal{L}_j(w), \quad (6.2.4)$$

is also in $Q_q^*(\lambda, \mu, \hat{\mathfrak{A}}, \tilde{\mathfrak{B}})$.

Proof. From (6.2.4), we can write

$$\begin{aligned}
h(w) &= \frac{1}{\alpha} \sum_{j=1}^{\alpha} \left(w + \sum_{m=2}^{\infty} a_{m,j} w^m \right) \\
&= w + \sum_{m=2}^{\infty} \left(\frac{1}{\alpha} \sum_{j=1}^{\alpha} a_{m,j} \right) w^m.
\end{aligned} \quad (6.2.5)$$

Since $\mathcal{L}_j \in Q_q^*(\lambda, \mu, \widehat{\mathfrak{A}}, \widetilde{\mathfrak{B}})$, for every $j = 1, 2, 3, \dots, \alpha$, therefore using (6.2.5) and (6.2.1), we have

$$\begin{aligned}
& \sum_{m=2}^{\infty} \left\{ \lceil m \rceil_q (1 - \widetilde{\mathfrak{B}}) - 1 + \widehat{\mathfrak{A}} \right\} \frac{[\mu, q]_{m-1}}{[1 + \lambda, q]_{m-1}} \left(\frac{1}{\alpha} \sum_{j=1}^{\alpha} a_{m,j} \right) \\
&= \frac{1}{\alpha} \sum_{j=1}^{\alpha} \left(\sum_{m=2}^{\infty} \left\{ \lceil m \rceil_q (1 - \widetilde{\mathfrak{B}}) - 1 + \widehat{\mathfrak{A}} \right\} \frac{[\mu, q]_{m-1}}{[1 + \lambda, q]_{m-1}} a_{m,j} \right) \\
&\leq \frac{1}{\alpha} \sum_{j=1}^{\alpha} (\widehat{\mathfrak{A}} - \widetilde{\mathfrak{B}}) \\
&= \widehat{\mathfrak{A}} - \widetilde{\mathfrak{B}},
\end{aligned}$$

and this completes the proof. ■

6.2.6 Theorem

Let $\mathcal{L} \in Q_q^*(\lambda, \mu, \widehat{\mathfrak{A}}, \widetilde{\mathfrak{B}})$. Then $\mathcal{L} \in \mathcal{S}^*(\gamma)$, for $|w| < r_1$, where

$$r_1 = \left[\frac{(1 - \gamma) \left\{ (1 - \widetilde{\mathfrak{B}}) \lceil m \rceil_q + \widehat{\mathfrak{A}} - 1 \right\} \frac{[\mu, q]_{m-1}}{[1 + \lambda, q]_{m-1}}}{(m - \gamma) (\widehat{\mathfrak{A}} - \widetilde{\mathfrak{B}})} \right]^{\frac{1}{m-1}}$$

Proof. Let $\mathcal{L} \in Q_q^*(\lambda, \mu, \widehat{\mathfrak{A}}, \widetilde{\mathfrak{B}})$. To prove $\mathcal{L} \in \mathcal{S}^*(\gamma)$, we only need to show

$$\left| \frac{\left(\frac{u \mathcal{L}'(u)}{\mathcal{L}(w)} \right) - 1}{\left(\frac{w \mathcal{L}'(u)}{\mathcal{L}(w)} \right) + 1 - 2\gamma} \right| < 1.$$

By using (1.1.1) along with some simple computations yield

$$\sum_{m=2}^{\infty} \left(\frac{m - \gamma}{1 - \gamma} \right) |a_m| |w|^{m-1} < 1. \quad (6.2.6)$$

Since $\mathcal{L} \in Q_q^*(\lambda, \mu, \widehat{\mathfrak{A}}, \widetilde{\mathfrak{B}})$, therefore from (6.2.1), we can easily obtain

$$\sum_{m=2}^{\infty} \frac{\left\{ \lceil m \rceil_q (1 - \widetilde{\mathfrak{B}}) - 1 + \widehat{\mathfrak{A}} \right\} \frac{[\mu, q]_{m-1}}{[1 + \lambda, q]_{m-1}}}{\widehat{\mathfrak{A}} - \widetilde{\mathfrak{B}}} |a_m| < 1 \quad (6.2.7)$$

Now the inequality (6.2.6) is true, if the following inequality

$$\sum_{m=2}^{\infty} \left(\frac{m-\gamma}{1-\gamma} \right) |a_m| |w|^{m-1} < \sum_{m=2}^{\infty} \frac{\left\{ \lceil m \rceil_q (1-\tilde{\mathfrak{B}}) - 1 + \hat{\mathfrak{A}} \right\} \frac{[\mu, q]_{m-1}}{[1+\lambda, q]_{m-1}}}{\hat{\mathfrak{A}} - \tilde{\mathfrak{B}}} |a_m|.$$

holds, which implies that

$$|w|^{m-1} < \frac{(1-\gamma) \left\{ \lceil m \rceil_q (1-\tilde{\mathfrak{B}}) - 1 + \hat{\mathfrak{A}} \right\} \frac{[\mu, q]_{m-1}}{[1+\lambda, q]_{m-1}}}{(\hat{\mathfrak{A}} - \tilde{\mathfrak{B}})(m-\gamma)},$$

and thus we get the required result. ■

6.2.7 Theorem

Let $-1 \leq \tilde{\mathfrak{B}}_2 \leq \tilde{\mathfrak{B}}_1 < \hat{\mathfrak{A}}_1 \leq \hat{\mathfrak{A}}_2 \leq 1$, and $I_{\lambda+1, \mu}^q \mathcal{L}(w) \neq 0$ in \tilde{H} , and this satisfy

$$\frac{\left(\lceil \lambda + 1 \rceil_q \right) I_{\lambda, \mu}^q \mathcal{L}(w)}{q^\lambda I_{\lambda+1, \mu}^q \mathcal{L}(w)} - \frac{\lceil \lambda \rceil_q}{q^\lambda} \prec \frac{1 + \hat{\mathfrak{A}}_1 w}{1 + \tilde{\mathfrak{B}}_1 w}.$$

Then $\mathcal{L} \in Q_q^* \left(\lambda + 1, \mu, \hat{\mathfrak{A}}_2, \tilde{\mathfrak{B}}_2 \right)$.

Proof. Since $I_{\lambda+1, \mu}^q \mathcal{L}(w) \neq 0$ in \tilde{H} , we define the function $p(w)$ by

$$\frac{w \partial D_q \left(I_{\lambda+1, \mu}^q \mathcal{L}(w) \right)}{I_{\lambda+1, \mu}^q \mathcal{L}(w)} = p(w). \quad (6.2.8)$$

By virtue of (6.1.3), we obtain

$$\frac{\left(\lceil \lambda + 1 \rceil_q \right) I_{\lambda, \mu}^q \mathcal{L}(w)}{q^\lambda I_{\lambda+1, \mu}^q \mathcal{L}(w)} - \frac{\lceil \lambda \rceil_q}{q^\lambda} = p(w).$$

Therefore, using (6.2.8), we have

$$\frac{w \partial D_q \left(I_{\lambda+1, \mu}^q \mathcal{L}(w) \right)}{I_{\lambda+1, \mu}^q \mathcal{L}(w)} = p(w) \prec \frac{1 + \hat{\mathfrak{A}}_1 w}{1 + \tilde{\mathfrak{B}}_1 w}.$$

by Lemma (1.10.7), we deduce that $\mathcal{L} \in Q_q^* \left(\lambda + 1, \mu, \hat{\mathfrak{A}}_2, \tilde{\mathfrak{B}}_2 \right)$. ■

Chapter 7

Janowski type q -convex and q -close-to-convex functions associated with q -conic domain

In this chapter, with the help q -conic domain $\left(\Omega_{k,q}[\widehat{\mathfrak{A}}, \widetilde{\mathfrak{B}}]\right)$ q -Janowski type functions and the concepts of quantum (or q -) calculus, we initiate new subclasses of q -convex and q -close-to-convex functions. These subclasses explores some vital geometric properties such as coefficient estimates (CE), sufficiency criteria and also convolution properties. Furthermore, we as well develop up some results about of these subclasses with those obtained in earlier investigations is also provided.

7.1 Introduction

Here we introduce the following classes $\kappa-\mathcal{UCV}_q(\mathfrak{C}, \mathfrak{D})$, $\kappa-\mathcal{UK}_q(\widehat{\mathfrak{A}}, \widetilde{\mathfrak{B}}, \mathfrak{C}, \mathfrak{D})$ and $\kappa-\mathcal{UQ}_q(\widehat{\mathfrak{A}}, \widetilde{\mathfrak{B}}, \mathfrak{C}, \mathfrak{D})$ of analytic functions.

7.1.1 Definition

Let $\mathcal{L} \in \mathcal{A}$, be in the class $k - \mathcal{UCV}_q(\mathfrak{C}, \mathfrak{D})$ if and only if

$$\Re \left(\frac{(\mathfrak{D}O_1 - O_3) \frac{\partial D_q(w \partial D_q \mathcal{L}(w))}{\partial D_q \mathcal{L}(w)} - (\mathfrak{C}O_1 - O_3)}{(\mathfrak{D}O_1 + O_3) \frac{\partial D_q(w \partial D_q \mathcal{L}(w))}{\partial D_q \mathcal{L}(u)} - (\mathfrak{C}O_1 + O_3)} \right) > k \left| \frac{(\mathfrak{D}O_1 - O_3) \frac{\partial D_q(w \partial D_q \mathcal{L}(w))}{\partial D_q \mathcal{L}(w)} - (\mathfrak{C}O_1 - O_3)}{(\mathfrak{D}O_1 + O_3) \frac{\partial D_q(w \partial D_q \mathcal{L}(u))}{\partial D_q \mathcal{L}(w)} - (\mathfrak{C}O_1 + O_3)} - 1 \right|.$$

Or equivalently,

$$\frac{\partial D_q(w \partial D_q \mathcal{L}(w))}{\partial D_q \mathcal{L}(w)} \in k - \mathcal{P}_q(\mathfrak{C}, \mathfrak{D}).$$

where $k \geq 0$, $-1 \leq \mathfrak{D} < \mathfrak{C} \leq 1$

One can clearly see that

$$\mathcal{L} \in \kappa - \mathcal{UCV}_q(\mathfrak{C}, \mathfrak{D}) \Leftrightarrow w \partial D_q(w) \in \kappa - \mathcal{ST}_q(\mathfrak{C}, \mathfrak{D}). \quad (7.1.1)$$

Here the class $\kappa - \mathcal{UCV}_q(\mathfrak{C}, \mathfrak{D})$ reduces to a well known class defined in [78] when $q \rightarrow 1$.

7.1.2 Definition

Let $\mathcal{L} \in \mathcal{A}$, be in the class $k - \mathcal{UK}_q(\tilde{\mathfrak{A}}, \tilde{\mathfrak{B}}, \mathfrak{C}, \mathfrak{D})$ if and only if there exist $l \in k - \mathcal{ST}_q(\mathfrak{C}, \mathfrak{D})$, such that

$$\Re \left(\frac{(\tilde{\mathfrak{B}}O_1 - O_3) \frac{w \partial D_q \mathcal{L}(w)}{l(w)} - (\tilde{\mathfrak{A}}O_1 - O_3)}{(\tilde{\mathfrak{B}}O_1 + O_3) \frac{w \partial D_q \mathcal{L}(w)}{l(w)} - (\tilde{\mathfrak{A}}O_1 + O_3)} \right) > k \left| \frac{(\tilde{\mathfrak{B}}O_1 - O_3) \frac{w \partial D_q \mathcal{L}(w)}{l(w)} - (\tilde{\mathfrak{A}}O_1 - O_3)}{(\tilde{\mathfrak{B}}O_1 + O_3) \frac{w \partial D_q \mathcal{L}(w)}{l(w)} - (\tilde{\mathfrak{A}}O_1 + O_3)} - 1 \right|$$

We can write equivalently

$$\frac{w \partial D_q \mathcal{L}(w)}{l(w)} \in k - \mathcal{P}_q(\tilde{\mathfrak{A}}, \tilde{\mathfrak{B}}).$$

where $-1 \leq \tilde{\mathfrak{B}} < \tilde{\mathfrak{A}} \leq 1$, $k \geq 0$, $-1 \leq \mathfrak{D} < \mathfrak{C} \leq 1$.

Here the class $k - \mathcal{UK}_q(\tilde{\mathfrak{A}}, \tilde{\mathfrak{B}}, \mathfrak{C}, \mathfrak{D})$ shrinks into the class defined in (see [60]) when $q \rightarrow 1$

7.1.3 Definition

Let $\mathcal{L} \in \mathcal{A}$. belong to the class $k\text{-}\mathcal{UQ}_q(\widehat{\mathfrak{A}}, \widetilde{\mathfrak{B}}, \mathfrak{C}, \mathfrak{D})$ if and only if there exists $l \in k\text{-}\mathcal{CV}_q(\mathfrak{C}, \mathfrak{D})$,

such that

$$\Re \left(\frac{\left(\widetilde{\mathfrak{B}}O_1 - O_3 \right) \frac{\partial D_q(w \partial D_q \mathcal{L}(w))}{\partial D_q l(w)} - \left(\widehat{\mathfrak{A}}O_1 - O_3 \right)}{\left(\widetilde{\mathfrak{B}}O_1 + O_3 \right) \frac{\partial D_q(w \partial D_q \mathcal{L}(w))}{\partial D_q l(w)} - \left(\widehat{\mathfrak{A}}O_1 + O_3 \right)} \right) > k \left| \frac{\left(\widetilde{\mathfrak{B}}O_1 - O_3 \right) \frac{\partial D_q(w \partial D_q \mathcal{L}(w))}{\partial D_q l(w)} - \left(\widehat{\mathfrak{A}}O_1 - O_3 \right)}{\left(\widetilde{\mathfrak{B}}O_1 + O_3 \right) \frac{\partial D_q(w \partial D_q \mathcal{L}(w))}{\partial D_q l(w)} - \left(\widehat{\mathfrak{A}}O_1 + O_3 \right)} - 1 \right|$$

Or equivalently,

$$\frac{\partial D_q(w \partial D_q \mathcal{L}(w))}{\partial D_q l(w)} \in k - \mathcal{P}_q(\widehat{\mathfrak{A}}, \widetilde{\mathfrak{B}}),$$

where for $k \geq 0$, $-1 \leq \mathfrak{D} < \mathfrak{C} \leq 1$, $-1 \leq \widetilde{\mathfrak{B}} < \widehat{\mathfrak{A}} \leq 1$.

It is simple to verify this

$$\mathcal{L} \in \kappa - \mathcal{UQ}_q(\widehat{\mathfrak{A}}, \widetilde{\mathfrak{B}}, \mathfrak{C}, \mathfrak{D}) \Leftrightarrow w \partial D_q \mathcal{L} \in \kappa - \mathcal{UK}_q(\widehat{\mathfrak{A}}, \widetilde{\mathfrak{B}}, \mathfrak{C}, \mathfrak{D}). \quad (7.1.2)$$

Here the class $\kappa - \mathcal{UQ}_q(\widehat{\mathfrak{A}}, \widetilde{\mathfrak{B}}, \mathfrak{C}, \mathfrak{D})$ shrinks into the class defined in [60] when $q \rightarrow 1$.

In this chapter, we assume that $q \in (0, 1)$, $k \geq 0$, $-1 \leq \mathfrak{D} < \mathfrak{C} \leq 1$, and $-1 \leq \widetilde{\mathfrak{B}} < \widehat{\mathfrak{A}} \leq 1$ unless otherwise specified.

7.2 Main Results

7.2.1 Theorem

Let $\mathcal{L} \in \mathcal{A}$, then \mathcal{L} is in the class $k\text{-}\mathcal{UCV}_q(\mathfrak{C}, \mathfrak{D})$, if the following inequality holds

$$\begin{aligned} & \sum_{m=2}^{\infty} [m]_q \left\{ 2O_3(k+1)q [m-1]_q + \left| (\mathfrak{D}O_1 + O_3) [m]_q - (\mathfrak{C}O_1 + O_3) \right| \right\} |a_m| \\ & \leq O_1 |\mathfrak{D} - \mathfrak{C}| \end{aligned}$$

Proof. By Lemma 1.10.12 and relation (7.1.1) the proof is straightforward. ■

For $q \rightarrow 1^-$, in Theorem 7.2.1, then we obtained following corollary, proved by Malik and Noor [78].

7.2.2 Corollary

Let $\mathcal{L} \in \mathcal{A}$, then \mathcal{L} belong to $k\text{-UCV}(\mathfrak{C}, \mathfrak{D})$, if the following inequality holds

$$\sum_{m=2}^{\infty} m \{2(k+1)(m-1) + |m(\mathfrak{D}+1) - (\mathfrak{C}+1)|\} |a_m| \leq |\mathfrak{D} - \mathfrak{C}|.$$

7.2.3 Theorem

Let $\mathcal{L} \in \mathcal{A}$, then \mathcal{L} is in the class $k\text{-UK}_q(\widehat{\mathfrak{A}}, \widetilde{\mathfrak{B}}, \mathfrak{C}, \mathfrak{D})$, if the condition (7.2.1) holds

$$\begin{aligned} & \sum_{m=2}^{\infty} \left\{ 2O_3(k+1) \left| b_m - \lceil m \rceil_q a_m \right| + \left| (\widetilde{\mathfrak{B}}O_1 + O_3) \lceil m \rceil_q a_m - (\widehat{\mathfrak{A}}O_1 + O_3) b_m \right| \right\} \\ & \leq O_1 \left| \widetilde{\mathfrak{B}} - \widehat{\mathfrak{A}} \right| \end{aligned} \quad (7.2.1)$$

Proof. Presume that (7.2.1) holds, then it is to be show enough that

$$\begin{aligned} & k \left| \frac{(\widetilde{\mathfrak{B}}O_1 - O_3) \frac{w \partial D_q \mathcal{L}(w)}{l(w)} - (\widehat{\mathfrak{A}}O_1 - O_3)}{(\widetilde{\mathfrak{B}}O_1 + O_3) \frac{w \partial D_q \mathcal{L}(w)}{l(w)} - (\widehat{\mathfrak{A}}O_1 + O_3)} - 1 \right| \\ & - \operatorname{Re} \left\{ \frac{(\widetilde{\mathfrak{B}}O_1 - O_3) \frac{w \partial D_q \mathcal{L}(w)}{l(w)} - (\widehat{\mathfrak{A}}O_1 - O_3)}{(\widetilde{\mathfrak{B}}O_1 + O_3) \frac{w \partial D_q \mathcal{L}(w)}{l(w)} - (\widehat{\mathfrak{A}}O_1 + O_3)} - 1 \right\} \\ & < 1 \end{aligned}$$

We have

$$\begin{aligned}
& k \left| \frac{\left(\tilde{\mathfrak{B}}O_1 - O_3 \right) \frac{w \partial D_q \mathcal{L}(w)}{l(w)} - \left(\widehat{\mathfrak{A}}O_1 - O_3 \right)}{\left(\tilde{\mathfrak{B}}O_1 + O_3 \right) \frac{w \partial D_q \mathcal{L}(w)}{l(w)} - \left(\widehat{\mathfrak{A}}O_1 + O_3 \right)} - 1 \right| \\
& - \operatorname{Re} \left\{ \frac{\left(\tilde{\mathfrak{B}}O_1 - O_3 \right) \frac{w \partial D_q \mathcal{L}(w)}{l(w)} - \left(\widehat{\mathfrak{A}}O_1 - O_3 \right)}{\left(\tilde{\mathfrak{B}}O_1 + O_3 \right) \frac{w \partial D_q \mathcal{L}(w)}{l(w)} - \left(\widehat{\mathfrak{A}}O_1 + O_3 \right)} - 1 \right\} \\
& \leq (k+1) \left| \frac{\left(\tilde{\mathfrak{B}}O_1 - O_3 \right) \frac{w \partial D_q \mathcal{L}(w)}{l(w)} - \left(\widehat{\mathfrak{A}}O_1 - O_3 \right)}{\left(\tilde{\mathfrak{B}}O_1 + O_3 \right) \frac{w \partial D_q \mathcal{L}(w)}{l(w)} - \left(\widehat{\mathfrak{A}}O_1 + O_3 \right)} - 1 \right| \\
& = 2O_3(k+1) \left| \frac{l(w) - w \partial D_q \mathcal{L}(w)}{\left(\tilde{\mathfrak{B}}O_1 + O_3 \right) w \partial D_q \mathcal{L}(w) - \left(\widehat{\mathfrak{A}}O_1 + O_3 \right) l(w)} \right| \\
& = 2O_3(k+1) \left| \frac{\sum_{m=2}^{\infty} \left\{ b_m - \lceil m \rceil_q a_m \right\} w^m}{O_1 \left(\tilde{\mathfrak{B}} - \widehat{\mathfrak{A}} \right) w + \sum_{m=2}^{\infty} \left\{ \left(\tilde{\mathfrak{B}}O_1 \right) + O_3 \right\} \lceil m \rceil_q a_m - \left(\widehat{\mathfrak{A}}O_1 + O_3 \right) b_m} w^m \right| \\
& \leq \frac{2O_3(k+1) \sum_{m=2}^{\infty} \left\{ \left| b_m - \lceil m \rceil_q a_m \right| \right\}}{O_1 \left| \tilde{\mathfrak{B}} - \widehat{\mathfrak{A}} \right| - \sum_{m=2}^{\infty} \left| \left(\tilde{\mathfrak{B}}O_1 + O_3 \right) \lceil m \rceil_q a_m - \left(\widehat{\mathfrak{A}}O_1 + O_3 \right) b_m \right|}. \tag{7.2.2}
\end{aligned}$$

The expression (7.2.2) is bounded above by 1 if

$$\begin{aligned}
& \sum_{m=2}^{\infty} \left[2O_3(k+1) \left| b_m - \lceil m \rceil_q a_m \right| + \left| \left(\tilde{\mathfrak{B}}O_1 + O_3 \right) \lceil m \rceil_q a_m - \left(\widehat{\mathfrak{A}}O_1 + O_3 \right) b_m \right| \right] \\
& \leq O_1 \left| \tilde{\mathfrak{B}} - \widehat{\mathfrak{A}} \right|.
\end{aligned}$$

■

7.2.4 Corollary[60]

Let $\mathcal{L} \in \mathcal{A}$. Then \mathcal{L} is in the class $k\text{-}\mathcal{U}\mathcal{K}_{q \rightarrow 1}(\widehat{\mathfrak{A}}, \tilde{\mathfrak{B}}, \mathfrak{C}, \mathfrak{D}) = k\text{-}\mathcal{U}\mathcal{K}(\widehat{\mathfrak{A}}, \tilde{\mathfrak{B}}, \mathfrak{C}, \mathfrak{D})$, if the following condition holds:

$$\sum_{m=2}^{\infty} \left\{ 2(k+1) |b_m - ma_m| + \left| (\tilde{\mathfrak{B}} + 1)ma_m - (\widehat{\mathfrak{A}} + 1)b_m \right| \right\} \leq \left| \tilde{\mathfrak{B}} - \widehat{\mathfrak{A}} \right|.$$

7.2.5 Theorem

Let $\mathcal{L} \in \mathcal{A}$. Then \mathcal{L} is in the class $k\mathcal{UQ}_q(\widehat{\mathfrak{A}}, \widetilde{\mathfrak{B}}, \mathfrak{C}, \mathfrak{D})$, if the following condition holds:

$$\begin{aligned} & \sum_{m=2}^{\infty} \lceil m \rceil_q \left[2O_3(k+1) \left| b_m - \lceil m \rceil_q a_m \right| + \left| (\widetilde{\mathfrak{B}}O_1 + O_3) \lceil m \rceil_q a_m - (\widehat{\mathfrak{A}}O_1 + O_3)b_m \right| \right] \\ & \leq O_1 \left| \widetilde{\mathfrak{B}} - \widehat{\mathfrak{A}} \right| \end{aligned}$$

Proof. By Theorem 7.2.3 and relation (7.1.2) the proof is straight forward. ■

7.2.6 Corollary[60]

Let $\mathcal{L} \in \mathcal{A}$. Then \mathcal{L} is in the class $k\mathcal{UK}_{q-1}(\widehat{\mathfrak{A}}, \widetilde{\mathfrak{B}}, \mathfrak{C}, \mathfrak{D}) = k\mathcal{UQ}(\widehat{\mathfrak{A}}, \widetilde{\mathfrak{B}}, \mathfrak{C}, \mathfrak{D})$, if

$$\sum_{m=2}^{\infty} m \left\{ 2(k+1) |b_m - ma_m| + \left| (\widetilde{\mathfrak{B}} + 1)ma_m - (\widehat{\mathfrak{A}} + 1)b_m \right| \right\} \leq \left| \widetilde{\mathfrak{B}} - \widehat{\mathfrak{A}} \right|.$$

7.2.7 Corollary[111]

Let $\mathcal{L} \in \mathcal{A}$. Then \mathcal{L} is in the class $1 - \mathcal{UK}_{q-1}(1 - 2\tau, -1, 1, -1) = \mathcal{UK}(\tau)$ if

$$\sum_{m=2}^{\infty} m^2 |a_m| \leq \frac{1 - \tau}{2}$$

7.2.8 Theorem

Let $\mathcal{L} \in k\mathcal{UCV}_q(\mathfrak{C}, \mathfrak{D})$, is of the form (1.1.1). Then

$$|a_m| \leq \frac{1}{\lceil m \rceil_q} \prod_{n=0}^{m-2} \left(\frac{|\delta(k)(\mathfrak{C} - \mathfrak{D})(O_1) - 4q \lceil n \rceil_{qe} \mathfrak{D}|}{4q \lceil n + 1 \rceil_q} \right),$$

where $\delta(k)$ is given by (1.6.2).

Proof. By Lemma 1.10.10 and relation (7.1.1) the proof is straightforward. ■

For $q \rightarrow 1^-$, Theorem 7.2.8 bring to the following corollary, proved by Noor [78]

7.2.9 Corollary

Let $\mathcal{L} \in k\text{-UCV}(\mathfrak{C}, \mathfrak{D})$. Then

$$|a_m| \leq \frac{1}{m} \prod_{n=0}^{m-2} \left(\frac{|\delta(k)(\mathfrak{C} - \mathfrak{D}) - 2n\mathfrak{D}|}{2(n+1)} \right).$$

where $\delta(k)$ is given by (1.6.2).

7.2.10 Theorem

If $\mathcal{L} \in k\text{-UK}_q(\widehat{\mathfrak{A}}, \widetilde{\mathfrak{B}}, \mathfrak{C}, \mathfrak{D})$ and $l(w) \in k\text{-ST}_q(\mathfrak{C}, \mathfrak{D})$. Then

$$|a_m| \leq \begin{cases} \frac{1}{\lceil m \rceil_q} \prod_{n=0}^{m-2} \frac{|\delta(k)(\mathfrak{C} - \mathfrak{D})(O_1) - 4q\lceil n \rceil_q \mathfrak{D}|}{4q\lceil n+1 \rceil_q} \\ + \frac{\delta(k)(\widehat{\mathfrak{A}} - \widetilde{\mathfrak{B}})O_1}{4\lceil m \rceil_q} \sum_{j=1}^{m-1} \prod_{n=0}^{j-2} \frac{|\delta(k)(\mathfrak{C} - \mathfrak{D})(O_1) - 4q\lceil j \rceil_q \mathfrak{D}|}{4q\lceil j+1 \rceil_q}, \quad m \geq 2. \end{cases}$$

where $\delta(k)$ is given in (1.6.2).

Proof. Let us take

$$\frac{w\partial D_q \mathcal{L}(w)}{l(w)} = h(w) \quad (7.2.3)$$

where

$$h(w) \in k - \mathcal{P}_q(\widehat{\mathfrak{A}}, \widetilde{\mathfrak{B}}) \text{ and } l(w) \in k - \mathcal{ST}_q(\mathfrak{C}, \mathfrak{D}).$$

Now from (7.2.3), we have

$$w\partial D_q \mathcal{L}(w) = l(w)h(w),$$

which implies that

$$w + \sum_{m=2}^{\infty} \lceil m \rceil_q a_m w^m = (1 + \sum_{m=1}^{\infty} c_m w^m) (w + \sum_{m=2}^{\infty} b_m w^m).$$

By equating w^m coefficients

$$\lceil m \rceil_q a_m = b_m + \sum_{j=1}^{m-1} b_j c_{m-j}. \quad a = 1, \quad b_1 = 1.$$

This implies that

$$\lceil m \rceil_q |a_m| \leq |b_m| + \sum_{j=1}^{m-1} |b_j| |c_{m-j}| \quad (7.2.4)$$

Since $h \in k\text{-}\mathcal{P}_q(\widehat{\mathfrak{A}}, \widetilde{\mathfrak{B}})$, therefore by using Lemma 1.10.9 on (7.2.4), we have

$$\lceil m \rceil_q |a_m| \leq |b_m| + \frac{\delta(k)O_1(\widehat{\mathfrak{A}} - \widetilde{\mathfrak{B}})}{4} \sum_{j=1}^{m-1} |b_j|. \quad (7.2.5)$$

Again $l \in k\text{-}\mathcal{ST}_q(\mathfrak{C}, \mathfrak{D})$, therefore by using Lemma 1.10.10 on (7.2.5), we have

$$|a_m| \leq \begin{cases} \frac{1}{\lceil m \rceil_q} \prod_{n=0}^{m-2} \left(\frac{|\delta(k)(\mathfrak{C} - \mathfrak{D})O_1| - 4q\lceil n \rceil_q \mathbb{E}|}{4q\lceil n+1 \rceil_q} \right) \\ + \frac{\delta(k)(\widehat{\mathfrak{A}} - \widetilde{\mathfrak{B}})O_1}{4\lceil m \rceil_q} \sum_{j=1}^{m-1} \prod_{n=0}^{j-2} \left(\frac{|\delta(k)(\mathfrak{C} - \mathfrak{D})(O_1) - 4q\lceil n \rceil_q \mathbb{E}|}{4q\lceil n+1 \rceil_q} \right). \end{cases}$$

■

7.2.11 Corollary[60]

If $\mathcal{L} \in k\text{-}\mathcal{UK}_{q \rightarrow 1}(\widehat{\mathfrak{A}}, \widetilde{\mathfrak{B}}, \mathfrak{C}, \mathfrak{D}) = k\text{-}\mathcal{UK}(\widehat{\mathfrak{A}}, \widetilde{\mathfrak{B}}, \mathfrak{C}, \mathfrak{D})$. Then

$$|a_m| \leq \begin{cases} \frac{1}{m} \prod_{n=0}^{m-2} \left(\frac{|\delta(k)(\mathfrak{C} - \mathfrak{D}) - 2n\mathfrak{D}|}{2(n+1)} \right) \\ + \frac{\delta(k)(\widehat{\mathfrak{A}} - \widetilde{\mathfrak{B}})}{2m} \sum_{j=1}^{m-1} \prod_{n=0}^{j-2} \left(\frac{|\delta(k)(\mathfrak{C} - \mathfrak{D}) - 2n\mathfrak{D}|}{2(n+1)} \right), \quad m \geq 2 \end{cases}$$

where $\delta(k)$ is defined by (1.6.2).

7.2.12 Corollary[76]

If $\mathcal{L}(w) \in k\text{-}\mathcal{UK}_{q \rightarrow 1}(1, -1, 1, -1) = k\text{-}\mathcal{UK}$. Then

$$|a_m| \leq \frac{(\delta(k))_{m-1}}{m!} + \frac{\delta(k)}{m} \sum_{j=0}^{m-1} \frac{(\delta(k))_{j-1}}{(j-1)!}, \quad m \geq 2.$$

7.2.13 Corollary[51]

If $\mathcal{L} \in 0 - \mathcal{U}\mathcal{K}_{q \rightarrow 1}(0, 1, -1, 1, -1) = \mathcal{K}$. Then

$$|a_m| \leq m, \quad m \geq 2.$$

7.2.14 Theorem

If $\mathcal{L} \in k\mathcal{U}\mathcal{Q}_q(\widehat{\mathfrak{A}}, \widetilde{\mathfrak{B}}, \mathfrak{C}, \mathfrak{D})$. Then

$$|a_m| \leq \begin{cases} \frac{1}{(\lceil m \rceil_q)^2} \prod_{n=0}^{m-2} \frac{|\delta(k)(\mathfrak{C}-\mathfrak{D})(O_1)-4q\lceil n \rceil_q \mathfrak{D}|}{4q\lceil n+1 \rceil_q} \\ + \frac{\delta(k)(\widehat{\mathfrak{A}}-\widetilde{\mathfrak{B}})O_1}{4(\lceil m \rceil_q)^2} \sum_{j=1}^{m-1} \prod_{n=0}^{j-2} \frac{|\delta(k)(\mathfrak{C}-\mathfrak{D})(O_1)-4q\lceil j \rceil_q \mathfrak{D}|}{4q\lceil j+1 \rceil_q}, \quad m \geq 2. \end{cases}$$

where $\delta(k)$ is defined by (1.6.2).

Proof. By Theorem 7.2.10 and relation (7.1.2) the proof is straight forward. ■

7.2.15 Corollary[60]

If $\mathcal{L} \in k\mathcal{U}\mathcal{Q}_{q \rightarrow 1}(\widehat{\mathfrak{A}}, \widetilde{\mathfrak{B}}, \mathfrak{C}, \mathfrak{D}) = \mathcal{U}\mathcal{Q}(\widehat{\mathfrak{A}}, \widetilde{\mathfrak{B}}, \mathfrak{C}, \mathfrak{D})$ and is of the form (1.1.1). Then

$$|a_m| \leq \begin{cases} \frac{1}{m^2} \prod_{n=0}^{m-2} \left(\frac{|\delta(k)(\mathfrak{C}-\mathfrak{D})-2n\mathfrak{D}|}{2(n+1)} \right) \\ + \frac{\delta(k)(\widehat{\mathfrak{A}}-\widetilde{\mathfrak{B}})}{2m^2} \sum_{j=1}^{m-1} \prod_{n=0}^{j-2} \left(\frac{|\delta(k)(\mathfrak{C}-\mathfrak{D})-2n\mathfrak{D}|}{2(n+1)} \right), \quad m \geq 2. \end{cases}$$

7.2.16 Theorem

If $\mathcal{L} \in k\mathcal{P}(\mathfrak{C}, \mathfrak{D})$ and $\widehat{\chi} \in \mathcal{C}$, then $\mathcal{L} * \widehat{\chi} \in k\mathcal{ST}_q(\mathfrak{C}, \mathfrak{D})$

Proof. Here we need to prove that

$$\frac{w\partial D_q(\widehat{\chi}(w) * \mathcal{L}(w))}{(\widehat{\chi}(w) * \mathcal{L}(w))} \in k\mathcal{ST}_q(\mathfrak{C}, \mathfrak{D})$$

Consider

$$\begin{aligned} & \frac{\widehat{\chi}(w) * \mathcal{L}(w) \left(\frac{w\partial D_q \mathcal{L}(w)}{\mathcal{L}(w)} \right)}{\widehat{\chi}(w) * \mathcal{L}(w)} \\ & \frac{\widehat{\chi}(w) * \mathcal{L}(w) \Psi(w)}{\widehat{\chi}(w) * \mathcal{L}(w)}. \end{aligned}$$

where $\frac{w\partial D_q \mathcal{L}(w)}{\mathcal{L}(w)} = \Psi(w) \in \mathcal{P}_q(\mathfrak{C}, \mathfrak{D})$. By using Lemma 1.10 11, we will obtain the required result. ■

7.2.17 Theorem

If $\mathcal{L} \in k\text{-}\mathcal{UK}_q(\widehat{\mathfrak{A}}, \widetilde{\mathfrak{B}}, \mathfrak{C}, \mathfrak{D})$ and $\widehat{\chi} \in \mathcal{C}$, then $\mathcal{L} * \widehat{\chi} \in k\text{-}\mathcal{UK}_q(\widehat{\mathfrak{A}}, \widetilde{\mathfrak{B}}, \mathfrak{C}, \mathfrak{D})$.

Proof. Since $\mathcal{L} \in k\text{-}\mathcal{UK}_q(\widehat{\mathfrak{A}}, \widetilde{\mathfrak{B}}, \mathfrak{C}, \mathfrak{D})$, there exist $l \in k\text{-}\mathcal{ST}_q(\mathfrak{C}, \mathfrak{D})$, such that $\frac{w\partial D_q \mathcal{L}(w)}{l(w)} \in k\text{-}\mathcal{P}_q(\widehat{\mathfrak{A}}, \widetilde{\mathfrak{B}})$.

It follows from Lemma 1.10 11 that $\widehat{\chi} * l \in k\text{-}\mathcal{ST}_q(\mathfrak{C}, \mathfrak{D})$.

Consider

$$\begin{aligned} \frac{w\partial D_q(\widehat{\chi}(w) * \mathcal{L}(w))}{(\widehat{\chi}(w) * l(w))} &= \frac{\widehat{\chi}(w) * (w\partial D_q \mathcal{L}(w))}{(\widehat{\chi}(w) * l(w))} \\ &= \frac{\widehat{\chi}(w) * \left(\frac{w\partial D_q \mathcal{L}(w)}{l(w)}\right) l(w)}{\widehat{\chi}(w) * \mathcal{L}(w)} \\ &= \frac{\widehat{\chi}(w) * F(w)l(w)}{\widehat{\chi}(w) * l(w)}. \end{aligned}$$

where $F \in k\text{-}\mathcal{ST}_q(\widehat{\mathfrak{A}}, \widetilde{\mathfrak{B}})$ By using Lemma 1.10.11, we will obtain the required result. ■

Conclusions

This thesis is mainly in the field of GFT of single complex variable. We studied some new subclasses of AF within the open unit disk \tilde{H} by utilizing latest techniques such as subordination and convolution.

It is worth mentioning that operator plays a central role in almost all branches of analysis. In this thesis we discuss Sălăgean q -differential operator. We profoundly examined the analytic and geometric properties of these recently defined classes. For these classes certain important and interesting results like coefficients bounds, growth results, distortion theorems, extreme points, radius of convex, close-to-convex and starlikeness have obtained. We also effectively introduce q -analogue of Choi-Saigo-Srivastava operator and initiate a subclass of AF. We utilized the subordination methods to drive our key findings such as coefficient estimates (CE), integral representation (IR), linear combination (LC), weighted mean (WM), arithmetic means (AM) and radius of starlikeness for this class. Our initiated classes generalized numerous classes by choosing specific values of the parameters.

Bibliography

- [1] Abubakar A and Darus M On a certain subclass of analytic functions involving differential operators. *Transylvanian Journal Mathematics and Mechanics*. 2011, 3(1), 1-8.
- [2] Adams C. R. On the linear partial q -difference equation of general type. *Transactions of the American Mathematical Society*, 1929. 31, 360–371.
- [3] Akgul A. On second-order differential subordinations for a class of analytic functions defined by convolution. *Journal of Nonlinear Sciences and Applications*, 2017, 10, 954-963.
- [4] Akgül A. Second-Order Differential Subordinations on a Class of Analytic Functions Defined by the Rafid Operator. *Ukrainian Mathematical Journal*, 2018, 70(5). 673-686.
- [5] Akhiezer N.I. *Elements of the theory of elliptic functions*. American Mathematical Society: Providence, RI, USA, 1970, 79.
- [6] Alexander J. W. Functions which map the interior of the unit circle upon simple regions. *Annals of Mathematics*, 1915-16, 17, 12-22.
- [7] Aldweby, H.; Darus, M. Some subordination results on q -analogue of Ruscheweyh differential operator. *Abstract and Applied Analysis*, 2014. 2014(1).
- [8] Aouf M. K. A subclass of uniformly convex functions with negative coefficients, *Mathematica*, 2010, 52(2), 99–111.
- [9] Attiya A. A. Some applications of Mittage-Leffler function in the unit disk, *Filomat*, 2016. 30. 2075-2081.

- [10] Aouf M. K. A subclass of uniformly convex functions with negative coefficients. *Mathematica*, 2010, 52(2), 99–111.
- [11] Baricz Á. Geometric properties of generalized Bessel functions of complex order. *Mathematica*, 2006, 48(71), 13–18.
- [12] Baricz Á. Geometric properties of generalized Bessel functions. *Publicationes Mathematicae*. 2008, 73, 155–178.
- [13] Baricz Á. Generalized Bessel functions of the first kind [Phd thesis]. Cluj-Napoca: Babes-Bolyai University, 2008.
- [14] Baricz Á. Generalized Bessel functions of the first kind. Springer, 2010.
- [15] Bernardi S. D. Convex and starlike univalent functions. *Transactions of the American Mathematical Society*. 1969, 135, 429–446.
- [16] Bieberbach L. Über die Koeffizienten derjenigen Potenzreihen welche eine schlichte Abbildung des Einheitskreises vermitteln. *Sitzungsberichte Preussische Akademie der Wissenschaften*, 1916. 940–955.
- [17] Bharati R., Parvatham R. and Swaminathan A. On subclasses of uniformly convex functions and corresponding class of starlike functions. *Tamkang Journal of Mathematics*, 1997 28, 17–32.
- [18] Branges L. D. A proof of the Bieberbach conjecture. *Acta Mathematica*, 1985, 154, 137–152.
- [19] Bshouty D., Lyzzaik A. and F. M. Sakar F. M. Harmonic mappings of bounded boundary rotation. *Proceedings of the American Mathematical Society*, 2018, 146, 1113–1121.
- [20] Carathéodory C. Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen. *Mathematics Annalen*, 1907, 64, 95–115.
- [21] Cho, N. E. The Noor integral operator and strongly close-to-convex functions. *Journal of Mathematical Analysis and Applications*, 2003, 238, 202–212.

[22] Cho N. E., Lee H. J. and Srivastava R. Characterizations for certain subclasses of starlike and convex functions associated with Bessel functions. *Filomat*, 2016, 30(7). 1911-1917.

[23] Choi J. and Agarwal P. Certain unified integrals involving a product of Bessel functions of the first kind. *Honam Mathematical Journal*, 2013, 35(4), 667-677.

[24] Choi J. H., Siago M. and Srivastava H. M. Some inclusion properties of a certain family of integral operators. *Journal of Mathematical Analysis and Applications*, 2002, 276. 432-445.

[25] El-Ashwah R. M., Aouf M. K., Hassan, A. M. and Hassan A. H. Certain new classes of analytic functions with varying arguments, *Journal of Complex Analysis* 2013, 1-5.

[26] Darus M., Hussain S., Raza M. and Sokol J. On a subclass of starlike functions, *Results Mathematics*, 2018, 1-12.

[27] Deniz E., Orhan H. and Srivastava H. M. Some sufficient conditions for univalence of certain families of integral operators involving generalized Bessel functions. *Taiwanese Journal of Mathematics*, 2011, 15(2), 883-917.

[28] Deniz E. Convexity of integral operators involving generalized Bessel functions. *Integral Transforms and Special Functions* 2013, 24(3), 201-216.

[29] Duren P. L. *Univalent Functions*, Springer-Verlag, New York. 1983.

[30] Eker S. S. and Owa S. Certain classes of analytic functions involving Salagean operator, *Journal of Inequalities in Pure and Applied Mathematics*, 2009, 10(1), 12-22.

[31] Elhaddad S., Darus M. and Aldweby H. On certain subclasses of analytic functions involving differential operator, *Jnanabha*, 2018, 48(1), 53-62.

[32] Faisal I. and Darus M. Study on subclass of analytic functions, *Acta Univ. Sapientiae Mathematica*. 2017, 9(1), 122-139.

[33] Fan L.L., Wang Z.G., Khan S., Hussain S., Naeem M. and Mahmood T. Coefficient bounds for certain subclasses of q -starlike functions. *Mathematics* 2019, 7. 969-981

[34] Fernandez A., Baleanu D. and Srivastava H. M. Series representations for fractional-calculus operators involving generalised Mittag-Leffler functions, Communications in Non-linear Science and Numerical Simulation, 2019, 67, 517-527.

[35] Gauchman H. Integral inequalities in q -calculus. Computers and Mathematics with Applications, 2004, 47, 281-300.

[36] Gasper G. and Rahman M. Basic hypergeometric series (with a Foreword by Richard Askey). Encyclopedia of mathematics and its applications. Cambridge University Press 1990, 35, 6-21.

[37] Gasper G. and Rahman M. Basic hypergeometric series. Encyclopedia of mathematics and its applications. Cambridge University Press. 2004, 96(2), 45-58.

[38] Goodman A. W. On close-to-convex function of higher order. Annales Universitatis Scientiarum Budapestinensis de Rolando Eotvos Nominatae Sectio Mathematica. 1972, 15, 17-30.

[39] Goodman A. W. Univalent Functions. Vol. I & II. Polygonal Publishing House Washington New Jersey, 1983.

[40] Goodman A. W. On uniformly convex functions. Annales Polonici Mathematica. 1991, 56, 87-92.

[41] Goodman A. W. On uniformly starlike functions. Journal of Mathematical Analysis and Applications, 1991, 155(2), 364-370.

[42] Govindaraj M and Sivasubramanian S. On a class of analytic functions related to conic domains involving q -calculus. Analysis Mathematica, 2017, 43(3), 475-487.

[43] Janowski W. Some extremal problem for certain families of analytic functions. Annales Polonici Mathematici, 1973, 28, 297-326.

[44] Jackson F. H. On q -functions and a certain difference operator. Earth and Environmental Science Transactions of The Royal Society of Edinburgh, 1909, 46, 253-281.

[45] Jackson F. H. On q -definite integrals. Pure and Applied Mathematics Quarterly, 1910. 41, 193–203.

[46] Jackson F. H. q -difference equations. American Journal of Mathematics. 1910. 32 305–314.

[47] Kanas S. and Wisniowska A. Conic regions and k -uniformly convexity. Journal of Computational and Applied Mathematics 1999. 105 327-336.

[48] Kanas S. and Srivastava H. M. Linear operators associated with k -uniformly convex functions. Integral Transforms and Special Function. 2000. 9, 121-132.

[49] Kanas S. and Wisniowska A. Conic domains and starlike functions Romanian journal of Pure and Applied Mathematics. 2000, 45, 647-657.

[50] Kanas S. Techniques of the differential subordination for domains bounded by conic sections. International Journal of Mathematics and Mathematical Sciences, 2003. 2003(38), 2389-2400.

[51] Kaplan W. Close-to-convex schlicht functions. Michigan Mathematical Journal. 1952. 1, 169-185.

[52] Khan S., Hussain S., Zaighum M. A. and Khan M. M. New subclass of analytic functions in conical domain associated with Ruscheweyh q -differential operator. International Journal of Analysis and Applications, 2018. 16, 239–253.

[53] Koebe P. Über die uniformisierung beliebiger analytischer kurven Nachrichten von der Gesellschaft der Wissenschaften zu Gottingen. Mathematisch-Physikalische Klasse 1907. 1, 191 - 210.

[54] Libera R. J. Some radius of convexity problem. Duke Mathematical Journal. 1964. 1, 143-158.

[55] Lindelöf, E. Mémoire sur certaines inégalités dans la théorie des fonctions monogènes et sur quelques propriétés nouvelles de ces fonctions dans le voisinage d'un point singulier essentiel, par Ernst Lindelöf la Société de littérature finnoise, 1908. 35. 1-35

[56] Littlewood J. E. *Lectures on the Theory of Functions*. Oxford University press London, 1944

[57] Littlewood J. E. On inequalities in the theory of functions. *Proceedings of the London Mathematical Society*. 1925, 23(1), 481–519..

[58] Livingston A. On the radius of univalence of certain analytic functions. *Proceedings of the American Mathematical Society*. 1966 17, 352-357.

[59] Lowner K. Untersuchunden über schlicht konforme abbildungen des einheitschkreses. *Mathematicshe Annalen*. 1923, 89, 103-121.

[60] Mahmood S., Arif M. and Malik S. N Janowski type close-to-convex functions associated with conic regions. *Journal of Inequalities and Applications*. 2017 2017(1), 259-272.

[61] Mahmood S., Jabeen M., Malik S. N., Srivastava H M., Manzoor R. and Riaz S. M. Some coefficient inequalities of q -starlike functions associated with conic domain defined by q -derivative. *Journal of Function Spaces*, 2018, 2018(1).

[62] Mannino A. Some inequality concerning starlike and convex functions. *General Mathematics*. 2004, 12(1), 5-12.

[63] Ma W and Minda D. A unified treatment of some special classes of univalent functions. *Proceeding of the confrence of complex analysis*, International Press, Massachusetts. 1992, 157-169.

[64] MacGregor T. M. Geometric problems in complex analysis. *American Mathematical Monthly*. 1972, 79, 447–468.

[65] Miller S. S and Mocanu P. T. Univalent solutions of Briot-Bouquet differential subordination. *Journal of Differential Equations*, 1985, 56, 297-309.

[66] Miller S. S and Mocanu P. T. *Differential Subordinations, Theory and Applications*. CRC press, 2000

[67] Mittag-Leffler G. M. Sur la nouvelle function $E_{\alpha}(x)$. *CR Acadmic Science*. Paris. 1903, 137(2), 554-558.

[68] Mittag-Leffler G. M. Sur la representation analytique d'une branche uniforme d'une fonction monogene. *Acta Mathematica*. 1905, 29(1), 101-181.

[69] Mocanu P. T. Une proprieté de convexité généralisée dans la théorie de la représentation conforme. *Mathematica*. 1969, 11(34), 127-13.

[70] Mondal S. R. and Swaminathan A. Geometric Properties of Generalized Bessel Functions. *Bulletin of the Malaysian Mathematical Sciences Society*. 2012, 35(1).

[71] Naeem M., Hussain S., Mahmood T., Khan S. and Darus M. A new subclass of analytic functions defined by using Salagean q -differential operator. *Mathematics*. 2019, 7, 458-469.

[72] Nevanlinna R. Über die konforme Abbildungen von streng gebieten. *oversikt av Finska Vetenskaps. Societas Scientiarum Fennica*, 1920 – 21.

[73] Noor K. I. On new classes of integral operator. *Journal of Natural Geometry*. 1999, 16, 71–80.

[74] Noor K. I. and Noor M. A. On integral operators, *Journal of Mathematical Analysis and Applications*, 1999, 238, 341–352

[75] Noor K. I. and Hussain S. On certain analytic functions associated with Ruscheweyh derivatives and bounded Mocanu variation. *Journal of Mathematical Analysis and Applications*. 2008, 340, 1145–1152.

[76] Noor K. I., Arif M. and Ul-Haq W. On k -uniformly close-to-convex functions of complex order. *Applied Mathematics and Computation*. 2009, 215(2), 629-635

[77] Noor K. I. Applications of certain operators to the classes related with generalized Janowski functions. *Integral Transforms and Special Functions*. 2010, 21(8), 557-567.

[78] Noor K. I. and Malik S. N. On coefficients inequalities of functions associated with conic domains. *Computers and Mathematics with Applications*, 2011, 6, 2209-2217.

[79] Noor K. I. and W. Ul-Haq W. On some implication type results involving generalized bounded Mocanu variations. *Computers & Mathematics with Applications*. 2012, 63, 1456–1461.

[80] Noshiro K. On the theory of schlicht functions. *Journal of the Faculty of Science, Hokkaido University Japan*, 1934. 2, 129–135.

[81] Nunokawa M. On the order of strongly starlikeness of strongly convex functions. *Proceedings of the Japan Academy*. 1963. 69(7), 234-237.

[82] Padmanabhan K. S and Ganesan M. S. Convolutions of certain classes of univalent functions with negative coefficients. *Indian Journal of Pure and Applied Mathematics*, 1988, 19(9), 880–889.

[83] Pinchuk B. Functions with bounded boundary rotation. *Israel Journal of Mathematics*. 1971, 10, 7-16.

[84] Pommerenke C. Über die Subordination analytics functions. *Journal fur die reine und angewandte Mathematik*. 1965, 218, 159-173.

[85] Pommerenke C. *Univalent Functions*, Vandenhoeck and Ruprechet. Gottingen, 1975.

[86] Rehman H.. Darus M. and Salah J. Coefficient properties involving the generalized k -Mittag-Leffler functions. *Transylvanian Journal Mathematics and Mechanics*. 2017, 9(2), 155-164. .

[87] Roberston M. S On the theory of univalent functions. *Annals of Mathematics*, 1936, 374-408.

[88] Rogosinski W. On subordination functions. *Mathematical Proceedings of the Cambridge Philosophical Society*. 1939, 35, 1-26.

[89] Rogosinski W. On the coefficients of subordinate functions. *Proceedings of the London Mathematical Society*. 1943, 48, 48-82.

[90] Ronning F. Uniformly convex functions and corresponding class of starlike functions. *Proceedings of the American Mathematical Society*. 1993, 118, 189-196.

[91] Ronning F. Integral representation for bounded starlike functions. *Annales Polonici Mathematici*, 1995, 60. 289-297.

[92] Rosy T. and Murugusundaramoorthy G Fractional calculus and their applications to certain subclass of uniformly convex functions, *Far East Journal of Mathematical Sciences*, 2004, 15(2), 231–242.

[93] Ruscheweyh S. New criteria for univalent functions. *Proceedings of the American Mathematical Society* 1995, 49, 109-11.

[94] Sakar F. M. and Aydogan S. M Subclass of m -quasiconformal Harmonic Functions in Association with Janowski Starlike Functions. *Applied Mathematics and Computation* 2018, 319, 461–468.

[95] Sălăgean G. S Subclasses of univalent functions. *Complex Analysis-Fifth Ro-manian-Finnish seminar*, Springer, Berlin, 1983, 1013, 362-372.

[96] Silverman H. Univalent functions with negative coefficients, *Proceedings of the American Mathematical Society*, 1975, 51, 109–116.

[97] Shams S.. Kulkarni S. R. and Jahangiri J. M. On a class of univalent functions defined by Ruscheweyh derivatives, *Kyungpook Mathematical Journal*, 2003, 43(4). 579–585.

[98] Shams S.. Kulkarni S. R. and Jahangiri J. M. Classes of uniformly starlike and convex functions, *International Journal of Mathematics and Mathematical Sciences*, 2004. 53, 2959–2961.

[99] Shareef Z., Hussain S. and Darus M., Convolution operator in geometric functions theory. *Journal of Inequalities and Applications*, 2012, 2012(1), 213-221.

[100] Silverman H. Univalent functions with negative coefficients. *Proceedings of the American Mathematical Society*, 1975, 51, 109-116.

[101] Srivastava H. M. and Mishra A. K. Applications of fractional calculus to parabolic starlike and uniformly convex functions. *Computers Mathematisc with Applications*. 2000, 39. 57-66.

[102] Srivastava H. M., Murugusundaramoorthy G. and Janani T Uniformly star-like functions and uniformly convex functions associated with the Struve function, *Journal of Computational and Applied Mathematics*, 2014, 3-16.

[103] Srivastava H. M., Frasin B. A. and Pescar V. Univalence of integral operators involving Mittag-Leffler functions, *Applied Mathematics & Information Sciences*, 2017, 11(3).

[104] Srivastava H. M., Juma A. R. S. and Zayed H. M. Univalence conditions for an integral operator defined by a generalization of the Srivastava-Attiya operator, *Filomat*. 2018, 32, 2101-2114.

[105] Srivastava H. M , Khan S., Ahmad Q. Z., Khan N and Hussain S. The Faber polynomial expansion method and its application to the general coefficient problem for some subclasses of bi-univalent functions associated with a certain q -integral operator, *Studia Universitatis Babes-Bolyai Mathematica*, 2018, 63, 419–436.

[106] Srivastava H. M. and Günerhan H. Analytical and approximate solutions of fractional-order susceptible-infected-recovered epidemic model of childhood disease. *Mathematical Methods in the Applied Sciences*, 2019, 42, 935-941.

[107] Srivastava H. M., Tahir M., Khan B., Ahmad Q. Z. and Khan N. Some general classes of q -starlike functions associated with the Janowski functions *Symmetry*. 2019, 11, 292-304.

[108] Srivastava H .M., Bilal K.. Nazar K and Ahmad Q. Z. Coefficient inequalities for q -starlike functions associated with the Janowski functions. *Hokkaido Mathematical Journal* 2019, 48, 407–425.

[109] Srivastava H M. Operators of basic (or q -) calculus and fractional q -calculus and their applications in geometric function theory of complex analysis. *Iranian Journal of Science and Technology, Transactions of Science*, 2020, 44, 327–344.

[110] Srivastava R. and Zayed H. M. Subclasses of analytic functions of complex order defined by g - derivative operator. *Studia Universitatis Babes-Bolyai Mathematica*. 2019, 64. 223–242.

[111] Subramanian K .G.. Sudharsan T V. and Silverman H. On uniformly close-to-convex functions and uniformly quasiconvex functions. *International Journal of Mathematics and Mathematical Sciences*, 2003, 2003(1), 3053–3058.

[112] Tang Y. and Zhang T. A remark on the q -fractional order differential equations. *Applied Mathematics and Computation*, 2019, 350, 198–208.

[113] Thomas D. K. Starlike and close-to-convex functions. *Journal of the London Mathematical Society*, 1967, 42, 427-435.

[114] Thomas T. A Method for q -calculus. *Journal of Nonlinear Mathematical Physics*. 2003, 10 (4), 487–525.

[115] Ul-Haq W. and Mahmood S. Certain properties of a class of close-to-convex functions related to conic domains. *Abstract and Applied Analysis*. 2013, 2013(1), 847287.

[116] Wilken D. R. and Feng J. A remark on convex and starlike functions. *Journal of London Mathematical Society*, 1980, 21, 287-290.

[117] Whittaker E. T. and Watson G. N. *A course of modern analysis* 4th edition. Cambridge University Press 1958.

[118] Wiman A. Über den fundamentalsatz in der theorie der funktionen $E_{\alpha}(x)$, *Acta Mathematica*, 1905. 29(1), 191-201.

